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Public summary

Breast cancer is one of the most common cancer types in The Netherlands. Treatment of breast
cancer often consists of (breast conserving) therapy, followed by post-operative radiotherapy. In order
to perform radiotherapy, a treatment plan needs to be created, for which clinical target volumes (CTVs)
and organs at risk (OARs) need to be identified and a dose distribution is calculated. Both steps of the
treatment planning process involve iterative and manual actions. Besides the cumbersome nature of
these steps, they are prone to the experience of the Radiotherapy Technologist (RTT) and Radiation
Oncologist (RO), resulting in inter- and intra-observer variability. The goal of this design project,
performed at the department of radiotherapy in the Catharina Hospital Eindhoven (CZE), is to develop
and clinically introduce Artificial Intelligence (Al) models to automate the delineation of contours
(auto-segmentation) and creation of the dose distribution (auto-planning).

For auto-segmentation, two Al models were developed, trained and evaluated, for both left- and
right-sided breast cancer including the lymph nodes. The model training framework was provided
by RaySearch Laboratories, including a 3D U-Net architecture. In total, 80 patients were included
for training of both models, of which the contours were all visually inspected on abnormalities and
corrected by two experienced RTTs and ROs, when needed. In a retrospective study, both models were
tested for 15 patients: they showed to fulfill the predefined quantitative requirements for most of the
cases. Therefore, a clinical pilot was performed in which the automatically generated contours were
qualitatively scored by several RTTs and ROs. Besides, the time needed to automatically create the
contours and perform corrections when needed was measured, too. A mean reduction in time of 42%
was found for the OARs, while an even larger reduction of 59% was found for the CTVs. Furthermore,
92% of the contours were scored as clinically acceptable or useful for correction, indicating a high
usability for clinical practice.

For auto-planning, multiple models were developed, trained and validated for left-sided whole breast
radiotherapy. During a previously performed project, two Al models had been trained and retrospectively
validated for conventional breast irradiation (40.05 Gy in 15 fractions), using treatment plans of 90
patients. The first model was in-house developed, based on a 2D U-net architecture, whereas the
second model was developed by RaySearch Laboratories, and based on a contextual Atlas Regression
Forest (cARF). In this design project, both models were validated in a clinical pilot. Manually and
automatically created plans were blindly scored by four experienced ROs, and the time to generate
these plans was measured, too. Although there was a difference in preferences of the observers, 95%
of the 2D U-Net plans were found to be clinically acceptable for all, which was the case in 90% of the
manually generated and cARF plans. When only considering user-interaction time, both auto-planning
methods showed time efficiency. Following the results of this study, a 3D U-Net was trained by Ray-
Search, based on the same dataset, and was successfully commissioned for use at the department of
radiotherapye in CZE. Hence, since May 2022, the model is used in clinic to generate treatment plans.
Besides, a 2D U-Net model was trained and retrospectively validated for fast-forward irradiation (2.6
Gy in 5 fractions). For this model, transfer learning was used, using the 2D U-Net for conventional
irradiation as a starting point. This method proved to be promising, with good results while only using
a dataset of 52 patients for training, and should be further investigated in the future for clinical use.

In conclusion, in this design project several Al models were successfully developed, trained and
validated for delineation of contours and creation of dose distribution for breast cancer. While an auto-
planning model was finally actually implemented in clinical practice, the auto-segmentation model
showed promising results and will be clinically implemented in the near future.
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1 Introduction

1.1 Clinical problem

The Catharina Hospital Eindhoven (CZE) is a top-clinical hospital. The department of Radiother-
apy, part of the Catharina Cancer Institute (CKI), treats about 4.000 patients a year. One of the
most common cancer types in the Netherlands is breast cancer, with more than 18.000 new cases in
2021 [1]. Different stages of breast cancer can be defined, which are classified according to the TNM
classification system [2]. This classification is determined by the size and growth of the tumor (T), the
involved (regional) nodes (N) and the presence of metastasis (M).

Breast cancer treatment often consists of (breast conserving) surgery, followed by post-operative radio-
therapy. During radiotherapy, the tumor and possibly lymph nodes are irradiated by ionising radiation,
often photons. The treatment is based on the interaction of the radiation and the tissue, damaging
the cells which eventually leads to cell death. Cells which are actively dividing, which is the case for
cancer cells, are more sensitive to this effect than less active cells, such as healthy tissue cells [3].
Although the effect is thus less harmful for healthy cells, it is still of utmost importance to spare the
surrounding healthy tissue as much as possible. One of the differences between healthy and malignant
cells which can be utilized to spare healthy tissue, is the ability to repair DNA damage, which is greater
in healthy cells. By splitting the total radiation dose into multiple fractions, healthy cells can repair
damage while malignant cells are less able to recover from radiation damage. Besides, a fractionated
dose is more effective to kill tumor cells, as the radio sensitivity of cells depend on their stage in the
cell cycle, and not all tumor cells are in the same stage at a time. Therefore, the total dose needed is
divided in multiple dose fractions [3]. The malignant and healthy regions are identified using imaging
techniques, after which the treatment planning process is started. During this process, the target
and healthy tissues are identified and a dose distribution is created. Section 1.2 further elaborates
on this process. A lot of iterative and manual steps are involved in the planning process, of which
the outcome is dependent on the experience of the Radiotherapy Technologist (RTT) and Radiation
Oncologist (RO). By automating different steps, time saving can be achieved, while maintaining (or
improving) quality, and decreasing intra- and inter-observer variability. Automation of the process can
be achieved with the help of Artificial Intelligence (Al). The principle of Al will be further explained in
section 1.3. Section 1.4 will elaborate on the possibilities of Al within the field of radiotherapy.

1.2 Radiotherapy treatment plans

Whenever a patient arrives at the radiotherapy department, several steps are followed before the actual
irradiation treatment starts, which is visualized in Figure 1.1. In this project, the focus is on the
segmentation and plan optimization steps, which are both executed in the Treatment Planning System
(TPS) RayStation (RaySearch laboratories, AB, Sweden).

Simulation: Plan Plan
CT-scan

Segmentation Treatment

optimization verification

Figure 1.1: The process of radiotherapy treatment planning.
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CHAPTER 1. INTRODUCTION

During the process of segmentation, the target volume(s) (Clinical Target Volume (CTV)) and
surrounding organs (Organs at Risk (OARs)) are delineated, such that these can be used during plan
optimization to calculate the dose delivered. CTVs are delineated by the ROs. Thereafter, the Planning
Target Volume (PTV) is created by adding a margin to prevent under-dosage, caused by variations in
patient position and movement during treatment. In the case of breast irradiation, the CTV of the full
breast is expanded by 5 mm, and of the node levels with 7 mm. In addition, the PTVs are cropped
5 mm under the skin. The OARs are delineated by the RTTs. In case of breast irradiation including
node levels, these OARs are the lungs, heart, (part of) the esophagus, the humerus (humeral head)
and thyroid. Subsequently, the RTT creates a radiation treatment plan within the TPS in the plan
optimization step. During this step, the dose distribution is calculated, and corresponding treatment
machine parameters are determined. These machine parameters contain among others the gantry angle
of the machine and the shape of the segments of the Multi Leaf Collimator (MLC). A MLC contains
several leaves, which can be shifted to vary the shape and intensity of the beam, as can be seen in
Figure 1.2. When a treatment plan is optimized, a trade-off is made between dose delivered to the
CTVs and OARs. In order to do so, the RTT can tweak objectives about e.g. the dose homogeneity
in the PTV or maximum allowed dose to an organ. The treatment plan is eventually evaluated with
pre-defined clincial goals, which make demands on the coverage of the PTV and maximum allowed
dose to the OARs.

Figure 1.2: Example of a multileaf collimator. Im-
age courtesy of Varian Medical Systems, Inc. All
rights reserved. Source: https://bit.ly/3FA0B56

1.3 Artificial Intelligence (Al)

The past few years, the use of Al in health care has strongly increased. Al systems are trained to
perform tasks on the level of human intelligence, and are furthermore able to keep developing by
learning from former actions taken. Several examples of Al in daily clinical practice are support for
diagnosis, selection of treatment, automated surgery or support in patient monitoring [4].

Two terms associated with Al are Machine Learning (ML) and Deep Learning (DL), of which the
relation is visualized in Figure 1.3. ML is a subset of Al, in which patterns and relations in data are
discovered with the help of computer algorithms, utilizing different statistical models. DL is a subset
of ML, which discovers these relationships in large (raw) datasets, using (deep) neural networks. These
networks mimic the way the human brain operates, which is by done by using connections between
neurons [4,5]. The most common used neural network is a Convolutional Neural Network (CNN). A
CNN consists of several layers, which each perform a mathematical operation on the input of that
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CHAPTER 1. INTRODUCTION

ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

MACHINE LEARNING

Algorithms whose performance improve
as they are exposed to more data over time

DEEP
LEARNING

Subset of machine learning in
which multilayered neural
networks learn from
vast amounts of data

Figure 1.3: The relation between Artificial In- Figure 1.4: Learned features from a Con-
i..“e//igence, Machine Learning and Deep Learn- volutional Neural Network. Image retrieved
Ing. from [7]

layer, to find different features in the input. These features are important to determine patterns and
relationships in the input data [6]. An example of different features, such as lines and transitions,
that can be discovered in the different layers for face recognition is shown in Figure 1.4. However, in
contrast to the features in Figure 1.4, a CNN will also discover features which cannot be interpreted
by humans.

1.4 Artificial Intelligence in Radiotherapy

The increase of the use of Al is also reflected in the field of radiotherapy [8]. Figure 1.5 shows at which
moments in the patient-workflow Al can be applied, i.e. nearly everywhere in the workflow. The focus
in this QME design project lies on automatic delineation of targets and OARs (auto-segmentation) and
automatic plan optimization (auto-planning), that is dose prediction, but also involves dose mimicking,
which is not shown in the figure.

Auto-segmentation of contours is a well-studied subject in the field of medical imaging, and a lot
of methods have been developed and evaluated in the past few years. A traditional ML method
for automatic delineation in radiotherapy is Atlas Based Segmentation (ABS), which is available in
several commercial software packages [9]. ABS utilizes prior knowledge by using an atlas of previously
contoured images to automatically delineate contours for a new patient, with the help of a spatial
transformation of the atlas images. However, the use of CNNs is increasing, as it has shown great
potential [9, 10].

The plan optimization step can be automated by several methods. A widely-used term is Knowledge
Based Planning (KBP), which includes all methods that use prior knowledge to generate a treatment
plan. The outcome of a KBP method can be both a Dose-Volume Histogram (DVH) or a full dose
distribution [10]. ML models based on patient geometry features are mostly used for predicting DVHs,
wehereas dose distributions are typically predicted using either ML or DL models.
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Figure 1.5: Possible applications of Al within the process of radiation treatment planning.
Image retrieved from [8]

1.5 Outline

This report describes the design process that has been performed and completed in order to achieve
a clinical process in which the breast cancer treatment plans are created automatically with Al. In
Chapter 2, the project structure and its goal is clarified, after which Chapter 3 further elaborates on
the requirements of the final design. Chapter 4 describes several choices made concerning data and
Al models used for the purpose of the project, and the final choices and clinical implementation are
described in Chapter 5. Thereafter, the product is validated and verified in Chapter 6 to test if it meets
the set up requirements. Chapter 7 briefly summarizes the project and its outcomes and concludes
about the implementation, followed by Chapter 8, that discusses the choices made in the project and
gives recommendations for further research and projects for successful application of Al within the
radiotherapy department. Finally, Chapter 9 contains the reflection of the executed project as well as
a personal reflection on the process.
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2 Project Definition

2.1 Introduction and Project goal

Currently, several research projects to investigate the use of Al are running or recently finished at the
radiotherapy department of CZE. The aim of these projects is to improve the process of creating a
treatment plan. This improvement is mostly in terms of time efficiency, but is also aimed to decrease
the intra- and interobserver variability. Several studies show that, both in delineation as in plan
optimization, this variability is present due to e.g. the varying experience of the RTT and RO [11-14].
The studies at the department are executed in close collaboration with RaySearch. Because of this
collaboration, it is possible to implement and evaluate in-house developed and trained Al models in the
TPS. Moreover, Al models developed by RaySearch are evaluated.

