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Summary

A guide to learning modules in a dynamic network

Karthik Raghavan Ramaswamy

Complex interconnected systems are becoming increasingly ubiquitous, and
data-driven model learning problems of large-scale interconnected systems,

known as dynamic networks, are expected to become of paramount importance
in different fields like robotics, smart grids, transportation systems, oil and gas
reservoirs, autonomous vehicle platooning, biological systems. These networks
can be considered as a set of measurable signals (the node signals)
interconnected through dynamic systems and can be possibly driven by external
excitation signals. The task is to learn a mathematical model of these dynamic
systems, called modules, from measured signals (data). Either learning all the
modules in the network or a subset of modules in the network, the task can be
broken down into subproblems of estimating a single module embedded in a
dynamic network (local module identification).

Typically, existing identification methods to identify modules in a dynamic
network require restrictive assumptions to hold. For example, a typical standing
assumption is that the non-measurable excitation signals (noise) entering the
nodes of the dynamic network are uncorrelated with each other. However, in
many situations, the noises can be correlated. In this situation, considering the
assumption of uncorrelated noise in the identification procedure leads to an
inaccurate model. Moreover, existing methods usually require the availability of
specific measured nodes and certain sets of externally excited nodes in order to
ensure an accurate model. However, in practical situations, these requirements
cannot be met, and we need identification methods to deal with flexibility in
selecting measured and excited node signals. Another important aspect is the
complexity required to identify a module in large networks. Therefore, it is
fundamental to develop effective scalable algorithms to address it. This thesis
addresses the above problems, and a step-by-step guide to learning modules in a
dynamic network is provided for a user.

In many practical cases, it is possible to have dynamic networks with disturbance
signals that are correlated across measured nodes. In this situation, it is necessary
to consider also the disturbance correlation structure during the estimation
procedure. Also, the so-called confounding variables that lead to a lack of
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consistency need to be dealt with. A Local Direct Method (LDM) that provides
asymptotically efficient estimates is developed to tackle this. It involves a
constructive procedure for signal selection that tackles the effect of confounding
variables and builds a MIMO identification setup that guarantees asymptotically
efficient estimates when applying the LDM. All in all, a generally applicable
theory is provided for the LDM that is independent of the particular node
selection scheme selected.

Different sets of conditions are available in the literature for the set of node
signals to be measured and the set of excitation signals needed to identify a
module. These conditions have been derived from either an indirect
identification approach, considering external excitation signals as inputs, or a
direct identification approach, considering measured node signals as inputs.
While both approaches lead to different sets of (sufficient) conditions, we extend
the flexibility in the sufficient conditions for the selection of excitation and
measured node signals by combining direct and indirect approaches. As a result,
we introduce a Generalized method that offers flexibility in sensor selection and
actuation requirements.

In order to achieve consistent estimates using the LDM or generalized method,
data informativity conditions need to be satisfied. However, these conditions
typically cannot be directly used by the experimenter since they rely on checking
the positive definiteness condition on a spectrum of internal signals. Therefore,
these conditions have been translated to path-based conditions that depend on
paths from external signals to the internal node signals. The experimenter can
now check the satisfaction of these path-based conditions using graphical
algorithms and can easily verify and ensure data informativity.

A MISO or MIMO identification setup needs to be considered in a dynamic
network setting to identify a single module. This leads to the estimation of a
large number of parameters that are of no interest to the experimenter and
requires model order selection for all the modules in the identification setup.
While the former task poses the problem of estimating a large number of
parameters that are of no interest to the experimenter, the latter task may result
in computationally challenges in large-size networks. Regularized kernel-based
methods are used to avoid these issues and increase the accuracy of the identified
module of interest. An Empirical Bayes Direct Method (EBDM) is developed
where the modules that are of no interest in the identification setup are modeled
as zero-mean Gaussian processes with covariance matrix (kernel) given by the
first-order stable spline kernel, thereby represented using only two
hyperparameters for each module. Also, combining the approach with
approximate inference methods, the situation of missing node measurements is
handled by employing a Markov-chain Monte Carlo technique to reconstruct the
unknown missing node measurements and the network dynamics.

Finally, the identification approaches require prior knowledge of network and
noise topology. A new approach that incorporates the estimation of this prior
information into the identification, leading to a fully data-driven approach for
estimating the dynamics of a local module, is presented. The developed
algorithm uses a non-causal Wiener filtering technique that involves a series of
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analytical solutions with parallel computation capabilities to estimate the
topology. The regularized kernel-based method with attractive statistical
properties and scalable to handle a larger-scale network is then employed to
estimate the target module. As an alternative, a scalable multi-step least-squares
algorithm that admits only explicit solutions for topology and module estimation
is introduced, making it computationally efficient. Consistency proof with
path-based data informativity conditions, which can indicate where excitation
signals must be allocated, is also formulated.
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1 CHAPTER

Introduction

The advancements in technology have made real-life systems
increasingly complex and interconnected. Large-scale

interconnected systems, known as dynamic networks, are becoming
increasingly ubiquitous. The data-driven model learning problem of
these systems has become of paramount importance in various domains.
Despite the availability of several identification techniques for dynamic
networks developed over the past decade, many open problems still need
to be solved. The available identification methods are applicable only
for dynamic networks that satisfy restrictive conditions/assumptions
that are mostly impractical. Also, as the size of the network grows,
the complexity of applying these methods increases. This thesis
provides approaches to identify modules (subsystems) embedded
in a dynamic network by relaxing the restrictions and reducing the
complexity. This objective involves exploiting the freedom in the
signal selection and actuation schemes, reconstructing missing signals,
handling networks with correlated and rank-reduced noise, translating
the data-informativity condition to a topology-based condition, handling
the unavailability of topology information, and reducing the complexity
with algorithms using kernel-based methods and multi-step least squares
method. As a result, we aim to guide an experimenter and provide the
experimenter with the needed tools to identify a module embedded
in a dynamic network accurately. The first chapter summarizes the
motivation and challenges in identifying modules embedded in a
dynamic network and surveys the problems considered in this thesis.

1.1 Motivation

The field of systems and control deals with the analysis, modeling, and control of
systems. According to the definition from Oxford languages," a system is a set of

1
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things working together as parts of a mechanism or an interconnecting network;
a complex whole." In an abstract sense, a system is an object in which variables
of different kinds interact and produce observable signals [77]. Many engineering
and physical systems can have dynamics, i.e., the present behavior of a system can
affect its future behavior. For example, the acceleration of a body in the past and
present can affect its speed and position in the future. As considered in the field
of system identification, these systems are called dynamical systems, i.e., systems that
have the memory of the past.

Due to the advancements in technology, systems in real life are becoming more
complex and large-scale. Examples can be found in various domains, such as
biology [34, 88], Telecommunication systems [96], Economics [81], Brain and
cognitive sciences [46, 97], Power systems [24, 75], Autonomous vehicles [108],
Geology [5], Windfarms [69, 121]. Large-scale complex systems have become
ubiquitous and a part of our day-to-day life. These large-scale complex systems
can be described as interconnected networks of simpler subsystems. This
representation makes it important for us to model these interconnected systems
to study, analyze, monitor, and control the large-scale complex systems. For
example, with the uprising of smart grids (see figure 1.1), renewable energy
sources, increasing power demand, and modern technologies like plug-in electric
vehicles, there will be a significant change in the power system. Therefore it will
be quintessential to model the interconnected systems for analysis and better
control and optimization of power grids. Similarly, it is necessary to model the

Figure 1.1: Smart grids (Eolas Magazine)

causal influences among neuronal populations in brain networks for estimating
the effective connectivity between different brain areas. Based on [148], any
system is an interconnected system that consists of interacting simpler
subsystems modeled by tearing, zooming and linking. Therefore, by modeling the
interconnected system, we can understand any system, like which subsystems
are interconnected with other subsystems and how they interact. Also, we can
focus our modeling efforts on particular subsystems.

Also, due to the growth of sensing technology, sensors are becoming cheaper
with improved quality and accuracy. In addition, they can measure different
variables like pressure, flow, temperature, voltage, current, phase, frequency. The

https://www.eolasmagazine.ie/smart-grid-evolution/
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ability to measure many variables and improvement in sensing technology has
increased the possibility of measuring various relevant process variables in many
complex systems. For example, sensors can now be placed between the reservoir
and the wellbore in reservoir engineering to measure quantities like pressure and
flow rate. Similarly, many piezoelectric elements can be placed underneath the
wafer to measure the deformations at different points in wafers during the
exposure phase of lithography. Thus, the current technological advancements
have led to the availability of lots of data for many interrelated variables. This
data availability for many interrelated variables for complex systems paves the
way for modeling interconnected systems through data.

1.2 Need for models

A model describes the relationship between the variables interacting with a
system. It is an abstraction of reality that tries to capture the essential aspects.
Therefore the aim is to describe the essential behavior and discard the irrelevant
features. What is essential and what is irrelevant depends on the intended use of
the model [77].

Models can be of many forms, namely mental models, graphical models, physical
models or mathematical (or analytical) models. Many advanced applications in
engineering and physics use these mathematical models, which describe the
relationship among the system variables using mathematical equations like
differential or difference equations. Mathematical models can further be
classified using many attributes like static or dynamic, linear or non-linear,
deterministic or stochastic, lumped or distributed. Dynamic models are models which
describe the behavior of a dynamical system over time. Time plays an important
factor in these models. The field of control theory depends on these dynamic
models to control the behavior of the system over time using controllers. Using
mathematical models, one can gain physical insights into the system. Many
fields use mathematical models for various purposes. Below we list some of the
purposes: [77]

1. Prediction: A model of a system can be used to predict the future behavior
of a system. For example, predicting the stock price in stock markets or
predicting weather conditions in a particular region.

2. Simulation: A model can be used to simulate the behavior of a system under
different operating conditions and experimental conditions. For example,
simulators using reservoir models are used by most hydrocarbon
industries for many insights like designing the operations of the
hydrocarbon extraction process to get maximum productivity [106].

3. System design: A model can be used to analyze a system and design it to
achieve the desired performance. For example, system re-designing can be
done using the model of the system such that the desired behavior is
achieved. Another example is the design of a controller for a system based
on its model.
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4. Monitoring: A model can be used to estimate an unmeasured variable. For
example, a State-of-Charge (SOC) estimator can be built for Battery
Management System (BMS) using voltage and current measurements.

5. Diagnosis: A model can be used for fault detection. The model’s behavior
can be compared and checked for any deviation from the system’s behavior
to detect any fault and the location of the fault. For example, in power or
water, or gas distribution systems, any fault or leak and its location can be
detected.

The classical methods in system identification literature deal with relatively
simple configurations like open-loop and closed-loop systems [77, 95, 120].
However, in this thesis, we move beyond these configurations and deal with
increasingly complex systems, which typically consist of many subsystems
interacting with each other. Consequently, these networked systems are
large-scale in nature. Moreover, they have complex spatial interconnectivity,
requiring local and global models and tools for local and global decision-making.
These networked systems, known as dynamic networks, require dedicated
modeling tools that can tackle their complexities.

1.3 Dynamic network model

As already discussed, any system we encounter in our day-to-day life is nothing
but an interconnected network of simple subsystems. Take, for example, the
recent trend and enabling technology of current engineering innovations, the
Cyber-physical systems. They are interconnected systems at various layers as seen
in figure 1.2. The physical layer consists of subsystems linked together by
physical interactions and the cyber layer with the networked controllers. The
controllers interact with each other and with the systems in the physical layer.
This representation is similar to the distributed [25] or decentralized [67] control

Figure 1.2: Cyber-physical system as interconnections of several interaction
systems at different layers.

scheme used to optimize and control large-scale systems like industrial plants or
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power plants, with the exception that in distributed control, the controllers will
not communicate with each other. Here, local subsystems are controlled using
local controllers. It is important to know which subsystems are connected to
other subsystems and their interactions to design the control scheme and decide
which controller communicates with which controllers to attain the desired
performance. Therefore, to study, analyze, monitor, control or make decisions on
these systems, it is essential to know about two attributes - how subsystems are
interconnected and how they interact. Therefore, a dynamic network model that
encompasses both these attributes and represents the interconnected systems is
required.

Generally, a dynamic network model has two components - a graphical
representation and a set of mathematical models. The graphical representation
(see figure 1.3) contains the vertices (nodes) connected by directed or undirected
edges (links). It encodes the information about the interconnection structure of
the subsystems. Various network models are available in the literature like
probabilistic graphical models, behavioral models, state-space models, Structural
Equation Models (SEM). A brief overview of different network models is
provided in [146] and [115]. Depending on the network model, the nodes and
edges in the graph can represent different objects. The mathematical model that
describes the interactions also changes based on the network model. For
example, the vertices can represent a random variable, time-series, or subsystem
dynamics based on the model. In probabilistic graphical models [73], the nodes
represent the random variables and the graph structure using links incorporates
the conditional independence information of the joint distribution of all the
random variables. In state-space models where the system’s behavior is
represented by a first-order differential or difference equation, the nodes
represent the states and the relationship between states are captured through
weighted links in the graph.

Figure 1.3: Graphical representation of a dynamic network with directed edges
(left) and undirected edges (right).

1.3.1 Module networks

Another type of dynamic network model is the module network. It is an extension
of the classical closed-loop architecture in the field of systems and control. In
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this network model, a vertex or node represents a time series, and a directed link
(edge) represents the dynamics between nodes.

The module network consists of the following (see figure 1.4):

1. Nodes or internal variables: These represent the time series of quantities
that can possibly be measured using measurement devices or sensors.
Examples are voltage, current, pressure, flow rate, Blood Oxygenation
Level Dependent (BOLD) signal from functional magnetic resonance
imaging (fMRI), position or distance, velocity, force, temperature. In figure
1.4, these are represented by signals w1, . . . , w8.

2. Modules: The internal variables are dynamically related to one another in
the network. This relation is represented by the modules that describe the
dynamic behavior, which describes the interconnection and interaction
between different nodes. For example, modules can represent the dynamic
behavior of different systems in power grids (like load, generator,
controller), dynamic behavior of different self-driving vehicles in
cooperative vehicles. In figure 1.4, these are represented in boxes like
G21, G32, . . . .

3. Excitations: These represent the measured external variables that can be
directly manipulated and affects the internal variables. For example, the
velocity of a leader in vehicle platooning that can be manipulated by an
operator, the activation of a test subject’s brain using music or sleep. In
figure 1.4, these are represented by signals r1, r4, r5, r8.

4. Disturbances: These represent the unmeasured external variables that affects
the internal variables. For example, the wind affecting different wind
turbines in a wind farm, the thermal noise in a electric circuit. In figure 1.4,
these are represented by signals v1, . . . , v8.

Figure 1.4: Module network framework for dynamic networks.

The nodes can be an input of a module and act as an output of another module.
The network’s topology is described by the existence of a module between two
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nodes, i.e., the interconnection structure between nodes through non-zero
dynamics. A formal definition of the dynamic network setup will be given in
Chapter 2. Nevertheless, for now, we will see some examples of dynamic
networks using this modeling framework.

1.3.2 Vehicle platoons

Autonomous vehicles are a hot topic in the domain of automotive technology.
Modern cars are equipped with sensors that sense the environment. This assists
the driver and, if autonomous, helps in the self-driving operation of the vehicle.
Therefore, each car will communicate with each other in cooperative driving and
work together as a dynamic network. One classical problem in cooperative
vehicles is the distance control in vehicle platooning. The concept of vehicle
platooning is to form a convoy of vehicles driving close behind each other to
increase the freeways traffic throughput and also to reduce fuel consumption for
the follower vehicles, transportation costs, and greenhouse gas emissions [76].

Figure 1.5: Cooperative vehicles and vehicle platooning (Source :
www.its.dot.gov).

In order to achieve fuel efficiency, it is essential to obtain small spacing between
vehicles which increases the risk of an accident. The desired spacing policy can be
achieved by forming autonomous vehicle platoons and using a distributed control
scheme [76].

Interconnected vehicle platoons can be represented as a dynamic network. Here,
one vehicle influences the dynamic behavior of the other vehicle, operating in
a distributed control scheme. Therefore, the dynamic behavior of each vehicle
constitutes the modules. The nodes represent the velocity of each vehicle and the
relative distance between two vehicles. The setpoint or the velocity profile given
to the leader (i.e., the first vehicle in the platoon) is the external excitation given
to the dynamic network. A dynamic network model of vehicle platooning helps
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the engineers operate, maintain, design, and control the vehicles and obtain the
desired fuel efficiency and performance. These dynamic network models are also
used to infer parameters like air resistance coefficients of the vehicles using the
observed data like velocity and relative distance between the vehicles.

Figure 1.6: Vehicle-based dynamic network representation as described in [94].
Gij represents the dynamics (transfer function) from the jth vehicle velocity to
the ith vehicle velocity. The variables vi represent the velocity of the ith vehicle.
The variable r refers to the excitation given to the leading vehicle, the velocity
profile.

1.3.3 Industrial plants

Any industrial plant, including chemical or power plants, has many controlled
subsystems with interacting dynamics. They operate in a distributed or
decentralized process control scheme [58]. Different units (subsystems) in the
plant have their local controllers designed and implemented for each subsystem
by looking at their local cause and effect relationships and the effect of
interactions from other subsystems (units). Therefore, the plants comprising of
all the interacting units and controllers together constitute a dynamic network as
seen in figure 1.7.

Figure 1.7: Two units of a plant being controlled with a local controller as a
dynamic network. Gij represent the interaction dynamics between the units [125].
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Let us consider the example in [58] represented using Fig. 1.7, in which the
problem of identifying interaction dynamics (i.e. G21 or G12) that exist between
units operating in a decentralized control scheme has been addressed. Normally
these interactions between the units are not perceivable. Identification of such
interaction relationships is crucial to the deployment of coordinated
decentralized control and achieving the desired performance of the plant. The
dynamic network identification facilitates the identification of the interacting
dynamics.

1.3.4 Automotives

Electric and hybrid vehicles have entered the automotive market. They consist of
various subsystems like the battery, internal combustion engine, electric motors,
heat ventilation, air conditioning (HVAC) system, mechanical compressors. The
energy in the vehicle is transformed between different physical domains.
Therefore, they can be considered a dynamic network representing the power
interaction in the vehicle with power as node signals connecting many
subsystems, including energy storage devices and energy converters.

Figure 1.8: Power network of a hybrid truck. The topology and the arrows
indicate the flow of power [111].

The dynamic network model can be used for Complete Vehicle Energy
Management (CVEM) strategies [111] to reduce energy consumption. CVEM
revolves around optimizing the energy consumption of all the interconnected
subsystems in the vehicle by considering the interactions between them. This
requires solving an optimal control problem for which the mathematical models
of interconnected systems are required, which can be provided by the dynamic
network models.

1.3.5 What model are we looking into?

In general, most of the systems in the real world are non-linear systems. Having
said so, modeling non-linear systems using data and incorporating the
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time-varying behavior involves additional complexities. However, modeling
linear time-invariant (LTI) systems is less complex than non-linear and
time-varying systems. Moreover, there are well-advanced and extensive theories
for the data-driven modeling of LTI systems in simple open-loop and closed-loop
configurations. Therefore, it is a natural choice to extend these theories to a
dynamic network setup since the theory of data-driven modeling of LTI dynamic
networks is not advanced. This will serve as a basis to develop theories for
non-linear dynamic networks. Also, many real-world systems can be
approximated by a linear system when operating around a working point.
Considering all these, in this thesis, we will consider linear dynamic networks
where the modules have linear dynamics. Indeed, extending to non-linear or
time-varying models will be the work of future scope.

Different LTI dynamic network models suitable for dynamic networks exist in
the literature, as discussed in this section. For example, the state space models,
probabilistic models, behavioral models. In this thesis, we choose a particular
type of module network known as transfer function network models where the
modules are described using LTI transfer functions. In essence, the modules
G21, G32, . . . in figure 1.4 are LTI transfer functions. Transfer functions are
extensively used in many engineering subfields like signal processing,
time-series analysis, vibration analysis. They encode a causal relationship
between measured signals. In addition, there are established links between
transfer functions, state-space models, and models based on differential or
difference equations.

The transfer function dynamic network has been presented as Dynamic Structure
Functions (DSF) in [57], where there are no disturbances on the network. This
representation has been extended in [124] with unknown disturbances. Similarly,
dynamic networks with impulse response modules (also can be interpreted as a
type of transfer function) and Wiener filters (can be related to transfer functions)
have been presented in [23] and [85].

1.4 Why data-driven model learning?

We discussed how many large-scale, complex, and interconnected systems can
be seen as dynamic networks and how a dynamic network model helps different
applications. However, dynamic network models are generally not available. This
raises the following question: How to obtain the dynamic network models?

There are two types of approaches to obtain mathematical models, namely first
principles modeling and data-driven modeling. In the former, the equations using
laws of physics or other sciences (like the law of conservation of mass,
momentum) are used to find the relations between different variables. However,
constructing models for dynamic networks only through first principles is
sometimes costly or infeasible. In this case, using the measured data collected
during the operation of the networked system can aid the modeling procedure.
The data-driven modeling approach uses the measurement data from a system to
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infer a model of the system. This is based on the fact that the measurements
contain information about the behavior of the system. Data-driven modeling
approaches can be used to obtain the parameters of physical models (grey-box
identification) and also to obtain models without any knowledge of physical
interpretation of the system (black-box identification). With access to lots of data
in this current world with advanced technologies, data-driven modeling
approaches is an attractive choice to model dynamic networks.

The field of system identification deals with data-driven modeling problems of
dynamical systems. According to [77, 120], in the classical approach of system
identification, a user selects a model set containing the candidate models with the
parameters to be determined. Then a model is selected from the candidate
models through a rule called criterion that discriminates the candidate models
from the best model using the measured data set. In practical situations, the data is
corrupted by disturbances. Therefore, the criterion must take this into account
and choose the best possible model. An accurate model that mimics the system’s
behavior is obtained when (1) the data is informative, (2) the set of candidate
models contains an accurate system approximation, and (3) with a proper
selection criterion. Data-driven modeling techniques are well known for simple
open-loop, closed-loop, and MIMO unstructured systems. However, the
data-driven modeling of a transfer function network that incorporates structure
poses many interesting problems.

1.5 The research trends

Various problems in the data-driven modeling of dynamic networks can be
formulated. In this section, we discuss four current research trends in the
data-driven modeling of dynamic networks.

1.5.1 Topology identification

Topology identification or topology detection in a dynamic network deals with
finding the interconnection structure of the dynamic network. The topology
detection is a binary question, i.e., determining whether there exists a link
between two nodes or not? Topology identification is a critical problem in many
applications, e.g. neuroscience [119] and systems biology [64]. Many approaches
for topology detection involve both topology detection and identifying the
network dynamics simultaneously [23, 63, 152]. In [112], a compressive sensing
problem is solved using linear regression models to find the interconnection
between nodes of a dynamic network. In [85], topology identification based on
Wiener filtering has been presented. In [72], efficient reconstruction of networks
using Granger causality concept has been presented. In [23, 154], a Bayesian
approach to find the interconnection structure of a dynamic network using
kernel-based methods and sparsity inducing priors has been presented. In [135],
a hyperparameter tuning-free sparse topology estimation has been introduced
using covariance matching.



12 Introduction

1.5.2 Full network identification

Full network identification deals with the identification of the full network
dynamics from measured data. Normally, in this case, it is assumed that the
interconnection structure between nodes is known. Identification of a full
network by modeling it as a state-space model has been addressed in [60]. An
identification method that can consistently identify all modules in a linear
dynamic network with algebraic loops is presented in [142]. Identification of a
full network in case of rank-reduced noise has been addressed in [144]. However,
the method in [144] involves solving non-convex optimization problems. A
sequential least-squares algorithm for full-network identification of ARMAX
networks has been introduced in [140]. In [43], a method that involves only
convex optimizations to solve the full network identification problem using
Weighted Null-space fitting (WNSF) [49] has been presented for dynamic
networks with white noise disturbances.

1.5.3 Single module identification

Single module identification or local module identification deals with the
identification of a specific module (system) in the network. A local part of the
dynamic network is of interest and needs to be identified in many situations.
Consider the examples presented in Section 1.3. The example of identifying the
air resistance coefficient of a vehicle among the vehicle platoons is a single
module identification problem [94]. Similarly, identifying the interaction
dynamics among different units in a large-scale industrial plant required for
decentralized or distributed control [58] is a local module identification problem.
In [79], an estimate of the reservoir thickness and permeability is obtained by
identifying a single module in the dynamic network model (bilaterally coupled
reservoir and wellbore model). Therefore, there is a strong need to develop a
framework and theory for local module identification in large-scale
interconnected dynamic networks.

For single module identification, the classical closed-loop prediction error
identification techniques (direct and two-stage method) have been extended to a
dynamic network setup with uncorrelated noise in [29, 124]. Considering the
effect of sensor noise in the measurements, the setting mentioned above has been
generalized in [27]. Identification of an individual transfer function in a dynamic
network using wiener filters has been provided in [83]. In [54], the classical
indirect identification method has been generalized to the dynamic network
framework. A simultaneous minimization of the prediction error (SMPE) approach is
introduced in [59] for identifying the target module (i.e. the module of interest
that needs to be identified) in a dynamic network with only sensor noise. This
method has been extended to a Bayesian setting in [38], where regularized
kernel-based methods are used to decrease the variance of the estimated module.
Also, an indirect identification method that involves only convex optimization
has been presented in [48].
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It is implicit that we can identify the full network by identifying each module in
the network using single module identification. Similarly, by identifying the full
network, we can identify each module. However, for identifying a single
module, we do not want to identify the whole network. We require more
measurements, excitation, and computational effort to identify the full network
than those required to identify a single module. For instance, we do not need to
measure all the nodes, have excitations be present on all nodes, and allow a
correlation between noises at some nodes. The emphasis is to identify a module
with local measurements and exploit the freedom in the signal selection. For
example, in order to identify a module G21 in figure 1.4, we would want to use
the local measurements w1, w2, w3, w6, w7 and if possible have flexibility in
selection among the signals.

1.5.4 Network identifiability

Identifiability of dynamic networks is a different problem from identification. It
is a theoretical problem determining whether a unique network model exists that
represents the stochastic properties of the measured signals. These properties are
typically second-order properties like mean and power spectral density. The
network identifiability aspects for an entire network have been addressed in
many works like [7, 22, 57, 65, 133, 143]. Exploiting the concept of generic
identfiability, path-based identifiability conditions based on pre-specified
network topology are provided in [7, 65]. The problem to determine where to
allocate excitation signal to guarantee network identifiability has been addressed
in [6, 22]. Instead of the full network, identifiability works focussing on single
module embedded in a dynamic network or sub-networks are addressed in
[54, 117, 118, 145].

1.6 Open problems

There have been some works on data-driven modeling of a module in a dynamic
network in the last ten years. However, the works involved restrictive
assumptions and conditions to be satisfied that can be practically impossible in
large-scale networks. This has opened many questions in the field of data-driven
modeling in dynamic networks.

1.6.1 Restrictive assumption on disturbance correlation and
confounding variables

The available single module identification methods can be broadly classified into
two methods: the direct methods and the indirect methods. Indirect methods mostly
rely on external excitations as inputs rather than the internal node signals. The
required transfer function is not directly identified from the measurements.
Closed-loop transfer functions are identified first and the required transfer
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function is estimated from it. We call this step as post-processing. The two-stage
method in [29, 124], Errors-in-variables (EIV) method in [27, 120], SMPE method
in [59] and the method in [54] represent particular forms of indirect methods. The
direct method for single module identification like [29, 30, 124] uses the internal
node signals as input and directly identifies the required transfer function.

The available direct identification methods for dynamic networks impose a
restrictive assumption on the disturbances acting on the dynamic network. The
common restriction in the literature is that there are no confounding variables for
the estimation problem since its presence leads to biased estimates. A
confounding variable is an unmeasured variable (like the disturbances) that affects
both the input and output of the estimation problem. Take, for example, the
dynamic network in figure 1.4. For a MISO estimation problem with inputs
tw1, w3, w7u and output w2, if v1 and v2 are correlated, then v1 or v2 directly affect
both the input w1 and output w2. These correlated disturbances are direct
confounding variables, and, realistically, there will be a correlation in the noise
sources (disturbances) existing in a dynamic network. For example, when there
exists spatial correlation of disturbances in a local area of the network, like a
wind disturbance affecting multiple position measurements in a dynamic
network. For the same example network and MISO estimation problem, the
disturbance v6 affects both the input w1 and output w2 through a node w6 that is
not included in the MISO estimation problem. Such unmeasured variables that
affect through nodes in a network that are not included in the estimation
problem are indirect confounding variables. Indirect confounding variables are
common in the single module identification problem since we will only use local
node measurements for our estimation.

The advantage of the indirect methods is that they can handle correlated process
noise and confounding variables and achieve consistent estimates. However,
they have restrictive requirements on excitations and also lead to estimates with
high variance. On the contrary, the direct methods lead to consistent estimates
with asymptotically minimum variance. However, the direct method requires a
restrictive assumption on the absence of confounding variables. In [128], it is
shown that correlated noise networks can be consistently identified moving from
a MISO identification setup to a MIMO identification setup for a two-node
network. However, there is no theory on handling correlated noise networks and
confounding variables to identify a single module using direct methods.

1.6.2 Restrictive assumption on sensor noise and rank-reduced
process noise

Many local module identification methods have been addressed, assuming that
the data is measured with no noise (i.e., no sensor noise). However, in practice,
this might not be the case. For example, in the network in figure 1.9, due to the
presence of sensor noise, we do not measure the actual value of the node signal
at time instant t (i.e wiptq, i � t1, 2, 3u), but instead we measure
w̃iptq � wiptq � siptq where siptq is the sensor noise disturbing the measurement
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of internal variable wiptq. These noise sources do not enter the dynamic network
but disturb only the measurements. Therefore, we end up in an
errors-in-variables problem. The indirect methods handles the presence of sensor
noise and provides a consistent estimate. There are results considering only
dynamic networks with sensor noise and no process noise [38, 48, 49].
Nevertheless, being indirect methods, they have restrictive requirements on
excitations and lead to high variance estimates. Therefore the question here is:
Are there alternative local module identification methods that can provide
efficient estimates in the presence of sensor noise? This question remains open.

Figure 1.9: Example of a 3-node network with sensor noise and rank-reduced
noise. Signals si are the sensor noise and vi are the process noise signals or
disturbances. Node signals are wi and w̃i are the measurement of node signals
with sensor noise.

Another restrictive assumption for direct identification methods that may not be
applicable in practice is that a disturbance must enter at every node in the network
or the situations where few sources dominate the disturbances in the network.
This latter situation is depicted in figure 1.9 where the process noises on nodes 2
and 3 are the same (i.e. v2). Handling such dynamic networks with rank-reduce
noise has been addressed in [144]. In [144], the full network is identified using
the joint-direct method, which is a prediction error approach with a Constrained
Least Square (CLS) identification criterion. Having an established identification
method for full network dynamics, identifying a specific module in the case of
dynamic networks with rank-reduced noise is an unexplored area. The important
challenge here is the signal selection and formulating a predictor model for the
identification method that leads to unbiased estimates.

1.6.3 Limited focus towards quality measure for estimates other
than consistency

The local module identification methods focus on consistency aspects of the
estimation and the variance aspect has not been explored much. For consistent
estimators, the variance of an estimator is bounded by the Cramér-Rao Lower
Bound (CRLB). This means that no consistent estimators can achieve a consistent
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estimate with a variance smaller than the CRLB for the given model set and data
set. This can be equated to Maximum Likelihood properties (both consistency
and variance at the CRLB). However, developing single module identification
methods that can achieve estimates with asymptotic efficiency is still an open
question.

Some literature deals with reducing the variance aspect of indirect methods. In
[59], the SMPE method is introduced to identify a specific module in a dynamic
network with only sensor noise, reducing the estimates’ variance. Variance
analysis for networks with simple structures like cascaded modules are
presented in [138], [41], [42] and Single-Input-Multiple-output (SIMO) structures
in [39, 40].

Modern system identification methods focus on the aspect of achieving reduced
Mean-squared Error (MSE) estimates. MSE includes the aspect of both bias and
variance. So by allowing some bias in the estimates, it is possible to reduce the
variance and the MSE using Bayesian methods and regularization. We can also
deviate from consistency, an asymptotic property on data, to finite data
identification approaches. The indirect SMPE method is extended to a Bayesian
setting in [38], where regularized kernel-based methods are used to reduce the
MSE of the identified closed-loop transfers. These are then used to identify the
target module. The method considers only the presence of sensor noise and does
not consider the presence of process noise. Therefore local module identification
methods need to be developed incorporating different noise and identification
frameworks focusing on reduced MSE of the estimates.

1.6.4 Informative data conditions

The identification methods that offer consistent estimates require a condition that
the data should be informative. For example, consistency using the direct method
in [124] requires sufficient conditions to be satisfied like the power spectrum of
κptq to be positive definite i.e. Φκptq ¡ 0 for sufficient number of frequencies
ω, where κptq is a vector of internal node signals. The challenging part is that
the data mentioned here are the internal signals wptq in the dynamic network,
which the user cannot directly manipulate. Therefore, it becomes hard to ensure
data informativity and to design experiments that satisfy it. However, there is a
possibility to translate the spectrum condition on internal signals to a condition
on external signals that govern the dynamic network. This may require the use of
the topology of the network as well. In this way, informative experiments can be
designed for identification. Sufficient richness conditions on the external signals
for the consistent identification of the desired module need to be developed. This
is still an open problem in the field of system identification in dynamic networks.

1.6.5 Restrictive sensor location and actuation schemes

Both the direct methods like [29, 30] and the indirect methods like [54, 59] for
single module identification requires a path-based condition called parallel
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path/loop condition to be satisfied in order to obtain consistent estimates. This
condition warrants that every parallel path from the target module’s input to the
target module’s output and every loop through the output passes through a
measured node. For example, consider the network in figure 1.4 with G21 to be
identified. There are three parallel paths from input of the target module w1 to
the output of the target module w2 i.e. (w1 Ñ w6 Ñ w2), (w1 Ñ w6 Ñ w7 Ñ w2),
(w1 Ñ w6 Ñ w7 Ñ w3 Ñ w2) and two loops through output w2 i.e.
(w2 Ñ w3 Ñ w2), (w2 Ñ w1 Ñ w2). Therefore, the condition warrants w3, w6 to be
measured along with input w1 and ouput w2. This imposes restrictions on the set
of nodes to be measured for both methods. For indirect methods, it also imposes
restrictions on the set of excitation that needs to be present. However, it might
not be possible to measure certain nodes using sensors in practical situations, and
it might also be impossible to actuate certain nodes. In these cases, the restriction
inhibits our objective to identify the target module. Therefore, we need methods
that can relax the restrictions and increase flexibility in sensing and actuation.

1.6.6 Assumptions on an apriori known topology

The single module identification or the full network identification methods in the
available literature assume that the network topology is known apriori. Network
topology estimation is seen as a separate problem in the literature of dynamic
network identification. We might assume that we know the network’s topology
in some instances, and we would like to identify the modules. However, there
can be cases where the network’s topology is not known. Furthermore, for
identifying local modules, we might need only the information on the local
topology. Therefore, there are possibilities to develop methods that integrate the
topology estimation and estimation of modules into a single identification task.
Also, less attention has been paid to estimating the disturbance topology, i.e., the
(spatial) noise correlation structure and the noise rank in the disturbance signal’s
filtered white noise representation. Therefore, identifying modules in the
network with no prior information on noise topology is still a problem to be
explored.

1.6.7 Algorithms for large-scale networks

Dynamic network identification methods are developed to be applied in practice.
However, the focus is on identification methods to provide theoretical properties
like consistency but not on how these methods can be practically applied to
large-scale networks with scalable algorithms. Local module identification using
prediction error methods (PEM) requires that we have to formulate a multi-input
single-output (MISO) identification problem to identify a given module of
interest. This implies that to avoid possible bias in the parameter estimates, one
must identify all the modules constituting the MISO structure. It is bringing in
the problem of a possibly very high number of parameters to be estimated that
are of no interest to the user. In addition, it may be required to select the model
order of each of these additional modules using model selection criteria such as
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AIC, BIC, or cross-validation [77]. If the number of modules is high, one may
have to test a huge combination of candidate model orders, making model order
selection a computationally infeasible step (e.g., for five modules with FIR model
structure and orders from 1 to 5, one has to test 55 possible combinations).
Therefore it is necessary to avoid model order selection issues and reduce the
number of nuisance parameters in single module identification. This is a
non-trivial problem in a large-scale interconnected dynamic network since the
MISO structure could have many modules.

Also, the available prediction error methods involve solving non-convex
optimization problems that might run into local minima and achieve sub-optimal
results. Also, for solving large-scale network identification problems, we would
like to split the optimization problem and solve it in parallel to make it
computationally effective. Therefore, developing effective algorithms plays a
vital role and remains an open question.

1.7 Research Question

Many open problems related to identifying a module in a dynamic network have
been discussed in the previous section. This thesis aims to guide users who
wants to identify a module in a dynamic network and provide them the tools
needed to achieve his objective of accurately identifying a module embedded in a
dynamic network. In order to achieve this, the discussed open problems need to
be addressed. This ultimately raises the following research question:

How to effectively identify a module embedded in a dynamic network and
obtain accurate estimates?

Let us now examine the important keywords in the research question.

• Identify a module: In this thesis, the main objective deals with identifying
a single module embedded in a dynamic network. However, the full
network identification or part of the network identification can be treated
as an extension of the single module identification. We will touch upon that
as well in this thesis. However, the primary focus will be on identifying a
module in a dynamic network.

• Effectively: Effectiveness refers to flexibility in sensing and actuation, i.e.,
flexibility in choosing measured node signals and excitations. Also, it refers
to developing algorithms that are scalable and less complex for large-scale
dynamic networks.

• Accurate: Accuracy refers to the quality of the estimates. We focus on two
quantities for accuracy of estimates (1) asymptotic efficiency, i.e., consistent
estimates with variance at CRLB, and (2) reduced MSE.
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1.8 Subquestions and the approach to solve them

We will now address the answer to the research question by formulating several
sub-questions and answering them.

1.8.1 Handling correlated process noise and confounding
variables

This sub-problem represents the problem discussed in Section 1.6.1. As already
mentioned, correlated process noise is practically common in dynamic networks.
It can be seen as a direct confounding variable. When we identify a module in a
dynamic network with local measurements, we will also encounter indirect
confounding variables. Confounding variables in an estimation problem lead to
biased estimates and needs to be handled appropriately. Also, we would like to
go beyond consistency and achieve minimum variance estimates and
consistency, i.e., maximum likelihood properties. These lead to the following
question:

How to handle confounding variables and identify a module embedded in a
dynamic network and obtain maximum likelihood estimates?

The answer to this question is given in Chapter 3. Prediction error methods
using a direct approach can be related to Maximum likelihood properties [77].
However, we need to handle confounding variables by suitably selecting the
available node signals to incorporate in the identification experiment. For
example, if not appropriately addressed, correlated noise in the dynamic
network can lead to biased estimates. This can be avoided by adding nodes
affected by the correlated noise as predicted variables in the identification setup.
By doing so, we model the noise correlations and prevent bias in the estimates.
Other situations, including the so-called indirect confounding variables [30],
requires careful analysis, which is detailed in Chapter 3. We can end up in
multiple node selection schemes that guarantee the objective. Therefore, a
generally applicable theory is provided that is independent of the particular
node selection scheme selected, and we call it as Local Direct Method (LDM).

• This chapter is based on the following publication:

—— K.R. Ramaswamy, P.M.J. Van den Hof (2021). A local direct method
for module identification in dynamic networks with correlated noise.
IEEE Transactions on Automatic Control, Vol. 66, no. 11, pp. 5237-5252,
DOI:10.1109/TAC.2020.3035634.

whose preliminary work has been published in:

—— P.M.J. Van den Hof, K.R. Ramaswamy, A.G. Dankers, G. Bottegal (2019).
Local module identification in dynamic networks with correlated noise:
the full input case. Proc. 58th IEEE Conf. Decision and Control, Nice,
France, pp. 5494-5499, DOI: 10.1109/CDC40024.2019.9029448.
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1.8.2 An alternative to direct and indirect methods

This section relates to the problem discussed in Section 1.6.5. The objective is to
consistently identify a module in a dynamic network. There are already available
direct and indirect methods that can solve this objective. However, both the
available direct and indirect identification methods require restrictive conditions
(i.e., parallel path/loop condition) on certain nodes to be measured and certain
nodes to be excited. However, it might not be possible to measure certain nodes
using sensors in practical situations, and it might also be impossible to actuate
certain nodes. This may raise to situations when both direct and indirect
methods cannot be used. Therefore we need a method that can provide flexibility
in sensing and actuation, and solve the objective of identification when direct
and indirect methods do not work. This raises the following question:

How to increase the flexibility in selecting the measured node and excitation
signals for consistent target module identification in a dynamic network?

The answer to this question is given in Chapter 4. Philosophically, the approach
for the solution to the problem is simple. The indirect method uses only known
external excitation signals as inputs which increase its requirement on actuations.
However, it allows the flexibility to post-process the identified modules to extract
the target module. On the other hand, the direct method uses both the known
external signals and node signals as inputs which alleviates the requirement on
actuation by using disturbances as excitation. However, it does not have a
post-processing step. Therefore, we combine the elements of both direct and
indirect methods. In this sense, we develop an identification method that can use
both the external excitation signals and node signals as inputs and allow the
post-processing of identified modules. We call this method the Generalized
Method.

• This chapter is based on the following publication:

—— K.R. Ramaswamy, P.M.J. Van den Hof, A.G. Dankers (2019).
Generalized sensing and actuation schemes for local module
identification in dynamic networks. Proc. 58th IEEE Conf. Decision and
Control, Nice, France, pp. 5519-5524, DOI:
10.1109/CDC40024.2019.9029338.

1.8.3 Data-informativity conditions

This section relates to the problem discussed in Section 1.6.4. The experimenter
would like to easily ensure data-informativity for any identification method and
design experiments for identification. Therefore, the objective is to translate the
data-informativity spectrum condition on internal signals that the user cannot
manipulate to a condition on external signals. This raises the following question:
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How to translate the data-informativity condition in local module identification
methods to an experimenter-friendly condition?

The answer to this question is given in Chapter 5. This problem is approached by
using the topological aspects of the dynamic network and coming up with
generic (i.e., that do not depend on the numerical value of the module)
path-based conditions that depend on paths from external signals to the internal
node signals. In this way, if we know the topology of the dynamic network, we
can verify and ensure data-informativity for a particular identification setup by
checking the graph of the network. Also, this paves the way to a synthesis
problem of allocating excitation to guarantee data-informativity using graphical
conditions.

• This chapter is based on the following publication:

—— P.M.J. Van den Hof and K.R. Ramaswamy (2020). Path-based
data-informativity conditions for single module identification in
dynamic networks. Proc. 59th IEEE Conf. Decision and Control, Jeju
Island, Republic of Korea, pp. 4354-4359, DOI:
10.1109/CDC42340.2020.9304263.

1.8.4 Algorithm for consistent identification of modules without
prior disturbance topology and rank information

This section relates to the problem discussed in Section 1.6.7 and 1.6.6 on the
need for algorithms that can be practically applicable to large-scale networks.
Identification methods for dynamic networks typically require prior knowledge
of the network and disturbance topology. They often rely on solving poorly
scalable non-convex optimization problems. While methods for estimating
network topology are available in the literature, and sometimes the network
topology is already known, less attention has been paid to estimating the
disturbance topology and the noise rank. Therefore, we need to integrate the
disturbance topology estimation in the network identification. This raises the
following question:

How to effectively identify modules in a dynamic network with unknown
disturbance topology and rank information, and obtain consistent estimates?

The answer to this question is given in Chapter 6. To answer this, we extend
the multi-step Sequential Linear Regression [31] and Weighted Null Space Fitting
methods [51] to deal with reduced rank noise, and use these methods to estimate
the disturbance topology and the network dynamics. As a result, we provide
a multi-step least squares algorithm with parallel computation capabilities that
rely only on explicit analytical solutions. Thereby no non-convex optimizations
are involved. Consequently, we consistently estimate dynamic networks of Box-
Jenkins model structure while keeping the computational burden low.
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• This chapter is based on the following publication:

—— S.J.M. Fonken, K.R. Ramaswamy, P.M.J. Van den Hof (2022). A scalable
multi-step least squares method for network identification with
unknown disturbance topology. To appear in Automatica, July 2022.
ArXiv:2106.07548.

1.8.5 Regularized kernel-based methods for reduced MSE

First, we look into the problem discussed in Section 1.6.7. In order to identify a
module, we end up in a MISO/MIMO identification problem that is solved using
PEM. This leads to a large number of parameters to be estimated, which
increases variance and involves a model order selection step that is complex for
large networks. This raises the following question:

How to effectively identify a module in a large dynamic network and obtain
estimates with reduced MSE?

This question is approached using regularized nonparametric kernel-based
methods (see [93] for a survey on this subject). Keeping a parametric model for
the module of interest, we can model the impulse response of the remaining
modules in the MISO/MIMO structure as zero mean Gaussian processes with
prior covariance matrix (kernel). By using this Bayesian framework, it is possible
to incorporate prior knowledge. For example, by using the first-order stable
spline kernel [21, 92] we can encode the stability and smoothness of an impulse
response. The kernels are dependent on hyperparameters. By tuning the
hyperparameters, it is possible to reduce the MSE of the estimates through
bias-variance trade off [10]. Therefore, we need to tune the hyperparameters such
that the MSE is reduced. We find the kernel hyperparameters and the target
module parameters using the Empirical Bayes (EB) approach [80]. Therefore, we
deviate from PEM that requires an enormous amount of data to achieve accurate
results. We follow a Bayesian approach incorporating regularization to achieve
reduced MSE that can perform well with limited data.

The answer to the question for uncorrelated noise networks is given in Chapter 7.

• This chapter is based on the following publication:

—— K.R. Ramaswamy, G. Bottegal and P.M.J. Van den Hof (2021). Learning
linear modules in a dynamic network using regularized kernel-based
methods. Automatica, Vol. 129, Article 109591, July 2021, DOI:
10.1016/j.automatica.2021.109591.

whose preliminary work has been published in:

—— K.R. Ramaswamy, G. Bottegal and P.M.J. Van den Hof (2018). Local
module identification in dynamic networks using regularized kernel-
based methods. Proc. 57th IEEE Conf. Decision and Control, Miami Beach,
FL, pp. 4713-4718, DOI: 10.1109/CDC.2018.8619436.
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The answer to the question for correlated noise networks which requires handling
a MIMO identification framework is given in Chapter 8.

• This chapter is based on the following publication:

—— V.C. Rajagopal, K.R. Ramaswamy and P.M.J. Van den Hof (2020). A
regularized kernel-based method for learning a module in a dynamic
network with correlated noise. 59th IEEE Conf. Decision and Control,
Jeju Island, Republic of Korea, pp. 4348-4353, DOI:
10.1109/CDC42340.2020.9303879.

1.8.6 Integration of local topology estimation

This sub-problem represents the problem discussed in Section 1.6.6. In order to
select an appropriate predictor model for single module identification, one
typically needs prior knowledge on the topology (interconnection structure) of
the dynamic network and the correlation structure of the process disturbances.
The objective is to integrate the estimation of this prior information into the
identification algorithm and develop an entirely data-driven approach for
learning the dynamics of a single module. Since the objective is to identify a
single module, we are looking for local topology here. This raises the following
question:

How to effectively identify a module in a large dynamic network with
unknown prior topology?

The answer to the question is given in Chapter 9. We first find the nodes that do
not affect the output of the target module and eliminate these nodes in the
network to estimate the local topology. Next, the local topology is used to build
the appropriate input/output setting for a predictor model in the local direct
method under correlated process noise. Then the algorithm developed in
Chapter 8 can be used to solve the identification problem. This leads to an
identification algorithm with attractive statistical properties that is scalable to
handle larger-scale networks too.

• This chapter is based on the following publication:

—— V.C. Rajagopal, K.R. Ramaswamy and P.M.J. Van den Hof (2021).
Learning local modules in dynamic networks without prior topology
information. Proc. 60th IEEE Conf. Decision and Control, December 13-15,
2021, Austin, TX, USA, pp. 840-845.

1.8.7 Handling missing node observations

In order to identify modules in a dynamic network using different identification
methods, it is important to have measurements of certain nodes available. For
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example, we need node measurements to satisfy the parallel path/loop condition
and handle confounding variables. We need these measurements to have reduced
bias in the estimated target module. However, there may be situations where we
cannot measure certain nodes. This raises the following question:

How to identify modules under missing node observations and obtain reduced
MSE estimates?

The answer to the question is given in Chapter 10. Here, the objective is to
identify a parametric model of the target module. We approach the problem by
using a Bayesian approach and data augmentation strategy. We aim to
reconstruct the missing node measurements and increase the accuracy of the
estimated target module. To this end, we use regularized kernel-based methods
coupled with approximate inference methods [10].

• This chapter is based on the following publication that is to be submitted:

—— K.R. Ramaswamy, G. Bottegal and P.M.J. Van den Hof (2022). Learning
linear modules in a dynamic network with missing node observations.
To be Submitted to Automatica.

1.9 Overview of contents

1.9.1 Chapter 2

A detailed definition of the type of dynamic network model class is provided.
This thesis uses the classical PEM as well as Bayesian approaches. So, we provide
details of the state-of-the-art PEM for dynamic network identification and the
details about the Bayesian learning techniques.

1.9.2 Other chapters

The overview of other chapters has already been discussed in the previous section.

1.9.3 The Guide

This thesis aims to provide a guide to identify a module in a dynamic network.
The contributions of each chapter in this thesis are the pieces of the puzzle in
order to answer the research question of how to effectively estimate a module in
a dynamic network and obtain accurate estimates. Assembling the puzzle pieces
(i.e. the contributions of each chapter) leads to the decision flow-chart in figure
1.10, which guides the user to effectively learn a module in a dynamic network.
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Figure 1.10: A guide for learning modules in a dynamic network. The number in
red specifies the chapter of this thesis that contributes to the decision chart.
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1.10 Video presentations with clickable link

ECC 2021 - Tutorial Session on Data-Driven Modeling in Dynamic Networks

IFAC 2020 [129, 130] - Single module identification - current status

CDC 2020 [127] - Path-based data informativity conditions

CDC 2020 [99] - Regularized kernel-based method for learning a module

CDC 2021 [100] - Learning local modules without prior topology information

1.11 Other publications

The other publications that are not included in this thesis:

—— K.R. Ramaswamy, P.Z. Csurcsia, J. Schoukens and P.M.J. Van den Hof
(2021). A frequency domain approach for local module identification in
dynamic networks. To appear in Automatica, November 2022. ArXiv preprint
ArXiv:2105.10901.

—— P.M.J. Van den Hof and K.R. Ramaswamy (2021). Learning local modules in
dynamic networks. In Proceedings of the 3rd Conference on Learning for
Dynamics and Control, volume 144 of Proceedings of Machine Learning Research,
pages 176–188. PMLR, ETH Zurich, Switzerland.

—— P.M.J. Van den Hof and K.R. Ramaswamy (2020). Single module
identification in dynamic networks - the current status. Extended abstract,
Prepr. 21st IFAC World Congress, Berlin, Germany.

—— K.R. Ramaswamy, O. Leeuwenburgh, R.M. Fonseca, M.M. Siraj and P.M.J.
Van den Hof. Improved sampling strategies for ensemble-based
optimization. Computational Geosciences, Vol. 24, May 2020, DOI:
10.1007/s10596-019-09914-8.

https://www.dropbox.com/s/ku1l2cfux1rcc25/ECC_tutorial_Karthik_PP.mp4?dl=0
http://publications.pvandenhof.nl/Videos/VandenHof&Ramaswamy_IFAC2020.mp4
http://publications.pvandenhof.nl/Videos/Vandenhof_CDC2020.mp4
http://publications.pvandenhof.nl/Videos/Venkat&Ramaswamy&Hof_CDC2020.mp4
http://publications.pvandenhof.nl/Videos/Rajagopa&etal_CDC2021.mp4


2 CHAPTER

Background

This chapter provides the necessary background for the research in
this thesis. First, we define the setup of the linear dynamic network

that we consider in this thesis in detail. This thesis deals with learning
a module in a dynamic network from data. To achieve this, we follow
two different approaches. One involves a classical system identification
approach, namely the prediction error identification approach [77].
We provide state-of-the-art system identification approaches using the
prediction error method for local module identification. The other
direction of work of this thesis involves using the Bayesian kernel-based
approach. To this end, we introduce the Bayesian estimation and tools
from machine learning literature used in the second part of this thesis. At
the end of this chapter, we lay the solid foundation for the remainder of
this thesis.

2.1 Dynamic network setup

Dynamic networks are typically thought of as a set of signals (the node signals)
interconnected through linear dynamic systems (the modules), possibly driven
by known external excitations (the reference signals) and unknown external
excitations (the disturbances). The dynamic network setup that we consider in
this thesis has its origin from the Dynamic Structure Functions [57]. The basic
setting of Dynamic Structure Functions that was introduced in [56], was
generalized to a stochastic estimation and identification setting in [124], and has
been adopted by several different authors as the setup of dynamic networks. We
follow this setup in our thesis. In this setting, a dynamic network is built up out
of L scalar internal variables or nodes wj , j P L, and K external variables rk, k P R.
Here, L and R are sets with cardinality L and K respectively, where
L � t1, . . . , Lu andR � t1, . . .Ku. Each internal variable is described as:

27
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wjptq �
Ļ

l�1

l�j

G0
jlpqqwlptq � ujptq � vjptq (2.1)

where q�1 is the delay operator, i.e. q�1wjptq � wjpt� 1q;

• G0
jl are proper rational transfer functions, referred to as modules;

• There are no self-loops in the network, i.e. nodes are not directly connected
to themselves G0

jj � 0;

• uj is an input signal, ujptq �
°K
k�1R

0
jkpqqrkptq with rk being the known

external variables that can directly be manipulated by the user and R0
jkpqq is

a known stable proper rational transfer function. It can be zero. We have
the vector u � ru1 � � �uLsT .

• vj is unmeasured process noise, where the vector process v � rv1 � � � vLsT is
modelled as a stationary stochastic process with rational spectral density
Φvpωq, such that there exists a white noise process e :� re1 � � � epsT , p ¤ L,
with covariance matrix Λ0 ¡ 0 such that vptq � H0pqqeptq, where H0pqq is a
rational transfer function matrix. The noise model will be further specified
in detail in Section 2.1.1.

Combining the L node signals we arrive at the full network expression
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which results in the matrix equation of the dynamic network:

w � G0pqqw �R0pqqr �H0pqqe, (2.2)

w � pI �G0q�1pR0r �H0eq, (2.3)

where by construction the matrix G is hollow, i.e. it has diagonal entries 0, while
it encodes the topology of the network, i.e. G0

j`pqq � 0 if and only if ` P Nj
where Nj is the set of indices of node signals with direct causal connection to
node wj in the network. Also, R0

j`pqq � 0 if and only if ` P Rj , where Rj is
the set of indices of external variables with direct causal connection to node wj .
A dynamic network can be graphically represented. An example of the above-
defined dynamic network setup is provided in figure 2.1.

We make the following assumption for the dynamic network considered in this
thesis.
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Figure 2.1: Example dynamic network with u6 � r6 and the green module G21

being the target module for identification.

Assumption 2.1 The dynamic network is stable, i.e. pI � G0q�1 consists
only of stable transfer functions (transfer functions with poles inside the
unit circle). Also, the dynamic network is well-posed, i.e., all principal
minors of limzÑ8pI �G0pzqq are non-zero (see [26] for details).

2.1.1 The noise model

In this section, we will further specify the noise model vptq � H0pqqeptq in detail.
In order to evaluate the spectral contents of signals a definition of the power
spectral density is required. The cross power spectral density of vector signals
aptq and bptq is defined as1

Φabpωq :� FtEraptqbJpt� τqsu,

where F is the discrete-time Fourier transform. The auto power spectral density
of signal aptq is defined as

Φapωq :� FtEraptqaJpt� τqsu.

We denote the spectrum of the disturbance v as Φvpωq. When the noise spectrum
Φvpωq is full rank, it is called full rank spectrum. In this case, Φvpωq need not be
necessarily diagonal, i.e., with uncorrelated noise components. However, in cases
where the node signals can be noise-free or when the disturbances are related to
each other through a linear filter, the noise spectrum can be singular. This is called
singular or rank-reduced spectrum. For both these cases of the noise spectrum, we
can represent the noise model using spectral factorization [150]. We will do that
now using the result from [143] concerning unique representations of the reduced
rank spectrum; full rank spectrum can be seen as a special case of the result.

1Ē refers to limNÑ8
1
N

°N
t�1 E, and E the expected value operator.
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Lemma 2.1 (from [144]) Consider an L-dimensional disturbance process v
with spectral rank p. Also, consider that the node signals and in turn the
disturbance signals in v are reordered in such a way that v � �

vJa vJb
�J

where va is a full-rank process with rank p. Then the following unique
representations result:�

va
vb

�
� H0e � H̆0ĕ with

H0 �
�
H0
a

H0
b

�
, H̆0 �

�
H0
a 0

H0
b � Γ0 I

�
, ĕ �

�
ĕa
ĕb

�
�
�
e

Γ0e

�
and Γ0 � limzÑ8H

0
b pzq

(2.4)

such that

• H0
a P Rp�ppqq is a monic full rank rational transfer function matrix;

• H0
b P RpL�pq�ppqq is a stable proper rational transfer function;

• H0 P RL�ppqq is stable and has a stable left inverse H:, that satisfies
H:H � I P Rp�p;

• e and ĕ are white noise signals with dimensions p and L respectively;

• The covariance matrix of ĕ is given by,

Λ̆0 �
�
I
Γ0

�
Λ0

�
I

Γ0

�J
�

�
Λ0 Λ0Γ0J

Γ0Λ0 Γ0Λ0Γ0J

�
, (2.5)

where covpeq � Λ0 P Rp�p has rank p,

• If additionally H0
a is minimum phase then H̆0 P RL�Lpqq is a square

monic rational transfer function that is stable and minimum-phase.a 2

aIt has recently been pointed out in [18] that this excludes the situation where the
(deterministic) mapping from va to vb is unstable.

As a consequence of above lemma, for the rank-reduced noise or singular noise, p  
L, we have two different representations for the noise model. That is, we can write

v � H0e � H̆0ĕ.

In case of full-rank noise, p � L, and both the representations are the same (since vb
will be void).
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2.2 Basic graph concepts

A dynamic network can be represented as a directed graph where the vertices
correspond to the node signals and the links/edges constitute the modules. As
already defined, Nj is the set of node indices k such that G0

jk � 0, i.e., the node
signals in Nj are called the w-in-neighbors of the node signal wj . It is important
to note that, in many works like [54, 84], these are mentioned with notation N�

j

to differentiate between the set of w-out neighbors which are represented with set
N�
j . For example, wj is a w-out neighbor of nodes in wk, k P Nj . In the example

network in Figure 2.1, w4 is a w-in-neighbor of w2 and w3 is a w-out-neighbor of
w5.

Other graphical concepts that will be frequently used in this thesis are paths and
loops. A path from a node (saywk1) to a node (saywkn) in the network is a sequence
of directed edges that share at least a node, starting from node wk1 and ending at
node wkn, such that the edges are oriented in the same direction and no nodes
are repeated. In graph theory, this is analogous to a dipath or chain [36]. A loop
is a path that starts and ends at the same node i.e. a path with wkn � wk1. For
example, in the example network in Figure 2.1, there is a path from w6 to w2 (i.e.
w6 Ñ w5 Ñ w1 Ñ w2) and there is a loop through w1 (i.e., w1 Ñ w2 Ñ w1).
Similarly, there is no path from w1 to w5 since the directed edges are not in the
same orientation (i.e., w1 Ñ w3 Ð w5).

A direct path (not to be confused with directed path) from wk1 to wk2 is a path
from wk1 to wk2 with no other nodes in the path; for example the path w6 Ñ w5

in Figure 2.1. A simultaneous path from wk1 to wk2 and wk3 indicates that there
exists a path from wk1 to wk2 as well as from wk1 to wk3. For example, the network
in Figure 2.1 has a simultaneous path from w1 to w2 and w3. Another important
concept that we will be using is the parallel path. A parallel path from wi to wj is a
path fromwi towj , excluding the direct path fromwi towj . The graph can include
the signals in e and r as nodes as well. For example, in the example network in
Figure 2.1, there exists a path from v6 to w5 (i.e. v6 Ñ w6 Ñ w5) and a path from
r6 to w3 (i.e. r6 Ñ w6 Ñ w5 Ñ w3).

There are a few more graph concepts used in this thesis. We will introduce it
during this thesis.

2.3 Immersion

Immersion is the operation on a dynamic network that involves the removal of
a set of nodes or internal variables in a dynamic network and representing the
dynamic network with the remaining node signals [29]. In [29], this operation has
been used to remove the unmeasured nodes in the network and form an immersed
network. This immersed network has been used to find the dynamic relationships
between the measured nodes. Immersion is a graph-based algorithm based on
the lifting technique. The lifting technique works as follows. Consider a path
w1 Ñ w2 Ñ w3 and modules between the paths as in Figure 2.2 (left). If we are
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removing the nodew2, each path that passes throughw2 is lifted and the dynamics
G0

32 is removed and replaced by the dynamics G0
32G

0
21 between the path w1 Ñ w2

(see Figure 2.2 (right)). Therefore, there is no longer a path that passes through w2

and it is important to note that the behavior of the remaining nodes (w1 and w2)
remains unchanged. We will now consider an example.

Figure 2.2: Illustration of lifting a path.

Example 2.1 Consider a dynamic network as represented in Figure 2.3 with
all noises in v uncorrelated with each other. Here w4 and w5 need to be
immersed (or removed). First we will focus on node w4. The path from w3

to w2 through w4 and from external signal v4 need to be lifted. When lifting
technique is applied to the path w3 Ñ w4 Ñ w2, we get a module G23 �
G24G43 between w3 and w2, see Figure 2.4 (left). The termG23 is added since
there was an already existing dynamics G23 in the path w3 Ñ w2. Similarly,
we apply the lifting technique for the path from external signal v4 through
w4. As a result we get ṽ2 � v2�G24v4. Now we focus on removing node w5.
Lifting the path w2 Ñ w5 Ñ w2 will lead to a self-loop around node w2, i.e.,
node w2 is an input to itself. This is not allowed according to our network
setup defined in Section 2.1. If we write the equation for node w2 based on
the network in Figure 2.4 (left), we have

w2 � pG23 �G24G43qw3 �G21w1 �G25w5 � r2 � ṽ2, (2.6)

where w5 � G52w2 � v5. The self-loop can be removed to obtain a network
description that matches our definition, by moving the w2 terms to the left-
hand side, and normalizing by multiplication of the equation with S � p1�
G25G52q�1. This will lead to the immersed network in Figure 2.4 (right).

Figure 2.3: Example network with u1 � r1, u2 � r2 and u3 � r3.
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Figure 2.4: (Left) Immersed network of network in Figure 2.3 where the node
w4 has been immersed, where ṽ2 � pv2 �G24v4q. (Right) Immersed network of
network in Figure 2.3 where the nodes w4 and w5 have been immersed, where
S � p1�G25G52q�1.

2.4 The single module identification problem

The single module identification problem is the problem of identifying one
particular module G0

jipqq on the basis of measured time-series of a subset of
variables in w, and possibly r. This is illustrated in the network depicted in
Figure 2.1.

It may be clear that simply measuring the input and output of the target module
and estimating a model based on these signals will generally not lead to accurate
results because of the signal correlations that are induced by the remaining part
of the network. For example, in the situation of Figure 2.1, with G21 being the
target module for estimation, estimating the dynamics on the basis of input w1

and output w2 only will provide an estimated model that includes the dynamics
of the “parallel path” G24G43G31. On the other hand, performing a full network
identification to identify a single module requires expensive experiments and
measurements of many nodes to identify all the modules in the network.
Therefore, we need to explore single module identification methods that can
learn the dynamics of a module using local measurements and excitations.

In the next section we will make a general classification of the available state-of-
the-art single module identification approaches. The classical closed-loop system
identification prediction error methods [77] are extended to a dynamic network
setting in these approaches. For more details on identification with prediction
error methods, we refer to [77].

2.5 Main approaches

We can distinguish the PEM approaches for addressing the single module
identification problem in dynamic networks broadly into two categories, namely
the direct and the indirect method. First, we will provide the background for the
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two categories and then paint an overall picture of these two main approaches
for single module identification. The target module is indicated by G0

ji i.e. the
module between wi and wj .

2.5.1 The MISO direct method

The MISO direct method is an extension of the direct method for closed-loop
identification [77]. The objective is to estimate a particular transfer function
embedded in the network. This transfer function is denoted by Gji. This method
is a prediction error method based on the concept of prediction, i.e., a good
model of the node wjptq should predict wjptq based on the available present or
past signals. To this end, the method uses the one-step-ahead predictor2

ŵjpt|t� 1q :� Ētwjptq | wt�1
j , wtDj , ujptqu ([77]) and build a predictor model

ŵjpt|t� 1q � p1�Hjpqq�1qwjptq �Hjpqq�1rp
¸
kPDj

Gjkpqqwkptq � ujptqs. (2.7)

with predicted output wj , and predictor inputs uj , wk where k P Dj . The set Dj
is left unspecified at the moment and will be specified later. The signals in the
network that are not in the predictor model are discarded from the estimation.
Here, ŵjpt|t� 1q is a part of wjptq that can be predicted using the present and past
values of signals, and the part that cannot be predicted is the innovation ejptq, i.e.,
wjptq � ŵjpt|t� 1q� ejptq with the innovation being uncorrelated to the predictor
ŵjpt|t� 1q.
As already defined Nj is the set of node indices k such that G0

jk � 0, i.e. the node
signals in Nj are the w-in-neighbors of the node signal wj . Let Dj denote the set of
indices of the internal variables that are chosen as predictor inputs. It seems most
obvious to have Dj � Nj , but this is not necessary, as will be shown later in the
next section. Let Vj denote the set of node indices k such that vk has a path to wj .
Let Zj denote the set of indices not in tju Y Dj , i.e. Zj � t1, . . . , Luzttju Y Dju,
reflecting the node signals that are discarded in the prediction/identification. Let
wD denote the vector rwk1

� � � wknsT , where tk1, . . . , knu � Dj . Let uD denote the
vector ruk1 � � � uknsT , where tk1, . . . , knu � Dj . The vectors wZ , vD, vZ and uZ are
defined analogously. The ordering of the elements of wD, vD, and uD is not
important, as long as it is the same for all vectors. The transfer function matrix
between wD and wj is denoted GjD. The other transfer function matrices are
defined analogously.

