5G/Satcom-on-the-move agile antenna frontends:

RF design challenges

IMST GmbH – Carl-Friedrich-Gauss-Str. 2-4 47475 Kamp-Lintfort, Germany T/F: +49 2842 981 0/-199, www.imst.com Author: Rens Baggen E-Mail: baggen@imst.com

5G Eco system

- Efficient use of radio spectrum, extension to mmwave bands
- "One does not fit all": flexible solutions, application driven
- Costs and sustainability:
 "green" communications
- Worldwide standardisation vs. user-driven applications

5G/IoT antenna frontends

- Large variety of user & communication platforms \rightarrow multiplatform integration:
 - Wireless (WiFi, etc)
 - Cellular (operators)
 - Satellite-based, HAPS
 - D2D, M2M, IoT...
- Extremely high reconfigurability:
 - Software defined radio
 - High level cognitive radio
 - MIMO
 - Antenna beam shaping/forming
- Higher frequency spectra & large data rates:
 - Highly compact RF frontends
 - Highly integrated RF components

All for one & one for all... (Alexandre Dumas)

... and what about SOTM?

- Mobile satellite communication terminals have 5G-similar requirements:
 - Reconfigurable antenna beam
 - Multibeam for LEO/MEO services
 - Large data rates (i.e.high bandwidth)
 - Compact dimensions of frontend (i.e. high integration)
 - L/Ku/K/Ka-band....V/W-band envisaged for long term
- SOTM antenna frontends have been on the market since decades in various forms
- First highly integrated corechips have been developed for SOTM (pre-2000), not 5G!
- SOTM will become / is part of the 5G eco system
- Extremely strong cross **pollination**

What is exactly the antenna frontend?

- Antenna aperture 0
- Antenna elements
- Beam forming networks
- Filters
- Interface to RF components

- **RF circuitry** 0
- PA, LNA, mixer, AGC ____
- Filters ____
- Beam forming networks ____
- Interfaces to antenna/baseband ____

- **Baseband circuitry** 0
- AD/DA converters
- **FPGA/ASIC** _
- Software ____
- _

IMST

The baseband unit is often not considered part of the antenna frontend, depends on who you ask!

Interfaces to RF circuitry

6

Challenges for 5G/SOTM antenna frontends

- Extreme RF Performance over large bandwidth
 - High data rates (high RF power, low noise figures)
 - Higher order modulation schemes (high linearity)
- Extremely densely populated printed circuits boards (PCBs)
 - Efficient thermal management
 - Highly integrated building blocks (corechips)
 - Low power consumption
- Small form factor
 - Suitable for fixed, nomadic and mobile platforms
- o High reconfigurability
 - Single, dual, multibeam capability
 - Linear & circular polarisation capability
- Low power consumption
- Cost effective

High performance RF components

- High linearity/amplification of PA and low noise figure of 0 LNA at higher frequencies not trivial in design
- Most RF power at highest efficiency delivered by GaN, followed by **GaAs** \rightarrow production cost are however high & onchip integration density low (same story applies to noise figure)
- **Si**-based chips are cost effective in **bulk**, RF and digital circuitry can be combined on one single chip, and integration density of Si-circuitry is much higher than in case of GaN/GaAs. Amplification/Linearity and noise figure is however less when compared to GaN/GaAs
 - ✓ A trend can be observed that most highly integrated chips for 5G/satcom use SiGe BiCMOS or Sol CMOS technology where both RF and digital components can be realised on a single chip. In bulk, these technologies could deliver 'low' prices

NB: In general, the cost price of a frontend is determined for 80%-90% by their active/passive RF components

- 2.5° RMS phase error
- 0.3 dB RMS gain error
- · 35 dB gain control (0.2dB steps)
- Advanced SPI with 4 register memory
- 5x5mm QFN (0.4 mm pitch)
- +2.0 V operation (2.1 2.5V)
- 0.34 W DC (8 channels)

High integration density

- The **number** of RF components/cm² on a PCB is becoming higher 0 and higher with increasing functionality
- Size of antenna apertures **decreases** with frequency (assuming 0 constant gain), chips do not: chipsize@ 30 GHz \cong chipsize@100 GHz
- RF interconnects at higher frequencies becoming increasingly **lossy**. 0 The more RF components, the more interconnects, the higher the losses...
 - Use dies instead of packaged chips. This can however have a \checkmark negative impact on the final manufacturing price
 - Use corechips that combine multiple RF channels on one chip, i.e. less discrete components and less interconnects

Thermal management & power consumption

- Number of RF-components/cm² is **high**, little space left for heat sinks 0 or other cooling structures
- Cooling elements like fans, heat pipes or heatsinks are not always 0 possible due to **space restrictions** and/or **safety requirements**
- RF-components at higher frequencies have a **power efficiency < 10%** 0 and it does not get better over frequency
- DC power is **always** required for biasing of amplifiers, modulators, etc. 0 In addition, different technologies require different voltages hence DC/DC converters are often necessary decreasing to the overall power efficiency

✓ New sophisticated cooling technologies are required. Perhaps 'borrowing' some technologies from PC cooling systems is an option?