One of the first studies at the CZE, in close collaboration with Eindhoven University of Technology
(TU/e), comprised the evaluation of two ML models for dose prediction for conventional treatment
of the whole breast [15]. One of these models was in-house developed, the other one was developed
by RaySearch. This retrospective study showed that both models had potential for clinical use. More
details can be found in Appendix A. However, more research was needed for clinical implementation.
In addition, next to the conventional treatment, consisting of 15 fractions of 2.67 Gy, a new treatment
fraction scheme was introduced in our clinic. This scheme, referred to as Fast-Forward (FF), consists of
only 5 fractions of 5.2 Gy [16]. It was desired to study the possibility to extend the existing model to fit
this new scheme. Finally, there was the desire to study the clinical potential of automatic segmentation
for patients with breast cancer, including lymph nodes, as this is a frequent and time consuming step
that is taken.

Hence, the goal of this design project is defined as "Automation of the treatment planning process
for breast irradiation using Al for segmentation of contours and treatment plan optimization using dose
prediction”. Al models will be developed and/or trained and validated with the help of clinical data.
Furthermore, these models will be tested in a retrospective study, followed by a clinical pilot at the
department of radiotherapy to evaluate the clinical potential. Finally, if good results are obtained in
the clinical pilot, it is the intention to really implement them in clinical practice in the CZE.

2.2 Project organisation

This design project involved multiple stakeholders, which are all visualized in Figure 2.1. The roles of
these stakeholders can be divided into the following categories:
e Project manager: responsible for planning, organizing and monitoring the project

— Nienke Bakx
e Supplier: supplies knowledge, manpower and means needed for the project

— Coen Hurkmans: supplier and also client on behalf of the CZE, as part of the management
team of the department of radiotherapy
— Fredrik Léfman: supplier of knowledge, means and manpower of RaySearch Laboratories in
his role as Director of ML
e User: end-users of the design, as in the end the automation by Al models will be implemented
in their workflow

— RO: Maurice van der Sangen & Jacqueline Theuws: experienced ROs, specialized in breast
cancer treatment

— RTT: Thérése van Nunen & Jorien van der Leer: experienced RTTs, specialized in breast
cancer treatment
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e Project team members: are involved during the project and perform tasks

— Medical physicists: Coen Hurkmans & Hanneke Bluemink: support with knowledge of the
workflow, take part in discussion of the different concepts and analyze and evaluate the
results

— Technical support: Els Hagelaar (project assistant) & Dave van Gruijthuijsen (Medical
Engineer): support with knowledge and help with implementation of the Al models in the
workflow

Of course, the project team members were involved from the start of the project and weekly
meetings were held to discuss progress of the project. In these meetings, also other closely related
projects were discussed. However, it is also important to involve the users early in the project, as you
need to fulfill their needs. Therefore, several multi-disciplinary meetings were organized with the ROs,
RTTs, medical physicists and the project manager. Also, in several other steps the end-users were
involved. For example, work instructions which were provided for all ROs and RTTs to execute the
clinical studies were first tested by the above-mentioned users. Furthermore, these users also checked
the data used for the Al models, as will be further explained in Sections 4.2.1 and 4.3.1. In addition
to the team members and users of the CZE, close contact was maintained with two ML engineers of
RaySearch laboratories. They provided support with the training and validation of the Al models and
enable fast implementation of the models in the TPS.

Project manager

Nienke Bakx
Project team
Medical physicist Technical support
Coen Hurkmans Els Hagelaar
Hanneke Bluemink Dave van Gruijthuijsen ML engineers Management
Mats Holmstrom i
Elin Samuelsson Eredrikd timan
End-users
Radiation Radiotherapy
oncologist technologist
Maurice van der Sangen Thérése van Nunen
Jacqueline Theuws Jorien van der Leer

Figure 2.1: Project organization
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2.3 Deliverables and non-deliverables

In this design project, the treatment planning process for breast irradiation will be automated, by using
Al models for both auto-segmentation and auto-planning. To scope the project, the following deliver-
ables and non-deliverables were defined at the start of the project:

Deliverables

e Auto-segmentation

— Retrospective evaluation of Al model on clinical data
— Clinical validation of Al model in a pilot study

e Auto-planning

— Retrospective evaluation of Al dose prediction model for FF breast irradiation

— Clinical validation of Al dose prediction model for conventional breast irradiation in a pilot
study

— Clinical implementation of Al dose prediction model at the department of radiotherapy in
CZE

Non-deliverables

e Clinical implementation of Al dose prediction models for other patient groups than left-sided
conventional breast irradiation

e Clinical implementation of Al auto-segmentation models for breast cancer

e A complete Al-based workflow for auto-segmentation and -planning for breast irradiation

2.4 Project planning

To keep an overview of the different sub-tasks that needed to be performed in order to successfully
perform the project, a final project planning was made after some iteration steps, which is shown
in Figure 2.2. In this planning, unforeseen delays are indicated by the lighter-colored boxes. One
important cause for delay, for instance, was the late upgrade to RayStation v10B-SP1. This version
was needed for clinical implementation of the Al dose prediction model. Also, it was desired to perform
the clinical pilot for auto-segmentation in this version as this is the version in which it will be eventually
implemented for clinical use. Besides, data collection and model training for auto-segmentation turned
out to be more time consuming than expected. For data collection, all the data needed to be checked
thoroughly. During model training, several settings and parameters were tested, and eventually the
final model needed to be trained in RayStation v10B-SP1. Section 4.2.1 will elaborate further on
this process of data collection and model training. On the other hand, as can be seen in Figure 2.2,
data collection, model training and retrospective validation of the Al dose prediction model for FF
irradiation was performed in a strict time frame without any difficulties. This was carried out by a
student, under supervision of the project team, and the framework for the training and validation was
already available from the previous project from the QME project manager for conventional irradiation,
making it a straightforward sub-project of this overall design project.
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3 Detailing Project Goal

3.1 Introduction

The Al models that were developed in this design project to automate segmentation and plan optimiza-
tion need to meet certain functional and technical requirements before clinical implementation can be
realized. The primary endpoint of both models for auto-segmentation and auto-planning is time saving,
compared to the manual process. Besides, quality of the delineations and treatment plans should be
maintained or even increased. Lastly, implementing the models will lead to a decrease of intra- and
inter-observer variability. Section 3.2 will elaborate further on these desired outcomes and how and
when these will be measured. Next, in section 3.3 these requirements will be described in more detail
and for each outcome the minimum requirement for successful clinical implementation is stated.

3.2 Functional requirements

3.2.1 Time saving

Time saving is the primary desired outcome of both Al models. In the current clinical workflow, the
RTT starts the treatment planning process with loading a template, which contains empty structures
for all contours (CTVs and OARs), needed for the treatment. Next, the RTT manually delineates
the OARs. Thereafter, the RO manually delineates the CTV and checks the delineations made by the
RTT. To complete the segmentation process, the other structures, such as the PTVs, are automatically
generated, based on the existing delineations. Then, the RTT starts the plan optimization. Again,
a template is used, which contains a standard beam set, optimization settings and a standard set of
objectives to start the optimization. Then, the RTT can manually tweak these objectives to create a
treatment plan that fulfills the clinical goals. Finally, the treatment plan is checked by another RTT,
a RO and a medical physicist before the treatment starts.

When using the Al models, a similar workflow as usual will be maintained. First, the RTT will run the
model to automatically delineate the targets and OARs, and then check the delineation of the OARs
and make corrections whenever necessary. Then, the RO will do the same for the target volumes and
check the OARs. Thereafter, the RTT will run the Al model to automatically generate a treatment
plan, which can be manually adjusted afterwards as well whenever necessary. The final check of the
plan is the same as in the current clinical workflow.

To measure the possible time saved with auto-segmentation, the following measurements will be taken:

e Baseline: time needed for manual delineation of CTVs and OARs

e Al model: time needed to automatically generate delineations by Al model

e Al model + correction: time needed to automatically generate delineations and manually correct

for clinical use
These measurements only contain the actual time spent on the delineations, not the lead time of the
full process. Timing of the tasks performed by the RTT and RO will thus be measured and logged
independently.

For auto-planning, promising results were achieved concerning the number of fulfilled clinical goals
during the previously performed retrospective study. Therefore, it was decided to not manually
correct the plans during the clinical pilot, to explore the possibility of using auto-planning without
any intervention, except for manually opening the leaves. Therefore, only the following measurements
were performed:

e Baseline: time needed to manually create a treatment plan

e Al model: time needed to automatically generate a treatment plan
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3.2.2  Quality

To generate clinically usable delineations, certain international guidelines are used [17,18]. Hence, the
automatically generated contours are checked, and can be corrected if necessary on the basis of these
guidelines. Because the main goal of the automation is time saving, the quality of the automatically
generated delineations has to be as good as possible, to minimize the amount of corrections needed.
Therefore, it is needed to measure both the quality of the outcome of the Al model and the amount of
correction needed. Besides, as mentioned before in Section 2.1, there exists intra- and inter-observer
variability in manual delineations. As the model can be seen as a new observer, one could say that
if the model performs as well as the interobserver variability, the model mimicks reality and performs
adequately [10]. Therefore, the accuracy of the automatic delineations, will also be compared to the
interobserver variability of a similar study. Several quantitative metrics will be measured, to be able
to compare the model performance with results found in literature. Besides, these parameters can
reveal potential consistent errors, such that they can be easily tracked down to improve the model [19].
To assess the clinical potential, it is important to also perform qualitative measurements [10]. The
quantitative and qualitative measurements of the quality of auto-segmentation will be performed as
follows:

e Quantitative measurement: the automatically generated contours (auto-contours) will be com-
pared with a ground truth. This ground truth is the contour that was manually generated in
clinic and was checked to see if it follows the guidelines.

e Qualitative measurement: the auto-contours will be checked and scored by RTTs and ROs during
a clinical pilot.

To assess the quality of treatment plans, clinical goals are used. These goals contain requirements
to e.g. the minimum coverage needed for the PTV and maximum dose allowed to the OARs. The
main goal is always to spare the OARs as much as possible, while still maintaining adequate target
coverage. Besides, DVHs can be used to extract several parameters, such as mean and maximum dose,
to measure the quality. Similar as with auto-segmentation, qualitative measurement is important to
assess clinical potential, as is mentioned in several studies [20-22]. The following quantitative and
qualitative measurements will therefore be performed as follow:

e Quantitative measurement: the automatically generated plans (auto-plans) will be scored using
the clinical goals. Besides, comparison with manually generated plans will be made by using
several DVH parameters.

e Qualitative measurement: the auto-plans will be blindly scored and compared to manually
generated plans by several ROs.

3.2.3 Intra- and interobserver variability

Intraobserver variability refers to differences in perception and action of one person in the same situation,
while interobserver variability refers to different perceptions and actions of different persons in the same
situation. For both types, it is known that they occur in both delineation as plan optimization, caused
by differences in the experience of the ROs and RTTs, among other things [11,12, 14,23, 24].

An Al model always generates the same output for the same input, eliminating the intra- and inter-
observer variability. However, as the output of both models can be corrected manually, there will still
be some variability. This variability will be lower than variability in completely manually generated
delineations or treatment plans, since the starting point for correction is the same for all users. This
decrease in variability in automatic delineation is -for example- found in the study of Byun et al., where
experts of multiple institutes evaluated an automatic delineation method [25]. Furthermore, Wang et
al. found a decrease in variability between RTTs with different levels of experience, when using a KBP
method [26]. The difference in variability between ROs or RTTs in our institute won't be measured in
this project, due to limited time.
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3.2.4 Study design

The above mentioned measurements with respect to time saving (Section 3.2.1) and quality (Section
3.2.2) will be performed in two different phases:
1. Retrospective validation:

e validate Al model for auto-segmentation on 20 patients for each side, independent of training
set

— quantitative measurement of quality

e validate Al model for FF auto-planning on 20 patients, independent of training set
— quantitative measurement of quality
2. Clinical pilot

e implement Al model for auto-segmentation in clinical workflow, validate on 10 patients for
each side

— measurement of time
— quantitative measurement of quality
— qualitative measurement of quality
e implement Al model for conventional auto-planning in clinical workflow, validate on 20
patients

— measurement of time
— quantitative measurement of quality
— qualitative measurement of quality
The clinical pilots have been executed when the Al model performed adequate according to the
requirements specified in Section 3.3. In addition, this choice was based on the judgement of two
experienced ROs, whether they think the outcomes could have clinical potential.