To illustrate the notation, consider the network sketched in Figure 2.5, and let
module G0

21 be the target module for identification. Then j � 2, i � 1; Nj � t1, 4u
i.e. indicates the indices of w-in neighbors of wj � w2. If we choose the set of
predictor inputs as Dj � Nj , then the set of remaining (nonmeasured) signals,
becomes Zj � t3, 5, 6u.

2Ē refers to limNÑ8
1
N

°N
t�1 E, and w`

j and w`
Dj refer to signal samples wjpτq and wkpτq, k P Dj ,

respectively, for all τ ¤ `.
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Figure 2.5: Example network with target module G0
21 (in green).

By this notation, the network equation (2.2) is rewritten as:�
�wjwD

wZ

�
� �

�
� 0 GjD GjZ
GDj GDD GDZ

GZj GZD GZZ

�
�
�
�wjwD

wZ

�
��

�
�vjvD
vZ

�
��

�
�ujuD
uZ

�
� , (2.8)

where GDD and GZZ have zeros on the diagonal.

For identification of module Gji we select Dj such that i P Dj , and subsequently
estimate a multiple-input single-output (MISO) model for the transfer functions
in GjD, by considering the one-step-ahead predictor
ŵjpt|t � 1; θq :� Ētwjptq | wt�1

j , wtDj ; θu ([77]) and the resulting prediction error
εjpt, θq � wjptq � ŵjpt|t� 1; θq, leading to:

εjpt, θq � Hjpq, θq�1rpwjptq �
¸
kPDj

Gjkpq, θqwkptq � ujptqs. (2.9)

The signal ujptq in (2.9) is known and are not involved in the predictor model
through parameterized components. The parameterized transfer functions
Gjkpq, θq, k P Dj and Hjpq, θq are estimated by minimizing the sum of squared
(prediction) errors (i.e. the identification criterion):

θ̂N � arg min
1

N

N�1̧

t�0

ε2
j pt, θq, (2.10)

where N is the length of the data set. Under mild assumptions3, it leads to
consistent estimates, i.e.

θ̂N Ñ θ0 with probability 1 as N Ñ8,

provided additional conditions like data informativity are satisfied. Here, θ0

3We will assume that the standard regularity conditions on the data are satisfied that are required
for convergence results of the prediction error identification method. See [77] page 249; this includes
the property that eptq has bounded moments of order higher than 4.
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represents the true parameters that generated the data. We refer to this
identification method as the MISO direct method that was introduced in [124]. In
the MISO direct method considered in [124], the predictor inputs Dj is chosen to
be Nj . It is shown that the method leads to consistent estimates under the
following conditions:

Proposition 2.1 (from [124]) The estimates (2.10) are consistent under the
following conditions:

1. The noise vj is uncorrelated to all other noise signals that have a path
to wj i.e. all noise signals vk, k P Vj ;

2. The noise vj is uncorrelated to all excitation signals in u;

3. Every loop through wj in the network and in its parameterized model
has a delay (delay in loop condition);

4. The system is in the model set (S P M) i.e. there exists a θ0 such that
Gjkpq, θ0q � G0

jkpqq and Hjpq, θ0q � H0
j pqq;

5. The spectral density of κptq � �
wDptqJ ejptq

�J, denoted as Φκptqpωq is
positive definite for a sufficiently high number of frequencies ω (data-
informativity condition).

In [29], it is shown that the number of node signals that needs to be included
in wD can be further reduced by selecting Dj such that upon removal (immersion
[29]) of the remaining unmeasured nodes (i.e. the nodes that are discarded in the
identification/predictor model) from the network, while keeping the remaining
node signals invariant, the target module remains the same. This is achieved if
the parallel path and loop condition is satisfied ([29]):

Condition 2.1 (Parallel path/loop condition) In the graph of the dynamic
network, every parallel path from the input of the target module wi to the
output of the target module wj and every loop through wj passes through a
node that is included in wDj , along with i P Dj .

The above condition is a target module invarinace condition. Therefore, it is
sufficient to select Dj � Nj and (possibly) few other node signals that satisfies
the condition as predictor inputs for the MISO direct method. For example,
consider the network in figure 2.6 with the target module G21. There are three
parallel paths from input of the target module to the output of the target module
i.e. (w1 Ñ w6 Ñ w2), (w1 Ñ w6 Ñ w7 Ñ w2), (w1 Ñ w6 Ñ w7 Ñ w3 Ñ w2) and
two loops through output w2 i.e. (w2 Ñ w3 Ñ w2), (w2 Ñ w1 Ñ w2). Therefore,
selecting wD � tw1, w3, w6u is sufficient for the MISO direct method instead of
selecting all the w-in neighbors of the output of the target module (i.e. w7 can be
excluded).
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Figure 2.6: Example network in [125] with target module G21 (in green). There
are three parallel paths i.e. (w1 Ñ w6 Ñ w2), (w1 Ñ w6 Ñ w7 Ñ w2), (w1 Ñ
w6 Ñ w7 Ñ w3 Ñ w2) and two loops through wj � w2 i.e. (w2 Ñ w3 Ñ w2),
(w2 Ñ w1 Ñ w2).

However one of the possible consequences of removing an w-in-neighbour of wj
from wD is that the disturbance signals that are acting on wj and those acting on
wD can get correlated. The same situation occurs if the disturbance signals in v
are correlated, i.e., the spectral density Φvpωq is non-diagonal. In those situations,
we have to deal with the presence of confounding variables4. When not properly
accounted for, confounding variables typically destroy the consistency properties
of the direct method for estimating G0

ji, as they introduce correlation between the
measured node signals wi and wj that is not induced by the module dynamics
G0
ji. Phrased in identification-terms, confounding variables are correlated

disturbances. In practical situations, confounding variables are highly
unavoidable since not all nodes can be measured and noises can be correlated as
well.

Remark 2.1 In the MISO direct method, both [124] and [29], consistency
results are shown by making a strong assumption that there are no
confounding variables.

2.5.2 The indirect method

The network model (2.3) can be rewritten as w � T 0r � v̄ where T 0 � pI �
G0q�1R0 and v̄ � pI � G0q�1H0e. This description of the dynamic network is
called the input-output model of the dynamic network. Let us now explain the
general approach of the indirect method on a high level. A consistent estimate
T̂ pqq of T 0pqq can be obtained using an open loop MIMO identification method as
in (2.11). In order to obtain a consistent estimate Ĝ of G0 from the estimated T̂ , a

4A confounding variable is an unmeasured variable that affects both the input and output of an
estimation problem. We will establish a more formal definition in the upcoming chapter.
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post-processing step is necessary. On the basis of T̂ pqq, a consistent estimate Ĝ of
G0 can be obtained by solving pI� ĜqT̂ pqq � R0. By identifiying only a submatrix
of T and solving only a subset of the above equations, a target module embedded
in the dynamic network can be identified, see [54].

The indirect method is based on selecting a particular set of predictor input signals
rk, k P D, and a set of predicted outputs w`, ` P Y , that are used in a predictor
model, leading to the following prediction error:

εpt, θq � H̄pq, θq�1
�
wYptq � T̄ pq, θqrD

�
(2.11)

The matrix T̄ pq, θq refers to the parameterized transfer function matrix model of a
submatrix of the network transfer matrix T 0, which maps external signals r into
internal node signals w, and H̄pq, θq is the noise model. T̄ pq, θq is estimated using
an open loop MIMO identification method by minimizing a scalar cost function
over θ, as e.g., the quadratic cost function

θ̂N :� arg min
θ

1

N

Ņ

t�1

εT pt, θqPεpt, θq (2.12)

with P a positive definite weighting matrix. This will lead to consistent estimates
in (2.12) under informative data conditions. However, in order to extract the
dynamics of the target module G0

ji from the estimates of T̄ pq, θq, we need to
appropriately choose the predictor model. This requirement will lead to a

Figure 2.7: Predictor model for the indirect method.

predictor model setup as depicted in Figure 2.7. The output wY of the predictor
model is selected to be composed of wj and all node signals wN that are
in-neighbours of wj , i.e. N � Nj . Therefore T̄ in (2.11) is decomposed as

T̄ �
�
T̄jrD
T̄NrD

�
. (2.13)

If a consistent estimate T̂ of T̄ is made, then a consistent estimate of G0
jN is
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obtained according to
ĜjN � T̂jrD T̂

:
NrD (2.14)

where T̂ :NrD is the right pseudo inverse of T̂NrD .

The fact that the right inverse of T̂NrD needs to exist, requires the presence of a
sufficient number of external excitation signals r in the network, i.e.
dimprDq ¥ dimpwN q. So we need at least as many external excitation signals r to
be present as there are in-neighbours of wj . The r-signals can be added to the
nodes in wN directly (as suggested in [54]), or can also be added elsewhere in the
network, as in Figure 2.7. For the indirect method the requirements for
data-informativity are rather straighforward: a sufficient condition for
data-informativity is that ΦrD pωq ¡ 0 for almost all ω, with ΦrD pωq the spectral
density of rD.

The indirect method has been studied in different settings. In [54], a setting with
a predictor model having wj and w-out neighbors of wj in wY is also provided.
Related indirect methods, such as the two-stage method and the Instrumental
Variable (IV) method have been presented in [124] and [27] respectively. All these
methods depend on the external r signals and hence might prove expensive due
to the requirement of more actuators and costly experiments. Nevertheless, all
the indirect methods can handle an Errors-in-variables (EIV) setting as well as
networks with correlated process noise.

2.5.3 Reflections on the MISO direct and indirect methods

In order to arrive at accurate, consistent estimates of our target module, there are
two prime requirements for the estimation setup:

1. An appropriate predictor model needs to be chosen. This choice of predictor
model includes a selection of node signals to be included as measured
signals, and to select inputs and outputs in the predictor model. The
predictor model determines where sensors should be available in the
network. The predictor model needs to satisfy particular properties in
order to guarantee that the target module indeed can be estimated and no
uncontrolled bias occurs in the estimated model.

2. The measured data that is taken from the network needs to satisfy condition
of data-informativity, in other words it needs to be sufficiently rich in order
to provide accurate estimates.

The two identification approaches (direct and indirect) are distinguished by the
choice of predictor model. Whereas indirect methods use predictor models
having only external excitation signals r as predictor input, the direct method
also uses node signals w as predictor input. Different choices of predictor models
will lead to different conditions for data-informativity. The direct method (2.9)
has node signals wD as predictor inputs, and therefore utilizes both external
signals r and e for creating data-informativity. On the other hand, indirect
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methods rely on external excitation signals r for data informativity, and therefore
will typically require more expensive experiments. The direct method provides
asymptotically efficient estimates (i.e. consistency and minimum variance for the
identification setup) at the cost of the need to include noise models H̄pq, θq. The
indirect method and its variations provides consistent estimates but not with
minimum variance, however they do not necessarily require noise models
H̄pq, θq for consistent estimates. When the node signals are measured with sensor
noise (errors-in-variables (EIV) situation) or when the noises are correlated, the
direct method becomes biased but the indirect method provides consistent
estimates of the target module. Another important difference is that, in the direct
method the predictor model is chosen such that the target module is directly
parameterized an estimated as a part of the MISO model. This reflects the need
for parallel path/loop condition, which falls under the condition for target module
invariance. However, in indirect method, the predictor model is chosen such that
the target module can be obtained from the estimated models using
post-processing.

2.6 Bayesian learning

In this thesis, apart from PEM, we also take a Bayesian approach to simplify many
complexities in identification of modules in a dynamic network.

2.6.1 PEM and Maximum Likelihood estimators

To provide the necessary background for the Bayesian approach used in this
thesis, let us consider a data generating system of single-input-single-output
(SISO) Finite Impulse Response (FIR) type given by the difference equation,

yptq �
ņ

k�1

θkupt� kq � eptq, (2.15)

with yptq and uptq are the output and input of the system; let us assume that eptq
is a white Gaussian noise with variance σ2. The above model can be given by,

yptq � φJptqθ � eptq (2.16)

where θ � �
θ1 . . . θn

�J and φptq � �
upt� 1q . . . upt� nq�J. In the

frequentist approach, the main tool to learn a model is using Maximum Likelihood
(ML) estimation (see [10], Section 1.2.3). We find the ML estimate, i.e., the θ that
best explains the data by maximizing the likelihood function:

θ̂ML � arg max
θ

ppy; θq (2.17)

where y � �
yp1q . . . ypNq�J and N is the length of the dataset. The above

estimator is called Maximum Likelihood estimator. Since the logarithm is a
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monotonic function, we can maximize the log likelihood:

θ̂ML � arg max
θ

log ppy; θq � arg min
θ

1?
2πσ2

Ņ

t�1

�
yptq � φJptqθ�2 � N

2
log σ2.

(2.18)
Neglecting the terms that are not dependent on θ, we can observe that, the above
cost function is the same as the cost function for the prediction error methods (i.e.
the sum of the square of the prediction errors). This implies that, assuming the
noise is Gaussian, the estimate using PEM is a Maximum Likelihood estimate.
The ML estimates have very attractive properties. One property is consistency,
which we have already discussed before. The other attractive property is that the
estimates are asymptotically normal. It means that as we increase the number of
data N, the estimates become normally distributed around the true value of the
parameters θ0 with a covariance matrix that is the inverse of the Fisher
Information matrix. The inverse of the Fisher information matrix determine the
Cramér-Rao Lower Bound (CRLB). This means that, as the number of data
grows, the Maximum Likelihood estimator has the smallest variance and also the
minimum mean-squared error among all unbiased estimators. Therefore, this
estimator is asymptotically efficicient since there are no unbiased estimators that
can provide a smaller variance than the ML estimator.

Since the problem in (2.18) is the linear in parameters, the ML estimate θ̂ML (also
the PEM estimate θ̂PEM ) is given by the Ordinary Least Squares (OLS) solution,

θ̂ML � θ̂PEM � rΦJΦs�1ΦJy, (2.19)

where ΦJ � �
φp1q . . . φpNq�.

We now evaluate the bias and variance of the above estimator. The bias is the
difference between the expected value of the estimate and the true parameter.
Therefore,

E
�
θ̂PEM � θ0

�
� E

�rΦJΦs�1ΦJy � θ0

� � E
�
θ0 � rΦJΦs�1ΦJe� θ0

� � 0.

(2.20)
Here, e � �

ep1q . . . epNq�J is the vectorized version of noise. The covariance is
given by,

E
�
pθ̂PEM � θ0qpθ̂PEM � θ0qJ

�
� σ2rΦJΦs�1. (2.21)

This covariance will be the CRLB and therefore the smallest variance that can be
achieved among all unbiased estimators given the data. However, the estimator
can have high variance and provide unsatisfactory results, for example, when the
signal-to-noise ratio (SNR) is low or when the data length is small. Now we
explore an alternative notion to quantify better models. Focusing on the quantity
of Mean-squared error (MSE) of an estimator, we have

MSE
�
θ̂
�

� E
����θ̂ � θ0

���2
�
� E

����θ̂ � Erθ̂s � Erθ̂s � θ0

���2
�
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� E
����θ̂ � Erθ̂s

���2
�
�
���Erθ̂ � θ0s

���2

� Tr
�

covpθ̂q
	
�
���biaspθ̂q

���2

� VARIANCE� BIAS2.

The above decomposition of MSE into variance and bias is independent of any
choice of estimator. For the above estimate using PEM or ML in (2.19), which is
unbiased and efficient, the MSE will be minimum compared to any unbiased
estimators since the estimator’s variance is minimum (due to CRLB) and the bias
is zero. So, this estimator is the best unbiased estimator in the MSE sense.
However, relaxing the requirement of unbiasedness, designing an estimator with
a smaller mean-squared error is possible. Therefore, we can reduce the variance
by trading some bias. We call this as bias-variance trade off.

2.6.2 Bayesian estimation and regularized kernel-based methods

The key difference between PEMs or any frequentist methods and Bayesian learning
is that in the latter situation the parameter vector is modeled as a random
variable with a prior probability density through which prior belief can be
incorporated to the estimation. Infact, how a border line differentiates two
countries and sometimes creates war between them, the difference between
frequentist methods and Bayesian methods is also a line between y and θ (i.e. ppy|θq
for Bayesian and ppy; θq for frequentist approach).

Let us take the model used in the previous section,

y � Φθ � e. (2.22)

Since we are following a Bayesian approach, θ is now a random vector with a
prior distribution. The prior distribution is the interesting aspect of the Bayesian
perspective. Through this prior distribution, we can encode our prior belief about
the system/modules in the network, for example the stability of the modules.
Here, θ are the coefficients of the finite impulse response of the system, and we
take the prior of θ as a zero-mean Gaussian process i.e.

θ � N p0,Kq.

The prior covariance matrix is called the kernel (due to the relation between
Gaussian process regression and the theory of reproducing kernel Hilbert space
(RKHS), see [107] for details). Assuming that θ and e are independent, we can
write the joint Gaussian model for y and θ as,

p

��
θ
y

��
� N

��
0
0

�
,

�
K KΦJ

ΦK ΦKΦJ � σ2I

��
. (2.23)
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Then the posterior distribution of θ given the data y is given by ([2]),

ppθ|yq � N �
Cy,Pθ

�
(2.24)

where

Pθ �
�

ΦJΦ

σ2
�K�1


�1

; C � PθΦ
J

σ2
.

Therefore, the minimum mean-square error (MMSE) estimate is ([2]),

θ̂MMSE � E rθ|ys � Cy �
�

ΦJΦ

σ2
�K�1


�1
ΦJ

σ2
y, (2.25)

i.e. the mean of the posterior distribution of θ given the data (ppθ|yq). This
estimate is nothing but the regularized least squares estimate with regularization
parameter σ2 and regularization term θJK�1θ. This will be immediate when we
make the link between θ̂MMSE and the maximum-a-posteriori (MAP) estimate of
θ. The MAP estimate is given by,

θ̂MAP � arg max
θ

log ppθ|yq � arg max
θ

plog ppy|θq � log ppθq � log ppyqq
� arg min

θ
r� log ppy|θq � log ppθqs . (2.26)

The above decomposition is done using Bayes rule and neglecting the term related
to marginal likelihood ppyq that does not depend on θ. The decomposition contains
the likelihood ppy|θq and the prior ppθq. In the case of a Gaussian prior and Gaussian
noise, we get the regularized least-squares criterion as following from (2.26),

θ̂MAP � θ̂RLS � arg min
θ

�
}y � Φθ}2 � σ2θJK�1θ

�
� θ̂MMSE , (2.27)

where }y � Φθ}22 is the least squares term and }θ}2K�1 � θJK�1θ is the
regularization term.

2.6.3 Priors, Kernels and Empirical Bayes

As already mentioned, we want to trade some bias in order to reduce the variance
and in turn the MSE. In order to get a good bias-variance trade off, we need to
incorporate our prior knowledge about the system or the quantity to be estimated.
As can be seen from the regularization term in (2.27), this can be done by suitably
choosing our kernel K.

There are many kernels applicable for regularized system identification, like the
stable spline kernels [92], DC kernel [21], tuned-correlated (TC) kernel [21]. There
are also works on designing kernels for system identification like [19, 20]. Let us
consider a kernel (i.e. prior covariance matrix) that will also be used in this thesis,
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namely the first-order stable spline kernel [92] given by,

rKsi,j � λ rKβsi,j � λβmaxpi,jq,

where β P r0, 1q is a hyperparameter that regulates the decay rate of the
realizations of the corresponding Gaussian vector, while λ ¥ 0 tunes their
amplitude. The choice of this kernel is motivated by the fact that it enforces
favorable properties such as stability and smoothness of the estimated impulse
responses [91], [92]. If we follow a full Bayesian approach, these
hyperparameters admit a hyperprior density. These hyperprior densities can
have hyperparameters. This hierarchy of hyperparameters goes on and results in
a hierarchical model. In most cases, the hierarchy is ended by using non-informative
priors or diffuse priors (see [10], Section 2.4.3). For example, introducing a prior
distribution ppβq = constant. However, another possible approach is the empirical
Bayes approach [80], or generalized maximum likelihood [136]. In the machine
learning literature it is also called the evidence approximation (see [10], Section
3.5). We will be using this approach in this thesis. In this approach, we stop the
hierarchy at any point we want, by considering the remaining parameters as
deterministic hyperparameters i.e. they have a fixed value.

How to find out these deterministic hyperparameters’ values? There are many
possible ways to find it. For example, there are approaches based on
cross-validation (CV) or generalized cross-validation [137]. In this thesis, we use
another popular approach in the machine learning community, where we find
the hyperparameters by maximizing the marginal likelihood function of the data.
Considering the first-order stable spline kernel which has two hyperparameters λ
and β, for the problem in Section 2.6.2, we obtain the hyperparameters by,

λ̂, β̂ � arg max
λ,β

ppy;λ, βq. (2.28)

We maximize the marginal likelihood function i.e. the probability density
function of y after integrating out θ. Therefore, in the empirical Bayes approach,
we use the data to fine-tune the prior distribution. This approach of maximizing
the marginal likelihood function is also called type-2 maximum likelihood [9] due to
its resemblance with the frequentist approach of maximum likelihood
estimation. Due to this, we can use attractive methods for computing maximum
likelihood estimates to compute the hyperparameters. In this thesis, we will be
using the Expectation-Maximization (EM) method [35] and the Monte-Carlo
Expectation-Maximization (MCEM) method [147] to solve the marginal
likelihood problems.

2.6.4 Approximate inference and Gibbs sampling

For many problems related to probabilistic models, it might be required to
evaluate the posterior distribution or expectation of a function with respect to a
posterior distribution. For example, in the EM algorithm, we need to evaluate the
expectation of the complete-data log-likelihood with respect to the posterior
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distribution of the latent variables. For very few models, the posterior
distribution is available in closed form (for example, the posterior distribution of
ppθ|yq in (8.13)). For most probabilistic models of practical interest, exact
inference is analytically intractable, and so we have to resort to some form of
approximation.

There are two classes of approximation schemes based on whether it relies on
stochastic or deterministic approximations. Deterministic approximation
methods include Variational inference or Variational Bayes and expectation
propagation, which rely of approximating an unknown distribution with tractable
density by minimizing a distance measure like Kullback-Leibler (KL) divergence
(see [10], Chapter 10). Stochastic approximation methods or Sampling methods
are based on numerical sampling. They include methods like Markov Chain
Monte Carlo (MCMC). Even though there are applications that directly require
posterior distributions, posterior distributions are required to evaluate
expectations in most applications. If we take the EM algorithm, the posterior
distribution is required to evaluate the expectation of the complete-data
log-likelihood with respect to the posterior distribution of the latent variables.
Therefore the problem is to find the expectation of a function fpzq with respect to
a probability distribution ppzq.
Sampling methods are used to obatain a set of samples zplq (where l � 1, . . . ,M )
drawn independently from the distribution ppzq. These samples are used to find
an unbiased estimate of the expectation of any function fpzq by a finite sum ,

Erfpzqs � 1

M

M̧

l�1

fpzplqq. (2.29)

Simple distributions can be sampled using standard methods and inverse
transform sampling. However, the posterior distributions that need to be
sampled can be complex and high-dimensional. In this thesis, we would like to
sample in spaces of high dimensionality. Therefore, we require advanced
sampling techniques like Markov Chain Monte Carlo (MCMC). There are various
MCMC sampling methods available in the literature. For example the Metropolis
algorithm [86], the Metropolis-Hastings algorithm [62], Gibbs sampling [52], the slice
sampling [87]. In this thesis, we will be using the Gibbs sampling.

Gibbs sampling is a simple and widely applicable MCMC algorithm and it can
be seen as a special case of the Metropolis-Hastings algorithm. Gibbs sampling
allows us to sample from a joint distribution that is unknown (i.e.
ppzq � ppz1, z2, . . . , znq) or difficult to sample from directly. Suppose that we have
chosen some initial state for the Markov chain, each step of the Gibbs sampling
procedure involves replacing the value of one of the variables zi by a value
drawn from the distribution of that variable conditioned on the values of the
remaining variables zzi � tz1, z2, . . . , znuzzi, i.e., ppzi|zziq. This procedure is
repeated iteratively.

• sample zpi�1q
1 � ppz1|zpiq2 , . . . , z

piq
n q ,
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• sample zpi�1q
2 � ppz2|zpi�1q

1 , z
piq
3 , . . . , z

piq
n q ,

...

• sample zpi�1q
n � ppzn|zpi�1q

1 , z
pi�1q
2 , . . . , z

pi�1q
n�1 q .

It can be shown that the sequence of samples constitutes a Markov chain, and the
stationary distribution of that Markov chain is the sought-after joint distribution.
As the size of i grows, the samples are drawn from the required probability
distribution. Normally, we discard the first few samples since the Markov chain
will be poorly mixed and the obtained samples will be far away from the
stationary distribution, which is the target distribution for the Gibbs sampler.
Therefore, we discard the first B samples, which is known as the burn-in period.
If the burn-in period is large enough, then we produce samples from the
stationary distribution. It can be seen that in order to sample from a joint
distribution, the conditional distribution of each variable should be known. This
is a requirement when using Gibbs sampling. Gibbs sampling is a simple and
effective sampling method, provided we know the conditional distributions. It
does not require any tuning of the proposal distribution like the
Metropolis-Hastings algorithm. Similar to the other MCMC techniques, the
generated samples can be correlated, but we need independent samples. Instead
of sampling individual variables, a group of variables can be sampled to tackle
this. This is called blocking Gibbs sampling algorithm or blocked Gibbs sampler [68].
This is done by choosing blocks of variables, not necessarily disjoint, and then
sampling jointly from the variables in each block in turn, conditioned on the
remaining variables. We adopt this approach of Gibbs sampling in our thesis.

2.7 Summary

This chapter provides the necessary background and preliminaries. The dynamic
network setup is introduced and the state-of-the-art approach for identifying a
module in a dynamic network has been provided. A reflection has been made on
the available indirect and direct PEMs. Apart from PEM, this thesis follows the
approach of Bayesian learning as well. Necessary background on Bayesian
estimation, its relation with regularization, imposing prior belief through kernels
and estimating the shape of the prior using data has been provided. Solving a
marginal likelihood problem involves evaluating posterior densities and
expectations with respect to posterior densities. Therefore, the background about
the Bayesian inference techniques has also been provided. In the next chapter, we
will answer how to handle the confounding variables and correlated noises in
the network and obtain asymptotically efficient estimates.
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2.8 Related videos

Tutorial Session on Data-
Driven Modeling in
Dynamic Networks

Single module
identification - current
status

https://www.dropbox.com/s/ku1l2cfux1rcc25/ECC_tutorial_Karthik_PP.mp4?dl=0
https://www.dropbox.com/s/ku1l2cfux1rcc25/ECC_tutorial_Karthik_PP.mp4?dl=0
https://www.dropbox.com/s/ku1l2cfux1rcc25/ECC_tutorial_Karthik_PP.mp4?dl=0
http://publications.pvandenhof.nl/Videos/VandenHof&Ramaswamy_IFAC2020.mp4
http://publications.pvandenhof.nl/Videos/VandenHof&Ramaswamy_IFAC2020.mp4
http://publications.pvandenhof.nl/Videos/VandenHof&Ramaswamy_IFAC2020.mp4




3 CHAPTER

The Local Direct Method

The identification of local modules in dynamic networks with known
topology has recently been addressed by formulating conditions for

arriving at consistent estimates of the module dynamics. These results
are under the assumption of having disturbances that are uncorrelated
over the different nodes and the absence of confounding variables that
can occur due to unmeasured nodes. The conditions typically reflect
selecting a set of node signals that are taken as predictor inputs in a
MISO identification setup. In this chapter an extension is made to arrive
at an identification setup for the situation that process noises on the
different node signals can be correlated with each other and confounding
variables can be present. In this situation the local module may need to
be embedded in a MIMO identification setup for arriving at a consistent
estimate with maximum likelihood (ML) properties. This requires the
proper treatment of confounding variables. The result is a general
theory to handle this situation and a set of algorithms that, based on the
given network topology and disturbance correlation structure, selects an
appropriate set of node signals as predictor inputs and outputs in a MISO
or MIMO identification setup. Three algorithms are presented that differ
in their approach of selecting measured node signals. Either a maximum
or a minimum number of measured node signals can be considered, as
well as a preselected set of measured nodes.

This chapter is based on the publication: K.R. Ramaswamy and P.M.J. Van den Hof, “A local direct
method for module identification in dynamic networks with correlated noise", IEEE Trans. Automatic
Control, Vol. 66, no. 11, pp. 5237-5252, November 2021.

49
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3.1 Introduction

A standing assumption in the works [29, 83, 84, 101, 102, 124] is that the process
noises entering the nodes of the dynamic network are uncorrelated with each
other. This assumption facilitates the analysis and the development of methods
for local module identification, reaching consistent module estimates using the
MISO direct method. In one of the following situations,

a. process noises are correlated over the nodes i.e. Φvpωq is non-diagonal, or

b. when some w-in-neighbours of wj are not included in wD, after immersion,

the disturbance signals that are acting on the inputs and outputs in the predictor
model can get correlated, and these disturbance signals are referred to as
confounding variables1. In practical scenarios, these situations are common since
not all nodes can be measured, and disturbances in dynamic networks can be
correlated. These confounding variables destroy the consistency results for the
considered MISO direct method. In these situations, it is necessary to consider
also the noise topology or disturbance correlation structure when selecting an
appropriate identification setup. Even though the indirect and two-stage
methods in [27, 54] can handle the situation of correlated noise and deliver
consistent estimates, the obtained estimates will not have minimum variance,
considering the selected set of signals in the predictor model.

This chapter considers the situation of having dynamic networks with disturbance
signals on different nodes that are possibly correlated. At the same time, our target
moves from consistency only, to also minimum variance (or Maximum Likelihood
(ML)) properties of the obtained local module estimates. We will assume that the
topology of the network is known and the (Boolean) correlation structure of the
noise disturbances, i.e., the zero-elements in the spectral density matrix of the
noise. While one could use techniques for full network identification (e.g., [144]),
we aim to develop a method that uses only local information. In this way, we
avoid (i) the need to collect node measurements that are “far away” from the target
module, and (ii) the need to identify unnecessary modules that would come with
the price of the requirement of excess external excitation.

Using the reasoning first introduced in [126], we build a constructive procedure
that, choosing a limited number of predictor inputs and predicted outputs,
builds an identification setup that guarantees ML properties (and thus
asymptotic minimum variance) when applying a direct prediction error
identification method. In this situation, we have to deal with so-called
confounding variables (see e.g., [126], [30]), that is, unmeasured variables that
directly or indirectly influence both the predicted output and the predictor
inputs, and lead to lack of consistency. The effect of confounding variables will
be mitigated by extending the number of predictor inputs and/or predicted
outputs in the identification setup, thus including more measured node signals

1A confounding variable is an unmeasured variable that has paths to both the input and output of
an estimation problem [90].
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in the identification. Finally, we provide a generally applicable theory for signal
selection and also different node selection schemes.

This chapter is organized as follows. We start with providing a summary of
available results and the general idea of the solution to the above problem before
getting into technical details. Important concepts and notations used in this
chapter are defined in Section 3.4 while the MIMO identification setup and main
results are presented in subsequent sections. Sections 3.7-3.9 provide algorithms
and illustrative examples for three different ways of selecting input and output
node signals: the full input case, the minimum input case, and the user selection
case. This is followed by Conclusions. The technical proofs of all results are
collected in the Appendix.

3.2 Available results and problem specification

The following results are available from previous work:

• When Dj is chosen equal to Nj and noise vj is uncorrelated to all vk, k P Vj ,
then Gji can be consistently estimated in a MISO setup, provided that there
is enough excitation in the predictor input signals, see [124].

• When Dj is a subset of Nj , and disturbance are uncorrelated, confounding
variables can occur in the estimation problem, and these have to be taken
into account in the choice of Dj in order to arrive at consistent estimates of
Gji, see [29].

• In [30] relaxed conditions for the selection of Dj have been formulated,
while still staying in the context of MISO identification with noise spectrum
of v (Φv) being diagonal. This is particularly done by choosing additional
predictor input signals that are not in Nj ,.i.e. that are no in-neighbors of the
output wj of the target module.

• For non-diagonal Φv , an indirect/two-stage identification method can be
used to arrive at consistent estimates of Gji [29, 54, 124]. However the
drawback of these methods is that they do not allow for a maximum
likelihood analysis, i.e. they will not lead to minimum variance results.

• This latter argument also holds for the method in [83, 84], where
Wiener-filter estimates are combined to provide local module estimates,
and diagonal Φv is considered.

In this chapter, we go beyond consistency properties, and address the following
problem:

How to handle confounding variables and identify a single module in a dynamic
network, such that the estimate is consistent and asymptotically has Maximum
Likelihood properties, and thus also minimum variance properties?



52 The Local Direct Method

3.3 General philosophy of the solution

Figure 3.1: Two-node example network from [126] with v1 and v2 dynamically
correlated and e1, e2 white noise processes.

Addressing the above problem requires careful treatment and modeling of the
noise acting on the different node signals. This can be illustrated through a
simple example that is presented in [126], where a two-node network is
considered as given in Figure 3.1, with v1 and v2 being dynamically correlated
and the objective to identify G0

21. In this case, a SISO identification using the
direct method with input w1 and output w2 will lead to a biased estimate of G0

21

because of the unmodeled correlation of the disturbance signals on w1 and w2
2.

For an analysis of this, see [126]. Suppose both node signals w1 and w2 are
predicted as outputs. In that case, the correlation between the disturbance signals
can be incorporated in a 2 � 2 non-diagonal noise model, thus leading to an
unbiased estimate of G0

21. In this way, bias due to correlation in the noise signals
can be avoided by predicting additional outputs other than the output of the
target module. This leads to the following two suggestions:

• confounding variables can be dealt with by modeling correlated
disturbances on the node signals, and

• this can be done by moving from a MISO identification setup to a MIMO
setup.

These suggestions are being explored in the current chapter. Next, we will present
an example to illustrate the problem further.

Example 3.1 Consider the network sketched in Figure 3.2, and let module
G0

21 be the target module for identification. If the node signals w1, w2 and w4

can be measured, then a two-input one-output model with inputsw1, w4 and
output w2 can be considered. This can lead to a consistent estimate of G0

21

and G0
24, provided that the disturbance signal v2 is uncorrelated to all other

disturbance signals. However if e.g. v4 and v2 are dynamically correlated,

2In this particular example the bias is caused by the presence of H21.
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Figure 3.2: Example network with target module G0
21 (in green) and with v2

dynamically correlated with v4 (red colored).

implying that a noise model H of the two-dimensional noise process is non-
diagonal, then a biased estimate will result for this approach. A solution is
then to include w4 in the set of predicted outputs, and to add node signal
w3 as predictor input for w4. We then combine predicting w2 on the basis of
pw1, w4q with predicting w4 on the basis of w3. The correlation between v2

and v4 is then covered by modelling a 2� 2 non-diagonal noise model of the
joint process pv2, v4q.

We will now look into another way of handling confounding variables. Consider
the simple cascade three node network example in figure 3.3, with v1 and v3 being
dynamically correlated. In this case, a SISO identification using w2 as input and
w1 as output will lead to biased estimate of G0

12 due to unmodelled correlation of
the disturbance signals on w1 and w2. Even though the direct disturbance on w2

(i.e. v2) is uncorrelated to v1, there exists correlation of the disturbance signals on
w1 and w2 due to the fact that v3 and v1 are correlated and v3 has a path to w2

through w3 which is an unmeasured node (i.e. a node signal that is not in the SISO
predictor model/identification). One possible way to handle this situation, which

Figure 3.3: Simple example network with target module G0
12 (in green) and with

v1 dynamically correlated with v3 (red colored).

we have already discussed, is to predict w2 as well (i.e., add w2 to the predicted
output) and model the correlated disturbances using a 2 � 2 non-diagonal noise
model. Another way to handle this is to include w3 as predictor input along with
w2 as input and w1 as output, and block the effect of confounding variable that
affects the estimation of target module G0

12. What we are doing here is block and
divert. Here, we are blocking the effect of the confounding variable on the target
module and diverting the effect of the confounding variable to another estimated
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module. In essence, the unmodelled correlation between v1 and v3 will create bias
in the estimated model from w3 to w1 (i.e. the model will not be zero), however
it will not create bias in the estimated model from w2 to w1 (which is the target
module).

In the next sections we will formalize the procedure that has been discussed above
for general networks.

3.4 Concepts and notation

In line with [90] we define the notion of a confounding variable.

Definition 3.1 (confounding variable) Consider a dynamic network
defined by

w � G0w �H0e�R0r (3.1)

with e a white noise process, and consider the graph related to this network,
with node signals w and e. Let wX and wY be two subsets of measured node
signals in w, and let wZ be the set of unmeasured node signals in w. Then
a noise component e` in e is a confounding variable for the estimation problem
wX Ñ wY , if in the graph there exist simultaneous paths from e` to node
signals wk, k P X and wn, n P Y , while these paths are either direct or only
pass through nodes that are in wZ . 2

We will denote wY as the node signals in w that serve as predicted outputs, and
wD as the node signals in w that serve as predictor inputs. It can happen that a
node signal can be in both input and output. Next we decompose wY and wD into
disjoint sets according to: Y � Q Y tou ; D � Q Y U where wQ are the node
signals that are common in wY and wD; wo is the output wj of the target module;
if j P Q then tou is void; wU are the node signals that are only in wD. In this
situation the measured nodes will be wDYY and the unmeasured nodes wZ will be
determined by the set Z � LztDYYu, where L � t1, 2, � � �Lu. There can exist two

Figure 3.4: A simple network with 3 nodes w1, w2, w3 and unmeasured noise
sources e1, e2 and e3. G12 is the target module to be identified.

types of confounding variable namely direct and indirect confounding variables. For
direct confounding variables the simultaneous paths mentioned in the definition are
both direct paths, while in all other cases we refer to the confounding variables as
indirect confounding variables. For example, in the network as shown in Figure 3.4
with D � t2u, Y � t1u and Z � t3u, for the estimation problem w2 Ñ w1, e2 is a
direct confounding variable since it has a simultaneous path tow1 andw2 where both
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the paths are direct paths. Meanwhile e3 is an indirect confounding variable since it
has a simultaneous path to w1 and w2 where one of the path is an unmeasured
path3.

Remark 3.1 Confounding variables are defined in accordance with their
use in [30], on the basis of a network description as in (3.1). In this
definition absence of confounding variables still allows that there are
unmeasured signals that create correlation between the inputs and outputs
of an estimation problem, in particular if the white noise signals in e are
statically correlated, i.e covpeq being non-diagonal. It will appear that this
type of correlations will not hinder our identification results, as analysed in
Section 9.5.

3.5 Main results - Line of reasoning

On the basis of the decomposition of node signals as defined in the previous
section we are going to represent the system’s equations (3.1) in the following
structured form4:�

���
wQ

wo
wU

wZ

�
��� �

�
���
GQQ GQo GQU GQZ

GoQ Goo GoU GoZ
GUQ GUo GUU GUZ

GZQ GZo GZU GZZ

�
���
�
���
wQ

wo
wU

wZ

�
����Rpqqr

�

�
���
HQQ HQo HQU HQZ

HoQ Hoo HoU HoZ

HUQ HUo HUU HUZ

HZQ HZo HZU HZZ

�
���
�
���
eQ
eo
eU
eZ

�
��� (3.2)

where we make the notation agreement that the matrixH is not necessarily monic,
and the scaling of the white noise process e is such that covpeq � I . Without loss
of generality, we can assume r � 0 for the sake of brevity.

Our objective is to end up with an identification problem in which we identify
the dynamics from inputs pwQ, wUq to outputs pwQ, woq, while our target module
Gjipqq is present as one of the scalar transfers (modules) in this identified (MIMO)
model. This can be realized by the following steps:

1. Firstly, we write the system’s equations for the measured variables as�
�wQ

wo
wU

�
�

loomoon
wm

�
�

Ḡ 0

ḠUD ḠUo

�
loooooooomoooooooon

Ḡm

�
�wQ

wU

wo

�
��

�
H̄ 0

0 H̄UU

�
looooooomooooooon

H̄m

�
�ξQξo
ξU

�
�

loomoon
ξm

(3.3)

3An unmeasured path is a path that passes through nodes in wZ only. Analogously, we can define
unmeasured loops through a node wk .

4From now on, 0 is dropped for convenience.
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with ξm a white noise process, while H̄ is monic, stable and stably invertible
and the components in Ḡ are zero if it concerns a mapping between identical
signals. This step is made by removing the non-measured signals wZ from
the network, while maintaining the second order properties of the remaining
signals. This step is referred to as immersion of the nodes in wZ [29].

2. As an immediate result of the previous step we can write an expression for
the output variables wY , by considering the upper part of the equation (3.3),
as �

wQ

wo

�
loomoon
wY

�
�
ḠQQ ḠQU

ḠoQ ḠoU

�
loooooomoooooon

Ḡ

�
wQ

wU

�
loomoon
wD

�
�
H̄QQ H̄Qo

H̄oQ H̄oo

�
loooooomoooooon

H̄

�
ξQ
ξo

�
loomoon
ξY

(3.4)

with covpξYq :� Λ̄.

3. Thirdly, we will provide conditions to guarantee that Ḡjipqq � Gjipqq, i.e
the target module appearing in equation (3.4) is the target module of the
original network (invariance of target module). This will require conditions on
the selection of node signals in wQ, wo, wU .

4. Finally, it will be shown that, on the basis of (3.4), under fairly general
conditions, the transfer functions Ḡpqq and H̄pqq can be estimated
consistently, and with maximum likelihood properties. A pictorial
representation of the identification setup with the classification of different
sets of signals in (3.4) is provided in Figure 3.5. The figure also contains set
A,B,Fn which will be introduced in the sequel.

Figure 3.5: Figure to depict the identification setup and classification of different
sets of signals in the input and output of the identification problem.

The combination of steps 3 and 4 will lead to a consistent and maximum likelihood
estimation of the target module Gjipqq. It has to be noted that an identification
setup results, in which signals can simultaneously act as input and as output (the
setwQ). Because ḠQQ is restricted to be hollow, this does not lead to trivial transfers
between signals that are the same. A related situation appears when identifying a
full network, while using all node signals as both inputs and outputs, as in [144].
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The steps 1)-4) above will require conditions on the selection of node signals,
based on the known topology of the network and an allowed correlation
structure of the disturbances in the network. Specifying these conditions on the
selection of sets wQ, wo, wU , will be an important objective of the next section.

3.6 Main Results - Derivations

3.6.1 System representation after immersion (Steps 1-2)

First we will show that a network in which signals in wZ are removed (immersed)
can indeed be represented by (3.3).

Proposition 3.1 Consider a dynamic network given by (3.2), where the set of
all nodes wL is decomposed in disjunct sets wQ, wo, wU and wZ as defined in
Section 3.4. Then, for the situation r � 0,

1. there exists a representation (3.3) of the measured node signalswm, with
H̄m monic, stable and stably invertible, and ξm a white noise process,
and

2. for this representation there are no confounding variables for the
estimation problem wU Ñ wY .

Proof: See appendix. �

(a) (b) (c)

Figure 3.6: (a): Original network with 4 nodes twiui�1,���4, and unmeasured white
noise sources teiui�1,���4; (b): Transformed network with confounding variable for
w4 Ñ w1 removed; (c): Transformed network with also the confounding variable
for w3 Ñ w1 removed.

The consequence of Proposition 3.1 is that the output node signals in wY can be
explicitly written in the form of (3.4), in terms of input node signals wD and
disturbances, without relying on (unmeasured) node signals in wZ . The
particular structure of network representation (3.3) implies that there are no
confounding variables for the estimation problem wU Ñ wY . This will be an
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important phenomenon for our identification setup. Based on (3.4), a typical
prediction error identification method can provide estimates of Ḡ and H̄ from
measured signals wY and wD with D � Q Y U . In this estimation problem,
confounding variables for the estimation problem wQ Ñ wY are treated by
correlated noise modelling in H̄ , while confounding variables for the estimation
problem wU Ñ wY are not present, due to the structure of (3.3).

In the following example, the step towards (3.3) will be illustrated, as well as its
effect on the dynamics in Ḡ.

Example 3.2 Consider the 4-node network depicted in Figure 3.6(a), where
all nodes are considered to be measured, and where we select wo � w1,
U � t2, 3, 4u, and Q � H. In this network, there is a confounding variable
e4 for the problem w4 Ñ w1 (i.e wU Ñ wY), meaning that for the situation
ξ � e the noise model H̄m in (3.3) will not be block diagonal. Therefore the
network does not comply with the representation in (3.3) and (3.4). We can
remove the confounding variable, by shifting the effect of H14 into a
transformed version of G14, which now becomes G14 � H�1

44 H14, as
depicted in Figure 3.6(b). However, since this shift also affects the transfer
from e3 to w1, the change of G14 needs to be mitigated by a new term H13,
in order to keep the network signals invariant. In the resulting network the
confounding variable for w4 Ñ w1 is removed, but a new confounding
variable (e3q for w3 Ñ w1 has been created. In the second step, shown in
Figure 3.6(c), the term H13 is removed by incorporating its effect in the
module G13 which now becomes G13 � H�1

33 H13. In the resulting network
there are no confounding variables for wU Ñ w1. This representation
complies with the structure in (3.3). Note that in the transformed network,
the dynamics of G12 is left invariant, while the dynamics of G14 and G13

have been changed. The intermediately occurring confounding variables
relate to a sequence of linked confounders, as discussed in [30]. 2

In the next subsection it will be investigated under which conditions our target
module will remain invariant under the above transformation to a representation
(3.3) without confounding variables.

3.6.2 Module invariance result (Step 3)

The transformation of a network into the form (3.3), leading to the resulting
identification setup of (3.4), involves two basic steps, each of which can lead to a
change of dynamic modules in Ḡ. These two steps are

(a) Removing of non-measured signals in wZ (immersion), and

(b) Transforming the system’s equations to a form where there are no
confounding variables for wU Ñ wY .

Module invariance in step (a) is covered by the following Condition:
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Condition 3.1 (parallel path and loop condition[29]) Let Gji be the target
network module to be identified. In the original network (3.2):

• Every path from wi to wj , excluding the path through Gji, passes
through a node wk, k P D, and

• Every loop through wj passes through a node in wk, k P D. 2

This condition has been introduced in [29] for a MISO identification setup, to
guarantee that when immersing (removing) nonmeasured node signals from the
network, the target module will remain invariant. As an alternative, more
generalized notions of network abstractions have been developed for this
purpose in [141]. Condition 3.1 will be used to guarantee module invariance
under step (a).

Step (b) above is a new step, and requires studying module invariance in the step
transforming a network from an original format where all nodes are measured,
into a structure that complies with (3.3), i.e. with absence of confounding variables
for wU Ñ wY .

We are going to tackle this problem, by decomposing the set U into two disjunct
sets U � A Y B aiming at the situation that in the transformed network, the
modules GYA stay invariant, while for the modules GYB we accept that the
transformation can lead to module changes. We construct A by choosing signals
wk P wU such that in the original network there are no confounding variables for
the estimation problem wA Ñ wY . For the selection of B, we do allow
confounding variables for the estimation problem wB Ñ wY . By requiring a
particular “disconnection” between the sets A and B, we can then still guarantee
that the modules GYA stay invariant.

The following condition will address the major requirement for addressing our
step (b).

Condition 3.2 U is decomposed into two disjunct sets, U � A Y B (see
Figure 3.5), such that in the original network (3.2) there are no confounding
variables for the estimation problems wA Ñ wY and wA Ñ wB. 2

Condition 3.2 is not a restriction on U , as such a decomposition can always be
made, e.g. by taking A � H and B � U . The flexibility in choosing this
decomposition will be instrumental in the sequel of this chapter.

Example 3.3 (Example 3.2 continued) In the example network depicted in
Figure 3.6, we observe that in the original network there is a confounding
variable for w4 Ñ w1. However in the step towards creating a network
without confounding variables for wU Ñ wY an intermediate step occurs,
where there is also a confounding variable for w3 Ñ w1, as depicted in
Figure 3.6(b). For U � t2, 3, 4u the choice A � t2, 3u, B � t4u, is not valid
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since there exists a confounding variable (e3) for w3 Ñ w4 which violates
the second condition that there should be no confounding variables for
wA Ñ wB. Therefore the appropriate choice satisfying Condition 3.2 is
A � t2u and B � t3, 4u. Note that this matches with the situation that in the
transformed network (Figure 3.6(c)), the module GYA remains invariant, and
the modules GYB get changed. 2

We can now formulate the module invariance result.

Theorem 3.1 (Module invariance result) Let Gji be the target network
module. In the transformed system’s equation (3.4), it holds that Ḡji � G0

ji

under the following conditions:

1. The parallel path and loop Condition 3.1 is satisfied, and

2. The following three conditions are satisfied:

a. U is decomposed in A and B, satisfying Condition 3.2, and

b. i P tAYQu, and

c. Every path from twi, wju to wB passes through a measured node in
wLzZ .

Proof: See appendix.

A more detailed illustration of the conditions in the theorem will be deferred to
three different algorithms for selecting the node signals, to be presented in
Sections 3.7-3.9. We will first develop the identification results for the general
case.

3.6.3 Identification results (Step 4)

If the conditions of Theorem 3.1 are satisfied, then the target module Ḡji � G0
ji can

be identified on the basis of the system’s equation (3.4). For this system’s equation
we can set up a predictor model with input wD and outputs wY , for the estimation
of Ḡ and H̄ . This will be based on a parameterized model set determined by

M :�  pḠpθq, H̄pθq, Λ̄pθqq, θ P Θ
(
,

while the actual data generating system is represented by
S � pḠpθoq, H̄pθoq, Λ̄pθ0qq. The corresponding identification problem is defined
by considering the one-step-ahead prediction of wY in the parametrized model,
according to ŵYpt|t � 1; θq :� EtwYptq | wt�1

Y , wtD; θu where wtD denotes the past of
wD, i.e. twDpkq, k ¤ tu. The resulting prediction error becomes:
εpt, θq :� wYptq � ŵYpt|t� 1; θq, leading to

εpt, θq � H̄pq, θq�1
�
wYptq � Ḡpq, θqwDptq

�
, (3.5)
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and the weighted least squares identification criterion

θ̂N � arg min
θ

1

N

N�1̧

t�0

εT pt, θqWεpt, θq, (3.6)

with W any positive definite weighting matrix. This parameter estimate then
leads to an estimated subnetwork ḠYDpq, θ̂N q and noise model H̄pq, θ̂N q, for
which consistency and minimum variance results will be formulated next.

Theorem 3.2 (Consistency) Consider a dynamic network represented by
(3.3), and a related (MIMO) network identification setup with predictor
inputs wD and predicted outputs wY , according to (3.4). Let Fn � U be the set
of node signals k for which ξk is statically uncorrelated with ξY

a and let
F :� UzFn. Then a direct prediction error identification method according
to (4.5)-(4.6), applied to a parametrized model setM will provide consistent
estimates of Ḡ and H̄ if:

a. M is chosen to satisfy S PM;

b. Φκpωq ¡ 0 for a sufficiently high number of frequencies, where κptq :��
wJ

D ptq ξJQ ptq woptq
�J;

(data-informativity condition).

c. The following paths/loops should have at least a delay:

• All paths/loops from wYYF to wY in the network (3.4) and in its
parametrized model; and

• For every wk P Fn, all paths from wYYF to wk in the network (3.4),
or all paths from wk to wY in the parametrized model.

(delay in path/loop condition.)

aThis implies that ErξkptqξYptqs � 0.

Proof: See appendix.

The consistency theorem has a structure that corresponds to the classical result of
the direct prediction error identification method applied to a closed-loop
experimental setup, [77]. A system in the model set condition (a), an
informativity condition on the measured data (b), and a loop delay condition (c).
Note however that conditions (b) and (c) are generalized versions of the typical
closed-loop case [77, 124], and are dedicated for the considered network setup.

It is important to note that Theorem 3.2 is formulated in terms of conditions on
the network in (3.3), which we refer to as the transformed network. However, it is
quintessential to formulate the conditions in terms of properties of signals in the
original network, represented by (3.2).
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Proposition 3.2 If in the original network, U is decomposed in two disjunct
setsA and B satisfying Condition 3.2, then Condition c of Theorem 3.2 can be
reformulated as:

c. The following paths/loops should have at least a delay:

– All paths/loops from wYYB to wY in the original network (3.2) and
in the parametrized model; and

– For every wk P A, all paths from wYYB to wk in the network (3.2),
or all paths from wk to wY in the parametrized model.

Proof: See appendix.

Condition (b) of Theorem 3.2 requires that there should be enough excitation
present in the node signals, which actually reflects a type of identifiability
property [143]. Note that this excitation condition may require that there are
external excitation signals present at some locations, see also
[22, 53, 65, 124, 133, 145], and [127], where it is shown that dimprq ¥ |Q|, with |Q|
the cardinality of Q. Since we are using a direct method for identification,
excitation signals r are not directly used in the predictor model, although they
serve the purpose of providing excitation in the network. A first result of a
generalized method where, besides node signals w, also signals r are included in
the predictor inputs, is presented in [105].

Since in the result of Theorem 3.2 we arrive at white innovation signals, the result
can be extended to formulate Maximum Likelihood properties of the estimate.

Theorem 3.3 Consider the situation of Theorem 3.2, and let the conditions
for consistency be satisfied. Let ξY be normally distributed, and let Λ̄pθq be
parametrized independently from Ḡpθq and H̄pθq. Then, under zero initial
conditions, the Maximum Likelihood estimate of θ0 is

θ̂ML
N � arg min

θ
det

�
1

N

Ņ

t�1

εpt, θqεT pt, θq
�

(3.7)

Λpθ̂ML
N q � 1

N

Ņ

t�1

εpt, θ̂ML
N qεT pt, θ̂ML

N q. (3.8)

Proof: Can be shown by following a similar reasoning as in Theorem 1 of [144]. 2

So far, we have analysed the situation for given sets of node signals wQ, wo, wA,
wB and wZ . The presented results are very general and allow for different
algorithms to select the appropriate signals and specify the particular signal sets,
that will guarantee target module invariance and consistent and minimum
variance module estimates with the presented local direct method. In the next
sections we will focus on formulating guidelines for the selection of these sets,
such that the target module invariance property holds, as formulated in Theorem
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3.1. For formulating these conditions, we will consider three different situations
with respect to the availability of measured node signals.

(a) In the Full input case, we will assume that all in-neighbors of the predicted
output signals are measured and used as predictor input;

(b) In the Minimum input case, we will include the smallest possible number of
node signals to be measured for arriving at our objective;

(c) In the User selection case, we will formulate our results for a prior given set
of measured node signals;

3.7 Algorithm for signal selection: full input case

The first algorithm to be presented is based on the strategy that for any node signal
that is selected as output, we have access to all of its w-in-neighbors, that are to be
included as predictor inputs. This strategy will lead to an identification setup with
a maximum use of measured node signals that contain information that is relevant
for modeling our target module Gji. The following strategy will be followed:

• We start by selecting i P D and j P Y ;

• Then we extend D in such a way that all w-in-neighbors of wY are
included in wD.

• All node signals in wD that have noise terms vk, k P D that are
correlated with any v`, ` P Y (direct confounding variables for wD Ñ
wY), are included in Y too. They become elements of Q.

• With A :� DzQ it follows that by construction there are no direct
confounding variables for the estimation problem wA Ñ wY .

• Then we choose wB as a subset of nodes that are not in wY nor in
wA. This set needs to be introduced to block the indirect confounding
variables for the estimation problem wA Ñ wY , and will be chosen to
satisfy Condition 2a and 2c of Theorem 3.1.

• Every node signal wk, k P A for which there are only indirect
confounding variables and cannot be blocked by a node in wB, is

– moved to B if Conditions 2a and 2c of Theorem 3.1 are satisfied
and k � i; (else)

– included in Y and moved to Q;

• Finally, we define the identification setup as the estimation problem
wD Ñ wY , with D � QYAY B and Y � QY tou.
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Note that because all w-in-neighbors of wY are included in wD, we automatically
satisfy the parallel path and loop condition 3.1. In order for the selection of node
signals wB to satisfy the conditions of Theorem 3.1, we will specify the following
Property 3.1.

Property 3.1 Let the node signals wB be chosen to satisfy the following
properties:

1. If, in the original network, there are no confounding variables for the
estimation problem wA Ñ wY , then B is void implying that wB is not
present;

2. If, in the original network, there are confounding variables for the
estimation problem wA Ñ wY , then all of the following conditions
need to be satisfied:

a. For any confounding variable for the estimation problem wA Ñ
wY , the unmeasured paths from the confounding variable to node
signals wA pass through a node in wB.

b. There are no confounding variables for the estimation problem
wA Ñ wB.

c. Every path from twi, wju to wB passes through a measured node
in wLzZ . 2

Property 2a) ensures that, after including wB in the set of measured signals, there
are no indirect confounding variables for the estimation problem wA Ñ wY , and
Property 2b) guarantees that there are no confounding variables for the
estimation problem wA Ñ wB. Together we satisfy Condition 2a) of Theorem 3.1.
Also, Property 2c) guarantees condition 2c) of Theorem 3.1 to be satisfied. Finally,
as per the algorithm, wi can be either in wA or wQ. Therefore at the end of the
algorithm, we will obtain sets of signals that satisfy the conditions in Theorem
3.1 for target module invariance.

Example 3.4 Consider the network in Figure 3.7. G12 is the target module
that we want to identify. We now select the signals according to the
algorithm presented in this section. First we include the input of the target
module w2 in wD and the output of the target module w1 in wY . Next we
include all w-in-neighbors of wY (i.e. w3 and w4) in wD. All node signals in
wD that have noise terms vk, k P D that are correlated with any v`, ` P Y
need to be included in Y too. This concerns w2, since v1 is correlated with
v2. Now wY � tw1, w2u has changed and we need to include the
w-in-neighbors of w2, which is w5, in wD, leading to wD � tw2, w3, w4, w5u.
After a check we can conclude that all node signals in wD that have noise
terms vk, k P D that are correlated with any v`, ` P Y are included in Y too.
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Figure 3.7: Example network with v1 dynamically correlated with v2 and v8

(red colored). v4 is dynamically correlated with v6 (green colored) and v5 is
dynamically correlated with v7 (blue colored).

The result now becomes

Y � t1, 2u ; D � t2, 3, 4, 5u (3.9)
Q � Y XD � t2u ; A � DzQ � t3, 4, 5u. (3.10)

Since v8 is dynamically correlated with v1, in the resulting situation we will
have a confounding variable for the estimation problem w5 Ñ w1 (i.e. wA Ñ
wY). As per condition 2a of Property 3.1, the path of the confounding variable
e8 to w5 should be blocked by a node signal in wB, which can be either w7

or w8. w7 cannot be chosen in wB since this would create a confounding
variable for wA Ñ wB (i.e. w5 Ñ w7). Moreover, w7 P wB would also create
an unmeasured path wi Ñ w7 with wi � w2, thereby violating Condition 2c
of Property 3.1. When w8 is chosen in wB, the conditions in Property 3.1 are
satisfied and hence we choose B � t8u. The resulting estimation problem is
pw2, w3, w4, w5, w8q Ñ pw1, w2q, and will according to Theorem 3.2 provide a
consistent and maximum likehood estimate of G12.

3.8 Algorithm for signal selection: minimum input
case

Rather than measuring all node signals that are w-in-neighbors of the output wj
of our target module Gji, we now focus on an identification setup that uses a
minimum number of measured node signals, according to the following strategy:
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• We start by selecting i P D and j P Y ;

• Then we extend D with a minimum number of node signals that
satisfies the parallel path and loop Condition 3.1.

• Every node signal wk in wD for which there is a direct or indirect
confounding variable for the estimation problem wk Ñ wY is
included in Y and Q.

• With A :� DzQ and B � H it follows that by construction there are
no confounding variables for the estimation problem wA Ñ wY .

• Finally, we define the identification setup as the estimation problem
wD Ñ wY , with D � QYA.

As we can observe, the algorithm does not require selection of set B. This is
attributed to the way we handle the indirect confounding variables for the
estimation problem wA Ñ wY . Instead of tackling these confounding variables by
adding blocking node signals wB (as in full input case) to be added as predictor
inputs, we deal with them by moving the concerned wk, k P A to wQ and thus to
the set of predicted outputs. We choose this approach in order to minimize the
required number of measured node signals. In this way, by construction, there
will be no direct or indirect confounding variables for the estimation problem
wA Ñ wY . From this result, we can guarantee that the conditions in Theorem 3.1
will be satisfied since B � H. Thus at the end of the algorithm we obtain a set of
signals that provides target module invariance.

Example 3.5 Consider the same network as in Example 3.4 represented by
Figure 3.7. Applying the algorithm of this section, we first include the input
of the target module w2 in wD and the output of the target module w1 in wY .
There exist two parallel paths from w2 to w1, namely w2 Ñ w3 Ñ w1 and
w2 Ñ w3 Ñ w4 Ñ w1 and no loops through w1. In order to satisfy
Condition 3.1 we can include either w3 in D such that D � t2, 3u or both
w3, w4 in D such that D � t2, 3, 4u. We choose the former to have minimum
number of node signals. Because of the correlation between v2 and v1 there
is a confounding variable for the estimation problem w2 Ñ w1. According
to step 3 of the algorithm, w2 is then moved to Y and Q, leading to
wY � tw1, w2u. Because of this change of Y we have to recheck for presence
of confounding variables. However this change does not introduce any
additional confounding variables. The resulting estimation problem is
pw2, w3q Ñ pw1, w2q with wA � w3, wB � H, wQ � w2 and wY � pw1, w2q. 2

In comparison with the full input case, the algorithm in this section will typically
have a higher number of predicted output nodes and a smaller number of
predictor inputs. This implies that there is a stronger emphasis on estimating a
(multivariate) noise model H̄ . Given the choice of the direct identification
method, and the choice of signals to satisfy the parallel path and loop condition,
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this algorithm indeed adds the smallest number of additional signals to be
measured, as the removal of any of the additional signals will lead to conflicts
with the required conditions.

3.9 Algorithm for signal selection: User selection case

Next we focus on the situation that we have a prior given set of nodes that we
have access to i.e. a set of nodes that can (possibly) be measured. We refer to
these nodes as accessible nodes while the remaining nodes are called inaccessible.
This strategy is different from the full input case since we do not assume that we
have access to all in-neighbours of wY . This will lead to an identification setup
with use of accessible node signals that contain information which is relevant for
modeling our target module Gji. We consider the situation that nodes wi and wj
are accessible nodes and there are accessible nodes that satisfy the parallel path
and loop Condition 3.1.
The following strategy will be followed:

1. We start by selecting i P D and j P Y ;

2. Then we extendD to satisfy the parallel path and loop Condition 3.1;

3. We include in D all accessible w-in-neighbors of Y ;

4. We extend D in such a way that for every non-accessible w-in-
neighbor wk of wY we include all accessible nodes that have path to
wk that runs through non-accessible nodes only.

5. If there is a direct confounding variable for wi Ñ wY , or an indirect
one that has a path to wi that does not pass through any accessible
nodes, then i is included in Y and Q;

6. A node signal wk, k P D is included in A if there are either no
confounding variables for wk Ñ wY or only indirect confounding
variables that have paths to wk that pass through accessible nodes.

7. Every node signalwk, k P Dztiu that has a direct confounding variable
for wk Ñ wY , or an indirect confounding variable with a path to wk
that does not pass through any accessible nodes is:

• included in B if condition 2a and 2c of Theorem 3.1 are satisfied
on including it in wB (else)

• included in Y and Q; return to step 3.

8. Every node signal wk, k P A for which there are only indirect
confounding variables as meant in Step 6, is

• moved to B if Conditions 2a and 2c of Theorem 3.1 are satisfied
and k � i; (else)
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• kept in A while a set of accessible nodes that blocks the path
of the confounding variable is added to B YA, while satisfying
Conditions 2a and 2c of Theorem 3.1; (else)

• included in Y and Q;

In the algorithm above, the prime reasoning is to deal with confounding
variables for wA Ñ wY . Direct confounding variables lead to including the
respective node in the outputs Y or shifting the respective input node to B, while
indirect confounding variables are treated by either shifting the input node to B
or, if its effect can be blocked, by adding an accessible node to the inputs in B, or,
if the blocking conditions can not be satisfied, by including the node in the
output Y . Note that the algorithm always provides a solution if Condition 1 of
Theorem 3.1 (parallel path and loop condition) can be satisfied.

Figure 3.8: Example network of Figure 3.7 with accessible nodes w1, w2, w3, w6

indicated in yellow.

