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Abstract

Silicone mammary implants (SMIs) are indispensable in the aesthetic breast augmentation and the
postmastectomy breast reconstruction. However, about 20% of customers or patients suffered from
its common systemic and local complications of SMIs, capsular contracture (CC). The formation
of CC could be thought of as an issue related to implant biocompatibility. The research on
the interactions between human peripheral blood mononuclear cells (PBMCs) and SMIs in vitro
indicated that pro-inflammatory cytokines IL − 1β, IL − 6, and TNF − α that are related to
the activation of macrophages could be found on two textured SMI surfaces compared to smooth
SMI surfaces. Moreover, a moderate upregulation in an anti-inflammatory and profibrotic cytokine
TGF−β1 on them. Therefore, the SMI surfaces’ roughness may play an essential role in regulating
inflammation-related cytokines in macrophages, and the differences in gene expression patterns
induced by various SMIs may be the key to the formation of fibrosis.

In our study, the RNA-seq data of macrophages derived from PBMCs are analyzed to in-
vestigate the differences between the gene expression pattern between macrophages cultured on
various SMIs. Macrophages were derived from the peripheral blood mononuclear cells (PBMCs)
of six healthy females donors, and they were cultured on the flat and the textured breast SMIs
for 24 hours and 96 hours, respectively. We used differentially expressed genes analysis (DEGA)
to compare the gene expression profile of macrophages of the flat and the textured phenotypes
to investigate if the flat and the textured SMIs can induce different gene expression profiles in
macrophages.

Our study presents a complete DEGA pipeline on macrophages cultured on the breast SIMs
with various surface structures. The DEGA pipeline includes quality control, read alignment,
differential expression analysis, geneset enrichment analysis, connectivity map query, and gene
network construction. Based on the analysis of two comparison groups Text24h VS Flat24h and
Text96h VS Flat96h, we could conclude that DEGs can distinguish macrophages cultured on the
flat-surface implant from those cultured on the textured-surface implant. Compared to the tex-
tured surface, the higher expression level of pro-inflammatory factors, including IFN-α, and -γ,
and TNF-α that can lead to the formation of CC has been found in macrophages on the flat
surface. Besides, macrophages cultured on flat and textured presented different M1/M2 macro-
phages polarization patterns. Connectivity map query results provided possible clinical access to
preventing complications like CC and breast cancer.

Keywords: Macrophages; Flat and Textured Breast Implants; Differentially Expressed Genes
Analysis Pipeline; M1/M2 Polarization.
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Chapter 1

Introduction

1.1 Background and Related Work

Silicone mammary implants (SMI) breast augmentation is one of the most common aesthetic sur-
gery procedures [1], and it is also the primary way of the postmastectomy breast reconstruction.
Even though the application of SMIs can meet the needs of beauty, it will also challenge custom-
ers or patients’ health. The most common systemic and local complication of SMI is capsular
contracture (CC), with an incidence larger than 20% [2,3].

The formation mechanism of the CC induced by breast augmentation is yet evident. Never-
theless, findings have confirmed that lymphocytes and T cells may be vital in the breast tissue’s
immunological responses to breast SMIs and the existence of the fibrous capsule. In 2012, Maria
et al. found lymphocytes, primarily T cells, at the implant site in the initial stage of fibrous
capsule formation [4]. Activated T cell pool clonally expansed by the simulation on lymphocyte
could lead to T cells’ malignant transformation into breast implant-associated anaplastic large cell
lymphoma (BIA-ALCL) [5, 6]. Although peripheral blood mononuclear cells (PBMC) are mainly
composed of lymphocytes (T, B, and NK cells), monocytes, and dendritic cells (DC), there is little
research focused on in vitro responses of PBMC to the SMI surface.

In 2009, S.barret et al. proposed that CC could be thought of as an issue related to implant
biocompatibility since CC’s development is due to the body’s reaction to the implant [7]. The
biocompatibility was first defined by Willimas et al. as "The ability of a material perform with an
appropriate host response in a specific application" [8]. To validate this assumption, S.barr et al.
conducted studies on the structure and the biocompatibility of 13 commercially available SMIs in
2009 and 2017 [7, 9].

In 2018, based on the postulation that fibrosis is always a sequela of inflammatory processes [10],
Dolores’s group conducted a study to investigate the interactions between human PBMC and 7
SMIs reported by S.barr et al. in vitro [11]. The result indicated that these SMIs would not induce
either the activation or the proliferation of T cells, and they also had no effects on the distribution
of T cell subsets. The researchers then assessed the cytokine profile of PBMC response to different
SMI surfaces to evaluate T-cell paracrine activity. They assayed the macrophage activation cy-
tokines’ expression level, cytokines important for macrophage fusion, anti-inflammatory cytokines,
and T cell-activation cytokines.

Among all the cytokines quantified, only the macrophage activation cytokines IL−1β, IL−6,
and TNF − alpha were above the lower limit quantification. In conclusion, proinflammatory
cytokines IL − 1β, IL − 6 and TNF − α that are related to the activation of macrophages and
increase in fibrosis can be found on two of the commercially available SMI surfaces, Polytech
Texture (IL − 1β, IL-6 and TNF − α). Moreover, a moderate but not statistically significant
upregulation in . TGF − β1 on all surfaces except on the SilkSurface. TGF − β1 has both
anti-inflammatory and profibrotic properties. The maximum Peak to Valley (PV) value and the
Roughness value of the Polytech Texture surface are about 220 µm and 38 µm larger than those of
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CHAPTER 1. INTRODUCTION

the Silk surface, respectively [9]. The textured surface (Mentor Siltex surface) is the only one that
showed up-regulation in the monocyte/macrophage biomarkers, including CD14, CD68. Besides,
there was also up-regulation in the expression level of inflammatory cytokines IL-10 and TNF-
alpha on this textured implant. The texture on the Mentor Siltex surface is about 100- to 200-µm
deeper than that on the Allergen Smooth surface [7]. In a summary, macrophages were more likely
to be activated, and more anti-inflammatory cytokines will be expressed on the textured surfaces.
Therefore, the roughness of the SMI surfaces may play an important role in the expression patterns
of genes in macrophages and cytokines that can lead to fibrosis.

Then, in 2019, Daneshgaran and Wong et al. investigated how the CC interacted with the
Allergan Smooth surface and the Mentor Siltex surface by analysing differential gene expression
[12]. As results indicated, CCs around the smooth and the textured implants presented different
patterns of gene expression. Also, the CC had expression patterns for MMP-3, TNNT-3, and
NRG-1 that are consistent with the CC formed on the smooth implants. These results suggests
new therapeutic targets for the CC.

To conclude, based on the previous research about the formation mechanism of the CC caused
by breast SMIs, macrophages from PBMC is a possible cell factor. Moreover, the roughness
of SMI surfaces will affect the expression level of cytokines activating macrophages and cytokines
inducing fibrosis. However, there are few studies on the immunological responses of monocytes like
macrophages derived from PBMC to breast SMI surfaces with different roughness values. Further
studies on this field are needed since they can indicate whether the roughness of SMI surfaces will
affect the gene expression pattern of macrophages or not, if so, whether the differences can be
related to the formation of the CC or other immune responses.

1.2 Research Question
This study’s primary aim is to examine whether gene expression is different between macrophages
grown on SMI surfaces with two kinds of structure: the flat surface and the textured surface. The
differentially expressed gene analysis on the macrophages of these two phenotypes could demon-
strate if macrophages cultured on the flat or the textured surfaces are more likely to induce the
deregulation of biological processes, including specific genes, cytokines, or pathways. Identifying
such processes could provide more clues on how macrophages react to various breast SMI envir-
onments in vitro. Eventually, the identified biological processes will be used as the pre-clinical
target to avoid complications, such as the capsular contracture or the breast cancer caused by the
breast SMI transplantation surgery.

1.3 Method
To achieve the objective, RNA sequencing (RNA-seq) followed by the differentially expressed gene
analysis (DEGA) pipeline will be applied to compare the gene expression level of macrophages
cultured on different breast SMI surfaces. Macrophages used in this study were derived from the
peripheral blood donated by six healthy females, and they were cultured on flat and textured
breast SMI surfaces for 24 hours and 96 hours, respectively. Due to the high-throughput of RNA-
seq data and the application of adapters and the flow cell during the sequencing procedure, the
RNA-seq data could contain adapter contents and the disturbed sequencing result caused by the
debris on the flow cell, a completed RNA-seq quality control process is designed and applied in
our pipeline. Besides, the DEGA pipeline is mainly composed by following steps, including the
quality control of the RNA-seq data, alignment of the short reads within the RNA-seq data, DEGA
based on the alignment, visualization of the DEGA result, gene set enrichment analysis on the
DEGA result, gene network of differentially expressed genes, and connectivity map query of gene
landscape of each donor.
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Chapter 2

Material and Method

In this chapter, we will introduce the material, methods, and the workflow of our project. The
material we used in our case is the pair-end RNA-sequencing (RNA-seq) data generated by Il-
lumina technique, and the pipeline of the differentially expressed gene analysis (DEGA) and the
visualization methods we used are presented in the Figure 2.1.

Further Analysis:

Connectivity Map 
Query

Geneset Enrichment 
Analysis

Gene Network

Figure 2.1: Workflow.

2.1 Human Peripheral Blood Cell Derived Macrophages
The macrophages derived from peripheral blood mononuclear cells (PBMCs) were obtained from
heparinized blood by Histopaque-1077 density gradient centrifugation. Then, monocytes were isol-
ated from PBMCs using the magnetic cell separation system (MACS). After purifying, monocytes
were suspended in a complete RPMI medium containing M-CSF and seeded at ultralow attachment
plates. As control, cells were cultured in full RPMI medium without M-CSF to check if differ-
entiation would be successful. Monocyte-derived macrophages were harvested from the ultralow
attachment plates after 6-day incubation. The macrophages were then washed, re-suspended, and
1.5×104 macrophages will be seeded in quadruplicate on different surfaces (polystyrene, flat BSMI,
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and textured BSMI) inside 24-well non-tissue culture treated plates. As a control, cells will also
be implanted on the three other surfaces to check the cells’ attachment to the implant surfaces
by staining for Phalloiddin and DAPI. After overnight incubation, the surfaces were transferred
to new non-tissue culture treated plates containing fresh complete RPMI medium and M-CSF
and incubated again. Macrophages will be cultured on the different surfaces for 24h and 96h.
Then, surfaces will be transferred to a new 24-well plate and washed two times with cold PBS.
The control wells for testing cell attachment to surfaces will be fixed with paraformaldehyde/PBS
and then placed on PBS for later staining with Phalloiddin and DAPI. Trizol reagent will be used
to lyse other cells in the other wells to isolate total RNA; RNA from 4 wells per surface will be
combined to 1 RNA sample of each surface.

These experiments were executed to test whether gene expression is different between macro-
phages grown on a flat surface (Allergan Smooth surface) or a textured surface (Mentor Siltex
surface). The BSMI surfaces used to culture macrophages are shown in Figure 2.2. These two
breast SMI surfaces have been compared in the study on the variances in the expression of the
inflammatory cytokines and T cell, monocytes, and macrophages’ biomarkers [11]. The flat surface
(Allergan Smooth surface) and other six textured surfaces, and the flat surface was used as the
control group. Results indicated that compared to the flat surface, the textured surface (Mentor
Siltex surface) is the only one that showed up-regulation in the monocyte/macrophage biomark-
ers, including CD14, CD68. Besides, there was also up-regulation of IL-10 and TNF-α in the
Mentor Siltex surface. AK.Wong Based on these comparisons between the flat surface (Allergan
Smooth surface) and the textured surface (Mentor Siltex surface), they were selected in our study
to investigate if they can induce different expressions of inflammatory cytokines associated with
inflammation or other complications like the breast cancer in macrophages.

Figure 2.2: BSMI surface structures. (a)4×magnification of the surface structure of flat BSMI.
(b)10×magnification of the surface structure of flat BSMI. (c)4×magnification of the surface struc-
ture of textured BSMI. (d)10×magnification of the surface structure of textured BSMI.

2.2 RNA Sequencing Data

RNA sequencing (RNA-seq) is a preferred technique for analysing transcriptome that is the com-
plete set of transcripts in a cell, and their quantity [13]. It was first introduced in 2008 by Ugrappa
et al. [14] as a quantitative sequencing-based method used for mapping transcribed regions by se-
quencing complementary DNA fragments belong to these regions and mapping to the genome. The
high-throughput of the RNA-seq enables the generation of a high-resolution transcriptome map

4 Differential Expressed Gene Analysis on Macrophages after in Vitro Exposure to Flat and
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of the interested cells. Over the past decade, due to the decreasing costs and the popularization
of shared-resource sequencing cores at many research institutions, the RNA-seq has become more
widely used [15]. RNA-seq identifies untranslated regions, introns, and coding regions less chal-
lenging, and the exploration of the transcriptional structure within a cell better. To investigate
the variations in the transcriptome of macrophages cultured on different breast silicone mammary
implant (BSMI) surfaces, RNA-seq data generated by Illumina flow cell platform was used to
provide information in this study.

Figure 2.3: Illumina RNA-sequencing workflow.

Illumina RNA-seq platform is one of the most popular sequencing platforms since it can se-
quence the content of a cDNA fragment at the same time when it synthesizes the content inside
the cDNA fragment. The clustering and the sequencing of Illumina RNA-seq are shown in Figure
2.3 [16]. As indicated in Figure 2.3.B, each type of dNTP (A, T, C, G) carries different colors
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to identify its content. In each run, only one dNTP will be bound to a synthesized sequence.
At the same time, the fluorescence it carries will be activated and recorded by the camera. This
fluorescence will be used to sequence the content of the RNA sample. An example of the quality
control (QC) process is described by Figure 2.3.C. The RNA-seq data is stored in the .fastq files,
then, its quality will be checked by tools like FastQC [17]. If FastQC reports the existence of
adapter contents in the RNA-seq data, tools like Trimmomatic will be used to trim adapters from
the RNA-seq data. After these steps, read aligners, such as BWA, Tophat, or STAR, will match
the processed RNA-seq data to the reference genome or transcriptome to investigate which genes
or transcripts are contained in the .fastq files.

2.2.1 Sample Index

In our case, macrophages from six healthy donors were cultured on two kinds of BSMI surfaces
for 24 hours and 96 hours, respectively. Thus, there were 24 samples in four groups: Flat 24h,
Flat 96h, Text 24h, and Text 96h. The index was used to denote the experiment condition of the
RNA-seq data to refer to the samples.

The name and index of the samples are described in Table 2.1. E.g., the sample Donor 1
Flat 24h indicates that the macrophages are from Donor 1, and they are cultured on the Flat
breast implant for 24 hours; the sample name Donor 8 Text 96h indicates that the macrophages
are from Donor 8, and they are cultured on the textured breast implant for 96 hours. In the
following content of this report, the sample is referred to by their index number. There are two
or three replicates of each sample; RNA-seq was repeated on these samples for two or three times
in different flowcell lanes, Lane 1 (001), Lane 3 (003), and Lane 4 (004). The RNA-seq data will
also be referred to by their index in the following report to better indicate which replicate data is
used. E.g., 005-003, in which 005 denotes that the data from Sample 005, whose macrophages are
from Donor2 and cultured on the flat BSMI surface for 24 hours; 003 means that the RNA-seq
data was generated in the Lane 3.