3.3 Technical requirements

3.3.1 Time saving

Several studies are performed in which auto-segmentation is used for (a part of) the contours as in
this study. A study of Chung et al. reports a decrease in time of approximately 75% using auto-
segmentation, compared to manual delineation [27]. Another similar study, using an atlas-based
method, even shows a decrease in time of 93%. In addition, they report a decrease in time of 32%
after correction of the auto-contours [28].
In contrast to auto-segmentation, only a few studies are performed where auto-planning is timed. Sheng
et al. developed an auto-planning method using a random forest model. They report that the whole
process is finished within 5 minutes, in contrast to 30 minutes to 4 hours for the manual process [29].
As mentioned above, several time measurements are performed:

1. time needed to manually generate contours/plan (Tianuai)

2. time needed to automatically generate contours/plan (Tyut0)

3. time needed to correct automatically generated contours/plan (Teorrect)
For both Al models, in this project a decrease in time in 90% of the cases is demanded, including
correction needed to get a clinically acceptable outcome (Touto + Teorrect < Tmanual)-

3.3.2 Quality

As mentioned before, the quality of the auto-contours and -plans will be measured with both quanti-
tative as qualitative metrics. This section describes which methods will be used to measure those, and
which outcomes are needed for a clinically feasible model.
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Quantitative measurements

For auto-segmentation, several methods are known to measure the quality of the generated contours.
Besides the comparison of the outcome with a ground truth, the outcomes will also be compared with
interobserver variability reported in a study of Chung et al., shown in Table 3.1 [27]. This variability
was found by delineation of contours in one patient by three different ROs. When similar values are
found with the model of this study, the clinical reality is reflected and the clinical pilot can be started to
further assess the quality of the model. Of course, the variability reported by Chung et al. could differ
from the variability within our institute, but as mentioned before, this variability will not be measured
in our institute.

The auto-contours without correction, which are in the first study phase the only contours generated,
don’t have to comply with the guidelines. However, to get a better idea of clinical performance before
starting the clinical pilot, two experienced ROs will visually inspect the auto-contours of some demo-
patients during the retrospective phase. If they have enough trust that these contours will support the
clinical workflow, and when the quantitative results are sufficient, the clinical pilot will be started to
asses the actual clinical potential.

Eventually, the following parameters will be measured, which are also visualized in Figure 3.1:

e Dice Similarity Coefficient (DSC): DSC = \QJLTP\S;II , with X the volume of the ground truth and Y’
auto-contour, where a DSC score of 1 represents a perfect overlap between both volumes [30,31].
When the measured DSC scores are in the same order of magnitude as the values in Table 3.1,
the model is found to be adequate for this criteria. However, the interobserver variability was
not measured for the humerus, so a minimum DSC score of 0.7 is demanded, which is a widely
used limit in several studies.

e 95" percentile of Hausdorff Distance (HD) (95%HD): HD = max{h(X,Y),h(Y,X)}, with
h(X,Y) = maxyex mingey || —y || in mm, with a score of 0 representing perfect overlap. By
using the 95" percentile, a small subset of outliers will be eliminated. Again, values of the same
order of magnitude as in Table 3.1 are found the be adequate performance. For the humerus, a
maximum 95%HD of 7 mm s set.

ROI DSC 95%HD [mm]
(mean + std) (mean + std)
CTVp 0.85 + 0.02 8.94 + 2.86
CTVnl 0.69 + 0.04 13.58 + 3.00
CTVn2 0.47 £ 0.17 18.74 £ 8.15
CTVn3 0.56 £+ 0.10 9.87 £+ 3.61
CTVn4d 0.45 £ 0.13 11.82 £+ 4.88
Heart 0.91 +0.01 13.00 £ 5.10
Lung Left 0.99 + 0.00 2.33 £ 0.95
Lung Right  0.98 + 0.00 2.19 £+ 0.66
Thyroid 0.72 £ 0.07 537 £ 1.70
Esophagus 0.78 + 0.04 7.08 £ 3.52
Humerus 0.70 + 0.05 7.00 + 2.00

Table 3.1: The technical requirements for the quantitative measure-
ments for each ROIl. The values are based on the interobserver variabil-
ities found by Chung et al. [27]. NB: as no values were reported for the
humerus, these requirements were set based on more widely used limits.

Recently, a new method called Surface DSC (sDSC) gained more attention in evaluating the out-
come of auto-segmentation model, which will also be measured in this study. The sDSC is the overlap
between two surfaces, with a pre-defined tolerance for allowed deviation. By quantifying the deviation
in contours rather than volumes, it better reflects the correction needed [32]. This method seems to
correlate better with time needed for correction, and relative time saved, which is the primary outcome
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Dice Similarity Coefficient (DSC) Hausdorff Distance (HD) Surface DSC (SDSC)
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HD = max{h(X,Y), h(¥, X)}

Figure 3.1: A visual representation of the different quantitative measurements used in this study.

of this study [33]. Hereby a higher sDSC relates to less time needed for correction. However, this
metric is not reported yet in similar studies, so no requirements were derived.

For auto-planning, the auto-plans are compared to manually created plans with several methods:

e Clinical goals: both automatically and manually generated plans are scored with the clinical
goals. When a clinical goal is not met, the specific patient will be inspected to see if this is
clinically relevant. Not all goals have the same priority, meaning they are target values and no
hard constraints. For both conventional and FF plans, the clinical goals are displayed in Table
3.3.

e DVH parameters: the DVH parameters specified in Table 3.2 will be reported for both the
manually and automatically generated plan. To compare these values, the Wilcoxon Signed
Rank test will be used, (p-value < 0.05 is significant). Quality is maintained when the Mean
Heart Dose (MHD), Mean Lung Dose (MLD) and V5Gy to the lungs are not significant higher
for the auto-plans, or when these differences are not considered as clinical relevant. For the PTV,
a non-significant difference is strived for, but a difference is allowed when clinical goals are still
met.

e Monitor Units (MUs): the number of MUs is compared between the automatically and manually
generated plans, striving for a non-significant difference between both plans, calculated with the
Wilcoxon Signed Rank test.

ROI DVH parameter
Average dose [cGy]

PTVp Maximum dose (Day) [cGy]

Lungs Average dose (MLD) [cGy]

Volume receiving 5 Gy [cc]
Heart Average dose (MHD) [cGy]

Table 3.2: DVH parameters used to compare quan-
titative performance of different treatment plans

Qualitative measurements

The auto-contours are scored by 5 different RTTs and ROs, using a 3-point system:

1. Clinically acceptable contour, no correction needed

2. Not-clinically acceptable contour, but useful as starting point for correction

3. Not-clinically acceptable contour, not useful as starting point for correction
A contour is said to be useful as starting point, when the RTT or RO thinks he/she can save time
using this contour as start point, with respect to starting over.
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ROI Conventional irradiation Fast-Forward irradiation
PTV At least 3805 cGy at 98% At least 2470 cGy at 98%
PTV At least 3965 cGy average dose At least 2574 cGy average dose
PTV At most 4045 cGy average dose At most 2626 cGy average dose
PTV At most 4285 cGy at 2% volume At most 2782 cGy at 2% volume

At most 600 cGy average dose At most 300 cGy average dose

Lungs At most 400 cGy average dose At most 200 cGy average dose
Heart At most 300 cGy average dose At most 150 cGy average dose
At most 200 cGy average dose At most 100 cGy average dose
CL Breast At most 100 cGy average dose At most 100 cGy average dose
External-PTV At most 10 cc at 4285 cGy At most 10 cc at 2782 cGy

Table 3.3: Clinical goals used to evaluate the plans for conventional and FF breast irradiation. Goals
printed in italic are of less importance and no hard constraints.

To qualitatively assess the auto-plans, 4 ROs will blindly score them according to the following two
points:

1. Clinical acceptability
2. Ranking of plans (manual vs auto-plan); equal ranking is allowed

Up until now, no studies involving qualitative assessment of auto-plans for breast cancer are pub-
lished. However, two studies concerning auto-planning for prostate cancer report clinical acceptability
in respectively 80% and 89% of the cases [22,34]. For this project, a minimum clinically acceptability
rate of 90% is required. In addition, inter-observer variation will be present in this assessment of the
ROs, which should not be higher for auto-plans compared to manually generated plans. Ranking of
the different plans will be used to determine if the automatically generated plans are non-inferior to
the manual plans, which is set as a requirement. This method is used by Cornell et al., considering an
auto-plan non-inferior if the lower limit of the 95% Confidence Interval (Cl) of the success rate was
greater than 45%. The success rate is defined as the number of times the auto-plan is considered equal
to or better then the manually generated plans. Then, the Wilson score interval method will be used
to calculate the Cl. Figure 3.2 visualizes non-inferiority with A as a margin, with will be set to 5% in
this study.

95% Confidence interval noninferiority

Observed difference from the trial

|—|— Superiority demonstrated
I T Noninferiority demanstrated
T Equivalence demonstrated
Treatment Control
better -A 0 A better

Treatment difference

Figure 3.2: A visual representation of non-inferiority and superiority tests. A is the
margin, which is set to 5% in this project. Image retrieved from [35]
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3.4 Complete set of requirements

Figure 3.3 summarizes the complete set of requirements.
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4 Design Process

4.1 Introduction

Several steps need to be taken before an Al model can be successfully implemented in clinical reality.
The first important step is to create a suitable dataset for training, validating and testing. The data
must be checked thoroughly on their quality, as the model will reproduce the quality of the input.
Besides, the dataset should be large enough and reflect real-world variation in the patient group to
prevent overfitting, which is a phenomenon where the model works perfect for a particular set of data,
but doesn't work for unseen data. Next, a suitable Al model should be chosen for the problem. The
focus in this project is on DL models, although one ML model is evaluated for auto-planning. For these
DL models, an appropriate CNN architecture should be chosen and parameters should be tweaked
during training. To successfully train and evaluate a model, the dataset is divided into three sets:
training, validation and testing. Both the ML and DL models are trained on the training set and
the model is real-time validated during training by the validation set, which contains unseen data for
the model. During each step of training, also known as an epoch, the DL model uses an optimisation
function to minimize the error between the generated output and the known ground truth. This error is
computed using a loss function, which can thus be used to quantify the performance of the model and
monitor its behaviour. The loss function is computed for the training set as well as for the validation set,
such that the performance on an unseen set is also monitored and overfitting can be detected. When
a final model is trained, it is evaluated on an independent test set, which was never seen before during
training. In this project, multiple test sets are created for the retrospective studies and clinical pilots,
as explained in 3.2.4. This chapter elaborates on data collection and the model training procedure for
both the auto-segmentation as auto-planning model.

4.2 Auto-segmentation

4.2.1 Data collection

Patient data was retrieved from RayStation and the clinical archive, for patients treated between
February 2017 and May 2022 for breast cancer. Two separate models will be trained for respectively
left and right sided breast cancer, demanding two separate datasets. Several patient groups are included
for both sides, treated to either node levels 1 and 2 or node levels 1 to 4. In total, 80 patients were
used for training of both models. In the retrospective study and clinical pilot, respectively 15 and 10
patients were used for each side. For every patient, it has been noted which structures are present, and
the structures were visually inspected as a first check and abnormalities were noted. Then the data
statistics were checked to detect any outliers. This check was performed by plotting the bounding box
per structure for each patient. Figure 4.1 shows an example plot. Outliers were again visually inspected
and again abnormalities were noted when found. Ultimately, the marked structures were checked by
two experienced ROs and corrected or removed from the set when needed.

The structures that were mainly corrected or removed where node level 3 and 4. Twenty patients
were checked, and for only four patients the clinical structures were accepted without any correction.
This observation confirms the presumption that these structures are hard to delineate, which is also
reflected by the interobserver variability metrics in 3.1. Besides, the ROs indicated that in recent years
special attention is paid to the delineations of these node levels, as more and more discussion is taking
place about the correctness of the guidelines for these structures, again confirming the presumption.
Another structure that needed to be corrected in multiple patients was the thyroid. The thyroid is
susceptible to multiple anatomical variations, making it a difficult structure to delineate for the RTT.
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Figure 4.1: An example of the visual representation of data statistics. The bounding box volumes and
sizes of along each axis (x, y and z) for the heart of each patient are shown.

In addition, the thyroid consists of two lobes that are connected. This connection is not always as
easy to notice and thus not always delineated. However, for training of the model, it was desired that
the lobes were connected and the thyroid consisted of only 1 contour instead of 2 separate contours.
Therefore, two experienced RTTs checked and corrected thyroids consisting of 2 separate contours.

4.2.2 Model architecture

For auto-segmentation, a DL model architecture based on U-net was used [36]. This is a widely used
CNN architecture in medical image analysis, where the information on different levels of resolution
is combined, schematically shown in Figure 4.2. An adapted version of this architecture, 3D U-net,
is implemented by RaySearch and the code was made available for training on the dataset of our
clinic [37].