Example 3.6 Consider the same network as in example 3.4 represented by
Figure 3.8. However, we are given that only the nodes w1, w2, w3 and w6 are
accessible. We now select the signals according to the algorithm presented
in this section. First we include wi � w2 in wD and wj � w1 in wY . Then
we extend D such that the parallel path and loop Condition 3.1 is satisfied.
This is done by selecting D � t2, 3u. According to step 4, we extend D
by node w6 as it serves as nearest accessible in-neighbor of w4, being an
inaccessible in-neighbor of w1. As per Step 5, since v1 and v2 are correlated,
w2 is moved to Y and Q. As per Step 6, there are no confounding variables
for the estimation problem w3 Ñ w1 and hence w3 is included in wA. Since v4

and v6 are correlated, it implies that there is an indirect confounding variable
for the estimation problem w6 Ñ w1, which however does not pass through
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an accessible node. Step 7 does not apply since w3 P wA has no confounding
variables. Step 8 requires to deal with the indirect confounding variable v4

for w6 Ñ w1. Checking Conditions 2a and 2c of Theorem 3.1 for A and B, it
appears that every path from wi � w2 or from wj � w1 to w6 passes through
a measured node and there are no confounding variable for the estimation
problem wA Ñ w6. Hence we include w6 in wB. As a result, the estimation
problem is pw2, w3, w6q Ñ pw1, w2q.

Remark 3.2 Rather than starting the signal selection problem from a fixed
set of accessible notes, the provided theory allows for an iterative and
interactive algorithm for selecting accessible nodes in sensor allocation
problems in a flexible way.

3.10 Discussion

All three presented algorithms lead to a set of selected node signals that satisfy
the conditions for target module invariance, and thus provide a predictor model
in which no confounding variables can deteriorate the estimation of the target
module. Only in the “User selection case” this is conditioned on the fact that
appropriate node signals should be available to satisfy the parallel path and loop
condition. Under these circumstances the presented algorithms are sound and
complete [74]. This attractive feasibility result is mainly attributed to the addition
of predicted outputs, that adds flexibility to solve the problem of confounding
variables.

Note that the presented algorithms do not guarantee the consistency of the
estimated target module. For this to hold the additional conditions for
consistency, among which data-informativity and the delay in path/loop
condition, need to be satisfied too, as illustrated in Figure 3.9. A specification of
path-based conditions for data-informativity is the next important step, and
results on this problem are presented in Chapter 5 of this thesis. Including these
path-based conditions in the signal selection algorithms would be a next natural
step to take. This also holds for the development of data-driven techniques to
estimate the correlation structure of the disturbances, which will be addressed in
Chapter 6 of this thesis.

It can be observed that the three algorithms presented in the previous sections
rely only on the graphical conditions of the network. This paves way to automate
the signal selection procedure using graph based algorithms that are scalable to
large dimensions, with input being topology of the network and disturbance
correlation structure represented as adjacency matrices. Also, it can be observed
that the three considered cases in the previous sections, most likely will lead to
three different experimental setups for estimating the single target module. For
all three cases we can arrive at consistent and maximum likehood estimates of
the target module. However, because of the fact that the experimental setups are
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Figure 3.9: Figure to depict that consistency result requires satisfaction of
conditions in Theorem 3.2 along with the appropriate predictor model.

different in the three cases, the data-informativity conditions and the statistical
properties of the target module estimates will be different. The minimum
variance expressions, in the form of the related Cramér-Rao lower bounds, will
typically be different for the different experimental setups. Comparing these
bounds for different experimental setups is beyond the scope of this chapter and
considered as topic for future research.
We have formulated identification criteria in the realm of classical prediction
error methods. This will typically lead to complex non-convex optimization
problems that will scale poorly with the dimensions (number of parameters) of
the problems. However alternative optimization approaches are becoming
available that scale well and that rely on regularized kernel-based methods, thus
exploiting new developments that originate from machine learning, see Chapter
8, and relaxations that rely on sequential convex optimization [51, 140], see
Chapter 6.

3.11 Conclusions

A new local module identification approach has been presented to identify local
modules in a dynamic network with given topology and process noise that is
correlated over the different nodes. For this case, it is shown that the problem can
be solved by moving from a MISO to a MIMO identification setup. In this setup
the target module is embedded in a MIMO problem with appropriately chosen
inputs and outputs, that warrant the consistent estimation of the target module
with maximum likelihood properties. The key part of the procedure is the
handling of direct and indirect confounding variables that are induced by
correlated disturbances and/or non-measured node signals, and thus essentially
dependent on the (Boolean) topology of the network and the (Boolean)
correlation structure of the disturbances. A general theory has been developed
that allows for specification of different types of algorithms, of which the “full
input case”, the “minimum input case” and the “user selection case” have been
illustrated through examples. The presented theory is suitable for generalization
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to the estimation of sets of target modules. This work on handling confounding
variables finds its importance not only in the engineering domain but also in
fields like neuroscience, medicine, economics and marketing, where it serves as
an important topic.
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Appendices

3.A Proof of Proposition 3.1

Starting with the network representation (3.2), we can eliminate the non-measured
node variables wZ from the equations, by writing the last (block) row of (3.2) into
an explicit expression for wZ :

wZ � pI �GZZq�1

�
� ¸
kPQYtouYU

GZkwk �
¸

`PQYtouYUYZ

HZ`w`

�
� ,

and by substituting this wZ into the expressions for the remaining w-variables. As
a result �

�wQ

wo
wU

�
� �

�
�ĞQQ ĞQo ĞQU

ĞoQ Ğoo ĞoU
ĞUQ ĞUo ĞUU

�
�
�
�wQ

wo
wU

�
�� v̆,

v̆ � H̆

�
���
eQ
eo
eU
eZ

�
��� �

�
�H̆QQ H̆Qo H̆QU H̆QZ

H̆oQ H̆oo H̆oU H̆oZ

H̆UQ H̆Uo H̆UU H̆UZ

�
�
�
���
eQ
eo
eU
eZ

�
��� (3.11)

with covpeq � I , and where

Ğkh � Gkh �GkZpI �GZZq�1GZh (3.12)

with k, h P tQY tou Y Uu, and

H̆k` � Hk` �GkZpI �GZZq�1HZ`, (3.13)

with ` P tQY tou Y U Y Zu.
On the basis of (3.11), the spectral density of v̆ is given by Φv̆ � H̆H̆�. Applying a
spectral factorization [150] to Φv̆ will deliver Φv̆ � H̃Λ̃H̃� with H̃ a monic, stable
and minimum phase rational matrix, and Λ̃ a positive definite (constant) matrix.
Then there exists a white noise process ξ̃ defined by ξ̃ :� H̃�1H̆e such that H̃ξ̃ � v̆,

73
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with cov(ξ̃) = Λ̃, while H̃ is of the form

H̃ �
�
�H̃11 H̃12 H̃13

H̃21 H̃22 H̃23

H̃31 H̃32 H̃33

�
� (3.14)

and where the block dimensions are conformable to the dimensions of wQ, wo and
wU respectively. As a result, (3.11) can be rewritten as

�
�wQ

wo
wU

�
� �

�
�ĞQQ ĞQo ĞQU

ĞoQ Ğoo ĞoU
ĞUQ ĞUo ĞUU

�
�
�
�wQ

wo
wU

�
�� H̃

�
�ξ̃Qξ̃o
ξ̃U

�
� . (3.15)

By denoting �
Ȟ13

Ȟ23

�
:�

�
H̃13H̃

�1
33

H̃23H̃
�1
33

�
(3.16)

and premultiplying (3.15) with �
�I 0 �Ȟ13

0 I �Ȟ23

0 0 I

�
� (3.17)

while only keeping the identity terms on the left hand side, we obtain an
equivalent network equation:

�
�wQ

wo
wU

�
��

�
�Ğ1

QQ Ğ1
Qo Ğ1

QU

Ğ1
oQ Ğ1

oo Ğ1
oU

ĞUQ ĞUo ĞUU

�
�
�
�wQ

wo
wU

�
��

�
�H̃ 1

11 H̃ 1
12 0

H̃ 1
21 H̃ 1

22 0

H̃31 H̃32 H̃33

�
�
�
�ξ̃Qξ̃o
ξ̃U

�
�, (3.18)

with

Ğ1
QU � ĞQU � Ȟ13ĞUU � Ȟ13 (3.19)

Ğ1
Q� � ĞQ� � Ȟ13ĞU� (3.20)

Ğ1
o� � Ğo� � Ȟ23ĞU� (3.21)

Ğ1
oU � ĞoU � Ȟ23ĞUU � Ȟ23 (3.22)

H̃ 1
1� � H̃1� � Ȟ13H̃3� (3.23)

H̃ 1
2� � H̃2� � Ȟ23H̃3�. (3.24)

where � P tQY touu and � P t1, 2u.

The next step is now to show that that the block elements Ğ1
Qo and Ğ1

oo in G can be
made 0. This can be done by variable substitution as follows:

The second row in (3.18) is replaced by an explicit expression for wo according to

wo � p1� Ğ1
ooq�1rĞ1

oQwQ � Ğ1
oUwU � H̃ 1

21ξ̃Q � H̃ 1
22ξ̃os.
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Additionally, this expression for wo is substituted into the first block row of (3.18),
to remove the wo-dependent term on the right hand side, leading to

�
�wQ

wo
wU

�
��

�
�Ğ2

QQ 0 Ğ2
QU

ḠoQ 0 ḠoU
ĞUQ ĞUo ĞUU

�
�
�
�wQ

wo
wU

�
��
�
�H̃2

11 H̃2
12 0

H̃2
21 H̃2

22 0

H̃31 H̃32 H̃33

�
�
�
�ξ̃Qξ̃o
ξ̃U

�
� (3.25)

with

Ḡo� � pI � Ğ1
ooq�1Ğ1

o� (3.26)
H̃2

2� � pI � Ğ1
ooq�1H̃ 1

2� (3.27)
Ğ2

Q� � Ğ1
Q� � Ğ1

QoḠo� (3.28)

H̃2
1� � H̃ 1

1� � Ğ1
QoH̃

2
2�. (3.29)

Since because of these operations, the matrix Ğ2
QQ might not be hollow, we move

any diagonal terms of this matrix to the left hand side of the equation, and
premultiply the first (block) equation by the diagonal matrix pI � diagpĞ2

QQqq�1,
to obtain the expression

�
�wQ

wo
wU

�
��

�
�ḠQQ 0 ḠQU

ḠoQ 0 ḠoU
ĞUQ ĞUo ĞUU

�
�
�
�wQ

wo
wU

�
��
�
�H̃3

11 H̃3
12 0

H̃2
21 H̃2

22 0

H̃31 H̃32 H̃33

�
�
�
�ξ̃Qξ̃o
ξ̃U

�
� (3.30)

with

ḠQQ � pI � diagpĞ2
QQqq�1pĞ2

QQ � diagpĞ2
QQqq, (3.31)

ḠQU � pI � diagpĞ2
QQqq�1Ğ2

QU (3.32)

H̃3
1� � pI � diagpĞ2

QQqq�1H̃2
1�. (3.33)

As final step, we need the matrix H̃r :�
�
H̃3

11 H̃3
12

H̃2
21 H̃2

22

�
to be monic, stable and

minimum phase to obtain the representation as in (3.3). To that end, we consider
the stochastic process ṽY :� H̃r ξ̃Y with ξ̃Y :� �

ξ̃JQ ξ̃Jo
�J

. The spectral density of ṽY
is then given by ΦṽY � H̃rΛ̃YH̃

�
r with Λ̃Y the covariance matrix of ξ̃Y , that can be

decomposed as Λ̃Y � Γ̃rΓ̃
T
r . From spectral factorization [150] it follows that the

spectral factor H̃rΓ̃r of ΦṽY satisfies

H̃rΓ̃r � H̄sD (3.34)

with H̄s a stable and minimum phase rational matrix, and D an “all pass” stable
rational matrix satisfying DD� � I .
The signal ṽY can then be written as

ṽY � H̃r ξ̃Y � H̄sDΓ̃�1
r ξ̃Y .
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By defining H̄8
s :� limzÑ8 H̄s, this can be rewritten as

ṽY � H̃r ξ̃Y � H̄spH̄8
s q�1looooomooooon
H̄

H̄8
s DΓ̃�1

r ξ̃Ylooooomooooon
ξY

.

As a result, H̄ is a monic stable and stably invertible rational matrix, and ξY is a
white noise process with spectral density given by H̄8

s DΓ̃�1
r Φξ̃Y Γ̃�Tr D�pH̄8

s qT �
H̄8
s pH̄8

s qT . Therefore we can write (3.30) as,�
�wQ

wo
wU

�
��

�
�ḠQQ 0 ḠQU

ḠoQ 0 ḠoU
ĞUQ ĞUo ĞUU

�
�
�
�wQ

wo
wU

�
��
�
�H̄11 H̄12 0
H̄21 H̄22 0

H̄31 H̄32 H̃33

�
�
�
�ξQξo
ξ̃U

�
� (3.35)

where
�
H̄31 H̄32

� � �
H̃31 H̃32

�
Γ̃rD

�1pH̄8
s q�1. Let

rH̄ 1
31 H̄ 1

32s � rH̄31 H̄32s
�
H̄11 H̄12

H̄21 H̄22

��1

. Pre-multiplying (4.36) with�
� I 0 0

0 I 0
�H̄ 1

31 �H̄ 1
32 I

�
� while only keeping the identity terms on the left hand side,

we obtain an equivalent network equation:�
�wQ

wo
wU

�
��

�
�ḠQQ 0 ḠQU

ḠoQ 0 ḠoU
Ğ1

UQ Ğ1
Uo Ğ1

UU

�
�
�
�wQ

wo
wU

�
��
�
�H̄11 H̄12 0
H̄21 H̄22 0

0 0 H̃33

�
�
�
�ξQξo
ξ̃U

�
� (3.36)

where Ğ1
UQ � ĞUQ � H̄ 1

31Ğ
3
QQ � H̆ 1

32Ḡ
2
oQ � H̄ 1

31, Ğ1
Uo � ĞUo � H̄ 1

32 and Ğ1
UU � ĞUU �

H̄ 1
31Ğ

3
QU � H̄ 1

32Ğ
2
oU . In order to make Ğ1

UU hollow, we move any diagonal terms of
this matrix to the left hand side of the equation, and pre-multiply the third (block)
equation by the diagonal matrix pI � diagpĞ1

UUqq�1. This will modify (3,3) (block)
element of the H matrix to pI � diagpĞ1

UUqq�1H̃33, which we need to be monic,
stable and stably invertible. Applying spectral factorization as before [150], we
can write the term pI � diagpĞ1

UUqq�1H̃33ξ̃U as H̄33ξU where H̄33 is monic, stable
and stably invertible and ξU is a white noise process with covariance Λ33. This
completes the proof for obtaining (3.3).

The absence of confounding variables for the estimation problem wU Ñ wY can be
proved as follows. Since all non-measured nodes wZ are removed in the network
represented by (3.3), the only non-measured signals in the network are the noise
signals in ξm and they do not have any unmeasured paths to any nodes in the
network (i.e. to wm). Due to the block-diagonal structure of H̄m in (3.3), the only
non-measured signals that have direct paths to wU originate from ξU , while the
only non-measured signals that have direct paths to wY originate from rξTQ ξosT .
Therefore there does not exist an element of ξm that has simultaneous unmeasured
paths or direct paths to both wU and wY . 2
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3.B Proof of Theorem 3.1

In order to prove Theorem 3.1, we first present three preparatory Lemmas.

Lemma 3.1 Consider a dynamic network as defined in (3.2), a vector eX of
white noise sources withX � L, and two subsets of nodeswΦ andwΩ, Φ,Ω �
LzZ . If in eX there is no confounding variable for the estimation problem
wΦ Ñ wΩ, then

H̆ΩXH̆
�
ΦX � H̆ΦXH̆

�
ΩX � 0,

where H̆ΩX , H̆ΦX are the noise model transfer functions in the immersed
network (3.11) related to the appropriate variables.

Proof: If in eX there is no confounding variable for the formulated estimation
problem, then for all ex, x P X there do not exist simultaneous paths from ex to
wΦ and wΩ, that are direct or pass through nodes in Z only.
For the network where signals wZ are immersed, it follows from (3.13), that H̆k` �
Hk` � GkZpI � GZZq�1HZ` where k P Φ and ` P X . The first term in the sum (i.e.
Hkl) is the noise model transfer in the direct path from e` towk and the second part
of the sum is the transfer function in the unmeasured paths (i.e. paths through wZ

only) from e` to wk. If all paths from a node signal ex to wΦ pass through a node
in wLzZ , then there are no direct or unmeasured paths from ex to nodes in wΦ.
This implies that H̆kx � H̆�

kx � 0 for all k P Φ (i.e H̆Φx � 0). A dual reasoning
applies to paths from ex to wΩ. Consider eX � rex1

ex2
. . . exnsJ. Then we

have H̆ΦXH̆
�
ΩX � H̆Φx1H̆

�
Ωx1

� � � � � H̆ΦxnH̆
�
Ωxn

. If the condition in the lemma is
satisfied, implying that there do not exist simultaneous paths, then in each of the
product terms we either have H̆Φxk � 0 or H̆�

Ωxk
� 0 where k � t1, 2, . . . , nu. This

proves the result of lemma 3.1. 2

Lemma 3.2 Consider a dynamic network as defined in (3.11) with target
module Gji, where the non-measured node signals wZ are immersed, while
the node sets to,Q,Uu are chosen according to the specifications in Section
3.4.
Then Ḡji is given by the following expressions:

If i P Q : Ḡji�pI�Ğjj � Ȟj3ĞUjq�1pĞji�Ȟj3ĞUiq (3.37)

If i P U : Ḡji�pI�Ğjj�Ȟj3ĞUjq�1pĞji�Ȟj3ĞUi�Ȟjiq (3.38)

where Ȟj3 is the row vector corresponding to the row of node signal j in Ȟ13

(if j P Q) or in Ȟ23 (if j P o), and Ȟji is the element corresponding to the
column of node signal i in Ȟj3.

Proof: For the target module Gji we have the following cases that can occur:

1. j � o and i P U . From (3.26) we have Ḡji � pI � Ğ1
jjq�1Ğ1

ji where Ğ1
jj is

given by (3.21) and Ğ1
ji is given by (3.22). This directly leads to (10.52).
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2. j � o and i P Q. From (3.26) we have Ḡji � pI � Ğ1
jjq�1Ğ1

ji where Ğ1
jj and

Ğ1
ji are given by (3.21), leading to (10.51).

3. j P Q, o is void and i P U . From (4.31) we have Ḡji � pI � Ğ2
jjq�1Ğ2

ji where
Ğ2
jj and Ğ2

ji are given by (4.25). Since o is void, (4.25) leads to G2
Q� � Ğ1

Q�.
Therefore Ğ2

jj � Ğ1
jj which is specified by (3.20), and Ğ2

ji � Ğ1
ji which is

given by (3.19). This leads to (10.52).

4. j P Q, o is void and i P Q. Since j � i it follows from (4.30) that Ḡji �
pI � Ğ2

jjq�1Ğ2
ji where Ğ2

jj and Ğ2
ji are given by (4.25). Since o is void, (4.25)

leads to G2
Q� � Ğ1

Q�. Therefore for this case, Ğ2
jj � Ğ1

jj and Ğ2
ji � Ğ1

ji, which
are given by (3.20). This leads to (10.51).

Lemma 3.3 Consider a dynamic network as defined in (3.11) where the
non-measured node signals wZ are immersed, and let U be decomposed in
sets A and B satisfying Condition 3.2. Then the spectral density Φv̆ has the
unique spectral factorization Φv̆ � H̃ΛH̃� with Λ constant and H̃ monic,
stable, minimum phase, and of the form

Λ�

�
���

Λ11 Λ12 Λ13 0
Λ21 Λ22 Λ23 0
Λ31 Λ32 Λ33 0
0 0 0 Λ44

�
��� , H̃�

�
���
H̃11 H̃12 H̃QB 0

H̃21 H̃22 H̃oB 0

H̃BQ H̃Bo H̃BB 0

0 0 0 H̃AA

�
��� , (3.39)

where the block dimensions are conformable to the dimensions of wQ, wo, wB

and wA respectively.

Proof: On the basis of (3.11) we write wU � rwJ
B wJ

A sJ and

v̆ � H̆

�
�����
eQ
eo
eB
eA
eZ

�
����� �

�
���
H̆QQ H̆Qo H̆QB H̆QA H̆QZ

H̆oQ H̆oo H̆oB H̆oA H̆oZ

H̆BQ H̆Bo H̆BB H̆BA H̆BZ

H̆AQ H̆Ao H̆AB H̆AA H̆AZ

�
���
�
�����
eQ
eo
eB
eA
eZ

�
����� (3.40)

with covpeq � I and the components of H̆ as specified in (3.13). Starting from
the expression (4.38), the spectral density Φv̆ can be written as H̆H̆� while it is
denoted as

Φv̆ �

�
���

Φv̆Q Φv̆Qv̆o Φv̆Qv̆B Φv̆Qv̆A
Φ�
v̆Qv̆o

Φv̆o Φv̆ov̆B Φv̆ov̆A
Φ�
v̆Qv̆B

Φ�
v̆ov̆B

Φv̆B Φv̆Bv̆A
Φ�
v̆Qv̆A

Φ�
v̆ov̆A

Φ�
v̆Bv̆A

Φv̆A

�
��� . (3.41)
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In this structure we are particularly going to analyse the elements

Φv̆Qv̆A �H̆QQH̆
�
AQ � H̆QoH̆

�
Ao � H̆QBH̆

�
AB � H̆QAH̆

�
AA � H̆QZH̆

�
AZ

Φv̆ov̆A �H̆oQH̆
�
AQ � H̆ooH̆

�
Ao � H̆oBH̆

�
AB � H̆oAH̆

�
AA � H̆oZH̆

�
AZ

Φv̆Bv̆A �H̆BQH̆
�
AQ � H̆BoH̆

�
Ao � H̆BBH̆

�
AB � H̆BAH̆

�
AA � H̆BZH̆

�
AZ

(3.42)

If A and B satisfy Condition 3.2, then none of the white noise terms ex, x P L
will be a confounding variable for the estimation problems wA Ñ wQ, wA Ñ wo or
wA Ñ wB. Then it follows from Lemma 3.1 that all of the terms in (3.42) are zero.
As a result we can write the spectrum in equation (3.41) as,

Φv̆ �

�
���

Φv̆Q Φv̆Qv̆o Φv̆Qv̆B 0
Φ�
v̆Qv̆o

Φv̆o Φv̆ov̆B 0

Φ�
v̆Qv̆B

Φ�
v̆ov̆B

Φv̆B 0

0 0 0 Φv̆A

�
��� (3.43)

Then the spectral density Φv̆ has the unique spectral factorization [150]

Φv̆ �
�
F11Λ1F

�
11 0

0 F22Λ2F
�
22

�
� H̃ΛH̃� (3.44)

where H̃ is of the form in (4.37), and monic, stable and minimum phase. 2

Next we proceed with the proof of Theorem 3.1.

With Lemma 10.4 it follows that Ḡji is given by either (10.51) or (10.52). For
analysing these two expressions, we first are going to specify Ğji and Ğjj . From
(3.12), we have

Ğji � Gji �GjZpI �GZZq�1GZi (3.45)

Ğjj � Gjj �GjZpI �GZZq�1GZj , (3.46)

where the first terms on the right hand sides reflect the direct connections from
wi to wj (respectively from wj to wj) and the second terms reflect the connections
that pass only through nodes in Z . By definition, Gjj � 0 since the G matrix in
the network in (3.2) is hollow. Under the parallel path and loop condition 3.1, the
second terms on the right hand sides of (4.65), (4.66) are zero, so that Ğji � Gji
and Ğjj � 0.

What remains to be shown is that in (10.51) and (10.52), it holds that

Ȟj3ĞUj � Ȟj3ĞUi � 0 (3.47)

while additionally for i P U , it should hold that

Ȟji � 0. (3.48)

With definition (3.16) for Ȟ and the special structure of H̃13 and H̃23 in (3.14) that
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is implied by the result (4.37) of Lemma 3.3, we can write

�
Ȟ13

Ȟ23

�
�

�
H̃QB 0

H̃oB 0

� �
H̃BB 0

0 H̃AA

��1

�
�
ȞQB 0
ȞoB 0

�
, (3.49)

implying that columns in this matrix related to inputs k P A are zero.
In order to satisfy (4.68) we need the condition that: if i P U then i P A. This is
equivalently formulated as i P QYA (conditon 2b).
In order to satisfy (4.67) we note that Ȟj3 is a row vector, of which the second
part (the columns related to signals in A) is equal to 0, according to (4.40).
Consequently, (4.67) is satisfied if for every k P B it holds that Ğkj � Ğki � 0. On
the basis of (3.12), this condition is satisfied if for every wk P wB there do not exist
direct or unmeasured paths from wi to wk and from wj to wk (condition 2c). 2

3.C Proof of Theorem 3.2

Expression (3.4) can be written as

wY � ḠowD � H̄oξY .

Substituting this into the expression for the prediction error (4.5), leads to

εpt, θq :� H̄pq, θq�1
�
∆Ḡpq, θqwD �∆H̄pq, θqξY

�� ξY (3.50)

where ∆Ḡpq, θq � Ḡo � Ḡpq, θq and ∆H̄pq, θq � H̄o � H̄pq, θq. The proof of
consistency involves two steps.

1. To show that EεT pt, θqWεpt, θq achieves its minimum for ∆Ḡpθq � 0 and
∆H̄pθq � 0,

2. To show the conditions under which the minimum is unique.

Step 1: With Proposition 3.1 it follows that our data generating system can always
be written in the form (3.3), such that wm � T pqqξm. We denote T1 as the matrix
composed of the first and third (block) row of T , such that wD � T1pqqξm.
Substituting this into (4.43) gives

εpt, θq :� H̄pq, θq�1
�
∆Ḡpq, θqT1 �

�
∆H̄pθq 0

��
ξm � ξY ,

where ξm is (block) structured as rξJY ξJU sJ.
In order to prove that the minimum of Ē

�
εT pt, θqWεpt, θq� is attained for ∆Ḡpθq �

0 and ∆H̄pθq � 0, it is sufficient to show that
�
∆ḠpθqT1pqq �

�
∆H̄pθq 0 0

��
ξmptq (3.51)

is uncorrelated to ξYptq. In order to show this, let Fn � UzF , with F as defined in
the Theorem, while we decompose ξm according to ξm � rξJY ξJF ξJFnsJ. Using
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a similar block-structure notation for ∆Ḡ, T and ∆H̄ , (4.46) can then be written as�
∆ḠYQpθqTQY �∆ḠYFpθqTFY �∆ḠYFnpθqTFnY �∆H̄YYpθq

�
ξY�

� �
∆ḠYQpθqTQF �∆ḠYFpθqTFF �∆ḠYFnpθqTFnF

�
ξF

� �
∆ḠYQpθqTQFn �∆ḠYFpθqTFFn �∆ḠYFnpθqTFnFn

�
ξFn .

(3.52)

Since, by definition, ξFnptq is statically uncorrelated to ξYptq, the ξFn -dependent
term in (4.47) cannot create any static correlation with ξYptq. Then it needs to be
shown that the ξY- and ξF -dependent terms in (4.47) all reflect strictly proper
filters. i.e. that they all contain at least a delay.
∆H̄pθq is strictly proper since both H̄pθq and H̄o are monic. Therefore, ∆H̄YYpθq
will have at least a delay in each of its transfers.
If all paths from wYYF to wY in the transformed network and in its parameterized
model have at least a delay (as per Condition c in the theorem), then all terms
∆ḠYQpθq and ∆ḠYFpθq will have a delay.
We then need to consider the two remaining terms, ∆ḠYFnpθqTFnY and
∆ḠYFnpθqTFnF . From the definition of ∆ḠYFnpθq, each of the two terms can be
represented as the sum of two terms. ḠYFnTFnY and ḠYFnTFnF represent paths
from wY to wY and from wF to wY respectively in the transformed network. Whereas,
ḠYFnpθqTFnY and ḠYFnpθqTFnF is partly induced by the parameterized model and
partly by the paths from wY to wFn and from wF to wFn respectively in the
transformed network. According to condition c of the theorem (delay conditions),
these transfer functions are strictly proper. This implies that (4.47) is statically
uncorrelated to ξYptq. Therefore we have,
Ē
�
εT pt, θqWεpt, θq� � Ē r||∆Xpθqξm||W s � Ē

�
ξJY WξY

�
where

∆Xpθq � H̄pθq�1
�
∆ḠpθqT1pqq �

�
∆H̄pθq 0 0

��
. As a result, the minimum of

Ē
�
εT pt, θqWεpt, θq�, which is Ē

�
ξJY WξY

�
, is achieved for ∆Ḡpθq � 0 and

∆H̄pθq � 0.

Step 2: When the minimum is achieved, we have Ē r||∆Xpθqξm||W s to be zero.

From (4.43), we have ∆Xpθqξm � H̄pq, θq�1
��

∆Ḡpq, θq ∆H̄pq, θq� �wJ
D ξJY

�J�
.

Using the expression of ξo from (3.4) and substituting it in the expression of
∆Xpθqξm we get,
∆Xpθqξm � H̄pq, θq�1

��
∆Ḡpq, θq ∆H̄pq, θq� Jκptq� � ∆xpθqJκptq where,

J�
�
� I 0 0

0 I 0
�pH̄ooq�1ḠoD �pH̄ooq�1H̄oQ pH̄ooq�1

�
�; ḠJ

oD�
�
ḠJ
oQ

ḠJ
oU

�
.

Writing Ē r||∆Xpθqξm||W s � Ē r||∆xpθqJκptq||W s � 0 using Parseval’s theorem in
the frequency domain, we have

1

2π

» π
�π

∆xpejω, θqJJΦκpωqJ�∆xpe�jω, θqdω � 0. (3.53)

The standard reasoning for showing uniqueness of the identification result is to
show that if Ē r||∆Xpθqξm||W s equals 0 (i.e. when the minimum power is
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achieved), this should imply that ∆Ḡpθq � 0 and ∆H̄pθq � 0. Since J is full rank
and positive definite, the above mentioned implication will be fulfilled only if
Φκpωq ¡ 0 for a sufficiently high number of frequencies. On condition 2 of
Theorem 3.2 being satisfied along with the other conditions in Theorem 1, it
ensures that the minimum value is achieved only for Ḡpθq � Ḡ0 and H̄pθq � H̄0.
2

3.D Proof of Proposition 3.2

The disturbances in the original network are characterized by v̆ (3.11). From the
results of Lemma 3.3, we can infer that the spectral density Φv̆ has the unique
spectral factorization Φv̆ � H̃ΛH̃� where H̃ is monic, stable, minimum phase,
and of the form given in (4.37). Together with the form of Λ in (4.37) it follows
that ξA is uncorrelated with ξY . As a result, the set A satisfies the properties of
Fn, so that in Condition c we can replace F by B. What remains to be shown is
that the delay in path/loop conditions in the transformed network (3.4) can be
reformulated into the same conditions on the original network (3.2). To this end
we will need two Lemma’s.

Lemma 3.4 Consider a dynamic network as dealt with in Theorem 3.2, with
reference to eq. (3.4), where a selection of node signals is decomposed into
setsD � QYU , Y � QYtou, and which is obtained after immersion of nodes
in Z . Let i be any element i P Y Y U , and let k be any element k P Y .
If in the original network the direct path, as well as all paths that pass through
non-measured nodes only, from wi to wk have a delay, then Ḡki is strictly
proper.

Proof: We will show that Ḡki is strictly proper if all paths from wi to wk have a
delay. For any k P Y , i P D, Ḡki is given by either (10.51) or (10.52) with j � k. The
situation that is not covered by (10.51), (10.52) is the case where i � tou, but from
(3.30) it follows that Ḡko � 0, for k P Y . So for this situation strictly properness is
guaranteed.
We will now use (10.51) and (10.52) for j given by any k P Y . In (10.51) and (10.52),
it will hold that Ȟk3 is given by the appropriate component of (3.16), which, by
the fact that (3.14) is monic, will imply that Ȟk3 is strictly proper. By the same
reasoning this also holds for Ȟki.
From (10.51) and (10.52) it then follows that strictly properness of Ḡki follows from
strictly properness of Ğki if the inverse expression pI�Ğkk�Ȟk3ĞUkq�1 is proper.
This latter condition is guaranteed by the fact that Ȟk3 is strictly proper and Ğkk
and pI� Ğkkq�1 are proper as they reflect a module and network transfer function
in the immersed network [141, 149]. Finally, strictly properness of Ğki follows
from strictly properness of Gki and the presence of a delay in all paths from wi to
wk that pass through unmeasured nodes.
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Lemma 3.5 Consider the transformed network and let j, k be any elements
j, k P Y Y U . If in the original network all paths from wk to wj have a delay,
then all paths from wk to wj in the transformed network have a delay.

Proof: This is proved using the Lemma 3 in [124] and Lemma 3.4. Let Ḡp8q denote
limzÑ8 Ḡpzq. From Lemma 3.4 we know Ḡjk is strictly proper if all paths from wk
to wj in the original network have a delay. Therefore,

Ḡmp8q �
�� 0
� �

�
, (3.54)

where the 0 represents Ḡjkp8q. Using inverse rule of block matrices we have,

pI � Ḡmp8qq�1 �
�� 0
� �

�
(3.55)

Considering (3.3) we can write wm � Ḡmwm � vm where vm � H̄mξm. So have
wm � pI � Ḡmq�1vm where pI � Ḡmq�1 represents the transfer from vm to wm.
Having 0 in (3.55) represents that the transfer function from vk to wj has a delay.
Since vk has path only to wk with unit transfer function, wk to wj has a delay. 2

We now look into the proof of Proposition 3.2. For this we need to generalize the
result we have achieved in Lemma 3.5 in terms of scalar node signals to set of
node signals. If all existing paths/loops from wYYF to wY in the original network
have at least a delay, then all existing paths/loops from wk, k P Y Y F to wj , j P
Y in the original network have at least a delay. If all existing paths/loops from
wk, k P Y Y F to wj , j P Y in the original network have at least a delay, then as
a result of Lemma 3.5, all existing paths/loops from wk, k P Y Y F to wj , j P Y
in the transformed network have at least a delay. This implies that all existing
paths/loops from wk, k P Y Y F to wj , j P Y in the transformed network have at
least a delay. Following the above reasoning, we can also show that if all existing
paths from wYYF to wk, k P Fn in the original network have at least a delay, all
existing paths from wYYF to wk, k P Fn in the transformed network have at least a
delay.





4 CHAPTER

A Generalized method for flexible
signal selection

For the problem of identifying a target module that is embedded in
a dynamic network with known interconnection structure, different

sets of conditions are available for the set of node signals to be measured
and the set of excitation signals to be applied at particular node locations.
In previous work these conditions have typically been derived from
either an indirect identification approach, considering external excitation
signals as predictor inputs, or from a direct identification approach,
considering measured node signals as predictor inputs. While both
approaches lead to different sets of (sufficient) conditions, in this chapter
we extend the flexibility in the sufficient conditions for selection of
excitation and measured node signals, by combining both direct and
indirect approaches. As a result we will show the benefits of using both
external excitation signals and node signals as predictor inputs. The
provided conditions allow us to design sensor selection and actuation
schemes with considerable freedom for consistent identification of a
target module.

4.1 Introduction

An important condition in the works that use the direct method [124], [29], [30],
[104] is that all parallel paths from the input of the target module to its output

This chapter is based on the preliminary work: K.R. Ramaswamy, P.M.J. Van den Hof and A.G.
Dankers, “Generalized sensing and actuation schemes for local module identification in dynamic
networks", in Proc. 58th IEEE Conf. Decision and Control (CDC), Nice, France, 11-13 December 2019,
pp. 5519-5524.
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and all loops through the output node should pass through a measured node
signal that is included as a predictor input (see Condition 3.1 in Chapter 3). This
requirement ensures that the identified module after immersion of the
non-measured nodes converges to the target module. However, in practical
situations, there can be parallel paths and loops that might have all nodes
non-measured. This creates a restriction for the selection of measured node
signals and application of the direct method.

In the indirect method as in [54], [7], external excitation signals are used as
predictor inputs for an open loop MIMO identification problem. These methods
involve two steps: (1) First obtain consistent estimates of a transfer function from
external excitation signals to measured node signals; (2) Using these estimates to
obtain consistent estimates of the target module (we call this step post-processing).
However, since they rely on external excitation signals, the indirect methods
have restrictive conditions on requirement of external excitation signals.

In the work of this chapter, we increase the flexibility in the sufficient conditions
for the selection of excitation and measured node signals for consistent target
module estimates and thereby generalize the sensing and actuation schemes. We
relax the above-discussed condition on the parallel paths and loops around the
output node. This relaxation in the condition is achieved by combining elements
of both direct and indirect approaches. We use both the node signals and external
excitation signals as predictor inputs (element of direct method) and allow
post-processing of module estimates (element of indirect method), thereby
mixing both direct and indirect methods. The provided conditions allow us to
design sensor selection and actuation schemes with considerably more freedom
for consistent identification of a target module.

4.2 Motivating example

In this section, we highlight the motivation of the work in this chapter using a
suitable example. In Chapter 2 of this thesis, it has been shown that we can
identify a target module G0

ji consistently provided that we choose the selection
of predictor input signals to satisfy particular conditions. One of the main
conditions is the parallel path/loop Condition 2.1. When this condition is
satisfied, using a MISO identification setup with wj as predicted output and wDj

as predictor inputs, the MISO direct method as discussed in Section 2.5.1 provides
a consistent estimate of the target module, if in addition there are no
confounding variables for the estimation problem wDj Ñ wj . In [30] additional
conditions have been formulated for the selection of Dj so as to avoid the
presence of confounding variables, typically by choosing additional predictor
inputs defined by the set Bj � LztDj Y tjuu. This situation has been analyzed for
the case where all disturbance signals v are mutually uncorrelated, i.e. its
spectral density Φv being diagonal. In this situation it is still required that Dj
satisfies condition 2.1. This restrictive condition is required for the target module
in the dynamic network to be invariant in an immersed network where all
non-measured signals are being removed [29].
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Figure 4.1: Example network

Example 4.1 Consider a dynamic network as represented in Figure 4.1 with
all noises in v uncorrelated with each other i.e. Φv is diagonal. For
identifying the target module G21 (in green box), we have j � 2, and in
order to satisfy condition 2.1 we need Dj � t1, 3, 5u where w3 is included to
block the parallel path from w1 to w2, and w5 is included to block the loop
through w2. Using this set of measured nodes, we arrive at an immersed
network after removing the non-measured node as in Figure 4.2. We can
observe that the module between w1 and w2 (the green box) is G21 and
remains invariant.

Figure 4.2: Immersed network of network in Figure 4.1 [29] where the
nonmeasured node w4 has been removed (immersed), and where ṽ2 � v2�G24v4.

If w3 and w5 are not selected in Dj , and so Dj � t1u, we arrive at an immersed
network after removing all non-measured nodes, as depicted in Figure 4.3. We
can now observe that the dynamic module between w1 and w2 (the green box in
Figure 4.3) is not equal toG21. The termsG1

23G31 and p1�G25G52q�1 are due to the
fact that in this situation the parallel path and loop condition 2.1 is not satisfied.
In the work of this chapter we are going to relax the restrictive condition 2.1 and
increase the freedom in the selection of measured node signals.

For the approach based on the indirect identification method, in [54] a method
has been presented to identify a target module using external signals as predictor
inputs, along the following reasoning.
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Figure 4.3: Immersed network of network in figure 4.1[29] where the non-
measured nodes w3, w4, w5 have been removed (immersed), and where
G1

23 � pG23 � G24G43q, ṽ1 � p1 � G31G13q�1pv1 � G13v3q and ṽ2 � p1 �
G25G52q�1 pv2 � pG23 �G24G43qv3 �G24v4 �G25v5q.

Proposition 4.1 (from [54]) In order to identify a target module Gji, perform
the following experiment:

1. Excite node wi and all its out-neighbors with sufficiently rich signals.
Include these excitation signals as predictor inputs;

2. Measure the out-neighbors of wi. Include them as predicted outputs.

Under these conditions and using full order models for the elements of T
(where T relates the r signals to node signals, see Chapter 2), consistent
estimates T̂N�

i N�
i

, T̂N�
i i

of T̄N�
i N�

i
and T̄N�

i i
can be obtained using an open

loop MIMO identification method as given in Section 2.5.2. Then a
consistent estimate of ĜN�

i i
(which includes the target module) is obtained

by,

ĜN�
i i
� rT̂N�

i N�
i
s�1T̂N�

i i
2 (4.1)

A dual of this proposition with w-in-neighbors of wj , replacing the w-out
neighbors of wi, is also provided in [54] (provided in Section 2.5.2 of this thesis).
It can be observed that a consistent estimate of the target module is obtained
from consistent estimates of elements of T . We will refer to this step (4.1) of
manipulating identified objects, as post-processing. Considering the earlier
Example 4.1, we can now consistently identify our target module using an open
loop MIMO identification setup with tr1, r2, r3u as inputs and tw2, w3u as
outputs. However this requires restrictive conditions on the nodes to be excited
and nodes to be measured, i.e. measured excitation signals r1, r2, r3. Further
relaxations of these restrictive conditions on excitation and measured node
signals will be addressed in the sequel.
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4.3 Illustration of the Generalized method

In this section we illustrate the developed method in this chapter with suitable
examples. In the work of this chapter, we combine the ideas of both the direct
and indirect method such that we increase flexibility in the selection of excitation
and measured node signals, and exploit all excitations. We use both the measured
node signals as well as the excitation signals as predictor inputs. In addition to
that, we do not restrict to the situation of invariance of our target module after
immersion as in the direct method, but use the mechanism of post-processing from
the indirect method to consistently identify the target module.

Example 4.2 We now consider the same network as in Example 4.1 but
with two constraints: (a) it is not possible to measure w3 and w5; (b) it is not
possible to excite node w1. It can be inferred that it is not possible to
consistently estimate Gji � G21 using the direct method due to constraint
(a). Similarly due to constraint (b), it is not possible with the indirect
method either.

As shown in Example 4.1, if we do not measure w3 and w5 our target
module changes to p1 � G25G52q�1pG21 � G23G31q in the immersed
network. However, we can see that this module also contains the target
module of interest G21. Therefore we might extract the target module from
this term if we know (or) find the other contributions.

Consider the situation that we excite node w3 and measure node w4. After
immersing the non-measured nodes (see Chapter 2 on immersion) we end
up in a dynamic network setup as in Figure 4.4. Now consider the
identification problem tw1, w4, r2, r3u Ñ tw2, w4u. We can infer the
following from the figure:

1. Identifying the transfer from r3 Ñ w4 provides G43 and the transfer
from w1 Ñ w4 provide G43G31. Thus we can identify G31;

2. The transfer from r3 Ñ w2 provides p1 � G25G52q�1G23. The term
p1�G25G52q�1 is due to the fact that in the original network there is a
loop around w2 which is not “blocked" by a measured node. This term
given by the transfer from r2 Ñ w2. As a result, we can obtain G23.

3. The term G23G31 is due to the fact that in the original network there is
a path from w1 to w2 through w3 which is not “blocked" by a measured
node. Knowing G23 and G31 from the above two steps, we obtain the
term G23G31. We also have p1 � G25G52q�1. Eventually we obtain
our target module of interest from the transfer w1 Ñ w2 (i.e. p1 �
G25G52q�1pG21 �G23G31q).

This shows that we can consistently identify the target module G21 if we
know or could consistently identify the transfer from
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tw1, w4, r2, r3u Ñ tw2, w4u. In order to achieve this we move to a MIMO
identification problem using the prediction error method with tw2, w4u as
predicted outputs and tw1, w4, r2, r3u as predictor inputs.

Remark 4.1 The excitation r2 at the output node is required as predictor
input since the loops through wj are not blocked by a measured node.
However we can still relax this under certain conditions, which will be
elaborated upon in this chapter.

Remark 4.2 The consistency results will still require some excitation
conditions, which will be specified later on.

Figure 4.4: Immersed network of network in Figure 4.1 where the nonmeasured
nodesw3,w5 have been removed (immersed), and where ṽ1 � p1�G31G13q�1pv1�
G13v3q, ṽ2 � p1�G25G52q�1 pv2 �G23v3 �G25v5q and ṽ4 � v4 �G43v3.

In the previous chapter, we saw that the confounding variable for an estimation
problem can be handled by adding either predicted outputs or predictor inputs.
In the same way, we can handle the confounding variables that occur for the
estimation problem in this chapter as well. We can observe from Figure 4.4 that
the noise at predictor input w1 and at predicted outputs w2, w4 are correlated due
to v3. This is due to the fact that in the original network, v3 (in turn e3) has
simultaneous paths to w1 and w2 (also w1 and w4), while these paths run through
the unmeasured node w3. Therefore e3, which is a confounding variable, creates
noise correlation between predictor inputs and predicted outputs. When using
the prediction error framework with the MIMO setup as explained above (i.e.
with tw2, w4u as predicted outputs), we only model the noise from
te2, e4u Ñ tw2, w4u but not from the confounding variable e3. This leads to a
lacking consistency property of the identified modules, as described in Chapter
3. If we also predict w1 (include it also as predicted output), we now model the
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noise from e3 as well. This leads to consistent estimates. Therefore for Example 2,
we need the MIMO identification setup tw1, w4, r2, r3u Ñ tw1, w2, w4u.
From the discussed example, we can now conjecture the following generalization:

1. Violating the parallel path condition can be handled by exciting a node in
the parallel path, including the excitation signal in the predictor input, and
by measuring a descendant node from the excited node, different from the
output and need not belong to the parallel path, and by including this
descendant node in the predicted output;

2. Violating the loop condition can be handled by either

• exciting the output node and including the excitation signal in the
predictor input; or
• exciting a node in the loop, including the excitation signal in the

predictor input, and by measuring a descendant node from the excited
node, different from the output and need not belong to the loop, and
by including this descendant node in the predicted output;

3. Confounding variables can be handled by including measured nodes as
predicted outputs1.

Remark 4.3 In handling the parallel path condition it will appear that we
actually have to add one additional constraint (see Property 4.1 later on).
If the mentioned descendant node is the input of the target module, then
this node needs to be excited with an external signal, which is included as
predictor input.

Remark 4.4 If we consider again Example 4.1 in Figure 4.1, then the parallel
path problem that occurs whenw3 can not be measured, can be compensated
for by measuring a descendant from w3, which in this case could also be w1.
Since w1 is the input of the target module, the previous remark now leads to
the situation that w1 also needs to be excited, which is a situation that was
excluded in Example 2.

In the sequal of this chapter, we will derive the formal results that underly the
above conjectured statements.

4.4 Main results - Line of reasoning

Similar to the previous chapter, we will denote wY as the node signals in w that
serve as predicted outputs, and wD as the node signals in w that serve as predictor

1Confounding variables can also be handled in other ways, for example, adding predictor inputs
(see Chapter 3). In this chapter we handle using predicted outputs in order to avoid measurement of
additional node signals.
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inputs. Next we decompose wY and wD into disjoint sets according to: Y � Q Y
O and D � Q Y U where wQ are the node signals that are common in wY and
wD; wO is the set of node signals that are only predicted outputs; wU are the node
signals that are only in wD. Additionally we denote wZ as the node signals in w
that are neither predicted output nor predictor input, i.e. Z � LztD Y Yu, where
L � t1, 2, � � �Lu.
Consider a dynamic network defined by (3.1), however with covpeq � I and H0

not necessarily monic as considered in Chapter 3 (we refer to this network as the
original network in this chapter). Our objective is to end up with an identification
problem in which we identify the dynamics from inputs pwQ, wU , uq to outputs
pwQ, wOq, while our target module Gjipqq can be retrieved possibly through post-
processing from the elements of the identified (MIMO) model. This can be realized
by the following steps2:

1. Firstly, similar to (3.3), we write the system’s equations for the measured
variables as�

�wQ

wO

wU

�
�

loomoon
wm

�
�

Ḡ 0

ḠUD ḠUO

�
loooooooomoooooooon

Ḡm

�
�wQ

wU

wO

�
��

�
H̄ 0

0 H̄UU

�
looooooomooooooon

H̄m

�
�ξQξO
ξU

�
�

loomoon
ξm

�
�

R̄

R̄U

�
looomooon
R̄m

u (4.2)

with ξm a white noise process, while H̄ is monic, stable and stably
invertible and the components in Ḡ are zero if it concerns a mapping
between identical signals. This step is made by removing the
non-measured signals wZ from the network, while maintaining the second
order properties of the remaining signals. This step is referred to as
immersion of the nodes in wZ [29]. After immersion, we re-write the
system’s equation to structure the noise model such that there are no
confounding variables for the estimation problem wU Ñ wY .

2. As an immediate result of the previous step we can write an expression for
the output variables wY , by considering the upper part of the equation (4.2),
as �

wQ

wO

�
loomoon
wY

�
�
ḠQQ ḠQU

ḠOQ ḠOU

�
loooooomoooooon

Ḡ

�
wQ

wU

�
loomoon
wD

�
�
H̄QQ H̄QO

H̄OQ H̄OO

�
loooooomoooooon

H̄

�
ξQ
ξO

�
loomoon
ξY

�R̄u (4.3)

with covpξYq :� Λ̄.

3. Thirdly, it will be shown that, on the basis of (4.3), under fairly general
conditions, the transfer functions Ḡpqq, H̄pqq and R̄pqq can be estimated
consistently.

4. Finally, we will provide conditions to guarantee that the target module G0
ji

can be obtained from the identified elements of Ḡpqq, H̄pqq and R̄pqq in (4.3)
(i.e. post-processing). This will require conditions on the selection of node

2From now on, 0 is dropped for convenience.
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signals in wQ, wO, wU and excitation signals in u. We will introduce two
additional sets Zr and T in the sequel of this chapter. These two sets will
play a major role in extracting the target module estimate from the
identification result Ḡ, R̄. A pictorial representation of the identification
setup with the classification of different sets of signals in (4.3) is provided
in Figure 4.5.

Figure 4.5: Figure to depict the identification setup and classification of different
sets of signals in the input and output of the identification problem.

The combination of steps 3 and 4 will lead to a consistent estimation of the target
module G0

jipqq.

4.5 Main results - Derivations

4.5.1 System representation after immersion (Step 1-2)

First we will show that we can write an expression for the output variables wY as
in (4.3).

Proposition 4.2 Consider a dynamic network defined by (3.1), however with
covpeq � I and H0 not necessarily monic. Then,

1. there exists a representation (4.2) of the measured node signalswm, with
H̄m monic, stable and stably invertible, and ξm a white noise process,
and

2. for this representation there are no confounding variables for the
estimation problem wU Ñ wY .
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Proof: See appendix. �

We refer to the network in (4.2) as the transformed network. The consequence of
Proposition 4.2 is that the output node signals in wY can be explicitly written in
the form of (4.3), in terms of input node signals wD, excitation signals u and
disturbances, without relying on (unmeasured) node signals in wZ . For the
representation (4.3), the structure of R̄ will be induced by the topological
properties of the network. Note that, R̄u does not necessarily include all external
excitation signals in the network, because the effect of some of them on wY will be
incorporated in the term ḠwD. This latter group of external signals will be
referred to as uP̄ , with P̄ to be defined later on. In order to use (4.3) for
identifying Ḡ it is attractive to further explore the structure of R̄, i.e. to determine
which elements of R̄ are fixed (e.g. 1 or 0) and which terms are dynamic. To this
end, we present the Lemma 4.1.

Condition 4.1 There exist no direct or unmeasured paths from any signals
in wO to any signals in wB.

Lemma 4.1 If Condition 3.2 is satisfied with U � A Y B, such that in the
original network there are no confounding variables for the estimation
problems wA Ñ wY and wA Ñ wB, then for the network in (4.3),

1. R̄k` � 0 with k, ` P Q and k � `;

2. R̄k` � 0 with k P O and ` P Q;

3. R̄k` � 0 with k P Y and ` P A;

and if Condition 4.1 is also satisfied, then

4. R̄kk � 1, k P Y , if:

(a) all loops through wk pass through a node in wQYU ;

(b) there exist no direct or unmeasured paths from wk to any wm,m P
B when k P Q;

5. R̄k` � 0, k, ` P O and k � `, if:

(a) all paths from w` to wk pass through a node in wQYU ;

6. R̄k` � 0, k P Q, ` P O, if:

(a) all paths from w` to wk pass through a node in wQYU ;

7. R̄k` � 0, k P Y, ` P Z , if:
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(a) all paths from w` to wk pass through a node in wQYU ; and

(b) there exist no direct or unmeasured paths from w` to any wm,m P
B.

Proof: See appendix. �

As a result of Lemma 4.1, we can decompose (4.3) as,

wY � ḠwD � H̄ξY � S̄uP � J̄uK, (4.4)

where

• uP and uK indicates the excitation signals in u;

• S̄ is a binary (selection) matrix with known elements (either 1 or 0),
indicating which output node signals are excited by signals uP ;

• J̄ is a matrix that contains the dynamics, indicating which output node
signals are excited by signals uK.

In the next step, we will specify which external signals in u are in uP , uK, or neither
in terms of properties of the original network. We will first specify the external
signals in uP . Excitation signals can only appear in uP if they are directly added to
node signals in wY , so uP � uY , as further specified in Proposition 4.3.

Proposition 4.3 Consider that Condition 3.2 and 4.1 are satisfied. Let uP be
defined as those u-signals in the original network that are directly added to a
node signal w` with ` P Y , such that:

• if w` P wQ:

1. all loops through w` pass through a node in wQYU ; and

2. there exist no direct or unmeasured paths from w` to any wm,m P
B;

• if w` P wO:

3. all paths from w` to wk, k P Y and loops through w` pass through
a node in wQYU .

Then S̄ is a selection matrix.

Proof: The result of the proposition is a direct result of Lemma 4.1. �

In order to specify uK, we will follow a reasoning of exclusion. First we specify the
set of excitation signals uP̄ , that do not appear in the equation (4.4) and then uK
is defined as the remaining excitation signals that appear in (4.4) with a dynamic
term, according to K � LztP Y P̄u. For this we first define the set Z̄ .
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Definition 4.1 Z̄ � Z denotes the indices of signals in u (i.e. u`, ` P Z̄) that
satisfies the following property:

• all paths from w` to wk, k P Y pass through a node in wQYU ;

• there exist no direct or unmeasured paths from w` to any wm,m P B.

Now we specify the signals in uK.

Proposition 4.4 Consider that Condition 3.2 and 4.1 are satisfied. Let uK be
the external excitation signals in the network that has the dynamical effect on
wY . Then K � LztP YAY Z̄u.

Proof: See appendix. �

Remark 4.5 If Condition 3.2 is satisfied, then uA P uP̄ ; and if Condition 4.1 is
also satisfied, then uZ̄ P uP̄ .

The external signals in uK are the external excitation signals in the network that
have a dynamical effect on wY (i.e. J̄uK). We will next discuss the identification
results for the setup (4.4).

4.5.2 Identification results (Step 3)

For the system’s equation (4.4) we can set up a predictor model with input pwD, uKq
and outputs wY , for the estimation of Ḡ, J̄ and H̄ . As a result we can set up a
predictor model based on a parametrized model set determined by

M :�  pḠpθq, H̄pθq, J̄pθq, Λ̄pθqq, θ P Θ
(
,

while the actual data generating system is represented by
S � pḠpθoq, H̄pθoq, J̄pθ0q, Λ̄pθ0qq. The corresponding identification problem is
defined by considering the one-step-ahead prediction of wY , according to

ŵYpt|t� 1q :� EtwYptq | wt�1
Y , wtD, u

t
P , u

t
Ku

where wtD, utP , utK denotes the past of wD, uP , uK respectively, i.e. twDpkq, uPpkq and
uKpkq, k ¤ tu. The resulting prediction error becomes:

εpt, θq :� wYptq � ŵYpt|t� 1; θq (4.5)

� H̄pq, θq�1
�
wYptq � Ḡpq, θqwDptq � S̄uPptq � J̄pq, θquKptq

�
,

and the weighted least squares identification criterion
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θ̂N � arg min
θ

1

N

N�1̧

t�0

εT pt, θqWεpt, θq, (4.6)

with W any positive definite weighting matrix. This parameter estimate then
leads to an estimated subnetwork ḠYDpq, θ̂N q, with the estimated module
Ḡjipq, θ̂N q as one of its scalar entries.

Theorem 4.1 (Consistency) Consider a (MIMO) network identification
setup with predictor inputs wD, uP , uK and predicted outputs wY , according
to (4.4). Let Fn � U be the set of node signals k for which ξk is statically
uncorrelated with ξY and let F :� UzFn. Then a direct prediction error
identification method according to (4.5)-(4.6), applied to a parametrized
model setMwill provide consistent estimates of Ḡ, J̄ and H̄ if:

a. M is chosen to satisfy S PM;

b. Φκpωq ¡ 0 for a sufficiently high number of frequencies, where κptq :��
wJ

D ptq ξJY ptq uKptq
�J;

(data-informativity condition).

c. The following paths/loops should have at least a delay:

• All paths/loops from wYYF to wY in the network (3.4) and in its
parametrized model; and

• For every wk P Fn, all paths from wYYF to wk in the network (3.4),
or all paths from wk to wY in the parametrized model.

(delay in path/loop condition.)

d. All signals in u are uncorrelated to ξY .

Proof: The proof is provided in the appendix. �

It is important to note that Theorem 4.1 is formulated in terms of conditions on
the network in (4.3), which we refer to as the transformed network. However, it is
essential to formulate the conditions in terms of properties of signals in the original
network, represented by (3.1). This can be done using the result of Proposition
4.5.

Proposition 4.5 If in the original network, U is decomposed in two disjoint
setsA and B satisfying Condition 3.2, then Condition c of Theorem 4.1 can be
reformulated as:

c. The following paths/loops should have at least a delay:

– All paths/loops from wYYB to wY in the original network and in the
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parametrized model; and

– For every wk P A, all paths from wYYB to wk in the original
network, or all paths from wk to wY in the parametrized model.

Proof: See appendix. �

4.6 Post-processing (Step 4)

The estimate of Ḡ contains the estimate of Ḡji as one of its elements since wi P wD

and wj P wY . However our final goal is to estimate our target module G0
ji. As

addressed in the previous chapter, under certain conditions (module invariance
conditions), the module Ḡ0

ji � G0
ji, i.e. the module between wi and wj in network

(4.4) is the target module G0
ji of the original network. Therefore, no

post-processing is required in this case. We will first consider these conditions
under which no post-processing is required. However, the work in this chapter
explores the situation when the module invariance result is not satisfied. We will
also explore post-processing of the estimates of the identification to get back the
target module. This will be discussed later in this chapter. First, we provide the
module invariance result.

Theorem 4.2 (Module invariance result) Let Gji be the target network
module. In the transformed system’s equation (3.4) (also (4.4)), it holds that
Ḡji � G0

ji under the following conditions:

1. The parallel path and loop Condition 3.1 is satisfied, and

2. The following three conditions are satisfied:

a. U is decomposed in A and B, satisfying Condition 3.2, and

b. i P tAYQu, and

c. Every path from twi, wj , wOztjuu to wB passes through a measured
node in wLzZ .

Proof: See appendix.

Remark 4.6 In retrospect, the above module invariance result is the
generalized result of the module invariance result (Theorem 3.1) from the
previous chapter. In the previous chapter, we considered the set O to be
void or with only one element tju, however, in this chapter we allow more
elements in set O. This is reflected in condition 2(c) of Theorem 3.1.

The above module invariance condition involves the parallel path and loop
condition to be satisfied. In this work, we consider the situation when the
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parallel path and loop condition cannot be satisfied, i.e. the module invariance
result does not hold. In this situation, the target module needs to be extracted
from Ḡji through post-processing. For this post-processing step we will require
two additional sets:

• A setZr � ZXKwhich represents externally excited nodes (i.e. with signals
in u) in unmeasured paths from wi to wj and in loops around wj ; and

• A set T � Yztju which, for each of the nodes in wT represents a measured
descendant node that has an unmeasured path from wZr , while wj is
excluded from T . Note that for each node wk, k P Zr, the corresponding
element in T is a measured node, and therefore cannot be in the
corresponding unmeasured path from wi to wj or loops around wj , that
passes through wk. Therefore the descendant in T typically breaks out of
these unmeasured parallel paths/loops, as illustrated in Figure 4.6.

Figure 4.6: Example network with all measured nodes in yellow and u2 � r2, u5 �
r5. Modules and noise are not shown for convenience. Arrows with dots indicate
unmeasured path.

These two sets will play a major role in extracting the target module estimate from
the identification result Ḡ, J̄ . The properties that Zr and T need to satisfy in order
to realize this post-processing step are formulated next.

For this we formulate the following conditions.

Condition 4.2 In the original network there are no direct or unmeasured
paths from wk, k P Oztju to pwj , wBq. Also, i P QYA.

Property 4.1 (Properties of Zr and T ) Let Zr and T satisfy the following
properties:

1. All unmeasured paths from wi to wj pass through a node wk, k P Zr
that has an unmeasured path to a node w`, ` P T ;

2. All unmeasured paths from wi to wT pass through a node wk, k P Zr
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and GT i � 0;

3. If i P T , then wi is excited by an external excitation signal ui;

4. If there exist unmeasured loops through wj and wj is not excited by an
external excitation signal uj , then:

(a) The unmeasured loops throughwj pass through a nodewk, k P Zr
that has an unmeasured path to a node wn, n P T ;

(b) All unmeasured paths from wj to wT pass through a node wk, k P
Zr and GT j � 0;

5. Every wk, k P Zr is excited by an external excitation signal uk;

6. There exists |Zr| vertex-disjoint paths from nodes in wZr to wT ;

7. All unmeasured paths fromwi, wj towB pass through a nodewk, k P Zr
and GBj � GBi � 0;

8. All unmeasured paths from wi, wj to wO pass through a node wk, k P
Zr and GOj � GOi � 0;

Theorem 4.3 Consider the situation of Theorem 4.1, and let Condition 3.2
and Condition 4.2 be satisfied. Let i P D and let the sets Zr and T satisfy
Property 4.1. Then a consistent estimate of target module Gji is obtained as

Gjipθ̂N q�C�1
jj pθ̂N q

�
Ḡjipθ̂N q�J̄jZr pθ̂N qJ:TZr

pθ̂N qCT ipθ̂N q
	

wherea

1. Cjj � J̄jj if wj is excited by an external signal uj ;

2. Cjj �
�

1� J̄jZr J̄
:
TZrḠT jp1� J̄jZr J̄

:
TZrḠT jq�1

	�1

if wj is not excited by
an external signal uj ;

3. CT i � ḠT i if i R T ;

4. CT i � pḠT i � Ciiq if i P T , where Cii is a column matrix with every
element zero except the element corresponding to node wi which is
J̄iip1� J̄�1

ii q 2

anotation (θ̂N ) is dropped in the following expressions.

Proof: The proof is provided in the appendix. 2

Here r . s: correspond to the left inverse of the matrix. The left inverse exists if set
Zr and T satisfy Property 4.1.
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We interpret Property 4.1 using the network in Figure 4.6. We have one
unmeasured parallel path from wi to wj and one unmeasured loop through wj .
Considering the parallel path, the excited node w2 and its measured descendant
w1 ensures that (1)-(2) in Property 4.1 are satisfied with w2 in wZr and w1 in wT .
Similarly, considering the unmeasured loop through wj , the excited node w5 and
its measured descendant w1 ensures that (4) in Property 4.1 is satisfied with w5 in
wZr . Property (5) in Property 4.1 is satisfied with both w2 and w5 being excited by
external signals. However, (6) in Property 4.1 is not satisfied if wZr � tw2, w5u
and wT � w1. We need 2 vertex-disjoint paths from wZr to wT . Since, we have
only w1 in wT , this property cannot be satisfied. Hence we choose w9 in wT ,
which is a descendant of w5 and ensure that (6) in Property 4.1 is satisfied.
Property (3) in Property 4.1 is redundant for this case since i R T . It is important
to note that wT can be any node in the network that satisfies the Property 4.1 and
thus relaxes the sensor placement scheme. (7) and (8) in Property 4.1 can be
similarly interpreted as (2), even though we did not explain it using the figure.

We have now provided the general theory for signal selection and consistency
results for the generalized method. The theory for signal selection can lead to
multiple predictor models that can provide consistent estimates, similar to the
local direct method in the previous chapter. Therefore, we can come up with
many algorithms for signal selection that satisfy the general theory. In the sequel,
we provide an algorithm for signal selection, which is similar to the minimum
measurement case algorithm that has been discussed in the previous chapter, but
now applied to a generalized situation.

Remark 4.7 We consider that the input and output of the target module to
be measured. However, this requirement is not strict. It is possible to further
generalize to situations where either the input or output of the target module
is not measured or both the input and output are not measured.

4.7 Algorithm for signal selection

In this section, we provide the algorithm for signal selection that provides the
required identification setup for the introduced identification method in this
chapter. This algorithm ensures that Conditions 3.2, 4.1 and 4.2 are satisfied, and
Zr and T are chosen according to Property 4.1. Also, the algorithm ensures that
uP and uK are appropriately chosen as discussed in Section 4.5.1.

Algorithm A

1. Select target module Gji;

2. Include j in the index set Y of measured node variables that are to be
predicted.

3. Let Dj be a set of measured nodes that includes wi and (some)nodes that
block the parallel paths from wi to wj and loops through wj . Then



102 A Generalized method for flexible signal selection

• include Dj in D;

4. Select a set Zr, T that satisfies Property 4.1 and include it in K and Y
respectively;

5. Determine Z � LztD Y Yu;
6. For every k P D:

(a) if there exist a confounding variable e` in e for the estimation problem
wk Ñ wY , then include k in Y ;

7. If Y has changed, return to step 6;

8. For every k P YztD Y ju:
(a) if there exists an unmeasured path from wk to a node in wj , include k

in D;

9. Determine Q � Y XD;

10. Determine U � DzQ and O � YzQ;

11. For every ` P LzU :

(a) For ` P Q: if all loops through w` pass through a node in wQYU , then
include ` in P else include in K;

(b) For ` P O: if all paths from w` to wk, k P Y and loops through w` pass
through a node in wQYU , then include ` in P else include in K;

(c) For ` P Z : if any path from w` to wk, k P Y does not pass through a
node in wQYU , then include ` in K.

When this algorithm finishes, we acquire sets Y,D,P,K, T ,Zr such that we can
write the system’s output equation as (4.4), the properties of Zr, T are satisfied
and we can estimate the target module consistently using the result of Theorem
4.3.