Experiment Condition Index Experiment Condition Index
Donor 1 Flat 24h 001 Donor 1 Text 24h 002
Donor 1 Flat 96h 003 Donor 1 Text 96h 004
Donor 2 Flat 24h 005 Donor 2 Text 24h 006
Donor 2 Flat 96h 007 Donor 2 Text 96h 008
Donor 3 Flat 24h 009 Donor 3 Text 24h 010
Donor 3 Flat 96h 011 Donor 3 Text 96h 012
Donor 4 Flat 24h 013 Donor 4 Text 24h 014
Donor 4 Flat 96h 015 Donor 4 Text 96h 016
Donor 5 Flat 24h 017 Donor 5 Text 24h 018
Donor 5 Flat 96h 019 Donor 5 Text 96h 020
Donor 8 Flat 24h 021 Donor 8 Text 24h 022
Donor 8 Flat 96h 023 Donor 8 Text 96h 024

Table 2.1: Sample name and index.

2.3 Quality Control on RNA-seq Data

In this part, detailed information about errors of the raw RNA-seq data in the macrophage dataset
will be provided, and tools used to solve these problems and their usage order will be introduced.

Quality control (QC) is the first step in the differential expressed gene analysis (DEGA)
pipeline. In this step, the raw RNA-seq data quality will be checked; paired bases (bps) or
short reads with poor quality will be trimmed off from the raw data. This step ensures that the
quality of the RNA-seq data is eligible for the downstream analysis, generating more accurate
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CHAPTER 2. MATERIAL AND METHOD

results. Eliminating poor-quality reads improves the quality and decreases the time needed for
the analysis. In our study, QC on the macrophage RNA-seq raw data mainly completed by tools
in the following order: FastQC, MultiQC, TrimGalore!, Cutadapt, FilterByTile, and AWK.

2.3.1 FastQC and MultiQC

Firstly, FastQC was used to check the quality of the raw RNA-seq data of each sample separately.
It is a software developed by Simon Andrews [17], and it can examine the quality of raw sequence
reads from multiple analyses, and report results in HTML format available from web browser. A
FastQC report includes modules like basis statistic, per base sequence quality, per tile sequence
quality, per base sequence content, per sequence GC content, overrepresented sequences, adapter
content ect. Each module is annotated by a green check, red cross, or yellow exclamation mark,
which denotes pass, fail, or warning, respectively. Detailed explanation of each module, criteria,
and possible causes caused errors can be found in [18]. More critical, examination results of
FastQC modules named by ’per base’ are based on the base-pair (bp) position. This enables uers
to trim bps with poor quality off from a read instead of deleting the whole read to preserve the
effective information as much as possible.

According to the FastQC report, samples in the macrophage dataset contain short reads with
a length of 150bp or 151bp. The RNA-seq data generated by Lane 4 is 150bp, and that generated
by Lane 1 and Lane 3 is 151bp. The sequencing on the Lane 1 and 3 had one more run than that
on Lane 4. The length of a short read is decided by the number of cycles executed in the RNA-seq
process. The number of total short reads in each fastq file is various. The fastq file that contains
the smallest number (764843) of short reads was from the Sample 003 generated by Lane 4, and
the largest number (14601315) was also from the Sample 003 but generated by Lane 1.

However, the FastQC report on each sample is independent. It is hard to compare 144 reports
of our macrophages data set since FastQC generates the report on a per-sample basis. It is difficult
to conclude what the main problems that exist in most of the samples in a dataset are. Users
need to find and compile QC results by themselves manually; however, it is time-consuming and
error-prone. Thus, another tool MultiQC, was used to integrate 144 separate reports. MultiQC
introduced by Philip et al. in 2016 is the first tool that can flexibly integrate FastQC reports of a
sizeable RNA-seq dataset [19]. It creates a single report combining outputs from multiple FastQC
reports to check global trends quickly. An advantage of MultiQC is that the data of every single
sample can be compared in shared interactive plots, allowing detection of subtle differences not
noticeable when switching between different files manually.

Figure 2.4 is the FastQC status checks plot given by MultiQC, in which the problems in each
module are shown, the column is each FastQC module, and the row denotes each sample. In our
macrophage dataset, RNA-seq data of a number of samples encompass poor performances in per
tile sequence quality, per base sequence content, per base sequence quality, sequence duplication,
overrepresented sequence, and adapter content. To gain an RNA-seq dataset with better quality,
the following tools, TrimGalore!, Cutadapt, FilterByTile, and AWK, were applied and corrected
the warnings and errors.

2.3.2 TrimGalore! and Cutadapt

Warnings and failures reported by adapter content and overrepresented sequences modules should
be corrected first. Both adapter content and overrepresented sequences modules can give inform-
ation on the type and the content of adapters. The adapter content module plots a cumulative
proportion of each type of adapter at each position content in RNA-seq data, and FastQC will, in
default, issue a failure if an adapter sequence is presented in more than 10% of all reads. Since no
single sequence is expected to present at a high enough frequency, the overrepresented sequences
module will report sequences if any sequence is found to present more than 1% of the total as
failed. The sequences reported in this module are not only RNA-seq adapters but also sequences
without a hit, i.e., their sources are unclear. Only one dNTP will be attached to the adapters
or the formed fragments in each cycle in the Illumina platform. Since the RNA fragments are of

Differential Expressed Gene Analysis on Macrophages after in Vitro Exposure to Flat and
Textured Breast Silicone Mammary Implants

7



CHAPTER 2. MATERIAL AND METHOD

different lengths, there was a possibility that a certain proportion of fragments were shorter than
the number of cycles. If so, adapter contents at the end of the fragment will also be synthesized
in the PCR amplification process. The uncertain length of a fragment is the main reason for the
existence of adapters in the RNA-seq data. The usage of adapters in RNA-seq is necessary. More
critical, adapter contamination will lead to the alignment errors and an increase in unaligned reads
since the adapter sequences are synthetic and do not occur in the human or homo sapiens gene
library. Thus, the overrepresented sequences without hits and adapter sequences may cause errors
in per base sequence quality and per base sequence content. Therefore, failures and errors should
be removed first before other measures are taken to control the quality of the RNA-seq dataset.
This step is also expected to improve part of errors from the per base sequence quality and per
base sequence content module. To this end, TrimGalore! and Cutadapt were employed in the
very first of the QC step.

In our case, the first step was trimming adapter contents off from the RNA-seq data by Trim-
Galore! [20]. It can effectively detect recognizable adapters used in the RNA-seq data and remove
them away. Then, the quality of RNA-seq will be rechecked by FastQC to detect the content
of adapters and the overrepresented sequences. After the RNA-seq raw data being processed by
TrimGalore!, two problems may exist. One is that the overrepresented sequences without hit will
be left; the other one is that there will be the generation of new overrepresented sequences without
hit. The next step was checking the overrepresented sequences with BLAST [21] to investigate
the origins of them. The result showed that there were no overrepresented sequences related to
homo sapien. Thus, overrepresented sequences were also removed to decrease the bias in the read
alignment. A python package called Cutadapt was used. Cutadapt is a wrapper around FastQC
and TrimGalore! to consistently apply adapter and quality trimming to fastq files. Cutadapt can
be used to trim specified sequences [22]. The other aim of the usage of Cutadapt is to limit the
minimum length of sequences, avoiding sequences with a length of 0 in the processed RNA-seq
data being recognized as overrepresented sequences. This will also lead to errors in the sequence
length distribution module. In our case, the minimum length of the sequences set in Cutadapt is
50.

Figure 2.4: Raw macrophages RNA-seq data MultiQC report.

2.3.3 FilterByTile
Per tile sequence quality allows users to look at the quality scores from each tile across all of bps to
see if there was a loss in quality associated with specific regions on a flow cell lane if the RNA-seq
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Figure 2.5: Processed macrophages RNA-seq data MultiQC report.

data is generated by Illumina platform. Figure 2.6 is an example of the plot given bey per tile
sequence quality module; as indicated, red and yellow bars are the errors. On a flowcell lane, there
are numerous tiles [23] that are defined as a small imaging region of view by the camera according
to their coordinates on a lane, as shown in Figure 2.7. The structure inside a lane and the number
of tiles are not fixed; they may be different between the different Illumina RNA-seq equipment.
Inside a tile, there are massive short reads whose qualities decide the quality of the tile they are
in. Errors in per tile sequence quality module indicate that the averaged Phred score of short
reads inside a certain tile is more than five less than the mean for the same bp position across all
tiles. Possible reasons for errors existing in this module suggested by FastQC Help are transient

Figure 2.6: Per tile sequence quality plot.
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Figure 2.7: Illumina flow cell structure [23].

problems such as bubbles going through the flowcell, or permanent issues such as smudges on the
flowcell or debris inside the flowcell lane [18]. Given that errors in per tile sequence quality module
only in our macrophage data were generated by Lane 4. Besides, these errors occurred in the same
bp positions. Thus, errors may be caused by the smudges or debris on specific regions inside the
Lane 4.

To improve per tile sequence quality of our data, position-based tool FilterByTile from BBMap
[24] was implemented. The reason why FilterByTile was applied after TrimGalore! and Cutadapt
is that bases with errors of per tile sequence quality in our dataset were at the start bps (1-20bps)
or the end (100-150bps) of short reads in our macrophage RNA-seq data. With the expectation
that these bps were possibly included in adapters and overrepresented sequences, errors in per tile
sequence quality were corrected after application of Trim Galore! and Cutadapt, this workflow
design could be more time-saving and labor-saving. In our macrophage dataset, there are 1575
tiles in each lane. They are with a size of 32000× 64000 micrometer2. FilterByTile divides each
tile into microtiles with the same size (default 500 × 500) to avoid removing all the sequences
inside tiles with low Phred quality. Short reads within any microtiles that are unsatisfied with the
thresholds of read quantity, quality, uniqueness, error-free probability thresholds will be removed.
These detailed information can be checked in the report given by FilterByTile [24].

However, only implementing FilterByTile once cannot get rid of all the errors completely.
Thus, we applied FilterByTile once again on the processed RNA-seq data; although this time
errors can be removed, the loss of the data needs to consider. About 6% short reads were trimmed
in the second implementation of FilterByTile. The trade-off between the quality of RNA-seq data
and the number of short reads inside the RNA-seq data needs more investigation. To keep the
information as much as possible, we used data only processed by FilterByTile once to do the
downstream analysis. As shown in Figure C.1 and C.2, the number of the total sequences in
the processed dataset was compared to that of the raw dataset. As indicated, the median of the
number of reads remained in the dataset processed by FilterByTile only once was about 92.8%.
However, if the RNA-seq data generated by Lane 4 processed by FilterByTile twice, the median
was 85.6%. Thus, the secondary treatment on the RNA-seq data by FilterByTile caused about
7.2% loss of the data. Besides, FilterByTile twice still could not get rid of all the errors in the
FastQC module per tile sequence quality, as shown in Figure B.1. Thus, in our study, we keep
the remained errors in this FastQC module and used the RNA-seq data processed by FilterByTile
once for the following DEGA. A better solution for tackling this kind of error should be studied
to provide a more efficient way to improve the quality of the RNA-seq data. Also, before the
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sequencing, the equipment like flow cell should be examined to ensure no bubbles or debris in
lanes.

2.3.4 AWK

The remaining quality problems in our macrophage RNA-seq dataset were failures in per base
sequence quality and the per base sequence content modules. These errors mainly exist at the
beginning of the end of short reads. At the final step of QC, AWK, a domain-specific language
designed for text processing [25] was selected to complete the workflow. It is a suitable and
convenient choice for trimming bps on specific positions since the fastq file that stores RNA-seq
data can be read as text, and certain bps in short reads can be trimmed as characters. In our
study, based on the information provided by per base sequence content, bp 1-20 and bp 140-150
were trimmed from each short reads according to the FastQC report.

After applying the workflow composed by mentioned tools to process the RNA-seq data of the
macrophage dataset, the MultiQC report shown in Figure 2.5 indicates that even though there
were still errors in module per tile sequence quality and sequence duplication, the quality of our
RNA-seq library has been improved a lot. The dynamic range of RNA-seq is more expansive
than other sequencing technology, such as microarray. The range is from 0 to 1e7. One of the
advantages of RNA-seq is its ability to detect RNA with relatively low expression levels; however,
this merit can also cause a problem. That is the over-expression of sequence that already possesses
a high expression level, and this will be reflected as an error in the sequence duplication FastQC
module. In the studies on RNA-seq, this error may indicate the quality of RNA-seq is good. Thus,
the errors in the sequence duplication FastQC were not removed in our study to avoid missing
useful information in the RNA-seq data.

In summary, based on the comparison between the status check shown in Figure 2.5 and 2.4,
most of the errors and warnings have been removed, this indicates that the quality of the raw
RNA-seq data has been improved by our QC pipeline. Nevertheless, there are still errors in per
tile sequence quality and sequence duplication, and warnings in per sequence GC content and
sequence length distribution. As we mentioned, the errors remained in the per tile sequence
quality need to be further study and the removal of them will cause more than 7% loss of the
total read amount. Thus, the errors were kept in the processed RNA-seq data. Also, errors in
the sequence duplication may explain that specific transcripts possessed much higher expression
than others in our RNA-seq dataset, thus, the errors were also left since the correction of them
may cause the loss of useful and meaningful information and bias in the alignment of the data.
In a nutshell, errors of per tile sequence quality and the sequence duplication were kept to ensure
enough information can be gained and used for DEGA.

As for the warnings in the sequence length distribution, they were caused by the QC process.
After getting rid of sequences with low quality, each read’s length is impossible to be identical
(150bp or 151bp). But FatsQC will raise warnings if all sequences are not the same length. FastQC
supposes that the averaged GC content of all reads should be in a normal distribution, however,
there may be a wider or narrower distribution of mean GC content among all transcripts due to
the high throughput of specific transcripts in RNA-seq. This can cause deviations of the observed
distribution compared to an idealized normal distribution. Thus, these warnings will not cause
bias in the following DEGA. To conclude, even though there are remaining errors and warnings,
the processed RNA-seq data quality is still reasonable for the DGEA.

2.4 Differential Gene Expression Analysis

In recent years, researchers focus on the refinement of the transcriptome within an organism and
the variations in the gene expression level between various phenotypes. They applied a method
called differentially expressed gene analysis (DEGA) to investigate the changing expression levels
of each transcript of cells during development and under different conditions. Thus, the DEGA can
helps researchers better understand the interactions between cells and various kinds of biomaterial.
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Except for the quality control (QC) on the raw data, a complete DEGA should include the
following steps: the alignment of the RNA-seq data to the reference genome/transcriptome by
read aligner, the quantification of the expression by expression modeler, and the differential gene
identification by differential expression tools. Table 2.2 presents the tools that can be used for
each step of DEGA in the current stage. DEGA can be accomplished by pipeline composed of
these tools.

Read Aligner STAR, Kallisto, Salmon, Sailfish, Tophat2, SeqMap
Expression Modeler BitSeq, Kallisto, Salmon, Cufflinks, Stringtie

Differential Expression Tool edgeR, DESeq2, Ballgown, SAMseq, Sleuth, NOISeq

Table 2.2: Tools for DEGA.