The auto-segmentation model within RaySearch consists of several submodels. Each submodel is
a 3D U-net, which is trained on one or more Region of Interest (ROl)s. The input of these models
is a volumetric image, defined by a bounding box centered around the ROI(s) of that submodel. By
using these cropped volumes instead of the full volume, the required memory for training decreases
and training can be performed on a higher resolution. Eventually, the process of auto-segmentation
consists of the following 4 steps, of which the first 3 steps are visualized in Figure 4.3:

1. Atlas-based segmentation: a small atlas of 4 patients containing all ROls is stored in the model.
When starting segmentation of a new patient, these images are first rigidly registered to the input
image. The best matching image is selected, and its delineations are propagated to the input
image. These delineations are used as a starting point for the DL models.

2. Initial segmentation: a first segmentation is performed on a low-resolution input, where the
bounding box is based on the output of the first step. The DL model used for this step is one of
the submodels, trained on all ROlIs.

3. Refined segmentation: for each ROI or subgroup of ROls, segmentation is performed on high-
resolution input by several sub-models. Input volumes are defined by bounding boxes resulting
of the initial segmentation.

4. Post-processing: extra processing can be performed on the produced output, such as smoothing,
adjusting the number of components per ROl and correct overlapping structures.
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Figure 4.2: The U-net architecture, image retrieved from [36]. Each blue box corresponds to a multi-
channel feature map. The numbers on top of the boxes represent the number of channels, whereas the
resolution of each box is provided at the lower left edge. White boxes represent copied feature maps
and arrow denote the different operations

Figure 4.3: The first three steps of the auto-segmentation method. Left image (step 1): atlas-
based segmentation, resulting into approximate organ positions and the input window to initial deep
learning model (pink rectangle). Middle image (step 2): initial segmentation, resulting in low resolution
segmentations and the input windows for the refined deep learning models (pink rectangles). Right
image (step 3): refined segmentation, resulting in high-resolution segmentations. Image retrieved from
RaySearch reference manual

4.2.3 Model training

As explained above, a training and validation set were used during model training. To further evaluate
the performance of the model, cross-validation was used. This technique resamples the data in different
training and validation splits during each iteration, referred to as a fold. For this study, 5-fold cross-
validation was used, meaning the dataset is split into 5 groups, whereafter each group will be used as
the validation set in one of the 5 folds. This method is especially useful for smaller datasets, to inspect
the impact of the data split of the total training set. The results of this cross-validation and additional
tests performed to assess the performance of some submodels are further explained in Appendix B.

During training, several parameters are involved that can be tuned, of which a complete overview
can be found in Appendix B. The most relevant ones are listed below:

e Number of epochs: during one epoch, the full training set is passed one time through the model.
The number of epochs should be sufficient for the model to converge, which can be monitored
through visualization of the training and validation loss. The model can intermediately be saved
during training after a pre-defined number of epochs, in order to compare the performance of
the model at different stages of training.
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e Batch size: the number of samples used in each update of the weights of the CNN. A higher
number leads to a smoother training process, but also requires more memory. As the 3D input
occupies a lot of memory, a batch size of 1 is used.

e Learning rate: during training, the Adam optimizer is used [38]. The learning rate controls the
gradient step size used during weight update of the network. A high learning rate can lead
to a diverging instead of converging learning process, and a low learning rate leads to a slow
conversion. A learning rate of le-4 is used in this project, which was set as default by RaySearch.

e L2 regularization weight: L2 regularization is used to prevent overfitting, by preventing the
weights from growing too large. The default value of 1e-5 is used in this study.

To further increase the model performance, data augmentation was performed during training.
Data augmentation is a method to artificially increase the size of the dataset by adding adjusted copies
of the existing dataset. This augmentation was performed on-the-fly during training, causing the model
to be trained with a slightly different version of the dataset each epoch. It contains translation, where
the image is moved along the x-, y- and/or z-axis, rotation, where the image is rotated in the x-, y-
and/or z-axis and elastic deformation. To ensure that the ROl is still fully covered by the bounding
box after augmentation, an extra margin is added to the original dataset.

4.3 Auto-planning

4.3.1 Data collection

Data for conventional breast irradiation was collected in the previously executed study, and more details
can be found in Appendix A. In total, 90 patients were used for training of the ML models used for
auto-planning for conventional breast irradiation. For the FF protocol, 52 patients were used for
training. Of these patients, 19 patients were treated with the FF protocol in clinic. The other plans
were generated for a part of the patients used in the conventional irradiation study. These plans were
checked by experienced RTTs before training of the model. For all patients of both protocols, CT data
with delineated ROIs was available.

4.3.2 Model architecture

RaySearch developed a framework for auto-planning which consists of several steps, visualized in Figure
4.4 and explained below:

1. Feature extraction: two methods can be used, in isolation or combination, to extract features
from the CT images and delineations: (1) Filterbank, which uses a hand tuned filterbank to
extract over 80 image features, such as isolation of certain shapes, tissue types or edges, and
(2) Signed distance maps, which calculates signed distance maps based on specific ROls selected
during the training procedures, helping the model with depth perception in relation to the selected
ROls.

2. Spatial model: predicts a dose distribution per voxel. Several models are available, which will be
further explained below.

3. Prior model: predicts a prior (DVH) for a ROI. As for the spatial model, several models are
available.

4. Conditional Random Field (CRF) and strategy: a CRF optimization is performed on the ROIs to
get a final dose distribution. In this step, certain ROl goals, called strategies, can be applied to
the priors, e.g. to restrict the dose to a certain ROIl. The predicted dose will then meet these
goals in the most likely way. In this project, we only create one strategy with certain goals.
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5. External model: in the default model, the dose in the external region is the dose predicted by
the spatial model. In addition, a DL model can also be used to predict this region. However, in
this study, the default method will be used.

The final outcome of this process is a predicted dose per voxel, which is not directly clinically
applicable. To obtain a clinically deliverable plan, dose mimicking is needed. During dose mimicking,
direct machine parameter optimization is used to approximate the predicted dose distribution, while
taking dose constraints into account. These dose constraints can be defined in the model settings to
tweak your model further to meet clinical goals.

Spatial model

x n

Feature extraction
% b

Prior Model

Figure 4.4: Framework for auto-planning. Image retrieved from RaySearch reference manual

Three different models were developed and trained for dose prediction:
e 2D U-net

In the previously executed study for conventional breast irradiation, a 2D U-net model was
developed and trained. This is a spatial model, based on the aforementioned U-net architecture
from Ronneberger et al. [36]. The input of the model is a multi-channel matrix, containing
masks of the PTV, heart, lungs and external. The masks for heart, lungs and external are binary,
with zeroes outside and ones inside the structure, whereas the PTV mask has a value equal to
the prescribed dose for voxels inside the structure. The output of the model is the spatial dose
distribution. More details can be found in Appendix A. Moreover, this model was also used for
training of the model for FF irradiation with the help of transfer learning, which will be further
explained in Section 4.3.3.
e Contextual Atlas Regression Forest (cARF)

The cARF model is an atlas-based ML method, where each patient in the atlas contains two ML
models: an Atlas Regression Forest (ARF) and a predict Regression Forest (pRF). The ARF is
used to predict a dose distribution using image features. The pRF is then used to predict for each
patient in the atlas how well its ARF works for a new patient. This method is further explained
by Mclntosh et al. in [39,40]. The cARF model is used for auto-planning of conventional breast
irradiation, where the model is applied in the following ways for the spatial and prior model:

— Spatial model: with the use of the image features, the pRFs of all atlas patients predict an
estimate of the error for the corresponding ARF. Then, the 5 best ARFs are selected and
merged into one Regression Forest (RF), which will predict a dose value for each voxel.

— Prior model: with the use of the image features, the pRFs of all atlas patients predict an
estimate of the error for the corresponding atlas DVH. The closest atlases are then selected,
and for each ROI the Probability Distribution Function (PDF) of all atlases is merged to
one weighted PDF per region, which is used to calculate the DVH.

e 3D U-net

Similar as for auto-segmentation, RaySearch developed a 3D U-net for auto-planning, which is
described in more detail in Appendix B. A multi-channel 3D volume is used as input, containing
three channels containing a binary mask of the PTV, a mask of the union of the heart and lungs
and a mask of the external. The same model can be used for both the spatial as the prior model,
without any additional training, as the first step for both models is predicting the dose value for
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each voxel. This predicted volume is the final output for the spatial model. However, for the
prior model an extra post-processing step is added by calculating the DVHs of the selected ROIs
from the inferred dose and returning that as output.

4.3.3 Model training

Both for conventional and FF breast irradiation, several models were trained during this project as well
as in a previous project, as mentioned in Section 2.1.

Conventional breast irradiation

For conventional breast irradiation, both the 2D U-net and cARF models were trained during the
previous project [15]. While the 2D U-net was trained in-house, the cARF model was trained by
RaySearch, using the same dataset. More details about these models and the results of this study can
be found in Appendix A. In addition, a 3D U-net was trained during this project by RaySearch on the
same dataset, of which details can be found in Appendix B.

FF breast irradiation

For FF breast irradiation, a 2D U-net model was trained using transfer learning during this design
project. This method uses a pre-trained model to train a new model for a different, but related,
problem. As the model leverages knowledge from the previously trained model, such as features and
weights, the newly trained model already understands features and makes it faster and able to train on
a smaller dataset [41]. As the input used for the Al models for conventional and FF breast irradiation
is the same, the goal of this study is to investigate if transfer learning is applicable here. If so, a smaller
dataset could be used. In this study, only 52 patients were used for training to assess the use of transfer
learning. As a starting point, the 2D U-net was used. More details on the training parameters can be
found in Appendix B and [42].
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5 Final Design and
Implementation

In the previous chapter it has been described how several models were developed and trained for both
auto-planning and auto-segmentation, with varying model architectures, parameters and datasets. This
chapter summarizes the final datasets and models used for both purposes. Furthermore, it elaborates
on the clinical implementation of both models in the current clinical workflow, including a risk analysis
and change management procedure.

5.1 Auto-segmentation

In this design project, two final models were trained for auto-segmentation of respectively left- and
right-sided breast cancer, based on the model architecture described in Section 4.2.2. Both models
consist of the same submodels, listed in Table 5.1, with corresponding number of patients included for
each submodel. For the final model, 90% of the patients were used in each submodel as training set,
while 10% was used as validation set. Submodel "All" is used for the initial segmentation, including all
ROls, whereas the other submodels are used during the refined segmentation. During post-processing,
smoothing is applied and overlap between CTVp and CTVnl is removed. For all ROIs, only one
component is created, except for the thyroid, allowing the two lobes to be delineated without the
connection being detected.

5.2 Auto-planning

As mentioned in Section 4.3.2, several models were trained during the project for auto-planning. The
final models used in the different phases of this project are listed in Table 5.2. Although both the 2D
U-net and cARF model were used in the first phases, the 3D U-net, trained by RaySearch, is used for
clinical implementation due to regulatory reasons.

Submodel Left-sided Right-sided

All 30 36

CTVp 75 69

CTVni-4 41 49 Protocol Phase Model
Heart 75 45 Conventional Retrospective study 2D U-net, cARF
Lung L 75 72 breast irradiation Clinical pilot 2D U-net, cARF
Lung R 75 72 Clinical implementation 3D U-net
Esophagus 45 50 FF breast irradiation Retrospective study 2D U-net
Thyroid 40 42

Humerus 70 69 Table 5.2: Overview of the different auto-planning models

for the different irradiation protocols and study phases.
Table 5.1: Overview of submodels and the

corresponding number of patients used to

train these models.
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5.3 Clinical introduction

5.3.1 Implementation

The end goal of both auto-planning and auto-segmentation is clinical implementation in the current
daily workflow. For auto-segmentation, in this design project this implementation is tested during a
clinical pilot, whereas the auto-planning model is actually implemented for clinical use (after being
tested in a clinical pilot). In the current manual workflow, scripting is used in both processes to
semi-automate some steps in the process. For both purposes, these scripts were slightly adapted to
incorporate the Al models in the clinical workflow.

For segmentation, currently a script is used to create empty structures, based on the clinical protocol
for treatment, which can then be manually delineated. In the new workflow, the same script is used, and
again based on the clinical protocol for treatment, either automatic segmentation will be performed
or empty structures will be created. After automatically creating the structures, the RO and RTT
can use the same tools available in the TPS as for manual delineation, to correct the structures if
desired. To ease the correction of large structures, in this design project an extra scripted tool to delete
intermediate slices of a contour was created. As a result, the structure only contains a few slices, which
can then be corrected, and interpolation can be used to create a whole structure again. Hence, this
tool saves time, compared to adjusting every single slice.