Remark 4.8 In this chapter, we considered the situation that the input wi
and output wj of the target module are in the predictor model and thus
measured. However, extensions can be made to consider the situations
where the input wi or the output wj or both not included in the predictor
model.

Remark 4.9 The method introduced in this chapter, which is referred to as
the generalized method uses the ingredients of both the direct and indirect
method. When the module invariance result in Theorem 4.2 is satisfied, then
the generalized method simplifies to the local direct method (since no post-
processing is required to extract the target module) for a dynamic network
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setup with measured external excitation signals u.

Remark 4.10 Note that in order to satisfy the data informativity condition
and achieve consistency, additional excitation signals might be required to
be present.

4.8 Conclusions

A new local module identification method has been introduced that consistently
identifies the target module under known topology, with a generalized scheme
for selection of measured node signals and excitation of nodes. We provide
flexibility in the sufficient conditions to identify a target module which creates
considerable freedom in sensor selection and actuation schemes. This is achieved
by combining elements of the direct and indirect identification approaches. We
use both node signals and external excitation signals as predictor inputs, allow
post-processing of module estimates, and use a MIMO identification setting,
thereby mixing both the approaches. With this step we remove restrictive
conditions on measured node signals and excitation signals that are present in
the currently available methods, e.g. concerning parallel paths and loops around
the output.
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Appendices

4.A Proof of Proposition 4.2

First we present the following preparatory lemma.

Lemma 4.2 Let C � L with cardinality c and V � LzC. The system equations
for node variables wC can be written as,

wC � ĞCCwC � H̃ξ̃C � R̆u , (4.7)

where H̃ is stable, monic and minimum phase rational c� c matrix, and ξ̃c is
a c� 1 white noise process with cov(ξ̃C) = Λ̃ P Rc�c, and

ĞCC � GCC �GCVpI �GVVq�1GVC , (4.8)
R̆CV � GCVpI �GVVq�1 (4.9)
R̆ � �

I R̆CV

�
. (4.10)

Proof: On the basis of the decomposition of node signals as defined in the lemma,
we are going to rewrite the system’s equations (3.1) in the following structured
form: �

wC

wV

�
�

�
GCC GCV

GVC GVV

��
wC

wV

�
�
�
HCC HCV

HVC HVV

��
eC
eV

�
�
�
I 0
0 I

��
uC
uV

�
. (4.11)

where uC � RCr and uV � RVr. We can eliminate the node variables wV from the
equation, by writing the last (block) row of (4.58) into an explicit expression for
wV :

wV � pI �GVVq�1 rGVCwC �HVVeV �HVCeC � uVs ,
and by substituting this wV into the expressions for wC-variable. As a result, we
have

wC � ĞCCwC � H̆CCeC � H̆CVeV � uC � R̆CVuV , (4.12)

where ĞCC and R̆CV are given by (4.54) and (4.61) respectively, and

H̆CC � HCC �GCVpI �GVVq�1HVC , (4.13)

105
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H̆CV � HCV �GCVpI �GVVq�1HVV . (4.14)

From (4.12), let v̆ � H̆e � �
H̆CC H̆CV

� �
eJC eJV

�J . The spectral density of v̆ is
given by Φv̆ � H̆H̆�. Applying a spectral factorization [150] to Φv̆ will deliver
Φv̆ � H̃Λ̃H̃� with H̃ a monic, stable and minimum phase rational matrix, and
Λ̃ a positive definite (constant) matrix. Then there exists a white noise process ξ̃c
defined by ξ̃c :� H̃�1H̆e such that H̃ξ̃c � v̆, with cov(ξ̃) = Λ̃. Thus we get the
result of the lemma. �

Having presented the preparatory lemmas and corollaries, we now provide the
proof of proposition 4.2. Considering C � D Y Y � QYO Y U and V � Z , using
the result of Lemma 4.2 we can write�

�wQ

wO

wU

�
� �

�
�ĞQQ ĞQO ĞQU

ĞOQ ĞOO ĞOU

ĞUQ ĞUO ĞUU

�
�
�
�wQ

wO

wU

�
��

�
�H̃QQ H̃QO H̃QU

H̃OQ H̃OO H̃OU

H̃UQ H̃UO H̃UU

�
�
�
�ξ̃Qξ̃O
ξ̃U

�
�

�
�
�I 0 0 R̆QZ

0 I 0 R̆OZ

0 0 I R̆UZ

�
�
�
���
uQ
uO
uU
uZ

�
��� . (4.15)

By denoting H̀QU � H̃QUH̃
�1
UU and H̀OU � H̃OUH̃

�1
UU and Premultiplying (4.15) with�

�I 0 �H̀QU

0 I �H̀OU

0 0 I

�
� while only keeping the identity terms on the left hand side, we

obtain an equivalent network equation:

�
�wQ

wO

wU

�
� �

�
�Ğ1

QQ Ğ1
QO Ğ1

QU

Ğ1
OQ Ğ1

OO Ğ1
OU

ĞUQ ĞUO ĞUU

�
�
�
�wQ

wO

wU

�
��

�
�H̃ 1

QQ H̃ 1
QO 0

H̃ 1
OQ H̃ 1

OO 0

H̃UQ H̃UO H̃UU

�
�
�
�ξ̃Qξ̃O
ξ̃U

�
�

�
�
�I 0 R̆1

QU R̆1
QZ

0 I R̆1
OU R̆1

OZ

0 0 I R̆UZ

�
�
�
���
uQ
uO
uU
uZ

�
��� , (4.16)

where

Ğ1
k` � Ğk` � H̀kUĞU` , (4.17)

Ğ1
kU � ĞkU � H̀kUĞUU � H̀kU , (4.18)

H̃ 1
k` � H̃k` � H̀kUH̃U` , (4.19)

R̆1
kU � �H̀kU , (4.20)

R̆1
kh � R̆kh � H̀kUR̆Uh , (4.21)

with k, ` P QYO and h P Z .

The next step is now to show that that the block elements Ğ1
QO, Ğ1

OO in G can be
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made 0. This can be done by variable substitution as follows:

The second row in (4.15) is replaced by an explicit expression for wo according to

wO � pI � Ğ1
OOq�1rĞ1

OQwQ � Ğ1
OUwU � H̃ 1

OQξ̃Q

� H̃ 1
OO ξ̃O � uO � R̆1

OUuU � R̆1
OZuZs.

Additionally, this expression for wo is substituted into the first block row of (4.16),
to remove the wo-dependent term on the right hand side, leading to

�
�wQ

wO

wU

�
� �

�
�Ğ2

QQ 0 Ğ2
QU

ḠOQ 0 ḠOU

ĞUQ ĞUO ĞUU

�
�
�
�wQ

wO

wU

�
��

�
�H̃2

QQ H̃2
QO 0

H̃2
OQ H̃2

OO 0

H̃UQ H̃UO H̃UU

�
�
�
�ξ̃Qξ̃O
ξ̃U

�
�

�
�
�I R̆2

QO R̆2
QU R̆2

QZ

0 R̄OO R̄OU R̄OZ

0 0 I R̆UZ

�
�
�
���
uQ
uO
uU
uZ

�
��� , (4.22)

with

ḠO� � pI � Ğ1
OOq�1Ğ1

O� (4.23)
H̃2

O� � pI � Ğ1
OOq�1H̃ 1

O� (4.24)
Ğ2

Q� � Ğ1
Q� � Ğ1

QOḠO� (4.25)

H̃2
Q� � H̃ 1

Q� � Ğ1
QOH̃

2
O� (4.26)

R̄OO � pI � Ğ1
OOq�1 ; R̄O��pI � Ğ1

OOq�1R̆1
O� (4.27)

R̆2
QO � Ğ1

QOR̄OO ; R̆2
Q� � R̆1

Q� � Ğ1
QOR̄O�. (4.28)

Since because of these operations, the matrix Ğ2
QQ might not be hollow, we move

any diagonal terms of this matrix to the left hand side of the equation, and
premultiply the first (block) equation by the diagonal matrix pI � diagpĞ2

QQqq�1,
to obtain the expression

�
�wQ

wO

wU

�
� �

�
�ḠQQ 0 ḠQU

ḠOQ 0 ḠOU

ĞUQ ĞUO ĞUU

�
�
�
�wQ

wO

wU

�
��

�
�H̃3

QQ H̃3
QO 0

H̃2
OQ H̃2

OO 0

H̃UQ H̃UO H̃UU

�
�
�
�ξ̃Qξ̃O
ξ̃U

�
�

�
�
�R̄QQ R̄QO R̄QU R̄QZ

0 R̄OO R̄OU R̄OZ

0 0 I R̆UZ

�
�
�
���
uQ
uO
uU
uZ

�
���

looooooooooooooooooomooooooooooooooooooon
ū

, (4.29)

with

ḠQQ � pI � diagpĞ2
QQqq�1pĞ2

QQ � diagpĞ2
QQqq, (4.30)

ḠQU � pI � diagpĞ2
QQqq�1Ğ2

QU (4.31)
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H̃3
Q� � pI � diagpĞ2

QQqq�1H̃2
Q� (4.32)

R̄QQ � pI � diagpĞ2
QQqq�1 (4.33)

R̄Q� � pI � diagpĞ2
QQqq�1R̆2

Q�. (4.34)

As final step, we need the matrix H̃r :�
�
H̃3

QQ H̃3
QO

H̃2
OQ H̃2

OO

�
�

�
ȞQQ ȞQO

ȞOQ ȞOO

�
to be monic,

stable and minimum phase. To that end, we consider the stochastic process ṽY :�
H̃r ξ̃Y with ξ̃Y :� �

ξ̃JQ ξ̃JO
�J

. The spectral density of ṽY is then given by ΦṽY �
H̃rΛ̃YH̃

�
r with Λ̃Y the covariance matrix of ξ̃Y , that can be decomposed as Λ̃Y �

Γ̃rΓ̃
T
r . From spectral factorization [150] it follows that the spectral factor H̃rΓ̃r of

ΦṽY satisfies
H̃rΓ̃r � H̄sD (4.35)

with H̄s a stable and minimum phase rational matrix, and D an “all pass” stable
rational matrix satisfying DD� � I .
The signal ṽY can then be written as

ṽY � H̃r ξ̃Y � H̄sDΓ̃�1
r ξ̃Y .

By defining H̄8
s :� limzÑ8 H̄s, this can be rewritten as

ṽY � H̃r ξ̃Y � H̄spH̄8
s q�1looooomooooon
H̄

H̄8
s DΓ̃�1

r ξ̃Ylooooomooooon
ξY

.

As a result, H̄ is a monic stable and stably invertible rational matrix, and ξY is a
white noise process with spectral density given by H̄8

s DΓ̃�1
r Φξ̃Y Γ̃�Tr D�pH̄8

s qT �
H̄8
s pH̄8

s qT � Σ̄. Therefore we can write (4.29) as,�
�wQ

wO

wU

�
�

loomoon
wm

�
�
�ḠQQ 0 ḠQU

ḠOQ 0 ḠOU

ĞUQ ĞUo ĞUU

�
�
�
�wQ

wO

wU

�
��

�
�H̄QQ H̄QO 0
H̄OQ H̄OO 0

H̄UQ H̄UO H̃UU

�
�
�
�ξQξO
ξ̃U

�
�

loomoon
ξm

�ū,
(4.36)

where
�
H̄UQ H̄UO

� � �
H̃UQ H̃UO

�
Γ̃rD

�1pH̄8
s q�1.

With the first two (block) rows representing the equation for wY , we get the result
of the proposition. �

4.B Proof of Lemma 4.1

First we present the following preparatory lemmas and corollaries

Lemma 4.3 Consider the situation in Lemma 4.2. Let C1 � C and C2 � CzC1
belong to sets of measured node signals in w and set V belong to unmeasured
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node signals in w. If there are no confounding variables for the estimation
problems wC1

Ñ wC2
, then the spectral density Φv̆ has the unique spectral

factorization Φv̆ � H̃Λ̃H̃� with Λ̃ constant and H̃ monic, stable, minimum
phase, and of the form

Λ�
�
Λ11 0
0 Λ22

�
, H̃�

�
H̃C1C1

0

0 H̃C2C2

�
, (4.37)

where the block dimensions are conformable to the dimensions of wC1
and

wC2 respectively.

Proof: On the basis of (4.63), we can write

v̆ �
�
H̆C1C1 H̆C1C2 H̆C1V

H̆C2C1
H̆C2C2

H̆C2V

�
looooooooooooomooooooooooooon

H̆

�
�eC1

eC2

eV

�
� . (4.38)

Starting from the expression (4.38), the spectral density Φv̆ can be written as H̆H̆�

while it is denoted as

Φv̆ �
�

ΦvC1
Φv̆C1

v̆C2

Φ�
v̆C1

v̆C2
Φv̆C2

�
. (4.39)

In this structure we are particularly going to analyse the element
Φv̆C1

v̆C2
� H̆C1C2

H̆�
C2C1

� H̆C1C2
H̆�

C2C2
� H̆C1VH̆

�
C2V

. If there are no confounding
variables for the estimation problems wC1

Ñ wC2
, none of the white noise terms

ex, x P L have simultaneous paths to node signals wk, k P C1 and w`, ` P C2, while
these paths are unmeasured paths. Then it follows from Lemma 3.1 that Φv̆C1

v̆C2
is

zero. As a result the spectrum in equation (4.39) will be block diagonal. Then the
spectral density Φv̆ has the unique spectral factorization [150] Φv̆ � H̃Λ̃H̃�,
where Λ̃ and H̃ is of the form in (4.37) with H̃ being monic, stable and minimum
phase. �

Corollary 4.1 Consider the situation in Lemma 4.3. Then H̃C1C2 � H̃C2C1 � 0.
If k P C1 and ` P C2 or vice versa, then H̃kl � H̃lk � 0. Also, if k P C1, H̃kC2 � 0.

Lemma 4.4 If condition 3.2 is satisfied, then H̀k` � 0 if k P Y, ` P A.

Proof: Using the result in Corollary 4.1, considering C � Y Y U , C1 � Y Y B and
C2 � A, we have H̃kA � H̃Ak � 0 and H̃YA � H̃AY � H̃BA � H̃AB � 0. Let H̀kU is the
row vector corresponding to the row of node signal k in H̀QU (if k P Q) or in H̀OU

(if k P O), and H̀k` is the element corresponding to the column of node signal w`
in H̀kU .
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From the definition of H̀kU , we can write

H̀kU �
�
H̃kB 0

� �H̃BB 0

0 H̃AA

��1

� �
H̀kB 0

�
, (4.40)

implying that columns in this matrix related to inputs ` P A are zero. �

Having presented the preparatory lemma, we now provide the proof of
proposition 4.1. From (4.29) it follows that

ū �
�
�R̄QQ R̄QO R̄QU R̄QZ

0 R̄OO R̄OU R̄OZ

0 0 I R̆UZ

�
�
�
���
uQ
uO
uU
uZ

�
��� . (4.41)

Directly from (4.41), we can infer that R̄OQ � 0.

The term R̄k` with k P Q, ` P O:
First we evaluate the term R̄QO. With (4.34) and (4.28) it follows that

R̄QO � pI � diagpĞ2
QQqq�1Ğ1

QOpI � Ğ1
OOq�1,

while with (4.17):

Ğ1
QO � ĞQO � H̀QBĞBO, Ğ1

OO � ĞOO � H̀OBĞBO.

Therefore, with k P Q and ` P O, we have,

R̄k` � pI � Ğ2
kkq�1Ğ1

kOrpI � Ğ1
OOq�1sp:,`q,

where r sp:,`q denotes the `th column of the matrix. From Condition 4.1 it follows
that ĞBO � 0, and from Condition 6(a) in Lemma 4.1 it follows that ĞkOrpI �
ĞOOq�1sp:,`q � 0. As a result, Ğ1

kOrpI � Ğ1
OOq�1sp:,`q � 0 leading to R̄k` � 0 with

k P Q, ` P O if Condition 6(a) in Lemma 4.1 and Condition 4.1 are satisfied.

The term R̄k` with k P O, ` P O:
For the term R̄OO, we have according to (4.27) that R̄OO � pI � Ğ1

OOq�1. From
Condition 4.1 it follows that ĞBO � 0. Therefore, with k P O and ` P O, we
have Rk` � rpI � ĞOOq�1spk,`q. From condition 5(a) in Lemma 4.1 it follows that
rpI� ĞOOq�1spk,`q � 0 when k � ` and from Condition 4(a) in Lemma 4.1 it follows
that rpI � ĞOOq�1spk,kq � 1. As a result, we have R̄k` � 0 with k, ` P O and k � `
if Condition 5(a) in Lemma 4.1 and Condition 4.1 are satisfied, and R̄kk � 1 with
k P O if Condition 4(a) in Lemma 4.1 and Condition 4.1 are satisfied.

The term R̄k` with k P Q, ` P Q:
Next, for the term R̄QQ we consider according to (4.33), R̄QQ � pI � diagpĞ2

QQqq�1

and from (4.25):
Ğ2

QQ � Ğ1
QQ � Ğ1

QOḠOQ.

Since R̄QQ is a diagonal matrix, this implies that R̄k` � 0 if k, ` P Q and k � `. R̄kk
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for k P Q is given by R̄kk � pI � Ğ2
kkq�1 and from (4.25):

Ğ2
kk � Ğ1

kk � Ğ1
kOḠOk,

which when substituting (4.17) and (4.23) becomes for k P Q:

Ğ2
kk � Ğkk � H̀kBĞBk � pĞkO�ȞkBĞBOqpI�ĞOO � H̀OBĞBOq�1pĞOk�H̀OBĞBkq.

From conditions 4(a), 4(b) in Lemma 4.1 and Condition 4.1 it follows that Ğkk � 0,
ĞBO � 0 and ĞBk � 0. Substituting this in the previous equation leads to Ğ2

kk �
ĞkOpI � ĞOOq�1ĞOk. Since condition 4(a) in Lemma 4.1 excludes the possibility
that there is a loop through wk, k P Q that passes through a node in wO, it follows
that Ğ2

kk � 0. Therefore R̄kk � 1 for k P Q if Conditions 4(a), 4(b) in Lemma 4.1
and Condition 4.1 are satisfied.

The term R̄YA:
For the term R̄OU , we have according to (4.27) that R̄OU � pI � Ğ1

OOq�1R̆1
OU . From

(4.17) and (4.20) we have Ğ1
OO � ĞOO � H̀OBĞBO and R̆1

OU � r�H̀OB � H̀OAs with
H̀OA � 0. This implies that R̄OA � 0. For the term R̄QU , we have according to (4.34)
that R̄QU � pI � diagpĞ2

QQqq�1R̆2
QU . With (4.28) it follows that

R̄QU � pI � diagpĞ2
QQqq�1pR̆1

QU � Ğ1
QOpI � Ğ1

OOq�1R̆1
OUq,

while with (4.17):

Ğ1
QO � ĞQO � H̀QBĞBO, Ğ1

OO � ĞOO � H̀OBĞBO,

and with (4.20) we have R̆1
OU � r�H̀OB � H̀OAs and R̆1

QU � r�H̀QB � H̀QAs with
H̀OA � H̀QA � 0. Therefore, we have R̄QA � 0 and combining with the result of
R̄OA, it implies that R̄YA � 0.

The term R̄k` with k P Y, ` P Z :
For the term R̄OZ , we have according to (4.27) that R̄OZ � pI � Ğ1

OOq�1R̆1
OZ . From

(4.17) and (4.21) we have Ğ1
OO � ĞOO � H̀OBĞBO and R̆1

OZ � R̆OZ � H̀OBR̆BZ . If
Condition 4.1 is satisfied, we have ĞBO � 0. From (4.61), we have that R̆OZ �
GOZpI �GZZq�1 and R̆BZ � GBZpI �GZZq�1. This implies that for k P O and ` P Z ,
we have

R̄k` � rpI � ĞOOq�1spk,:qpGOZrpI �GZZq�1sp:,`q � H̀OBGBZrpI �GZZq�1sp:,`qq.

If condition 7(b) in Lemma 4.1 is satisfied, we have GBZrpI � GZZq�1sp:,`q � 0 and
if condition 7(a) in Lemma 4.1 is satisfied, we have
rpI � ĞOOq�1spk,:qGOZpI � GZZq�1sp:,`q � 0. Therefore, R̄k` � 0 if conditions 7(a),
7(b) in Lemma 4.1 and Condition 4.1 are satisfied for k P O and ` P Z .

For the term R̄QZ , we have according to (4.34) that R̄QZ � pI � diagpĞ2
QQqq�1R̆2

QZ .
With (4.28) it follows that

R̄QZ � pI � diagpĞ2
QQqq�1pR̆1

QZ � Ğ1
QOpI � Ğ1

OOq�1R̆1
OZq,
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while with (4.17):

Ğ1
QO � ĞQO � H̀QBĞBO, Ğ1

OO � ĞOO � H̀OBĞBO,

and with (4.21) we have R̆1
OZ � R̆OZ�H̀OBR̆BZ and R̆1

QZ � R̆QZ�H̀QBR̆BZ . If Condition
4.1 is satisfied, we have ĞBO � 0. From (4.61), we have that R̆OZ � GOZpI �GZZq�1,
R̆QZ � GQZpI �GZZq�1 and R̆BZ � GBZpI �GZZq�1. This implies that for k P Q and
` P Z , we have

R̄k` � pI � Ğkkq�1
�
GkZrpI �GZZq�1sp:,`q � H̀kBGBZrpI �GZZq�1sp:,`q

�ĞkOpI�ĞOOq�1pGOZrpI �GZZq�1sp:,`q�H̀OBGBZrpI �GZZq�1sp:,`qq
�

(4.42)

If condition 7(b) in Lemma 4.1 is satisfied, we have GBZrpI � GZZq�1sp:,`q � 0 and
if condition 7(a) in Lemma 4.1 is satisfied, we have GkZrpI � GZZq�1sp:,`q � 0,
ĞkOpI�ĞOOq�1GOZrpI�GZZq�1sp:,`q � 0. Therefore, R̄k` � 0 if conditions 7(a), 7(b)
in Lemma 4.1 and Condition 4.1 are satisfied for k P Q and ` P Z . Consolidating
the results, we have R̄k` � 0 if conditions 7(a), 7(b) in Lemma 4.1 and Condition
4.1 are satisfied for k P Y and ` P Z .

This concludes the final part of the Proof. �

4.C Proof of Proposition 4.4

We will start by specifying the signals in uP̄ considering all the excitation signals
uL. We know L � Y Y U Y Z . It is implicit that the excitation signals in the set Y
cannot contribute to P̄ . We will first present the excitation signals in the set U that
contribute to P̄ . From the result of Lemma 4.1, we have R̄k` � 0 for all k P Y and
` P A if Condition 3.2 is satisfied. Also, from the proof of Lemma 4.1, we can have
non-zero dynamics in R̄k`0 for all k P Y and ` P B. Therefore, uA belongs to uP̄ if
Condition 3.2 is satisfied. Now we will specify the signals in Z that contribute to
P̄ . For this we define the set Z̄ .

Definition 4.2 Z̄ � Z denotes the indices of signals in u (i.e. u`, ` P Z̄) that
satisfies the following property:

• all paths from w` to wk, k P Y pass through a node in wQYU ;

• there exist no direct or unmeasured paths from w` to any wm,m P B.

From the result of Lemma 4.1, we have R̄Y` � 0 for ` P Z̄ if Condition 3.2 and
4.1 are satisfied. Therefore, uZ̄ belongs to uP̄ if Condition 3.2 and 4.1 are satisfied.
After specifying P and P̄ , we can now specify the external signals in u that belong
to uK by excluding P and P̄ from the list of excitation signals. Therefore, K �
LztP YAY Z̄u. �
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4.D Proof of Theorem 4.1

Substituting expression (4.4) into the expression for the prediction error (4.5),
leads to

εpt, θq : � H̄pq, θq�1
�
∆Ḡpq, θqwD �∆J̄pq, θquK �∆H̄pq, θqξY

�
� ξY (4.43)

where ∆Ḡpq, θq � Ḡ0 � Ḡpq, θq, ∆J̄pq, θq � J̄0 � J̄pq, θq and ∆H̄pq, θq � H̄0 �
H̄pq, θq. The proof of consistency involves two steps.

1. To show that EεT pt, θqWεpt, θq achieves its minimum for ∆Ḡpθq � 0,
∆T̄ pθq � 0 and ∆H̄pθq � 0,

2. To show the conditions under which the minimum is unique.

Step 1: From (4.36) it follows that our data generating system can always be
written such that wm � T ξpqqξm � Tupqqu. We denote T ξ1 , Tu1 as the matrix
composed of the first and third (block) row of T ξ and Tu respectively, such that
wD � T ξ1 pqqξm � Tu1 pqqu. Substituting this into (4.43) gives

εpt, θq :� H̄pq, θq�1
�
∆Ḡpq, θqT ξ1 �

�
∆H̄pq, θq 0

��
ξm

�Hpq, θq�1
�
∆Ḡpq, θqTu1 �

�
∆J̄pq, θq 0

��
u� ξY , (4.44)

where ξm is (block) structured as rξJY ξJU sJ and u is (block) structured as ruJK rJLzKsJ.
In order to prove that the minimum of Ē

�
εT pt, θqWεpt, θq� is attained for ∆Ḡpθq �

0, ∆J̄pθq � 0 and ∆H̄pθq � 0, it is sufficient to show that�
∆ḠpθqT ξ1 pqq �

�
∆H̄pθq 0

��
ξmptq �

�
∆Ḡpq, θqTu1 pqq �

�
∆J̄pθq 0

��
u (4.45)

is uncorrelated to ξYptq. As a result of Condition d in the theorem, u is uncorrelated
to ξY . Therefore, it is sufficient to shoe that�

∆ḠpθqT ξ1 pqq �
�
∆H̄pθq 0 0

��
ξmptq (4.46)

is uncorrelated to ξYptq. In order to show this, let Fn � UzF , with F as defined in
the Theorem, while we decompose ξm according to ξm � rξJY ξJF ξJFnsJ. Using
a similar block-structure notation for ∆Ḡ, ∆J̄ , T ξ1 and ∆H̄ , (4.46) can then be
written as�

∆ḠYQpθqTQY �∆ḠYFpθqTFY �∆ḠYFnpθqTFnY �∆H̄YYpθq
�
ξY�

� �
∆ḠYQpθqTQF �∆ḠYFpθqTFF �∆ḠYFnpθqTFnF

�
ξF

� �
∆ḠYQpθqTQFn �∆ḠYFpθqTFFn �∆ḠYFnpθqTFnFn

�
ξFn .

(4.47)

Since, by definition, ξFnptq is statically uncorrelated to ξYptq, the ξFn -dependent
term in (4.47) cannot create any static correlation with ξYptq. Then it needs to be
shown that the ξY- and ξF -dependent terms in (4.47) all reflect strictly proper
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filters. i.e. that they all contain at least a delay.
∆H̄pθq is strictly proper since both H̄pθq and H̄o are monic. Therefore, ∆H̄YYpθq
will have at least a delay in each of its transfers.
If all paths from wYYF to wY in the transformed network and in its parameterized
model have at least a delay (as per Condition c in the theorem), then all terms
∆ḠYQpθq and ∆ḠYFpθq will have a delay.
We then need to consider the two remaining terms, ∆ḠYFnpθqTFnY and
∆ḠYFnpθqTFnF . From the definition of ∆ḠYFnpθq, each of the two terms can be
represented as the sum of two terms. ḠYFnTFnY and ḠYFnTFnF represent paths
from wY to wY and from wF to wY respectively in the transformed network. Whereas,
ḠYFnpθqTFnY and ḠYFnpθqTFnF is partly induced by the parameterized model and
partly by the paths from wY to wFn and from wF to wFn respectively in the
transformed network. According to condition c of the theorem (delay conditions),
these transfer functions are strictly proper. This implies that (4.47) is statically
uncorrelated to ξYptq. Therefore we have,
Ē
�
εT pt, θqWεpt, θq� � Ē

�
||∆X1pθqξm �∆X2pθqu||2W

�
� Ē

�
ξJY WξY

�
where

∆X1pθq � H̄pθq�1
�
∆ḠpθqT ξ1 pqq �

�
∆H̄pθq 0 0

��
and

∆X2pθq � H̄pθq�1
�
∆ḠpθqTu1 pqq �

�
∆J̄pθq 0

��
. As a result, the minimum of

Ē
�
εT pt, θqWεpt, θq�, which is Ē

�
ξJY WξY

�
, is achieved for ∆Ḡpθq � 0, ∆J̄pθq � 0

and ∆H̄pθq � 0.

Step 2: When the minimum is achieved, we have Ē
�
||∆X1pθqξm �∆X2pθqu||2W

�
to be zero. From (4.43), we have ∆X1pθqξm � ∆X2pθqu �
H̄pq, θq�1

��
∆Ḡpq, θq ∆J̄pq, θq ∆H̄pq, θq� �wJ

D uJK ξJY
�J� = ∆xpθqκptq. Writing

Ē
�
||∆X1pθqξm �∆X2pθqu||2W

�
� Ē

�
||∆xpθqκptq||2W

�
� 0 using Parseval’s

theorem in the frequency domain, we have

1

2π

» π
�π

∆xpejω, θqJΦκpωq∆xpe�jω, θqdω � 0. (4.48)

The standard reasoning for showing uniqueness of the identification result is to
show that if Ē

�
||∆X1pθqξm �∆X2pθqu||2W

�
equals 0 (i.e. when the minimum

power is achieved), this should imply that ∆Ḡpθq � 0,∆J̄pθq � 0 and ∆H̄pθq � 0.
Looking into equation (4.48), this implication will be fulfilled only if Φκpωq ¡ 0
for a sufficiently high number of frequencies. On condition 2 of Theorem 4.1
being satisfied along with the other conditions in Theorem 1, it ensures that the
minimum value is achieved only for Ḡpθq � Ḡ0, J̄pθq � J̄0 and H̄pθq � H̄0. �

4.E Proof of Proposition 4.5

Considering C1 � Y Y B, C2 � A and V � Z , the disturbances in the original
network are characterized by v̆ (4.38). From the results of Lemma 4.3 and since
Condition 3.2 is satisfied, we can infer that the spectral density Φv̆ has the unique
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spectral factorization Φv̆ � H̃ΛH̃� where H̃ is monic, stable, minimum phase, and
of the form given in (4.37). Together with the form of Λ in (4.37) it follows that ξA is
uncorrelated with ξY . As a result, the setA satisfies the properties of Fn, so that in
Condition c we can replace F by a B. What remains to be shown is that the delay
in path/loop conditions in the transformed network (3.4) can be reformulated into
the same conditions on the original network. Following the same approach as in
the proof of proposition 3.2 we end up with the result of the proposition. �

4.F Proof of Theorem 4.2

In order to prove Theorem 4.2, we first present a preparatory Lemma.

Lemma 4.5 Consider the network in (3.4) (also (4.4)). If condition 3.2 is
satisfied, then Ḡj` is given by the following expressions:

If j P O, ` P D : Ḡj`�rpI�ĞOO � H̀OBĞBOq�1spj,:qpĞO`�H̀OBĞB`�H̀O`q. (4.49)

If j P Q, ` P D : Ḡj`�
�
I�Ğjj�H̀jBĞBj � Ğ1

jOpI � ĞOOq�1pĞOj � H̀OBĞBjq
	�1

�
Ğj`�H̀jBĞB`�H̀j` � Ğ1

jOpI � ĞOOq�1pĞO`�H̀OBĞB`�H̀O`q
	
,(4.50)

where H̀O` � H̀j` � 0 if ` P QYA.

Proof: Using the result in Lemma 4.4, if Condition 3.2 is satisfied, then H̀YA � 0.
We have the following cases that can occur:

1. j � O and ` P U . From (4.23) we have Ḡj` � rpI � Ğ1
OOq�1spj,:qĞ1

O` where
Ğ1

OO � ĞOO � H̀OUĞUO is given by (4.17) and Ğ1
O` � ĞO` � H̀OUĞU` � H̀O` is

given by (4.18). Since H̀OA � 0, we have Ğ1
OO � ĞOO � H̀OBĞBO and Ğ1

O` �
ĞO` � H̀OBĞB` � H̀O` with H̀O` � 0 if ` P A. This leads to (10.52).

2. j � O and ` P Q. From (4.23) we have Ḡj` � rpI� Ğ1
OOq�1spj,:qĞ1

O` where Ğ1
OO

and Ğ1
O` are given by (4.17). Since H̀OA � 0, we have Ğ1

OO � ĞOO � H̀OBĞBO

and Ğ1
O` � ĞO` � H̀OBĞB`. This leads to (10.52).

3. j P Q and ` P U . From (4.31) we have Ḡj` � pI � Ğ2
jjq�1Ğ2

j` where Ğ2
jj �

Ğ1
jj � Ğ1

jOpI � Ğ1
OOq�1Ğ1

Oj and Ğ2
j` � Ğ1

j` � Ğ1
jOpI � Ğ1

OOq�1Ğ1
O` are given by

(4.25). If Condition 3.2 is satisfied, using (4.17), we have Ğ1
jj � Ğjj�H̀jBĞBj ,

Ğ1
jO � ĞjO � H̀jBĞBO, Ğ1

Oj � ĞOj � H̀OBĞBj and Ğ1
OO � ĞOO � H̀OBĞBO. If

condition (3.2) is satisfied, using (4.18), we have Ğ1
j` � Ğj` � H̀jBĞB` � H̀j`

and Ğ1
O` � ĞO` � H̀OBĞB` � H̀O` where H̀O` � H̀j` � 0 if ` P A. This leads to

(4.50).
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4. j P Q and ` P Q. Since j � ` it follows from (4.30) that Ḡj` � pI � Ğ2
jjq�1Ğ2

j`

where Ğ2
jj and Ğ2

j` are given by (4.25). If Condition 3.2 is satisfied, using
(4.17), we have Ğ1

jj � Ğjj�H̀jBĞBj , Ğ1
jO � ĞjO�H̀jBĞBO, Ğ1

Oj � ĞOj�H̀OBĞBj

and Ğ1
OO � ĞOO� H̀OBĞBO. If condition (3.2) is satisfied, using (4.17), we have

Ğ1
j` � Ğj` � H̀jBĞB` and Ğ1

O` � ĞO` � H̀OBĞB`. This leads to (4.50).

�

Next we proceed with the proof of Theorem 4.2. With Lemma 10.4 it follows that
Ḡji is given by either (10.52) or (4.50) if ` � i. For analysing the expression, we
first are going to specify Ğji and Ğjj . From (4.8), we have Ğji � Gji � GjZpI �
GZZq�1GZi and Ğjj � Gjj � GjZpI � GZZq�1GZj . The first terms on the right
hand sides reflect the direct connections from wi to wj (similarly wj to wj) and
the second terms reflect the connections that pass only through nodes in Z . By
definition, Gjj � 0 since the G matrix in the network in (2.2) is hollow. Under
condition 1 in Theorem 4.2 being satisfied, the second terms on the right hand
sides are zero, so that Ğji � Gji and Ğjj � 0.

Under condition 2(c) in Theorem 4.2 being satisfied, we have ĞBj � ĞBi � 0 and
ĞBO � 0 irrespective of whether j belongs to O or not. Since condition 2(b) in
Theorem 4.2 is satisfied, we have H̀O` � H̀j` � 0. Under condition 1 in Theorem
4.2 being satisfied, the term ĞjOpI � ĞOOq�1ĞOj and ĞjOpI � ĞOOq�1ĞOi are zero.
This implies that Ḡji � Gji if j P Q and ` P D. Similarly, if parallel path condition
1 in Theorem 4.2 is satisfied, we have Ḡji � rpI�ĞOOq�1spj,:qĞOi � pI�Ğjjq�1Ğji.
Since Ğjj � 0 and Ğji � Gji, we have Ḡji � Gji if j P O and ` P D as well. �

4.G Proof of Theorem 4.3

We first present the following preparatory lemmas.

Lemma 4.6 Let C � L with cardinality c and V � LzC. Let V1 and V2 be two
disjoint sets such that V � V1 Y V2. The system equations for node variables
wC can be written as,

wC � ĞCCwC � H̃ξ̃C � R̆u , (4.51)

where H̃ is stable, monic and minimum phase rational c� c matrix, and ξ̃c is
a c� 1 white noise process with cov(ξ̃C) = Λ̃ P Rc�c, and

Ǧkh � Gkh �GkV2
pI �GV2V2

q�1GV2h , (4.52)
ŘkV2

� GkV2
pI �GV2V2

q�1 (4.53)
ĞCC � ǦCC � ǦCV1

pI � ǦV1V1
q�1ǦV1C , (4.54)

R̆CV1
� ǦCV1

pI � ǦV1V1
q�1 , (4.55)
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R̆CV2
� ŘCV2

� ǦCV1
pI � ǦV1V1

q�1ŘV1V2
, (4.56)

R̆ � �
I R̆CV1

R̆CV2

�
, (4.57)

with k, h P C Y V1.

Proof: On the basis of the decomposition of node signals as defined in the lemma,
we are going to rewrite the system’s equations (3.1) in the following structured
form:�

� wC

wV1

wV2

�
��

�
� GCC GCV1 GCV2

GV1C GV1V1 GV1V2

GV2C GV2V1
GV2V2

�
�
�
�wC

wV1

wV2

�
��

�
�HCC HCV1 HCV2

HV1C HV1V1
HV1V2

HV2C HV2V1
HV2V2

�
�
�
�eCeV1

eV2

�
��

�
�I 0 0

0 I 0
0 0 I

�
�
�
� uC
uV1

uV2

�
� .(4.58)

We can eliminate the node variables wV2 from the equation, by writing the last
(block) row of (4.58) into an explicit expression for wV2

:

wV2
�pI �GV2V2

q�1

� ¸
kPCYV1

GV2kwk �
¸

kPCYV
HV2kek�uV2

�
,

and by substituting this wV2
into the expressions for other variables. As a result,

we have

�
wC

wV1

�
�
�
ǦCC ǦCV1

ǦV1C ǦV1V1

��
wC

wV1

�
�
�
ȞCC ȞCV1 ȞCV2

ȞV1C ȞV1V1 ȞV1V2

���eCeV1

eV2

�
���I 0 ŘCV2

0 I ŘV1V2

��� uC
uV1

uV2

�
� , (4.59)

where

Ǧkh � Gkh �GkV2pI �GV2V2q�1GV2h , (4.60)
ŘkV2 � GkV2pI �GV2V2q�1 (4.61)
Ȟk` � Hk` �GkV2pI �GV2V2q�1HV2` , (4.62)

with k, h P C Y V1 and ` P C Y V1 Y V2. Now we eliminate the node variables wV1

from the above equation, by writing the last (block) row of (4.59) into an explicit
expression for wV1 :

wV1
�pI � ǦV1V1

q�1

�
ǦV1CwC�

¸
kPCYV

ȞV1kek�uV1
�ŘV2V2

uV2

�
,

and by substituting this wV2
into the expressions for wC variable. As a result, we

have

wC � ĞCCwC �
¸

kPCYV
H̆Ckek�uC�R̆CV1

uV1
�R̆CV2

uV2
, (4.63)

where ĞCC, R̆CV1 , R̆CV2 are given by (4.54), (4.55), (4.56) respectively, and H̆C` �
ȞC` � ǦCV1

pI � ǦV1V1
q�1ȞV1`, with ` P C Y V .

Let v̆ � H̆e � �
H̆CC H̆CV1 H̆CV2

� �
eJC eJV1

eJV2

�J . Then the spectral density of v̆
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in (4.63) is given by Φv̆ � H̆H̆�. Applying a spectral factorization [150] to Φv̆ will
deliver Φv̆ � H̃Λ̃H̃� with H̃ a monic, stable and minimum phase rational matrix,
and Λ̃ a positive definite (constant) matrix. Then there exists a white noise process
ξ̃c defined by ξ̃c :� H̃�1H̆e such that H̃ξ̃c � v̆, with cov(ξ̃) = Λ̃. Thus we get the
result of the lemma. �

Lemma 4.7 If condition 4.2 and Condition 3.2 are satisfied, then

Ḡji � p1� Ğ1
jjq�1Ğ1

ji, (4.64)

with Ğ1
jj � Ğjj � H̀jBĞBj and Ğ1

ji � Ğji � H̀jBĞBi.

Proof: Using the result of lemma 10.4, we have Ḡji given by either (10.52) or (4.50)
if condition 4.2 and condition 3.2 are satisfied. Since condition 4.2 is satisfied, we
have H̀Oi � H̀ji � 0. When condition 4.2 is satisfied, we have Ğjk � 0, k P
Oztju. Substituting these results in (4.50), we get (4.64). Since condition 4.2 is
satisfied, we have Ğjk � 0, k P Oztju and ĞBk � 0, k P Oztju. This implies that
rpI � ĞOO � H̀OBĞBOq�1spj,;q � p1 � Ğjj � H̀jBĞBjq�1. Therefore, substituting this
result in (10.52), we get (4.64). �

Now we present the proof of Theorem 4.3. The target module that is the objective
of our identification is given by Gji, with wj P pwQ, wOq and wi P pwU , wQq. From
(4.64), we have Ḡji � p1� Ğ1

jjq�1Ğ1
ji. Let Z � ZrYZu. Considering C � DYY �

Q Y O Y U , V1 � Zr and V2 � Zu, using the result of Lemma 4.6 we can write
Ḡji � pI � Ğ1

jjq�1Ğ1
ji where,

Ğji � Gji �GjZupI�GZuZuq�1GZui � ǦjZr pI�ǦZrZr q�1ǦZri (4.65)

Ğjj � Gjj �GjZupI�GZuZuq�1GZuj � ǦjZr pI�ǦZrZr q�1ǦZrj , (4.66)

ĞBi � GBi �GBZupI�GZuZuq�1GZui � ǦBZr pI�ǦZrZr q�1ǦZri (4.67)
ĞBj � GBj �GBZupI�GZuZuq�1GZuj � ǦBZr pI�ǦZrZr q�1ǦZrj , (4.68)

where the first terms on the right hand sides reflect the direct connections from wi
towj (respectively fromwj towj ,wk, k P B towi,wk, k P B towj), the second terms
reflect the connections that pass only through nodes in Zu and the third terms
reflect the connections that pass through nodes in both Zu and Zr. By definition,
Gjj � 0 since the G matrix in the network in (3.1) is hollow. Condition 1 in
Property 4.1 and Condition 4(a) in Property 4.1 ensures that the second terms
on the right hand sides are zero, so that Ğji � Gji � ǦjZr pI�ǦZrZr q�1ǦZri and
Ğjj � ǦjZr pI� ǦZrZr q�1ǦZrj . Condition 7 in Property 4.1 ensures that GBi �
GBj � 0 and the respective second terms in the equations are zero. Therefore,
ĞBj � ǦBZr pI�ǦZrZr q�1ǦZrj and ĞBi � ǦBZr pI�ǦZrZr q�1ǦZri. Now in the sequel
we find expressions for pI � Ğjjq�1 using elements of (4.4) in order to extract Gji
from Ḡji.

Obtaining the expression of pI � Ğ1
jjq�1:
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When condition 4.2 is satisfied, we have Ğjk � ĞBk � 0, k P Oztju. This implies
that rpI � Ğ1

OOq�1spj,;q � p1 � Ğ1
jjq�1 when j P O and p1 � Ğ2

jjq�1 � p1 � Ğ1
jjq�1

when j P Q. If there are unmeasured loops through wj , then Ğjj � 0. From (4.27)
and (4.33), we have J̄jj � pI � Ğ1

jjq�1 when j P Y . Therefore if node j is excited
by an external excitation signal uj , then J̄jj � pI � Ğ1

jjq�1. Now, we look into
situation when node j is not excited by an external excitation signal (i.e. uj � 0).

If j P Q, from (4.28) we know that, R̆2
jZr

� R̆1
jZr

� Ğ1
jOR̄OZr where we have R̆1

jZr
�

R̆jZr � H̀jBR̆BZr . Since Ğjk � ĞBk � 0, k P Oztju and since j P Q, we have ĞjO �
ĞBO � 0. Therefore, Ğ1

jO � ĞjO� H̀jBĞBO � 0 when j P Q. This implies that R̆2
jZr

�
R̆1
jZr

when j P Q. Then, from (4.27) and (4.34) we have R̄jZr � pI� Ğ1
jjq�1R̆1

jZr
for

j P Y . Expanding R̆jZr using (4.55), we have R̆jZr � ǦjZr pI � ǦZrZr q�1. Similarly,
we can write R̆BZr � ǦBZr pI � ǦZrZr q�1. If condition 5 in Property 4.1, then

pI � Ğ1
jjqR̄jZr � ǦjZr pI � ǦZrZr q�1�H̀jBǦBZr pI � ǦZrZr q�1. (4.69)

Post-multiplying the above equation with ǦZrj , we get

pI � Ğ1
jjqR̄jZrǦZrj � Ğ1

jj . (4.70)

Now we look in to getting the expression of ǦZrj using elements of (4.4). Let
T � TO Y TQ be two disjoint sets such that TQ P Q and TO P O. Using the similar
reasoning as above, if condition 5 in Property 4.1, we can write

R̄TQZr � pI � diagpĞ2
TQTQ

qq�1pǦTQZr pI � ǦZrZr q�1 � H̀TQBǦBZr pI � ǦZrZr q�1

�Ğ1
TQOpI � Ğ1

OOq�1
�
ǦOZr pI � ǦZrZr q�1 � H̀OBǦBZr pI � ǦZrZr q�1

	
,(4.71)

R̄TOZr�rpI � Ğ1
OOq�1spTO,:qpǦOZr pI � ǦZrZr q�1 � H̀OBǦBZr pI � ǦZrZr q�1q. (4.72)

Now from (4.30), ḠTQj � pI�diagpĞ2
TQTQ

qq�1Ğ2
TQj

and from (4.23) we have ḠTOj �
rpI � Ğ1

OOq�1spTO,:qĞ
1
Oj and ḠOj � pI � Ğ1

OOq�1Ğ1
Oj . From (4.25), we have Ğ2

TQj
�

Ğ1
TQj

�Ğ1
TQOḠOj where using (4.17) we have Ğ1

TQj
� ĞTQj�H̀TQBĞBj , Ğ1

TOj
� ĞTOj�

H̀TOBĞBj and Ğ1
Oj � ĞOj � H̀OBĞBj . Now expanding the terms ĞTQj , ĞTOj , ĞBj , ĞOj

using (4.54) we can write,

ḠTQj� pI�diagpĞ2
TQTQ

qq�1pǦTQj � ǦTQZr pI � ǦZrZr q�1ǦZrj (4.73)

�H̀TQBpǦBj�ǦBZr pI�ǦZrZr q�1ǦZrjq � Ğ1
TQOpI�Ğ1

OOq�1

pǦOj�ǦOZr pI�ǦZrZr q�1ǦZrj

�H̀OUpǦUj�ǦUZr pI�ǦZrZr q�1ǦZrjqq, (4.74)

ḠTOj� rpI�Ğ1
OOq�1spTO,:qpǦOj�ǦOZr pI�ǦZrZr q�1ǦZrj
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�H̀OBpǦBj�ǦBZr pI�ǦZrZr q�1GZrjqq. (4.75)

Looking into (4.71) and (4.73) we have,

ḠTQj � R̄TQZrǦZrj�pI�diagpĞ2
TQTQ

qq�1
�
ǦTQj�H̀TQBǦBj

�Ğ1
TQOpI�Ğ1

OOq�1pǦOj � H̀OBǦBjq
	
. (4.76)

Similarly, looking into (4.72) and (4.75) we have

ḠTOj�R̄TOZrǦZrj�rpI�Ğ1
OOq�1spTO,:qpǦOj�H̀OBǦBjq. (4.77)

Condition 4b in Property 4.1 ensures that ǦTQj � 0, condition 7 in Property
4.1 ensures that ǦBj � 0 and condition 8 in Property 4.1 ensures that ǦOj � 0.
Therefore we can write (4.76) and (4.77) as,

ḠT j�R̄TZrǦZrj . (4.78)

Condition 6 in Property 4.1 ensures that a left inverse of R̄TZr exists. Then ǦZrj �
R̄:

TZrḠT j . So we write (4.70) as Ğ1
jj � p1 � Ğ1

jjqR̄jZr R̄:
TZrḠT j . Thus we get p1 �

Ğ1
jjq�1 �

�
1� R̄jZr R̄

:
TZrḠT jp1� R̄jZr R̄

:
TZrḠT jq�1

	�1

.

Obtaining the expression of ǦjZr pI � ǦZrZr q�1ǦZri � H̀jBǦBZr pI�ǦZrZr q�1ǦZri:
In (4.64), we now look into Ğ1

ji � Gji � ǦjZr pI � ǦZrZr q�1ǦZri � H̀jBǦBZr pI�
ǦZrZr q�1ǦZri to extract the target module Gji. From (4.69), we know that

ǦjZr pI � ǦZrZr q�1ǦZri � H̀jBǦBZr pI�ǦZrZr q�1ǦZri � pI � Ğ1
jjqR̄jZrǦZri. (4.79)

We already know the expression for pI � Ğ1
jjq�1. Therefore,

ǦjZr pI � ǦZrZr q�1GZri � H̀jBǦBZr pI � ǦZrZr q�1ǦZri � C�1
jj R̄jZrǦZri. Now we

differentiate two different cases to get GZri : when i R TQ and when i P TQ. When
i R TQ, following the similar reasoning for ǦZrj , we have ǦZri � R̄:

TZrḠT i

provided condition 2, 5 and 6, 7, 8 in Property 4.1 are satisfied. When i P TQ, then
i P Q. Now in ḠT i column matrix we have an element
Ḡii � pI � Ğ2

iiq�1pĞ2
ii � diagpĞ2

iiqq. When condition 3 in Property 4.1 is satisfied,
from (4.33) we have R̄ii � p1 � Ğ2

iiq�1. Therefore
pI � Ğ2

iiq�1diagpĞ2
iiq � R̄iip1 � R̄�1

ii q. Let Cii be a column matrix with every
element as zero except the element corresponding to node wi which is
R̄iip1 � R̄�1

ii q. Therefore, ḠT i � R̄TZrGZri � Cii. This gives us
C�1
jj R̄jZrǦZri � C�1

jj R̄jZr R̄
:
TZr pḠT i � Ciiq.

Since, Zr will be a subset of K, we can replace RjZr , R̄TZr , R̄ii, R̄jj as
JjZr , J̄TZr , J̄ii, J̄ii respectively. Now, we have the expression of every element in
(4.64) using elements of (4.4), except the target module Gji. Thus, we can extract
the target module using the expression in the result of the theorem. �



5 CHAPTER

Path-based conditions for
data-informativity

For consistent or minimum variance estimation of a single module
in a dynamic network, a predictor model has to be chosen with

selected inputs and outputs, composed of a selection of measured node
signals and possibly external excitation signals. The predictor model
has to be chosen in such a way that consistent estimation of the target
module is possible, under the condition that we have data-informativity
for the considered predictor model set. Consistent estimation of the target
module is typically obtained if we follow a direct method or generalized
method of identification and predictor model selection, characterized by
the property that measured node signals and possibly excitation signals
are the prime predictor input signals. In this chapter the concept of data-
informativity for network models will be formalized, and for the direct
method and the generalized method the required data-informativity
conditions will be specified in terms of path-based conditions on the
graph of the network model, guaranteeing data-informativity in a generic
sense, i.e. independent on numerical values of the network transfer
functions concerned.

5.1 Introduction

The direct, generalized, and indirect identification methods typically start from a
limited set of measured node signals and a selected set of measured external

This chapter is based on the preliminary work: P.M.J. Van den Hof and K.R. Ramaswamy, “Path-
based data-informativity conditions for single module identification in dynamic networks", in Proc.
59th IEEE Conf. Decision and Control (CDC), Jeju Island, Republic of Korea, 14-18 December 2020, pp.
4354-4359.
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excitation signals (that are used in the predictor model), to determine whether a
consistent and/or minimum variance estimate of the target module can be
obtained. For all of these methods, data-informativity condition need to be
satisfied for arriving at consistent module estimates. This condition is typically
formulated as positive definite condition on a spectrum of signals in the dynamic
network. While for indirect methods these conditions can typically be phrased in
terms of persistence of excitation conditions on external excitation signals, see
e.g. [54], for direct methods (and the generalized method) they are typically
formulated in terms of a spectral condition on node signals and external
excitation signals in the network, and thereby harder to interpret for the user
who has to set up an experiment. This has also been addressed in [53] where it
has been highlighted that the typical spectral conditions will often be
conservative in the case of modules with finite model order.
In this chapter we are going to address the situation of the direct method and the
generalized method discussed in Chapter 3 and 4, and we are going to
reformulate the data-informativity conditions for these methods in terms of
excitation conditions on the external excitation signals, together with path-based
conditions on the topology of the network model set. In this way the
data-informativity conditions become verifiable by the user, rather than
remaining implicit as in condition (b) of Theorem 4.1.
We will highlight the different options for selecting predictor models in Section
5.2. In Section 5.3 data-informativity conditions are specified, for which
path-based conditions are being derived in Section 5.4. The results are illustrated
with examples. The proofs of all technical results are collected in the appendix.

5.2 Network estimation setup

We can distinguish three main different prediction error approaches for
addressing the single module identification problem, where the target module is
indicated by Gji.

1. A direct method, that is based on selecting a particular set of predictor input
node signals wk, k P D, a set of predictor input external excitation signals
(uk, k P P YK) and a set of predicted output signals w`, ` P Y , with i P D,
j P Y , and estimating a dynamic model based on a prediction error:

εpt, θq � H̄pq, θq�1rwYptq � Ḡpq, θqwDptq � J̄pq, θquKptq � S̄pqquPptqs, (5.1)

where Ḡpq, θq, J̄pq, θq and H̄pq, θq are parametrized transfer function
matrices and S̄pqq is a selection (binary) matrix. The target module is then
embedded in the model Ḡpq, θq, and the objective is to estimate the target
module consistently and possibly with minimum variance. The direct
method does not require any post-processing and hence Ḡ0

ji � G0
ji.

2. An indirect method, that is based on selecting a particular set of external
excitation signals rk, k P D, and a set of predicted node signals w`, ` P Y ,
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that are used in a predictor model, leading to

εYpt, θq � wYptq � T̄Ypq, θqrDptq (5.2)

Since T̄Y reflects a mapping from external signals (rD) to internal signals
(wY), a processing step is necessary to recover the target module Gji from
an estimated T̄Y . Consistency of the target module estimate is the typical
objective. Different variations of indirect methods exist, including
two-stage and instrumental variable (IV) methods.

3. A generalized method, that is based on the same predictor model and
prediction error as the direct method, and the objective is to estimate the
target module consistently. The generalized method requires post-processing
using the estimated models in order to recover the target module.

In this chapter, we will primarily focus on the direct method and the generalized
method. For these methods to arrive at a consistent estimate of the target module,
there are two prime conditions that need to be satisfied.

1. A predictor model needs to be chosen, on the basis of which it is possible
to reconstruct the target module Gji from the estimated objects Ḡ, J̄ and
H̄ . The predictor model (5.1) is determined by the selection of signals that
appear in wY , wD, uP and uK.

2. For the chosen predictor model, the data appearing in this model should
be sufficiently informative so as to guarantee that consistent estimates of
the objects Ḡ, J̄ , H̄ are obtained (refer to condition (b) of Theorem 4.1 and
condition (b) of Theorem 3.2).

The first aspect is covered in Chapter 3 and Chapter 4. In the sequel of this chapter,
we will focus on the data-informativity aspects as mentioned in the second aspect.

5.3 Data-Informativity

5.3.1 Introduction and definition

We consider an estimation setup on the basis of the network equations

wYptq � ḠpqqwDptq � J̄pqquKptq � S̄pqquPptq � H̄pqqξYptq (5.3)

with wY , wD, uK , uP selected node- and excitation signals and ξY a stationary white
noise process.

The one-step ahead predictor for (5.3) is uniquely defined through

ŵYptq :� EtwYptq|wt�1
Y , wtD, u

t
P , u

t
Ku �W pqqzptq (5.4)
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with the predictor filter given by

W pqq :� �p1� H̄pqq�1q H̄pqq�1Ḡpqq H̄pqq�1J̄pqq H̄pqq�1S̄pqq� (5.5)

and

zptq :�

�
���
wYptq
wDptq
uKptq
uPptq

�
��� . (5.6)

In line with the corresponding definitions in the prediction error literature ([77],
Definition 8.1), we can now define the notion of data-informativity for the related
network predictor model.

Definition 5.1 Consider a set of network signals contained in z and a
network predictor model

ŵYpt, θq �W pq, θqzptq

for a parametrized set of models

M :� pḠpq, θq, J̄pq, θq, S̄pqq, H̄pq, θqqθPΘ.

Then a quasi-stationary data set Z8 :� tzptqut�0,��� with zptq defined in (5.6)
is informative enough with respect to the model setM if, for any two predictor
filters W1pqq and W2pqq in the parameterized model set,

ĒrpW1pqq �W2pqqqzptqs2 � 0

implies that W1peiωq �W2peiωq for almost all ω. 2

In line with ([77], Definition 8.2), we formulate:

Definition 5.2 A quasi-stationary data set Z8 is informative if it is
informative enough with respect to the model set L�, consisting of all linear
time-invariant models.

And in line with ([77], Definition 13.2):

Definition 5.3 A quasi-stationary signal z is said to be persistently exciting if
Φzpωq ¡ 0 for almost all ω.

The essential difference with the classical definitions in [77] is in the composition
of the signal vector zptq, being composed according to (5.6).
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5.3.2 Classical open-loop case

The classical open-loop case can be represented by the situation that in the
predictor model, the predictor input is wD � r. In this case

zptq :�
�
wYptq
wDptq

�
.

The well known sufficient condition for data-informativity is now [77]:

Φzpωq ¡ 0 for almost all ω. (5.7)

For estimating finite-dimensional models, this sufficient condition can be further
relaxed1 to be satisfied for a sufficient number of frequencies ω. The signal vector
z contains both predictor inputs and predictor outputs. Since there are output
disturbances on wY that are uncorrelated to wD, the informativity condition
simplifies to the condition that wD should be persistently exciting.

5.3.3 Classical closed-loop case: direct method

The direct method for closed-loop systems is characterized by the situation that in
the predictor model

• wY and wD are distinct signals;

• uP and uK are not included in the predictor;

• wD may depend on the present and past samples of wY (feedback).

It follows that zptq :�
�
wYptq
wDptq

�
and the “open-loop” results of [77] still apply, i.e.

the informativity condition of the data is represented by the condition (5.7).

5.3.4 The network case: local direct method and generalized
method

When applying the direct identification method or generalized method in the
network case, a predictor model is constructed with node signals wD and external
excitation signals (uP , uK) as predictor inputs and wY as predicted outputs.
According to the results in Chapter 3 and Chapter 4, we end up in a multi-output
predictor model, as schematically indicated in Figure 5.1. In this setting we
distinguish:

• wY �
�
wO

wQ

�
; wD �

�
wU

wQ

�
;

1For the network case and considering MISO models this is also addressed in [53].
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Figure 5.1: Predictor model for local direct method and generalized method; the
set of node signals wQ appears both at the input and at the output of the predictor
model.

• For the local direct method in Chapter 3 : wO � wj or wO is void if wj is
present in wQ;

• uP contains those measured external excitation signals in u that add directly
to measured outputs wk, k P Y , i.e. for which S̄ is a binary (selection) matrix
with known elements, indicating which output signals are excited by signals
uP (see Proposition 4.3);

• uK contains those measured external excitation signals in u that
dynamically affect the measured outputs wk, k P Y , i.e. for which J̄ is a
parameterized matrix that contains the dynamics indicating which output
signals are excited by signals uK (see Section 4.5.1).

Inputs and outputs are allowed to share some common signals, while all node
signals are allowed to depend on each other’s (present and) past. According to
the consistency results for the local direct method and the generalized method in
Chapter 4, the data-informativity conditions now become:

Φκpωq ¡ 0 for almost all ω, (5.8)

with

κptq :�
�
�wDptq
ξYptq
uKptq

�
�

and ξYptq the white noise innovation process that relates to output wYptq in (5.3).
In the vector signal κ we collect all the measured node signals that appear as
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predictor input, all the measured external excitation signals that appear as
predictor input which contribute to the output through parameterized transfer
function matrix J̄ , and the (external) noise terms ξY . The spectrum condition on
κptq can then be interpreted as a condition that requires a full rank spectrum of
wD, while using all external signals in the network except pξY , uKq. In other words,
(ξY , uK) can not be used for the “excitation” of the signals wD, but this excitation
has to come from other external signals in the network. This can be interpreted as
follows. uK and ξY are used for estimating J̄ and H̄ respectively. Hence, we need
other external signals in the network for estimating Ḡ. This mechanism is going
to be further elaborated upon in the next Section.

5.4 Path-based conditions for data-informativity

5.4.1 General results

The condition (5.8) for data-informativity in the direct method and in the
generalized method is compactly formulated, but it is actually implicit and hard
to ensure for the situation of a dynamic network with given topology and
unknown dynamics. It would be very attractive to formulate this condition in
terms of properties and locations of the external signals in the network (i.e. u (or
r) and e) together with topological conditions on the interconnection structure in
the network models that we consider. In order to achieve this objective, we
consider the following Lemma:

Lemma 5.1 Let xptq P Rm be a quasi-stationary signal that is persistently
exciting, and let F pzq P Rpzqp�m be the proper rational transfer function of
a stable filter. Then the signal yptq � F pqqxptq is persistently exciting if and
only if filter F pzq has rank p over the field of rational functions. 2

Proof: Collected in the Appendix. �

If we apply this Lemma with x-signals being the external signals u, e, and
y-signals being selected node signals w in the network, then the row rank of the
considered transfer function pu, eq Ñ y would need to be evaluated in order to
make a statement about data-informativity. In line with the idea of introducing a
generic form of identifiability [65], i.e. independent of particular numerical
values of coefficients, we can use the same generic type of result for
data-informativity, based on the results of [131].

Proposition 5.1 Consider the situation of Lemma 5.1. The property that yptq
is persistently exciting holds genericallya if in the dynamic network there are
p vertex-disjoint paths between the nodes x and y. This is denoted by bxÑy �
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p.
aGenerically has to be considered here in terms of a Lebesgue measure 0 of the vector of

coefficient values of the rational transfer functions in all modules of the network.

So, a persistently exciting “input” signal x and a sufficient number of
vertex-disjoint paths between x and y, will generically provide a persistently
exciting “output” signal y. This result can be used to translate persistence of
excitation conditions on node signals, to persistence of excitation conditions on
external network signals.

5.4.2 Path-based conditions

The result on vertex-disjoint paths, as formulated in Proposition 5.1 can now be
applied to the particular situation of condition (5.8). In this step the consequence
of having the white noise signal ξY in the condition (5.8) needs to be translated
to conditions on signals in the original network (2.2). We now formulate a path-
based condition for verifying data-informativity.

Theorem 5.1 Consider a dynamic network with external signals u and e, and
let uK be the u-signals that appear as predictor input in the setting of the
local direct method and the generalized method, satisfying the conditions of
Proposition 4.4. Let K̄ � LzK � tP YAY Z̄u, where Z̄ denotes the indices of
excitation signals in u (i.e. u`, ` P Z̄) that satisfies the following:

• all paths from w` to wk, k P Y pass through a node in wQYU ;

• there exist no direct or unmeasured paths from w` to any wm,m P B.

Consider the signal vector

ηptq :�
�
uK̄
eU

�
, with

eU : any e-signal that has a direct or unmeasured path to a node signal wk, k P U .

Then the transfer function from pu, eq to κ generically has full row rank if
there are nD vertex disjoint paths between external signals η and wD.

Proof: The proof is added in Appendix 5.B. �

It can be inferred that:

• the u signals that add directly to the outputs wk, k P Y with a selection
matrix S̄pqq (i.e. uP) consisting of known elements contribute to the
data-informativity;
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• the u signals whose effect on the outputs wk, k P Y that are incorporated in
the term ḠwD (i.e. uA and uZ̄) contribute to the data-informativity;

• the u signals that dynamically affect the outputs wk, k P Y with the matrix
J̄pqq (i.e. uK) that contains unknown dynamics does not contribute to the
data-informativity. These excitation signals are effectively used to estimate
the dynamics in J̄ ;

• uB � uK and hence does not contribute to data-informativity;

• only the e signals that have direct or unmeasured path to nodes in wU

contribute to the data-informativity.

As a direct result of Proposition 5.1 we can now formulate the following
Corollary:

Corollary 5.1 The data-informativity condition (5.8) for the local direct
method and the generalized method is satisfied if the path-based conditions
of Theorem 5.1 are satisfied and the present excitation signals u in the
network are persistently exciting. 2

We will illustrate the results of this Section in three examples.

Example 5.1 Consider a classical closed loop system represented by a two-
node network as depicted in Figure 5.2 with v1 and v2 being process noises
that are correlated, and with u1 � r1, u2 � r2. First we consider the situation
of having no external excitation signals, r1 � r2 � 0. The objective is to
identify the target module G21. We use the local direct method. We select w1

as input and w2 as output of our predictor model, but due to the correlation
between v1 and v2, we need to include w1 also as an output. As a result
wY � tw1, w2u, wO � wo = {w2} and wD � wQ � tw1u. Then U is void. In
order to satisfy the data informativity condition according to Theorem 5.1,
we need to consider vector ηptq. Since U ,Z is void and uP is not present, η
is an empty vector, indicating that there are no external signals available for
exciting wD. Therefore the data-informativity condition can not be satisfied.
The two noise signals e1 and e2 constitute the innovation process ξY and
according to the definition of κptq in (5.8) cannot be used to excite wD. These
noise signals are effectively used to estimate the 2� 2 noise model.