There are many studies on the comparison between pipelines. In Williams et al. ’s research,
they implemented 495 unique differential gene expression pipelines on a PBMC RNA-seq library.
They compared the GSEA results with four significantly differentially expressed gene datasets to
evaluate the performance of them [26]. One of the criteria evaluating these pipelines’ performance
is the recall, which was calculated as the number of the same significantly differentially expressed
genes (SDEGs) in the test RNA-Seq dataset with the reference dataset, divided by the number
of SDEGs in the reference dataset. Also, their study’s result indicates the choice of differential
expression tool (DET) exhibited a more substantial impact on the performance of pipelines than
the choice of aligner and expression quantification method. Pipelines composed of DET DESeq2
could gain high recall values in all the four datasets. In the same year, Juliana et al. compared
pipelines consist of the mentioned tools. They did not identify which specific pipeline or tool
could gain the optimum results in all performance measures in their experimental conditions.
Nevertheless, they demonstrated that the impact of aligners on the final DEGA was minimal.
Besides, in the study of Costa-Silva et al. on the comparison of DEGA pipelines composed
of different DETs, including NOIseq, DESeq2 and limma+vomm methods presented the best
individual results with 95%, 95% and 93% of Specificity and 80%, 84% and 81% of True Positive
Rate, respectively [27]. The Specificity denotes the percentage of those genes that were not
differentially expressed and were correctly identified as not differentially expressed. The True
Positive Rate denotes the percentage of DEGs that are correctly identified as DEGs. Based on
the Specificity and True Positive Rate values, DESeq2 could give more accurate results. However,
if pipelines consist of DESeq2 perform best in all situations is still unclear.

Thus, the choices of tools should be determined by the demands and the aim of our study. To
gain more accurate results, the DEGA pipeline of our macrophage should be designed in gene-
resolution. Charlotte et al. have found that both abundance estimation and statistical inference
of gene-resolution analyses are often more accurate and interpretable than those of transcript-
solution analyses [28]. Besides, they found that conventional gene counting approaches may cause
an inflated false discovery rate (FDR) in contrast to methods aggregating transcript-level counts.
The precise transcript-level estimation and inference is the key to deriving appropriate gene-level
results. Moreover, transcript-level misestimation can propagate to the gene level. Based on their
results, the DEGA pipeline used on our macrophage dataset was designed on gene-level derived
from transcriptome-level. To this end, Kallisto [29] and Tximport [28] were selected as read
aligner and transcript-level to gene-level converter, respectively. Moreover, FDR (type I errors)
was expected to be as low as possible in our study. Thus, the DET chosen is DESeq2; according
to the comparison result of controlling FDR between various differential expression, DESeq2 is
the algorithm that often achieved the highest sensitivity in controlling the type I error [30].

2.4.1 Read Aligner: Kallisto

In this study, Kallisto was selected as aligner [29]. The working process of Kallisto is illustrated
in Figure 2.8. Kallisto uses fast hashing of k-mers and a transcriptome de Bruijn graph(T-DBG)
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constructed from the k-mers present in the transcriptome to gain accurate pseudo alignment result
of the transcriptome.

Firstly, a T-DBG will be created from a read (in black) and its possible origins, three over-
lapping transcripts corresponding to different colors indicated in Figure 2.8.a. The colored paths’
union covers all edges of the T-DBG, and it constructs an index (v1, v2, v3, ...) for k-mers, which
are hollow circles shown in Figure 2.8.b. This united path also induces a k-compatibility class
for each k-mer. For each k-mer, there is a k-compatibility class induced by the path that covers
the transcriptome. E.g., the most left k-mer has a k-compatibility of all the three transcripts, the
three k-mers on the most top in the T-DBG graph have a k-compatibility of only blue and pink
transcripts. In Figure 2.8.c, the k-mers of the three colored transcripts are hashed to the read gen-
erating the black nodes. Then, Kallisto uses a skipping method to determine the k-compatibility
of the read. Black dashed lines presented in Figure 2.8.d connects the hashed k-mers(black nodes),
but skips those redundant k-mers, which are defined as the k-mers with the same k-compatibility
class (i.e., V1, V2, and V3). The k-mers are also classified into the same ’equivalence class.’ Thus,
black dashes lines will only keep the first node in the same equivalence class(i.e., black nodes V2
and V3 will be skipped). Finally, Kallisto takes the k-compatibility classes of its constituent k-mers
to decide the read’s k-compatibility class.

With this pseudo-alignment process, the speed of Kallisto is higher than the conventional
aligners. Rather than aligning each read to the reference transcriptome, Kallisto gives all the
transcripts that are compatible with each read. The process indicated in Figure 2.8.d is what makes
Kallisto faster but makes it keep the accuracy since k-mers in the same equivalence class will not
change the intersection result, and looking them up in the hash provides no new information [31].

Figure 2.8: Kallisto illustration [29].
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Reference Transcriptome

The reference transcriptomes used to build the indices is a data set based on the December 2013
Homo sapiens high coverage assembly GRCh38 from the Genome Reference Consortium [32], which
is available under cDNA on the Ensembl website. The data set is composed of gene models built
from both of the gene-level alignments of the human proteome and alignments of human cDNAs
using the cDNA2genome model of exonerate [33].

Input and Output

The input of Kallisto is the RNA-seq data and the indices generated from the reference transcrip-
tome. After the alignment is completed, the Kallisto will return .tsv and .h5 files containing the
following information shown in Table 2.3, in which est_counts denotes the number of a transcript
in the RNA library.

target_id length eff_length est_counts tpm
ENST00000632684.1 12 13 0 0
ENST00000335895.12 897 742.03 577.455 438.439

... ... ... ... ...
ENST00000409020.5 1680 1525.03 38.4718 14.2127
ENST00000359683.8 1626 1471.03 10.2012 3.907
ENST00000400723.7 2051 1896.03 0 0

Table 2.3: Kallisto output matrix.

2.4.2 Transcript-level to Gene-level Converter: Tximport

Tximport developed by Charlotte et al. [28] is an R package that can transfer the transcript-
level read counts to gene-level result. The accuracy of the differential gene expression analysis is
expected to be improved by Tximport.

2.4.3 Differential Expression Tool: DESeq2

DESeq2 [30] is a successor to DESeq method [34], an error model that employs the negative
binomial (NB) distribution. DESeq2 method does not suppose that there are any differentially
expressed genes, instead, it uses the NB distribution and statistically test whether the observed
difference in read counts of a gene is more significant than the natural random variation to decide
if a gene is differentially expressed [30]. DESeq assumed that the number of reads of a sample j are
assigned to gene i, Kij , can be modeled by the NB distribution as Equation 2.1, where the mean
µij and the dispersion σij can be gained by fitting the read count matrix with a generalized linear
model (GLM). Based on DESeq method, DESeq2 uses shrinkage estimators for dispersion and fold
change and improves its performance in terms of gene ranking and visualization, hypothesis tests,
the regularized logarithm transformation, and clustering of overdispersed count data. One of the
results returned by DESeq2 is padj, which is derived from Benjamini-Hochberg (BH) adjustment,
and it can limit FDR, i.e. if 1% FDR is acceptable, all the genes with an adjusted p value (padj )
<0.01 are differentially expressed genes (DEGs).

Kij ∼ NB(µij , σ
2
ij) (2.1)

Input and Output

A gene-level count matrix K with one row for each gene i and one column for each sample j will
be generated by Tximport from those .tsv or .h5 files given by Kallisto.
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DESeq2 will model the count matrix and return differential expression analysis results in
DESeqDataSet, which are DataFrame (DF) objects. For example, by calling the function DESeq()
and result(), users can gain a res DF as shown in Table 2.4 that contains results, including
p− value, adjusted p-value (padj ), and log2FoldChange (Log2FC). There were more than 13,000
genes identified and analysis in our macrophages. We aimed to analyse if the DEGs of macrophages
exposed to different surfaces can be related to the complications like breast cancer or capsular
contracture. Thus, in this disease/symptom association project, a stringent cutoff 0.01 was set as
the threshold to decide which genes were differentially expressed. The 0.01 padj denotes that only
1% FDR will be tolerated when defining the differentially expressed genes.

2.5 Visualization Patterns Derived from DESeqDataSet

It is impossible to get a direct view on the result of DEGA since these results will be only
presented in the numeric DESeqDataSet. Thus, visualization patterns including MA plot, principal
component analysis (PCA) plot, bar plot of PC loading, correlation coefficient heatmap, and gene
expression pattern heatmap derived from the DESeqDataSet will be applied to interpret results of
DEGA. These plots will only includes genes which are recognized as DEGs (padj < 0.01).

baseMean log2FoldChange lfcSE
<numeric> <numeric> <numeric>

ENSG00000000003 2.03742659724827 0.121123138669929 0.384932562133665
ENSG00000000419 258.678607016287 0.091840712649386 0.114019237056228

... ... ... ...
ENSG00000284746 0.316075461535429 0.0906610921427894 0.51846310965637

pvalue padj
<numeric> <numeric>

ENSG00000000003 0.503177818376351 0.652364376714041
ENSG00000000419 0.371886531018832 0.531940188727362

... ... ...
ENSG00000284746 0.579698550514588 NA

Table 2.4: DESeq2 result matrix structure.

2.5.1 MA Plot

An MA plot puts the variable M on the y-axis and A on the x-axis, and it can give a quick
overview of the distribution of the genomic data [35]. In our study, the MA plot is plotted from
res DF shown in Table 2.4. In our study, M (on Y-axis) denotes the log2 fold change in the
expression levels of the same gene under various conditions; and A (on X-axis) is the average of
the normalized counts gained from the median of ratios [36]. In the MA plot, genes with padj <
0.01 are denoted by red dots that are classified as differentially expressed genes; others are shown
by black. Genes are ranked according to their padj value, and genes with the five smallest padj
will be annotated by their symbols in a red circle.

2.5.2 Principal Component Analysis Plot

The principal component analysis (PCA) plot is also a scatter plot, which can be used to indicate
the clustering of the samples from different experimental conditions or phenotypes. PCA is com-
monly used for dimensionality reduction in exploratory data analysis and emphasizing variation
within a dataset [37]. In a DEGA, there are thousands of genes in the data of each sample. Each
gene can be seen as a dimension of the genomic data; thus, it is impossible to visualize the data
points and find patterns between them in a 2D or 3D figure. By PCA, data points are transformed
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into a new coordinate system and projected onto only a few principal components (PCs) to gain a
lower-dimensional dataset. PCs are calculated from the linear combination of variables expression
levels of each gene as shown in Equation 2.2, in which i denotes the i -th principal component
(PC); p is the p-th variable (gene); ai1X1 indicates the weight or the loading of each variable; and
Yi is the i-th PC [38].

Yi = ai1X1 + ai2X2 + ...+ aipXp (2.2)

The first principal component (PC) are defined as a direction that accounts for the biggest variance
of the projected dataset. Data points in the plot are shaped by their index and colored by
the group they belong to. In our study, two or three dimensional PCA plots were generated
from varianceStabilizingTransformation (vst()) result. The number of dimensions was decided by
the comparison on the variation of principal components. vst() can provide variance-stabilizing-
transformed (vst) values in its assay slot as indicated in Table 2.5. In the following report, it will
be addressed as vsd.

001-003 005-001 009-003 ... 023-004
ENSG00000000003 6.738703 6.852746 6.899787 ... 7.017766
ENSG00000000419 8.589393 8.600099 8.806535 ... 8.725447

... ... ... ... ... ...
ENSG00000284746 6.738703 6.738703 6.738703 ... 6.738703

Table 2.5: DESeq2 vsd matrix structure.

2.5.3 Bar Plot of Principal Component Loading
As shown in Equation 2.2, PCs are decided by the weights/loading of each variable, and variables
have high positive/negative loadings on each PC contribute most strongly to each PC. To evaluate
the proportion of DEG that have large contributions on a few first PCs like PC1 and PC2 (and
PC3), DEGs were ranked by their absolute PC loading in a bar plot, respectively. These plots
can provide a direct view of the overall distribution of PC loading values of each DEG. By this
bar plot, we can judge if only a small part of DEGs contribute strongly to PCs and have insights
into which specific DEGs are more essential for distinguishing samples from phenotypes. DEGs
with the top 20 absolute value of PC1 and PC2 loading were also ranked by the absolute value
of their loading value and plotted in another bar plot. The higher the individual element loading,
the stronger its association to the respective PC. With this bar plot, the contribution of each gene
can be compared.

2.5.4 Correlation Coefficient Heatmap
The correlation heatmap was used to present the Pearson’s correlation between samples based on
expression levels of their DEGs. The origin used to generate the plot the correlation heatmap is
also the vst data stored in Table 2.5. The Pearson’s correlation between two samples is calculated
by Equation 2.3 [39]. In this equation, rxy is the Pearson’s correlation between two samples x
and y; n is the sample size, which is the number of DEGs in our case; xi and yi denotes the value
corresponds to i-th DEG; x̄ = 1

n

∑n
i=1 xi and analogously for ȳ.

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2.3)

2.5.5 Gene Expression Pattern Heatmap
The gene expression pattern heatmap (GEPH) is another common visualization method in DEGA.
In this plot, the rows are DEGs, and the columns are samples; both clustering of DEGs and samples
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determined by Euclidean distance (ED) calculated from Equation 2.4 can be checked. Index u
denotes the u-th DEG in the computation of the ED between two samples X and Y ; index u
denotes the u-th sample when computing the ED between two DEGs X and Y . This plot is also
derived from the vsd DF. In the GEPH, samples are annotated with their experimental conditions.
By the GEPH, we can check if the expression levels of different groups of genes of various samples
different can be clustered according to the experimental conditions of these samples or not.

DEU =

√∑
u

(Xu − Yu)2 (2.4)

2.6 Geneset Enrichment Analysis

Although the analysis on single genes could elucidate the development trends of macrophages’
immune system interacting with flat- or textured-surface SIMs, we cannot get a general conclusion
on what gene sets are dominant in DEGA of macrophages. A gene set is a group of genes that share
an identical biological function, chromosomal location, or regulation. Thus, for further exploration
of the macrophage RNA-seq data, the priority would be the geneset enrichment analysis (GSEA).
GSEA was first proposed by Aravind et al. in 2005 [40]. This method employs a weighted
Kolmogorov–Smirnov (KS) like a statistic to determine the degree to which a reference gene set
is overrepresented at the top or bottom of the entire ranked list of the genes to be analyzed.
GSEA has demonstrated its power in cancer-related data sets like lung cancer. It revealed many
common biological pathways in two independent studies on patient survival in lung cancer, even
though the single-gene analysis result has indicated little similarities between them. By GSEA,
we could get more clues if the reference gene sets from the pathway and gene ontology databases
are overrepresented in our DEG list. To this end, GSEA [41], a freely available software package
where the GSEA method is embodied, was selected to do the analysis. GSEA method is also
the basis of the Connectivity map (CMap) [42], which is used to explore the relationship between
disease, cell physiology, and treatment.