For plan optimization, in the current workflow a similar script is used to create a new plan, to set
up a standard set of beams, to load the clinical goals and to load the objectives and settings used for
optimization, all linked to the clinical protocol. Again, in the new workflow the same script will be
used, but now a plan will be set up which is suitable for auto-planning. Then, the RTT can start the
auto-plan optimization, and extra objectives can be added afterwards to correct the plan, if desired.

5.3.2 Introduction in workflow

To successfully introduce the Al models in the clinical workflow, not only the technical implementation
is of importance, but also the impact for the users should be taken into account. Therefore, another step
needed for clinical implementation was to educate the ROs and RTTs about Al and how it can be used.
To facilitate this, at several moments throughout the project, information about Al in general, and this
project in particular, was provided during presentations to the whole department. More frequently, the
involved ROs and RTTs of this project were updated about the status and results. In addition, work
protocols were written and introduced for clinical implementation.

5.3.3 Commissioning

Before a model can be used in clinic, it needs to be commissioned. A general commissioning procedure
is created by RaySearch, in which the performance of the model is evaluated on an independent dataset
and the results are discussed with RaySearch. Besides, a commissioning report is created and shared
with RaySearch, including information about the model training and validation process. For this project,
the 3D U-net needed to be commissioned before actual implementation in clinical practice could be
performed. For this commissioning process, a part of the test set of the clinical pilot study was used,
including 10 patients. The results of the 3D U-net were not only compared with the manually created
plans, but also with the auto-plans created during the clinical pilot, as those were qualitatively scored
by the ROs. The 3D U-net plans were better regarding dose to OARs, while still maintaining adequate
dose to PTV, when compared to the 2D U-net plans, which were already seen as clinically acceptable
during the clinical pilot (Appendix E.2.2). Therefore, the 3D U-net was successfully commissioned and
the model is now used in clinic since May 20221,

Lhttps://www.tue.nl/en/news-and-events/news-overview /13-05-2022-breast-cancer-treatment-plans-at-the-touch-
of-a-button/
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5.4 Risk analysis

Before introducing a new method in clinical practice, possible risks should be understood and listed
and mitigation should be performed. In this design project, an adapted version of the Health Care
Failure Mode and Effect Analysis (HFMEA), used within the hospital, was used [43]. The HFMEA is
a Prospective Risk Analysis (PRA) method, where possible failures and its causes for each step in a
process are identified, after which a risk score is calculated, based on probability of occurrence and its
impact. Critical moments are listed and the desired actions to be taken are identified. More information
on how to identify and classify these actions can be found in Appendix C. For this project, a PRA was
executed on the full workflow, from model training to implementation in the clinical workflow, and
all the changes involved. A multidisciplinary team, consisting of the project leader, clinical physicists,
a medical engineer and a RO and RTT, was composed to ensure all steps within the process were
included. The final result of the PRA can be found in Table 5.3. Below, the moderate (risk score
> 5) and high (risk score > 10) risks, and its actions to mitigate these risks, are further described below.

Moderate risks

e Designing model architecture: due to a lack of knowledge or skills, an architecture could be chosen
and designed which is inappropriate for the desired purpose, resulting in insufficient performance
of the model for clinical implementation. This can be overcome by a thorough literature study
and testing in an early stage, which has been performed in this design project.

e Implementing model architecture: due to a lack of knowledge or skills, the architecture could
be wrongly implemented, causing insufficient performance. To overcome this, several tools can
be used to visualize the programmed architecture. In addition, another expert could check the
code to prevent errors, demanding the code to be well written and well described with the help
of comments. In this design project, the final architecture was visualized to check correctness
and written codes were provided with comments and additional documents.

e Auto-planning; select strategy: as described before in Section 4.3.2, RaySearch included a
functionality which enables to choose different strategies, to focus on e.g. extra sparing of
OARs or target coverage. By choosing a wrong strategy, a sub-optimal plan could be created
for the patient. However, for the treatment protocols included in this study, for all patients it
is strived to spare the OARs as much as possible. Therefore only one strategy is created. This
step is still included in this PRA, as for future models, trained for other target areas, multiple
strategies might be applicable.

High risks

e Auto-segmentation; check contours: after the delineations are automatically generated, a check
needs to be performed by the RTT and RO, to make sure they comply with the guidelines. An
extra trigger will be build into the program Work4All to remind the RTT and RO to not only
create the contours, but also check them. This program gives an overview of the steps taken in
the process of a patient. Besides, during optimization and checking of the plan, the delineations
are visible for the RTT and RO, so remarkable delineations can be noticed.

e Auto-planning; check plan and optimize further: after automatically generating the plan, it needs
to be checked and can be optimized further if needed to comply with the clinical goals. In contrast
to the previous step, a trigger is already built-in to not forget this step in the current workflow,
as the plan will be checked by multiple persons in the plan approval step, so a non-optimal plan
will be noticed.
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CHAPTER 5.

Action:
. . . . - . Critical eliminate, Description Responsible
Process step Possible failure Possible consequence Impact Possible causes Probability Risk score ! Controlled? Detectable? P P
moment? control or  of action person(s)
accept
1 Preparation
) h variati . L
data collection _..o.ﬁ enoug variation non-optimal model 4 Human; misjudgement 4 NO
(bias in data)
data check w.:m correction  data not properly non-optimal model 4 Human; misjudgement 4 NO
(pre-processing) processed for purpose
igni | | archi | itabl .
ﬁ_mm_m.:__..m model model arc itecture mode| c:mc_ﬁmv e 3 Human: misjudgement 6 NO
architecture not suitable for purpose for clinical purpose
implementing model programmed architecture
P & incorrectly programmed  doesn’t match 4 Human & technical 8 NO
architecture . .
designed architecture
. heck . .
train model no check on non-optimal model 4 Human & technical 4 NO
training progress
validation protocol model not suitable
validate model not sufficient f for clinical use, 4 Human & technical 4 YES YES
or clinical purpose but will be implemented
2 Procedure
auto-segmentation: wrong model selected wrong .8:8:3 2 Human; inattention 4 NO
select model are delineated
- jon: li i ' | o E heck
auto-segmentation delineations are contours an: t comply 4 Human: organizational 12 YES NO NO ELIMINATE  Extra chec Dave
check contours not checked with guidelines in W4A
auto-planning: .
beam set-up Wrong beam set-up non-optimal plan 3 Human 3 NO
to-planning: .
auto-pianning wrong model selected incorrect outcome 2 Human 4 NO
select model
auto-planning: plan suboptimal
select strategy wrong strategy selected for patient 3 Human 6 NO
.o plan not robust for
auto-planning: leaves of MLC swelling and 3 Human 3 YES YES
open leaves not opened .
patient movement
auto-planning:
check plan plan is not checked non-optimal plan 4 Human; organizational 12 YES YES
and optimize further
3 Closure
auto-planning: no connection plan won't be approved 2 Technical 2 YES YES

plan approval

with safe2treat

Table 5.3: Overview of the Prospective Risk Analysis, identifying critical moments and the desired actions to be taken. The risk score is calculated by
multiplying the impact by the probability. A green risk score indicates low risk (risk score < 4), yellow indicates moderate risks (risk score > 5) and red
indicates high risk (risk score > 10)
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5.5 Change management

The introduction of Al models in clinical practice at the department of radiotherapy in CZE implies
changes for the end-users. These changes are not only the actual changes in the workflow, but also
involve the need for changes on other levels. First of all, for acceptance of a new workflow, it is
important for the end-users to gain knowledge about the method, which is provided by for example
presentations, as mentioned before in Section 5.3.1. Furthermore, the end-users need to gain trust in
the Al models, which can also be achieved by involving them in an early stage and when performing the
clinical pilot. Besides, by performing research in the fairly new field of Al, new research protocols are
needed. It is of high performance to register the dataset used for the development and evaluation of Al
models, as well as the tests performed to evaluate the performances. Therefore, a model registration
sheet is developed during this design project as well, which can be found in Appendix D.
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6 Results, Verification and
Validation

Verification and validation are performed to check whether the implemented design meets its
requirements. Verification is used to check whether the design meets the specifications, while vali-
dation is used to check if design generates an output conform the user needs and intended use (see
Figure 3.3). For this project, the performance will be assessed by comparing the results of the Al
models with the requirements set in Chapter 3.

6.1 Auto-Segmentation

6.1.1 Retrospective study

In the retrospective study, only quantitative measurements were performed. The resulting DSC scores
and 95% HD values are listed in Table 6.1 and visualized in Figure 6.1, whereas the other quantitative
results can be found in Appendix E. The DSC score and 95% HD are compared to the requirements,
which were introduced in Section 3.3.2. Green boxes indicates that the requirements are fulfilled as a
better result is achieved, while red boxes indicates that the model did not meet the requirements for
that ROI. The yellow boxes indicate scores which did not completely meet the requirements as the
mean scores were lower, but when taking the deviation of the requirements in account, one could say
that it is still within the accepted range.

For the esophagus, the DSC score is too low for both models. After visual inspection, it was
discovered that the mismatch is partly due to a difference in the length of the delineated contour.
Therefore, the DSC score was also calculated for the overlapping parts, which resulted in a score
(mean = std) of 0.77 + 0.08 for both models, approaching the requirement better. Therefore, although
these scores still do not fully fulfil the requirements, it was still chosen to continue to the next phase
without any additional changes for this ROI. The thyroid is the second ROl which does not meet the
requirements. However, as explained in Section 4.2.1, a lot of variation existed within the dataset,
which makes it a hard contour to train and evaluate. Therefore, for this ROl it was also chosen to

DSC score 95% HD [mm]
(mean + sd) (mean + sd)
ROI Left Right Requirements Left Right Requirements
CTVp 0.94 £ 0.02 0.94 £ 0.02 0.85 + 0.02 10.45 £ 12.26  9.26 &+ 3.64 8.94 + 2.86
CTVnl 0.78 £ 0.06 0.80 £ 0.04 0.69 + 0.04 1198 +£5.33 1054 +3.73  13.58 £ 3.00
CTVn2 0.74 £ 0.07 0.69 £ 0.07 0.47 £ 0.17 9.52 £+ 4.95 9.32 £ 3.60 18.74 + 8.15
CTVn3 0.74 £ 0.07 0.74 £ 0.05 0.56 £ 0.10 6.45 £ 1.94 7.56 £ 3.23 9.87 £+ 3.61
CTVn4 0.58 £ 0.12 0.56 £ 0.13 0.45 £ 0.13 6.12 £ 2.18 6.78 £ 3.74 11.82 + 4.88
Esophagus 0.70 £ 0.11 0.70 £ 0.09 0.78 = 0.04 8.83 + 5.58 10.34 £+ 8.08 7.08 £ 3.52
Heart 0.94 £0.02 0.94 £ 0.01 0.91 +£0.01 6.81 + 2.94 8.10 + 4.38 13.00 £ 5.10
Lung Left 0.98 £0.01 0.98 £ 0.01 0.99 + 0.00 2.32 £ 3.02 2.81 +1.42 2.33 £ 0.95
Lung Right 0.99 £ 0.01 0.98 + 0.01 0.98 £ 0.00 1.42 + 0.63 2.87 £1.37 2.19 £+ 0.66
Thyroid 0.67 = 0.12 0.58 £ 0.20 0.72 £ 0.07 7.11 £ 4.38 9.35 £ 9.03 5.37 £ 1.70
Humerus 0.86 = 0.06 0.84 £ 0.05 0.70 £ 0.05 7.40 £ 4.44 8.97 £ 2.71 7.00 £+ 2.00

Table 6.1: Quantitative results of the retrospective study for auto-segmentation. Fulfilled require-
ments are indicated by green boxes, close-to-fulfilled requirements by yellow boxes, and not-fulfilled
requirements by red boxes.
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Figure 6.1: Visualization of the quantitative results of the retrospective study for auto-segmentation. Horizontal lines in
boxes are medians, crosses are means, dots are outliers. Statistically significant differences between the two models are

indicated with with an asterisk (p < 0.05).

continue without any additional changes. Moreover, Table 6.1 shows a slightly too high value for the
95% HD for the CTVp, with a high standard deviation for the left-sided model. However, as can be
observed in Figure 6.1, this can be explained by the fact that there is one outlier for this ROI.

Figure 6.2 shows some axial slices for two example cases on which auto-segmentation is performed.
For case 1, a high similarity between the auto-segmentation contours, visualized by the filled contours,
and the manual contours, visualized by the lines, can be observed. However, in case 2 some faulty
delineations are present. In the first two slices, the CTVp is wrongly delineated in the dorsal direction
by delineating a larger area. In contrast, the automatically generated CTVnl contour misses a region.
On the last slice, two small orange spots can be observed, which are wrongly delineated spots belonging
to the thyroid. However, in clinical practice these errors will be checked and corrected before use, which
can still lead to time saving. For example, removing the small spots of the thyroid is quite easy, and
the remaining part was well delineated.