Adding an external excitation signal u1 will not lead to a signal in uP since
the loop through w1 passes only through wO � wo � w2, and therefore the
condition for w` P wQ in Proposition 4.3 is not satisfied. In the predictor
model w1 Ñ pw1, w2q, u1 cannot effectively be used for excitation due to the
fact that G12 is not modelled, leading to the situation that in the model the
contribution of u1 to w1 is actually represented by p1 � G12G21q�1u1, thus
not satisfying the unit transfer that is required for a signal in uP .

Similarly adding an external excitation signal u2 will not lead to a signal in
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Figure 5.2: Classical closed loop example with two node signals and disturbances
v1 and v2 being correlated.

uP since there is a direct path from wO � wo � w2 to wQ � w1, and thus
the condition for w` P wO in Proposition 4.3 is not satisfied. In the predictor
model w1 Ñ pw1, w2q, u2 cannot effectively be used for excitation due to the
fact that G12 is not modeled, leading to the situation that in the model the
contribution of u2 tow1 is actually represented by p1�G12G21q�1G12u2, thus
not satisfying the unit transfer that is required for a signal in uP . However, if
we include w2 also as input and modelG12 with predictor model pw1, w2q Ñ
pw1, w2q, then wD changes to wD � wQ � tw1, w2u. Then we need two (vertex
disjoint) paths from η � uP to wD. With predictor model pw1, w2q Ñ pw1, w2q,
both u1 and u2 lead to a signal in uP and therefore we need two external
excitation signals r1 and r2 for achieving data-informativity. This result is in
agreement with the observations in [126].

Example 5.2 Consider the three node network depicted in Figure 5.3 with
v1 and v3 being disturbance signals that are correlated, and
u1 � r1, u2 � r2, u3 � r3. First we consider the situation of having no
external excitation signals, r1 � r2 � r3 � 0. The objective is to identify the
target module G12 using the local direct method. According to the local
direct method, we have multiple ways to choose the predictor model.
Following the full input case, we choose wY � wo � w1, wA � w2, and then
we choose wB � w3 in order to block the effect of the confounding variable
e3 for the estimation problem w2 Ñ w1. In this setup wQ is void and
wD � wU � tw2, w3u. The data-informativity condition of Theorem 5.1 now
requires two vertex disjoint paths between te2, e3u and tw2, w3u. As this can
simply be verified from the graph, the data-informativity condition is
satisfied without any need for external excitation signals.

When choosing an alternative predictor model, e.g. according to the
minimum input case algorithm, we choose wY � tw1, w2u and wQ � w2, i.e.
we model w2 as output also, in order to deal with the confounding variable
e3 for the estimation problem w2 Ñ w1. In this setup wU � wAYB is void. In
order to satisfy the data informativity condition according to Theorem 5.1,
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Figure 5.3: A three node network example.

we need a path from signal ηptq to wD � w2. Since U is void and uP , uZ̄ is not
present, η is an empty vector, indicating that there are no external signals
available for exciting wD. Therefore the data-informativity condition can not
be satisfied. Adding external signals u1 or u2 will lead to a signal in η � uP .
But, when η � u1 we do not satisfy the data informativity condition since
we do not have a path from signal η � u1 to wD � w2. When adding u2 � r2

as external signal, we satisfy the data informativity condition since the
path-based condition is satisfied. An external signal uZ � u3 � r3 cannot
contribute to η because it does not belong to uZ̄ (see Definition 4.2) since
there is an unmeasured path from u3 to w2 which is in wY . It cannot be used
for excitation due to the non-unity transfer to w2 which needs to be
estimated, and hence does not provide data informativity for the chosen
predictor model.

Example 5.3 Consider the four-node network as depicted in Figure 5.4 with
v1 � e1, v2 � e2, v3 � e3, v4 � e4 being process noises that are uncorrelated
with each other, and non-measured node signal w3. The other node signals
are measured. First we consider the situation of having no external
excitation signals, u1 � u2 � u3 � u4 � 0. The objective is to identify the
target module G21 with j � 2 and i � 1. Since w3 is non-measured, the
parallel path/loop condition 3.1 required for target module invariance is
not satisfied. Hence, we cannot use the local direct method and we resort to
the generalized method. We select w1 as input and w2 as output of our
predictor model. Since w3 is non-measured, the parallel path
w1 Ñ w3 Ñ w2 violates the condition 3.1. This violation is handled in
generalized method by exciting the parallel path with u3, including u3 as
predictor input, and by including the descendant w4 from the excited node
w3 as predicted output. As a result wY � tw2, w4u, wO = tw2, w4u, wZr =
tw3u, wU � wA = tw1u and wD � tw1u. Condition 4.2 requires that there are
no direct or unmeasured paths from wk, k P Oztju to pwj , wBq and also
i P Q Y A. For Condition 4.2 to be satisfied, w4 should also be included as
predictor input. As a result wY � tw2, w4u, wQ = tw4u, wO = tw2u, wZr = tw3u,
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Figure 5.4: A 4-node dynamic network with w3 non-measured and the noise
signals on each node uncorrelated with each other. G21 is the target module that
needs to be identified.

wU � wA = tw1u and wD � tw1, w4u. u3 belongs to uK and not uZ̄ since there
is a path from w3 to w4 in wY that does not pass through a node in wQYU . In
order to satisfy the data informativity condition according to Theorem 5.1,
we need to consider vector ηptq and we need two vertex disjoint paths from
η to wD. Since v2, v3 and v4 does not have path to wU � w1, they do not
belong to eU and cannot contribute to η. These signals are part of ξY and are
used to estimate the 2 � 2 noise model, and hence does not contribute to η.
Since uP , uA, uZ̄ are not present, η � eU � e1, indicating the external signals
available for exciting wD. But, when η � e1 we do not satisfy the data
informativity condition since we need two vertex disjoint paths from η to
wD. When adding u4 as external signal, it will add to uP and hence we
satisfy the data informativity condition since the path-based condition is
satisfied. An external signal uP � u2 cannot contribute to data-informativity
since there does not exist a path from u2 to w4. Similarly, adding uA � u1 to
η will not lead to two vertex disjoint paths from η to wD since both signals
(i.e., u1 and v1) pass through measured node signal w1 P wD. u3 cannot
contribute to η because it does not belong to uZ̄ since there is an
unmeasured path from u3 to w4 which is in wY . It cannot be used for
excitation due to the non-unity transfer to w4 which needs to be estimated
using u3, and hence does not provide data informativity for the chosen
predictor model.

Remark 5.1 For the Generalized method, the estimate of J̄pqq is required for
post-processing and to obtain the estimate of G0

ji. For the direct method,
it is possible to consider the predictor model (5.1) without J̄pq, θq. In this
case, the uK-signals act as noise signals and hence the signal selection should
take into effect the confounding effects of these signals. This setup has been
explored in [127].
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5.5 Conclusions

For consistent identification of a single module that is embedded in a dynamic
network it is necessary that the signals that constitute the chosen predictor model
satisfy data-informativity conditions. We have formalized the concept of
data-informativity for a generalized predictor model that is suited for dynamic
network modeling, and that allows for signals to appear both as input and as
output in a MIMO predictor model. It generalizes all known situations of
indirect and direct methods in closed-loop systems and dynamic networks. The
conditions for data-informativity have been specified for the local direct and
generalized identification method, showing that the conditions can be satisfied
generically by requiring persistence of excitation of external signals, together
with path-based conditions on the topology of the network model set.

5.6 Related videos

Path-based data
informativity conditions

http://publications.pvandenhof.nl/Videos/Vandenhof_CDC2020.mp4
http://publications.pvandenhof.nl/Videos/Vandenhof_CDC2020.mp4


134 Path-based conditions for data-informativity



Appendices

5.A Proof of Lemma 5.1

The spectral density of the output signal is given by Φypωq � F peiωqΦxpωqF peiωq�,
with p�q� the complex conjugate. For each value of ω in �π ¤ ω ¤ π, this is a
matrix multiplication for which it holds that Φypωq ¡ 0 only if rankCpF peiωqq � p
and Φxpωq ¡ 0. If rankRpzqpF pzqq � p then rankCpF peiωqq � p for almost all ω.
Since Φxpωq ¡ 0 for almost all ω this implies that Φypωq ¡ 0 for almost all ω. If
rankRpzqpF pzqq   p then rankCpF peiωqq   p for all ω and there will be no value of
ω for which Φypωq ¡ 0. 2

5.B Proof of Theorem 5.1

The results of Lemma 5.1 and Proposition 5.1 indicate that the transfer function
from external signals to κ generically has full row rank, if there are nQ � nU � nY �
nK vertex disjoint paths between the external signals and κ, where nU , nY , nK are
cardinality of set U ,Y,K respectively.
In the system’s setting with all unmeasured nodes removed as in (4.36), we first
have to determine which external signals should be considered. According to the
term ū in system representation (4.36), the external excitation signals are u and
disturbances sources ξ.

Characterizing ξ: disturbance sources in the transformed network

When premultiplying (4.29) with

P �
�
� I 0 0

0 I 0

�H̃ 1
UQ �H̃ 1

UO I

�
�

where rH̃ 1
UQ H̃ 1

UOs � rH̃UQ H̃UOs
�
H̃3

QQ H̃3
QO

H̃2
OU H̃3

OO

��1

, while only keeping the identity
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terms on the left hand side, we obtain an equivalent network equation

�
�wQ

wO

wU

�
� �

�
�ḠQQ 0 ḠQU

ḠOQ 0 ḠOU

Ğ1
UQ Ğ1

UO Ğ1
UU

�
�
�
�wQ

wO

wU

�
��

�
�H̃3

QQ H̃3
QO 0

H̃2
OQ H̃2

OO 0

0 0 H̃UU

�
�
�
�ξ̃Qξ̃O
ξ̃U

�
�

loomoon
ξ̃

�P 1ū , (5.9)

where the third equation has been scaled to maintain a hollow matrix Ğ1
UU . The

disturbance term in this equation can, after spectral factorization and creating a
monic, stable and minimum phase noise model, be rewritten into�

�H̄QQ H̄QO 0
H̄OQ H̄OO 0

0 0 H̄UU

�
�
�
�ξQξO
ξU

�
� , (5.10)

showing that ξU is a filtered version of ξ̃U .

Writing the disturbance ξ̃U in terms of external signals

According to the proof of lemma 4.2 we have

ξ̃ � H̃�1H̆e � H̃�1v̆. (5.11)

where H̃ is a monic, stable and minimum phase rational matrix and v̆ is the
process noise on the nodes in the immersed network, i.e. the network that results
after removing the unmeasured node signals. Following Lemma 3 in [104] (see
Lemma 3.3), if condition 3.2 is satisfied, then H̃ is block diagonal and of the form

H̃ �
�
H̃b 0

0 H̃a

�
; v̆ �

�
v̆YYB

v̆A

�
.

where H̃b combines the block rows and columns related to the nodes in Q YO Y
B � Y Y B.

Since H̃b is monic, the matrix inverse definitely has nonzero diagonal terms,
implying that with (5.11), v̆B is affecting ξ̃B, and with a similar reasoning v̆A is
affecting ξ̃A. Consequently the disturbance terms that appear in ξ̃U are given by
v̆U , which are the noise signals on wU in the immersed network (3.11) with
unmeasured nodes removed, and hence is a filtered version of all signals in e that
have a direct or unmeasured path to a node in wU .

Combining the above result, and using the fact that ξU is a filtered version of ξ̃U it
follows that the following external signals appear in ξU :

• eU : all signals in e that have a direct or unmeasured path to a node in wU .

Finalizing the proof
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The mapping that we need to evaluate for verifying the number of vertex disjoint
paths is given by

pu, ξq Ñ pwD, ξY , uKq.
Since ξY , uK appears on both sides of the mapping, the path condition can
equivalently be formulated for the mapping

puK̄, ξUq Ñ wD.

From the results of Proposition 4.4, we know that K � LztP YAY Z̄u. Therefore,
K̄ � LzK � tP Y A Y Z̄u. Therefore, the path condition can equivalently be
formulated for the mapping

puP , uA, uZ̄ , ξUq Ñ wD.

Given the external signals that affect ξU as analyzed above, it is sufficient to
evaluate the mapping

puP , uA, uZ̄ , eUq Ñ wD.





6 CHAPTER

A scalable multi-step least squares
method

Identification methods for dynamic networks typically require prior
knowledge of the network and disturbance topology, and often rely

on solving poorly scalable non-convex optimization problems. While
methods for estimating network topology are available in the literature,
less attention has been paid to estimating the disturbance topology, i.e.,
the (spatial) noise correlation structure and the noise rank in a filtered
white noise representation of the disturbance signal. In this work we
present an identification method for dynamic networks, in which an
estimation of the disturbance topology precedes the identification of the
full dynamic network with known network topology. To this end we
extend the multi-step Sequential Linear Regression [31] and Weighted
Null Space Fitting methods [51] to deal with reduced rank noise, and
use these methods to estimate the disturbance topology and the network
dynamics in the full measurement situation. As a result, we provide a
multi-step least squares algorithm with parallel computation capabilities
that rely only on explicit analytical solutions, thereby avoiding the
usual non-convex optimizations involved. Consequently we consistently
estimate dynamic networks of Box-Jenkins (BJ) model structure, while
keeping the computational burden low. We provide a consistency proof
that includes path-based data informativity conditions for allocation of
excitation signals in the experimental design. Numerical simulations
performed on a dynamic network with reduced rank noise illustrate the
potential of this method.

This chapter is based on: S. J. M. Fonken, K.R. Ramaswamy and P.M.J. Van den Hof, “A scalable
multi-step least squares method for network identification with unknown disturbance topology", To
appear in Automatica, July 2022, ArXiv: 2106.07548.
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6.1 Introduction

While dynamic networks increase in complexity and size, and measurement data
are becoming increasingly accessible, there is a strong demand for accurate and
scalable data driven modeling methods. To identify all the modules in a dynamic
network, the joint direct method [144] predicts all node signals in the network
jointly and achieves consistency and minimum variance properties in the
situation that the network and disturbance topology are given a priori and the
noise can be of reduced rank. However it strongly relies on solving (constrained)
non-convex optimization problems, which seriously limits its scalability to larger
networks. There are multi-step convex identification methods available for full
network identification, such as the Sequential Linear Regression (SLR) [31],
Sequential Least Squares (SLS) [140] and extensions of Weighted Null Space
Fitting (WNSF) [51] such as [43]. Moreover, methods such as the SLR and SLS
allow for splitting the MIMO optimization into multiple linear regressions,
which contributes to a lower computational burden. The available convex
methods1 are scalable to larger networks, but are limited to particular model
structures of the network, and additionally, they do not allow for handling
reduced rank noise. Particularly in large-scale network identification, stepping
away from the typical assumption that all disturbance signals have their own
independent noise source (i.e. full rank noise), is an appealing situation that
should be supported by an effective estimation algorithm. Handling this
situation of reduced-rank noise can substantially reduce the variance of
estimated models. However it also introduces the problems of estimating the
noise rank and noise correlation structure from data.

We witnessed in the previous chapters that in order to consistently identify the
modules in a dynamic network, it is vital to know the disturbance correlation
structure or disturbance topology for selecting the appropriate predictor model that
can handle confounding variables. All available convex and non-convex
methods for network identification require prior knowledge on the topology (i.e.
rank and spatial correlation structure of the disturbance model). This
information can be unknown. While in dynamic factor analysis [33] attention has
been paid to the estimation of noise rank, in prediction error identification this
does not appear to be included yet in the identification algorithms. For situations
where the disturbance topology information is not readily available, it is
attractive to develop methods that include estimating this information from data.

The topology estimation literature shows a variety of available methods to
estimate the topology, such as Wiener filter based methods [82, 85], Bayesian
model selection techniques [23, 116, 139], or methods that infer the topology from
parametric estimates [11, 28, 152]. While the main focus of topology detection
literature has been on estimating network topology in the situation of a diagonal
disturbance spectrum Φvpωq, extensions towards non-diagonal spectrum have
been presented in [13, 37, 134]. In [134] network topology and the non-zero
pattern in the disturbance spectrum are estimated jointly.

1These methods involve multiple steps, however the optimization problems involved in all the
steps are convex.
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In this chapter we assume that we do not know the disturbance topology a
priori, but we assume that the network topology is known e.g., from its
underlying physics, which is commonly the case for engineered systems. In the
situation that the network topology is not known beforehand, it is possible to use
any of the above cited methods to estimate it. We allow the process noise to be
spatially correlated, i.e. the disturbance spectrum Φvpωq is not necessarily
diagonal. Additionally the noise is allowed to be of reduced rank, i.e. Φvpωq can
be singular.

6.1.1 Approach in a nutshell

The objective is to develop a multi-step convex algorithm that estimates
the disturbance topology and all the dynamic modules in the network for
general model structures including the Box Jenkins (BJ) structure, while
adhering to computational algorithms that are scalable, while achieving
favorable properties in terms of low experiment cost, consistency and
reduced variance of the network estimates.

To this end we develop a multi-step algorithm to identify the network dynamics.
In the first step the noise rank and the nonzero pattern in the corresponding
disturbance model (noise shaping filter) are estimated. This is done through a
(nonparametric) high-order ARX model, inspired by the SLR method [31]. Next,
this information is used to develop a multi-step convex algorithm that can
accurately identify the dynamics of the network in the situation of reduced rank
noise and for a very general Box Jenkins model structure, thereby combining the
recently introduced multi-step convex identification methods SLR [31] and
WNSF [43, 51] and extending them to the described situation.

The chapter is organized as follows. In Section 6.2 we present a new method for
estimating the disturbance topology from data, followed in Section 6.3 by a
multi-step identification algorithm that exploits the prior estimated disturbance
topology. Section 6.4 presents the consistency analysis of the method, including
graph-based conditions for data informativity. Results of numerical simulations
are provided in Section 6.5, followed by conclusions in Section 10.8. The
consistency proofs are collected in the Appendix.

We assume that the data generating network satisfies the following assumptions
is addition to Assumption 2.1.

Assumption 6.1

a. All the modules in G0 are strictly proper.

b. H̆0 is square, monic, stable and minimum phase.

c. The topology of G0 and R0, and the non-zero elements of R0 are fixed
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and known.

d. The matrixR0 has a block diagonal structure: R0 � diagpR0
a, R

0
bq in the

situation of ordered nodes as meant in (2.4).

e. Measurements of all node signals w and all present excitation signals r
are available.

f. The standard regularity conditions on the data are satisfied that are
required for convergence of parameter estimate of the prediction error
identification method.

The two main steps of the identification method that will be developed in this
chapter are

• Estimating the disturbance topology, i.e. the noise rank and the zero pattern
in the disturbance model.

• Estimating the dynamical components in the network for a given network
and disturbance topology, while using a parametric BJ model structure.

In the next section we first focus on the disturbance topology estimation method,
followed by the developed identification method in the section thereafter.

6.2 Disturbance topology estimation

Before we can use a unique disturbance model that is structured according to H̆0

in (2.4), we need to estimate the noise rank p and we need to be able to reorder
the node signals in such a way that a noise representation as in (2.4) can be used.
This step is necessary as the unstructured disturbance model H0 is non-unique in
the situation p   L. Therefore the disturbance topology estimation is performed
in two main steps:

• Step 1: Estimating the noise rank, and reordering the signals to the situation
of Lemma 2.1.

• Step 2: Estimating the structure of the disturbance model H̆0 (see Section
2.1.1).

6.2.1 Step 1: Estimating noise rank p and reordering of nodes

For estimating the noise rank p, we are going to estimate the covariance matrix Λ̆0

(2.5) of innovation signal ĕ, which through its rank p can provide us access to the
correct noise rank.
An estimate of the covariance matrix is obtained by estimating a high-order (non-
parametric) ARX model on the basis of measured signals w, r, and by using the
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residual (predictor error) of this estimated model as an estimate of the white noise
term ĕ.

A parametrized ARX model is chosen according to

Ăpq, ζq � I � Ă1q
�1 � � � � � Ănq

�n (6.1)
B̆pq, ζq � B̆0 � B̆1q

�1 � � � � B̆nq�n (6.2)

while all coefficients of Ăk, B̆k are collected in the parameter vector ζ. The one-
step-ahead predictor [77], defined as

ŵpt|t� 1; ζq :� Ētwptq|wt�1, rtu (6.3)

is given by

ŵpt|t� 1, ζq � �
I � Ăpq, ζq�wptq � B̆pq, ζqrptq (6.4)

� ϕptqζ (6.5)

with ϕptq composed of the appropriate terms in w and r.
Note that for an actual network with representation G0, H̆0, R0, the one-step
predictor will be given by

ŵpt|t� 1q � �
I � pH̆0pqqq�1pI �G0pqqqqwptq �
�pH̆0pqqq�1R0pqqrptq. (6.6)

This implies that the polynomial predictor model (6.4) can only accurately
approximate the rational filters that are present in (6.6) if the ARX order n is
chosen very high. The ARX model is estimated according to
ζ̂nN � arg minζ

1
N

°N
t�1 ε

T pt, ζqεpt, ζq, with εpt, θq � wptq � ŵpt|t � 1; ζq, leading to
the analytical solution

ζ̂nN �
�

1

N

Ņ

t�1

ϕptqϕJptq
��1

1

N

Ņ

t�1

ϕptqwptq. (6.7)

Since the network identifiability conditions of [143] are satisfied for the considered
model set, the sample estimate

Λ̂ :� 1

N

Ņ

t�1

εpt, ζ̂nN qεJpt, ζ̂nN q, (6.8)

will then, under mild regularity conditions, be a consistent estimate of the noise
covariance Λ̆0. The rank p of the noise process can then be estimated through a
rank test on Λ̂, e.g., through a singular value decomposition. Alternatively, other
matrix factorizations or information based criteria can be applied for estimating
the rank, see e.g., [17]. When Λ̂ and the estimated rank p̂   L have been
determined, the L signals can be reordered through a permutation matrix Π such
that the first p̂ components of the permuted noise vector have a rank p̂ covariance
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matrix, i.e.
�
Ip̂ 0

�
ΠJΛ̂Π

�
Ip̂ 0

�J has rank p̂.

Remark 6.1 Since the polynomials Ăpζq and B̆pζq are fully parametrized
with independent parameters on each polynomial entry, the MIMO least
squares optimization that leads to the solution (6.7) can also be
decomposed in L separate linear regressions that minimize the residual
εjpt, ζq separately for each j, which is computationally attractive since the
computations can be performed in parallel or sequentially.

Remark 6.2 The resulting estimation scheme will generally not provide us
with consistent estimates of the ARX model. This is not only due to the fact
that typically the order n of the ARX model would need to go to infinity, but
also to the fact that the solution for ζ̂nN is non-unique in the situation p  
L. However, this latter non-uniqueness does not affect the uniqueness and
whiteness of the residual εpt, ζ̂nN q since, according to the projection theorem,
every solution for ζ̂nN determines the same predictor [32]. The estimate Λ̂ is
therefore consistent, i.e. Λ̂ � covpĕq w.p. 1 as n,N Ñ8.

Remark 6.3 Although a correct estimation of the noise rank p cannot be
guaranteed, consistency results for estimating p would be possible when
applying information-based criteria for rank estimation, e.g., based on the
BIC criterion [17]. In the next steps of our approach it will be assumed that
a correct estimation of p has been obtained.

After reordering the node signals as described above, we can now adhere to a
network representation with a unique disturbance model according to the
structure in Lemma 2.1, where H̆0 can be parametrized by the transfer function
matrices Ha and Hb.

6.2.2 Step 2: Estimating the noise correlation structure

In the second step we are going to estimate which entries in our disturbance model
are nonzero. To this end we extend the SLR method [31] to the situation of reduced
rank noise and show how the noise correlation structure can be obtained.

Step 2.1: Refining the nonparametric ARX model

With the noise rank p available and the nodes being ordered, we have gained
additional information on H̆0 (2.4), namely the last L � p columns are now
known. Now, we perform the same approach of identification using high order
ARX modeling as in the previous step, but by utilizing the known entries in H̆0,
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leading to refined estimates of Ăpζ̂nN q and B̆pζ̂nN q. In the analysis results of Section
6.4.1 it shown that the known entries in H̆0 can simply be mapped to known
entries in the parametrized polynomial B̆pζq, and therefore can simply be taken
into account in the least squares problem (6.7). In Section 6.4.1 it is shown that
this leads to consistent estimates ζ̂nN for n,N Ñ8.

Step 2.2: Predictor model with reconstructed innovation input

In this step we are going to use the estimated nonparametric ARX model to
reconstruct the innovation signal. This allows us to use the reconstructed
innovation signal as a measured input in the predictor model that will be used
for estimating the structure of the disturbance model.

If there exists a parameter ζ0 such that the ARX model pĂpζ0q, B̆pζ0qq captures the
dynamics of the network, then it follows from [144] that

εpt, ζ0q �
�
I

Γ0

�
eptq. (6.9)

We can accordingly decompose εpt, ζq as

εpt, ζq �
�
εapt, ζq
εbpt, ζq

�
(6.10)

while the consistency property of ζ̂nN implies that

εapt, ζ̂nN q Ñ eptq w.p. 1 asN Ñ8@t,
εbpt, ζ̂nN q Ñ Γ0eptq w.p. 1 asN Ñ8@t.

(6.11)

We will refer to εpt, ζ̂nN q as the “reconstructed innovation”.
For a network with ordered nodes we evaluate a new one-step-ahead predictor

ŵpt|t� 1q :� Etwptq|wt�1, rt, et�1u (6.12)

that includes the innovation signal et�1 :� tep0q, ep1q, � � � , ept � 1qu in the
expectation. Then it follows that

ŵpt|t� 1q � G0pqqwptq � pH̆0pqq � Iqĕptq �R0pqqrptq, (6.13)

where

pH̆0�Iqĕ � � � H0
a 0

H0
b �Γ I

�
�I�ĕ � �

H0
a�I

H0
b �Γ0

�
e � H̄0e. (6.14)

This motivates the use of the following parametrized predictor model per node:

ŵjpt|t� 1, ηjq �
¸
lPNj

Gjlpηjqwl �
¸
sPVj

H̄jspηjqεaspζ̂nN q �
¸
kPRj

Rjkrk, (6.15)
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where the terms Gpηq and H̄pηq are parametrized versions of G0 and H̄0

respectively, and εapζ̂nN q is an estimate of the noise signal eptq.
Gjlpηq �

°n
k�1 g

jl
k q

�k and H̄jspηq �
°n
k�1 h

js
k q

�k are parametrized as strictly
proper polynomials of order n, the term

°
kPRj

Rjkrkptq is known, the sets Nj
and Rj are known from the topology of G0 and R0, and Vj defines the set of
indices of noise signals for which noise dynamics is present in the disturbance
model. This leads to an ARX model, like in Step 1, but now with the
reconstructed innovation εapt, ζ̂nN q added as external predictor input signal, and
the coefficients of the unknown polynomials collected in the parameter vector η.
It is our next objective now to determine the sets Vj for j � 1, � � �L. To this end
we follow two approaches namely the structure selection approach and the
Glasso approach, which will be presented next.

Structure selection

For a particular choice of Vj we evaluate the residual
εjpt, η̂nNj q :� wjptq � ŵjpt|t � 1, η̂nNj q where η̂nNj is the estimated parameter that

minimizes the quadratic criterion 1
N

°N
t�1 ε

2
j pt, ηjq, and that is obtained through

an analytical solution, similar to (6.7). We test this residual with possible
combinations in set Vj and employ model selection techniques such as AIC, BIC
and Cross-validation (CV) on the obtained estimates η̂nNj [152], of which the BIC
provides a consistent estimate [71, 114]. Because we use ARX models to estimate
η, model selection techniques such as AIC, BIC and CV involves convex
optimization problems. Additionally, since we derive the disturbance topology
per node, we have to test at most 2L possible sets Vj for L nodes. This results in a
lower computational burden compared to when we detect the topology in a
MIMO setting, where we would have to test at most 2L

2�L possible sets Vj
simultaneously for all j [152]. However, for large networks these model selection
techniques can still become computationally heavy.

Sparse estimation with Glasso

For each node j, a Glasso (Group Lasso) estimate is computed by minimizing the
following cost function over ηj for a fully parametrized disturbance model with p
white noise inputs:

min
ηj

#
1

2

Ņ

t�1

pwjptq � ŵjpt|t� 1, ηjq2 � λj � }ηj}2
+

(6.16)

with the one-step-ahead predictor (6.15), and ηj being the vector of parameters
related to the modules Gji for i P Nj , and related to the modules H̄js for
s � 1, � � � p; λj is the tuning parameter (penalization factor) of Glasso. The tuning
of λj is described in the numerical illustrations in Section 6.5.
The right hand side of (6.16) is a mixed l1{l2 norm. The Glasso estimate is a
convex extension to lasso that penalizes groups of estimated parameters [151],
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imposing sparsity at group level. Within a group, it does not yield sparsity [4]. If
an appropriate penalization factor is chosen, only the dynamic modules that are
actually present in the data generating network remain while the non-present
terms are forced to 0, thus providing an estimate of the structure of H̄ .

With either of the methods (structure selection and sparse estimation with
Glasso) the structure Vj of the disturbance model can be estimated entirely with
convex and thus scalable methods, employing non-parametric (high order ARX-)
models. This structural information can be effectively used in the actual
estimation of parametric dynamic models in the next section.

Remark 6.4 It is possible to add regularization when estimating the
high-order ARX models presented in this section to guarantee stability of
the estimates.

6.3 Estimating parametric network models

The next step in our identification procedure is

• Step 3: Estimating a parametric network model.

While in Step 1 and 2 high order (nonparametric) models of the same model order
n are used, and thus providing estimates with relatively high variance, in this
step a parametric model is estimated from data where we exploit a very flexible
Box-Jenkins model structure. In Step 3 we extend the WNSF method [51], and
its application to dynamic networks in [43], to the reduced rank noise case such
that we are able to obtain parametric models Gpθq and Hpθq. The WNSF is in
itself a three step method that starts with a high-order model before estimating
the parametric model.

6.3.1 Step 3.1: Refining the nonparametric model

By fixing the correctly estimated disturbance topology obtained in the previous
section we obtain consistent estimates of ηj using one-step-ahead predictor (6.15)
defined in (6.12), leading to a high-order ARX model with structured disturbance
model. The conditions for consistency of η̂njN are derived in Section 6.4. By
employing the structured disturbance model we reduce the variance of η̂njN ,
while the model order n remains the same.
Using the consistent estimate η̂njN , we update the reconstructed innovation.
Subsequently, we again update the high-order ARX model by replacing εapζ̂njN q
with the updated reconstructed innovation εapη̂njN q in (6.15), and use this
updated predictor to re-estimate ηj . This latter estimate can be seen as the
starting high-order model for the WNSF method. At this point we still have a
high variance on the estimates of η but negligible bias if model order n
throughout all the steps is chosen sufficiently large. In the next step we reduce
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the variance by reducing the number of parameters to estimate, where we will
make the step from a high-order (nonparametric) model to a parametric model.

6.3.2 Step 3.2: Parametric model estimate

On the basis of the nonparametric model estimate characterized by η̂jN we are
now going to estimate a parametric model of the dynamic network by utilizing a
Box Jenkins model structure:

Gjlpq, θq �
ljl1 q

�1 � � � � � ljlmlq
�ml

1� f jl1 q
�1 � � � � � f jlmf q

�mf
,

Hjjpq, θq �
1� cjj1 q

�1 � � � � � cjjmcq
�mc

1� djj1 q
�1 � � � � � djjmdq

�md
,

Hjspq, θq �
cjs1 q

�1 � � � � � cjsmcq
�mc

1� djs1 q
�1 � � � � � djsmdq

�md
, s � j

(6.17)

that can be rewritten as

Gjlpq, θq � Ljlpq, θq
Fjlpq, θq , Hjspq, θq � Cjspq, θq

Djspq, θq . (6.18)

From Gjlpη̂njN q and H̄jspη̂njN q that are obtained in the previous step through the
predictor (6.15), we can derive a related estimate of H0pqq according to (6.14)

leading to Hpη̂nN q � H̄pη̂nN q �
�

I
Γpη̂nN q

�
, with Γpη̂nN q an estimate of the direct

feedthrough term Γ0 of H0
b , and that based on the relation ĕbptq � Γ0ĕaptq from

(2.4), can be given by

Γpη̂nN q�
� 1

N

Ņ

t�1

εbpη̂nN qεJa pη̂nN q
	� 1

N

Ņ

t�1

εapη̂nN qεJa pη̂nN q
	�1

. (6.19)

Following the WNSF approach, we are now going to fit the parametric Box Jenkins
model to the nonparametric model estimated from Step 3.1, by solving for θ in the
equations

FjlpθqGjlpη̂nN q � Ljlpθq � 0 ,

DjspθqHjspη̂nN q � Cjspθq � 0.
(6.20)

However, since these equations can not be solved exactly, an optimization
problem is formulated [51] that comes down to minimizing the quadratic
residual vector on the equations (6.20) by solving (in node-wise or MISO
notation):

min
θj

}η̂njN �Qjpη̂njN qθj}2 (6.21)

where

Qjpηq �
�
Qgj 0

0 Qhj

�
, (6.22)
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with Qgj and Qhj diagonal matrices with entries

Qg
jl

j pηq � ��Tn�mf rGjlpηqs Īn�ml
�
,

Qh
js

j pηq � ��Tn�mdrHjspηqs Īn�mc
�
,

(6.23)

with model orders mi, i P tl, f, c, du according to (6.17), the top left corner of Īn�m
is Im�m and has zeros otherwise, and Tn�mrXjipqqs is a lower triangular Toeplitz
matrix where the first column is

�
xji0 � � � xjin�1

�J
with Xjipqq �

°8
k�0 x

ji
k q

�k.
The problem (6.21) is solved in first instance through the analytical least squares
solution

θ̂
r0s
jN
� �

QJ
j pη̂njN qQjpη̂njN q

��1
QJ
j pη̂njN qη̂njN . (6.24)

However, a parameter estimate with smaller variance can be achieved if a
weighted least squares criterion is applied2. This is introduced in the next step.

6.3.3 Step 3.3: Re-estimation of parametric model

In this step we reduce the variance further by re-estimating the obtained
parametric models Gpθq and Hpθq defined in (6.18). For a statistical optimal
solution of (6.21), instead of the standard least squares problem (6.21), a
weighted least squares problem should be solved, where the optimal weight is
given by the inverse of the covariance matrix of the residual η̂njN � Qjpη̂njN qθ0

j ,
with θ0

j the actual network coefficients related to node wj . This is not directly
applicable since θ0

j is unknown. However it can be shown [51] that

η̂njN �Qjpη̂njN qθ0
j � Tjpθ0

j qpη̂njN � ηn0
j q, (6.25)

with ηn0
j the real network coefficients related to the η-parametrized ARX model

and Tjpθq a block diagonal matrix with the denominator polynomials as entries

T g
jl

j pθq � Tn�nrFjlpθqs,
Th

js

j pθq � Tn�nrDjspθqs,
(6.26)

where Tn�nrXjipqqs is a lower triangular Toeplitz matrix where the first column is�
1 xji1 � � � xjim 0n�m�1

�J
with Xjipqq � 1�°8

k�1 x
ji
k q

�k.

Result (6.25) motivates the use of a weighted least estimator with weighting
matrix

Wj � T�1
j pθ0

j qpPη̂njN q
�1T�Tj pθ0

j q
with Pη̂njN

the covariance matrix of the nonparametric model. This can be

2As an alternative we can consider a weighted least squares criterion to obtain θ̂r0sjN
(6.24), with the

covariance matrix of the nonparametric model as weight.
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implemented in an iterative scheme according to

θ̂
rk�1s
jN

��
QJ
j pη̂njN qWjpθ̂rksjN qQjpη̂njN q

��1
QJ
j pη̂njN qWjpθ̂rksjN qη̂njN .

(6.27)

For consistency of the estimates of parameter vector θ we refer to the proof in
the WNSF method [51], with the actual model orders mi with i � f, l, c, d (6.17)
known.

Remark 6.5 Because in this final step we correct for the variance due to the
modeling error (6.25), the final estimate will have a reduced variance.

Throughout the presented steps we split the MIMO optimization into L linear
regressions that rely on explicit analytical solutions, and that allows for parallel
computing. The entire approach is presented in Algorithm 6.1.

Algorithm 6.1 Algorithm for full network identification in dynamic
networks, including disturbance topology detection

Inputs: wptq, rptq, R0pqq, model orders mi, i P tl, f, c, du, network topology.
Output: Disturbance topology, θ̂N .

Disturbance topology detection

1. Estimate noise rank p based on the reconstructed innovation εpt, ζ̂nN q
(6.10), and if p   L order the nodes.

2. 2.1 Obtain consistent estimate ζ̂nN with least squares solution (6.31),
where the nodes are ordered and by utilizing the estimated noise
rank p.

2.2 Use the reconstructed innovation εapt, ζ̂nN q as measured input in
the one-step-ahead predictor (6.15) defined in (6.12) to estimate
the noise correlation structure. We use

i. Structure selection with AIC, BIC and CV,
ii. Glasso,

applied to estimate η̂njN that is obtained with least squares solution
(6.32).

Estimating parametric network models

3. 3.1 Refine the nonparametric ARX model and obtain consistent
estimate η̂nN with one-step-ahead predictor (6.15), where the
estimated disturbance topology is fixed and update the
reconstructed innovation to εapt, η̂nN q to re-estimate η̂nN .
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3.2 Reduce the nonparametric ARX model to a parametric model and
obtain initial estimate θ̂r0sN by (6.24).

3.3 Re-estimate θ̂rk�1s
jN

with (6.27), where we update the weighting

matrix Wjpθ̂rksjN q in each iteration.

We continue to iterate the above step 3.3 until we have reached the convergence

criterion }θ̂
rks
N �θ̂

rk�1s
N }

}θ̂
rk�1s
N }

  0.0001. This convergence criterion is also used in the

simulation results in Section 6.5. In the next section we derive the conditions
required for consistency of estimates ζ̂njN and η̂njN .

6.4 Theoretical analyses

From here on we consider n � npNq i.e. the model order n increases as the data
length N increases, while with increasing N , n{N tends to 0 with a particular rate
(refer conditions D1 - D3 in [51], conditions D1 - D5 in [78]). Next we derive the
conditions under which the estimates ζ̂nN and η̂nN , and consequently the
reconstructed innovation are consistent.

6.4.1 Consistency of ζ̂nN in Step 2.1: Refining the nonparametric
model

With the noise rank p available and the nodes ordered we gained structural
information on the unique noise model H̆0pqq (2.4), namely we know that for the
reduced noise rank case p   L the last L � p columns in H̆0pqq are

�
0 I

�J.
Moreover, taking the inverse of H̆0pqq does not affect the last L� p columns since

pH̆0q�1 �
� pH0

aq�1 0
��H0

b � Γ0
�pH0

aq�1 I

�
. (6.28)

As a result the term pH̆0pqqq�1R0pqq in the one-step predictor (6.6), has the
following structure

pH̆0q�1R0 �
� pH0

aq�1R0
a 0

��H0
b � Γ0

�pH0
aq�1R0

a R0
b

�
, (6.29)

with the second block column consisting of known terms only. This allows in the
parametrization of the predictor (6.4) to replace the square polynomial B̆pζq with
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a non-square polynomial Bpζq, leading to

ŵpt|t� 1, ζq � �
I � Ăpζq�wptq �Bpζqraptq �

�
0
R0
b

�
rbptq

� ϕptqζ �
�

0
R0
b

�
rbptq,

(6.30)

with ϕptq composed of the appropriate terms in w and ra.
Note that for an actual network with representation G0, H̆0, R0, the one-step
predictor is still given by (6.6), but now the predictor model (6.30) can use the
known external excitation signals rbptq. The ARX model is estimated according to
ζ̂nN � arg minζ

1
N

°N
t�1 ε

T pt, ζqεpt, ζq, with εpt, θq � wptq � ŵpt|t � 1; ζq, leading to
the analytical solution:

ζ̂nN �
�

1

N

Ņ

t�1

ϕptqϕJptq
��1

1

N

Ņ

t�1

ϕptq
�
wptq�

�
0
R0
b

�
rbptq

�
. (6.31)

Note that Remark 1 holds and therefore predictor (6.30) can be decomposed in
separate predictors for each node. The conditions for consistency are formulated
in Proposition 6.1 and the proof is added in the appendix.

Proposition 6.1 Consistency ζ̂nN
Consider a dynamic network that satisfies Assumption 6.1. Additionally,
consider the one-step-ahead predictor (6.30) with Ăpq, ζq and Bpq, ζq are of
high order. Then the transfer function matrices pH̆0pqqq�1pI � G0pqqq and
pH̆0pqqq�1

�
R0
apqqJ 0

�J are consistently estimated with the analytical
solution (6.7), if the following conditions hold:

1. The external excitation rptq is uncorrelated to the noise eptq.

2. The spectral density of κptq � �
raptqJ wptqJ�J, Φκpωq ¡ 0 for a

sufficiently high number of frequencies ω.

Proof: See appendix. �

Remark 6.6 Condition (1) and (2) of Proposition 1 are given for all signals
present in the network. These conditions remain unchanged when we
convert from a MIMO predictor to L linear regressions. Therefore the proof
also holds for a MISO predictor assessed per node.
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6.4.2 Consistency of η̂nN in Step 3.1: Refining the nonparametric
model

A refined nonparametric model is estimated by exploiting the information on the
noise topology in the form of a structured polynomial model Bpηjq for H̄jspηjq in
the predictor (6.15), leading to the analytical solution

η̂nN �
�

1

N

Ņ

t�1

ϕptqϕJptq
��1

1

N

Ņ

t�1

ϕptq�wptq�R0rptq� . (6.32)

with ϕptq composed of the appropriate terms in w and εpη̂nN q.
The conditions for consistency are formulated in Proposition 6.2.

Proposition 6.2 Consistency η̂nN
Consider a dynamic network that satisfies Assumption 1 and Proposition
6.1, and assume the disturbance topology is estimated correctly.
Additionally, consider the one-step-ahead predictor (6.15) for all j. Then the
transfer function matrices of G0pqq and H̆0pqq � I are consistently estimated
with the analytical solution η̂nN (6.32), if the following conditions hold:

1. For all j, the spectral density Φκ̄pωq of κ̄ptq :� �
wtNjuptqJ etVjuptqJ

�J
,

satisfies Φκ̄pωq ¡ 0 for a sufficiently high number of frequencies ω.

2. The data generating system is in the model set, i.e. there exists a η0 such
that Gpq, η0q � G0pqq and H̄pq, η0q � H̆0pqq � I .

Proof: See appendix. �

With consistent estimate η̂nN we can update the reconstructed innovation
εpt, η̂nN q �

�
εapt, η̂nN qJ εbpt, η̂nN qJ

�J consistently for each time step t � 1, . . . , N

εpt, η̂nN q Ñ ĕptq w.p. 1 asN Ñ8@t, (6.33)

where the innovation is reconstructed per node according to εjpt, ηq � wjptq �
ŵjpt|t� 1, ηq using one-step-ahead predictor (6.15).

Remark 6.7 Note that Condition 2 of Proposition 6.2 incorporates the
condition that the noise rank p is chosen correctly, and the disturbance
model is flexible enough to represent the exact disturbance topology of the
network.

Following the line of reasoning in [127], the spectral conditions in Propositions
6.1 and 6.2, which are actually data informativity conditions, can generically be
replaced by path-based conditions on the graph of the network model set.
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6.4.3 Generic data informativity conditions

Condition (2) of Proposition 6.1 and Condition (1) of Proposition 6.2 is a spectral
data informativity condition on internal node signals in w, and it is difficult to
interpret it for an experimenter. In this section we replace the spectral condition
with a path-based data informativity condition in a generic sense3, i.e.
independent of the numerical values of the network dynamics. By doing so we
can evaluate if data informativity is satisfied based on the network and
disturbance topology, and the properties of the external signals. Next we
formulate the conditions in terms of properties and locations of the external
signals analogous to Lemma 5.1 and Proposition 5.1 from Chapter 5, by means of
vertex-disjoint paths from external signals to internal node signals, where two
paths are vertex-disjoint if they have no nodes in common, including their start
and end nodes [131]. The consequences are illustrated in a 6-node example.

Vertex-disjoint paths

The generic version of Condition (2) of Proposition 6.1 is given in Proposition
6.3.

Proposition 6.3 The spectrum condition Φκpωq ¡ 0 for
κptq � �

raptqJ wptqJ�J in Condition (2) of Proposition 6.1 is generically

satisfied if there are L vertex-disjoint paths from
�
rbptqJ eptqJ�J to wptq.

Proof: See appendix. �

Proposition 6.3 gives a sufficient generic path-based condition that requires to
have external excitation signals at certain locations in the network, combining
data informativity conditions with identifiability [127].

The set V denotes the set of indices of all the disturbing noise signals, where Vj
is a subset of V . For the generic condition for Condition (1) of Proposition 6.2 we
introduce notation etXjuptq, whereXj is the set of indices of all the disturbing noise
signals excluding indices that are already present in set Vj , i.e. Xj � V{Vj .

Proposition 6.4 The spectrum condition Φκ̄pωq ¡ 0 for
κ̄ptq � �

wtNjuptqJ etVjuptqJ
�J

in Condition (1) of Proposition 6.2 is
generically satisfied if there are CardinaltNju vertex-disjoint paths from�
rptqJ etXjuptqJ

�J
to wtNjuptq.

Proof: See appendix. �

Proposition 6.4 gives a sufficient generic path based condition that requires
3Genericity is considered in the sense that the corresponding property holds for almost all models

in the model set, possibly excluding a set of measure 0.
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external excitation signals at certain locations such that Φκ̄pωq ¡ 0 for a
sufficiently high number of frequencies.

Remark 6.8 If we want to identify only the jth row of the network (or only
part of the network), we can consider the predictor in Proposition 6.2 only
for node j and satisfy the conditions in Proposition 6.2 and 6.4 for node j.

Next we elaborate the vertex-disjoint path conditions by means of an example
where a network is subject to reduced rank noise.

Reduced rank noise example

We consider a 6-node network that satisfies Assumption 1 and is subject to
reduced rank noise of rank p � 4 shown in Figure 6.1. This 6-node example is
additionally used in the simulations in Section 6.5, and is further defined in
Appendix 6.E. The nodes are ordered such that the first p nodes are subject to full
rank noise. Moreover, we assume the disturbance topology is correctly
estimated. The goal of this example is to elaborate on the path-based data

Figure 6.1: 6-node dynamic network with reduced rank noise that has rank p � 4,
no rptq signals are shown. The arrows represent the edges for which G0

ji � 0 and
H0
ji � 0, where the arrows indicated in red are examples of the two vertex disjoint

paths needed to satisfy Proposition 6.4 for output w3ptq.

informativity conditions given in Proposition 6.3 and 6.4. To be more specific, we
show which external excitation signals are sufficient in order to satisfy the
spectral Condition (2) in Proposition 6.1 and Condition (1) in Proposition 6.2. In
the example we have external noise signals eptq � �

e1ptq . . . e4ptq
�J and

external excitation signals rkptq, for simplicity we assume R0 contains elements
that are either 0 or 1.

In order to satisfy Proposition 6.3, we require L � 6 vertex-disjoint paths from�
rbptqJ eptqJ�J to wptq, with rbptq. The first p � 4 nodes, denoted by waptq, are

excited by the noise eptq; we therefore require at least L�p � 2 external excitation
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signals rkptq on the last 2 nodeswbptq �
�
w5ptq w6ptq

�J, i.e rbptq �
�
r5ptq r6ptq

�J
with Rb � I P R2�2. Therefore we satisfy Proposition 6.3 since we have 6 vertex-
disjoint paths from

�
eptqJ rbptqJ

�J to
�
waptqJ wbptqJ

�J.

To show how Proposition 6.4 is satisfied, we first consider output node
w3ptq � G31pηqw1ptq � G35pηqw5ptq � H32pηqe2ptq � H33pηqe3ptq, that has
wtN3uptq � �

w1ptq w5ptq
�J and etV3uptq � �

e2ptq e3ptq
�J. We need

CardinaltN3u � 2 vertex-disjoint paths from
�
rptqJ etXjuptqJ

�J
to wtN3uptq.

There already exist 2 vertex disjoint paths from etXjuptq � �
e1ptq e4ptq

�J to
wtN3uptq. This shows that Proposition 6.4 is satisfied by the two vertex disjoint
paths from e1ptq Ñ w1ptq and from e4ptq Ñ w6ptq Ñ w5ptq as indicated in red in
Figure 6.1. If we apply the same reasoning to the other nodes we see that for
node

• w1ptq with wtN1uptq � w4ptq, there exists a vertex-disjoint path from e2ptq Ñ
w4ptq.
• w2ptq with wtN2uptq � w5ptq, there exists a vertex-disjoint path from e3ptq Ñ
w5ptq.
• w4ptq with wtN4uptq � w2ptq, there exists a vertex-disjoint path from e3ptq Ñ
w5ptq Ñ w2ptq
• w5ptq with wtN5uptq �

�
w1ptq w6ptq

�J, there exist 2 vertex-disjoint paths
from e1ptq Ñ w1ptq and from e4ptq Ñ w6ptq.

• w6ptq with wtN3uptq � w3ptq, there exists a vertex-disjoint path from e3ptq Ñ
w3ptq.

In order to satisfy Proposition 6.4 we therefore do not require additional external
excitation signals rkptq. Consequently, in order to identify the full network for the
given example, it is sufficient to add external signals rbptq �

�
r5ptq r6ptq

�J with
Rb � I P R2�2 that satisfies Proposition 6.3.

6.5 Numerical simulations

In this section we show the results of different steps in Algorithm 1. We assume
R0 � I , and consider the system given in Figure 6.1 and Appendix 6.E.

For the simulation study we use normally distributed zero mean white external
signals, where trptqu has a variance of 5 and the vector of e-signals has variances
t0.1, 0.2, 0.3, 0.4u. We simulate the nodes according to
wptq � pI � G0q�1pR0rptq � H0eptqq and perform M � 100 Monte Carlo runs
over five data lengths logarithmically spaced between 300 and 50000. For each of
the data lengths N a specific value of the model order n is chosen according to
n � 10, 20, 30, 40, 40, for increasing values of N . The actual model orders
mi, i P tl, f, c, du can be derived from Appendix 6.E.

Next we describe the noise rank estimation results of step 1 of Algorithm 1.
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6.5.1 Rank p and ordering of the nodes

In order to obtain the noise rank p we perform a rank test (singular value
decomposition) on covariance matrix Λ̂ (6.8). For data length N � 300, the
singular values averaged over the 100 Monte Carlo runs are
svdpΛ̂N q �

�
0.37 0.26 0.21 0.06 2.13�10�8 1.96�10�9

�
, where we see that

the last two singular values are close to zero. As data length increases the last
two values converge even closer to zero. For N � 50000 we obtain the following
averaged singular values
svdpΛ̂N q �

�
0.59 0.40 0.39 0.10 4.04� 10�13 1.24�10�13

�
, showing that a

clear gap between the fourth and fifth singular value points to a correct rank
estimate of 4. Finally with the noise rank p available we can reorder the nodes
such that

�
Ip 0

�
ΠJΛ̂Π

�
Ip 0

�J has rank p.

Next we show the disturbance topology detection results of step 2 of Algorithm 1.

6.5.2 Topology estimation of the disturbance model

For the topology detection we are interested in which indices belong in set Vj for
all j, where the indices indicate where the edges are located in the disturbance
model. We evaluate the performance of the topology detection by evaluating the
trade-off between overestimating and underestimating the number of edges, that
is typically used in receiver operating characteristic (ROC) curves [61].

If an edge is present in both the data generating disturbance and the estimated
disturbance topology, we count this edge as a true positive (TP). If an edge is
present in the estimated disturbance topology but does not exist in the data
generating system, we count this edge as a false positive (FP). Additionally we
let Pos indicate the total number of existing edges and Neg indicates the total
number of non-existing edges in the disturbance model. The ROC curve plots the
true positive rate (TPR) versus the false positive rate (FPR), with

TPR � TP

Pos
, FPR � FP

Neg
, (6.34)

where FPR=0 and TPR=1 represented by the point p0, 1q, indicates the topology is
perfectly reconstructed. We evaluate the closeness to the point p0, 1q by utilizing
the distance function

dis �
a
FPR2 � p1� TPRq2, (6.35)

For the structure selection procedure we test all possible combinations in set Vj
and employ AIC, BIC and CV. For AIC we use

1

2
log

�
VjN pη̂njN q

	
� npj

N
, (6.36)



158 A scalable multi-step least squares method

102 103 104 105
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 6.2: dis as a function of N , averaged over the Monte Carlo runs.

with npj the number of estimated parameters for node j and

VjN pη̂njN q �
1

N

Ņ

t�1

εjpt, η̂njN q2. (6.37)

For BIC we use

N � log
�
VjN pη̂njN q

	
�Nplogp2πq � 1q � npj logpNq. (6.38)

From these simulations we select set Vj that gives the smallest AIC or BIC value.
For the CV we split the data ZN � Zp1qZp2q in a training set Zp1q of length 2

3 pN�1q
and obtain the estimates for the different combinations in set Vj according to

η̂
p1q
jN

� argmin
η

VjN pηj , Zp1qq, (6.39)

With the validation set Zp2q, that contains the remaining data of length N p2q �
1
3 pN � 1q, we minimize objective function

VjN pη̂p1qjN , Zp2qq � 1

N p2q

Np2q¸
t�1

εjpt, η̂p1qjN q2, (6.40)

and select the set Vj that gives the smallest root mean squared error (RMSE)

RMSEj �
b
VjN pη̂p1qjN , Zp2qq. (6.41)

For Glasso we fully parametrize the disturbance model, using the known
topology of G0 and fixed R0 � I . We inspect all elements of the disturbance
model matrix that is parametrized with the Glasso estimates (6.16). If element
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Hjipη̂N q of the disturbance model matrix contains nonzero Glasso estimates we
say this element contains dynamics, and therefore an edge is present and i P Vj .
To prevent arbitrary small Glasso estimates are seen as dynamics we define a
tolerance, where the Glasso estimates are nonzero if the l2 norm of these
estimates is larger than 10�3. The choice to include the estimates of Gjlpηq in the
penalization is due to the implementation of Glasso [15]. For good estimates on
the disturbance topology, we utilize the known topology of G0 and deal with
known R0rptq signals appropriately.

Tuning of λj is done via a grid based search similar to the CV structure selection.
First we select a grid λgridj � t0, 25, 50, � � � , 2000u containing λj values to test.
For each grid point we estimate η̂gridj using Glasso, from where the topology is
derived by inspecting the disturbance model for dynamics as mentioned before,
and fix the topology Hgrid

j per node. Next we apply CV using topology Hgrid
j

and estimate the RMSEj . The grid point with the lowest RMSEj is selected as
the λj value. Repeating the tuning procedure over a number of runs gives the
minimally required value for λj . The tuning procedure is applied to all nodes for
the different data lengths N .

Figure 6.2 shows the topology detection results, with the distance averaged over
100 Monte Carlo runs. The BIC is a consistent information criterion [71, 114],
meaning that the estimated disturbance topology will converge to the actual
topology if N Ñ 8. However, as can be seen in the results in Figure 6.2, the full
convergence of the BIC procedure is not reached for the given data lengths. Until
the BIC procedure converges to the actual disturbance topology, it tends to
underestimate the number of edges that are actually present, therefore the
mismatch in the distance function is caused by not detecting all the TP’s. The
AIC is not a consistent information criterion, but has a faster convergence rate
compared to the BIC [153]. The AIC tends to overestimate the number of edges,
meaning the mismatch is caused by detecting the FP’s. The CV is comparable to
AIC but has a slower convergence rate. Finally the Glasso seems to have the best
of both AIC and BIC. However, these results heavily depend on the selected
tuning parameter λ, where it is not guaranteed that a suitable λ exists.

Next we show the parametric estimation results of step 3 of Algorithm 1, where
we fix the estimated disturbance topology. Based on the results in Figure 6.2 we
have fixed the correctly estimated disturbance topology obtained with Glasso for
N � 50000, where TPR � 1 and FPR � 0.

6.5.3 Estimating the parametric model

Next we present the results of the estimation of the parametric model. Because
Algorithm 1 is consistent we have a negligible bias and the mean squared error
(MSE) represents the variance. For the simulations we use the correct estimated
disturbance topology from the previous step. Additionally, for Step 3.2 of
Algorithm 1, we compute the θ̂

r0s
jN

in (6.24) using the covariance matrix of the
nonparametric model as weighting. Figures 6.3 and 6.4 present the sample MSE
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Figure 6.3: MSE between θ̂N and θ0 as function of sample size, averaged over the
Monte Carlo runs, obtained with Algorithm 1 with R0 � I , where subscript ttu
indicates the use of the true (unknown) white noise as a predictor input instead of
the reconstructed innovation.
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Figure 6.4: MSE between θ̂N and θ0 as function of sample size, averaged over the

Monte Carlo runs, obtained with Algorithm 1 with R0 �
�
0 R0J

b

�J
and Rb � I P

R2�2, where subscript ttu indicates the use of the true (unknown) white noise as
a predictor input instead of the reconstructed innovation.
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that is computed according to MSEpNq � 1
M

°M
c�1

∥∥θ̂N,c � θ0

∥∥2
, where c indicates

the Monte Carlo run and θ̂N,c the final estimate (6.27). In Figure 6.3 we use

R0 � I in the data generating network, and in Figure 6.4 we use R0 �
�
0 R0J

b

�J
with Rb � I P R2�2 according to Section 6.4.3. The solid lines represent
Algorithm 1 where the estimates are obtained using the reconstructed innovation
as input. The dotted lines represent Algorithm 1 where we use the realization of
the actual noise eptq as input, indicated by subscript ttu. The results for the whole
network are shown, while using L MISO linear regressions. Both simulations
shown in Figures 6.3 and 6.4, typically perform k � 6 iterations for data length
N � 300 in (6.27). As the data length N increases the number of iterations
performed decreases, where for N � 50000 the simulations typically perform
k � 2 iterations. The MSEpNq improvement after the iterations is shown in Table
6.1. From Table 6.1 we can derive that we benefit most from iterating k in the
final step of Algorithm 1 if we do not have full excitation on the network with
R0 � I .

N 300 1078 3873 13916 50000
R0�I 1.6� 10�3 5.1� 10�5 �1.2� 10�6 �1.9� 10�7 3.7� 10�8

R0
b�I 0.43 0.26 0.15 0.07 0.01

Table 6.1: MSE improvement:
1
M

°M
c�1

���θ̂N,c � θ0

���2

� 1
M

°M
c�1

���θ̂p1qN,c � θ0

���2

over k iterations

In Figures 6.3 and 6.4 we see convergence between the solid and dotted lines as
the data length N increases. This indicates that as data length N increases the
reconstructed innovation converges to the actual noise. Furthermore all MSE
results continue to converge towards zero which is in line with the consistency
proof.

The results of this simulation study support the consistency proof and we
consistently estimate the BJ model structure, while employing a row-wise
optimization.

6.6 Conclusions

In this chapter we present a multi-step least squares method for network
identification without prior information on disturbance topology, that can handle
reduced rank noise with low computational burden. We follow a step wise
procedure where we first extend the SLR identification method to detect the
disturbance topology, and thereafter extend the WNSF method to consistently
identify networks of general model structure, including a BJ model structure. For
a BJ network, usually a non-convex MIMO identification method is needed. In
this chapter, we show that we identify the BJ network using analytical solutions.
Simulation results indicate that we can identify the disturbance topology of the
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given network with low error if the data length N is sufficiently large. We show
that the presented method is consistent, and provide path based data
informativity conditions, that guides where to allocate external excitation signals
for the experimental design. Considering large networks subject to correlated
and/or reduced rank noise, the presented method is promising due to its
scalability and low variance results.

The presented method is modular. That is, if the disturbance topology is needed
for any identification method, the disturbance topology detection step can be
separately used. Similarly, if the topology information are known apriori, the
estimation of parametric model step can be used. In this chapter we have
estimated the full network, however extensions can be easily made to estimate a
single module or a set of modules in a network.



Appendices

6.A Proof of Proposition 6.1

Consider the prediction error for the predictor ŵpt|t� 1, ζq from (6.30):

εpt, ζq � wptq � ŵpt|t� 1, ζq � Ăpζqwptq � B̆pζqrptq,
� Ăpζqwptq �Bpζqraptq �

�
0 RJ

b

�J
rbptq.

(6.42)

With the data generating system (2.2) given as

wptq � pĂ0q�1B̆0rptq � pĂ0q�1ĕptq,
with Ă0 � pH̆0q�1pI �G0q, B̆0 � pH̆0q�1R0

(6.43)

we can rewrite the prediction error as

εpt, ζq � �
Ă0 �∆Ăpζq�w � �

B̆0 �∆B̆pζq�r (6.44)

with ∆Ăpζq � Ă0 � Ăpζq and ∆B̆pζq � B̆0 � B̆pζq. Then with (6.43) it follows that

εpt, ζq � ∆B̆pζqr �∆Ăpζqw � ĕ, (6.45)

and since the second block column of B̆pζq is fixed and known, it follows that
∆B̆pζqr � ∆Bpζqra. We now proceed by evaluating the j-th component

εjpt, ζq � ∆Bjpζqra �∆Ăjpζqw � ĕj , (6.46)

where ∆Ăjpζq and ∆Bjpζq are the rows of matrices ∆Ăpζq and ∆Bpζq belonging
to node j.
The consistency proof consists of two steps:

1. Show that the objective function is bounded from below by the noise
variance V̄jpζq :� Ēε2

j pt, ζq ¥ σ2
ĕj

, where the minimum is achieved for
∆Ăjpζq � 0 and ∆B̆jpζq � 0.

2. Show that the global minimum is unique.

163
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6.A.1 Consistency proof step (1)

With (6.43) substituted into (6.46), the expression for εjpt, ζq becomes

∆Bjpζqra �∆Ăjpζq
�
pĂ0q�1B̆0r � pĂ0q�1ĕ

	
� ĕj (6.47)

from which, due to the fact that ∆Ăjpζq is strictly proper and r and e are
uncorrelated, it follows that ĕj is uncorrelated with the remaining terms in the
expression. As a result, the objective function is given by

V̄jpζq � Ē
��

∆Bjpζqra �∆Ăjpζqw
	2�

� σ2
ĕj , (6.48)

from which we can infer that V̄jpζq ¥ σ2
ĕj

with equality for ∆Ăjpζq � 0 and
∆Bjpζq � 0.

6.A.2 Consistency proof step (2)

For the second step we show that the minimum is unique, by showing that V̄jpζq �
σ2
ĕj

implies ∆Ăjpζq � 0 and ∆Bjpζq � 0. With (6.48) and by applying Parseval’s
theorem, V̄jpζq � σ2

ĕj
implies

1

2π

» π
�π

∆xJpejω, ζqJΦκpωq∆xpe�jω, ζqdω � 0, (6.49)

with ∆xJ � �
∆Bjpζq �∆Ăjpζq

�
and κ � �

rJa wJ
�J.

By Condition (2) the spectral density Φκpωq is positive definite. Therefore equation
(6.49) holds only for ∆xJ � 0 which is satisfied by Condition (3). The global
minimum of V̄jpζq is thus unique for Ăjpζq � Ă0

j and
�
Bjpζq R̄j

� � B̆0
j , with

R̄j � 0 for j � 1, . . . , p and R̄j is a row of Rb for j � p� 1, . . . , L. �

6.B Proof of Proposition 6.2

For ease of notation we start with the MIMO notation of the one-step-ahead
predictor (6.15)

ŵpt|t� 1, ηq � Gpηqw �Rr � H̄pηqεapζ̂nN q, (6.50)

From Proposition 1 we know ζ̂nN is consistent, therefore

εpζ̂nN q Ñ ĕ w.p. 1 asN Ñ8@t, (6.51)

and we can rewrite the one-step-ahead predictor as

ŵpt|t� 1, ηq � Gpηqw �Rr � H̄pηqe (6.52)
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Considering the data generating system in (2.2) the residual becomes

εpt, ηq � wptq � ŵpt|t� 1, ηq
� ∆Gpηqw �H0e� H̄pηqe

� ∆Gpηqw �∆H̄pηqe�
�
I
Γ0

�
e,

(6.53)

where ∆Gpηq � G0�Gpηq, and ∆H̄pηq �
�
∆H̄apηq
∆H̄bpηq

�
,with ∆H̄apηq � H̄0

a�H̄apηq,
with H̄a � Ha � I and ∆H̄bpηq � H̄0

b � H̄bpηq, with H̄b � Hb � Γ.
The residual per node is written as

εjpt, ηq �
¸
lPNj

∆Gjlpηqwl �
¸
sPVj

∆H̄jspηqes � ĕj , (6.54)

where ∆Gjlpηq � G0
jl � Gjlpηq is an element of matrix ∆Gpηq, and ∆H̄jspηq is an

element of matrix ∆H̄pηq.
The consistency proof consists of two steps

1. Show that the objective function is bounded from below by the noise
variance V̄jpθq :� Ēε2

j pt, θq ¥ σ2
ĕj

, where the minimum is achieved for
∆Gjl � 0 and ∆H̄js � 0.

2. Show that the global minimum is unique.

Step 1 By using the property that all ∆G- and ∆H-terms are strictly proper, it
follows from (6.54) that

V̄jpηq � Ē
�� ¸

lPNj

∆Gjlpηqwl �
¸
sPVj

∆H̄jspηqes
	2�

� σ2
ĕj (6.55)

and V̄jpηq ¥ σ2
ĕj

with equality for ∆Gjl � 0 and ∆H̄js � 0 for all l P Nj and s P Vj .

Step 2 Showing that the minimum is unique is done by showing that V̄jpηq � σ2
ĕj

implies ∆Gjl � 0 and ∆H̄js � 0 for all l P Nj and s P Vj . With (6.55) and by
applying Parseval’s theorem, V̄jpζq � σ2

ĕj
implies

1

2π

» π
�π

∆xJpejω, ηqJΦκ̄pωq∆xpe�jω, ηqdω � 0, (6.56)

with ∆xJ��
∆GjlPNj ∆H̄jsPVj

�
and κ̄ �

�
wJ
tNju eJtVju

�J
.