2.6.1 Input and Data preparation

The input of GSEA is either composed of a .gct file, a .cls file or a single .RNK file. The .gct file
indicated in Table 2.6, and the .cls file shown in Table 2.7 contains the information of the expression
level of DEGs and phenotype labels of each sample, respectively. The .gct file includes the following
information, the number of DEGs and samples and the normalized expression level value of DEGs
from each sample. GSEA needs the count value of genes in RNA-seq data normalized before
inputting since the normalized data is more robust for the downstream analyzed. It is fairer to
compare the abundance of a gene between samples. The normalization can be completed by the
GenePattern DESeq2 model [43] or R package DESeq2. The normalization DESeq2 implies the
median ratio method.

In our case, GSEA was focused on only DEGs, and the DEGs were gained from the normalized
data of all the genes. Only select the data of DEGs will cause bias in the median-ratio normal-
ization of DESeq2. Thus, a pre-ranked gene list is contained in a .RNK file was input to do the
geneset enrichment. A .RNK file shown in Table 2.8 is composed of two columns, the first column
is the HUGO symbol of genes, and the second column is the metric to depict their ranking. The
matrix can be the Log2FC value gained from DEGA, which was applied in our study. To reduce
the number of DEGs input into the GSEA and get a more accurate result, a cutoff of Log2FC 1.5
was set to select DEGs. The output of the GSEA respot will not denote phenotypes if the ranking
list is pre-ranked. Instead, it will employs na_pos and na_neg to indicated the phenotypes. For
example, DEGs in the ranking list, which are with the positive score, is the up-regulated genes
in the Text96h phenotype, thus, in the report, the na_pos is the phenotype Text96h, and the
na_neg is the phenotype flat96h. The gene sets with a positive score in the phenotype text96h
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mean that those gene sets are most enriched in them [44]. MSigDB Hallmark [45] was chosen as
reference gene set.

#1.2
3465 32
Name Description 001-003 005-001 009-003 ... 023-004
ENSG00000000460 n/a 5.8915 8.2926 6.0122 ... 11.4939
ENSG00000001036 n/a 86.4083 92.2556 96.1952 ... 148.4627
ENSG00000001497 n/a 25.5297 22.8048 16.0325 ... 11.4939
... ... ... ... ... ... ...
ENSG00000284681 n/a 6.7387 6.8527 6.8998 ... 7.0178
ENSG00000284746 n/a 0 0 6.8540 ... 3.8757

Table 2.6: .gct file.

32 2 1
# Flat96h Text96h

Flat96h Flat96h Flat96h Flat96h ... Text96h Text96h Text96h

Table 2.7: .cls file.

NPAS2 3.899411
SPATA17 3.729204
TMEM92 3.461559

... ...
ATP10A -4.700706
HSPA1B -24.031256

Table 2.8: .RNK file.

2.6.2 Output

The analysis report will be presented in the HTML format available in website. The contents
in the report are enrichment score (ES), normalized enrichment score (NES), false discovery rate
(FDR), nominal p-value, and visualization on them.

Enrichment Score

Enrichment score(ES) is a primary result, which determines if a gene set is overrepresented at
the top or the bottom of the ranked gene list. Firstly, the genes in the expression data set D
that includes N genes and k samples are ranked to form the ranked gene list L = {g1, ..., gN}
according to their ranking score, rj = r(gj) generated by the ranking matrix, e.g. signal-to-noise
ratio (S2N; the default measure in GSEA). Then, the ranked gene list L will be walked through, if
the gene is in a reference gene set S, the priori that contains NH genes from the selected MSigDB,
the running sum will be increased, otherwise, it will be decreased. In the calculation, an exponent
p is used to control of the weight.

The ES, the maximum deviation from zero of Phit - Pmiss, is evaluated by the group of genes
in S (Phit; Equation 2.5) weighted by their ranking score and the fraction of genes not included
by S (Pmiss; Equation 2.5) present up to a given position i in L. Due to the constant step size
of the walk in L, the ES starts and ends with 0. If the ES is positive, the gene set enrichment
(GSE) is at the start of L; and a negative ES means that the GSE is at the bottom of L. The
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larger the absolute value of ES is, the larger the enrichment degree of the priori S is. In addition,
an enrichment plot (EP) in the GSEA report could indicate how ES of a gene set changes when
walking through the ranked gene list L.

The exponent p is also an important parameter in the calculation of ES score. If p = 0, ES(S)
reduces to the standard KS statistic; when p = 1 (default), genes in S are weighted by their
ranking scores normalized by the sum of the ranking scores over all of the genes in S. In our case,
we set p = 1 for DEGs of the macrophages dataset.

Phit(S, i) =
∑
gj∈S
j≤i

|rj |p

NR
, where NR =

∑
gj∈S
|rj |p (2.5)

Pmiss(S, i) =
∑
gj /∈S
j≤i

1

(N −NH)
(2.6)

ES(S, i) = Phit(S, i)− Pmiss(S, i) (2.7)

For each gene in the ranking gene list L, the ES on this position is equal to ES(S, i) calculated
by Equation 2.7. The final result of ES is the largest deviation from zero across all the positions
in the ranked gene list.

Normalized Enrichment Score

Normalized enrichment score (NES) is a statistic to exam gene set enrichment results. It is
calculated by scaling the actual ES with by the average of ESs gained in a number of permutations
as indicated in Equation 2.8. In each permutation, the original phenotype labels of samples are
assigned at random, and the genes from D will be also reordered to determine a new ES.

NES =
actual ES

mean(ESs against all permutations of the dataset)
(2.8)

Nominal P Value

After repeating 1000 (default value in GSEA) permutations, a histogram of the corresponding ESs
ESNULL will be created. Using the positive/negative portion of the observed ES distribution from
ESNULL can estimate the nominal P value for S. The nominal P value denotes the statistical
significance of the ES.

False Discovery Rate

For each S and 1000 fixed permutations π of the phenotype labels, reorder the genes in L and
determine ES(S, π). Normalize the ES(S, π) and the observed ES(S) by the mean of the ES(S,
π) to yield the normalized scores NES(S, π) and NES(S).

For a given NES(s) = NES∗ ≤ 0, its FDR q value is equal to the ratio of the percentage of all
(S, π) with NES(S, π) ≤ NES∗ divided by the percentage of observed S with NES(S) ≤ NES∗,
and the similarly if NES(S) = NES∗0.

2.6.3 Criteria
In our study, we select gene sets with nominal P value ≤ 0.05, FDR (Q) ≤ 0.25 as significantly
enriched gene sets (SEGSs). Even though previous research suggests that selecting SEGSs with
FDR ≤ 0.05 could provide a more robust analysis result [44], more lenient thresholds like 0.25
can be used if there are not massive enriched gene sets. GSEA [41] also supports applying this
value since a stringent FDR like 0.05 may lead to the overlook of potential SEGSs, and an 25%
FDR Q indicates a 75% validity of the result, which is reasonable to find candidate gene sets to
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propose hypothesis for the further research. However, given the reference dataset of GSEA are
curated from different sources with various methods, these reference dataset may lack coherence.
Thus, GSEA results need to be verified by further studies like the quantity of the expression level
of specific cytokines.

2.7 Connectivity Map Query

Connectivity Map (CMap) is an online tool that uses cellular responses to perturbagen to find
relationships between diseases, genes, and therapeutics [42]. The CMap data aims to extract a
signature that represents genes turned on or off upon treatment with chemical or genetic per-
turbagens. Chemical perturbagens consist of small molecule compounds, including drugs and tool
compounds. Genetic perturbagens include libraries of CRISPR/Cas9 constructs, short hairpin
RNAs (shRNAs), and open reading frames (ORFs) used to edit, knockdown, or overexpress genes,
respectively [42]. More than one million gene expression signatures of various cell types with
different perturbagens are contained in the CMap database. CMap query can compare for the
similarity between the user-supplied gene list to its database.

2.7.1 Reference Dataset: Touchstone

Touchstone was selected as the reference dataset. It is a high-throughput transcript abundance
reference dataset generated by L1000 assay measures [46]. Compared to L1000, RNA-seq suffers
from technical complexity in library preparation and the inability to detect non-abundant tran-
scripts without deep sequencing. Also, the reagent cost for L1000 is considerably less than the cost
of RNA-Seq. Moreover, the profiling of gene expression level of RNA-seq and L1000 were highly
correlated. Thus, RNA-seq was replaced by L1000 in the CMap project. The "L" in L1000 refers
to the landmark gene whose expression is most informative to characterize the transcriptome, and
it is measured directly in the assay, and "1000" denotes the 978 "landmark" genes from human
cells. The L1000 assay directly measured or inferred the expression levels of 12,328 genes, among
these genes, 10,174 genes were identified as genes which can be directly measured or well-inferred
from the landmark genes. This subset is referred to as the Best Inferred Gene (BING) space,
comprised of 978 landmarks and 9,196 well-inferred genes. Only expression profiles of BING space
are contained in the Touchstone and are used to determine the similarity between the reference
database and the user-supplied gene list.

2.7.2 Input

In our study, DEGs identified by DESeq2 were used for CMap query. To investigate the differences
and similarities between different donors’ immune response, DEGA was also executed on the RNA-
seq data of each donor, respectively. The selection of DEGs input in the CMap query mainly
depended on the Log2FC value. Since the dynamic range of the gene expression value in our
macrophages is quite wide, if we just select the top and bottom 50 DEGs of each donor, the DEGs
are more easily selected with a different Log2FC value. Also, to make our CMap result more
biologically meaningful, a different threshold of Log2FC (starting from 1.2) were tested to filter
the DEGs used in the query. In the past decade, the combination of the fold-change (FC) and the
p-value were used to promote the accuracy of DEGA [47–49]. Both of padj and FC could decrease
false positives. Thus, the threshold of Log2FC was set as large as possible, but make sure there
are at least ten up-regulated and down-regulated DEGs input into the query. To improve the
recognizability of input genes, these genes from the DEGA result were pre-filtered by the BING
gene space of CMap. Then, the top and bottom genes from the ranked DEG list were input to
the query.
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2.7.3 Output

The output report contains the connectivity score (CS) of each perturbagen. The higher the CS
a perturbagen has, the more similar it is with the input genome. By CMap, we can predict which
perturbagen can be related to our DEGs. The CS of a query compared to the CMap database is
computed by the following steps. More details can be found on the website [50].

First, the weighted connectivity score (WTCS) represents a similarity measure based on the
weighted Kolmogorov-Smirnov enrichment statistic (ES), which is also the basic algorithm of
GSEA [41], will be gained. WTCS is calculated as Equation 2.9, where r is a particular signature
of the reference database, ESup is the enrichment of qup in r and ESdown is the enrichment of
qdown in r. It ranges between -1 and 1, and it is a composite, bi-directional version of ES.

Wqr =

{
(ESup − ESdown)/2 if sgn(ESup) 6= sgn(ESdown)
0 otherwise

(2.9)

Then, to compare the connectivity score (CS) across cell types and perturbagen types, WTCSs
are normalized to account for global differences. The normalized CS (NCS) is computed as de-
scribed in Equation 2.10, where wc,t is the WTCS of a query list compared to cell type c and
perturbagen type t, µ+

c,t and µ−c,t means of the raw positive and negative WTCS, respectively.
This computation procedure is similar to that used for NES in GSEA.

NCSc,t =

{
wc,t/µ

+
c,t if sgn(wc,t) < 0

wc,t/µ
−
c,t otherwise

(2.10)

It is also useful to judge if the connectivity between user-supplied q and a signature r is
significantly different from that observed between other queries and r. Tau (τ) compares an
observed NCS between a query q and a signature r to all other queries in a reference database and
r; it is computed by Equation 2.11. |ncsi,r| denotes the NCS for signature r relative to the i-th
query in the reference compendium of queries (Qref), N is the number of queries in Qref [51]. Qref
is comprised of queries obtained from exemplar signatures of Touchstone. τ ranges from -100 to
100. A τ of 95 indicates that only 5% of reference perturbagens showed stronger connectivity to
the user-supplied query. A low τ would suggest connections are not unique. A positive τ indicates
a similarity between the query and the signature perturbed by a molecule; while a negative τ
means that the two signatures are opposing (i.e. genes that are decreased by treatment with the
perturbagen are increased in the query and vice versa).

τq,r = sgn(ncsq,r)
100

N

N∑
i=1

[|ncsi,r| < |ncsq,r|] (2.11)

The last step is the summarization of results observed in individual cell types. This will be
helpful when figuring out connections that are across cell lines or when one is unsure which cell
line to examine. A cell-summarized CS is obtained using a maximum quantile statistic shown in
Equation 2.12, where ncsp,c is a vector of NCS for perturbagen p, relative to query q, across all
cell lines in which p was profiled, and Qhi and Qlow are upper and lower quantiles, respectively.

NCSp =

{
Qhi(ncsp,c) if |Qhi(ncsp,c)| ≥ |Qlow(ncsp,c)|
Qlow(ncsp,c) otherwise

(2.12)

The heatmap tool provided by CMap can summarize CS of a perturbagen across cell lines and
rank summarized CSs of different queries by the median value. The recommended CS value to
choose highly correlated perturbagens is +/-90. This value was adjusted to 75 - 80 based on the
query result of our macrophages dataset and the heatmap.
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2.8 Gene Network
Gene network construction was fulfilled by two steps: the generation of induced network module
by ConsensusPathDB and the extension of the network module by Cytoscape.

2.8.1 ConsensusPathDB
ConsensusPathDB (CPDB) is an online database system for the integration of human functional
interactions [52]. CPDB was first reported by Atanas et al. [53], and has been updated in 2013
[54]. It currently integrates 215541 unique functional interactions (protein–protein interactions,
biochemical reactions, gene regulatory interactions) and 4601 pathways from overall 30 databases
[54]. CPDB contains an induced network module which uses reference interactions to build a
network according to user-supplied genes. It allows users to analyse DEGA result in terms of
gene set analysis and metabolism set analysis. In our study, CPDB is used to build the induced
network based on DEGs gained from DEGA. DEGs were filtered by various Log2FD threshold
to test which cutoff is suitable to construct a network, and only binary protein interactions were
selected. DEGs with different Log2FC cutoffs were tested and used to generate the gene network
to make sure that there are enough DEGs contained in the gene network and provide as much
information as possible while there will not be too many DEGs contained in gene networks too
complicated to study.

One of the advantages of CPDB is using intermediate nodes to improve the connectivity
between genes. The intermediate gene is not from the user-supplied seed gene list, while it con-
nects two or more seed genes with each other [54]. Even though intermediate genes may not be
regulated on the transcriptional level and originated from the user-supplied gene list, it could
be related to the phenotype under study. By the usage of the intermediate gene, there will be
significantly more interactions within the induced network. Thus, intermediate genes can improve
inter-gene connectivity. In addition, the intermediate gene may also reveal the underlined mechan-
ism of the induced gene network module. For example, if an intermediate node, which represents a
transcription factor (TF), is connected to a group of seed genes through interactions, this suggests
that the TF may be dysfunctional, possibly due to a mutation that does not necessarily impact
the TF’s expression. Z-score is used to quantify the significance of the association between an
intermediate gene and the seed genes it connects. Intermediate genes with a z-score larger than
the threshold 20 are allowed to generate the network in our study.

2.8.2 Cytoscape, and CyTargetLinker
The resulting network was subsequently imported and extended by Cytoscape and CyTarget-
Linker. TFs were added to the network to form a gene regulatory network (GRN), which is a
collection of regulatory interactions between TFs and their target genes.