 DC power consumption is strongly linked to the chip technology applied \rightarrow at the moment no real low power solution is yet visible on the horizon

Small form factor

- The definition of 'small' depends extremely on the **application**: Ο
 - Mobile devices like mobile phone or laptop
 - Basestation in a shopping mall
 - Basestation on a rooftop
 - SOTM terminal on a car
 - SOTM terminal on a plane
- Previous statement also applies to the **form factor**, sometimes Ο quasi-quadratic shapes are preferred, sometimes slim rectangular shapes, as for example in case of planes

The shape of the antenna terminal has a major impact on the \checkmark realisation of the antenna frontend. Unfortunately, in most cases 'something flat and very compact' is desired/required

Good practices

RF-Interfaces lossy, costly & require a high design effort

- Keep RF-interconnections as short as possible
- Convert RF to IF at the earliest possibility

Lack of mounting space & thermal issues

- Use MMICs in die-form, not packaged
- Include thermal management directly from the start of the RF design

Assembly and buildup suited for mass production

- Use standard PCB materials where possible
- Consider proven manufacturing technologies only

Some interesting developments: additive manufacturing

Technology		Description	Surface finish (typical)	Material e
SL	Stereo Lithography	Laser hardened photopolymer	Additive: 0.0515 mm	ABS, PP I
SLS	Selective Laser Sintering	Laser sintered powder	Additive: 0.1 mm	Nylon, me
DMLS	Direct Metal Laser Sintering	Laser sintered metal powder	Additive: 0.02 - 0.03 mm	Titan, chro aluminum
FDM	Fused Deposition Modelling	Melt-extrusion	Additive: 0.13 - 0.33 mm	ABS, PC,
3DP	3D-Printing	Liquid binder printed on powder by inkjet	Additive: 0.09 – 0.2 mm	Plaster ba
PJET	PolyJet	UV cured blasted photopolymer	Additive: 0.015 - 0.03 mm	Acryl base photopoly
IP	Inkjet Printing	Direct printing of conductive ink on 2D or 3D Surfaces	Additive, lower mechanical strength	Silver bas

IMST

xamples

like materials

etal

ome, stainless steel,

PPSU

ased powder/liquid binder

ed photopolymer, elastomeric mer

sed ink

Some interesting developments: liquid cooling

- Selective Laser Melting (SLM) 0
- 0.8 mm thickness 0
- Dissipation up to 1,000 W 0
- Compatible with standard PCB 0 manufacturing technologies

IMST

11

14

48 W power

Some interesting developments: integrated antennas

- Integration of SOTM Ku-band antenna tiles in hull of plane 0
- Structural carbon-based hull frame is used for hosting antenna tiles 0
- No more drag due to antenna terminals normall mounted <u>on</u> the hull 0

Some interesting developments: SOTM/5G frontend I

- Highly integrated Ka-0 band Tx module for 5G & SOTM
- Waveguide radiators in 0 combination with PCB technology
- Beam steering achieved Ο via 8-channel corechips (COTS, packaged)
- Circular/linear \mathbf{O} polarisation
- 64 Antenna elements, Ο each equipped with phase/amplitude shifter & PA

IMST

Antenna aperture

The metal backplane is used as additional heatsink for the chip

RF Input

Cooling fan

Some interesting developments: SOTM/5G frontend II DC

EM simulation: Electric field @ 29.75 GHz at divider network and antenna feed

Summary

- 5G & SOTM antenna frontends have many RF topics/requirements in common. In addition, SOTM will 0 eventually become part of the 5G ecosystem
- Antenna frontends will be capital for future communications systems Ο
- The design of such agile frontends faces many challenges: Ο
 - High RF performance at large bandwidths
 - Small compact terminals
 - Adequate thermal management
 - Low power consumption
 - Low prices
- Some challenges are in strong contradiction with each other and it will therefore be an immense task to Ο find a good compromise
- New technologies and materials will be required using inter-disciplinary approaches & experience from Ο adjacent fields so let's get started ...

Thank you for your attention

© IMST GmbH, 2020 - All rights reserved

IMST GmbH – Carl-Friedrich-Gauss-Str. 2-4 47475 Kamp-Lintfort, Germany T/F: +49 2842 981 0/-199, www.imst.com Author: Rens Baggen E-Mail: baggen@imst.com