Finally, the two models are statistically compared with the Wilcoxon Rank-Sum test to assess if
there is a difference in performance. Only for both lungs, a p-value < 0.05 was found, indicating a
better performance of the left-sided model for these ROls. However, these differences are clinically
irrelevant since the quantitative scores are still indicating almost perfect overlap for both sides. In
addition, two experienced ROs evaluated the performance of the models on a set of 6 demo-patients,
and concluded that the performance was sufficient to start the clinical pilot.

Figure 6.2: Two example cases for auto-segmentation. Auto-segmentation delineations are
represented by the filled contours, whereas manual delineations are represented by the lines.
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6.1.2 Clinical pilot

For the clinical pilot, both quantitative and qualitative measurements were performed. In total, 10
patients were used for both the left- and right-sided model, which were collected from clinical practice
during the period of September 2021 - June 2022. For the left- and right sided set, respectively 4
and 7 patients included delineations of node levels 1 to 4, whereas the other patients only included
levels 1 and 2, reflecting the variation within the patient group in clinical practice. The models showed
comparable quantitative results before correction to the results found in the retrospective study, that
can be found in Appendix E.

The most important outcome of this study is the time saved while using auto-segmentation. Only
for one patient case out of 20, the time needed to correct the OARs took more time than the manual
delineation, leading to a decrease in time in 95% of the patients, fulfilling the requirement set in Section
3.3.1. The mean time (hh:mm:ss) for manual delineation was 0:17:05 and 0:41:31 for the OARs and
CTVs, respectively. While using auto-segmentation, the total time spent including correction was
00:08:47 and 0:15:43 for the OARs and CTVs, resulting in a reduction (mean + std) of 42.4% +
26.5% and 58.5% =+ 19.1%, respectively.

The generated contours were also qualitatively scored by the RTTs and ROs, using a 3-point scale
(clinically acceptable, corrections needed or not usable). For both models, the scores are visualized in
Figure 6.3. While for the OARs, only the heart and thyroid both got scored as not usable in only one
case, this was more often the case for one of the CTVs. The primary CTV (CTVp) was found not
to be usable in 7 cases, the first node level (CTVnl) in 6 cases and the fourth node level (CTVn4)
in 4 cases. A few observations can be made. First of all, the correction needed for the left and
right lungs in respectively 20 and 50% of the cases for the right-sided model is remarkable, given
the high quantitative score for these ROls. Except for one case, these scores were assigned by the
same observer, emphasizing the subjectivity of these scores. Moreover, it emphasizes the fact that
inter-observer variability is present in the segmentation process. Something similar can be observed
for CTVp and CTVnl, which were always assigned a score of 3 by one of the observers, which scored
4 cases in total. No correlation was found between the metrics and the assigned score, except for
assigning score 3 to cases which were outliers in terms of DSC score and HD95%. However, score 3
was also assigned to ROIs which had high quantitative results.

Left sided

i
il - .II

CTvn2 CTvn3  CTVn4 Heart Lung_L Lung_R Thyroid EsophagusHumerus CTVp CTvnl  CTVn2 CTvn3  CTVn4 Heart Lung_L Lung_R Thyroid EsophagusHumerus

100 Riiht sided

607

% of cases

204

Region of Interest Region of Interest

mmm Score 1 - clinically acceptable Score 2 - corrections needed W Score 3 - not usable mmm Score 1 - clinically acceptable Score 2 - corrections needed

Figure 6.3: Qualitative results of the clinical pilot for auto-segmentation. For each ROI, the percentage
of cases receiving one of the scores is indicated. For both sides, 10 patients were included, which contain
CTVn3 and CTVn4 in 4 and 7 cases, for respectively the left- and right-sided model.

The impact of the corrections made was also quantitatively measured, by calculating the quantitative
metrics for both the automatically generated and corrected structures, using the manually generated
structure as ground-truth. A complete overview of these results can be found in Appendix E. The
differences in DSC score and 95% HD for each structure are visualized in Figure 6.4. A positive
difference in DSC score indicates a higher DSC score for the corrected structure and thus a better
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Figure 6.4: The difference in quantitative measurements of the automatically generated contours and
corrected contours in the clinical pilot. A better score for the corrected contours is indicated by a
positive DSC value or a negative 95% HD value.

agreement with the manual structure. The opposite is the case for the 95% HD, where a negative
difference indicates a better agreement of the corrected with the manual structure. The Wilcoxon
signed-rank test is used to assess statistically significant difference between the corrected and not-
corrected structures. For the DSC score, a significant difference is found for the right-sided CTVp and
heart and left-sided CTVn1, whereas for the 95% HD this was only the case for the left-sided CTVn1.
These results indicate that, although corrections were made in several ROls, only for a small number
of cases these corrections are significantly different. Investigating the actual clinical relevance of these
corrections was out of scope for this project.

6.2 Auto-Planning

6.2.1 Retrospective study

The retrospective results for conventional breast irradiation were analyzed in the previous project [15].
In Appendix A the method used, results and conclusion are briefly described. For FF irradiation, transfer
learning was used to train a model and the predicted and mimicked dose distributions were evaluated.
To compare the manually and automatically generated plans, all plans were scaled such that 98% of the
PTV volume receives 95% of the prescribed dose, which is one of the clinical goals. The percentage of
fulfilled clinical goals for each method can be found in Table 6.2. As can be seen, the predicted plans
only failed one clinical goal for one patient, whereas more clinical goals were failed for the mimicked
plans.

The DVH parameters are listed in Table 6.3. A Wilcoxon signed-rank test is performed to compare
the doses of the predicted and mimicked plans with the manually generated doses, and show a significant
difference for all DVH parameters of the mimicked plans. However, further tweaking of the mimick
settings was not performed, which could improve these results. For the predicted plans, only a significant
difference was found for the maximum dose the heart, indicating that transfer learning can be used
successfully, requiring only a small dataset. Lastly, the Wilcoxon signed-rank test was used to compare
the number of MUs used for the manual and auto-plan, resulting in a p-value of 0.2, meaning no
significant difference was found, and thus fulfilling this requirement with regard to the number of MUs.
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CHAPTER 6. RESULTS, VERIFICATION AND VALIDATION

Clinical goals met [%]

Manual Auto-plan
Clinical goal Predicted Mimicked
PTV: at most 2574 cGy average dose 100 100 100
PTV: at most 2626 cGy average dose 100 100 40
PTV: at most 2782 cGy at 2% volume 100 100 90
Lungs: at most 300 cGy average dose 100 100 100
Lungs: at most 200 cGy average dose 100 100 90
Heart: at most 150 cGy average dose 100 100 100
Heart: at most 100 cGy average dose 100 90 90
CL Breast: at most 100 cGy average dose 100 100 100
External-PTV: at most 10 cc at 2782 cGy 100 100 100

Table 6.2: The percentage of clinical goals met in the retrospective study for FF breast
irradiation for the test set, containing 10 patients.

PTV Heart Lungs

Dose [cGy] z:afii:?l?:j E’:,’/:t] Dose [cGy] | Dose [cGy]

Manual Aver'age 2609 + 12 +0.34 64 + 15 123 + 33
Maximum | 2723 + 23 +4.73 280 £ 141 1629 + 418

Predicted Aver_age 2604 + 10 +0.15 68 + 18 126 + 32
Maximum | 2708 + 13 +4.13 331 + 197 | 1664 + 343

Mimicked Average 2633 + 13 +1.27 72+ 22 132 + 32
Maximum | 2147 + 17 +5.65 382 £ 264 | 1766 £ 364

Table 6.3: Average and maximum doses in cGy to ROls for the clinical plans, predicted and mimicked
plans of the U-net model for FF irradiation (mean £ standard deviation). For PTV, the difference
between mean average and maximum dose with respect to the prescribed dose (2600 cGy) is shown.
Doses differing significantly from clinical doses are printed in italic.

6.2.2 Clinical pilot

A clinical pilot was performed for conventional breast irradiation, in which the performance of the 2D
U-net and cARF models was assessed by blindly scoring the resulting plans and a manually generated
plan of 20 patients. An example case is shown in Figure 6.5, showing the dose distribution of a manual,
cARF and U-net plan.

Figure 6.5: Example case for auto-planning, showing the manual, cARF and U-net plan.
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Figure 6.7: Qualitative results of the clinical pilot for auto-planning,
containing the ranking of the Al plans in comparison with the manual
plan by the radiation oncologists on an individual basis

Figure 6.6: Time needed for the plan gen-
eration. For the Al plans, the time spent on
user interaction sis separately specified. The
red crosses represent outliers.

The most important outcome measure is the time needed to manually and automatically generate
the plans. The median time needed was 253 s (range 72-984 s) for the manual plans, 471 s (430-550
s, p=0.014) for the cARF plans, and 287 s (229-352 s, p=0.411) for the U-net plans. However, these
times include computation times for the auto-plans, and the user interaction was only 121 s (92-180 s)
for the cARF plans and 136 s (53-205 s) for the U-net plans. For the manual plans, the computation
time was not recorded separately as it is often interleaved with manual adjustments. According to the
technical requirements set in Section 3.3.1, a decrease in time in 90% of the cases was demanded. For
the cARF and U-net plans, when considering user-interaction, a decrease in time was only achieved in
85% and 75% of the cases, respectively. However, the maximum observed increase of time was 65 s,
whereas a decrease can be as much as 861 s. This observation is also reflected in Figure 6.6, where it
can be observed that the time range for manual planning is much larger. So although the requirement
is not fulfilled, it can be stated that auto-planning is a more time efficient way.

During the blind scoring of the plans, 90% of both the manual and cARF plans and 95% of the U-
net plans were considered clinically acceptable by all 4 observers. As can be seen in Figure 6.7, the
preference of the observers quite differed, resulting in only 35% of the cases where all observers inde-
pendently agreed the auto-plan was equally suitable or better than the manual plan, and in 45-50% of
the cases there was even no consensus (Table 6.4).

The quantitative measurements and its comparison to the requirements stated in Chapter 3.3.2 can
be found in Appendix E. When comparing the qualitative results to the requirements, the minimum
clinically acceptability rate of 90% is fulfilled for both models, and U-net even outperforms this re-
quirement. Besides, the auto-plans should be non-inferior to the manual plans, using the Wilson score
interval method, where the lower limit should be greater than 45%. For each observer, the Cl is cal-
culated and displayed in Table 6.5. Only for observer 2, the requirement of non-inferiority is fulfilled.
However, when considering all 80 observations independently, both methods show non-inferiority.

6.2.3 Clinical implementation

As mentioned in Section 5.3.3, the 3D U-net needed to be commissioned before it could be used
in clinic. In the commissioning process, 10 of the patients of the clinical pilot were used, enabling
comparison of the 3D U-net plans with manual plans. The resulting DVH parameters and clinical goals
can be found in Appendix E.2.2.
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Acceptable Consensus Consensus No
autoplan autoplan
for all consensus
worse equal/better
[%] [%] [%] [%]
Manual 90
cARF 90 15 35 50
U-net 95 20 35 45

Table 6.4: Qualitative results of the clinical pilot for auto-planning,
evaluated by the radiation oncologists

6.3 Summary

Observer cARF U-net
1| 60% (39-79%)  55% (34-74%)
2 | 85% (64-95%)  75% (53-89%)
3 | 55% (34-74%)  55% (34-74%)
4 | 60% (39-79%)  65% (43-82%)
Total | 65% (54-75%) 62.5% (52-72%)
(n = 80)

Table 6.5: Confidence intervals for each observer,
calculated using the Wilson score interval method.
Non-inferiority is achieved if the lower limit is higher
than 45%.

Several studies were performed to assess the performance of the design for both auto-segmentation
and auto-planning. Figure 6.8 gives an overview of the most important outcomes, related to the set

of requirements set in Chapter 3 and visualized in Figure 3.3.

For auto-segmentation, not all quantitative requirements were met in the retrospective study. However,
after visual inspection of the results and evaluation by two experienced ROs, it was decided to start the
clinical pilot. Similar values for the quantitative measures were found in the clinical pilot, indicating
robustness of the model. The requirement of a decrease in time in 90% of the cases was fulfilled, with
a mean time reduction of 42.4% and 58.5% for the OARs and CTVs, respectively. Besides, during
qualitative measurement, the automatic structures got a score of 1 or 2 in 92% of the cases, indicating

usefulness in clinic.