TFs are proteins with unique abilities and attributes that are not common in other types of
proteins [55]. They directly or indirectly bind to DNA and often work in pairs or networks to
regulate particular regulatory pathways. TFs are important for all eukaryotic biochemical systems.
They modulate gene expression and drive regulatory programs or networks that maintain cells in
dynamical microenvironment changes. Some of them also interact with ligands or hormones. The
research on TFs may help decipher the complex regulatory programs that enable a single genome
to specify hundreds of phenotypically distinct cell types. Thus, the research on TFs is essential
for studies such as cancer therapy, stem cell differentiation, and so forth. Understanding of TFs
and the elements and processes that impact their activity is one of the goals of modern life science
research. TFs from the transcription factor target database Transcription Factor encyclopedia
(TFe), which is a smaller scale manual literature curation project containing 1531 human well-
studied TF target interactions respectively [55].
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Result

In this part, we will first check the PCA plot of all the samples from 4 groups, including Flat24h,
Text24h, Flat96h, and Text96h to view the global clustering of samples from the macrophage
dataset. Then, based on the result given by DESeq2, differentially expressed genes (DEGs) with
padj ≤ 0.01 of two comparison groups, Text24h VS Flat24h, Text96h VS Flat96h are selected to
plot visualizations. By this, we can investigate the effects of the structure of breast SMIs on the
gene expression level of the macrophages cultured on them for 24 hours and 96 hours, respectively.
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Figure 3.1: PCA plot of samples from Flat24h, Text24h, Flat96h, and Text96h.
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3.1 Principal Component Analysis

3.1.1 PCA Plot of All the Samples

The PCA plot shown in Figure 3.1 is generated from the raw count matrix normalized by the
median-ratio method provided by DESeq2. Genes whose total expression in all the samples
smaller than 60 were analogous to genes that are not expressed and filtered out. The clustering
of samples from these 4 groups can be found in Figure 3.1. Samples cultured on the flat surface
(Flat24h and Flat96h) and samples cultured on the textured surface (Text24h and Text96h) were
clearly distinguished from each other on PC1 direction. The dividing line between them is about
PC1 = 0. Even though samples cultured on the surfaces for 24 hours (Flat24h and Text24h) and
96 hours (Flat96h and Text96h) distributed on different regions in the plot, there was no clear
dividing line between them on PC2 direction. Sample 005 from the group Flat24h was clustered
with Flat96h, and Sample 019 from Text24h was mainly composed of samples from Text96h.

3.1.2 Text24h VS Flat24h

Visualizations of the comparison group Text24h VS Flat24h is shown in Figure 3.2, which were
derived from the 1587 DEGs detected by DESeq2. Figure 3.2(a) illustrates the distribution of
Log2FC value all the genes corresponding to their expression level. Five dots in the red circles
denote the genes with five smallest padj, which are recognized as the five most statistically signi-
ficant DEGs. Among them, HSPA6 was the one whose expression level changed most intensely,
and it has been significantly down-regulated in the Flat24h phenotype. Based on the study of
Fagone et al. [56], variations in the expression of heat shock protein (HSP) gene family could be
related to the polarization of macrophages. They found that HSP6A and other five genes showed
significant up-regulation in M1 cells compared to unpolarized macrophages; however, no manifest
changes in these HSP genes found in M2 cells in contrast to unpolarized macrophages. The in-
dicative down-regulation of HSPA6 on Text24h compared to Flat24h may demonstrate that more
macrophages from Flat24h than Text24h were polarized to M1 cells. As shown in Figure 3.2(b),
a classification on the samples from Flat24h and Text24h could be found. Samples from Flat24h
could be distinguished on the PC2 direction. The correlation coefficient heatmap, Figure 3.2(c),
demonstrates that samples from Flat24h and Text24h cluster per their experimental conditions.
This also confirms that macrophages from these two experimental conditions can be differentiated
according to the expression level of DEGs gained from DESeq2. The expression pattern heatmap
on DEGs provides clustering results on both of the DEGs and the samples. Two groups of DEGs
can be found in Figure 3.2(d); they expressed variously when macrophages cultured on the flat
and textured surfaces. In conclusion, the visualizations demonstrate that DEGs’ expression levels
detected by DESeq2 can distinguish samples from Flat24h and Text24h.

DEGs with high positive/negative loadings on each PC contribute most strongly to each PC.
As indicated in Figure 3.1 and 3.3.b, macrophages per phenotype could be distinguished by PC1
direction. Thus, more investigation on how DEGs linearly combined the PC1 can provide more
clues about which specific genes are important to distinguish the flat from the textured phenotype.
Similarly, samples from the Flat24h group were also separated from each other in the PC2 direction.
This may indicate that genes with higher PC2 loading are possible factors classifying samples from
the Flat24h phenotype. To this end, it is important to evaluate the proportion of DEGs that have
large contributions to a few first PCs like PC1 and PC2. To better investigate which genes had
the largest effects on the classification of samples from these two groups, PC1 and PC2 loading
of each DEGs were computed and compared in Figure 3.3.a and .b, which indicated that there
was only a small part of genes possessed a relatively large PC loading value. Figure 3.3.c ranks
the genes according to the absolute value of their PC loading. The genes in the bar plot are the
genes with top 20 PC1 and PC2 loading. Their detailed information can be found in Table 3.1
and 3.2, respectively. The top 20 DEGs were selected since the absolute PC loading value of the
first DEG was also double that of the 20th DEGs. Also, the PC loading value of the last DEGs
almost did not change. Thus, the comparison was mainly executed among these 20 DEGs.
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Figure 3.2: Visualization of comparison group Text24h VS Flat24h only with differentially ex-
pressed genes. (a) MA plot of Text24h VS Flat24h. (b) Principal Component Analysis plot of
Text24h VS Flat24h. (c) Correlation Heatmap on Samples of Text24h VS Flat24h. (d) Expression
Heatmap on DEGs (adjusted P < 0.01) in Text24h VS Flat24h. (e) Bar plot of PC1 loading. (f)
Bar plot of PC2 loading.

Based on the information of genes with high PC1 and PC2 loading, we could conclude that gene
expression levels revealed that the textured-surface breast SMI is more likely to induce biomarkers’
upregulation of breast cancer (BRCA) and the downregulation of tumor suppressors like TGFBI
compared to flat-surface breast SMI. As indicated by Table 3.1, NCAPH positively contributed
most to PC1 that divided Flat24h from Text24h. It was found upregulated in human cancer types,
including BRCA and prostate cancer [57], and it demonstrated upregulation in Text24h according
to its Log2FC value. TGM2, also known as TG2, which is associated with drug resistance and
metastasis in breast and pancreatic cancer cells [58], also expressed more in Text24h compared
to Flat24h. TGFBI, which has been proved to be a tumor cell metastasis suppresses in vivo [59],
slightly down-regulated in Text24h. MT1G was also found down-regulated in Text24h. Although
there is no clear conclusion on whether MT1G is a tumor suppressor of BRCA or not, the study
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conducted by Rohit et al. demonstrated that MT1 clusters (including MT1G) downregulated
in estrogen receptor (ER) BRCA cells. The comparison result of the gene expression levels of
MT1 cluster in ERα+ and ERα− BRCA cells to those in one normal cell line, human mammary
epithelial cells (HMEC), is illustrated by Figure 3.4.B [60]. As a result indicated, MT1G expressed
less in ERα+ (MCF7, BT474) and ERα− (BT20) compared to the normal cell line (HMEC). In a
nutshell, tumor suppressors like TGM2, TGFBI, and genes down-regulated in BRCA were found
with lower expressions in the textured surface. Also, NCAPH that promotes BRCA is expressed
more on the textured surface compared to the flat surface. Thus, macrophages from the Text24h
phenotype are more likely to induce breast disease like BRCA.

According to the PCA plot of Text24h VS Flat24h, PC2 dimension mainly distinguished
samples from Flat24h, i.e., genes that impacted PC2 most may differentially be expressed in
Flat24h. As presented by Table 3.2, four of top five genes in the PC2 loading ranking list MT1G,
MT1X, MT1H, and MT2A are from MT cluster. Metallothioneins (MT) are a family of metal-
binding proteins that play an important role in cellular processes such as proliferation and ap-
optosis. As shown in Figure 3.5 [60], MT1G, MT1X, MT1H were downregulated in ERα+ cell
lines MCF7, BT474, and ERα− cell line BT20. Among them, MT1G had the strongest positive
effect on PC2 loading among all the DEGs. Besides, four mitochondrially encoded (ME) genes
MT-ATP6, CYTB, ND2, and ND1 negatively affected PC2 loading. Based on this information
and the distribution of samples from Flat24h, the expression pattern of MT and those ME genes
are possible factors that influence the clustering of samples from Flat24h. Since samples in Flat24h
were from different donors; thus, these mentioned genes may express significantly differently from
donor and donor.

In conclusion, based on what we found in the PC loading of DEGs, there is no strong correlation
between the formation of fibrosis or inflammation and the DEGs in Text24h VS Flat24h. However,
according to the results related to research about biomakers and tumor suppressors of BRCA, we
could conclude that biomakers of BRCA were upregulated in Text24h, and tumor suppressors were
downregulated in Text24h. Besides, samples from Flat24h were separated on PC2 dimension, and
MT and ME clusters impact PC2 strongly. Thus, expression patterns of such genes in macrophages
are possibly different from donor to donor.

Symbol Gene Description PC1 Loading Log2FC
NCAPH Non-SMC Condensin I Complex Subunit H 0,110888464 1,16712806
MT1G Metallothionein 1G 0,110888464 -2,422086236
TGM2 Transglutaminase 2 0,085949662 0,845623487
TM4SF19 Transmembrane 4 L Six Family Member 19 0,085586598 0,976994448
HSPA6 Heat Shock Protein Family A (Hsp70) Member 6 -0,077463944 -2,839588759
CCND2 Cyclin D2 0,077306564 0,915886456
AL121758.1 - -0,071808648 -4,998020564
SPOCD1 SPOC Domain Containing 1 0,068823353 0,994828878
MT1H Metallothionein 1H -0,061807311 -2,562766049
HMGCS1 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1 0,058854596 0,603824082
OCSTAMP Osteoclast Stimulatory Transmembrane Protein 0,05821451 0,951556342
RGCC Regulator Of Cell Cycle 0,058065789 0,793787212
DUSP2 Dual Specificity Phosphatase 2 0,057995529 0,79991803
TGFBI Transforming Growth Factor Beta Induced -0,057799291 -0,76223664
FBXO38 F-Box Protein 38 0,057628089 0,73644157
PPEF2 Protein Phosphatase With EF-Hand Domain 2 -0,057391242 -2,261531755
KMT2A Lysine Methyltransferase 2A -0,057299924 -1,07267816
GOLGA7B Golgin A7 Family Member B 0,057144104 0,901477412
NABP1 Nucleic Acid Binding Protein 1 0,055264135 0,557850557
IDI1 Isopentenyl-Diphosphate Delta Isomerase 1 0,055239723 0,671775803

Table 3.1: DEGs with Top 20 PC1 loading of Text24h VS Flat24h
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Figure 3.3: PC loading bar plot of Text24h VS Flat24h.

3.1.3 Text96h VS Flat96h
Visualizations on the DEGA result of Text96h VS Flat96h is shown in Figure 3.6. Even though
these two phenotypes did not have intersections in PC1 direction, the PCA plot (Figure 3.6.b)
cannot indicate a clear classification of samples from these two groups. Samples from Text96h are
distributed much more densely on the PC2 dimension than samples from Flat96h, which is similar
to what has been shown in the PCA plot of Text24h VS Flat24h(Figure 3.2(b)). However, the
distance between Sample 007 and 019 (Flat96h) from other samples in Flat96h is larger than that
between these samples and the Text96h group, and they were more likely to be classified into the
Text96h group. This is consistent with what the PCA plot of all the samples (Figure 3.1) showed.
This can also be found in the correlation heatmap (Figure 3.6(c)), i.e., Sample 007 and 019 were
more correlated to samples in Text96h rather than those from Flat96h. Nevertheless, Figure 3.2.d
shows that Sample 007 and 019 were still clustered together with samples from Flat96h rather
than Text96h based on the expression heatmap on DEGs. The MA plot (Figure 3.6.a) indicates
that the five most statistically significant DEGs are EBP, RPL37A, CYBB, MTRNR2L1, and
HNRNPUL2.

Among them, MTRNR2L1 is also one of the five most significant DEGs of the comparison
group Text24h VS Flat24h. MTRNR2L1 encodes human MT-RNR2-like 1 whose functions yet
unknown. According to Expression Atlas, MTRNR2L1 showed higher expression level under the
situation of comparing non-triple-negative BRCA samples to normal breast organoids samples [61].
The expression level of MTRNR2L1 of textured samples was significantly lower than that of flat
sampels, however, since there are not many studies on the functions of this human MT-RNR2-
like 1, following validation is needed to verify the effects of if the higher expression of human
MT-RNR2-like 1 on flat samples can be related to the induction of non-triple-negative BRCA.

As demonstrated in Figure 3.7.a and .b, the number of DEGs in Text96h VS Flat96h is 3278,
this is almost double of that of Text24h VS Flat24h. Similarly, there are only a small part of genes
possess strong (positive or negative) effects on PC1 or PC2 loading. Illustration of the comparison
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Figure 3.4: Lower expression and higher methylation of MT1 gene cluster for ERα+ compared to
ERα− and normal patient samples. [60]

Figure 3.5: Basal level expression and DNA methylation for most of the genes in MT1 gene cluster
show lower expression and higher methylation in breast cancer cell lines. [60]

between top 20 PC1 and PC2 loading shown in Figure 3.7(c) indicates that CRABP2 and ATP8A1
are the genes which encompass the largest contribution to PC1 and PC2, respectively. According
to what has been shown in the PCA plot (Figure 3.6.b), genes contributed to PC1 most are possible
factors that separate samples per phenotype, and their information can be viewed in Table 3.4.
As indicated by the Log2FC value in Table 3.4, the expression level of possible inflammatory
breast carcinoma biomarkers has been up-regulated in Text96h. CRABP2 has demonstrated its
ability to promote invasion and metastasis of ER− BRCA in vitro and in vivo [62], and it has
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Symbol Gene Description PC2 Loading Log2FC
MT1G Metallothionein 1G 0,179481509 -2,422086236
CCND1 Cyclin D1 0,155249769 0,930278252
MT1X Metallothionein 1X 0,137148999 -1,417218855
MT2A Metallothionein 2A 0,119030774 -1,046174129
MT1H Metallothionein 1H 0,114875073 -2,562766049
IL1RN Interleukin 1 Receptor Antagonist 0,1045028 0,721016913
ATP6 Mitochondrially Encoded ATP -0,101080942 -0,444650876

Synthase Membrane Subunit 6
CMYA5 Cardiomyopathy Associated 5 0,096582389 -1,616909317
SPOCD1 SPOC Domain Containing 1 0,093804999 0,994828878
CCN1 - 0,085715492 -4,064713384
CYTB Mitochondrially Encoded Cytochrome B -0,084987039 -0,46955064
TRANK1 Tetratricopeptide Repeat And -0,082954389 -1,193816542

Ankyrin Repeat Containing 1
TIMP3 TIMP Metallopeptidase Inhibitor 3 0,081890324 0,669565508
PTPN13 Protein Tyrosine Phosphatase, -0,080884834 -1,295785926

Non-Receptor Type 13
ACTG1 Actin Gamma 1 0,07943415 0,570421155
ND2 Mitochondrially Encoded NADH: -0,079076738 -0,692647263

Ubiquinone Oxidoreductase Core Subunit 2
JAML Junction Adhesion Molecule Like -0,078973504 -0,700043119
LPL Lipoprotein Lipase 0,077716839 0,704534318
PHLDA1 Pleckstrin Homology Like Domain 0,077451331 0,654726961

Family A Member 1
ND1 - -0,076691397 -0,451804169

Table 3.2: DEGs with Top 20 PC2 loading of Text24h VS Flat24h

been found up-regulated in Text96h. TGM2(TG2), which is associated with drug resistance and
metastasis in breast and pancreatic cancer cells [58] also expressed more in Text96h compared to
Flat96h. Besides, the increase of MT2A, a potential breast carcinogenesis [63], was also found
in Text96h. RHOC is the only gene that is related to inflammation in breast tissue among all
the top genes contribute to PC1 of Text96h VS Flat96h. The protein encoded by RHOC is
thought to be important in cell locomotion, and the over-expression of it is associated with tumor
cell proliferation and metastasis in breast disease and inflammatory breast carcinoma [64]. In
summary, DEGs that contributed largely to the PC1 of Text96h VS Flat96h can be related to
BRCA and its biomarkers including CRABP2, TGM2, MT2A have been found up-regulated in
Text96h samples in our study. This may present that macrophages exposed to textured surface
for 96h are more possible to cause the BRCA than those exposed to flat surface. This conclusion
is also similar to that of the comparison group of Text24h VS Flat24h.