By Condition (1) the spectral density Φκ̄ is positive definite. Therefore equation
(6.56) holds only for ∆xJ � 0. The Parseval’s theorem shows the the global
minimum of V̄jpηq is unique for Gjlpηq � G0

jl and H̄jspηq � H̆0
js � Ijs by

Condition (2). �
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6.C Proof of Proposition 6.3

The vector signal κ is written as

κ �
�
ra
w

�
�

�
I 0 0
Jwa Jwb Jwe

�
loooooooooomoooooooooon

J

�
�rarb
e

�
� (6.57)

with Jwa, Jwb, Jwe appropriate transfer function matrices. Since
ρ � �

rJa rJb eJ
�J is persistently exciting, i.e. Φρpωq ¥ 0 for all ω, it follows

from Lemma 1 in [127] that κ is persistently exciting if and only if matrix J has
full row rank. Since full row rank of J is equivalent to a full row rank of
rJwb Jwes, the result of Proposition 1 in [127] then shows the equivalence with the
condition that there are L vertex disjoint paths from the inputs of rJwb Jwes, i.e. rb
and e, to its outputs, i.e. w. �

6.D Proof of Proposition 6.4

Similar to the line of reasoning in the proof of Proposition 6.3, the vector signal κ̄
is written as

κ̄ �
�
wtNju
etVju

�
�

�
Jwr Jwx Jwv
0 0 I

�
loooooooooomoooooooooon

J̄

�
� r
etXju
etVju

�
� (6.58)

with Jwr, Jwx, Jwv appropriate transfer function matrices. Since

ρ̄ �
�
rJ eJtXju eJtVju

�J
is persistently exciting, i.e. Φρ̄pωq ¥ 0 for all ω, it follows

from Lemma 1 in [127] that κ̄ is persistently exciting if and only if matrix J̄ has
full row rank. Since full row rank of J̄ is equivalent to a full row rank of
rJwr Jwxs, the result of Proposition 1 in [127] then shows the equivalence with the
condition that there are CardinaltNju vertex disjoint paths from the inputs of
rJwr Jwxs, i.e. r and etXju, to its outputs, i.e. wtNju. �

6.E System used in simulations

In the simulation results in Section 6.5 we use the data generating network of
which the graph is represented in Figure 6.1. The data generating transfer
functions G and H are given by

G �

�
��

0 0 0 G14 0 0
0 0 0 0 G25 0
G31 0 0 0 G35 0

0 G42 0 0 0 0
G51 0 0 0 0 G56

0 0 G63 0 0 0

�
��, (6.59)
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with the elements of Gjl

G14 � 0.38q�1�0.24q�2

1�1.35q�1�0.54q�2 , G25 � 0.20q�1

1�1.30q�1�0.60q�2 ,

G31 � 0.39q�1

1�0.80q�1�0.20q�2 , G35 � 0.16q�1

1�1.23q�1�0.51q�2 ,

G42 � �0.30q�1

1�0.60q�1�0.20q�2 , G51 � �0.60q�1

1�0.45q�1�0.12q�2 ,

G56 � �0.22q�1

1�1.22q�1�0.46q�2 , G63 � �0.11q�1

1�1.49q�1�0.62q�2 ,

(6.60)

and

H �

�
��
H11 0 0 H14

0 H22 0 0
0 H32 H33 0
0 H42 0 H44

0 H52 H53 0
0 H62 0 H64

�
��, (6.61)

with noise rank p � 4 and elements

H11 � 1�0.52q�1

1�0.41q�1 , H14 � 0.41q�1

1�0.56q�1 ,

H22 � 1�0.44q�1

1�0.35q�1 , H32 � �0.56q�1

1�0.40q�1 ,

H33 � 1�0.20q�1

1�0.43q�1 , H42 � 0.26q�1

1�0.62q�1 ,

H44 � 1�0.52q�1

1�0.45q�1 , H52 � 0.49q�1

1�0.49q�1 ,

H53 � 1�0.66q�1

1�0.51q�1 , H62 � 1�0.24q�1

1�0.53q�1 ,

H64 � �0.56q�1

1�0.56q�1�0.21q�2 ,

(6.62)

where Γ0 �
�
0 0 1 0
0 1 0 0

�
.





7 CHAPTER

Empirical Bayes Direct Method

In order to identify one system (module) in an interconnected dynamic
network, one typically has to solve a Multi-Input-Single-Output

(MISO) identification problem that requires identification of all modules
in the MISO setup. For application of a parametric identification method
this would require estimating a large number of parameters, as well
as an appropriate model order selection step for a possibly large scale
MISO problem, thereby increasing the computational complexity of
the identification algorithm to levels that are beyond feasibility. An
alternative identification approach is presented employing regularized
kernel-based methods. Keeping a parametric model for the module
of interest, we model the impulse response of the remaining modules
in the MISO structure as zero mean Gaussian processes (GP) with a
covariance matrix (kernel) given by the first-order stable spline kernel,
accounting for the noise model affecting the output of the target
module and also for possible instability of systems in the MISO setup.
Using an Empirical Bayes (EB) approach the target module parameters
are estimated through an Expectation-Maximization (EM) algorithm
with a substantially reduced computational complexity, while avoiding
extensive model structure selection. Numerical simulations illustrate the
potentials of the introduced method in comparison with the state-of-the-
art techniques for local module identification.

7.1 Introduction

In this chapter we aim at improving the performance of the direct method for
dynamic networks, since the direct method exploits both the external excitation

This chapter is based on the publication: K.R. Ramaswamy, G. Bottegal and P.M.J. Van den Hof,
“Learning linear models in a dynamic network using regularized kernel-based methods", Automatica,
Vol. 129, Article 109591, July 2021.
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G21w1G14w4 w2 G32 w3

r4 r2

G12 G23

G34

H4

G31

H2H1 H3e2

e4 e1 e3

Figure 7.1: Network example with 4 internal nodes, 2 excitation signals u2 �
r2, u4 � r4 and a noise sources at each node.

signals and noise signals for data informativity. Assuming a known topology of
the network, in [124] it was shown that, in order to identify a given module of
interest using the direct method, we have to formulate a multi-input
single-output (MISO) identification problem where the inputs of the MISO setup
correspond to the inputs of all modules of the network sharing the same output
with the module of interest (see Sec. 7.3 for details). A relaxed setup has been
provided in [29], where the MISO setup contains only a subset of the above
mentioned inputs. This implies that, in both the approaches, to avoid possible
bias in the parameter estimates, one has to identify all the modules constituting
the MISO structure, bringing in the problem a possibly high number of
parameters to be estimated that are of no primal interest to the experimenter. For
example, considering the network in Figure 7.1 with the target module of interest
for identification being G31, one has to identify G31, G32 and G34. Adding to this,
a model order selection step needs to be performed to select the number of
parameters for each module using complexity criteria like AIC, BIC, or cross
validation [77]. For this, it is required to test a number of combination of
candidate model orders that increases exponentially with the number of models
in the MISO structure, making the model order selection step computationally
infeasible (e.g., for 5 modules with FIR model structure and orders from 1 to 5,
one has to test 55 possible combinations). More importantly, if any of the
modules constituting the MISO structure is unstable, the prediction error
identification approaches available from the literature cannot be used, since the
predictors are unstable. We stress the presence of unstable modules is compatible
with stable input-output dynamics in a network. For example, in the network of
Figure 7.1 the effect of unstable modules in G31 and/or G32 could be canceled by
suitable controllers G23 and/or G12.

In this chapter, we address the aforementioned problems developing an
identification method based on non-parametric regularized kernel-based
methods that

• identifies a local module through a direct approach, exploiting both the
external excitation signals and the disturbance signals for data
informativity,

• avoids the complexity of model order selection for large-scale problems,
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• reduces the number of nuisance parameters that need to be estimated in
local module identification, and

• can be used irrespective of the stability of the modules in the MISO structure,
with no need of prior information on possible unstable modules.

In order to develop this method, we build on the following approach. We keep
a parametric model for the target module of interest in order to have an accurate
description of its dynamics. The impulse responses of the remaining modules
in the MISO structure are modeled as zero mean Gaussian Processes (GP), with
covariance (or kernel) given by the first-order stable spline kernel [21], [93], which
encodes stability and smoothness of the processes. However, we need to handle
the prior inclusion of stability property using kernel-based methods under the
presence of unstable modules and also incorporate process noise modeling in our
framework to avoid increased bias in the estimated target module. We do this by
appropriately rewriting the network dynamics.

Using the aforementioned approach, we obtain a Gaussian probabilistic
description that depends on a vector of parameters η containing the parameters
of the module of interest, the variance of the output noise, and the
hyperparamaters characterizing the stable spline kernel. Therefore, estimating η
provides the parameters of the target module. This is accomplished by using an
Empirical Bayes (EB) approach [80], where η is estimated by maximizing the
marginal likelihood of the data, which requires solving a nonlinear non-convex
optimization problem. To this end, we use the Expectation-Maximization (EM)
method [35], which provides a solution by iterating over simple sub-problems
which either admit analytical solutions or require solving scalar optimization
problems. Numerical experiments performed on simulated dynamic networks
show the potentials of the developed method in comparison with available
classical methods.

This chapter is organized as follows. In Section 10.2, the setup of the dynamic
network is defined. Section 7.3 provides a summary about the direct method and
the extension of this framework using regularized kernel-based methods to end
up in a marginal likelihood estimation problem is provided in Section 7.4. Next,
we provide the approach and solution to the marginal likelihood problem using
EM method. Section 10.7 provides the results of numerical simulations performed
on simple dynamic networks, which is followed by the Conclusions. The technical
proofs of all results are collected in the Appendix.

7.2 Problem statement

We consider the dynamic network setup in (2.2). We assume that we have
collected N measurements of the internal variables twkptquNt�1, k � 1, . . . , L, and
that we are interested in building a model of the module directly linking node i
to node j, that is G0

jipqq, using the measurements of the internal variables, and
possibly r. To this end, we choose a parameterization of G0

jipqq, denoted as
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Gjipq, θq, that describes the dynamics of the module of interest for a certain
parameter vector θ0 P Rnθ . We assume e to be a Gaussian white noise process.
We additionally consider the following assumption on the network:

Assumption 7.1 The process noise vjptq entering the node wjptq is
uncorrelated with the process noise entering any other node of the network.

We define G0
jk, k P Nj and H0

j as rational transfer function such that G0
jkpqq �

B0
jkpqq

F 0
jkpqq

and H0
j pqq �

C0
j pqq

D0
j pqq

where

B0
jkpqq � b0jk1

q�1 � � � � � b0jknb
q�nbjk ,

F 0
jkpqq � 1� f0

jk1
q�1 � � � � � f0

jknf
q�nfjk , (7.1)

C0
j pqq � 1� c0j1

q�1 � � � � � c0jnc
q�ncj ,

D0
j pqq � 1� d0

j1
q�1 � � � � � d0

jnd
q�ndj ,

are polynomials, and nbjk , nfjk , ncjk , ndjk are positive integers, andNj is the set of
node indices k such that Gjk � 0. We now expand the parameterization of G0

jipqq
as Gjipq, θq � Bjipq,θBq

Fjipq,θF q
� Bjipq,θBq

1�F̄jipq,θF q
with θ � �

θJB θJF
�J, where θB and θF are

the parameterized coefficients of polynomials B0
jipqq and F 0

jipqq respectively as in
Eq. (7.1) (i.e. θB � rbji1 . . . bjinbsJ and θF � rfji1 . . . fjinf sJ).

7.3 The standard MISO direct method

Following the definition of a dynamic network, each scalar internal variable can
be described as:

wjptq �
¸
kPNj

G0
jkpqqwkptq � ujptq � vjptq (7.2)

The above equation represents a MISO structure and is the starting point of the
methodology presented in this chapter, which is based on extending the MISO
direct method [124] (see Chapter 2). In the standard direct method for dynamic
networks [124], we consider the one-step-ahead predictor [77] of wjptq:

ŵjpt|t� 1; θq ��1� pHjq�1pq, θq�wjptq � pHjq�1pq, θqGjipq, θqwiptq
� pHjq�1pq, θq� ¸

kPNjztiu

Gjkpq, θqwkptq � ujptq
�

which is a function of the parameter vector θ. Not only the target module, but
also the modules G0

jkpqq, k P Njztiu, and the noise model H0
j pqq, are suitably

parameterized with additional parameters. The parameter vector of interest θ is
identified by minimizing the sum of the squared prediction error εjptq � wjptq �
ŵjpt|t�1; θq. We note that in this formulation, the prediction error depends also on
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the additional parameters entering the remaining modules and the noise model,
which need to be identified to guarantee consistent estimates of θ. Therefore, the
total number of parameters may grow large if the cardinality of Nj is large, with
a detrimental effect on the variance of the estimate of θ in the case where N is not
very large.

7.4 The developed Empirical Bayes identification
technique

We now discuss how to use regularized kernel-based methods to avoid
parameterization of the additional modules (all modules except the target
module) in the MISO structure. We define the following quantities:

S0
j pqq :� 1� pH0

j q�1pqq , S0
jkpqq :� pH0

j q�1G0
jkpqq .

Considering the above definitions, Eq. (7.2) can be re-written as

wjptq � ŵjpt|t� 1q � ejptq,
� S0

j pqqwjptq � p1� S0
j pqqqpG0

jipqqwiptq � ujptqq �
¸

kPNjztiu

S0
jkpqqwkptq � ejptq,

(7.3)

where we isolate the target module G0
jipqq. A main challenge when using kernel

methods for LTI system identification is that typically a prior knowledge on the
stability of the predictor filters in (7.3) is imposed to reduce the MSE of the
estimated impulse response of the system (see [93, 101]). When all systems (i.e.
Gjk, k P Nj) are stable, as assumed in [101], the predictor filters in (7.3) are stable
and the setup in (7.3) lends itself for kernel-based estimation of the predictor
filters. However, when some or all systems in the MISO structure are not stable,
the imposition of prior knowledge on stability is not possible unless we suitably
rewrite the network dynamics in (7.2).

Proposition 7.1 Consider the network equation of the output node signal
wjptq in (7.2). The network equation can be represented in an alternative
way asa,

wjptq �Mjpqqwjptq � p1�MjpqqqF̄jipqqwjptq
� p1�MjpqqqBjipqqwiptq �

¸
kPNjztiu

Mjkpqqwkptq�ējptq, (7.4)

where M�pqq are strictly proper predictor filters, Bjipqq and
F̄jipqq � �p1� Fjipqqq are stable polynomials representing Gjipqq, and ējptq
is a Gaussian white noise with variance σ̄2

j .
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Proof: Collected in the appendix. The expressions for M�pqq are provided in
the appendix. �

afrom now on superscript 0 is dropped for convenience.

Since all the predictor filters in the rewritten network dynamics are stable, this
formulation lends itself to the Bayesian approach [101], as described in the
subsequent sections.

7.4.1 Vector description of the dynamics

In order to apply a kernel-based method to (7.4), we are going to formulate a
vector description of the network dynamics for the available N measurements.
For notation purposes, we consider N -dimensional vectors bji and fji (which will
also depend on θ, although we will keep this dependence tacit) which are the
parameterized coefficients of Bjipq, θBq and F̄jipq, θF q respectively stacked with
zeros (i.e. bji � rθJB 0JsJ and fji � rθJF 0JsJ). Similarly, we define the vector
mk, k P Njztiu, and mj as the vectors containing the first l coefficients of the
impulse responses of Mjkpqq, k P Njztiu, and Mjpqq, respectively. The integer l is
chosen large enough to ensure mkpl � 1q,mjpl � 1q � 0.

Lemma 7.1 Let the vector notation for the node wjptq be
wj :� �

wjp1q . . . wjpNq
�T . Considering the parameterization of G0

ji, the
network dynamics in (7.4) can be represented in the vector form as:

wj � W̃mj �Wjigji �
¸

kPNjztiu

Wkmk � ēj , (7.5)

where gji � rbJji fJjisJ and ēj is the vectorized noise. W̃ , Wji and Wk are
Toeplitz matrices constructed from measurements of the nodes in the MISO
structure.

Proof: We denote by Wk P RN�l the lower triangular Toeplitz matrix of the
vector ÝÑw k :� �

0 wkp1q . . . wkpN � 1q�T , k P tNj Y juztiu and
WN
` P RN�N the lower triangular Toeplitz matrix of the vector

ÝÑw ` :� �
0 w`p1q . . . w`pN � 1q�T where ` P ti, ju. Similarly, we denote byÐÑ

W ` P RN�l the lower triangular Toeplitz matrix of the vector
ÐÑw ` :� �

0 0 �w`p1q . . . �w`pN � 2q�T , ` P ti, ju. Also Gb and Gf are
the lower triangular Toeplitz matrix of bji and fji respectively. Considering
the parameterization of G0

ji and the above established notations, we can
rewrite the network dynamics in (7.4) as (7.5) where
W̃ :�Wj �Gb

ÐÑ
W i �Gf

ÐÑ
W j , Wji � rWN

i �WN
j s, gji � rbJji fJjisJ and ēj is

the vectorized noise. �
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7.4.2 Modeling strategy for the additional modules

We now have a vector description of the module dynamics where we have isolated
the objective of the identification method, namely gji, from the non-interesting
nuisance terms, namely mk and mj . As the next step, we discuss our modeling
strategy with the use of regularized kernel-based methods. Our goal is to limit
the number of parameters necessary to describe wj in (7.5), in order to increase
the accuracy of the estimated parameter vector of interest θ. In order to achieve
this, we keep a parametric model for gji (accounting for the zeros in gji), while the
remaining impulse responses in (7.5) are modeled with non-parametric models as
zero mean Gaussian processes. The choice of Gaussian processes is motivated
by the fact that, with a suitable choice of the prior covariance matrix (usually
referred to as kernel), we can get a significant reduction in the variance of the
estimated impulse responses [93]. Therefore, we model mj and mk, k P Njztiu, as
independent1 zero mean Gaussian processes (vectors in this case). The choice of
the covariance matrix (kernel) of these vectors are given by the First-order Stable
Spline kernel whose general structure is given as,

rKβsx,y � λβmaxpx,yq , (7.6)

where βj P r0, 1q is a hyperparameter that regulates the decay velocity of the
realizations of the corresponding Gaussian vector, while λ ¥ 0 tunes their
amplitude. x, y represent the element of the matrix. The choice of this kernel is
motivated by the fact that it enforces favorable properties such as stability and
smoothness in the estimated impulse responses [91], [92]. Therefore, we have
that

mj � N p0, λjKβjq (7.7)

mk � N p0, λkKβkq , k P Njztiu, (7.8)

where we have assigned different hyperparameters to the impulse response priors
to guarantee flexible enough models.

7.4.3 Incorporating Empirical Bayes approach

We define
m :� �

mJ
j mk

J
1 mk

J
2 . . . mk

J
p

�J
, (7.9)

where k1, . . . , kp are the elements of the set Njztiu, and

W :� �
W̃ Wk1 Wk2 . . . Wkp

�
, (7.10)

K :� diagtλjKβj , λk1Kβk1
, . . . , λkpKβkpu. (7.11)

1It is clear that these impulse responses share some common dynamics given by the pre-
multiplication with the inverse of the noise model Hjpqq. However, for computational purposes it
is convenient to treat the impulse responses as independent. Furthermore, incorporating the mutual
dependence through a suitable choice of prior distribution seems a non-trivial problem that deserves
a thorough analysis that is outside the scope of the work in this chapter.
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It is important to note that W̃ depends on bji and fji. Using the above, we can
rewrite (7.5) in compact form as

wj �Wm�Wjigji � ēj . (7.12)

Having assumed a Gaussian distribution of the noise, we can write the joint
probabilistic description of m and wj [91], which is jointly Gaussian, as:

p

��
m
wj

�
; η

�
� N

��
0

Wjigji

�
,

�
K KWJ

WK P

��
, (7.13)

where
P :� σ̄2

j IN � W̃λjKβjW̃ �
¸

kPNjztiu

WkλkKβkWk
J, (7.14)

and this pdf depends upon the vector of parameters

η :� �
θJ λj λk1 . . . λkp βj βk1 . . . βkp σ̄2

j

�
,

which contains the parameter vector of the target module, the hyperparameters of
the kernels of the impulse response models of the other modules, and the variance
of the “dummy" noise corrupting wjptq. Therefore, we focus on the estimation of
η, since it contains the parameter of interest θ. To this end, we apply an Empirical
Bayes (EB) approach. We consider the marginal pdf of wj , which is obtained by
integrating out the dependence on m [91] and corresponds to

ppwj ; ηq � N pWjigji,Pq. (7.15)

Then, the estimate of η is obtained by maximizing the marginal likelihood of wj ,
namely

η̂ � arg max
η

ppwj ; ηq

� arg min
η

log detP� �
wj �Wjigji

�J
P�1

�
wj �Wjigji

�
.

(7.16)

Solving this optimization problem can be a cumbersome task, because it is a
nonlinear one and involves a large number of decision variables. In the next
section, we study how to solve the marginal likelihood problem through a
dedicated iterative scheme.

7.5 Solution to the marginal likelihood problem

In this section, we focus on solving the problem in (10.27) by deriving an iterative
solution scheme through the EM algorithm [35]. For this, we need to first define a
latent variable whose estimation simplifies the computation of the marginal
likelihood. In our case, a natural choice is m. Then, the solution to (10.27) using
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the EM algorithm is obtained by iterating among the following two steps:

• E-Step: Given an estimate η̂pnq computed at the nth iteration, compute

Qpnqpηq � Erlog ppwj ,m; ηqs , (7.17)

where the expectation of the joint log-likelihood of wj and is taken with
respect to the posterior pp|wj ; η̂pnqq;

• M-Step: Update η̂ by solving

η̂pn�1q � arg max
η

Qpnqpηq . (7.18)

When iterating among the above steps, convergence to a stationary point of the
marginal likelihood is ensured [16]. This stationary point can be a local or global
maximum of the objective function. In the next section, we show that we clearly
get an advantage in solving the original marginal likelihood problem (10.27) by
repetitively solving (10.29) using the EM algorithm. We show that, when we use
the EM method, the nonlinear optimization problem becomes a problem of
iteratively constructing analytical solutions and solving scalar optimization
problems, which significantly simplifies solving (10.27).

7.5.1 Computation of E-step

First we focus on the E-step. The posterior distribution of m given wj and an
estimate of η is Gaussian and corresponds to (see also [2]),

ppm|wj ; ηq � N
�
Cpwj �Wjigjiq,Pm

�
(7.19)

where

Pm �
�
WJW

σ̄2
j

�K�1

��1

; C � PmWJ

σ̄2
j

.

Let m̂pnq and P̂
pnq
m be the posterior mean and covariance of m obtained from (7.19)

using η̂pnq. We define
M̂pnq :� P̂pnq

m � m̂pnqm̂pnqJ,

and consider its l� l diagonal blocks, which we denote by M̂
pnq
j , M̂pnq

k1
, . . . , M̂

pnq
kp

,
respectively. These sub-matrices correspond to the posterior second moments of
the estimated impulse responses m̂pnq

j ,m̂pnq
k1
, . . . , m̂

pnq
kp

.

The following lemma provides the structure of the function Qpnqpηq for the
particular situation of our setup in (10.27).
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Lemma 7.2 Let η̂pnq be the estimate of η at the nth iteration of the EM
algorithm according to (10.29). Then

Qpnqpηq � Q
pnq
0 pσ̄2

j , θq �
¸

kPtNjYjuztiu

Qm
pnq
k pλk, βkq (7.20)

where

Qpnq
o pσ̄2

j , θq��N logpσ̄2
j q �

1

σ2
j

�
wJ
j wj � 2wJ

j Wjigji�

gJjiW
J
jiWjigji � 2wJ

j Wm̂pnq

� 2gJjiW
J
jiWm̂pnq � tr

�
WJWM̂pnq

��
,

(7.21)

Qm
pnq
k pλk, βkq��log detpλkKβkq�tr

�pλkKβkq�1
M̂

pnq
k

�
. (7.22)

2

Proof: See the appendix.

The function Qpnqpηq is the summation of several terms that depend on different
components of the vector η. In particular, we have a term of the typeQm

pnq
k pλk, βkq

for each module in the MISO structure, and a term Q
pnq
0 pσ̄2

j , θq for the module of
interest and the noise variance. Therefore, the update of η according to (10.29)
splits into a number of independent and smaller optimization problems.

7.5.2 Computation of M-step

We now focus on the M-step according to (10.29). From (7.20), it is evident that
each kernel hyperparameters can be updated independently of the rest of the
parameters. The following theorem, inspired by [14] and [38], shows how to
update the kernel hyperparameters.

Theorem 7.1 For the update of each kernel’s hyperparameters that requires
maximizing (10.67), we define

Qβ
pnq
k pβkq � log detpKβkq � l log

�
tr
�pKβkq�1

M̂
pnq
k

�

(7.23)

for k P tNj Y juzi. Then the updates are obtained as,

β̂k
pn�1q � arg min

βkPr0,1q

Qβ
pnq
k pβkq; (7.24)

λ̂k
pn�1q � 1

l
tr
�pK

β̂
pn�1q
k

q�1
M̂

pnq
k

�
(7.25)
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2

Proof: See the appendix.

The optimization problem in (10.45) can be difficult to perform in practice when
the determinant of the kernel has a very low value or when the inversion of the
kernel becomes difficult. To tackle this, we exploit the factorization of the first
order stable spline kernel as in [14] by writing Kβk � LDpβqLT , where L is
lower-triangular with known entries (essentially, an “integrator”) and Dpβq is
diagonal with entries essentially being an exponential functions of β. Using the
above technique also increases the computation speed of the algorithm.

We note that from (10.46) that we get closed-form solutions for all λk,
k P tNj Y juztiu, while the βk, k P tNj Y juztiu, can be updated by solving scalar
optimization problems in the domain r0, 1q, as detailed in (10.45). Therefore, the
hyperparameters update turns out to be a computationally fast operation.

We now turn our attention to the update of θ and σ̄2
j for which we need to

maximize (10.69). We notice that the optimum with respect to θ does not depend
on the optimal value of σ̄2

j . Then, we can first update θ and then use its optimal
value to update σ̄2

j . How to update θ is explained in the following theorem.

Theorem 7.2 The estimate of the parameter vector θ is updated by solving
the quadratic problem

θ̂pn�1q � arg min
θ

�
gJjiÂ

pnqgji � 2b̂pnqJgji

�
(7.26)

that has a closed form solution given by

θ̂pn�1q � �
MJÂpnqM

��1
MJb̂pnq, (7.27)

where Âpnq and b̂pnq are computed using the current estimates m̂pnq and η̂pnq,
and gji �Mθ where M P R2N�nθ is a matrix with 1 or 0 as its elements. 2

Proof: See the appendix.

Therefore, the parameter vector of the target module is updated by solving the
analytical expression (7.27).

Remark 7.1 An additional advantage of the method developed in this
chapter is that it relies on iteratively solving a quadratic least squares
problem to find the solution for the parameters of the target module θ
rather than solving a non-linear least squares problem as in [101], making
the method computationally more efficient.

We are left with updating σ̄2
j , which is given in the next theorem.
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Theorem 7.3 Let ĝ
pn�1q
ji , Ŵpn�1q be constructed by inserting θ̂pn�1q in the

general expression of gji and W. Then

pˆ̄σ2
j qpn�1q� 1

N

�
}wj �Wjiĝ

pn�1q
ji }2

2
� 2wJ

j Ŵ
pn�1qm̂pnq�

2ĝ
pn�1qJ
ji WJ

jiŴ
pn�1qm̂pnq�tr

�
Ŵpn�1qJŴpn�1qM̂pnq

��

2

Proof: See the appendix.

Thus, a closed-form solution for the estimate of the noise variance is also
obtained.

Remark 7.2 We estimate the “dummy" noise variance σ̄2
j � |fanf |2σ2

j , that is
a scaled version of the original output noise power in the network. If there
are no unstable systems in the MISO setup, then σ̄2

j will be σ2
j . This will be

verified with numerical simulations in section 10.7.

All-in-all, we have obtained a fast iterative procedure that provides a local
solution to the marginal likelihood problem (10.27). All the updates follow
simple rules that allow for fast iterative computation. Algorithm 1 summarizes
the steps to follow to obtain η̂ and therefore θ̂.

Algorithm 1 Algorithm for local module identification in dynamic networks

Input: twkptquNt�1, k � 1, . . . , p

Output: θ̂

1. Set n � 0, Initialize η̂p0q.

2. Compute P̂
pnq
m , Ĉpnq, M̂pnq and m̂pnq.

3. Update hyperparameters β̂k
pn�1q

and λ̂k
pn�1q

using (10.45) and (10.46)
respectively for all k P tNj Y tjuuztiu.

4. Update θ̂pn�1q by solving (7.27).

5. Update ˆ̄σ
2pn�1q
j as in Theorem 7.3.

6. Set η̂pn�1q � r θ̂Jpn�1q λ̂j
pn�1q

λ̂k
pn�1q
1 ... λ̂k

pn�1q
p β̂j

pn�1q
β̂k

pn�1q
1 ... β̂k

pn�1q
p

ˆ̄σ
2pn�1q
j sJ.

7. Set n � n� 1.

8. Repeat from steps (2) to (7) until convergence.

The initialization can be done by randomly choosing η considering the
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constraints of hyperparameters. The convergence criterion for the algorithm

depend on the value of }η̂
pnq�η̂pn�1q}
}η̂pn�1q} . This value should be small for convergence

so that the algorithm can be terminated. A value of 10�2 is considered for the
numerical simulations in Section 10.7. The other convergence criterion is the
maximum number of iterations. It is taken as 50.

Remark 7.3 Being applicable to a MISO identification setup, the introduced
method can also be inherently used for parametric SISO identification,
where the process noise modeling is now simplified by avoiding the model
order selection and reducing the number of parameters of the noise model
to two (which are the hyperparamters λj , βj).

Remark 7.4 We notice that:

• The method does not require prior information about the stability of
the systems Gjk, k P Nj and the number of unstable poles in the
systems.

• According to [29], in view of consistency of the target module
estimate, it is not necessary to take all nodes wk, k P Nj as the inputs
in the MISO structure, but it is sufficient to take a subset of nodes in
Nj as inputs such that every parallel patha from wi to wj and every
loop around wj passes through a selected input. This may lead to
confounding variables which can be handled using additional
inputs[30]. At the same time, in view of an appropriate bias-variance
trade off, especially under limited data circumstances, it could be
attractive to include more predictor inputs than the ones that are
strictly necessary for achieving consistency. While the algorithm
presented in this chapter can be applied to any choice of such MISO
structure, we have formulated the results for the situation where all
nodes wk, k P Nj are taken as inputs.

aa path from wi to wj that does not pass through Gji.

7.5.3 Non-parametric identification of modules in the MISO
structure

In this section we slightly adapt the developed method to obtain a non-parametric
estimate of the target module. For this, we rewrite the network equation (7.2) as,

wjptq �Mjpqqwjptq �
¸
kPNj

Mjkpqqwkptq � ējptq (7.28)
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with

Mjpqq :� 1�
�
pHjq�1pqqFapqq

F �
a pqq



, (7.29)

Mjkpqq :� pHjq�1

±
`PNjztku F

paq
j` pqq

F �
a pqq

Bjkpqq
F
psq
jk pqq

, (7.30)

where Mjkpqq and Mjpqq are stable. Following the similar approach as introduced
before, but modeling the impulse response of all the modules (including mi of
Mji that represents the target module) as zero mean Gaussian processes with the
prior covariance matrix represented by the First-order stable spline kernel, we end
up in an iterative algorithm to estimate the parameter vector η which contains
the hyperparameters λk, βk where k P Nj and the noise variance σ̄2

j . Since we
are not paramterizing any modules, we do not have θ in the parameter vector η.
The solutions for the β’s and λ’s at each iteration are given by (10.45) and (10.46)
respectively. The solution to σ̄2

j at each iteration is given by,

pˆ̄σ2
j qpn�1q � 1

N

�
}wj}22 � 2wJ

j Wm̂pnq � tr
�
WJWM̂pnq

��

where
W :� �

Wj Wk1 Wk2 . . . Wkp

�
.

The above solution is equivalent to the solution of ˆ̄σ2
j in Theorem 7.3, however

without the terms that are function of θ (i.e. gji, Gb, Gf ,Wjigji). Thus we will
end up in the same Algorithm 1, however with steps related to θ (step 4) being
not applicable. The posterior mean of mk, k P Nj and mj obtained using (7.19)
(neglecting the effect of Wjigji) for the converged η provides us the impulse
response of Mjk and Mj respectively. From these, the impulse response estimates
of the modules Gjk, k P Nj can be obtained. Thus we obtain a non-parametric
identification method to identify all the modules in the MISO structure as a
derived result of the earlier developed identification technique.

7.6 Numerical simulations

Numerical simulations are performed to evaluate the performance of the
developed method, which we abbreviate as Empirical Bayes Direct Method
(EBDM). The simulations are performed on the dynamic network depicted in
Figure 7.1. The goal is to identify G0

31. To show the effectiveness of the
introduced method and its flexibility to handle stable and unstable modules with
a single unified identification framework, we perform the simulations for two
different cases:

1. Case 1: All modules in the MISO setup are stable.

2. Case 2: The modules in the MISO setup including the target module can be
stable or unstable.
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The results of the numerical simulations are presented below.

7.6.1 Case study 1

The EBDM is compared with the standard direct method and the two-stage
method (see [124] for details). The network modules of network in Figure 7.1 are
given by

G0
31 �

q�1 � 0.05q�2

1� q�1 � 0.6q�2
� b01q

�1 � b02q
�2

1� a0
1q

�1 � a0
2q

�2

G0
32 �

0.09q�1

1� 0.5q�1
;

G0
34 �

1.184q�1 � 0.647q�2 � 0.151q�3 � 0.082q�4

1� 0.8q�1 � 0.279q�2 � 0.048q�3 � 0.01q�4
;

G0
14 � G0

21 �
0.4q�1 � 0.5q�2

1� 0.3q�1
;H0

1 �
1

1� 0.2q�1
;

G0
12 � G0

23 �
0.4q�1 � 0.5q�2

1� 0.3q�1
;H0

2 �
1

1� 0.3q�1

H0
3 �

1� 0.505q�1 � 0.155q�2 � 0.01q�3

1� 0.729q�1 � 0.236q�2 � 0.019q�3
;H0

4 � 1.

We run 50 independent Monte Carlo experiments where the data is generated
using known reference signals r2ptq and r4ptq that are realizations of white noise
with unit variance. The number of data samples is N = 500. The noise sources
e1ptq, e2ptq, e3ptq and e4ptq have variance 0.05, 0.08, 0.5, 0.1, respectively. We
assume that we know the model order of G0

31pqq. In the case of direct method, we
solve a 3-input/1-output MISO identification problem with w1ptq, w2ptq and
w4ptq as inputs. In the two-stage method, the projections of the three inputs on
external signals r2ptq and r4ptq are used as inputs to the MISO identification
problem. For both these methods, we consider the case where a model order
selection of all the modules in the MISO structure (except for the target module)
is required, and the case where the model orders are known. Moreover, in order
to improve the accuracy of the identified module in the two-stage method, we
identify a noise model even though it is not necessary for consistency.

Figure 7.4 shows the estimated impulse response at the end of each MC simulation
using the EBDM. It can be verified that, in line with our framework, the estimates
provide the description of the dynamics of Mj , Mjk, k P Nj and Gji. To evaluate
the performance of the methods, we use the standard goodness-of-fit metric,

Fit � 1�
��g0
ji � ĝji

��
2��g0

ji � ḡji
��
2

,

where g0
ji is the true value of the impulse response of G0

ji, ĝji is the impulse
response of the estimated target module and ḡji is the sample mean of g0

ji. The
box plots of the fits of the impulse response of G31pqq are shown in Figure 7.2,



184 Empirical Bayes Direct Method

TS+TO DM+TO DM+MOS EBDM
0

0.2

0.4

0.6

0.8

1

F
IT

 fo
r 

im
pu

ls
e 

re
sp

on
se

Figure 7.2: Box plot of the fit of the impulse response of Ĝ31 obtained by the
Two-stage method, Direct method and EBDM. Number of data samples used for
estimation is N = 500.

where we have compared the two-stage method with true model orders
(’TS+TO’), the direct method with true model orders and model orders selected
via BIC (’DM+TO’ and ’DM+MOS’, respectively), and the Empirical Bayes Direct
Method (’EBDM’). As for the latter, we choose l � 100. It can be noted that in this
setup the EBDM achieves a fit on par with the Direct method and significantly
better than the two-stage method. Figure 7.3 shows the mean and standard
deviation of the parameter estimates of G31. It is evident that the EBDM gives a
smaller bias and a greatly reduced variance compared to the other considered
identification methods. The reduction in variance is attributed to the
regularization approach used in this method. The fit is calculated using the
estimated impulse response from the estimated parameters of the target module.
Even though, the variability is high in estimated parameters using the Direct
Method, it did not affect the fit of the impulse response, that produces an on par
result in figure 7.2 when compared with EBDM. However, Figure 7.3 clearly
shows that EBDM performs better than the other considered approaches.
Considering a relatively small sized network with 3 modules in the MISO
structure, the developed method proves effective. When the size of the network
grows, the results of the direct method may deteriorate further due to increase in
variance; furthermore, it is expected that in large networks the model order
selection step contributes to inaccurate results. Thus the EBDM, by offering
reduced variance and circumventing the problem of model order selection, can
stand out as an effective local module identification method in large dynamic
networks.

7.6.2 Case study 2

Now we look into the case where the modules in the MISO structure may not be
stable. In this case, we consider the same network as in Figure 7.1, however with
unstable module G0

31 (target module) and G0
32. The network modules of network
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Figure 7.3: Bias and standard deviation of each parameter obtained from 50 MC
simulations using different identification methods.
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Figure 7.4: Bottom right plot provides the impulse response estimate of the target
module at the end of each MC simulation, which is obtained from the estimated
parameter θ. The other plots show the impulse response estimates of the filters
that are modeled as GP’s, which is obtained by calculating the posterior (7.19)
from the estimated hyperparameters. The black dashed line provides the true
impulse response of the modules.
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in Figure 7.1 are the same as in previous section but with unstable G0
31 and G0

32

given by

G0
31�

q�1 � 0.05q�2

1� 1.7q�1 � 1.073q�2
� b01q

�1 � b02q
�2

1� a0
1q

�1 � a0
2q

�2

G0
32�

�0.7339q�1�0.1256q�2�0.04023q�3�0.011q�4

1�1.089q�1�0.104q�2�0.052q�3�0.011q�4
.

G0
31 has two complex poles that are not stable andG0

32 has four poles of which one
is a real unstable pole. The noise source e3ptq has variance of 0.1. The experiment
setup is similar to the previous case and we run 50 MC experiments with the
introduced method in this chapter.

To evaluate the performance of the EBDM, we use the standard goodness-of-fit
metric,

Fit � 1�

���θ0 � θ̂
���
2��θ0 � θ̄
��
2

,

where θ0 are the true parameters of the target module, θ̂ are the estimated
parameters and θ̄ is the sample mean of θ0. Due to the instability of the target
module, we choose fit on parameters and not on the impulse response. The box
plot of the fit of the parameters of G31pqq is shown in Figure 7.5, where the
Empirical Bayes Direct Method (’EBDM’) is used to identify the unstable target
module. We choose l � 200. It can be noted that the box plot is above 0.9, which
indicates a better fit. Figure 7.6 shows the mean and standard deviation of the
parameter estimates of G31. It is evident that the bias and variance is small. The
reduction in variance is attributed to the regularization approach used in this
method.

It is noteworthy to compare the introduced EBDM with other available
approaches that can identify unstable modules. In [47], a method to identify
unstable SISO systems with Box-Jenkins (BJ) structure using high order ARX
modeling has been introduced. This method proves effective in estimating the
unstable poles of the system with high accuracy (less variance) [47], but the
estimated model will have high variance due to high order modeling. Also, the
estimated model will be of high order unless there is sufficiently large data.
Figure 7.7 shows the bode magnitude plot of the estimates after 50 MC
simulations with the experimental setup in case study 2 using EBDM and the
method of ARX modeling in [47]. ARX models of 15th order are used for the
latter method. Even though the estimate of unstable poles are with high accuracy
for the latter method, the EBDM performs significantly better in terms of
accuracy with less variance in the identified frequency response. Since we have
limited data (N � 500), the estimated model with the method in [47] is of high
order, which can be verified from figure 7.7.

A three step parametric identification method to identify unstable SISO system is
introduced in [50]. The first step involves identifying the unstable poles of the
parameterized model using the result that the unstable poles can be identified
with high accuracy using the method in [47]. In the next step, from the obtained
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Figure 7.5: Box plot of the fit of the parameters of Ĝ31 obtained by the proposed
method. Number of data samples used for estimation is N = 500.

estimates, the parameters of the anti-stable part is fixed, and a weighted null
space fitting (WNSF) method is used to identify the rest of the parameters of the
parameterized model of interest. However, for the MISO identification setup in a
dynamic network framework, we might end up in estimating ’false’ unstable
poles for the target module in the first step where ARX modeling is used. Due to
high order ARX modeling, these ’false’ unstable poles can be the unstable poles
of the modules in the MISO setup other than the target module and it becomes
difficult to distinguish the unstable poles between each modules, so that the
estimate of unstable roots of the target module can be fixed for the second step.
For example, the simulations depicted in Figure 7.7 using the ARX modeling
method, we estimate the target module of order 15 with 3 unstable poles, where 2
unstable poles are the poles of G0

31 and the extra unstable pole is the unstable
pole of G0

32. Therefore, it becomes difficult to use the WNSF method in this setup
without prior knowledge about the unstable poles. An alternative BJ model has
been proposed in [45] that can be used with prediction error framework.
However, implementation of this is significantly more complex than the
introduced EBDM.

7.6.3 Estimated noise variance

Using the experimental setup of case study 1 and 2 but with different noise
power (variance) of e3 (σ3) acting on the output node w3, we performed
simulations using the EBDM for the network in Figure 7.1. For the case study 1,
since all modules are stable (i.e. Fa

F �
a
� 1), the estimated noise variance ˆ̄σ3 should

be approximately equal to the actual noise variance σ3 (see remark 7.2). This can
be verified from the Table 7.1 (upper) where the estimated noise variance
approximates well the actual noise variance in the network. Considering the case
study 2, the estimated noise variance ˆ̄σ3 should be approximately equal to the
scaled version of the actual noise variance σ3 given by σ̄2

3 � |FaF �
a
|2σ2

3 � |fanf |2σ2
3

i.e. the “dummy"noise variance. This can be verified from the Table 7.1 (lower).
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Figure 7.6: Bias and standard deviation of each parameter obtained from 50 MC
simulations using different identification methods.
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Actual
value
(σ̄3 � σ3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1 2

Estimated
value (ˆ̄σ3)

0.0971 0.1908 0.2804 0.4093 0.4710 0.6314 0.7620 0.8207 0.9449 1.9398

Actual
value
(σ̄2

3 �
|FaF �
a
|2σ2

3)

0.1475 0.2950 0.4425 0.5901 0.7376 0.8851 1.0326 1.1801 1.4752 2.9503

Estimated
value (ˆ̄σ3)

0.1520 0.3005 0.4579 0.5946 0.7338 0.8642 0.9145 1.1851 1.6030 2.7349

Table 7.1: Results of the simulations that were performed using the setup of case
study 1 (upper) and 2 (lower) with different noise variance of e3 acting on the
output nodew3. Table 1 shows the actual “dummy" noise variance to be estimated
and the estimated noise variance using EBDM for the experimental setup in Case
1 (upper) and Case 2 (lower).

7.6.4 Additional remarks

The method described in this chapter can be developed using any of the kernels
available in the literature of regularized system identification. The choice of
kernel adopted in this chapter is the result of a balance between its empirical
effectiveness (see [93]) and its computational efficiency (due to its factorization
and the low number of hyperparameter). Other choices of kernel (e.g. the DC
kernel proposed in [21]) may result in a final higher accuracy, requiring to
estimate an additional hyperparameter, which might bring an additional cost in
complexity. On the other hand, it is well known (see [21]) that the optimal kernel
is constructed from the true impulse response, which is unknown (it is the actual
object of interest). The question which is the best choice of kernel for dynamic
networks is open and requires a thorough theoretical analysis which is outside
the scope of the work in this chapter.

7.7 Conclusions

An effective regularized kernel-based approach for local module identification in
dynamic networks has been introduced in this chapter. The introduced method
(EBDM) circumvents the model order selection step for all the modules that are
not of primary interest to the experimenter, but still need to be identified in order
to get a consistent estimate of the target module. Furthermore, by using
regularized non-parametric methods, the number of parameters to be estimated
is greatly reduced, with a clear benefit in terms of mean square error of the
estimated target module. Therefore, the method is computationally less complex
and scales favorably to large size networks. The method developed in this
chapter is capable of performing identification in networks composed by
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unstable modules, without any prior information about the stability of the
modules. Numerical experiments performed with a dynamic network example
illustrate the potentials of the developed method on comparison with the already
available methods on networks of stable modules. The developed method
provides better estimates and a reduced variance is observed in the identified
model due to the integration of the regularization approach in the method.



Appendices

7.A Proof of Proposition 7.1

Analogous to the factorization technique used in [45] and [47], we factorize each
Fjk (from now on superscript 0 is dropped for convenience) as,

Fjkpqq � F
psq
jk pqqF paq

jk pqq (7.31)

where F psq
jk pqq contains the stable roots of Fjkpzq and F

paq
jk pqq contains the anti-

stable roots of Fjkpzq, which are given by

F
psq
jk pqq � 1� fjk

psq
1 q�1 � � � � � fjk

psq
nf
q
�n

psq
fjk (7.32)

F
paq
jk pqq � 1� fjk

paq
1 q�1 � � � � � fjk

paq
nf
q
�n

paq
fjk . (7.33)

We introduce F�paq
jk pqq as the monic polynomial whose roots are the mirrored (and

stable) roots of F paq
jk pqq. We can write F�paq

jk pqq as,

F
�paq
jk pqq � 1� fjk

paq
nf�1

fjk
paq
nf

q�1 � � � � � 1

fjk
paq
nf

q�nfjk , (7.34)

assuming without loss of generality that fjkpaqnf � 0. Then, we define Fapqq as the

product of all polynomials with anti-stable roots i.e. Fapqq �
±
kPNj F

paq
jk pqq � 1�

fa1q
�1�� � ��fanf q�nfa , and F�

a pqq as the polynomial with mirrored roots of Fapqq
inside the unit circle i.e. F�

a pqq �
±
kPNj F

�paq
jk pqq � 1� fanf�1

fanf
q�1�� � �� 1

fanf
q�nfa .

As the next step, we re-write the noise term vjptq in (7.2) using a input white noise
process ējptq instead of ejptq. Using the fact that F �

a pqq
Fapqq

is an all pass filter (linear)

with a magnitude of | 1
fanf

|[45], we can write vjptq � HjpqqF
�
a pqq
Fapqq

ējptq whose noise

spectrum Φvj equals |Hpeiωq|2| 1
fanf

|2σ̄2
j , where σ̄2

j � |fanf |2σ2
j is the variance of

ējptq.
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With the above expression of the noise term and using
Gjipqq � Bjipqq

Fjipqq
� Bjipqq

F
psq
ji pqqF

paq
ji pqq

, and assuming rjptq � 0 for the sake of brevity, Eq.

(7.2) is rewritten as,

wjptq �Mjpqqwjptq � p1�MjpqqqF̄jipqqwjptq
� p1�MjpqqqBjipqqwiptq �

¸
kPNjztiu

Mjkpqqwkptq � ējptq (7.35)

with

Mjpqq :� 1�
�
pHjq�1pqq

±
kPNjztiu F

paq
jk pqq

F �
a pqqF psq

ji pqq



, (7.36)

Mjkpqq :� pHjq�1

±
`PNjztku F

paq
j` pqq

F �
a pqq

Bjkpqq
F
psq
jk pqq

, (7.37)

where F̄jipqq � �p1� Fjipqqq, and Mjpqq is a strictly proper stable filters with
only stable poles which are the roots of F�

a pzq, F psq
ji pzq and poles of pHjq�1, while

Mjkpqq, k P Njztiu are also strictly proper stable filters with only stable poles
which are the roots of F�

a pzq, F psq
jk pzq and poles of pHjq�1.

7.A.1 Proof of Lemma 7.2

Using the Bayes’ rule the expression in Eq. (10.28) can be written as,

Qpnqpηq � Erlog ppwj |mj ,mk1,mk2, . . . ,mkp; ηqs
� Erlog ppmj ; ηq � log ppmk1; ηq � � � � � log ppmkp; ηqs

(7.38)

Qpnqpηq � ErAs � ErBs (7.39)

A :� �N
2

logp2πq � N

2
logpσ̄2

j q �
1

2σ̄2
j

pwj �Wjigji �WmqJpwj �Wjigji �Wmq
(7.40)

B :�� l

2
logp2πq�1

2
logrdetpλjKβjqs�

1

2
mj

JpλjKβjq�1mj

�
¸

kPNjztiu

�
� l

2
logp2πq � 1

2
logrdetpλkKβkqs �

1

2
mk

JpλkKβkq�1
mk

� (7.41)
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Taking Expectation of each element in A and B with respect to ppm|wj ; η̂pnqq (i.e.
Eppm|wj ;η̂pnqq) we get,

ErAs��N
2

logp2πq�N
2

logpσ̄2
j q�

1

2σ̄2
j

�
wJ
j wj�gJjiW

J
jiwj

� ErmJsWJwj � wJ
j Wjigji � gJjiW

J
jiWjigji�

ErmJsWJWjigji�wJ
j WErms � gJjiW

J
jiWErms � trpWJWErmmJsq

�
(7.42)

ErBs � � l

2
logp2πq � 1

2
logrdetpλjKβjqs �

1

2
tr
�pλjKβjq�1Ermjmj

Js�
�

¸
kPNjztiu

�
� l

2
logp2πq � 1

2
logrdetpλkKβkqs �

1

2
tr
�pλkKβkq�1Ermkmk

Js��

(7.43)

The constants can be removed from the objective functions and multiplication
with scalar value 2 can be done to simplify the objective function. On substituting
the expected values ErmmJs � M̂pnq, Ermkmk

Js � M̂
pnq
k , Ermjmj

Js � M̂
pnq
j and

Erms � m̂pnq we get the statement of the Lemma.

7.B Proof of Theorem 7.1

The proof follows the procedure used in [14]. We partially differentiate (10.67)
with respect to λk and equate to zero to get the λ�k expression. Substituting this
λ�k in (10.67) we get the expression for (10.44) using which we obtain β̂

pn�1q
k .

Equation (10.46) is the expression of λ�k after substituting β̂pn�1q
k .

7.C Proof of Theorem 7.2

In order to find θ̂pnq, σ̄2
j is fixed to ˆ̄σ

2pnq
j and substituted in Eq. (10.69). After

substitution the terms that are independent of θ can be removed from the
objective function since it becomes a constant. Then we get,

Qpnq
o pθ, ˆ̄σ2pnq

j q � constant� 1

ˆ̄σ
2pnq
j

�
� 2wJ

j Wm̂pnq � tr
�
WJWM̂pnq

�

� 2wJ
j Wjigji � gJjiW

J
jiWjigji � 2gJjiW

J
jiWm̂pnq

�
.

(7.44)

We now introduce the following notation. Let D1 P RN2�N and D2 P RN2�N are
two matrices such that, for any vector w P RN , D1w � vecpW q, where W is the
Toeplitz matrix of w, and D2w � vecpWJq. Let us define m̆pnq P RN be a vector
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such that, if N ¤ l, m̆pnq is the vector of first N elements of m̂pnq and if N ¡ l, m̆pnq

is a vector with the first l elements equal to m̂pnq and the remaining ones equal to

0. Let M̆ pnq, ÐÑW N

` P RN�N where ` P ti, ju be the Toeplitz matrix of m̆pnq and ÐÑw `

respectively. Then

X � �
Wj Wk1 . . . Wkp

�
, Ŷpnq � M̆ pnqrÐÑW N

i �ÐÑW N

j
s

and
Zi �

�ÐÑ
W i 0 0 . . . 0

� P RN�pp�1ql ,

Zj �
��ÐÑW j 0 0 . . . 0

� P RN�pp�1ql .

We can re-write the following terms,
Wm̂pnq � Xm̂pnq � Gb

ÐÑ
W im̂

pnq
j � Gf

ÐÑ
W jm̂

pnq
j � Xm̂pnq � Ŷpnqgji and

W � X�GbZi �GfZj . Therefore,

θ̂pn�1q � arg max
θ

�
2wJ

j Wm̂pnq � tr
�
WJWM̂pnq

�� 2wJ
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J
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J
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�
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j Xm̂pnq�2wJ
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XXJM̂pnq

�� tr
�
XM̂pnqZJ

j G
J
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j G

J
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J
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�

Neglecting constant terms we get,
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� arg max
θ

�
2wJ

j Ŷ
pnqgji � vecpZiM̂pnqJXJqJD2bji � vecpZjM̂pnqJXJqJD2fji

� vecpXM̂pnqJZJ
i qJD1bji � vecpXM̂pnqJZJ

j qJD1fji � 2wJ
j Wjigji

� bJjiD
J
1 pZiM̂pnqZJ

i b IN qD1bji � fJjiD
J
1 pZjM̂pnqZJ

j b IN qD1fji

� bJjiD
J
1 pZiM̂pnqZJ

j b IN qD1fji � fJjiD
J
1 pZjM̂pnqZJ

i b IN qD1bji

� gJjiW
J
jiWjigji � 2m̂pnqJXJWjigji � 2gJjiW

J
jiŶ

pnqgji

�
.

Defining

Â
pnq
11 � rDJ

1 pZiM̂pnqZJ
i b IN qD1s

Â
pnq
12 � rDJ

1 pZiM̂pnqZJ
j b IN qD1s

Â
pnq
21 � rDJ

1 pZjM̂pnqZJ
i b IN qD1s

Â
pnq
22 � rDJ

1 pZjM̂pnqZJ
j b IN qD1s

b̂
pnq
11 �

�
� 1

2
vecpZiM̂pnqJXJqJD2 � 1

2
vecpXM̂pnqJZJ

i qJD1

�J
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b̂
pnq
12 �

�
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vecpZjM̂pnqJXJqJD2 � 1

2
vecpXM̂pnqJZJ

j qJD1

�J
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Âpnq �
�
Â
pnq
11 Â

pnq
12

Â
pnq
21 Â

pnq
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�
�WJ

jiWji � 2WJ
jiŶ

pnq ,

b̂pnq �
�
b̂
pnq
11

b̂
pnq
12

�
� rwJ

j Wji � wJ
j Ŷ

pnq � m̂pnqJXJWjisJ

we get that the parameter vector θ are updated by solving the problem

θ̂pn�1q � arg min
θ

�
gJjiÂ

pnqgji � 2b̂pnqJgji

�
. (7.45)

We have gji to be linearly parameterized with θ, that is gji � Mθ where
M P R2N�nθ . Therefore, the above problem becomes quadratic and a closed-form
solution is achieved. Thus we get the statement of Theorem 7.2.

7.D Proof of Theorem 7.3

In order to find ˆ̄σ
2pnq
j , θ is fixed to θ̂pn�1q and substituted in Eq. (10.69). After

substitution, Qpnq
o pσ̄2

j , θ̂
pn�1qq is differentiated w.r.t. σ̄2

j and equated to zero to get
the statement of the Theorem.





8 CHAPTER

Empirical Bayes Local Direct Method

This chapter considers the same problem in the previous chapter, i.e.,
identifying one module embedded in a dynamic network. However,

now the noise sources can be correlated. To achieve this using the
direct method for single module identification, we need to formulate a
Multi-Input-Multi-Output (MIMO) estimation problem, as described in
Chapter 3 of this thesis. Solving the MIMO estimation problem requires a
model order selection step for each module in the setup and estimation
of a large number of parameters. This results in a larger variance in
the estimates and increased computation complexity. Therefore, we
extend the Empirical Bayes Direct Method in Chapter 7, which handles
the above mentioned problems for a Multi-Input-Single-Output (MISO)
setup to a MIMO setting by suitably modifying the framework. We
keep a parametric model for the desired target module and model the
impulse response of all the other modules as independent zero-mean
Gaussian process governed by a first-order stable spline kernel. The
parameters of the target module are obtained by maximizing the marginal
likelihood of the output using the Empirical Bayes (EB) approach. To
solve this, we use the Expectation-Maximization (EM) algorithm, which
offers computational advantages. Numerical simulations illustrate the
advantages of the developed method over existing classical methods.

8.1 Introduction

The situation of correlation in process noise can be handled using PEM’s like the
indirect method [54] and its variants like the two stage method [29, 124] and

This chapter is based on the publication: V. C. Rajagopal, K. R. Ramaswamy, and P. M. J. Van den
Hof, “A regularized kernel-based method for learning a module in a dynamic network with correlated
noise,” in Proc. 59th IEEE Conf. on Decision and Control (CDC), Jeju Island, Korea, 2020, pp. 4348–4353.

197



198 Empirical Bayes Local Direct Method

instrumental variable methods [27, 120]. However, these methods require a strong
presence of measured external excitation signals to serve as predictor inputs, and
might increase the cost of experiments. On the contrary, the direct approaches
use the entire information of the node signal (both excitation and noise signal),
but suffer from handling correlated noise when using a MISO setup. A solution
to this problem has been provided in [104] (Chapter 3) as the local direct method.
In this method, we handle the effect of noise correlation in dynamic networks by
moving from a MISO to Multi-Input-Multi-Output (MIMO) identification setup,
where the single module identification problem becomes embedded in a network
MIMO identification problem, resulting in the problem of estimating high
number of parameters (even more than the MISO setup in previous chapter) that
are of no prime interest to the experimenter. In addition, all these additional
modules need to be suitably parameterized based on complexity criteria like
AIC, BIC, or Cross Validation (CV) [77]. This step involves permuting candidate
model orders for all modules which increases exponentially with the number of
modules or their orders.

To eliminate the model order selection step and reduce the number of estimated
parameters, we build on the work of the previous chapter and develop a
regularized kernel based method (see [93] for a survey) that extends the
semi-parametric approach of the previous chapter from a MISO setting to a
MIMO setting. Preserving the approach of the previous chapter, we maintain a
parametric model for the target module to accurately capture the dynamics,
while using independent Gaussian processes to model the impulse responses of
other modules. The covariance matrix of these processes are given by the
first-order stable spline kernel [21] which enforces stability and smoothness of the
impulse response coefficients. The parameters of the target module,
hyperparameters of the kernel and the covariance of the process noise are
estimated by maximizing the marginal likelihood of the data, achieved by an
Expectation-Maximization (EM) method having attractive computational
properties.

8.2 Problem statement

Assumption 8.1 In the dynamic network represented by (2.2), we consider
the following assumption:

• The structure of the disturbance topology is known i.e. we know a
priori which entries of H0pqq are nonzero.

According to the local direct method in chapter 3, a module Gji embedded in a
dynamic network with correlated noise can be consistently identified with a
MIMO estimation setup, wD Ñ wY . Here, predictor inputs wD and predicted
outputs wY may have common signals to handle the confounding variables that
arise due to correlated disturbances. Therefore, by exploiting a multivariate noise
model, the effect of correlated disturbances are covered. The estimation setup
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results from the network equation�
wQ

wo

�
loomoon
wY

�
�
ḠQQ ḠQU

ḠoQ ḠoU

�
loooooomoooooon

Ḡ

�
wQ

wU

�
loomoon
wD

�
�
H̄QQ H̄QU

H̄oQ H̄oU

�
loooooomoooooon

H̄

�
ξQ
ξo

�
loomoon
ξY

, (8.1)

where wQ are the set of nodes that are common to both inputs and outputs, wU and
wo are the sets of nodes that are exclusively inputs and outputs respectively. The
vector ξY is a Gaussian white noise process constructed by spectral decomposition
and H̄ is square, stable, monic and minimum phase. The desired target module
is represented in Ḡji i.e. Ḡji � Gji and ḠQQ is a hollow matrix and thus does not
lead to transfers between signals that are the same. Also, the non-zero entries in
Ḡ can be estimated (refer to Chapter 3 for the local direct method). Without loss
of generality, u � 0 is considered for simplicity.

We want to identify a parametric model for the module directly linking node wi
and wj , represented as Gjipq, θq that describes the dynamics of the module of
interest for a certain parameter vector θ P Rnθ , from N measurements of the node
signals wD and wY . In the local direct method, not only the target module Gji but
all the modules in Ḡ are parameterized, resulting in high number of parameters
to estimate which causes a detrimental effect on the variance of the parameter
estimates when N is not very large. Therefore, we focus on estimating a
parametric model for the target module while reducing the number of
parameters for the remaining modules in the MIMO identification setup.

8.3 Developing the Bayesian model

In this section, we discuss how we avoid parameterizing all but the target module
using regularized kernel-based methods. As the starting point of the methodology
in this chapter, we use the MIMO structure in (8.1), as opposed to a MISO structure
in the Empirical Bayes Direct Method (EBDM). Following (8.1), while maintaining
the monicity of the noise model, the equation can be re-ordered as�

wj
wỸ

�
loomoon
w̃Yptq

�
�
Gji ḠjD̃
ḠỸi ḠỸD̃

�
loooooomoooooon

Ǧ

�
wi
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�
loomoon
w̃Dptq

�
�
H̄jj H̄jỸ

H̄Ỹj H̄ỸỸ

�
loooooomoooooon

Ȟ

�
ξj
ξỸ

�
loomoon
ξ̃Yptq

, (8.2)

where Ỹ � Yztju and D̃ � Dztiu. The signals w̃Y , w̃D, and ξ̃Y are suitably
rearranged. To parameterize only Gji in Ǧ, we first define the following

quantities: Spqq � I|Y| � Ȟpqq�1, G̃pqq �
�

0 ḠjD̃
ḠỸi ḠỸD̃

�
, and SDpqq � pI � SpqqqG̃pqq,

where |X | denotes the cardinality of set X . With these definitions, we build a
predictor from (8.2) with a parameterized Gji as

w̃Yptq � pI � Spqqq
�
Gjipq, θq
0p|Y|�1q�1

�
wiptq � SDpqqw̃Dptq � Spqqw̃Yptq � ξ̃Yptq. (8.3)
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8.3.1 Vector description of network dynamics

Keeping a parametric model for the target module, we now need to model the
other modules. First, we obtain a vector description of the network dynamics for
the available N measurements using impulse response of the modules. We stack
the first ` coefficients of the impulse response of each module in SDpqq and Spqq as

sD �
�
sJY1D1

, . . . , sJY|Y|D|D|

�J
, and sY �

�
sJY1Y1

, . . . , sJY|Y|Y|Y|

�J
,where Y1, . . . , Y|Y| and

D1, . . . , D|D| are elements of set Y and D respectively. ` is chosen sufficiently large
to capture the impulse response dynamics. We also represent the target module
Gjipq, θq as an impulse response, where the first N coefficients are collected in gji
(the dependence on θ is implicit and dropped).

Next we introduce a vector notation for the signal w̃Yptq:
w̃Y :� �

w̃Y1
p1q . . . w̃Y1

pNq w̃Y2
p1q . . . w̃Y|Y|pNq

�
. Then, we denote Gθ P RN�N as the

Toeplitz matrix of gji, W̄i P RN�̀ as the Toeplitz matrix of�
0 0 wip1q . . . wipN � 2q�J, and Wi P RN�N as the Toeplitz matrix of�
0 wip1q . . . wipN � 1q�J, and W̆k P RN�` as the Toeplitz of�
0 wkp1q . . . wkpN � 1q�J where k belongs to the elements in Y and D. We also

define the following:

WY �
�
WY1

. . . WY|Y|

�
WD �

�
WD1

. . . WD|D|

�
W̃i � rGθW̄i 0s P RN�`|Y|,

W̃i � diagpW̃i, . . . , W̃iq P RN |Y|�`|Y|2 ,

WD � diagpWD, . . . ,WDq P RN |Y|�`|D|2 ,

WY � diagpWY , . . . ,WYq P RN |Y|�`|Y|2 .

(8.4)

Having defined the above terms, (8.3) can be rewritten in vector form as

w̃Y �Wjigji � W̃isY �WDsD �WYsY � ξ, (8.5)

where Wji �
�
WJ
i 0J

�J, and ξ P RN |Y|�1 is the vectorized noise.

8.3.2 Modeling the additional modules as GP

We now discuss our modeling strategy for the additional modules. Our aim is to
increase the accuracy of the desired parameter θ by limiting the number of
parameters to be estimated to describe w̃Y in (8.5). Therefore, we keep a
parametric model for gji and model the remaining impulse responses in (8.5) as
independent zero mean Gaussian Processes (GP) [107]. GP are effective in
reducing the variance of the impulse response estimate with suitable choice of a
prior covariance matrix (kernel) [93], which we chose to be the First order Stable
Spline kernel [21]. The kernel structure is given by K :� λKβ with
rKβsx,y � βmaxpx,yq, where β P r0, 1q and λ ¥ 0. λ and β are hyperparameters that
govern the amplitude and exponential decay of the realization of the Gaussian



8.3 Developing the Bayesian model 201

vector respectively. Therefore, impulse response of any length ` can be
represented using only the above two hyperparameters λ and β. In addition, the
chosen kernel enforces smoothness and stability of the estimate of the impulse
responses. Therefore, we have:

sYpDk � N p0, λDpkKβDpk
q, p � 1, . . . , |Y|, k � 1, . . . , |D|

sYpYk � N p0, λYpkKβYpk
q, p � 1, . . . , |Y|, k � 1, . . . , |Y|. (8.6)

Each impulse response prior is assigned with independent hyperparameters λ
and β for flexibility of modeling. Let us now define, s � �

sJY sJD
�J,

W � �
WY � W̃i WD

�
and let K be the block diagonal matrix constructed with

the covariance of the impulse response priors. Using the above definitions, (8.5)
can be written as,

w̃Y �Wjigji �Ws� ξ. (8.7)

In (8.7), s is modeled as Gaussian process. Therefore by considering a Gaussian
distribution for noise ξ and also taking into account the noise correlations

ξ � N p0, Σ̄b IN q, Σ̄ :�

�
�����
σ2

11 σ2
12 . . . σ2

1|Y|

� σ2
22 . . . σ2

2|Y|

...
...