For auto-planning, not all requirements were met for the FF irradiation model after mimicking. However,
the predicted dose did fulfill these requirements, and further tweaking of the mimick settings could
improve the final results. For conventional irradiation, the cARF and U-net model resulted in a clinically
acceptable plan in 90% to 95% of the cases, in a time efficient way. Finally, the 3D U-net model was
successfully commissioned for clinical use. The results and follow-up steps will be further discussed in

Chapter 8.
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7 Conclusions

The goal of this design project was to automate the treatment planning process for breast irradiation
using Al. Several models were developed and/or trained and validated for segmentation of contours
(auto-segmentation) and dose prediction for treatment plan optimization (auto-planning). For both
purposes, a retrospective study was performed, followed by a clinical pilot.

For auto-segmentation, a mean time reduction of 42% for OARs and 59% for CTVs was achieved,
fulfilling the primary end goal of time saving. Besides, the contours were scored as directly usable or
useful for correction in 92% of the cases, indicating clinical usefulness.

For auto-planning, transfer learning showed promising results in the retrospective study to create a
FF irradiation model, based on the previously trained model for conventional irradiation. For conven-
tional irradiation, two models were tested in a clinical pilot, where the 2D U-net model was scored as
clinically acceptable for all observers in 95% of the cases, in a time efficient way.

Both models showed promising results and added value in the radiotherapy treatment planning
process, with clinically acceptable outputs while saving time. These results already led to successful
clinical implementation of the Al model for auto-planning at the radiotherapy department at CZE at
May 2022 (during this design project), and preparations are started to implement the Al model for
auto-segmentation in Q3 of 2022 (after the design project).
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8 Discussion and
Recommendations

In this design project, Al models were developed, trained and evaluated to automate segmentation
and plan optimization for breast cancer. Throughout the process, several critical moments occurred
and crucial choices were made, which influenced the outcome of the project. In this section, these
moments and choices are discussed, as well as alternatives for these situations. Moreover, future
recommendations for successful implementation of Al models in clinic are discussed.

8.1 Auto-segmentation

For auto-segmentation, a model provided by RaySearch was trained on the data from our own clinic,
retrospectively obtained from the clinical archive. Even though these delineations were checked before
treatment of the patient, not all delineations fulfilled the guidelines used in our clinic, causing the need
for extensive review of the dataset. Several causes can be distinguished for this problem. First of all,
some delineations are adapted to be patient specific. For example, for some patients a bigger region
around the lymph nodes was delineated, as the PET scan indicated that those regions were also involved
in the malignant region. Second, the importance of accuracy is different for the CTVs and OARs
volumes, where CTVs need higher accuracy and anatomical individualisation. Besides, throughout
the years, the interpretation of the guidelines can change, causing a difference in delineations. For
example, for high risk patients, recently the lymph node areas were enlarged. At last, there is a known
interobserver variability, which was already discussed in Section 3.2.3. The review of the dataset needs
to be performed in close collaboration with experienced RTTs and ROs, to ensure a high quality dataset.
However, available time of these users can be scarce, resulting in the need of a clear procedure on how
to review this data.

During the training process of the model, several choices were made, which are further explained
in Appendix B. These choices resulted in an increase of model performance. However, for some
structures, in particular the esophagus and thyroid, the desired result was still not achieved, as is
discussed in Section 6.1.1. These outcomes could probably be improved by using a larger and more
uniform dataset for training. In this project, it was chosen to not invest in collecting more data, as this is
a time consuming and user intensive process. It was decided to continue to the clinical pilot, to assess
the clinical importance of the deviations from the requirements. Although these structures needed
correction in most of the cases, time saving was still achieved when compared to manual delineation,
therefore meeting the primary endpoint. In the future, more data could be included to improve the
model performance, leading to a decrease in corrections needed.

During analysis of the results of the clinical pilot, it was observed that different scores were assigned
by different RTTs and ROs for comparable corrections made. For example, one RO would assign a
score 2 if it had to correct 8 slices of the CTVp, while another RO would assign a score 3. Therefore, it
is important to further investigate the actual corrections made during the pilot. Moreover, the results
should be discussed with the RTTs and ROs involved. Besides, the pilot only involved auto-contours,
which could induce subjectivity. Users could judge automatically generated contours differently, then
they would judge manually generated contours by a change in perception towards the use of Al. This
difference could be overcome by performing a head-to-head comparison, such as the Turing test, in
which the user has to identify the origin of the contour [44]. However, as the execution of the clinical
pilot is already time-consuming, and the primary outcome of the model is to evaluate time-saving and
not quality, this test was not performed.

Recently, a study was published by Almberg et al. in collaboration with RaySearch, training a model
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for the same target area. Similar results were achieved, except for CTVn4, thyroid and humerus, which
scored better in the other study. These regions were known to perform less in the model trained for
our project as explained above. In a future study, an extensive comparison could be made to assess
the difference in performance in more depth and explore the origin of these differences. For example,
their model could be tested on our data and vice versa, which tests the generalisability of the model.
Moreover, this comparison could expose differences present in the dataset, which would be valuable
information.

An evaluation method of the model performance which was not performed in this study, but is used
in other studies involving auto-segmentation, is dosimetric evaluation [10,45]. This method gives an
indication of the clinical relevance of variations in contours and could therefore quantify the clinical
relevance of corrections made. It can be performed by comparing the dose delivered to automatically
and manually generated contours. For a fair comparison, variability existing in creating treatment plans
should be eliminated, which can be fulfilled by using auto-planning. Besides, it is also important to only
evaluate the dosimetric parameters that correlate with clinical outcomes, which is not always the case
for parameters used in clinical trials and routine practice [45]. In a future study, the dosimetric impact
of this auto-segmentation model could be evaluated. Ideally, this information could be incorporated in
the auto-segmentation tool, indicating in which regions the uncertainty of the auto-contour is large,
and in which regions corrections would be clinical relevant.

8.2 Auto-planning

Throughout the course of this design project, several models were developed, trained and evaluated for
auto-planning, including two different fraction schemes. A retrospective study was performed for the
FF irradiation scheme. Although the predicted dose showed comparable results in terms of average and
maximum dose to the PTV and OARs, the mimicked dose lead to significant higher doses. Thereby,
the average dose to PTV was too high in 60% of the mimicked plans, which could lead to clinically
unacceptable plans. However, the mimick settings could be changed to improve these results, which
was not investigated in this study, since the main goal was to investigate if transfer learning would be
feasible to develop a model with less data available. The results of the predicted plans indicate that
this is the case. The concept of transfer learning was also discussed with RaySearch, which confirmed
the possibility of this method using their own model architecture and framework. Therefore, the 3D
U-net, developed by RaySearch, could be trained using the relatively small dataset, using the outcome
of the trained 3D U-net for conventional irradiation as starting point.

For conventional irradiation, model development and retrospective evaluation was already per-
formed. This design project involved the clinical pilot, which showed promising results. However, some
issues had to be overcome. The most important issue was a change in the evaluation of the dose
to PTV, demanding an average dose between 99% and 101% of the prescribed dose. However, this
requirement was not represented in the plans involved in training of the model, which often contained
a higher average dose. To assess the performance of the model, it was chosen to use the evaluation
criteria which were used when collecting the data, and thus exclude the new PTV criteria. Therefore,
the RTTs were asked to create manual plans as if this criteria was not introduced. However, since
the RTTs were already used to the new criteria in clinical practice, and also the ROs were used to
judge the plans based on these criteria, a bias was introduced in creation the manual plans and blind
scoring of all plans. In addition to this bias, a difference in preference was observed in the scoring of
the ROs, resulting in a low consensus rate. This difference in preference is insightful when developing
and validating a model, and stresses that a model should not only be validated by quantitative mea-
sures. In addition, it should be noted that these difference in perception could be considered as a more
general issue, and not only related to the performance of the model. Since the auto-plans and manual
plans perform comparably in terms of clinical goals, it should be discussed whether the differences in
preference are considered relevant, which calls for peer review, education and possible new guidelines.

While in the clinical pilot the new evaluation criteria were ignored, they should of course be covered
to enable clinical implementation. First, RaySearch trained the 3D U-net with our dataset, generating
comparable predictions. To further tweak the model outcome, multiple sessions were held with the ML
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engineers of RaySearch to finalize the mimick settings. The changes in the settings lead to a decrease
in the average dose to PTV, while still remaining a low dose to the OARs. It is important to gain
more knowledge of the effect of these mimick settings on the model outcomes, to be able to test more
settings, independent of RaySearch.

As mentioned in Section 5.3.3, the 3D U-net was successfully commissioned and is used in clinic
since May 2022. Although a thoroughly test procedure was performed, including the retrospective
study, clinical pilot and commissioning process, new questions and issues arose. RTTs were unsure if
and what adaptions they were allowed to make, and had issues to judge if the plan was optimal for
the patient, or if, for example, the dose to the OARs could be further decreased. Therefore, it is of
utmost importance to be present at clinic after clinical implementation to answer such questions and
support with the first patient cases. Moreover, it stresses the importance of involving some users in
an early-stage of the project. In this project, the involved RTTs could support in clinic, which was
very valuable. Regarding the adaptations made in the plans, it was observed that as the model was
used more often, less adaptations were made. This indicates an increase in trust in the model. Some
RTTs created a manual plan, next to the automatic plan, and concluded that the automatic plan
was comparable and thus usable. So although this finding was already proved in several studies, it is
important that the end-user gets familiar with the Al model and its outcomes.

8.3 Future recommendations

Next to the future recommendations regarding auto-segmentation and -planning, mentioned above,
more aspects need to be explored to successfully integrate Al in daily clinical practice. An advisory
report is written, in which the recently drafted vision of the CZE on the use of Al is reviewed, and
needed changes and concrete next steps are set up for the department of radiotherapy to meet up with
this vision. The report can be found in Appendix F. One of the key-points of this report is the need
for an "Al responsible person", who will monitor the different Al projects of the department and the
documentation and registration of these projects, as mentioned earlier in Section 5.5. Besides, this
person will be in contact with other departments involved in the Al process, such as the legal and ICT
department and the, yet to be set up, Al competence center. Besides, the need for multidisciplinary
teams within the department is stressed, to involve the end-users at an early stage. Finally, the added
value of an Al model should be defined, including the target profit, and eventually measuring the
achieved profit.
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0 Reflection

9.1 Project reflection

During the QME program, several tools and resources are provided to support the design process and
project management. This project involved a larger research aspect than most design projects, which
made it sometimes hard at first sight to directly apply these tools and resources. However, at several
moments these tools definitely supported in this project.

First of all, the initial project planning differed from the final project planning due to unforeseen
delays, as explained in Section 2.4. However, by working in an iterative way and evaluating the
project progress at several moments throughout the project, the project team could be flexible and
all deliverables could be completed in time. Improvements regarding to time management could have
been made regarding efficiency of data collection. A lot of work was involved in checking and adjusting
the data, executed in multiple iterations. However, when more knowledge of the data at the start of
the project would have been gained, by for example a start-up meeting with the end-users to highlight
the key features to pay attention to, less iterations would have been needed.

The importance of these end-users was also highlighted by creating a stakeholder map and identi-
fying users and suppliers. When performing the clinical pilot for auto-planning, there was a mismatch
between the evaluation criteria of the design and clinical reality. After involving the end-users more in
the project, the execution of the clinical pilot for auto-segmentation went well and in an efficient way,
while receiving positive feedback and also more involvement and enthusiasm of other RTTs and ROs
that were not directly involved.

Regarding the design cycle provided by the QME program, the emphasis on the functional and
technical requirements, and how to validate and verify these, benefited the final design. It was not
straightforward to find and set hard requirements, which led to fruitful discussions with the project
team and during the project reviews, improving the quality of the executed studies and final design.

In conclusion, although at first sight this project was not a regular design project, applying the
design cycle and other tools had added value in succesfully completing the project.