According to what has been shown in the PCA plot (Figure 3.6.b), genes contributed to PC1
most are possible factors that separate samples per phenotype, and their information can be
viewed in Table 3.4. As indicated by the Log2FC value in Table 3.4, the expression level of
possible inflammatory breast carcinoma biomarkers has been up-regulated in Text96h. CRABP2
has demonstrated its ability to promote invasion and metastasis of ER− BRCA in vitro and in
vivo [62], and it has been found up-regulated in Text96h. TGM2(TG2), which is associated with
drug resistance and metastasis in breast and pancreatic cancer cells [58] also expressed more in
Text96h compared to Flat96h. Besides, the increase of MT2A, a potential breast carcinogenesis
[63], was also found in Text96h. RHOC is the only gene that is related to inflammation in breast
tissue among all the top genes contribute to PC1 of Text96h VS Flat96h. The protein encoded by

Differential Expressed Gene Analysis on Macrophages after in Vitro Exposure to Flat and
Textured Breast Silicone Mammary Implants

29



CHAPTER 3. RESULT

1 100 10000

−
3

−
2

−
1

0
1

2
3

MA Plot of Text96h VS Flat96h

mean of normalized counts

lo
g 

fo
ld

 c
ha

ng
e

EBP

CYBB

RPL37A

HNRNPUL2

MTRNR2L1

(a) (b)

01
1L

00
4

01
1L

00
3

01
5L

00
3

01
5L

00
1

01
5L

00
4

02
3L

00
3

02
3L

00
1

02
3L

00
4

00
7L

00
4

00
7L

00
1

00
7L

00
3

01
9L

00
3

01
9L

00
1

01
9L

00
4

01
6L

00
3

01
6L

00
1

01
6L

00
4

02
0L

00
4

02
0L

00
1

02
0L

00
3

00
4L

00
1

00
4L

00
3

00
4L

00
4

02
4L

00
1

02
4L

00
3

02
4L

00
4

01
2L

00
4

01
2L

00
1

01
2L

00
3

00
8L

00
4

00
8L

00
1

00
8L

00
3

011L004
011L003
015L003
015L001
015L004
023L003
023L001
023L004
007L004
007L001
007L003
019L003
019L001
019L004
016L003
016L001
016L004
020L004
020L001
020L003
004L001
004L003
004L004
024L001
024L003
024L004
012L004
012L001
012L003
008L004
008L001
008L003

Correlation Heatmap on Samples of Text96h VS Flat96h

0.9 0.94 0.98

Value

0
20

40

Color Key
and Histogram

C
ou

nt

Conditions

Flat96h
Text96h

(c)

Expression Heatmap on DEGs (adjusted P < 0.01) in Text96h VS Flat96h

Text96h020L004
Text96h020L003
Text96h020L001
Text96h016L003
Text96h016L001
Text96h016L004
Text96h004L003
Text96h004L001
Text96h004L004
Text96h024L001
Text96h024L003
Text96h024L004
Text96h008L004
Text96h008L003
Text96h008L001
Text96h012L004
Text96h012L003
Text96h012L001
F

lat96h011L003
F

lat96h011L004
F

lat96h015L003
F

lat96h015L001
F

lat96h015L004
F

lat96h023L003
F

lat96h023L001
F

lat96h023L004
F

lat96h007L004
F

lat96h007L003
F

lat96h007L001
F

lat96h019L003
F

lat96h019L001
F

lat96h019L004

Conditions
Conditions

Flat96h
Text96h

−4

−2

0

2

4

(d)

Figure 3.6: Visualization of comparison group Text96h VS Flat96h only with differentially ex-
pressed genes. (a) MA plot of Text96h VS Flat96h. (b) Principal Component Analysis plot of
Text96h VS Flat96h. (c) Correlation Heatmap on Samples of Text96h VS Flat96h. (d) Expression
Heatmap on DEGs (adjusted P < 0.01) in Text96h VS Flat96h. (e) Bar plot of PC1 loading. (f)
Bar plot of PC2 loading.

RHOC is thought to be important in cell locomotion, and the over-expression of it is associated with
tumor cell proliferation and metastasis in breast disease and inflammatory breast carcinoma [64].
In summary, DEGs that contributed largely to the PC1 of Text96h VS Flat96h can be related
to BRCA and its biomarkers including CRABP2, TGM2, MT2A have been found up-regulated
in Text96h samples in our study. This suggests that macrophages exposed to textured surface for
96h are more possible to cause the BRCA than those exposed to flat surface. This conclusion is
also similar to that of the comparison group of Text24h VS Flat24h.

Different from genes with higher PC2 loading in Text24h VS Flat24h, PC2 of Text96h VS
Flat96h is not affected by genes from specific clusters. Nevertheless, some of these genes can be
related to the regulation of inflammation response. For example, suppression of motor protein
KIF3C, which was down-regulated in Text96h, has been proved to be able to inhibit growth and
metastasis of tumors in BRCA by inhibiting TGF-β signaling [65], and this gene expressed less in
Text96h. There was also the down-regulation of PLCE1 in Text96h. The down-regulated PLCE1
could contribute to the decrease of the expression of proinflammatory cytokines IL-6, TNF-α, and
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Figure 3.7: PC loading bar plot of Text96h VS Flat96h.

IL-1α, and increased the expression of IL-10, which is an anti-inflammatory cytokine [66]. Other
genes in the top 20 are not reported to be associated with immune responses of macrophages based
on literal research. Thus, genes mediate inflammatory or anti-inflammatory reactions that may
play a role in distinguishing samples from Flat96h on PC2 direction.

3.1.4 Discussion
Based on visualizations and the information of genes strongly impacting PC1 and PC2, we could
find some similarities between the DEGA results of Text24h VS Flat24h and Text96h VS Flat96h.
First of all, these two comparison groups encompass a same significant DEG MTRNR2L1. In
both of these two groups, MTRNR2L1 were down-regulated in textured phenotype. Moreover,
changes in expression level of this gene in Text96h VS Flat96h (Log2FC = -1,15) is larger than
that (Log2FC = -0,73) in Text24h VS Flat24h. Another similarity between them is that both
of their PC1 are mainly affected by genes that are possible biomarkers or tumor suppressors of
BRCA. The differences in the expression levels in MT and ME clusters may indicate that after 24
hours, macrophages exposured on different surfaces may shown variations in energy supply model.
Table 3.5 presents a summary based on the comparison of PC loading of DEGs, based on it, DEGs
like NCAPH, TGM2, TGFBI, MT1G that are related to regulating BRCA are essential for the
classification of samples from flat and textured phenotypes. The difference between the Text24h
VS Flat24h and Text96h VS Flat96h is presented by genes that strongly impact PC2 of these
two group. As we mentioned before, PC2 of Text24h VS Flat24 hare possibly affected by MT
and ME clusters. On the contrary, genes that had a large contribution to PC2 in Text96h VS
Flat96h are not from any specific clusters; however, KIF3C, HDAC4, and PLCE1 are associated
with inflammatory responses.
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Symbol Gene Description PC1 loading Log2FC
ATP8A1 ATPase Phospholipid Transporting 8A1 -0,127750782 -1,741503281
GUSBP1 Glucuronidase, Beta Pseudogene 1 -0,121714466 -3,078532688
KIF3C Kinesin Family Member 3C -0,111739272 -2,151929322
IPO5P1 Importin 5 Pseudogene 1 -0,087318483 -3,11292227
PKD1P5 Polycystin 1, Transient Receptor -0,08641264 -1,993340424

Potential Channel Interacting Pseudogene 5
PLCE1 Phospholipase C Epsilon 1 -0,083803214 -3,147320686
DAPK1 Death Associated Protein Kinase 1 -0,080470865 -1,00742748
ZNF282 Zinc Finger Protein 282 0,078202593 -1,580745688
MAP3K4 Mitogen-Activated Protein Kinase 4 0,077048686 -1,214426657
HGF Hepatocyte Growth Factor -0,076200458 -3,207145176
ATP10A ATPase Phospholipid Transporting 10A -0,07593819 -6,358317014

(Putative)
ESPL1 Extra Spindle Pole Bodies Like 1, Separase -0,075781213 -2,805595759
PCSK5 Proprotein Convertase Subtilisin/Kexin Type 5 -0,075681296 -2,026757518
TRIM2 Tripartite Motif Containing 2 -0,075068796 -1,919088801
BMI1 BMI1 Proto-Oncogene, Polycomb Ring Finger 0,07455622 -1,035406377
C2orf88 Chromosome 2 Open Reading Frame 88 -0,073651655 -2,987104446
SMYD5 SMYD Family Member 5 -0,071724938 -1,484769899
HDAC4 Histone Deacetylase 4 0,068734776 -1,620810463
KNL1 Kinetochore Scaffold 1 0,067160901 -2,911058807
PCNX1 Pecanex Homolog 1 0,067106165 -1,16623115

Table 3.3: DEGs with Top 20 PC2 loading of Text96h VS Flat96h

Symbol Gene Description PC2 Loading Log2FC
CRABP2 Cellular Retinoic Acid Binding Protein 2 0,068437131 1,362473429
TGM2 Transglutaminase 2 0,067135436 1,393346679
NCAPH Non-SMC Condensin I Complex Subunit H 0,065514839 1,647398032
CCL22 C-C Motif Chemokine Ligand 22 0,063141742 1,164960954
PCSK5 Proprotein Convertase Subtilisin/Kexin Type 5 -0,053657857 -2,026757518
SPP1 Secreted Phosphoprotein 1 0,052930195 1,164960954
AL157935.3 - 0,050421253 1,213666593
ATP8A1 ATPase Phospholipid Transporting 8A1 -0,049009993 -1,741503281
FADS2 Fatty Acid Desaturase 2 0,048232727 1,015614152
DCSTAMP Dendrocyte Expressed Seven 0,048080864 0,891859066

Transmembrane Protein
DUSP2 Dual Specificity Phosphatase 2 0,04742501 1,304282324
CCND1 Cyclin D1 0,047174342 1,274666605
GUSBP1 Glucuronidase, Beta Pseudogene 1 -0,046791975 -3,078532688
TIE1 Tyrosine Kinase With Immunoglobulin Like 0,046085248 0,964346055

And EGF Like Domains 1
MVD Mevalonate Diphosphate Decarboxylase 0,045529004 1,465601239
NUCKS1 Nuclear Casein Kinase And -0,045110925 -0,900069369

Cyclin Dependent Kinase Substrate 1
MTRNR2L1 MT-RNR2 Like 1 -0,044532268 -1,149479552
RAB11FIP4 RAB11 Family Interacting Protein 4 0,044154353 1,147086048
MT2A Metallothionein 2A 0,044098003 1,147086048
RHOC Ras Homolog Family Member C 0,044014079 0,957148274

Table 3.4: DEGs with Top 20 PC1 loading of Text96h VS Flat96h
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Text24h VS Flat24h Text96h VS Flat96h
Classification per Phenotype: DEGs mediate BRCA: DEGs mediate BRCA:
PC1 NCAPH, TGM2, TGFBI, MT1G CRABP2, TGM2, MT2A, RHOC
Classification per sample Metallothioneins (MT1) cluster: DEGs mediate inflammation:
within Flat Phenotype: PC2 MT1G, MT1X, MT1H KIF3C, PLCE1, HDAC4

Mitochondrial-encoded genes:
ATP6, CYTB, ND2, ND1

Table 3.5: Summary of genes with large PC loading value.
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3.2 Geneset Enrichment Analysis
There is no gold standard for how to rank genes for the GSEA. Thus, two different ways have
been used in our study to generate the .RNK file. The first was to rank all the genes based on the
product of direction (sign) of Log2FC and logarithm of padj for each gene as shown in Equation
3.1 [44]. Some DEGs may possess an extreme Log2FC value due to that they have overall very
low expression in most samples but high expression in one or a few samples, however, they are
not truly DEGs and possess large p-value/adjusted p-value. Nevertheless, by the p-value/adjusted
p-value ranking method, genes with extremely low p-value or padj are recognized as differentially
expressed at a low FDR. The other method was ranking all the genes according to their Log2FC.
This ranking method aimed to provide a GSEA result based on Log2FC values of these genes and
a comparison to the p-value ranking method. DEGs with the largest positive Log2FC values were
at the top of the list. The reference dataset was also the H dataset.

r = sign(Log2FC) ∗ (−1) ∗ log10(padj) (3.1)

The Log2FC value was decided by comparing a gene’s expression level on the textured surface
phenotype to that on the flat surface phenotype. Positive genes at the top of the list possess high
expression levels in class textured surface group. Genes at the top of the list are more highly
expressed in Text class (i.e., Text24h or Text96h) of samples, while genes at the bottom are
highly expressed in Flat class (i.e., Flat24h or Flat96h). In GSEA result, gene sets with positive
enrichment score are those up-regulated in the textured group (i.e., enriched at the top of the
ranking list), gene sets with negative enrichment score are those down-regulated in the textured
group (i.e., enriched at the bottom of the ranking list). There were more than 10,000 genes in the
list; and GSEA was executed with the reference of hallmark (H) dataset to get a more general and
non-redundant summary of enriched biological processes based on all genes. Hallmark gene sets
summarize and represent specific, well-defined biological states or processes and display coherent
expression [45]. These gene sets were computed based on overlaps between gene sets in other
MSigDB collections. In this part, H_pos and H_neg denote the result gained from hallmark
collection. Pathways with an FDR value smaller than 0.25 and p-value smaller than 0.05 will be
selected as significantly enriched gene sets.