. . .
...

� � . . . σ2
|Y||Y|

�
�����

we can write a joint probabilistic description of s and w̃Y , which is jointly
Gaussian, as:

p

��
s
w̃Y

�
; η



� N

��
0

Wjigji

�
,

�
K KWJ

WK P

�

(8.8)

where, P :� Σ�WKWJ, Σ :� Σ̄b IN , and

η � rθ λD11 . . . λ
D
|Y||D| λ

Y
11 . . . λ

Y
|Y||Y| β

D
11 . . . β

D
|Y||D|

βY11 . . . β
Y
|Y||D| σ

2
11 . . . σ

2
1|Y| . . . σ

2
2|Y| . . . σ

2
|Y||Y|sJ.

(8.9)

The parameter vector η governs the probability distribution function in (8.8). It
consists of the parameters of Gjipθq, the hyperparameters of the kernels of the
impulse response models and the elements of the covariance of the noise acting
on w̃Y . It is important to note that in EBDM [101] we estimate the variance of
the noise corrupting only the output of the target module wjptq, in contrast to
all elements of the covariance matrix of the noise corrupting the signals wYptq to
capture the effect of noise correlations. Therefore, to estimate the θ contained in
η, we adopt an Empirical Bayes (EB) framework [80]. To this end, we consider the
marginal pdf of w̃Y by integrating out the effect of s and maximizing the marginal
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likelihood of wY . The corresponding objective function is

η̂� arg max
η

ppw̃Y ; ηq

�arg min
η

log |P|�pw̃Y�WjigjiqJP�1pw̃Y�Wjigjiq .
(8.10)

This optimization problem is complex and non-convex, and solving such a
problem is cumbersome. Therefore, in the next section, we introduce a method to
solve the marginal likelihood maximization problem through an iterative
scheme.

8.4 Maximizing Marginal Likelihood

For maximizing the marginal likelihood, we consider the iterative method of
Expectation Maximization (EM) method [35] for obtaining the estimate of η. For
this, we need to first define the latent variable whose estimation simplifies the
calculation of the marginal likelihood. In this case, we choose s. The EM method
guarantees convergence to a local minima [16] and the optimization problem is
simplified as seen in Lemma 7.2 compared to solving the original problem in
(8.10). The EM method has two steps,

• E-step: Given η̂pnq at the nth iteration, compute

Qpnqpηq � Epps|w̃Y ;η̂pnqqrlog ppw̃Y , s; ηqs, (8.11)

• M-step: Compute η̂pn�1q from

η̂pn�1q � arg max
η

Qpnqpηq. (8.12)

The estimate η̂ is obtained by iterating between (8.11) and (8.12) until the
parameters converge. Although the procedure is iterative, the EM algorithm
significantly simplifies solving (8.10), reasons for which are shown in our next
steps.

The posterior distribution of s given w̃Y for an estimate of η is Gaussian, given by
pps|w̃Y ; ηq � N psm, Psq [2] where

Ps � K�KWJpWKWJ � Σq�1WK,

sm � pKWJpWKWJ � Σq�1qpw̃Y �Wjigjiq.
(8.13)

Let ŝpnq and P̂
pnq
s be the posterior mean and covariance of s obtained from (8.13)

using η̂pnq, we define Ŝpnq :� P̂
pnq
s �ŝpnqŝpnqJ and each of its `�` diagonal block as

Ŝ
pnq
m which are the posterior second moment of ŝpnqm . Here, m corresponds to each

combination of the impulse response in (8.6) and its respective hyperparameters.



8.4 Maximizing Marginal Likelihood 203

The structure ofQpnqpηq in (8.11) for the setup in (8.10) is provided in the following
lemma.

Lemma 8.1 Let η̂pnq be the estimate of η at nth iteration of the EM algorithm
according to (8.12), then

Qpnqpηq � Q
pnq
0 pθ,Σq �

¸
m

Qpnq
sm pλm, βmq (8.14)

where,

Q
pnq
0 pθ,Σq � � log det Σ� tr

�
Σ�1

�
w̃Yw̃

J
Y �WŜpnqWJ

�Wjigjig
J
jiW

J
ji �Wjigjiw̃

J
Y �w̃Yg

J
jiW

J
ji �Wŝpnqw̃J

Y

� w̃Y ŝ
pnqJWJ �WŝpnqgJjiW

J
ji �Wjigjiŝ

pnqJWJ
		
,

Qpnq
sm pλm, βmq�� log detλmKβm�

1

λm
tr
�
K�1
βm

Ŝpnq
m

	
.

Proof: See the appendix. �

It is indeed seen that (8.11) splits into a summation of simpler terms that depend
on different elements of parameter vector η. Therefore, the update of η splits into
many independent and simpler optimization problems, that can be computed in
parallel.

Update of kernel hyperparameters

It can be seen that the kernel hyperparameters can be updated independently of
the rest of the parameters. The kernel hyperparameters are updated as per the
Theorem ?? [14, 38].

Theorem 8.1 Define

Q
pnq
βm
pβmq � ` log trpK�1

βm
Ŝpnq
m q � log detKβm . (8.15)

Then,
β̂pn�1q
m � arg min

βnPr0,1q

Q
pnq
βm
pβmq

λ̂pn�1q
m �1

`
trpK�1

β̂
pn�1q
m

Ŝpnq
m q.

(8.16)

Proof: See the appendix. �

The optimization problem in (8.15) is a scalar optimization in the domain [0,1) and
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computationally fast. The update of λ̂pn�1q
m has a closed form solution, requiring

no optimization. Therefore, the hyperparameters update becomes simple.

Update of θ and noise covariance

The updates of θ and the noise covariance parameters in η are independent of the
kernel hyperparameters. Following a similar reasoning in [3], θ and Σ are updated
as per the Theorem 7.2.

Theorem 8.2 Define

Q
pnq
θ pθq � det

�
Ņ

t�1

Pξptq
�
.

Then
θ̂pn�1q � arg min

θ
Q
pnq
θ pθq ,

Σ̂pn�1q � 1

N

�
Ņ

t�1

Pξ̂pn�1qptq
�
b IN .

(8.17)

Here, Pξptq is computed based on η̂pnq and ŝpnq, whereas Pξ̂pn�1q is computed

based on θ̂pn�1q, λ̂pnqm , β̂pnqm and ŝpnq.

The expression for computing Pξptq is provided in the appendix. From Theorem
7.2, Σ is updated using a closed form expression, requiring minimal
computation. Except for θ that requires solving a non-linear optimization
problem at each iteration, all other updates are simple and computationally
effective, which is significantly more efficient compared to solving the non-linear
optimization problem in PEM with all modules parameterized in the MIMO
setup. The steps for estimating η̂ is provided in Algorithm 2. Initialization can be
done by randomly choosing η subject to the constraints of the hyperparameters.
For terminating the algorithm, the convergence criteria is defined as
}η̂pnq�η̂pn�1q}
}η̂pn�1q}   10�5.

8.5 Numerical Simulations

Numerical simulations are performed to validate and illustrate the developed
method. To this end, we consider the dynamic network shown in Figure 8.1 with
3 nodes. The network is excited using known external excitation signals r1ptq and
r3ptq that are realizations of white noise with unit variance. The process noises of
node 2 and 3 are correlated. In this network, we intend to identify the dynamics
of the module G0

21 (green module). We run 50 independent Monte Carlo
simulations obtaining N � 500 data each time. The noise sources e1ptq, e2ptq and
e3ptq have variances of 0.1, 0.2 and 0.3 respectively. We assume that we know the
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Algorithm 2 Algorithm for identifying a local module in a dynamic network with
correlated noise
Input:twkuNt�1, k P Y YD
Output: θ̂

1. Set n � 0, Initialize η̂p0q.

2. Compute P̂s
pnq

, ŝ, and Ŝpnq.

3. Update the kernel hyperparameters of all the impulse responses in (8.6),
β̂
pn�1q
m and λ̂pn�1q

m using (8.16).

4. Update θ̂pn�1q and Σ̂pn�1q using (8.17).

5. Set η̂pn�1q based on (8.9).

6. Set n � n� 1.

7. Repeat steps (2) to (6) until convergence.

model order of G0
21. The dynamics of all the modules and the noise models are

given in (8.18).

G0
21 � b1q

�1�b2q
�2

1�a1q�1�a2q�2 � 1q�1�0.5q�2

1�0.8q�1�0.6q�2

G0
31 � �2.1q�1�2.4q�2

1�0.9q�1�0.1q�2 G0
12 � 0.03pq�1�q�2q

1�1.9q�1�0.9q�2

G0
23 � �0.2q�1�0.02q�2

1�0.2q�1�0.1q�2 H0
11 � 1�0.1q�1�0.03q�2

1�0.5q�1�0.1q�2

H0
22 � 1�1.5q�1�0.2q�2

1�0.1q�1�0.01q�2 H0
33 � 1�0.4q�1�0.1q�2

1�0.4q�1�0.1q�2

H0
23 � 0.3q�1�0.01q�2

1�0.4q�1�0.6q�2 H0
32 � q�1�q�2

1�1.9q�1�0.9q�2 .

(8.18)

According to the local direct method [104], among the inputs tw1, w3u that
contribute to the output of the target module w2, the noise correlation between
the input w3 and output w2 can be handled by adding w3 (common signal) to the
output, thereby covering the noise correlation by a (2� 2) noise modeling.
Therefore, the input and output nodes of the MIMO estimation setup are given
by wD � tw1, w3u and wY � tw2, w3u. We choose ` � 100 for the length of impulse
response vectors of the additional modules. To assess the performance of the
developed method (named as Empirical Bayes Local Direct Method (EBLDM) for
comparison), we compare it with the Direct method (DM) [124] and the Two Stage
Method (TS) [124]. In the case of DM, we solve a 2-input/1- output MISO
identification problem with w1ptq and w3ptq as inputs and w2ptq as output. In the
two-stage method, the projection of the two inputs on the external signals r1ptq
and r3ptq are used as inputs to the MISO identification problem. Furthermore, to
improve the accuracy of the estimate obtained by the Two Stage method, we also
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Figure 8.1: A 3 node network with process noise correlated between the nodes 2
and 3: The target module is G21 (green box).
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Figure 8.2: Box plot of fit of the impulse response of Ĝ21 obtained by the two stage
method, direct method and the developed method.

identify the noise model. For both these methods, we use the Akaike Information
Criteria (AIC) for selecting a suitable model order.

The box plot of the fit of impulse response of G0
21 is shown in Figure 8.2, where

we have compared the performances of the direct method with true model order
and the same method with model order selection step (‘DM+TO’ & ‘DM+MOS’),
the two stage method with model order selection step (‘TS+MOS’) and the
EBLDM. The EBLDM has better overall fit of the impulse response than the
classical methods. On comparing the bias and standard deviation plot of the
parameters of Ĝ21, shown in Figure 8.3, it is evident that the EBLDM provides a
smaller bias and substantially reduced variance of the estimated parameters. The
reduced variance is attributed to the regularization approach of this method.
Among the other methods, the two stage method achieves smaller bias and
variance than the direct method. A significant bias in the estimated parameters
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Figure 8.3: Bias and standard deviation of the estimate of target module
parameters

can be witnessed in the case of ‘DM+TO’ from Figure 8.3. This is in accordance
with the theory that the direct method with the chosen MISO identification setup
provides biased estimates under the situation of correlated noise, however, a
MIMO identification setup (as in EBLDM) does not (see [104]). Overall, the
developed EBLDM method proves effective for the considered relatively small
network. As the size of the network grows, the results of the classical methods
may further deteriorate due to the increase in number of parameterized modules
and model order selection step that needs to be performed for it. Concerning this
situation, EBLDM can stand out as an effective method by circumventing the
model order selection step and providing reduced variance for large sized
networks.

8.6 Conclusion

Building on the EBDM, an effective algorithm for the network MIMO estimation
problem that is required to identify a module in a dynamic network with
correlated noise has been developed. The developed method circumvents the
model order selection step for all the modules that are not of interest to the
experimenter but needs to be identified for unbiased estimate of the target
module. Furthermore, it uses the regularized non-parametric methods to reduce
the number of estimated parameters, which reduces mean squared error of the
estimated target module. Numerical simulation with an example network
emphasize the potential of the introduced method in comparison with the
available classical methods.
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8.7 Related videos

Regularized kernel-based
method for learning a
module

http://publications.pvandenhof.nl/Videos/Venkat&Ramaswamy&Hof_CDC2020.mp4
http://publications.pvandenhof.nl/Videos/Venkat&Ramaswamy&Hof_CDC2020.mp4
http://publications.pvandenhof.nl/Videos/Venkat&Ramaswamy&Hof_CDC2020.mp4


Appendices

8.A Proof of Lemma 8.1

Following Bayes’ theorem, (8.11) can be written as follows,

Qpnqpηq � Erlog ppw̃Y |s; ηqs � Erlog pps; ηqs (8.19)

Define

A��N |Y|
2

logp2πq� 1

2
log det Σ

� 1

2

�
w̃Y�

�
Wi

0

�
gji�Ws


J

Σ�1

�
w̃Y�

�
Wi

0

�
gji�Ws



, (8.20)

B �
¸
m

�
� `

2
logp2πq � 1

2
log detλmKβm � 1

2
sJmpλmKβmq�1sm

�
(8.21)

Using properties of trace, removing constant terms, multiplying by 2 and taking
the expectation with respect to posterior, (8.20) and (8.21) are written as,

ErAs � � log det Σ� tr

�
Σ�1

�
w̃Yw̃

J
Y �

�
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0

�
gjig

J
ji

�
WJ
i 0J

��WssJWJ

�
�
Wi

0

�
gjiw̃

J
Y �Wsw̃J

Y � w̃Yg
J
ji

�
WJ
i 0J

��WsgJji
�
WJ
i 0J

�

� w̃Ys
JWJ �

�
Wi

0

�
gjis

JWJ

��
, (8.22)

ErBs �
¸
m

� log detλmKβm � tr
�pλmKβmq�1sms

J
m

�
(8.23)

By substituting, s as ŝpnq, ssJ as Ŝpnq, sm as ŝpnqm and sms
J
m as Ŝpnqm in (8.22) and

(8.23), (8.14) is obtained.

209
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8.B Proof of Theorem 8.1

We consider Qsmpλm, βmq in (8.14) and differentiate it with respect to λm. The
derivative is then equated to 0 to obtain the expression for λm

λm � 1

`
trpKβmq�1Ŝm. (8.24)

(8.24) is then substituted in theQsmpλm, βmq to eliminate λm, and with the change
of sign, resulting in the following equation.

QBpβmq � ` log trpK�1
βm
Ŝmq � log detKβm (8.25)

Once βm is obtained, then (8.24) is used to obtain λm.

8.C Computation of P̂ξ

Let us define the matrices

W1ptq �
�
Wpt, �qJWpt�N, �qJ . . .Wpt�pNY � 1qN, �qJ�J

W2ptq �
�
Wjipt, �qJWjipt�N, �qJ . . .Wjipt�pNY�1qN, �qJ�J

where, Wpt, �q corresponds to the tth row of the matrix W. With the above
definitions, we define

Pξptq � w̃Yptqw̃J
Y ptq �W2ptqgjigJjiWJ

2 ptq
�W1ptqŜpnqWJ

1 ptq �W2ptqgjiw̃J
Y ptq �W1ptqŝpnqw̃J

Y ptq
� w̃YptqgJjiWJ

2 ptq �W1ptqŝpnqgJjiWJ
2 ptq

� w̃Y ŝ
pnqJWJ

1 ptq �W2ptqgjiŝpnqJWJ
1 ptq

(8.26)

Pξ̂pn�1qptq is obtained by updating ĝpn�1q
ji and recomputing (8.26).



9 CHAPTER

Learning local modules without prior
topology information

Different identification methods have been developed for identifying
a single module in a dynamic network, addressing aspects like

the choice of signals that need to be measured, the presence of
correlated disturbances, and scalability of the estimation algorithms
by employing machine learning techniques. In order to select an
appropriate predictor model one typically needs prior knowledge on
the topology (interconnection structure) of the dynamic network, as
well as on the correlation structure of the process disturbances. In this
chapter we present a new approach that incorporates the estimation of
this prior information into the identification, leading to a fully data-
driven approach for estimating the dynamics of a local module. The
developed algorithm uses non-causal Wiener filters and a series of
convex optimizations with parallel computation capabilities to estimate
the topology, which subsequently is used to build the appropriate
input/output setting for a predictor model in the local direct method
under correlated process noise. A regularized kernel-based method is
then employed to estimate the dynamics of the target module, while non-
parametrically handling the remaining modules that are present in the
predictor model. This leads to an identification algorithm with attractive
statistical properties that is scalable to handle larger-scale networks too.
Numerical simulations illustrate the potential of the developed algorithm.

This chapter is based on the publication: V.C. Rajagopal, K.R. Ramaswamy, and P.M.J. Van den
Hof, “Learning local modules in dynamic networks without prior topology information", Proc. 60th
IEEE Conf. Decision and Control (CDC), December 13-15, 2021, Austin, TX, USA, pp. 840-845.
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9.1 Introduction

Local module identification focuses on identifying the dynamics of a single
module embedded in a network, which includes the problem of selecting the
relevant node signals to be measured. In a prediction error setting this problem
was addressed in [27, 29, 54, 105, 124, 141]. We have addressed the same problem
in Chapter 3 and 4 as well. The local direct identification method is presented in
[104] (Chapter 3) and contains a full procedure for minimum variance estimation
of a local module for the situation of correlated disturbances, and a variety of
options for selecting the measured node signals. However, the current prediction
error approach has two limitations:

(i) for constructing the appropriate predictor model it requires a prior
knowledge of the topology of the network and the correlation structure of
the disturbances; and

(ii) the computational algorithm for estimating the module typically requires
estimating large number of nuisance parameters and solving a model order
selection problem which is considered not to be scalable to large dimensions.

Recently solutions have become available for problem (ii), in the form of
regularized kernel-based approaches (see Chapter 7 and 8) for identifying a
single module ([99, 102]), building upon the signal selection procedures
developed in Chapter 3.
In this chapter, we will tackle problem (i) by extending the regularized
kernel-based method with a dedicated algorithm for estimating the network
topology and noise topology to arrive at a full data-driven procedure for learning
the dynamics of a single module. For identifying the two topologies (of the
network and the noise), we exploit a procedure developed in [85] for network
topology, based on the sparsity properties of non-causal Wiener filters, and
extend it to networks with a non-diagonal disturbance model.
The remaining part of the chapter is structured as follows. After an introduction
of the basic concepts, we sketch the main steps of the algorithm in Section 9.2.
Next, we estimate the locality of the relevant node signals in Section 9.3. In
Section 9.4 we present the non-causal Wiener filter approach for estimating the
topologies of network and noise model, while the connection with the
kernel-based method for estimating the dynamics of the target module is
presented in Section 9.5. Finally, numerical simulations are provided in Section
9.6.

9.2 Problem setting and approach

We consider the dynamic network described in Chapter 2 with full rank
correlated process noise. Similar to Chapter 3, without loss of generality, we
consider that u � 0. One of the modules in the network Gji is assigned to be the
target module of which the dynamics needs to be identified from (a selection of)
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measured node signals. While there are prediction error methods that explicitly
exploit the presence of measured excitation signals u (or r), the local direct
method of identification [104, 128] is built on the basis of a predictor model

wYptq � ḠpqqwDptq � v̆ptq (9.1)

where Y , D are selections of node signals that are chosen on the basis of the
presumed topology of the network, and the noise topology. Typical elements in
the selection of these sets of node signals include the conditions in Theorem 3.1
in Chapter 3. Under these conditions the local direct method can provide a
consistent and minimum variance estimate of the target module. However these
conditions can only be satisfied if the topology of the network, i.e. the binary
structure of G0pqq, and the correlation structure of the disturbances, reflected by
the binary structure of H0pqq are known. For an accurate estimation of the target
module, we will now exploit the following strategy consisting of three steps:

1. Step 1: Select the node signals that carry information on the estimation
problem of the target module, by estimating the “locality” of the output
node by generalizing the Wiener filter based approach from [85] to
situations with non-diagonal noise models;

2. Step 2: Estimate the local topology of the network around the target module,
by applying a model structure selection procedure based on the AIC
selection criterion and a multi-step least squares algorithm (from Chapter
6) with analytical solutions and with parallel computation capabilities.

3. Step 3: Select an appropriate predictor model and estimate the target
module dynamics by exploiting an Empirical Bayes method, in which the
target module is parametrized while the remaining nuisance modules are
modelled as Gaussian processes. This leads to an attractive and scalable
estimation algorithm with a limited number of parameters to be estimated
while achieving small mean-squared errors.

9.3 Locality detection

9.3.1 Graph aspects

Before we identify the nodal and noise interconnection structure, we need to
identify the nodes that contain information about the output node. In this study,
we refer to such a set of nodes as the locality of the output node. The locality of a
node can be seen as the Markov blanket [89] of the node in a network with
correlated process noise. The Markov blanket of a node is the set of nodes that
contain all the information about the node and is defined for Bayesian networks.
Similarly, we need to define locality for networks with correlated process noise.
To this end, we define the following sets.
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Definition 9.1 Given a dynamic network denoted by pG,Hqa, the children
of a node j are defined by Cj :� ti|Gij � 0u; its parents are defined by
Pj :� ti|Gji � 0u, and its noise confounders by Vj :� ti | Φvjvi � 0u.

aSuperscript 0 is dropped for convenience.

Usual practice in literature is to represent the topology of the network by an
adjacency matrix [124]. However, since in this study, we identify both the
network and the noise topology, we formally redefine them as follows.

Definition 9.2 (Topology) For a dynamic network pG,Hq, the topologies TG
and TH are defined as:

TGpj, iq �
#

1, Gji � 0

0, Gji � 0
and THpj, iq �

#
1, Hji � 0

0, Hji � 0
.

With the help of the defined quantities, we now define the locality of the output
node j.

Definition 9.3 (Locality of a node) Let j be a node in the considered
dynamic network. The locality of the node j (see figure 9.1 for visual
representation) is defined by

LOCj :� ti | i � j _ i P Pj _ i P Cj _ i P PpCjq _ i P Vj
_ i P VpCjq _ i P PpVjq _ i P PpVpCjqqu.

The process of removing a set of node signals from the network while keeping the
remaining node signals invariant and preserving the second-order properties of
the remaining nodes is called immersion (refer to [29] for details). Based on the
way we define the locality, immersing the remaining nodes (i.e. nodes other than
the nodes corresponding to set LOCj) in the network does not affect the output
node or the interconnection structure of the output node. As a result, a smaller
network for which we need to estimate the topology is obtained, which is referred
to as the local network and is denoted by pG̃, H̃q.

9.3.2 Identifying the Locality

Locality of the output node is analogous to the Markov blanket of the output
node defined for Bayesian Networks. In [85], it has been shown that a
multivariate non-causal Wiener filter [70] computed by projecting the node j on
to the remaining nodal signals can detect the Markov blanket of the
corresponding node by analyzing the sparsity of the Wiener filter. However, this
sparsity result was developed for networks without a noise model. In this
section, we extend the results of [85] to networks with non-diagonal noise model.
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(a) Parent, Pj (b) Child, Cj

(c) Common child, PpCjq (d) Noise confounder, Vj

(e) Noise confounder with a
child, VpCjq

(f) Noise confounder with a
parent, PpVjq

-
-
(0 
-
-

v 

mi

(g) Noise confounder among
children, PpVpCjqq

Figure 9.1: Visual representation of the relationship between nodes i and j for the
node i to be in the locality of j

Theorem 9.1 (Sparsity of the non-causal Wiener filter) Define
w :� �

w1, . . . , wL
�T to be the nodal signals obtained from the dynamic

network pG,Hq and let the non-causal Wiener filter estimate of wj on the
basis of all other node signals in w be given by ŵjptq �

°
i�jWjipqqwiptq.

Then Wjipzq � 0 implies wi P LOCj .

Proof: See Appendix 9.A �

As the result of Theorem 9.1, in order to identify the locality of node wj , we
simply need to compute the multivariate non-causal Wiener filter by projecting
the node wj on the remaining nodes in the network and group the nodes that
have a non-zero Wiener filter entry. Although there is no strict guarantee that in
this way we detect all nodes in the locality, examples under which a true link
between two nodes remains undetected are pathological [85]. In a practical
implementation a threshold ρ needs to be defined where }Wji}8 ¡ ρ is taken as



216 Learning local modules without prior topology information

Algorithm 3 Identifying the locality pLOCjq of a node j

Input:twkptquNt�1, k P t1, . . . , Lu
Output: Bj

1. Set w̄ � twkuk�j .
2. Compute a multivariate, non-causal Wjpzq with j as output and w̄ as input.

3. Initialize Bj � H
4. for i � 1 : Lzj

(a) if }Wjk}8 ¡ ρ, add k to Bj
(b) continue

evidence for the corresponding Wiener filter entry to be non-zero. The value of ρ
can be chosen based on the signals wj and wi. For ease of computation, the
Wiener filter is implemented as a non-causal FIR filter of length F , see e.g. [122].
The algorithm for identifying the locality LOCj is given in Algorithm 3.

9.4 Topology estimation

In this section, we develop a method to identify the network and noise topology
pTG̃, TH̃q of the local network pG̃, H̃q obtained after immersing the nodes that are
absent in the locality of the output node. Numerous solutions are provided in the
literature for network topology estimation considering the noise topology to be
known and diagonal. In this chapter, we address the situation of having an
unknown noise topology that can be non-diagonal. We follow a multi-step
approach (similar to the method in Chapter 6):

1. First, we estimate the innovation process using a high-order
(non-parametric) model, following an identification algorithm for networks
presented in [140].

2. Next we treat this estimate as an additionally available input signal and
simultaneously estimate the network and noise topology.

9.4.1 Innovation estimation

The network equation of the local network is described as,

wCptq � G̃wCptq � H̃ξCptq. (9.2)
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In (9.2), wC are the nodal signals of LOCj , G̃ is a hollow, strictly proper transfer
function matrix, and H̃ is square, monic, stable and minimum phase, ξCptq is a
white noise vector (see [104] for more details).

Proposition 9.1 For every dynamic network of the form (9.2), there exists a
network representation,

QwCptq � PwCptq � ξCptq, (9.3)

where, Q is a diagonal and monic transfer function matrix, and P is a hollow,
strictly proper transfer function matrix.

Proof: See Appendix 9.B �

Every entry present in Q and P can be represented as an independent impulse
response where its length `ARX is chosen sufficiently long to capture all the
dynamics. By approximating Q and P with (high-order) polynomials, we get an
ARX representation of the network in (9.3) where each row of Q and P can be
identified independently in a parallel MISO setup. Parameterizing the
coefficients of the impulse response of modules at each mth row and representing
the parameter vector as ηmARX , the parameter vector can be estimated using the
prediction error method [77]. Considering the one-step ahead predictor [77],

ŵmpt|t� 1; ηmARXq � ϕJmptqηmARX (9.4)

with ϕJmptq representing the data matrix and the resulting prediction error

εmpt, ηmARXq � wmptq � ŵmpt|t� 1; ηmARXq � wmptq � ϕJmptqηmARX , (9.5)

the parameter vector can be consistently estimated [78] by minimizing the sum of
squared prediction errors. This will result in a closed form solution,

η̂mARX �
�

1

N

Ņ

t�1

ϕmptqϕJmptq�Rm
��1

� 1

N

Ņ

t�1

ϕmptqwmptq, (9.6)

where Rm � diagpRm1 , . . . , Rm|LOCj |q is a regularization matrix to handle the
excessive variance of the estimate. The regularization term Rmk for k P LOCj is
chosen to be a modified Tuned/Correlated (TC) kernel [21] as it enforces stability.
The modified TC kernel has the following structure

Rmk � diagp1, 1

αk
, . . . ,

1

α`ARX�1
k

q. (9.7)

Here, the coefficients αk represent the decay rate of the impulse response of the
corresponding module that are estimated by cross-validation [21]. An estimate of
the innovation ξCptq is obtained as ξ̂Cptq � vectεmpt, η̂mARXqum�1,���|LOCj |.
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9.4.2 Structure selection

For estimating the local topology pTG̃, TH̃q, we re-write (9.2) as,

wCptq � G̃wCptq � H̄ξCptq � ξCptq (9.8)

with H̄ � pH̃ � Iq consisting of strictly proper modules. Motivated by the fact
that ξ̂Cptq Ñ ξCptq w.p. 1 due to consistent estimation in the previous step, we now
replace the term H̄ξCptq by H̄ξ̂Cptq, so that we can use pwC, ξ̂Cq as measured inputs
in our topology estimation step.

Similar to the previous step, parameterizing the coefficients of the impulse
response of the modules in G̃ and H̄ at each mth row of (9.8) and representing the
parameter vector as ηmFIR, the parameter vector of modules in each row can be
estimated independently in parallel using the prediction error method [77] with
one-step ahead predictor ŵmpt|t � 1; ηmFIRq � ϕ̄JmptqηmFIR where ϕ̄Jm is the data
matrix. The parameter vector can be consistently estimated [78] by minimizing
the sum of squared prediction errors
εmpt, ηmARXq � wmptq � ŵmpt|t � 1; ηmARXq � wmptq � ϕ̄JmptqηmFIR. This will result
in a closed form solution,

η̂mFIR �
�

1

N

Ņ

t�1

ϕ̄mptqϕ̄Jmptq
��1

� 1

N

Ņ

t�1

ϕ̄mptqwmptq. (9.9)

To identify the local topology pTG̃, TH̃q, we need to define a criterion that
operates on the basis of data and provides an indirect measure of how close a
certain candidate topology structure is to the true topology structure of the
network in (9.8). In this regard, we consider a modified representation of the
Akaike Information Criterion (AIC) [77]

JAICpη̂mFIRq � log

�
1

N

Ņ

t�1

ε2
mpt, η̂mFIRq

�
� 2NG`FIR

N
. (9.10)

Here, NG is the total number of nodes that is used as input for predicting node
wm in the candidate structure, `FIR is the length of the impulse response of the
modules and is chosen long enough to sufficiently represent the dynamics of the
network.

Having defined the selection criteria, we estimate η̂mFIR in an iterative manner for
different choices of predictor inputs. The estimate η̂mFIR obtained from (9.9) is
used to compute εmpt, η̂mFIRq which in turn is used to compute the cost of the
selection criterion for this candidate structure. The ideal structure is the one that
minimizes the selection criterion and to find it, a total 2|LOCj | combinations need
to be tested out. Testing these combinations become computationally infeasible
as |LOCj | increases. Developing search algorithms to reduce the number of
combinations to test is a non-trivial problem. To reduce the number of
combinations to test, we develop an iterative search algorithm (referred to as the
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Focus search algorithm) that is greedy in its approach to identify the ideal
structure.

Consider a node wm,m P LOCj , whose interconnection structure we wish to
identify. In the absence of interconnection information, it is safe to assume that
ξ̂m is connected to the node wm. Therefore, in the focus search algorithm, we
initialize the structure with the innovation signal ξ̂m and compute the cost of the
selection criterion for this structure. With this computed cost as the base cost, we
search for one nodal or innovation signal that minimizes the selection criterion.
This nodal/innovation signal is then added to the structure and the
corresponding cost becomes the new base cost. This step is repeated with the
remaining nodal and innovation signals until the cost saturates. The
interconnection information is obtained from the resulting structure. The focus
search algorithm along with the remaining steps for identifying pTG̃, TH̃q are
presented in Algorithm 4.

9.5 Identification algorithm

We now identify the target module which is one of the modules in G̃, based on
the identified local topology pT̂G̃, T̂H̃q. For this we resort to the already
established direct method for local module identification [104]. As indicated in
Section 9.2, this requires choosing the node signals in a predictor model (9.1) such
that conditions on parallel paths and loops and on the absence of confounding
variables are satisfied. An appropriate choice for a predictor model can be made
based on the estimated topology pT̂G̃, T̂H̃q, resulting in either a MISO or a MIMO
predictor model, in which the target module to be identified is embedded.

Irrespective of the structure of the predictor model, to identify one target module,
all the modules in the predictor model need to be suitably estimated. This step
becomes computationally expensive as the number of modules in the predictor
model increases. Also, parameterizing all the modules result in an explosion of
nuisance parameters that affect the variance of the target module estimate. As a
result, to circumvent model order selection and to reduce the number of nuisance
parameters, we consider the regularized kernel based methods, Empirical Bayes
Direct Method (EBDM) of [101] for MISO structures and Empirical Bayes Local Direct
Method (EBLDM) of [99] for MIMO structures.

In both these methods, the problem of model order selection step is simplified by
opting for a non-parametric impulse response modeling of all modules except
the target module. To reduce the number of parameters, each impulse response is
modelled as a Gaussian Process (GP) governed by a Stable spline (SS) kernel [21].
As a result, an impulse response of any length can be captured using only two
hyperparameters that govern the SS kernel. In these methods, the parameters are
identified using an Empirical Bayes approach [80] by maximizing the marginal
likelihood of data which inherently minimizes the mean square error of the
estimation problem. This further reduces the variance of estimated parameters of
the target module.
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Algorithm 4 Identification of local topology pTG̃, TH̃q
Input:twkptquNt�1, k P LOCj
Output: T̂G̃, T̂H̃

1. for m P LOCj
(a) Estimate the αk, k P LOCj by cross validation (refer to [21] for details).

(b) Identify η̂mARX using (9.6).

2. end for

3. Generate ξ̂Cptq � vectεmpt, η̂mARXqum�1,���|LOCj | using (9.5).

4. Choose an appropriate selection criteria.

5. for m P LOCj
(a) InitializeWm � H, andHm � tξ̂mu.
(b) Estimate η̂mFIR using (9.9).

(c) Compute the Jbase using (9.10).

(d) for count � 1 : 2|LOCj |2 � |LOCj |
i. for k P LOCj

A. SetWm � twku.
B. Estimate η̂mFIR using (9.9).
C. Compute Jiteration using (9.10).
D. if Jiteration   Jbase

E. Set Jbase � Jiteration.
F. Set Stempm � wk

G. else
H. continue

ii. for k P LOCjzm
A. SetHm � tξ̂ku.
B. Estimate η̂mFIR using (9.9).
C. Compute Jiteration using (9.10).
D. if Jiteration   Jbase
E. Set Jbase � Jiteration.
F. Set Stempm � ξ̂k

G. else continue
H. end if

iii. end for
iv. Add Stempm toWm orHm accordingly.

(e) end for

(f) Set the non-zero entries for mth row of T̂G̃, T̂H̃ based onWm andHm.

6. end for
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9.6 Numerical simulation

9.6.1 Toplogy estimation

To highlight the effectiveness of the topology estimation algorithm, we generate
50 random stable networks (modules of 2nd order are randomly generated) with
the network topology as shown in Figure 9.2. In this 10-node network, the process
noise pv1, v8q, pv4, v5q, and pv7, v9q are pairwise correlated, while e is a Gaussian
white noise process with covpeq � I .

2 3 4

6 7 5

8 9 10

1

Figure 9.2: 10-Node dynamic network with target module G76. The noise
processes pv1, v8q, pv4, v5q, and pv7, v9q are correlated.

We first identify the locality of the node 7, and immerse the remaining nodes.
The Wiener filter length F is commonly chosen to be 20 across all the different
networks; the threshold value ρ is chosen after visually examining the obtained
Wiener filters. Following this, we identify the local topology with `ARX � 50. The
behaviour of this algorithm is studied by comparing the True Positive Rate (TPR)
and the False Positive Rate (FPR) over different choices of `FIR. The expressions
for TPR and FPR are as follows

TPR � TP

P
, FPR � FP

A
.

Here, P refers to the number of present interconnections in the network, TP
refers to the number of instances of present interconnection identified by the
algorithm, A refers to the number of absent interconnections in the network, and
FP refers to the number of instances of absent interconnections falsely identified
by the algorithm.
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The obtained TPR vs FPR for N � 1000 over different `FIR � p10, 20, 40, 80q is
shown in Figure 9.3. The quiver represent the direction of increasing `FIR. For
a comparison with results for different selection criteria, the reader is referred to
[98]. It can be seen from this Figure that as `FIR increases, the curves get closer
to p1, 0q until `FIR � 40. Beyond `FIR � 40, the curves do not get any closer to
p0, 1q. This saturation is observed because the average impulse response length of
the true network is approximately 40. Beyond this value, it can be observed that
the performance of the algorithm is uniform in identifying the nodal and noise
topology.
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Figure 9.3: True Positive Rate and False Positive Rate for nodal topology pT̂G̃q
and noise topology pT̂H̃q using AIC as selection criterion, over different `FIR �
p10, 20, 40, 80q for N � 1000. The quiver represents the direction of increasing
`FIR.

9.6.2 Target module identification

To highlight the effectiveness of the estimation algorithm, we consider one of the
50 randomly generated networks for evaluating the performance of the complete
algorithm from a parameter identification perspective. To prevent issues that
might arise due to lack of sufficient excitation for target module identification,
we add an additional white noise source with unit power to each node in the
network. We run 50 independent Monte Carlo (MC) experiments for different
realizations of the noise source eptq while keeping the dynamics of the network
fixed. We collect N � 1000 samples of all the nodes for each MC simulation. The
network dynamics for the MC simulations can be found in [98]. The target
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module is given by,

G76 � 0.1050q�1 � 0.3465q�2

1� 0.0480q�1 � 0.2534q�2
� b1q

�1 � b2q
�2

1� a1q�1 � a2q�2
. (9.11)

For the first step of finding the locality of w7, the non-causal Wiener filter length
is chosen to be 20 while threshold ρ for identifying the locality is chosen to be
0.18. The true locality for this network is B7 � t3, 4, 5, 6, 9, 10u and only this set
of nodes should be non-causally Wiener correlated (i.e. }W7�}8 ¡ ρ) to the node
7. The mean and standard deviation plot of the non-causal Wiener filter over 50
MC simulations shown in Figure 9.4 ensures the sparsity conditions derived in
Theorem 9.1.

Figure 9.4: Non-causal Wiener filter estimate Ŵ7 obtained by projecting w7 on
the remaining nodes in the network. The black line represents the mean of the
estimate over 50 MC simulations. The red shaded region represents the standard
deviation of the estimates over 50 MC simulations.

Next, the local topology is identified by choosing `ARX � 50 and `FIR � 40 for
the lengths of impulse response and the AIC selection criterion. The results show
a TPR of 0.8417 and FPR of 0.1175.

To evaluate the performance of the identified topology in estimating the target
module G76, we compare the following local module identification strategies:
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1. EBLDM+TT: This is the method developed in [99]. We use the Full input
case algorithm of local direct method [104] for predictor model selection
considering the true local topology (‘TT’). This will lead to a MIMO
predictor model tw6, w3, w9u Ñ tw7, w9u. We use this estimator as an upper
bound of the performance to identify the target module.;

2. EBLDM+IT: This is the same estimator as the previous one, with the
difference that we use the identified local topology (‘IT’) for obtaining the
MIMO predictor model;

3. DM+TT: This is the standard direct method introduced in [124] for systems
with uncorrelated disturbances, with the output node of the target module
as output and its parents as inputs. This will lead to a MISO predictor model
tw6, w3, w9u Ñ tw7u and we parameterize all modules;

4. DM+IT: This is the same estimator as the previous one, with the difference
that the predictor model is formed with the identified topology;

5. EBDM+TT+IN: This is the method developed in [101, 102] for uncorrelated
disturbances. However in order to deal with correlated disturbances in the
network, a MISO noise model is estimated by using the innovations
estimates ξ̂B as predictor input signals, and using the true topology of the
network;

6. EBDM+IT+IN: This is same as the previous one but using the identified
topology to form the predictor model.

The true model orders of all the modules in the network are assumed to be known.
To evaluate the performance of the methods, we use the standard goodness-of-Fit
metric,

Fit � 1� }g76 � ĝ76}2
}g76 � ḡ76}2

where, g76 is the true value of the impulse response of G76, ĝ76 is the impulse
response of the estimated Ĝ76 and ḡ76 is the sample mean of g76. The box plot
showing the fit of the impulse response of G76 for the different methods is shown
in Figure 9.5. It can be observed that the fit of the impulse response for the
methods in which the identified topology is used, is similar to those where the
true topology is used, implying that the use of the identified topology essentially
preserves the performance with respect to the fit of the impulse response. In
Figure 9.5, we also see that the EBLDM and the EBDM have significantly better
fit compared to the DM. The reduction in variance is attributed to the
regularization approach followed in both the EBLDM and EBDM. It is observed
that, incorporating the innovation estimate into the estimation problem has a
positive effect for EBDM whose performance is comparable to that of EBLDM
except for a marginally higher estimation bias. Therefore, the developed
approach for no prior topology information has an on par performance
compared to the approaches that use the known true topology.
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Figure 9.5: Box plot of the fit of the impulse response of Ĝ76 obtained over 50 MC
simulations for different identification methods

Remark 9.1 The example considered has a network of moderate size.
However, when the size of the network increases, the locality of the output
node need not necessarily expand. Additionally, even if the locality of the
output node expands, the local topology estimation run in parallel due to
its MISO formulation and the estimation steps have analytical solutions
requiring no optimization. As a result, the developed algorithm will be less
complex, faster and scalable to larger networks.

Remark 9.2 The developed approach can also be used when the disturbance
topology is known or fixed. In this case, we can eliminate step 1 since we
can find the locality, and fix the noise topology in step 2 and follow the same
approach.

Remark 9.3 Step 2 acts as a stand-alone topology estimation procedure for
the entire network when the set Bj is chosen to consist of all nodes in the
network.

9.7 Conclusions

A novel approach for identifying a module embedded in a dynamic network
effectively and efficiently without any prior topology information has been
developed. The approach incorporates the estimation of the required prior
knowledge on the network and noise topology into the identification framework,
leading to a unified and complete data-driven approach for local module
identification. The local network and noise topology is estimated through
non-causal Wiener filters and a multi-step least squares algorithm, thereby
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requiring only a series of analytical solutions with parallel computation
capabilities and thus scalable to large-scale networks. Based on the estimated
topology, the target module is identified using regularized kernel-based methods
that reduces the complexity by circumventing the model order selection step and
reduces the number of parameters to be estimated which has direct influence on
the variance. Numerical simulations performed on fifty 10-node network
examples with correlated process disturbances shows promising results for the
network and noise topology estimation, and the target module estimated with
the identified topology has on par performance compared the approaches that
uses the known true topology.

9.8 Related videos

Learning local modules
without prior topology
information

http://publications.pvandenhof.nl/Videos/Rajagopa&etal_CDC2021.mp4
http://publications.pvandenhof.nl/Videos/Rajagopa&etal_CDC2021.mp4
http://publications.pvandenhof.nl/Videos/Rajagopa&etal_CDC2021.mp4


Appendices

9.A Proof of Theorem 9.1

The proof is formulated along the same lines as the proof for the situation of
uncorrelated disturbances in [85]. First we formulate a Lemma that formalizes
the relationship between entries of the non-causal Wiener filter and the inverse of
the spectral density matrix Φw.

Lemma 9.1 In the situation of Theorem 9.1, Wjipzq � Wijpzq � 0 if and only
if the entries pi, jq and pj, iq of Φ�1

w pzq are zero.

Proof: Without loss of generality, consider j � L and define w̄ :� pw1, . . . wL�1qJ
and v̄ :� pv1, . . . vL�1qJ. Since in the considered dynamic network, the process
noise may be correlated, we consider the following decomposition of the process
noise vL.

vL � pvLqKw̄ � pvLq‖w̄, (9.12)

where projection and orthogonal complement is considered in the shift-invariant
vector space equipped with the inner product   x, y ¡� Epxy�q. For the non-
causal Wiener filter W pzq that estimates wL from w̄, we can write

wL �W pzqw̄ � pvLqKw̄ (9.13)

where pvLqKw̄ is uncorrelated to w̄ because of the orthogonal projection properties
of the Wiener filter. Also, pvLqKw̄ is non-zero since the dynamic network has a full
rank process noise. Define r � pw̄J pvLqKw̄qJ. We observe that,

r �
�

I 0
�W pzq 1



w, and w �

�
I 0

W pzq 1



r.

Following this,

Φ�1
w �

�
I �W pzq�
0 1


�
Φ�1
w̄ 0
0 Φ�1

pvLqKv̄


�
I 0

�W pzq 1




�
�

Φ�1
w̄ �W pzq�W pzqΦ�1

pvLqKv̄
�W pzq�Φ�1

pvLqKv̄

�W pzqΦ�1
pvLqKv̄

Φ�1
pvLqKv̄

�
.

227



228 Learning local modules without prior topology information

Since the term Φ�1
pvLqKv̄

is scalar, it follows that the elements pi, Lq and pL, iq of this
matrix are zero if and only if WiLpzq, respectively WL,ipzq are zero. �

For proving Theorem 9.1 we now need to relate the sparsity of Φ�1
w to the locality

of wj . To this end we consider the dynamic network and rewrite it as wptq �
pI �Gpqqq�1vptq. Then Φ�1

w can be written as

Φ�1
w � pI �Gq�Φ�1

v pI �Gq � Φ�1
v �G�Φ�1

v � Φ�1
v G�G�Φ�1

v G

and the element pj, iq of pΦ�1
w q:

pΦ�1
w qji � pΦ�1

v qji � pG�jq�pΦ�1
v q�i � pΦ�1

v qj�G�i � pG�jq�Φ�1
v G�i. (9.14)

The first term in (9.14) is zero if the process noise of nodes wi and wj are
uncorrelated. The second and third terms in the expression are zero if no
children of wi have process noise correlated with wj and vice versa. The last
expression is zero if the nodes wi and wj have no common children or if the
process noise of the children of the nodes wi and wj are uncorrelated. Therefore,
if pΦ�1

w qji is non-zero, then node wi is in the locality LOCj . Using the result of
Lemma 9.1, we get that Wjipzq � 0 implies wi P LOCj .

9.B Proof of Proposition 9.1

Starting from (9.2), we represent the network as follows:

H̆wC � ĞwC � ξC, (9.15)

where, H̆ � H̃�1 and Ğ � H̃�1G̃. Due to the presence of off-diagonal terms in
H̃ , H̆ has off-diagonal terms and Ğ has diagonal terms. As a result, we group
the diagonal and off-diagonal terms of H̆ and Ğ into separate transfer function
matrices as follows:

H̆ � H̆D � H̆ND,

Ğ � ĞD � ĞND,
(9.16)

where, the subscripts p�qD and p�qND represent diagonal and non-diagonal
respectively. Note that H̆ND is strictly proper since H̆ is monic. Substituting
(9.16) in (9.15) then results in

pH̆D � ĞDqwB � pĞND � H̆NDqwB � ξB (9.17)

which proves the result of the Proposition with Q � pH̆D� ĞDq and P � pH̆ND�
ĞNDq.
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9.C Computation of non-causal Wiener filter [122]

The Wiener filter determines the optimal projection of a signal wjptq in the space
Wj � span twipt� pq : p P Zui�j Here we compute the Wiener filter by
approximating it with a finite impulse response (FIR) filter, also known as FIR
Wiener filter. Let the order of the FIR Wiener filter be F . Here the optimal
estimate ŵjptq is written as,

ŵjptq �
Ļ

k�1
k�j

F̧

p��F

hk,pwkpt� pq (9.18)

The Wiener filtering orthogonality condition is used to determine the constants
hk,p in Ŵjpzq. According to the orthogonality condition,

E rŵjptqwipt� pqs � E rwjptqwipt� pqs (9.19)

where, i P t1, � � � , j � 1, j � 1, � � � , Lu, p P t�F,�F � 1, � � � , F � 1, F u. Combining
(9.18) and (9.19),

rRw1wip�F � pq � � �Rw1wipF � pq � � �RwLwip�F � pq � � �
RwNwipF � pqsh � Rwjwip�pq, (9.20)

where, i P t1, � � � , Luzj, p P t�F, � � � , F u,

h :� �
hJ1 h

J
2 � � �hJj�1h

J
j�1 � � �hJN

�J
, and

hJi :� rhi,�F � � �hi,�1hi,0hi,1 � � �hi,F s
(9.21)

The set of equations in (9.20) and (9.21) describe p2F � 1qpL� 1q linear equations
in p2F �1qpL�1q unknowns in the vector h Thus, in combined form the equations
become,

Rh � S

Thus, h � R�1S is used to compute the coefficients of the Wiener filters. Note
that the matrix R and the vector S can be computed using the data twkuNt�1, k P
t1, � � � , Lu.





10 CHAPTER

An Empirical Bayes method for
handling missing node observations

In order to identify a module embedded in a dynamic network, one
has to formulate a multiple-input estimation problem that necessitates

certain nodes to be measured and included as predictor inputs. However,
some of these nodes may not be measurable in many practical cases
due to sensor selection and placement issues. This may lead to non-
satisfaction of the target module invariance conditions discussed in
Chapters 3 and 4, resulting in biased estimates of the target module.
Furthermore, the identification problem associated with the multiple-
input structure may require determining a large number of parameters
that are not of particular interest to the experimenter, with increased
computational complexity in large-sized networks. In this chapter, we
tackle these problems by using the data augmentation strategy that
allows us to reconstruct the missing node measurements and increase
the accuracy of the estimated target module. To this end, we develop
a system identification method using regularized kernel-based methods
coupled with approximate inference methods. Keeping a parametric
model for the module of interest, we model the other modules as
Gaussian Processes (GP) with a kernel given by the so-called stable
spline kernel. An Empirical Bayes (EB) approach is used to estimate
the parameters of the target module. The related optimization problem
is solved using an Expectation-Maximization (EM) method, where we
employ a Markov-chain Monte Carlo (MCMC) technique to reconstruct
the unknown missing node information and the network dynamics.
Numerical simulations on dynamic network examples illustrate the
potentials of the developed method.

231
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10.1 Introduction

When using the direct method for single module identification, the fundamental
parallel path/loop condition needs to hold in order to achieve consistent estimates
of the target module. This condition states that all parallel paths from the input
to the output of the target module and all the loops around the output of the
target module must pass through nodes that are measured and included as
predictor inputs in the estimation problem. Therefore, it becomes quintessential
to measure certain nodes to satisfy the parallel path/loop condition; however,
measurement of such nodes might not always be possible. Therefore, to mitigate
this issue and achieve reduced bias estimates, it becomes essential to develop
identification methods to cope with networks with missing nodes/observations.

In this chapter, we introduce a novel identification method that handles the
situation of non-measured inputs (i.e., missing node observations) that are
required to obtain unbiased target module estimates. To handle the situation of
missing node observations, we use a data augmentation strategy [123, 132], where
the missing node observations are also estimated along with the parameters of
the modules. For reconstructing the missing node information, we use the
available information from nodes that lie both upstream and downstream
compared to the missing node. To avoid model order selection and reduce the
number of nuisance parameters to be estimated, we build on [101, 102] (Chapter
7 and Chapter 8) and employ non-parametric regularized kernel-based methods.
We keep a parametric model only for the module of interest in order to have an
accurate description of its dynamics. The rest of the modules are modeled as
zero-mean Gaussian processes, with covariance matrix (kernel) given by a
first-order stable spline kernel [21, 93], which encodes stability and smoothness of
the processes. By this way of modeling, we reduce the number of estimated
parameters and obtain a significant reduction in the variance of the estimates
[93].

Using the above approach, we obtain a Gaussian probabilistic description that
depends on a vector of parameters that also contains the parameters of interest.
We use an Empirical Bayes approach to estimate such a vector; this amounts to
maximizing the marginal likelihood of the observed data, obtained by
integrating out the dependence on the missing node data and the impulse
response of the modules. The solution to the maximization problem is obtained
using an iterative scheme based on the Expectation-Maximization (EM) [35]
algorithm. The E-step characterizing this scheme involves computing the
expected value of a joint log-likelihood. Since in this problem the associated
integral does not admit an analytical solution, we employ a Monte Carlo
approximation method where samples of the target probability distributions are
generated using an instance of the Gibbs sampler [52]. As for the M-step of the EM
procedure, we show that it can be split into several small optimization problems
that are simple to solve, making the whole optimization routine computationally
cheap. Numerical simulation on a dynamic network with missing node
observations shows the developed method’s potentials compared to the available
classical methods.
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This chapter is organized as follows. In Section 10.2, the setup of the dynamic
network and the problem statement is defined. Section 10.3 briefs about the
standard direct method. Next, we provide the MIMO model, strategy to reduce
the parameters of nuisance modules and solve the missing node observation
problem, and solution to the marginal likelihood problem using the MCEM
method in Section 10.4, 10.5, and 10.6. Next, numerical simulations and results
are provided in Section 10.7, followed by discussions and conclusions. Finally,
the technical proofs are provided in the appendix.

10.2 Problem setup

We consider the dynamic network setup in (2.2) with known network topology.
We consider that the process noises are uncorrelated i.e refers to the situation that
Φvpωq andH0 are diagonal. We assume e to be a Gaussian white noise process. We
assume that we have collected N measurements of the certain internal variables
twkptquNt�1, and that we are interested in building a model of the module directly
linking node i to node j, that is G0

jipqq, using the measurements of the available
internal variables, and possibly u. To this end, we choose a parameterization of
G0
jipqq, denoted as Gjipq, θq, that describes the dynamics of the module of interest

for a certain parameter vector θ � θ0 P Rnθ .

10.3 The direct method and predictor input selection

As discussed in Section 7.3, not only the target module is parameterized in the
standard MISO direct method. The prediction error also depends on the
additional parameters entering the remaining modules G0

jkpqq, k P Njztiu and
the noise model H0

j pqq, which need to be estimated to guarantee consistent
estimates of θ. Therefore, the total number of parameters may grow large if the
cardinality of Nj is large, with a detrimental effect on the variance of the estimate
of θ in the case where N is not very large.

According to [29], it is sufficient to have a set of node signals Dj to be measured
and used as predictor inputs in the direct method, that satisfies an additional
parallel path/loop condition (condition 2.1) and a confounding variable
condition. However, if Zj � Dj represent the node signals that are not measured
or are inaccessible (i.e. missing node observations) but required to satisfy the above
condition, then identification through the direct method using the available
signals leads to biased target module estimates [29]. From this, we note that the
direct method requires the measurement of the node signals wk, k P Dj (see
Chapter 3). For example, consider the network in Figure 10.1 with diagonal noise
spectrum and u2 � r2, u4 � r4. In order to identify G0

31 using the direct method,
performing a MISO identification with w3 as output and wDj � tw1, w4u as inputs
when w2 is not measured (i.e. missing node observation), leads to estimation of
modules in an immersed network (a network with w2 removed) as in Figure 10.2.
As we can see, we now estimate G0

31 � G0
32G

0
21 (from w1 to w3) and not the
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Figure 10.1: Network example with 4 internal nodes, 2 external excitation signals
and a noise sources at each node. Target module is G31.

Figure 10.2: Immersed network of network in Figure 10.1 where the non-
measured node w2 is removed.

desired target module G0
31, which leads to a biased estimate. Confounding

variables like e2 when w2 is non-measured also create bias in the estimate of the
target module [104].

In the sequel of this chapter, we will explain how we deal with the problem of
missing node observations by re-constructing these measurements.

10.4 Concepts and Notations

The concepts and notations are the same as presented in Section 4.4. In addition,
we denote Ȳpjq � Yztju andW � YYD. Let w`, ` P Dwj �Wztju denote the node
signals inw that have unmeasured paths1 towj and u`, ` P Duj denote the non-zero
excitation signals in u that have unmeasured paths to wj . Also, for all k P Ȳpjq, let
Dwk �Wztku and let u`, ` P Duk �W YZ denote the non-zero excitation signals in
u.

1An unmeasured path is a path that does not pass through a node w`, ` P W . Analogously, we can
define unmeasured loops through a node wk .
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10.5 An Empirical Bayes identification technique
with missing node observations

10.5.1 Introduction

Following the result of Chapter 4, we have a MIMO representation of (part of)
our network based on the chosen set of signals pwQ, wO, wUq. It is known that there
exists a representation of the network as in (4.2) in which there are no confounding
variables for the estimation problem wU Ñ wY . From the result of Proposition 4.2,
it is known that the system’s equations for the output variables wY can be written
as,

wY � ḠwD � H̄ξY � R̄u (10.1)

with ξY a Gaussian white noise process, while H̄ is monic, stable and stably
invertible.

For estimation purposes we are going to use a specific form of (10.1), as formulated
next, for which we need two additional conditions.

Condition 10.1 There are no confounding variables for the estimation
problem wj Ñ wWztju.

Condition 10.2 All paths from wh, h P Oztju to wj pass through a node in
wW .

Proposition 10.1 Consider the network as represented by (2.2) where the set
of all nodes wL is decomposed into disjoint sets wQ, wO, wU and wZ . If
Conditions 10.1 and 10.2 are satisfied, then there exists a form (10.1) with H̄
being (block) lower triangular as follows,�

wj
wȲpjq

�
loomoon
wY

�
�
ḠjD
ḠȲpjqD

�
looomooon

Ḡ

wD �
�
H̄jj 0
H̄Ȳpjqj H̄ȲpjqȲpjq

�
looooooooooomooooooooooon

H̄

�
ξj
ξȲpjq

�
loomoon
ξY

�R̄u. (10.2)

Proof: Collected in the appendix. �

Condition 10.3 LetGji be the target network module to be identified. In the
network (2.2):

• Every path from wi to wj , excluding the path through Gji, passes
through a node wk, k PW , and
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• Every loop through wj passes through a node in wk, k PW . 2

In order to guarantee that Ḡjipqq � Gjipqq, i.e the target module appearing in
equation (10.2) is the target module of the original network (2.2) (invariance of
target module), we utilize the following result:

Proposition 10.2 Consider the situation of Proposition 10.1. If condition 10.3
is also satisfied, then we have Ḡjipqq � Gjipqq.

Proof: Collected in the appendix. �

Based on the above results, we can now re-write (10.1) in the predictor form as
given below.

Proposition 10.3 Consider the network as represented by (2.2) where the set
of all nodes wL is decomposed into disjoint sets wQ, wO, wU and wZ such that
Conditions 10.1, 10.2 and 10.3 are satisfied. The network equation for the
node wj and wk, k P Ȳpjq can be written asa,

wjptq �ŵjpt|t� 1q � ξjptq � Sjpqqpwjptq � ujptqq�p1� SjpqqqGjipqqwiptq
�

¸
`PDwj ztiu

S`pqqw`ptq�ujptq�
¸

`PDuj ztju

Sj`pqqu`ptq�ξjptq, (10.3)

wkptq �ŵkpt|t� 1q � ξkptq � Bkpqqpwkptq � ukptqq �
¸
`PDwk

B`pqqw`ptq

�
¸
`PDuk

Bk`pqqu`ptq � ukptq � ξkptq, (10.4)

where we isolate the target module Gjipqq. S�pqq, B�pqq are strictly proper
predictor filters constructed from the terms in (10.2), and ξYptq is Gaussian
white noise with covpξYq � Σ̄.

afrom now on superscript 0 is dropped for convenience.

Proof: Collected in the appendix. �

The lower (block) triangular structure of H̄ in (10.2) allows us to isolate the target
module Gji in (10.3). Realizing the above representation requires conditions on
the selection of node signals in wQ, wO, wU (i.e. conditions 10.1, 10.2 and 10.3).
The conditions are not a restriction. They can always be satisfied by appropriate
selection of signals in the sets Q,O and U .

10.5.2 Signal selection

The identification method developed in this chapter relies on data augmentation
strategies [123, 132]. Using this strategy, we treat the non-measured missing node
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signals as latent variables which are estimated along with the parameters. In
particular, we build a MIMO predictor model where we

• include the non-measured missing node(s) in wD and copy it to the output
wY ,

• extend the input wD with measured node signals that are ascendants of the
missing node (upstream nodes), so that we can add information for
reconstructing the missing node observation, and

• extend the outputwY with measured node signals that are descendants of the
missing node (downstream nodes), which might further help in improving
the variance of the estimates.

Note that not all signals in wD Y wY are measured node signals since they contain
the non-measured missing node(s). However, for all considerations on
confounding variables, the missing node is considered to be a measured node
signal.

For simplicity, we are going to assume one missing node wm (i.e. the cardinality
of Zj is one) and one additional node wa as a descendant of the missing node wm.
However, the method described in this chapter can be extended to any number
of missing nodes and additional nodes. As mentioned above, we are going to
formulate a MIMO model structure where the outputs are (1) the output of the
target module i.e. wj and, (2) the missing node output (3) additional nodes that
are descendants of the missing node. We select Y � twj , wm, wau. wD consists of
any set of measurable node signals, and has to contain the missing node signal(s)
wm. We include measured node signals that have unmeasured paths to wY in
wD. The addition of missing node signal(s) in wW ensures that condition 10.3 is
satisfied. We choose signals in wY and wD such that conditions 10.1 and 10.2 are
satisfied. Since wm and wa are both in the set Ȳpjq they can be written according
to (10.4) as,

wmptq�Bmpqqpwmptq�umptqq�
¸
`PDwm

B`pqqw`ptq�
¸
`PDum

Bm`pqqu`ptq�umptq�ξmptq,

(10.5)

waptq�Fapqqpwaptq�uaptqq�
¸
`PDwa

F`pqqw`ptq�
¸
`PDua

Fa`pqqu`ptq�uaptq�ξaptq,

(10.6)

with

covp
�
� ξjptqξaptq
ξmptq

�
�q :� Σ̄ �

�
�σ2

j 0 0
0 σ2

a σ2
am

0 σ2
am σ2

m

�
�

.

From the above, it is very clear that if we use the additional node wa in the
output, we need to model additional modules. This increase in complexity
counterbalances the gain obtained by using more information. In this chapter, we
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develop an identification framework that uses the additional node(s); we also
provide the framework that does not use additional nodes as a special case of the
former.

10.5.3 Vector description of the dynamics

In this section, we obtain a vector description of the network dynamics for the
available N measurements. For notation purposes, we introduce the
N -dimensional vector gji (which will also depend on θ, although we will keep
this dependence tacit) as the first N coefficients of the impulse response of
Gjipq, θq. Similarly, we define the vector sk, k P tDwj uzi, sjk, k P tDuj uzj and sj as
the vectors containing the first l coefficients of the impulse responses of Skpqq,
k P tDwj uzi, Sjkpqq, k P tDuj uzi, and Sjpqq, respectively. Similarly, bk, bmk, bm, fk,
fak, fa are defined as the vectors containing the first l coefficients of the impulse
responses of Bk, Bmk, Bm, Fk, Fak, Fa respectively. The integer l is chosen large
enough to ensure skpl � 1q, sjkpl � 1q, sjpl � 1q, bkpl � 1q, bmkpl � 1q, bmpl �
1q, fkpl � 1q, fakpl � 1q, fmpl � 1q � 0.

Lemma 10.1 Let the vector notation for the node wkptq be
wk :� �

wkp1q . . . wkpNq
�T where k P tj,m, au. Considering the

parameterization of Gjipqq (i.e. Gjipq, θq), the network dynamics in (10.3),
(10.5) and (10.6) can be represented in the vector form as:

wm � W̃mbm �
¸
kPDwm

Wkbk �
¸
kPDum

Rkbmk � um � ξm, (10.7)

wj � W̃jsj �Wjigji �
¸

kPDwj ztiu

Wksk �
¸

kPDuj ztju

Rksjk � uj � ξj ,(10.8)

wa � W̃afa �
¸
kPDwa

Wkfk �
¸
kPDua

Rkfmk � ua � ξa, (10.9)

where ξj , ξm, ξa are the vectorized noise and rj , rm, ra are the vectorized
excitation signal. W̃j , W̃m, W̃a, Wji, Wk and Rk are Toeplitz matrices
constructed from measurements of the respective node and excitation
signals.

Proof: We denote by Wk P RN�l the Toeplitz matrix of the vector
ÝÑw k :� �

0 wkp1q . . . wkpN � 1q�T , k P Dwj Y Dwm Y Dwa Y Y and Wji P RN�N

the Toeplitz matrix of the vector ÝÑw i :� �
0 wip1q . . . wipN � 1q�T . Let

R` P RN�l be the Toeplitz matrix of the vector
ÝÑu ` :� �

0 r`p1q . . . r`pN � 1q�T where ` P Y Y Dum Y Dua Y Duj . Similarly, we
denote by ÐÑ

W k P RN�l the Toeplitz matrix of the vector
ÐÑw k :� �

0 0 �wkp1q . . . �wkpN � 2q�T , k P ti, ju, and by Gθ the Toeplitz of
gji. Considering the parameterization of G0

ji and the above established notations,
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we can rewrite the network dynamics in (10.3) as (10.8), (10.6) as (10.9), and (10.5)
as (10.7) where W̃j :�Wj �Rj �Gθ

ÐÑ
W i, W̃m :�Wm �Rm, W̃a :�Wa �Ra. �

10.5.4 Strategy to reduce the number of parameters for nuisance
modules

Before we move to an estimation scheme that can deal with the missing node wm,
we explain how we can avoid having to estimate a huge number of parameters in
the nuisance modules, i.e. the modules that we need to identify but that are not
the target module of interest. For this we follow the work in Chapter 7, where no
missing nodes are assumed and extend it to the situation where there are missing
node(s). Our goal is to limit the number of parameters necessary to describe wj ,
wa and wm, in order to increase the accuracy of the estimated parameter vector of
interest θ. Therefore, while we keep a parametric model for Gji, for the
remaining impulse responses in (10.7), (10.8) and (10.9), we use nonparametric
models induced by Gaussian processes [107]. The choice of Gaussian processes is
motivated by the fact that, with a suitable choice of the prior covariance matrix,
we can get a significant reduction in the variance of the estimated impulse
responses [93]. Therefore, we model sk, k P j Y Dwj ztiu, sjk, k P Duj ,
bk, k P mYDwm, bmk, k P Dum, fk, k P aYDwa , fak, k P Dua as independent Gaussian
processes (vectors in this case) with zero-mean. The covariance matrix of these
vectors, usually referred to as a kernel in this context, is chosen to be
corresponding to the so-called First-order Stable Spline kernel. The general
structure of this kernel is given by

λrKβsx,y � λβmaxpx,yq , (10.10)

where β P r0, 1q is a hyperparameter that regulates the decay velocity of the
realizations of the corresponding Gaussian vector, while λ ¥ 0 tunes their
amplitude. The choice of this kernel is motivated by the fact that it enforces
favorable properties such as stability and smoothness in the estimated impulse
responses [91], [92]. Therefore, we have that

sk � N p0, λskKβsk
q , k P j YDwj ztiu, (10.11)

sjk � N p0, λsjkKβsjk
q , k P Duj ztju, (10.12)

bk � N p0, λbkKβbk
q , k P mYDwm, (10.13)

bmk � N p0, λbmkKβbmk
q , k P Dum, (10.14)

fk � N p0, λfkKβfk
q , k P aYDwa , (10.15)

fak � N p0, λfakKβfak
q , k P Dua , (10.16)

where we have assigned different hyperparameters to the impulse response
priors to guarantee flexible enough models. In (10.7) - (10.9) we have terms that
are multiplication of the Toeplitz matrix related to missing node wm and the
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impulse response models, where both the missing node data and the prior
hyperparameters of the impulse models are unknown and need to be estimated.
In order to tackle the identifiability issues, we set the hyperparameters λsm, λbm
and λfm (i.e. λ’s corresponding to the modules having missing node as inputs) to
be 1.