3.2.1 Text24h VS Flat24h
The Log2FC value was decided by comparing a gene’s expression level on the textured surface
phenotype to that on the flat surface phenotype. Positive genes at the top of the list possess high
expression levels in class textured surface group. Genes at the top of the list are more highly
expressed in Text class (i.e., Text24h or Text96h) of samples, while genes at the bottom are
highly expressed in Flat class (i.e., Flat24h or Flat96h). In GSEA result, gene sets with positive
enrichment score are those up-regulated in the textured group (i.e., enriched at the top of the
ranking list), gene sets with negative enrichment score are those down-regulated in the textured
group (i.e., enriched at the bottom of the ranking list). There were more than 10,000 genes in the
list; and GSEA was executed with the reference of hallmark (H) dataset to get a more general and
non-redundant summary of enriched biological processes based on all genes. Hallmark gene sets
summarize and represent specific, well-defined biological states or processes and display coherent
expression [45]. These gene sets were computed based on overlaps between gene sets in other
MSigDB collections. In this part, H_pos and H_neg denote the result gained from hallmark
collection. Pathways with an FDR value smaller than 0.25 and p-value smaller than 0.05 will be
selected as significantly enriched gene sets.

GSEA result generated by ranking padj value provides more clues than that by ranking Log2FC.
As shown in Table 3.6, including cholesterol homeostasis, oxidative phosphorylation (OXPHOS),
Myc and so forth were enriched in Text24h. Hallmarks related to IFN-γ and −α; P53, KRAS,
and TNF-α signals; and xenobiotic metabolism were enriched in Text24h phenotype. Based on
previous studies on macrophages’ metabolism, the energy supply pattern is important for dis-
tinguishing M1 from M2 cells. M1 cells use glycolysis for rapid killing, while M2 macrophages
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Figure 3.8: Volcano plot of Text24h VS Flat24h
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Figure 3.9: Volcano plot of Text96h VS Flat96h

rely on mitochondrial OXPHOS for continuously producing energy [67]. As for the enrichment
of hallmarks and pathways related to inflammation modulation. The expression of IFN-γ and
IFN-α, which are pro-inflammatory cytokines and identifiers of M1 macrophages, were enriched
in flat phenotype. Pathways of P53, Myc, KRas, and TNFα were also found enriched in Flat24h.
Among them, Myc and TNFα, whose deregulation will contribute to inflammation and immune
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suppression [68]. These GSEA results are consistent with previous research on the expression
level of pro-inflammatory cytokines and identifiers of M1 macrophages according to the studies of
Thomas et al. and Maciej et al. [69,70]. They reviewed the fibrosis formation mechanism of mac-
rophages and the polarization of M1- and M2-like cells as shown in Figure 3.10 and 3.11. Thus,
these hallmarks and pathways are the possible factors leading to the fibrosis formation on the
textured surface compared to the flat surface. Besides, hallmark of heme metabolism was found
enriched in Flat24h, which may indicate that macrophages from Flat24h are also polarized from
M1 cells to M2 cells based on the fact that heme oxygenase-1 induction could drive the phenotypic
shift to M2 macrophages [71].

As for the GSEA result based on ranking Log2FC value indicated in Table 3.7, there were
similarities found with those shown in Table 3.6, including the enrichment in biological process
or states related to the cholesterol homeostasis, IFN-α and -γ, P53 pathway, Kras and TNFα
signaling, hypoxia. Even though these results demonstrated that macrophages from the Flat24h
phenotype presented more characteristics of M1-like cells, there was also enrichment that showed
M2 macrophages’ features, such as angiogenesis [72] and Hedgehog signaling pathway [73] in
samples from Flat24h. These results provided clues that both of M1-like cells and M2-like cells
existed in the Flat24h phenotype, however, more macrophages were likely to be the M1-like cell
type.

GeneSet Size NES p-value FDR
H_pos HALLMARK_CHOLESTEROL_HOMEOSTASIS 70 2.07 0.0 0.0
H_pos HALLMARK_OXIDATIVE_PHOSPHORYLATION 199 1.85 0.0 0.002
H_pos HALLMARK_ANDROGEN_RESPONSE 91 1.5 0.007 0.077
H_pos HALLMARK_MTORC1_SIGNALING 198 1.415 0.002 0.11
H_pos HALLMARK_MYC_TARGETS_V1 199 1.35 0.01 0.14
H_pos HALLMARK_APICAL_JUNCTION 147 1.272 0.04 0.20
H_neg HALLMARK_INTERFERON_GAMMA_RESPONSE 184 -1.946 0.0 0.0
H_neg HALLMARK_P53_PATHWAY 185 -1.735 0.0 0.008
H_neg HALLMARK_KRAS_SIGNALING_DN 89 -1.616 0.002 0.031
H_neg HALLMARK_INTERFERON_ALPHA_RESPONSE 93 -1.576 0.005 0.036
H_neg HALLMARK_TNFA_SIGNALING_VIA_NFKB 194 -1.540 0.0 0.042
H_neg HALLMARK_E2F_TARGETS 197 -1.517 0.002 0.048
H_neg HALLMARK_XENOBIOTIC_METABOLISM 155 -1.468 0.0 0.068
H_neg HALLMARK_APOPTOSIS 151 -1.445 0.0098 0.073
H_neg HALLMARK_UV_RESPONSE_UP 139 -1.424 0.016 0.08
H_neg HALLMARK_HYPOXIA 171 -1.406 0.009 0.085
H_neg HALLMARK_ADIPOGENESIS 182 -1.341 0.023 0.12
H_neg HALLMARK_HEME_METABOLISM 169 -1.327 0.026 0.11

Table 3.6: GSEA result of Text24h VS Flat24h by ranking padj.

3.2.2 Text96h VS Flat96h

13827 genes were included in the .RNK file of Text96h VS Flat96h. The GSEA results of Text96h
VS Flat96h generated by ranking padj are shown in Table 3.8, in which hallmarks related to Myc,
IFN-α and -γ responses are enriched. Also, hallmarks G2/M checkpoint and mitotic spindle were
found enriched in Flat96h. This may indicate a low proliferation of Flat96h macrophages.

3.2.3 Discussion

In summary, macrophages from Flat24h and Flat96h phenotype expressed more significant en-
richment of pro-inflammatory factors, including IFN-α and -γ, TNF-α, which are the biomark-
ers of M1-like macrophages. On the contrary, there was no significant enrichment related pro-
inflammatory processes in macrophages from Text24h or Text96h phenotype. The GSEA result
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GeneSet Size NES p-value FDR
H_pos HALLMARK_CHOLESTEROL_HOMEOSTASIS 70 1.82 0.0 0.009
H_neg HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 159 -1.76 0.0 0.024
H_neg HALLMARK_INTERFERON_GAMMA_RESPONSE 184 -1.74 0.0 0.13
H_neg HALLMARK_KRAS_SIGNALING_DN 93 -1.65 0.0 0.024
H_neg HALLMARK_INTERFERON_ALPHA_RESPONSE 93 -1.54 0.005 0.069
H_neg HALLMARK_ANGIOGENESIS 26 -1.51 0.043 0.075
H_neg HALLMARK_UV_RESPONSE_DN 128 -1.50 0.005 0.070
H_neg HALLMARK_UV_RESPONSE_UP 139 -1.42 0.021 0.130
H_neg HALLMARK_HEDGEHOG_SIGNALING 24 -1.41 0.071 0.129
H_neg HALLMARK_INFLAMMATORY_RESPONSE 171 -1.40 0.017 0.123
H_neg HALLMARK_TNFA_SIGNALING_VIA_NFKB 194 -1.40 0.016 0.117
H_neg HALLMARK_HYPOXIA 171 -1.39 0.020 0.111
H_neg HALLMARK_APOPTOSIS 151 -1.38 0.026 0.109
H_neg HALLMARK_P53_PATHWAY 184 -1.31 0.042 0.202

Table 3.7: GSEA result of Text24h VS Flat24h by ranking Log2FC.

GeneSet Size NES p-value FDR
H_neg HALLMARK_G2M_CHECKPOINT 194 -1.61 0.001 0.054
H_neg HALLMARK_E2F_TARGETS 195 -1.54 0.001 0.072
H_neg HALLMARK_MITOTIC_SPINDLE 192 -1.5 0.0 0.093
H_neg HALLMARK_MYC_TARGETS_V1 200 -1.47 0.003 0.086
H_neg HALLMARK_INTERFERON_GAMMA_RESPONSE 178 -1.42 0.006 0.109
H_neg HALLMARK_INTERFERON_ALPHA_RESPONSE 92 -1.37 0.032 0.15

Table 3.8: GSEA result of Text96h VS Flat96h by ranking adjusted p value.

GeneSet Size NES p-value FDR
H_pos HALLMARK_CHOLESTEROL_HOMEOSTASIS 70 1.82 0.002 0.005
H_pos HALLMARK_APICAL_SURFACE 28 1.46 0.044 0.157

Table 3.9: GSEA result of Text96h VS Flat96h by ranking log2FC.

Figure 3.10: Macrophages in tissue repair, regeneration, and fibrosis [69].

shows that the metabolism model of macrophages cultured on a textured surface is oxidative meta-
bolism that is the metabolism model of M2-like macrophages. Thus, in our case, macrophages
samples from flat breast SMIs and textured SMIs represented characteristics of M1 and M2 mac-
rophages, respectively. M2 type is the fibrotic macrophages that lead to wound healing and tissue
repair [70]. The flat surface caused higher expressions of pro-inflammatory cytokines, this may
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Figure 3.11: Macrophages and fibrosis [70].

be the reason why flat breast SIMs more frequently caused fibrous capsule formation, which is
consistent with the conclusion that a smooth implant surface is more likely to induce capsular
contracture [74]. Moreover, M1- and M2-like macrophages are anti-tumor and pro-tumor cells,
respectively, explaining why genes that possess larger PC loading value are tumor modulators.

Based on the results of GSEA on 24h and 96h, we could conclude that at the early stage (24
hours) of exposing macrophages to flat and textured surfaces, gene sets are related to macrophages’
metabolism, which indicates their polarization is enriched. More gene sets of pathways and cy-
tokines that modulate the immune and inflammation responses inside macrophages were found at
24 hours enriched than at the late stage (96 hours). In summary, pathways including Myc, NFkB,
and cytokines INF-γ and -α may critical in the different expression levels of inflammatory-related
genes between flat phenotype and textured phenotype. The differences in gene expression level
may cause various M1/M2 polarization models and lead to the different proportions between M1-
and M2-like macrophages, which is the possible factor that affects the distinct extent of capsular
contracture on the flat and textured surface.
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3.3 Gene Network

3.3.1 Transcription Factor Extended Gene Network
As the GSEA results showed that macrophages exposed to the flat and the textured surfaces
represented different M1/M2 polarization, to better investigate how DEGs cooperated and lead
to various polarization models, the gene networks are composed of most up-regulated or down-
regulated DEGs were created. Transcription factors (TFs) were also extended to the gene network
based on literature research. In the gene networks, edges represent protein interactions; grey circu-
lar nodes indicate genes; blue rectangles are genes retrieved from TFe, meaning the transcriptional
control. Genes related to M1 and M2 macrophages are circled by green and red, respectively. In
the TF extended gene network, the genes up-regulated or gene markers of M1 and M2 macrophages
are circled by green and red, respectively.

Text24h VS Flat24h

As for Text24h VS Flat24h, DEGs with an absolute Log2FC value ≥ 2.9 were chosen to build the
proper network shown in Figure 3.12. Biomarkers of M1 cells, including IL6; M2 cells biomarkers
such as IGFs (IGFBP3, IGF2BP1), MMPs (MMP1, MMP3, MMP14), TGFB2 can be found from
this network. According to previous studies, the expression level of IL6 has been proved highly
up-regulated in M1 macrophages compared to M2 cells. Thus, the following research should be
focusing on the protein level to check its transcription activities under the flat and the textured
surfaces. Besides, CAV1 is also a centroid gene that connected different parts in this gene network.
However, there were few studies about how it acts on the gene profile and behavior of macrophages.
Since it is directly connected with MMP14, MMP1, and IGFBP3, it may directly modulate the
expression of genes that are up-regulated in M2 cells and affect the M1/M2 polarization on different
topography.

Figure 3.12: Transcription factor extended gene of Text24h VS Flat24h.

Text96h VS Flat96h

In Text96h VS Flat96h, DEGs with an absolute Log2FC value ≥ 3.5 were chosen to build the
gene network illustrated by Figure 3.13. Based on literature research, the biomarkers of M1
cells including CXCL5, CCL11, and STAT1; M2 cells biomarkers such as IGFs (IGF1, IGFBP1),
MMP15, FGF7, chemokine ligands (CXCL1 and CXCL3), and chemokine receptors (CXCR1,
CXCR2), CD226 can be found from this network. However, the expression of STAT1, CXCLs,
and CXCRs are environment-dependent; therefore, only based on this gene network, we could not
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Figure 3.13: Transcription factor extended gene network of Text96h VS Flat96h.

predict how they will affect macrophages in polarization or cell cycle. Further investigation on
their functions on macrophages cultured on different surfaces is needed to verify their impacts.
Besides, we noticed WNT5A connected in this network, it is also interesting to research how this
Wnt family gene react in macrophages.
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3.4 CMap Query

To assess the gene landscape of different donors reacting to the flat and textured implant surface
and which connectivity is between biological processes and expression profiles of macrophages from
each donor exposed to flat and textured surface, DEGA was also performed each donor separately.
DEGs from each donor were ranked by their Log2FC value and filtered by different cutoffs. DEGs
at the top and bottom of the ranking list was used for CMap query. Before selection, DEGs were
pre-filtered by BING space to ensure efficient input of the query. Perturbants with an absolute
connectivity score (CS) between the donor-specified DEGs and CMap reference DEGs larger than
80 were selected as highly-related.

3.4.1 Text24h VS Flat24h

We observed between 25 to 305 DEGs with an absolute Log2FC ≥ 4.55 as compare textured surface
to flat surface, as shown in Figure 3.14 among all the donors. In Text24h VS Flat24h, 38 DEGs,
which were differentially expressed in all the donors, were selected by the threshold of 2.8. The
threshold was adjusted to 2.8 since the number of up-regulated DEGs, which possessed an absolute
Log2FC larger than 2.9, did not meet the lowest requirement (10) of CMap query input. According
to the Heatmap analysis module provided by CMap query, single compounds Anisomycin and
NSC-632839 were with the largest negative median CS (-84.81 and -85.40, respectively), the CS
values of were listed in Table 3.10. Both of these two compounds are protein synthesis inhibitor,
but they target different proteins and pathways.

Anisomycin is the inhibitor of the synthesis of ribosomal proteins (RPL10L, RPL11, RPL13A,
RPL15, RPL19, RPL23, RPL23A, RPL26L1, RPL3, RPL37, RPL8, RSL24D1) and small nuc-
lear ribonucleoprotein (SNU13) [75]. Anisomycin could also p38/JNK MAPK pathway [76]. The
p38MAPK pathways are vital for regulating pro-inflammatory cytokines biosynthesis at the tran-
scriptional level [77]; and they are strongly activated in vivo by environmental stresses and in-
flammatory cytokines [78]. Blockage of the p38MAPK pathway could obstacle the production
of pro-inflammatory cytokines like TNF-α and IL-1 [79]. Also, the JNK pathway is considered
to be a potential target for the therapy of inflammatory diseases. JNK regulates the synthesis
of pro-inflammatory cytokines such as IL-2, IL-6, and TNF-α, which are biomarkers of M1-like
macrophages [80]. It can promote transcript blockages involved in the fibrotic responses [81]. The
connectivity between the gene landscape of macrophages and the p38/JNK MAPK pathways may
demonstrate that the exposure to flat and textured surfaces lead to the variations in inflammation-
related pathways like p38/JNK MAPKs. This result also reflects that the differences between
macrophages exposed to the flat and textured surfaces mainly represent inflammation responses.
More important, the study of Hao et al. demonstrated that Anisomycin could up-regulate the ex-
pression of fibrotic proteins, including E-ts1 [82], Pai-1 [83] and CTGF [84]. Based on their study,
there were probably lower fibrosis-related protein expressions after macrophages were exposed to
the textured rather than the flat surface after 24 hours.

IKK-2-inhibitor-V is the IKK inhibitor, NFkB pathway inhibitor, and the protein kinase inhib-
itor of IKBKB [75]. IKK are necessary for rapidly activating NFkB by proinflammatory signaling
which are triggered by TNF_α or lipopolysaccharide (LPS). The negative CS between IKK-2-
inhibitor-V and the macrophages genome suggests the up-regulation of IKK, IKBKB, or NFkB
in Text24h compared to Flat24h. Macrophages could be polarized to an immunosuppressive M2
phenotype by interleukin (IL)-1R and MyD88, which required IKBKB-mediated NFkB activa-
tion [85]. However, NFkB’s functions on the regulation of inflammation and tumour are still
complicated and environment-dependent. The increase in the expression of NFkB can promote
not only the inflammation but also the tumour [86, 87]. Thus, only the connectivity between
the genome and the compounds could not provide enough clues to predict the variances between
macrophages cultured on different implant surfaces.

NSC-632839 is a ubiquitin-specific proteases (USPs) inhibitor, which targets on SENP2, USP1,
USP2, USP7 [88]. Among these target genes, SENP2 could inhibit the transcriptional activity of
the Wnt/β-catenin pathway that is a major regulator of human fibrosis development and progres-
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sion across organs [89]. Since unresolved inflammation frequently occurs during the transition from
normal wound healing to chronic fibrosis, and interfering Wnt signaling could attenuate several
experimental fibrosis models in vivo, Wnt signaling is a promising (pre)clinical therapeutic targets
to suppress the formation of fibrosis [90]. There are few studies about USPs’ functions; however,
the inhibition of USPs is a potential and novel anticancer therapeutic strategy [91]. In summary,
NSC-632839 may promote the transcription of Wnt pathway, resulting in more fibrosis; and the
negative connectivity between the gene landscape of Text24h VS Flat24h and NSC-632839 may
indicate that the textured surface may more anti-fibrosis compared to the flat.
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Figure 3.14: The number of DEGs of Text24h VS Flat24h.

Compound Donor 1 Donor 2 Donor 3 Donor 4 Donor 5 Donor 8 All Donors Median Tau Score
Anisomycin -89.15 -23.64 -13.80 -78.06 0 -84.72 -90.81 -78.06

IKK-2-inhibitor-V -78.30 1.73 -1.90 -77.44 -10.39 -85.16 -76.30 -76.30
NSC-632839 -1.25 -19.83 -87.70 -89.90 0 -75.51 -94.49 -75.51

Table 3.10: CMap query result of Text24h VS Flat24h.

3.4.2 Text96h VS Flat96h
We observed between 36 to 228 DEGs with an absolute Log2FC ≥ 5.5 as compare textured surface
to flat surface as shown in Figure 3.15 among all the donors. In the comparison group of Text96h
VS Flat96h, 39 DEGs which were differentially expressed in all the donors were selected by the
threshold of 3.5. According to the Heatmap analysis module provided by CMap query, single
compounds emetine and homoharringtonine were with the largest negative median CS (-83.21 and
-89.63, respectively), the CS values of were listed in Table 3.11.

Both of these two compounds can suppress BRCA cells. Emetine is the protein synthesis
inhibitor of RPS2. In the study conducted by Yun et al., they investigated the effect of RPS2
by using RAW 264.7 murine macrophage cells [92]. The results showed that RPS-2 RPS2 could
activate RAW 264.7 in different pathways, including NF_kB signal and MAPKs pathway that can
regulate inflammation and the formation of tumors. Sun et al. showed that emetine treatment
could antagonize Wnt/β-catenin signaling, induce apoptosis, and suppress the migration, invasion,
and sphere formation of BRCA cells [93]. Homoharringtonine is an apoptosis stimulant and a
protein synthesis inhibitor targeting on RPL3. The combination of RPL3 and 5-FU has been
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demonstrated to be a promising strategy for chemotherapy of lung cancers lacking functional p53
that are resistant to 5-FU [94]. Homoharringtonine is also an approved anti-leukemia drug that can
suppress triple negative BRCA growth by rapidly reducing anti-apoptotic protein abundance [95].
In a conclusion, the negative connectivity between the Emetine and Homoharringtonine represents
that the textured are more likely to induce BRCA in macrophages after a 96-hour exposure in
vitro.
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Figure 3.15: The number of DEGs of Text96h VS Flat96h.

Compound Donor 2 Donor 3 Donor 4 Donor 5 Donor 8 All Donors Median Tau Score
Emetine -92.66 -67.89 -73.75 -93.79 0 -92.74 -83.21

Homoharringtonine -91.40 -89.99 -89.28 -86.64 0 -95.52 -89.63

Table 3.11: CMap query result of Text96h VS Flat96h.

3.4.3 Discussion
Based on the CMap prediction result, after exposure to different surfaces for 24 hours, the ex-
pression profile of macrophages cultured on the textured surface presented variations in P38/JNK
and Wnt pathways compared to that of flat-surface phenotype. Besides, negative CS may reflect
that the textured surface is more anti-fibrosis. Differently, after 96 hours, the distinction between
these two phenotypes was mainly reflected in the induction of BRCA, showing that macrophages
under the textured condition could promote tumor. In summary, these differences can be related
to the characteristics of M1/M2 macrophages; thus, the CMap query result also indicates that
different breast implant surfaces may result in different M1/M2 polarization, fibrosis formation,
and BRCA induction models.
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Chapter 4

Discussion and Further Work

4.1 Discussion

Our study provides a complete DEGA pipeline, from the quality control step of RNA-seq dataset
to the generation of the gene network from most up-/down-regulated DEGs.

In this project, a new insight into the DEGA of macrophages exposed to the breast SMIs
with various surface structures is presented. Based on the analysis of two comparison groups
Text24h VS Flat24h and Text96h VS Flat96h, we could conclude that DEGs can distinguish
macrophages cultured on the flat-surface implant from those cultured on the textured-surface
implant. In addition, genes strongly impacted PC1 of both Text24h VS Flat24h and Text96h VS
Flat96h are mainly possible biomarkers and tumor suppressors of breast cancer (BRCA). More
critical, biomarkers were upregulated in Text24h, and the tumor suppressors were downregulated.
This indicates that the textured SMI may be more likely to induce breast diseases like BRCA
and suggests that macrophages cultured on the textured surface presented the characteristics of
M2-like macrophages. However, there is no evidence that genes that possessed large PC loading
values can be associated with inflammation responses. Besides, MT and ME genes are possible
factors that affect the classification of samples within Flat24h, which means that these genes are
differentially expressed from donor to donor. As for Text96h VS Flat96h, even though there is not
a clear cluster between samples, the expression pattern of DEGs indicated that groups of genes did
differentially expressed in Text96h VS Flat96h, and their expression levels can separate samples
from these two groups.

The GSEA result proved that macrophages cultured on flat SMIs represented enriched path-
ways of pro-inflammatory cytokines, including IFN-α and -γ, and TNF-α on the flat breast SMI
surface. These pro-inflammatory factors are the bio-markers of M1-like macrophages and can form
capsular contracture and chronic wounding. On the contrary, more characteristics of M2-like mac-
rophages, such as oxidative phosphorylation, can be found from samples cultured on the textured
surfaces. Based on this information and literature research, M1/M2 macrophages polarization
may be the key causing different macrophages’ immune responses when they are cultured on the
flat and textured surface. The control of the quantity of M1- and M2-like cells may be clinical
access to suppressing the fibrous capsule.

CMap query result provides possible perturbagens that are relatively highly-related to the
DEG landscape of each donor and landscape of genes, which are differentially expressed in all the
donors. The gene expression pattern of macrophages cultured for 24 hours is opposite to that of
the patterns treated by anisomycin and NSC-63283. These two compounds can impact p38/JNK
MAPK and Wnt pathways that are important to regulate the expression of pro-inflammatory
cytokines. Differently, the gene expression pattern of macrophages cultured for 96 hours showed
high connectivity with patterns perturbed by two single compounds, emetine, and homoharring-
tonine that can suppress BRCA. Based on these findings, we can infer that at the early stage
(24 hours), the significant distinction between the flat-surface macrophages and textured-surface
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macrophages is the expression level of pro-inflammatory factors. In contrast, at the late stage, the
main difference is the induction of tumors.

In conclusion, our study proved that the macrophages exposed to the flat (Allergan Smooth
surface) and the textured (Mentor Siltex surface) could present different expression profiles, this
result is consistent with the study of Giuseppe et al. [11]. Besides, GSEA and CMap results also
give a further assumption on the formation of fibrosis on breast implants, macrophages cultured
on flat surfaces are more likely to develop to M1 macrophages cells, this maybe the main cell factor
that cause the fibrosis and capsular contracture (CC). Compared to macrophages cultured on the
flat surface, those on the textured surface possessed more characteristics of M2 macrophages. An
important difference between M1 and M2 cells is that M2 cells are more tumor-associated. This
may be the reason why most of genes that possess higher PC1 loading were genes related to tumor.

4.2 Further Work
Diabetic mice are often used for studies on wound macrophages and delayed wound healing since
they share several characteristics with human chronic wounds. The research investigating wound
macrophages show that their function is not properly regulated in diabetic mice compared to
wild type ones, which was caused by a prolonged M1 macrophage presence, leading to inefficient
transition to the M2 phenotype [96]. Based on this finding and results of our study, shorten M1
macrophage presence at the early stage is a promising way to reduce the occurrence of fibrosis or
CC when transplanting macrophages to breast SMIs in vitro. Compounds like anisomycin and
NSC-63283 indicated by CMap query result is possible to enhance the transformation efficiency
between M1 and M2 macrophages. Thus, for the future work, the first priority would be verifying
effects of these two mentioned compounds in vitro to investigate the M1/M2 proportion and the
occurrence rate of fibrosis and CC.

Another important part of future work is the validation and the exploration of the gene network
of macrophages shown in Figure 3.12 and 3.13. Even though M1 and M2 macrophages’ biomarkers
can be found in these gene networks, how interactions between DEGs affect immune responses
of macrophages are yet evident. Validating such interactions can be completed by assessing the
quantity of a gene’s expression after regulating others connected to that gene.

Based on the CMap query result, no all the donors exhibited reactions to compounds like
anisomycin and NSC-63283; besides, CC is not found in all the patients or costumers accepting
breast augmentation surgery based on the previous investigation. Thus, it is also essential to
compare the transcriptome and DEG landscape of each donor to detect which characteristics are
possessed by the immune system that can adjust M1/M2 proportion and avoid CC. Combining
techniques like machine learning may provide a possible pre-clinical way to predict which patient
or client will suffer from the complication caused by breast implants.

As mentioned, there is no gold standard on how to rank all the genes or part of genes that are
recognized as DEGs to do GSEA. Thus, further studies can also focus on whether a ranking method
is more accurate than the other. This can be done by the following cell engineering experiment and
protein quantity assessment of those cytokines or pathways from the enrichment analysis result of
our study.
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Appendix A

Abbreviations and acronyms
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APPENDIX A. ABBREVIATIONS AND ACRONYMS

Abbreviation Definition
BRCA Breast Cancer
CC Capsular Contracture

CMap Connectivity Map
DEG Differentially Expresses Gene
DEGA Differentially Expresses Gene Analysis
DET Differential Expression Tool
FDR False Discovery Rate
GEPH Gene Expression Pattern Heatmap
GSEA Gene Set Enrichment Analysis

H Hallmark
KS Kolmogorov–Smirnov

Log2FC Log2 Fold Change
MT Metallothionein
ME Mitochondrially Encoded
NES Normalized enrichment score

OXPHOS Oxidative Phosphorylation
padj Adjusted P-value
PC Principal Component
PC1 Principal Component 1
PC2 Principal Component 2
QC Quality Control
SMI Silicone Mammary Implant
TF Transcription Factor

Table A.1: Abbreviations table in alphabetical order.
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Appendix B

MultiQC status check on RNA-seq
data processed by FilterByTile twice
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APPENDIX B. MULTIQC STATUS CHECK ON RNA-SEQ DATA PROCESSED BY
FILTERBYTILE TWICE

Figure B.1: MultiQC status check report on RNA-seq processed by FilterByTile twice.
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Appendix C

Number of reads in the RNA-seq
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APPENDIX C. NUMBER OF READS IN THE RNA-SEQ

Figure C.1: Comparison of percentage of number of total sequence between raw dataset and
dataset processed by FilterByTile once.

Figure C.2: Comparison of percentage of number of total sequence between raw dataset and
dataset processed by FilterByTile twice.
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Appendix D

Scree Plot of Variances of Principal
Components
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APPENDIX D. SCREE PLOT OF VARIANCES OF PRINCIPAL COMPONENTS

Figure D.1: Scree plot of variances of principal components of Text24h VS Flat24h.

Figure D.2: Scree plot of variances of principal components of Text96h VS Flat96h.
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Appendix E

Gene Set Enrichment Score
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APPENDIX E. GENE SET ENRICHMENT SCORE

(a) (b)

Figure E.1: Enrichment score of hallmarks enriched in Text24h. (a) Hallmark oxidative phos-
phorylation. (b) Hallmark Myc targets V1.
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APPENDIX E. GENE SET ENRICHMENT SCORE

(a) (b)

(c) (d)

(e)

Figure E.2: Enrichment score of hallmarks enriched in Flat24h. (a) Hallmark interferon alpha
response. (b) Hallmark interferon gamma response. (c) Hallmark heme metabolism. (d) Hallmark
TNFα signaling via NFkB. (e) Hallmark P53 pathway.
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APPENDIX E. GENE SET ENRICHMENT SCORE

(a) (b)

(c) (d)

(e)

Figure E.3: Enrichment score of hallmarks enriched in Flat96h. (a) Hallmark interferon alpha
response. (b) Hallmark interferon gamma response. (c) Hallmark mitotic spindle. (d) Hallmark
G2M checkpoint. (e) Hallmark Myc targets V1.

64 Differential Expressed Gene Analysis on Macrophages after in Vitro Exposure to Flat and
Textured Breast Silicone Mammary Implants