10.5.5 Incorporating Empirical Bayes approach

We now explain how the parameters of the priors and the target module are
estimated using the Empirical Bayes approach. For this, we define

s :� �
sJj sJc1 . . . sJcp sjk

J
1 sjk

J
2 . . . sjk

J
p

�J
, (10.17)

where c1, . . . , cp and k1, . . . , kp are the elements of the set Dwj ztiu and Duj ztju,
and

W :� �
W̃j Wc1 Wc2 . . . Rkp�1 Rkp

�
, (10.18)

K1 :� diagtλsjKβsj
, λsc1Kβsc1

, . . . , λsjkpKβsjkp
u. (10.19)

Analogously we define

b :�
�
bJm bJc1 . . . bJcp bmk

J
1 bmk

J
2 . . . bmk

J
p

�J
, (10.20)

R :� �
W̃m Wc1 Wc2 . . . Rkp�1 Rkp

�
, (10.21)

K2 :� diagtKβbm
, λsc1Kβbc1

, . . . , λbmkpKβbmkp
u. (10.22)

where c1, . . . , cp and k1, . . . , kp are the elements of the set Dwm and Dum
respectively, and

f :�
�
fJa fJc1 . . . fJcp fak

J
1 fak

J
2 . . . fak

J
p

�J
, (10.23)

Q :� �
W̃a Wc1 Wc2 . . . Rkp�1 Rkp

�
, (10.24)

K3 :� diagtλfaKβfa
, λfc1Kβfc1

, . . . , λfakpKβfakp
u. (10.25)

where c1, . . . , cp and k1, . . . , kp are the elements of the setDwa andDua respectively.
Using the above, we can rewrite (10.7), (10.8) and (10.9) in compact form and we
obtain the following model:�

�wjwa
wm

�
�

loomoon
wY

�
�
�W 0 0

0 Q 0
0 0 R

�
�

loooooooomoooooooon
WD

�
�sf
b

�
�

loomoon
g

�
�
�Wji

0
0

�
�

loomoon
Wji

gji�
�
�ujua
um

�
�

loomoon
uY

�
�
� ξjξa
ξm

�
�

loomoon
ξY

,

s � N p0,K1q ,
b � N p0,K2q , (10.26)
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f � N p0,K3q ,
ξY � N p0,Σq ,

where s, b, f and ξY are mutually independent and with Σ � Σ̄b IN . We note that
the above model depends upon the vector of parameters

η :� r θ λsj . . . λsjkp λbc1 . . . λbmkp λfa . . . λfakp βsj . . . β
s
jkp β

b
m . . . βbmkp

βfa . . . βfakp σ
2
j σ

2
m σ2

a σ
2
am s,

which contains the parameter vector of the target module, the hyperparameters
of the kernels of the impulse response models of the other modules, and the
parameters related to the covariance of the noise corrupting wjptq, waptq and
wmptq. Note that θ appears in gji while the other parameters in η appear in g and
in covariance of ξY . Therefore, we focus on the estimation of η, since it contains
the parameter of interest θ. For this, we apply an Empirical Bayes (EB) approach,
where the estimate of η is obtained by maximizing the marginal likelihood of the
observed data wȲ � �

wJ
j wJ

a

�J
, obtained by integrating out the dependence on

the missing node data and the impulse response of the modules,

η̂ � arg max
η

ppwȲ ; ηq. (10.27)

Remark 10.1 If we do not consider additional node wa, we can remove the
extra layer of equation inwȲ . In the above model (10.26), it will be the second
(block) row of equation in wȲ and therefore we need not model f . Now the
model will depend upon the vector of parameters,

η :� r θ λsj . . . λsjkp λbc1 . . . λbmkp βsj . . . βsjkp βbm . . . βbmkp σ
2
j σ

2
ms.

We do not need to estimate extra parameters
λfa , λ

f
c1 , . . . , λ

f
akp

, βfa , β
f
c1 , . . . , β

f
akp

, σ2
am, σ

2
a.

The first important problem with the above approach of parameter η inference in
(10.27) is that we need to deal with the unknown missing node observation wm.
Secondly, due to the incomplete model, the marginal pdf of wȲ (i.e. ppwȲ ; ηq) does
not admit an analytical expression and cannot be computed under a closed-form
solution. Adding to it, the maximization problem does not admit an explicit
solution. In the next section, we study how to solve the marginal likelihood
problem through a dedicated iterative scheme.

10.6 Parameter Inference

In this section, we provide the approach to deal with the missing node wm and
the above discussed problems and solve the marginal likelihood problem in
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(10.27). We use the strategy of data augmentation [123, 132] to deal with the
unknown missing node observations. In this data augmentation strategy, we
treat the unknown node signal as auxiliary variables which are estimated along
with the parameters in η. This data augmentation strategy has been used for
state inference in identification of state-space models [113]. There are various
methods that use the data augmentation strategy like the EM algorithm [35] for a
Frequentist formulation of the identification problem and the Gibbs sampler [52]
for a Bayesian formulation.

For the problem in (10.27), which is a Frequentist formulation, we solve it by
deriving an iterative solution scheme through the EM algorithm. For this, we
need to first define the latent variables whose estimation simplifies the
computation of the marginal likelihood. The first natural choice is wm, which is
the missing node observation. Also, s, b and f are latent variables. Then, the
solution to (10.27) using the EM algorithm is obtained by iterating among the
following two steps:

• E-Step: Given an estimate η̂pnq computed at the nth iteration, compute

Qpnqpηq � Erlog ppwȲ , wm, s, f, b; ηqs , (10.28)

where the expectation of the joint log-likelihood of wj , wa, wm, s, f and b is
taken with respect to the posterior ppwm, s, b, f |wȲ ; η̂pnqq;

• M-Step: Update η̂ by solving

η̂pn�1q � arg max
η

Qpnqpηq . (10.29)

When the two steps are iterated, convergence to a stationary point of the
marginal likelihood (which can be a local minima or global minima) is ensured
[16]. In the next section, we show the clear advantage of using the EM algorithm.
We have transformed the original marginal likelihood problem (10.27) to a
sequence of problems that require solving (10.29) using the EM algorithm. We
show that, when we use the EM method, the nonlinear optimization problem
becomes a problem of iteratively constructing analytical solutions and solving
scalar optimization problems, which significantly simplifies solving (10.27).

Also, the E-step in the algorithm involves computing expectation with respect to
the posterior distribution ppwm, s, p, f |wȲq, which is non-Gaussian and does not
have an analytical form. Thus the integral in (10.28) is not tractable. In the next
section, we present a solution to this problem by using a Markov Chain Monte
Carlo (MCMC) method, Gibbs sampler.

10.6.1 Computation of E-step

In order to perform the E-step we resort to the Monte Carlo approximation of
(10.28). This method has been introduced in [147] and is known as Monte Carlo
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Expectation Maximization (MCEM). In this, we approximate (10.28) as,

Qpnqpηq � 1

M

M̧

i�1

log ppwȲ , w̄
pi,nq
m , s̄pi,nq, p̄pi,nq, f̄ pi,nq; ηq , (10.30)

where s̄pi,nq, p̄pi,nq, f̄ pi,nq, w̄pi,nq
m are samples drawn at the nth iteration from the

posterior ppwm, s, p, f |wȲ ; η̂pnqq. In order to draw samples from the posterior, we
use the Gibbs sampler2. The idea behind the Gibbs sampler, which is a MCMC
method, is to generate samples from a desired target distribution by simulating a
Markov chain, with the target distribution as its stationary distribution. The
Gibbs sampler produces samples from the posterior distribution by iteratively
sampling each random variable conditioned on all other random variables [52].
Therefore to create samples from the joint posterior distribution, starting from an
initialization s̄p0,nq, p̄p0,nq, f̄ p0,nq, w̄

p0,nq
m , we iteratively perform Algorithm 5 for a

Algorithm 5 Gibbs sampler

1. sample w̄pi�1,nq
m � ppwm|wj , s̄pi,nq, b̄pi,nq, f̄ pi,nqq ,

2. sample s̄pi�1,nq � pps|wj , w̄pi�1,nq
m , b̄pi,nq, f̄ pi,nqq ,

3. sample b̄pi�1,nq � ppb|wj , w̄pi�1,nq
m , s̄pi�1,nq, f̄ pi,nqq ,

4. sample f̄ pi�1,nq�ppf |wj , w̄pi�1,nq
m , s̄pi�1,nq, b̄pi�1,nqq,

large number of iterations keeping the hyperparameters value fixed. Normally,
we discard first few samples since the Markov chain will be poorly mixed and
the obtained samples will be far away from the stationary distribution, which is
the target distribution for the Gibbs sampler. Therefore, we discard the first B
samples, and this is known as burn-in period. If the burn-in period is large
enough, then we produce samples that come from the stationary distribution3.
Another approach called thinning can be used to reduce the correlation in
generated samples, where after the burn-in period each sample can be collected
after κ iterations.

It is important to note that in order to use the Gibbs sampler, the above conditional
distributions should be known and we should be able to generate samples from
them. Next we show that these conditional distributions have a convenient form.

Proposition 10.4 Consider the model in (10.26). The conditional

2There are other joint posterior approximation techniques like Variational Bayes approximations [8]
and other MCMC methods [55], which can also be applied. In this chapter we resort to Gibbs sampler.
Gibbs sampler does not require any tuning of proposal density and does not include any rejection step.

3The choice of burn-in period is a non-trivial problem which is not in the scope of this chapter and
methods to address this problem have been provided in [55].
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distributions of s, p, f, wm are Gaussian and given by,

ppwm|wȲ , s, b, fq � N pµw, Pwq , (10.31)
pps|wȲ , wm, b, fq � N pµs, Psq , (10.32)
ppb|wȲ , wm, s, fq � N pµb, Pbq , (10.33)
ppf |wȲ , wm, s, bq � N pµf , Pf q , (10.34)

where

Pw � pµ̄J2 Σ�1µ̄2 � Λ22 �
�
Λ21 Λ22

�
µ̄2 � µ̄J2

�
ΛJ

12 ΛJ
22

�Jq�1 , (10.35)

µw � Pwpµ̄J2
�
Λ11 Λ12

�J
wȲ �

�
Λ21 Λ22

�
µ̄1 � Λ21wȲ � µ̄J2 Σ�1µ̄1q, (10.36)

Ps �
�
K�1

1 � W̄JΣ�1W̄
��1

, (10.37)

µs � PsW̄
JΣ�1 pwY � µ̄4q , (10.38)

Pb �
�
K�1

2 � R̄JΣ�1R̄
��1

, (10.39)

µb � PbR̄
JΣ�1 pwY � µ̄5q , (10.40)

Pf �
�
K�1

3 � Q̄JΣ�1Q̄
��1

, (10.41)

µf � PfQ̄
JΣ�1 pwY � µ̄6q . (10.42)

Proof: Collected in the appendix. The expressions for W̄, R̄, Q̄, µ̄1, µ̄2, µ̄4, µ̄5 and
µ̄6 are provided in the appendix. �

Therefore, it is easy to set up the Gibbs sampler and sample from the joint
posterior distribution, thereby approximating (10.28) using (10.30).

Remark 10.2 When we do not consider additional node wa, we do not
consider the extra layer of equation in wȲ (i.e. wY becomes wj) and we need
not model f . Therefore, we discard the use of f and expressions related to
it. The conditional distributions follow the same equations as above.

10.6.2 Computation of M-step

Next we move to the M-step where we update the vector of parameters according
to (10.29). We need to maximize (10.30) with respect to the vector of parameters
in η. We will now show that the optimization problem can be split into several
independent optimization problems that depend on different components of the
vector of parameters η. We can split the optimization problem as,

Qpnqpηq � arg max
η

1

M

M̧

i�1

log ppwȲ , s̄
pi,nq, b̄pi,nq, f̄ pi,nq, w̄pi,nq

m ; ηq

� A�B � C �D , (10.43)
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where,

A � arg max
θ,Σ̄

1

M

M̧

i�1

log ppwȲ , w̄
pi,nq
m |s̄pi,nq, b̄pi,nq, f̄ pi,nqq

B � arg max
1

M

M̧

i�1

� ¸
kPDwm

log ppb̄pi,nqk ;λbk, β
b
kq

� log ppb̄pi,nqm ;βbmq �
¸
kPDum

log ppb̄pi,nqmk ;λbmk, β
b
mkq

�

C � arg max
1

M

M̧

i�1

� ¸
kPjYDwj zti,mu

log pps̄pi,nqk ;λsk, β
s
kq

� log pps̄pi,nqm ;βsmq �
¸

kPDuj ztju

log pps̄pi,nqjk ;λsjk, β
s
jkq

�

D � arg max
1

M

M̧

i�1

� ¸
kPaYDwa ztmu

log ppf̄ pi,nqk ;λfk , β
f
k q

� log ppf̄ pi,nqm ;βfmq �
¸
kPDua

log ppf̄ pi,nqak ;λfak, β
f
akq

�
,

and Σ̄ represent the parameters in the covariance matrix σ2
j , σ

2
m, σ

2
a, σ

2
am.

Update of kernel hyperparameters

From (10.44), we can see that the hyperparameters of each kernel can be updated
independently from the rest of the parameters in η. The following proposition
provides a means to update the kernel hyperparameters, except the
hyperparameters of the kernel for which λ’s are set to 1.

Proposition 10.5 Let

ŝ
pnq
k � 1

M

M̧

i�1

s̄
pi,nq
k ,

Ŝ
pnq
k � 1

M

M̧

i�1

ps̄pi,nqk � ŝ
pnq
k qps̄pi,nqk � ŝ

pnq
k qJ,

and analogously define b̂pnqk , f̂
pnq
k , B̂

pnq
k , F̂

pnq
k . Define

Qβ
pnq
k pβkq� log detpKβkq�l log

�
ŝ
Jpnq
k pKβkq�1

ŝ
pnq
k �tr

�pKβkq�1
Ŝ
pnq
k

�

(10.44)

for k � tj, c1, . . . , jkpu where c1, . . . , cp and k1, . . . , kp are the elements of
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the set Dwj ztiu and Duj ztju respectively. Then,

β̂k
pn�1q � arg min

βkPr0,1q

Qβ
pnq
k pβkq; (10.45)

λ̂k
pn�1q � 1

l
pŝJpnqk pK

β̂
pn�1q
k

q�1
ŝ
pnq
k � tr

�pK
β̂
pn�1q
k

q�1
Ŝ
pnq
k

�q. (10.46)

The updates for β and λ for impulse responses bk, k P m Y Dwm, bmk, k P Dum,
and fk, k P a Y Dwa , fak, k P Dua are updated analogously by using b̂pnqk , B̂

pnq
k

and f̂ pnqk , F̂
pnq
k respectively.

Proof: See the appendix. �

To tackle the identifiability issues, we have fixed the hyperparameters λsm, λbm and
λfm (i.e. λ’s corresponding to the modules having missing node as inputs) to be 1.
We now provide means to update the respective β hyperparameters of the kernel
of the corresponding modules using the following proposition.

Proposition 10.6 The updates of kernel’s hyperparameters related to the
impulse response of modules with missing node as inputs are obtained by
solving the scalar optimization problem in the domain r0, 1q,

β̂spn�1q
m �arg min

βsm

log detpKβsmq�ŝJpnqm pKβsmq�1
ŝpnqm �tr

�pKβsmq�1
Ŝpnqm

�
.(10.47)

The updates for βbm and βfm for impulse responses bm and fm are updated
analogously by using b̂pnqm , B̂

pnq
m and f̂ pnqm , F̂

pnq
m respectively.

Proof: See the appendix. �

Remark 10.3 The optimization problem in (10.45) and (10.47) can be
difficult to perform in practice when the determinant of the kernel has a
very low value or when the inversion of the kernel becomes difficult. To
tackle this, we exploit the factorization of the first order stable spline kernel
as in [14] by writing Kβk � LDpβqLT , where L is lower-triangular with
known entries (essentially, an “integrator”) and Dpβq is diagonal with
entries essentially being an exponential functions of β. Using the above
technique also increases the computation speed of the algorithm.

Remark 10.4 When we do not consider an additional node wa, we need to
update only the hyperparameter λ’s and β’s related to impulse responses in
s, b.
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Update of θ and noise covariance

Following (10.44), the updates of θ and the noise covariance parameters in η are
independent of the kernel hyperparameters. Following a reasoning similar to [3],
θ and Σ are updated as per the Proposition 10.7.

Proposition 10.7 Let ε̄
pi,nq
j pθq � wj � Wjigjipθq � uj � W̄pi,nqs̄pi,nq,

Σ̃ �
�
σ2
a σ2

am

σ2
am σ2

m

�
, and

ε̄pi,nqptq �
�
waptq
w̄
pi,nq
m ptq

�
�
�
uaptq
umptq

�
�
�
Q̄pi,nqpt, �q 0

0 R̄pi,nqpt, �q
� �
f̄ pi,nq

b̄pi,nq

�
,

where Q̄pi,nqpt, �q, R̄pi,nqpt, �q corresponds to the tth row of the matrix Q, R
respectively, with wm in the matrices substituted with w̄

pi,nq
m . W̄pi,nq

corresponds to the matrix W, with wm in the matrices substituted with
w̄
pi,nq
m . Define

ε̂pnqptq � 1

M

M̧

i�1

ε̄pi,nqptq,

Êpnqptq � 1

M

M̧

i�1

pε̄pi,nqptq � ε̂pnqptqqpε̄pi,nqptq � ε̂pnqptqqJ.

Then

θ̂pn�1q � arg min
θ

�
gJjiÂ

pnqgji � 2b̂pnqJgji

�
,

σ̂
2pn�1q
j � 1

NM

M̧

i�1

���ε̄pi,nqj pθ̂n�1q
���2

,

ˆ̃Σpn�1q � 1

N
p
Ņ

t�1

rε̂pnqpt, θ̂pn�1qqε̂pnqpt, θ̂pn�1qqJ�Êpnqptqsq .

(10.48)

Proof: See the appendix. �

Remark 10.5 If gji is linearly parameterized in θ (e.g. in case of FIR models),
the above problem related to the update of θ becomes quadratic and a closed-
form solution is achieved. That is, if gji �Mθ where M P RN�nθ , then

θ̂pn�1q � �
MJÂpnqM

��1
MJb̂pnq. (10.49)

Note that, as shown in Chapter 7, we can update the parameter of the target
module (i.e. θ) using similar analytical expression as in (10.49) for any other
rational model structures as well (e.g. BJ models). This can be done by following
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the similar approach of Chapter 7. From (10.48), we can observe that the update
of Σ̄ in each iteration of the MCEM algorithm is a closed form analytical solution
and the update of θ is a nonlinear least-squares problem with decision variables
being the parameters of the target module which are fewer than a direct PEM
that includes the nuisance modules parameters as well in the problem as decision
variables. Also the result of Propositions 10.5 and 10.6 show that the update of
kernel hyperparameter β’s are scalar optimization problems and λ’s have closed
form solutions. Therefore, we have obtained a fast iterative procedure that
follows simple rules to update the parameters, and provides a local solution to
the marginal likelihood problem (10.27) under the presence of missing node
observations. Algorithm 6 summarizes the steps to follow to obtain η̂ and
therefore θ̂.

Algorithm 6 Algorithm for local module identification in dynamic networks
under missing node observations

1. Set n � 0, Initialize η̂p0q.

2. Run Gibbs sampler according to Algorithm 5 and collect M samples after
discarding first B samples for burn-in period using the result of Proposition
10.4.

3. Update kernel hyperparameters using the result of Proposition 10.5 and
10.6.

4. Update θ̂pn�1q and Σ̂pn�1q using result of proposition 10.7.

5. Update η̂pn�1q using the above updated values of the parameters.

6. Set n � n� 1.

7. Repeat from steps (2) to (8) until convergence.

The initialization can be done by randomly choosing η considering the
constraints of the hyperparameters. The convergence criterion for the algorithm

depend on the value of }η̂
pnq�η̂pn�1q}
}η̂pn�1q} . This value should be small for convergence

so that the algorithm can be terminated. A value of 10�2 is considered for the
numerical simulations in Section 10.7. The other convergence criterion is the
maximum number of iterations. It is taken as 50. For the numerical simulations,
the initialization of the latent variables (s, p, f, wm) for the Gibbs sampler are
taken as a zero vector. The number of samples M for the Gibbs sampler is taken
as 100 and the burn-in period B is equal to 2000.

Remark 10.6 The above developed method can be applied when we have
the input of the target module (i.e. wi) as the missing node observation with
slight modifications in the above results. However, in this case, we might
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face identifiability issues of the target module. This is because of the fact
that we can estimate the missing node signal and the target module up to a
scaling factor. This has been a common issue in blind system identification
[1].

10.7 Numerical simulations

Numerical simulations are performed to evaluate the performance of the
developed method. The simulations are performed on the dynamic network
depicted in Figure 10.1. The goal is to identify G0

31, which is the target module.
The modules of the network in Figure 10.1 are given by,

G0
31 �

q�1 � 0.05q�2

1� q�1 � 0.6q�2
� b01q

�1 � b02q
�2

1� a0
1q

�1 � a0
2q

�2

G0
32 �

0.225q�1

1� 0.5q�1
;

G0
34 �

1.184q�1 � 0.647q�2 � 0.151q�3 � 0.082q�4

1� 0.8q�1 � 0.279q�2 � 0.048q�3 � 0.01q�4
;

G0
14 � G0

21 �
0.4q�1 � 0.5q�2

1� 0.3q�1
;H0

1 �
1

1� 0.2q�1
;

G0
12 � G0

24 �
0.4q�1 � 0.5q�2

1� 0.3q�1
;H0

2 �
1

1� 0.3q�1
;

H0
4 � 1;H0

3 �
1� 0.505q�1 � 0.155q�2 � 0.01q�3

1� 0.729q�1 � 0.236q�2 � 0.019q�3
.

For estimationG0
31 using the direct method, we need to measurew1,w2,w3 andw4

and solve a 3-input/1-output MISO identification problem with w1ptq, w2ptq and
w4ptq as inputs. w2 needs to be included as predictor input in order to satisfy the
parallel path/ loop condition 2.1 and w4 needs to be included as predictor input
to satisfy the confounding variable condition. Now, we consider the case where
we cannot measure w2, which leads to lack of consistency in the direct method
since we cannot satisfy the parallel path/loop condition. In this case, we resort to
the approach developed in this chapter and resort to the following options:

1. consider w2 as missing node, i.e. wm � w2, and consider the predictor
model with wY � tw3, w2u. We add to wD the measured node signals that
have unmeasured paths to wY (i.e. w1, w4) and the missing node signal w2.
Therefore wD � tw1, w4, w2u, wW � tw1, w2, w3, w4u, wO � tw3u and
wQ � tw2u. By this signal selection , we can verify that the conditions 10.1,
10.2 and 10.3 are satisfied. This identification strategy is mentioned below
as MC-EBDM;

2. consider w2 as missing node and add the descendant w1 of w2 as additional
output, i.e. wm � w2, wa � w1 and consider the model with
wY � tw3, w2, w1u. We add to wD the measured node signals that have
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unmeasured paths to wY (i.e. w1, w4) and the missing node signal w2.
Therefore wD � tw1, w4, w2u, wW � tw1, w2, w3, w4u, wO � tw3u and
wQ � tw1, w2u. By this signal selection , we can verify that the conditions
10.1, 10.2 and 10.3 are satisfied. This identification strategy is mentioned
below as MC-EBDMA.

We compare the following identification strategies:

MC-EBDM This is the method developed in this chapter, namely Empirical Bayes
Direct method with Monte Carlo sampling to deal with missing nodes; in
particular, this estimator does not use additional node(s) and considers the
predictor model tw1, w2, w4u Ñ tw3, w2u;

MC-EBDMA This is a variant of MC-EBDM that uses w1 as additional node; and
considers the predictor model tw1, w2, w4u Ñ tw1, w2, w3u

EBDM+M This is the EBDM method developed in Chapter 7; this estimator does
not encompass missing nodes and considers the predictor model tw1, w4u Ñ
tw3u;in other words it discards the non-measured node signal w2;

EBDM This is the same estimator as the previous one, with the assumption that
the missing node w2 is measurable (oracle assumption). We use this
estimator as an upper bound of the performance of our developed method
to reconstruct the missing node observation and identify the target module.
Therefore, it considers a predictor model tw1, w2, w4u Ñ tw3u where w2 is
known;

DM+TO This is the standard MISO direct method first proposed in [124], with
the assumption that the missing node w2 is measurable (oracle assumption).
Therefore, it considers a predictor model tw1, w2, w4u Ñ tw3u where w2 is
known and assumes a fully parametric model structure. Note that in order
to avoid biased target module estimates in the direct method framework, we
need w2 to be measured and included as one of the predictor inputs [29];

DM+TO+M This is the same estimator as the previous one; it assumes a fully
parametric model structure and has no specific way to deal with missing
nodes and considers a predictor model tw1, w4u Ñ tw3u.

We run 50 independent Monte Carlo experiments where the data are generated
using known reference signals r2ptq and r4ptq that are realizations of white noise
with unit variance. The number of data samples is N = 150. The noise sources
e1ptq, e2ptq, e3ptq and e4ptq have variance 0.05, 0.08, 0.5, 0.1, respectively. We
assume that we know the model order of G0

31pqq. For the method DM+TO+M, we
solve a 2-input/1-output MISO identification problem with w1ptq and w4ptq as
inputs, which should lead to a biased target module estimate [29]. As for
DM+TO, with the assumption that the missing node w2 is measurable (oracle
assumption), we solve a 3-input/1-output MISO identification problem with
w1ptq, w2ptq and w4ptq as inputs in order to compare the results of our developed
method. For both these cases we consider that the model orders of all the
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modules in the MISO structure are known. Analogously, EBDM considers a
3-input/1-output MISO identification problem, while EBDM+M solves a
2-input/1-output MISO identification problem. For MC-EBDM, MC-EBDMA,
EBDM, EBDM+M we choose l � 15.

To evaluate the performance of the methods, we use the standard goodness-of-fit
metric,

Fitimp � 1�
��g0
ji � ĝji

��
2��g0

ji � ḡji
��
2

, ; Fitθ � 1�

���θ0 � θ̂
���
2��θ0 � θ̄
��
2

,

where Fitimp and Fitθ are the fit of the estimated impulse response and estimated
parameters of the target module respectively. g0

ji is the true value of the impulse
response of G0

ji, ĝji is the impulse response of the estimated target module, ḡji
is the sample mean of g0

ji, θ
0 is the true parameter of the target module, θ̂ is the

estimated value of the parameter and θ̄ is the sample mean of θ0. The box plots of
the fit of the impulse response and box plots of the fit of the parameters of G31pqq
are shown in Figure 10.3 and 10.4 respectively for the above mentioned methods.
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Figure 10.3: Box plot of the fit of the impulse response of Ĝ31 obtained using
different methods. EBDM and DM+TO assumes that the missing node w2 is
measurable (oracle assumption) and use it for the estimation.

It can be noted that both MC-EBDMA, despite considering w2 to be
non-measured, achieve significantly better fit than the other methods that do not
consider w2 to be known (i.e. DM+TO+M and EBDM+M). Comparing with
methods that consider w2 to be known (i.e. DM+TO and EBDM), the novel
estimator MC-EBDMA performs better than the direct method; furthermore,
MC-EBDMA achieves a fit comparable to the fit obtained by the oracle EBDM.
Also, the performance of MC-EBDM is poor compared to other methods, and
thus shows the importance of including additional node(s) (i.e. MC-EBDMA). In
Figure 10.5, we show the re-constructed signal w2 for one MC simulation using
MC-EBDM and MC-EBDMA. It can be seen that considering additional nodes
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Figure 10.4: Box plot of the fit of the parameters of Ĝ31 obtained using different
methods.

aid better reconstruction of the missing node observation and provides better
estimates. Figure 10.6 shows the box plot of each parameter estimates of G31. It is
evident that the developed method MC-EBDMA provides smaller bias and
greatly reduced variance under the case of missing node observations compared
to the other methods. The reduction in variance is attributed to the regularization
approach used in this method. Figure 10.6 again shows the importance of adding
additional node(s) (i.e. MC-EBDMA) since the MC-EBDM has a larger variance
compared to the other methods. Therefore, compared to the available methods
for network identification, the developed framework stands out as an effective
method that can handle the situation of missing node observations by
reconstructing the node signal and offer reduced variance estimates. Considering
the situation of large-sized networks, the developed method also circumvents the
model order selection step that is required for the standard direct methods,
which leads to computational burden and inaccurate results.

10.8 Conclusions

Sensor selection and placement has been a important practical problem in
dynamic networks and it is not always possible to have measurements of certain
node signals. When certain node measurements are not available, the
identification performed using the available methods leads to less accurate and
biased target module estimates. In this chapter, we have introduced an effective
method to identify modules embedded in a dynamic networks under the
situation of missing node observation by re-constructing these node observations
and using regularized kernel-based approach. The introduced method also
circumvents the model order selection step for all the modules other than the
desired target module and offer reduction in the number of parameters to be
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Figure 10.5: Re-constructed missing observation w2 (normalized) signal for one
MC simulation using MC-EBDM (top) and MC-EBDMA (bottom), compared with
the measured value (blue) of w2 over N � 150 data points.
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Figure 10.6: Box plot of the estimate for each parameter obtained from 50 MC
simulations using different identification methods.
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estimated by incorporating regularized non-parametric methods. The former
offers lower computational burden and the latter offer reduced mean squared
error of the estimated target module. Numerical simulations performed with a
dynamic network example shows promising results, and illustrate the potentials
of the developed method to reconstruct the missing node observations and
provide reduced variance estimates due to the integration of a regularization
approach.

In this chapter, we provide a framework to deal with the problem of missing
node observations using a data augmentation strategy and regularized
kernel-based methods. For this, we use the particle approximation MCEM
approach to solve the E-step of the EM algorithm by drawing samples from the
posterior using Gibbs sampler. There are other approaches like Variational Bayes
EM (VBEM) [8] that can solve the E-step of the EM algorithm and may offer
lower computational complexity compared to MCEM. The introduced
framework in this chapter is flexible to tools that can solve the E-step.



Appendices

10.A Proof of Proposition 10.1

Using the result of Proposition 4.2, the systems equations for the output variables
in wY for the network represented by (2.2) can always be written as,

wY � ḠwD � H̄ξY � R̄u, (10.50)

where ξY a white noise process with dimensions conforming to wY , with
covpξYq � Λ̄ and with H̄ being monic, stable and stably invertible. Ḡ, H̄, R̄ are
already defined in the proof of Proposition 4.2. Also, for this proof we use the
notations and terms that are already defined in 4.2.

Now we present the following preparatory lemmas.

Lemma 10.2 If Condition 10.1 is satisfied, then H̃jk � H̃kj � 0 for all k P
Y Y Uztju and H̀jk � 0, k P U .

Proof: Using the result in Corollary 4.1, considering C � Y Y U , C1 � tju and
C2 � Y Y Uztju, we have H̃jk � H̃kj � 0 for all k P Y Y Uztju if condition 10.1 is
satisfied. H̀jU is the row vector corresponding to the row of node signal j. From
the definition of H̀jU , we can write H̀jU � H̃jUH̃

�1
UU . Since H̃jU � 0 if condition 10.1

is satisfied, we have H̀jU � 0. �

Lemma 10.3 Consider that condition 10.1 and 10.2 are satisfied, then Ğ1
jO � 0

when j P Q.

Proof: We have Ğ1
jO � ĞjO�H̀jUĞUO. From result of Lemma 10.2, if condition 10.1

is satisfied, we have H̀jU � 0. When condition 10.2 is satisfied and since j P Q, we
have ĞjO � 0. Thus, we get the result of the Lemma. �

Having presented the preparatory lemmas, we now provide the proof of
proposition 10.1 which is based on conditions 10.1 and Condition 10.2 being

255
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satisfied.
Let ` P O Y Qztju. If j P Q, from (4.32) we have
Ȟj` � H̃3

j` � pI � Ğ2
jjq�1H̃2

j` � pI � Ğ2
jjq�1pH̃ 1

j` � Ğ1
jOH̃

2
O`q and if j P O we have

Ȟj` � H̃2
j` � pI � Ğ1

jjq�1H̃ 1
j`. Here, Ğ1

jO � ĞjO � H̀jUĞUO and
H̃ 1
j` � H̃j` � H̀jUH̃U`. Since, H̀jU � 0 and condition 10.2 is satisfied, we have

Ğ1
jO � 0, H̃ 1

j` � H̃j` and Ğ2
jj � Ğ1

jj � Ğjj . Therefore, Ȟj` � pI � Ğjjq�1H̃j`. Since
we know that H̃j` � 0 for all ` P O Y Qztju, we conclude that Ȟj` � 0 for all
` P O Y Qztju. This will lead to H̄j` � 0 for all ` P Q Y Oztju when spectral
factorization is performed on H̃r in the last steps of Proposition 4.2.

10.B Proof of Proposition 10.2

First we present the following preparatory lemma.

Lemma 10.4 Consider the network equation in (10.50). If Condition 10.1 and
Condition 10.2 are satisfied, then:

Ḡj`�pI�Ğjjq�1Ğj` @ ` P QY U , (10.51)

R̄jj � pI�Ğjjq�1, (10.52)

R̄j` � pI�Ğjjq�1R̆j` @ ` P Z, (10.53)

R̄j` � 0 @ ` P Y Y Uztju. (10.54)

Proof: Using the result in Lemma 10.2, if Condition 10.1 is satisfied, then H̀jU � 0.
We have the following cases that can occur:

1. j � O and ` P U . From (4.23) we have Ḡj` � rpI � Ğ1
OOq�1spj,:qĞ1

O` where
Ğ1

OO � ĞOO � H̀OUĞUO is given by (4.17) and Ğ1
O` � ĞO` � H̀OUĞU` � H̀O` is

given by (4.18). Since H̀jU � H̀j` � 0 and condition 10.2 is satisfied, we have
Ḡj` � rpI � Ğ1

OOq�1spj,:qĞ1
O` � pI � Ğ1

jjq�1Ğ1
j` where Ğ1

jj � Ğjj � H̀jUĞUj

is given by (4.17) and Ğ1
j` � Ğj` � H̀jUĞU` � H̀j` is given by (4.18). Since

H̀jU � H̀j` � 0, we have Ğ1
jj � Ğjj and Ğ1

j` � Ğj`, this directly leads to
(10.51).

2. j � O and ` P Q. From (4.23) we have Ḡj` � rpI � Ğ1
OOq�1spj,:qĞ1

O`. Since
H̀jU � H̀j` � 0 and condition 10.2 is satisfied, we have
Ḡj` � rpI � Ğ1

OOq�1spj,:qĞ1
O` � pI � Ğ1

jjq�1Ğ1
j` where Ğ1

jj and Ğ1
j` are given

by (4.17). Since H̀jU � 0, we have Ğ1
jj � Ğjj and Ğ1

j` � Ğj`, leading to
(10.51).

3. j P Q and ` P U . From (4.31) we have Ḡj` � pI � Ğ2
jjq�1Ğ2

j` where Ğ2
jj and

Ğ2
j` are given by (4.25). If Condition 10.1 and 10.2 are satisfied, as a result
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of Lemma 10.3, we have Ğ1
jOḠO` � Ğ1

jOḠOj � 0. Therefore (4.25) leads to
Ğ2
jj � Ğ1

jj which is specified by (4.17), and Ğ2
j` � Ğ1

j` which is given by
(4.18). Since H̀jU � H̀j` � 0, we have Ğ1

jj � Ğjj and Ğ1
j` � Ğj`, this leads to

(10.51).

4. j P Q and ` P Q. Since j � ` it follows from (4.30) that Ḡj` � pI � Ğ2
jjq�1Ğ2

j`

where Ğ2
jj and Ğ2

j` are given by (4.25). (4.25) leads to Ğ2
j` � Ğ1

j` and G2
jj �

Ğ1
jj when Condition 10.2 and Condition 10.1 are satisfied. Therefore for this

case, Ğ2
jj � Ğ1

jj and Ğ2
j` � Ğ1

j`, which are given by (4.17). Since H̀jU � 0, we
have Ğ1

jj � Ğjj and Ğ1
j` � Ğj`, and this leads to (10.51).

From (4.29) it follows that

ū � R̄u �
�
�R̄QQ R̄QO R̄QU R̄QZ

0 R̄OO R̄OU R̄OZ

0 0 I R̆UZ

�
�
�
���
uQ
uO
uU
uZ

�
��� . (10.55)

Directly from (10.55), we can infer that R̄OQ � 0 and R̄jQ � 0 if j P O. For j P O,
if Condition 10.2 and Condition 10.1 are satisfied, from (4.27) we have R̄j` � pI �
Ğ1
jjq�1R̆1

j` where ` P U Y Z , R̄jj � pI � Ğ1
jjq�1 and R̄j` � 0 where ` P Oztju.

From (4.20) and (4.21), we have R̆1
jU � �H̀jU and R̆1

jZ � R̆jZ � H̀jUR̆UZ respectively.
Owing to the fact that H̀jU � 0 and Ğ1

jj � Ğjj , we have R̄jU � 0, R̄jj � pI�Ğjjq�1

and R̄jZ � pI � Ğjjq�1R̆jZ .

For j P Q, from (4.34) we have R̄j` � pI�Ğ2
jjq�1R̆2

j` where ` P OYUYZ , and from
(4.33) we have R̄jj � pI � Ğ2

jjq�1 and R̄j` � 0 where ` P Qztju. If Condition 10.1
and 10.2 are satisfied, as a result of Lemma 10.3, we have Ğ1

jOR̄O` � 0. Therefore,
from (4.28) we have R̆2

j` � 0 if ` P O, R̆2
j` � R̆1

j` if ` P UYZ . From (4.20) and (4.21),
we have R̆1

jU � �H̀jU and R̆1
jZ � R̆jZ � H̀jUR̆UZ respectively. Owing to the fact that

H̀jU � 0 and Ğ2
jj � Ğjj , we have R̄j` � 0 if ` P O Y U and R̄j` � pI � Ğjjq�1R̆j` if

` P Z . This leads to the result in (10.52) - (10.54). �

Lemma 10.5 Consider the situation of Lemma 10.4. If Condition 10.3 is
satisfied, then Ḡji � Gji, Ḡjk � Ğjk@k P Dztiu, R̄jj � 1 and
R̄jk � R̆jk@k P Z .

Proof: With Lemma 10.4 it follows that Ḡji is given by (10.51). For analysing
the expression, we first are going to specify Ğji and Ğjj . From (4.8), we have
Ğji � Gji�GjZpI�GZZq�1GZi and Ğjj � Gjj�GjZpI�GZZq�1GZj . The first terms
on the right hand sides reflect the direct connections from wi to wj (similarly wj
to wj) and the second terms reflect the connections that pass only through nodes
in Z . By definition, Gjj � 0 since the G matrix in the network in (2.2) is hollow.
Under Condition 10.3 being satisfied, the second terms on the right hand sides are
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zero, so that Ğji � Gji and Ğjj � 0. Therefore from (10.51) - (10.54), we have
Ḡji � Gji, Ḡjk � Ğjk, k P QY Uztiu, R̄jj � 1 and R̄jZ � R̆jZ . �

From the result of Lemma 10.5, we can obtain the result of Proposition 10.2.

10.C Proof of Proposition 10.3

We now provide the proof of proposition 10.3 which is based on conditions 10.1,
Condition 10.2 and Condition 10.3 being satisfied.

Equation for wj :
We know that Ğjk is non-zero if there are unmeasured paths to wj from wk. Since
Dwj � Dztju represents the node signals that has unmeasured paths to wj , any
transfer Ğjk is zero if k R Dwj . Similarly, R̆jkuk � 0 if k R Duj . Now, considering
the network equation in (10.2) which is the result of Proposition 10.1 and also
using the result of Lemma 10.5, the equation of the output node of target module
wj can be given by,

wjptq �
¸

kPDwj ztiu

Ğjkwkptq�Gjiwiptq�H̄jjξjptq�ujptq�
¸

kPDuj ztju

R̆jkuk.

Pre-multiplying with H̄�1
jj on both sides and keeping wjptq on the left hand side

we get,

wjptq � p1� H̄�1
jj qpwjptq � rjptqq � H̄�1

jj Gjiwiptq
�°

kPDwj ztiu
H̄�1
jj Ğjkwkptq � rjptq �

°
kPDrj ztju

H̄�1
jj R̆jkrk � ξjptq.

Considering Sjpqq � 1 � H̄�1
jj pqq, Skpqq � H̄�1

jj pqqGjkpqq for k P Dwj ztiu and
Sjkpqq � H̄�1

jj pqqR̆jkpqq for k P Duj ztju , we get the result of (10.3) in the
proposition.

Equation for wk, k P Yztju:
Considering the network equation in (10.50) which is the result of Proposition 4.2,
the equation of wY in predictor form is given by,

wY � pI � H̄�1qwY � H̄�1
¸
`PD

ḠY`w` � H̄�1
¸

`PYYUYZ
R̄Y`u` � ξY . (10.56)

Therefore we can write the equation for node wk, k P Yztju as,

wkptq � p1� H̄i
kkqwkptq �

¸
`PYztku

H̄i
k`w`ptq �

¸
hPY

�
��¸
`PD
h�`

H̄i
khḠh`pqqw`ptq�

¸
`POYUYZYthu

H̄i
khR̄h`r`ptq

�
��� ξkptq. (10.57)
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Here, H̄i
h` represent the ph, `qth element of the matrix H̄�1. The only product

that is not strictly proper in (10.57) is H̄i
kkR̄kk. However, we can re-write it as

H̄i
kkR̄kk � H̄i

kkp1 � R̄spkkq where R̄spkk is a strictly proper transfer function. This
leads to re-writing (10.57) as (10.4), where all the B� predictor filters are strictly
proper and hence the result of the proposition. �

10.D Proof of Proposition 10.4

Let us first consider the conditional distribution ppwm|wȲ , s, p, fq. We first write,

wm � Rzmb�Wmbm � um � ξm , (10.58)
wȲ � WDzm

gzm �Wmgm �Wjigji � uȲ � ξȲ , (10.59)

where WDzm
is constructed after excluding Wm in the matrix WD and gzm is the

vector constructed after excluding sm and fm in g. Here, gm � �
sJm fJm

�J and
Wm � blkdiagpWm,Wmq. Grouping terms in (10.58) and (10.59) we get,

wm � µ3 � B̄mwm � ξm , (10.60)
wȲ � µ1 � µ2wm � ξȲ , (10.61)

where µ1 � WDzm
gzm � Wjigji � uȲ , µ2 �

�
S̄m
F̄m

�
, µ3 � Rzmp � um and ΣȲ �

blkdiagpσ2
j IN , σ

2
aIN q. By the law of conditional expectation and ignoring terms

independent of wm, we write

log ppwm|wȲ , b, s,fq � log ppwȲ , wm|s, b, fq
� �1

2
||
�
wȲ

wm

�
�
�
µ1

µ3

�
�
�
µ2

B̄m

�
wm||2Σ�1

� �1

2
||wm||2P�1

w
� wJ

mP
�1
w µw , (10.62)

where µ̄1 �
�
µ1

µ3

�
, µ̄2 �

�
µ2

B̄m

�
, Σ�1 �

�
Σ11 Σ12

Σ21 Σ22

��1

�
�
Λ11 Λ12

Λ21 Λ22

�
,

Pw � �
µ̄J2 Σ�1µ̄2 � Λ22 � 2

�
Λ21 Λ22

�
µ̄2

��1,

µw � Pwpµ̄J2
�
Λ11 Λ12

�J
wȲ �

�
Λ21 Λ22

�
µ̄1 � Λ21wȲ � µ̄J2 Σ�1µ̄1q. The above

log density is quadratic and represents a Gaussian distribution with covariance
Pw and mean µw.

Let us now consider the conditional distribution pps|wȲ , wm, b, fq. By the law of
conditional expectation and ignoring terms independent of s, we write

log pps|wȲ , wm, b, fq � log ppwȲ , wm|s, b, fq � ppsq
� � 1

2σ2
j

||wY � µ̄4 � W̄s||2Σ�1�1

2
||s||2

K�1
1

,

� �1

2
||s||2

P�1
s
� sJP�1

s µs , (10.63)
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where µ̄4 �
�
Wji

0N

�
gji � Q̄f � R̄b�

�
uȲ
um

�
, W̄ �

�
�W
0N
0N

�
�, Q̄ �

�
�0NQ
0N

�
�, R̄ �

�
�0N0N
R

�
�,

Ps �
�
K�1

1 � W̄JΣ�1W̄
��1

, µs � PsW̄
JΣ�1 pwY � µ̄4q and 0N is a zero matrix

with N rows. The above log density is quadratic and represents a Gaussian
distribution with covariance Ps and mean µs.

Let us now consider the conditional distribution ppf |wȲ , wm, b, sq. By the law of
conditional expectation and ignoring terms independent of s, we write

log ppf |wȲ , wm, b, sq � log ppwȲ , wm|s, b, fq � ppfq
� � 1

2σ2
j

||wY � µ̄6 � Q̄f ||2Σ�1�1

2
||f ||2

K�1
3

,

� �1

2
||f ||2

P�1
f

� fJP�1
f µf , (10.64)

where µ̄6 �
�
Wji

0N

�
gji � W̄s � R̄b �

�
uȲ
um

�
, Pf � pK�1

3 � Q̄JΣ�1Q̄q�1, and µf �
PfQ̄

JΣ�1 pwY � µ̄6q. The above log density is quadratic and represents a Gaussian
distribution with covariance Pf and mean µf .

Let us now consider the conditional distribution ppb|wȲ , wm, s, fq. By the law of
conditional expectation and ignoring terms independent of p, we write

log ppb|wȲ , wm, s, fq � log ppwȲ , wm|s, b, fq � ppbq
� �1

2
||wY � µ̄5 � R̄b||2

Σ�1
Y
�1

2
||b||2

K�1
2

� �1

2
||p||2

P�1
p
� pJP�1

p µp , (10.65)

where µ̄5 �
�
WD

0N

� �
s
f

�
�
�
Wji

0N

�
gji �

�
uȲ
um

�
, Pb � pK�1

2 � R̄JΣ�1R̄q�1, and µb �
PbR̄

JΣ�1 pwY � µ̄5q. The above log density is quadratic and represents a Gaussian
distribution with covariance Pb and mean µb.

10.E Proof of Proposition 10.5

From (10.44) we have,

C � arg max

�¸
k

Qs
pnq
k pλsk, βskq �

1

M

M̧

i�1

log pps̄pi,nqm ;βsmq
�

(10.66)

with k � tj, c1, . . . , cp, jk1, . . . , jkpu where c1, . . . , cp and k1, . . . , kp are the
elements of the set Dwj zti,mu and Drj ztju respectively, and

Qsk
pnqpλsk, βskq �

1

M

M̧

i�1

log pps̄pi,nqk ;λsk, β
s
kq
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� 1

M

M̧

i�1

� logrdetpλskKβsk
qs�trppλskKβsk

q�1s̄
pi,nq
k s̄

Jpi,nq
k q

� � logrdetpλskKβsk
qs�trppλskKβsk

q�1Ŝ
pnq
k q � ŝ

Jpnq
k pλskKβsk

q�1
ŝ
pnq
k . (10.67)

Next, the proof follows the procedure used in [14]. We partially differentiate
(10.67) with respect to λsk and equate to zero to get the λs�k expression.
Substituting this λs�k in (10.67) we get the expression for (10.44) using which we
obtain β̂spn�1q

k . Equation (10.46) is the expression of λs�k after substituting β̂spn�1q
k .

10.F Proof of Proposition 10.6

Considering arg max 1
M

°M
i�1 log pps̄pi,nqm ;βsmq in (10.66) and expanding it as in

(10.67) where λsm � 1, we get the result of the proposition.

10.G Proof of Proposition 10.7

From (10.44) we have,

A � arg min
θ,σ2

j

1

M

M̧

i�1

�
N log σ2

j �
1

σ2
j

ε̄
pi,nqJ
j ε̄
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j q

�
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t�1
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� A1 �A2.

We now write,

A2 � arg min
Σ̃

� Ņ
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log detpΣ̃q �
Ņ

t�1

tr
�

Σ̃�1
�
ε̂pnqptqε̂pnqptqJ � Êpnqptq

�	 �
.

For the optimization problem A2, we can follow the similar reasoning as the
maximum likelihood proof in [3], which yields the result of the proposition for
estimating parameters in Σ̃. This is done by differentiating the above cost
function with respect to the elements of Σ̄�1 and using the relations

log det Σ̃ � � log det Σ̃�1

detP �
¸
i

pijp
ij

pP�1qij � pij{detP (10.68)

where pij denotes the cofactor of the ijth element pij of the matrix P .
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Now considering A1, we can write

A1 � arg min
θ,σ2

j

�
N log σ2

j �
1

σ2
j

1

M

M̧

i�1

ε̄
pi,nqJ
j ε̄

pi,nq
j

�
(10.69)

We notice that the optimum with respect to θ does not depend on the optimal
value of σ2

j . Then, we can first update θ and then use its optimal value to update

σ2
j . In order to find θ̂pnq, σ2

j is fixed to σ̂2pnq
j and substituted in Eq. (10.69). After

substitution, the terms that are independent of θ can be removed from the
objective function since it becomes a constant. Then we get,

θ̂pn�1q � arg min
θ

M̧

i�1

ε̄
pi,nqJ
j ε̄

pi,nq
j (10.70)

Let us define s̆pi,nq P RN be a vector such that, if N ¤ l, s̆pi,nq is the vector of first
N elements of s̄pi,nq and if N ¡ l, s̆pnq is a vector with the first l elements equal
to s̄pi,nq and the remaining ones equal to 0. Let S̆pi,nq, W̆i P RN�N be the Toeplitz
matrix of ŝpnq and w̄i respectively. Then

X̄ pi,nq � �
Wj �Rj Wc1 . . . Rkp

�
, Ȳpi,nq � S̆pi,nqW̆i.

We now re-write, W̄pi,nqs̄pi,nq � X̄ pi,nqs̄pi,nq �GθW̄is̄
pi,nq
j � X̄ pi,nqs̄pi,nq � Ȳpi,nqgji.

Therefore,
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and
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wJ
j Wji � wJ

j Ȳpi,nq � rJj Wji � s̄pi,nqJX̄ pi,nqJWji

� rJj Ȳpi,nq � s̄pi,nqJX̄ pi,nqJȲpi,nq
�J
,

we get the statement of the proposition for updating θ̂pn�1q.

In order to find σ̂
2pnq
j , θ is fixed to θ̂pn�1q and substituted in Eq. (10.69). After
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substitution, A1pσ2
j , θ̂

pn�1qq is differentiated w.r.t. σ2
j and equated to zero which

leads to the result of the proposition.





11 CHAPTER

Conclusions and Future Outlook

11.1 Conclusions

The advancements in science and technology have made modern-day systems
increasingly complex, large-scale, and interconnected. These systems comprise
several sub-systems interconnected with each other, which can be modeled as a
dynamic network. High-quality models of the dynamic behavior of these
systems are required in many applications, like vehicle platooning, power
networks. The advancements in sensor technology have increased the possibility
of measuring a variety of relevant process variables and we would like to get
high-quality models of the interconnected systems in the dynamic network using
the measured variables, which resulted in the following research question:

How to effectively identify a module embedded in a dynamic network and obtain accurate
estimates?

To answer the research question, several sub-questions were formulated by
exploring the open problems in identifying a module in a dynamic network. In
each chapter of this thesis, we addressed a specific sub-question that led to the
contribution of this thesis.

11.1.1 The Local direct method

When using the direct method for network identification, confounding variables
need to be properly handled to avoid bias in the estimate of our module
dynamics. Correlated noise is an example of a direct confounding variable and
having limited measured nodes can create an indirect confounding variable. In
Chapter 4, we addressed the issue of confounding variables by developing the
Local direct method, where we introduced the general theory for the
construction of the predictor model to handle the confounding variables in the
direct method of identification. Moving from a MISO predictor model to a
MIMO predictor model and appropriate signal selection in the predictor model
have been the key elements in the Local direct method to handle the confounding
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variables. The LDM is an asymptotically efficient identification method that can
handle correlated noise networks. The estimates are consistent and
asymptotically efficient. The variance of the estimates obtained with the Local
direct method reaches the Cramér-Rao lower bound related to the particular
chosen experimental setup. Using the provided general theory, numerous
algorithms for predictor model selection can be formulated. Three algorithms
were developed for use: A full input case algorithm where all node
measurements are considered available; a minimum measurement case
algorithm where limited node measurements are expected to be used; and a user
selection case algorithm that provides a predictor model for the Local direct
method based on the experimenter’s input on the measured nodes.

Apart from the signal selection framework in Chapter 3, in order to guarantee
consistency, data-informativity and the delay in path/loop condition need to be
satisfied. Path-based conditions for data-informativity which can check
data-informativity (in a generic sense) have been formulated in Chapter 5.
However, based on the signal selection algorithm used, multiple experimental
setups can be formulated using the local direct method for estimating the single
target module. Therefore, the data-informativity conditions and the statistical
properties of the target module estimates are different for different setups. The
former necessitates the integration of path-based data-informativity conditions in
the signal selection algorithms, and this integration will lead to selecting an
experimental setup that provides least cost for sensors and actuators and
guarantee consistent estimate of the target module. The latter necessitates the
quantification of the variance of the target module since the minimum variance
expressions, in the form of the related CRLB, will typically be different for the
different experimental setups. Such quantification will lead to selecting an
experimental setup that provides the consistent target module estimate with
minimum variance. In case of no prior information on the delays in the network,
it can be detected using works like [66] and be used to check the satisfaction of
delay in path/loop condition. However, steps to avoid the delay conditions can
also be made through modifications of predictors as in [142].

11.1.2 The Generalized method

The development of the Local direct method triggered the realization that all
direct methods require the parallel path/loop condition to be satisfied, which
requires certain nodes to be measured. This requirement is restrictive in many
cases. The Generalized method in Chapter 4 has been the follow-up to answer
the question for a consistent identification method with freedom in sensor
selection and actuation. This is achieved by combining the features of both the
direct method (using node signals as predictor inputs) and the indirect method
(allowing post-processing of the estimates). The former allows us to utilize the
excitation provided by the process noise and the latter allows us to relax the
parallel path/loop condition. To get back the target module of interest using
post-processing, there are conditions on having excitation signals exciting the
parallel path/loop with no measured nodes and measurement of nodes that are
descendant from that excited node. However, the measured nodes can be
anywhere in the network.
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11.1.3 Path based data-informativity conditions

The prediction error methods for local module identification in dynamic networks
require data-informativity conditions (i.e. conditions for sufficient excitation of
relevant dynamics) to be satisfied for consistent estimation. The condition is to
have a positive definite spectrum of a vector of signals for a sufficient number
of frequencies, where the vector of signals includes internal node signals which
cannot be directly manipulated by the experimenter. In chapter 5, these conditions
have been translated to path-based conditions (in a generic sense) that depend
on paths from external signals to the internal node signals, which can be easily
verified by the experimenter and implemented using graphical algorithms if the
topology is known. This result paves the way to a synthesis problem of allocating
excitation to guarantee data-informativity using graphical conditions.

11.1.4 Effective Algorithms

Most of the network identification methods, including the Local direct method
and the Generalized method, typically require solving poorly scalable
non-convex optimization problems and a model order selection step. The latter
requires a large number of combinations to be solved in a large-dynamic
network, which is computationally challenging and can affect the accuracy of
your estimated dynamics. Dynamic networks are complex and large-scale and
therefore they require effective algorithms in order to put the identification
techniques into practice.

An effective algorithm for full network identification based on the application of
least squares estimations in multiple steps has been introduced in Chapter 6. The
algorithm does not require the noise topology (i.e., the correlation structure of
the process noises) to be known and has an integrated topology estimation
procedure. However, the algorithm can also encode known topology as well. The
algorithm provides consistent estimates while avoiding local minima. Relying
only on least-squares solutions and with parallel computation capabilities, the
algorithm is expected to scale well to large-sized networks. The algorithm is also
suitable for identifying a part of the network or a single module in the network.

Effective algorithms that avoid model order selection for nuisance modules and
provide reduced MSE estimates in the local module identification problem are
introduced from Chapter 7 to Chapter 10. These algorithms are suitable when the
data records are limited. The nuisance modules are modeled as zero-mean
Gaussian processes with the covariance matrix (kernel) given by the first-order
stable spline kernel, which is described by only two hyperparameters and also
encodes stability and smoothness of the processes. Keeping a parametric model
for the module that needs to be identified, an Empirical Bayes approach is used
to find the parameters of the target module and the kernel hyperparameters. For
solving the related optimization problem, an Expectation-Maximization scheme
that has substantially reduced computational complexity is used. Chapter 7 and
Chapter 8 provide the algorithm for local module identification where it is
required to solve a MISO and MIMO estimation problem respectively. Chapter 9
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considers the situation of the unknown topology of the network and provides a
complete algorithm to estimate a single module that also incorporates topology
estimation using non-causal Wiener filter approaches. Chapter 10 considers the
situation where some of the nodes that are required for estimation may not be
measurable, due to sensor selection and placement issues. These nodes may be
the node measurements required to satisfy parallel path/loop conditions or the
nodes required to handle confounding variables. The algorithm provided in
Chapter 10 reconstructs these missing node observations by combining the above
kernel-based approach with approximate inference methods.

Chapter 4 and Chapter 10 provide methods for single module identification
under the presence of non-measured nodes. However, full-network identification
and topology identification under non-measured nodes is an interesting problem
that has not received much attention. The method in Chapter 6 assumes that the
measurements of all nodes are available. Also, topology identification methods
based on direct approach frameworks like [116] require all nodes in the network
to be measured. There are topology identification approaches that exploits
indirect approaches like [13, 152] where the topology of the network is obtained
by estimating transfers between external excitations and the different nodes, and
then by back-computing the transfer between the nodes. Exploiting algorithms
using the indirect method, generalized method, and the method in Chapter 10
using the node reconstruction method could be a possible direction to solve the
topology detection and full network identification problem under non-measured
node signals.

11.1.5 Reflecting back on the research question

This thesis first provides a theory for signal selection and building a predictor
model to identify a module in a dynamic network using PEM. This also includes
conditions to check data informativity. The signal selection and
data-informativity conditions are graphical conditions of the network. This
paves the way to automate the signal selection and excitation allocation
procedure using graph-based algorithms that are scalable to large-scale
networks. Then, building upon the theory, we developed algorithms for module
estimation that are scalable to large networks. The contributions of each chapter
in this thesis are the pieces of the puzzle to answer the research question of how
to effectively estimate a module in a dynamic network and obtain accurate
estimates. Assembling the puzzle pieces (i.e. the contributions of each chapter)
leads to the decision flow-chart in Figure 11.1, which guides the user to learn a
module in a dynamic network effectively.
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Figure 11.1: A guide for learning modules in a dynamic network. The number in
red specifies the chapter number of this thesis that contributes to the decision chart.
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11.2 Recommendations for future research

11.2.1 Low hanging fruits

• In this thesis we focussed on identifying a module in a dynamic network
and built a solid theory for predictor model selection and effective
algorithms that are scalable. Based on the results in this thesis, extensions
to the situation where a set of modules in a network are chosen as the target
modules of interest can be possibly be developed.

• For single module identification, we have explored the framework of
immersion [29] to remove the unmeasured nodes from the network. But a
more general theory of abstraction has been presented in [141]. If the
abstraction principle is used, the module variance conditions change.
Hence, the parallel path/loop condition is no more needed and can be
replaced by a different set of conditions [141]. However, using the
abstraction principle, we might need to model non-proper modules and
handle confounding variables. In this case, the theory of handling
confounding variables can be extended. Effective algorithms using
regularized kernel-based methods can be developed that can handle
non-proper modules and also offers the advantages mentioned in this
thesis.

• The generalized method discussed in this thesis considers the input and
output of the target module to be measured. However, this requirement is
not strict. The generalized method can also be extended to consider the
situations where either the input or output of the target module is not
measured or both the input and output are not measured. This step might
help us in understanding the relation between identifiability and
identification in dynamic networks. This was indicative from the
identifiability results in [117].

• This thesis deals with dynamic networks with only process noise and no
sensor noise. Sensor noise does not enter the network and affect the
dynamics but only affects the measurements of the node signals. There are
effective algorithms using regularized kernel-based methods by extending
the framework of indirect methods [38] that handle networks with sensor
noise. However, a network with sensor noise can be translated to a network
with correlated process noise [126]. Having a framework to handle
correlated process noise in Chapter 3, direct identification methods for a
dynamic network with both sensor and process noise is a possible
extension that can be made.

11.2.2 Nonlinear dynamics

Linear dynamic networks have been treated in this thesis. Since many real-world
systems are non-linear, it is vital to model the non-linear phenomenon in



11.2 Recommendations for future research 271

dynamic networks. The viable next step to venture into the non-linear world is
by including non-linear models for modules by adding static non-linearities
along with linear models. Effective algorithms integrating machine learning
techniques into the identification of SISO Wiener systems [110] and Hammerstein
systems [109] are available, which can be possibly extended to dynamic
networks. However, this area is new and needs to be explored to come up with
identification methods, theory for signal selection, data informativity,
identifiability, etc. Similarly, dynamic network with switching topology or
modules is an interesting framework that needs attention.

11.2.3 Optimal signal selection

The results of Chapter 3 provide multiple predictor models that can guarantee
maximum likelihood properties. Similarly, Chapter 4 can provide different
predictor models that can guarantee consistency. This raises the question of
which predictor model needs to be chosen i.e. the optimal signal selection
problem. This requires solving an optimization problem that minimizes a cost
function. A relatively easy selection scheme is to minimize the cost for sensors
through an optimization problem. However, selecting signals that provide us
with an estimate of the target module(s) with the least variance would be a
problem for future scope. This requires developing a theory for variance
quantification in dynamic networks.

11.2.4 Data informativity and experiment design

Path-based data informativity conditions have been derived in this thesis.
However, these are generic conditions i.e. do not take the numeric values of the
transfer functions into account. Recently, steps are being taken to include the
model orders into account for data informativity. In [12], extensions have been
made to provide necessary and sufficient conditions for data informativity (a
condition that takes model order into account). Looking into data informativity
raises the question of optimal experiment design like how to design excitation
with the least excitation power in order to get accurate estimates. This also
involves selecting the location of excitation as well.
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List of symbols

L Number of internal variables or nodes in a dynamic network
K Number of external variables in r in a dynamic network
L Index set of all node signals: r1, Ls
R Index set of all excitation signals in r: r1,Ks
Φabpωq cross power spectral density of vector signals aptq and bptq
Φapωq auto power spectral density of vector signal aptq
Nj Set of indices of node signals with direct causal connection to

node wj
Rj Set of indices of excitation signals in r with direct causal

connection to node wj
N�
j Set of indices of node signals that are w-out neighbors of wj
N�
j Set of indices of node signals that are w-in neighbors of wj
F discrete-time Fourier transform
N Length of the data
E Expectation operator
Ē It refers to limNÑ8

1
N

°N
t�1 E

G0 Network matrix with modules
H0 Network noise model
wj Node signal wj , output of the target module
wi Node signal wi, input of the target module
Y Set of indexes of nodes that appear in the vector of predicted

outputs
D Set of indexes of nodes that appear in the vector of predictor

inputs for predicted outputs wY

Dj Set of indexes of nodes that appear in the vector of predictor
inputs for prediction of node wj

wo Output node signal wj if it is not in set wQ

Q Set of indexes of nodes that appear both in the predicted
output, and in the predictor input

O Set of indexes of nodes that only appear as predicted output:
O � YzQ

U Set of indexes of nodes that only appear as predictor input:
U � DzQ

A Set of indexes of nodes that only appear as predictor input,
that do not have any confounding variable effect: A � U
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B Set of indexes of nodes that only appear as predictor input:
B � UzA

Z Set of indexes of nodes that are removed (immersed) from
the network when predicting wY

Zj Set of indexes of nodes that are removed (immersed) from
the
network when predicting wj

vk Disturbance signal on node wk
e (White noise) innovation of the noise process v
ξ (White noise) innovation of the noise process in the

immersed and transformed network
:� is defined as
H empty set
S System
M Model set
T 0 Open-loop transfer function matrix of the network
Rpzq Field of rational transfer functions
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