9.2 Personal reflection

This design project gave me the opportunity to clinically validate my previously conducted research and
actually implement own developed and trained models in clinical practice. This opportunity was really
valuable, as it is quite rare to be involved in such a project from start to end. These next steps meant
that the clinical side became more important, and more discussion was needed with the end-users to
make sure the end product has added value. Unfortunately, Covid-19 made us work from home for a
part of the project, mainly during the first year. This situation made it difficult to get in contact with
the RTTs and ROs. Besides, the clinical workload increased, making the available time of the RTTs
and ROs even more scarce. Luckily, during the clinical pilot, contact with the RTTs and ROs was good
and valuable feedback was given during the clinical implementation of the auto-planning model.
Personally, | have experienced growth on several aspects during this design project. First of all, |
have gained knowledge about processes at the department, but also about more overarching processes
of the hospital, for example with regard to the legal aspects of conducting research. During the
project, | gained more trust from the end-users by intermediately discussing results and evaluating the
performance, which was important for the acceptance of the design in clinical practice. Although |
could have been more active in promoting my project at the department, which was also harder due
to the working form home situation, | already grew in communicating my results. This growth was
also reflected in multiple presentations and talks that | gave during the design project. Although it
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is always a bit uncomfortable for the first few times, | am now able to explain my project, results
and other relevant topics in a clear and calm way, with more confidence. Another important point
of growth is taking more initiative to propagate my ideas and solutions. My professional network has
been expanded over the past few years, especially regarding Al researchers and other people involved
in those projects in our hospital. | took the initiative to discuss my experiences and ideas regarding
my Al project. This lead to the ability to participate as one of the first use-cases for the launch of
the Al platform of the hospital. Furthermore, | became involved in a hospital-wide initiative to further
professionalize Al projects. In the future, | look forward to contribute to implementing Al in a safe and
value adding manner, to improve healthcare outcomes for patients.

Pag. 48



Bibliography

[1]

[2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Borstkanker in Nederland, kerncijfers uit de Nederlandse Kankerregistratie. https://iknl.nl/
borstkankercijfers. Geraadpleegd op: 03-05-2022.

Gabor Cserni, Ewa Chmielik, Balint Cserni, and Tibor Tot. The new tnm-based staging of breast
cancer. Virchows Archiv, 472(5):697-703, 2018.

Elaine M Zeman, Eric C Schreiber, and Joel E Tepper. Basics of radiation therapy. In Abeloff’s
Clinical Oncology, pages 431-460. Elsevier, 2020.

Kun-Hsing Yu, Andrew L Beam, and Isaac S Kohane. Artificial intelligence in healthcare. Nature
biomedical engineering, 2(10):719-731, 2018.

Trishan Panch, Peter Szolovits, and Rifat Atun. Artificial intelligence, machine learning and health
systems. Journal of global health, 8(2), 2018.

Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a convolutional neural
network. In 2017 international conference on engineering and technology (ICET), pages 1-6. leee,
2017.

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representations. In Proceedings of the
26th annual international conference on machine learning, pages 609-616, 2009.

Miriam Santoro, Silvia Strolin, Giulia Paolani, Giuseppe Della Gala, Alessandro Bartoloni, Cinzia
Giacometti, llario Ammendolia, Alessio Giuseppe Morganti, and Lidia Strigari. Recent applications
of artificial intelligence in radiotherapy: Where we are and beyond. Applied Sciences, 12(7):3223,
2022.

Philip MP Poortmans, Silvia Takanen, Gustavo Nader Marta, lcro Meattini, and Orit Kaidar-
Person. Winter is over: the use of artificial intelligence to individualise radiation therapy for breast
cancer. The Breast, 49:194-200, 2020.

Liesbeth Vandewinckele, Michaél Claessens, Anna Dinkla, Charlotte Brouwer, Wouter Crijns, Dirk
Verellen, and Wouter van Elmpt. Overview of artificial intelligence-based applications in radiother-
apy: recommendations for implementation and quality assurance. Radiotherapy and Oncology,
153:55-66, 2020.

Vikneswary Batumalai, Michael G Jameson, Dion F Forstner, Philip Vial, and Lois C Holloway.
How important is dosimetrist experience for intensity modulated radiation therapy? a comparative
analysis of a head and neck case. Practical radiation oncology, 3(3):¢99-e106, 2013.

Sean L Berry, Amanda Boczkowski, Rongtao Ma, James Mechalakos, and Margie Hunt. Interob-
server variability in radiation therapy plan output: results of a single-institution study. Practical
radiation oncology, 6(6):442-449, 2016.

Delia Ciardo, Angela Argenone, Genoveva lonela Boboc, Francesca Cucciarelli, Fiorenza De Rose,
Maria Carmen De Santis, Alessandra Huscher, Edy Ippolito, Maria Rosa La Porta, Lorenza Marino,
et al. Variability in axillary lymph node delineation for breast cancer radiotherapy in presence of
guidelines on a multi-institutional platform. Acta oncologica, 56(8):1081-1088, 2017.

Shalini K Vinod, Myo Min, Michael G Jameson, and Lois C Holloway. A review of interventions
to reduce inter-observer variability in volume delineation in radiation oncology. Journal of medical
imaging and radiation oncology, 60(3):393-406, 2016.

Pag. 49


https://iknl.nl/borstkankercijfers
https://iknl.nl/borstkankercijfers

BIBLIOGRAPHY

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Nienke Bakx. Optimization and automation of radiotherapy treatment plans for breast cancer
(master thesis report). 2020.

Adrian Murray Brunt, Joanne S Haviland, Duncan A Wheatley, Mark A Sydenham, Abdulla
Alhasso, David J Bloomfield, Charlie Chan, Mark Churn, Susan Cleator, Charlotte E Coles, et al.
Hypofractionated breast radiotherapy for 1 week versus 3 weeks (fast-forward): 5-year efficacy
and late normal tissue effects results from a multicentre, non-inferiority, randomised, phase 3 trial.
The Lancet, 395(10237):1613-1626, 2020.

Birgitte V Offersen, Liesbeth J Boersma, Carine Kirkove, Sandra Hol, Marianne C Aznar, Al-
bert Biete Sola, Youlia M Kirova, Jean-Philippe Pignol, Vincent Remouchamps, Karolien Verho-
even, et al. Estro consensus guideline on target volume delineation for elective radiation therapy
of early stage breast cancer. Radiotherapy and oncology, 114(1):3-10, 2015.

Birgitte V Offersen, Liesbeth J Boersma, Carine Kirkove, Sandra Hol, Marianne C Aznar, Al-
bert Biete Sola, Youlia M Kirova, Jean-Philippe Pignol, Vincent Remouchamps, Karolien Verho-
even, et al. Estro consensus guideline on target volume delineation for elective radiation therapy
of early stage breast cancer, version 1.1. Radiotherapy and oncology, 118(1):205-208, 2016.

Jordan Wong, Vicky Huang, Derek Wells, Joshua Giambattista, Jonathan Giambattista, Carter
Kolbeck, Karl Otto, Elantholi P Saibishkumar, and Abraham Alexander. Implementation of deep
learning-based auto-segmentation for radiotherapy planning structures: a workflow study at two
cancer centers. Radiation Oncology, 16(1):1-10, 2021.

Mingging Wang, Qilin Zhang, Saikit Lam, Jing Cai, and Ruijie Yang. A review on application of
deep learning algorithms in external beam radiotherapy automated treatment planning. Frontiers
in oncology, 10:2177, 2020.

Mariel Cornell, Robert Kaderka, Sebastian J Hild, Xenia J Ray, James D Murphy, Todd F Atwood,
and Kevin L Moore. Noninferiority study of automated knowledge-based planning versus human-
driven optimization across multiple disease sites. [International Journal of Radiation Oncology*
Biology* Physics, 106(2):430-439, 2020.

Chris Mclntosh, Leigh Conroy, Michael C Tjong, Tim Craig, Andrew Bayley, Charles Catton,
Mary Gospodarowicz, Joelle Helou, Naghmeh Isfahanian, Vickie Kong, et al. Clinical integration
of machine learning for curative-intent radiation treatment of patients with prostate cancer. Nature
Medicine, 27(6):999-1005, 2021.

X Allen Li, An Tai, Douglas W Arthur, Thomas A Buchholz, Shannon Macdonald, Lawrence B
Marks, Jean M Moran, Lori J Pierce, Rachel Rabinovitch, Alphonse Taghian, et al. Variabil-
ity of target and normal structure delineation for breast cancer radiotherapy: an rtog multi-
institutional and multiobserver study. [International Journal of Radiation Oncology* Biology*
Physics, 73(3):944-951, 2009.

Mette H Nielsen, Martin Berg, Anders N Pedersen, Karen Andersen, Vladimir Glavicic, Erik H
Jakobsen, Ingelise Jensen, Mirjana Josipovic, Ebbe L Lorenzen, Hanne M Nielsen, et al. Delineation
of target volumes and organs at risk in adjuvant radiotherapy of early breast cancer: national
guidelines and contouring atlas by the danish breast cancer cooperative group. Acta oncologica,
52(4):703-710, 2013.

Hwa Kyung Byun, Jee Suk Chang, Min Seo Choi, Jaechee Chun, Jinhong Jung, Chiyoung Jeong,
Jin Sung Kim, Yongjin Chang, Seung Yeun Chung, Seungryul Lee, et al. Evaluation of deep
learning-based autosegmentation in breast cancer radiotherapy. Radiation Oncology, 16(1):1-8,
2021.

Juangi Wang, Weigang Hu, Zhaozhi Yang, Xiaohui Chen, Zhigiang Wu, Xiaoli Yu, Xiaomao Guo,
Saiquan Lu, Kaixuan Li, and Gongyi Yu. Is it possible for knowledge-based planning to improve
intensity modulated radiation therapy plan quality for planners with different planning experiences
in left-sided breast cancer patients? Radiation Oncology, 12(1):1-8, 2017.

Pag. 50



BIBLIOGRAPHY

[27]

[28]

[29]

[30]

31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Seung Yeun Chung, Jee Suk Chang, Min Seo Choi, Yongjin Chang, Byong Su Choi, Jaehee Chun,
Ki Chang Keum, Jin Sung Kim, and Yong Bae Kim. Clinical feasibility of deep learning-based auto-
segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving
surgery. Radiation Oncology, 16(1):1-10, 2021.

Ahmed R Eldesoky, Esben S Yates, Tine B Nyeng, Mette S Thomsen, Hanne M Nielsen, Philip
Poortmans, Carine Kirkove, Mechthild Krause, Claus Kamby, Ingvil Mjaaland, et al. Internal and
external validation of an estro delineation guideline-dependent automated segmentation tool for
loco-regional radiation therapy of early breast cancer. Radiotherapy and Oncology, 121(3):424—
430, 2016.

Yang Sheng, Taoran Li, Sua Yoo, Fang-Fang Yin, Rachel Blitzblau, Janet K Horton, Yaorong Ge,
and Q Jackie Wu. Automatic planning of whole breast radiation therapy using machine learning
models. Frontiers in Oncology, page 750, 2019.

Lee R Dice. Measures of the amount of ecologic association between species. Ecology, 26(3):297-
302, 1945.

Abdel Aziz Taha and Allan Hanbury. Metrics for evaluating 3d medical image segmentation:
analysis, selection, and tool. BMC medical imaging, 15(1):1-28, 2015.

Stanislav Nikolov, Sam Blackwell, Alexei Zverovitch, Ruheena Mendes, Michelle Livne, Jeffrey
De Fauw, Yojan Patel, Clemens Meyer, Harry Askham, Bernardino Romera-Paredes, et al. Deep
learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy.
arXiv preprint arXiv:1809.04430, 2018.

Femke Vaassen, Colien Hazelaar, Ana Vaniqui, Mark Gooding, Brent van der Heyden, Richard
Canters, and Wouter van Elmpt. Evaluation of measures for assessing time-saving of automatic
organ-at-risk segmentation in radiotherapy. Physics and Imaging in Radiation Oncology, 13:1-6,
2020.

P Meyer, M-C Biston, C Khamphan, T Marghani, J Mazurier, V Bodez, L Fezzani, PA Rigaud,
G Sidorski, L Simon, et al. Automation in radiotherapy treatment planning: Examples of use
in clinical practice and future trends for a complete automated workflow. Cancer/Radiothérapie,
25(6-7):617-622, 2021.

Seokyung Hahn. Understanding noninferiority trials. Korean journal of pediatrics, 55(11):403,
2012.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. arXiv preprint arXiv:1505.04597, pages 234-241, 2015.

Ozgiin Cicek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger.
3d u-net: Learning dense volumetric segmentation from sparse annotation. arXiv preprint
arXiv:1606.06650, pages 424—432, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Chris Mclntosh and Thomas G Purdie. Contextual atlas regression forests: multiple-atlas-based au-
tomated dose prediction in radiation therapy. |EEE transactions on medical imaging, 35(4):1000—
1012, 2015.

Chris Mclntosh and Thomas G Purdie. Voxel-based dose prediction with multi-patient atlas selec-
tion for automated radiotherapy treatment planning. Physics in Medicine & Biology, 62(2):415,
2016.

Pag. 51



BIBLIOGRAPHY

[41]

[42]

[43]

[44]

[45]

Chuangi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu. A survey
on deep transfer learning. In International conference on artificial neural networks, pages 270-279.
Springer, 2018.

Simone Dietzenbacher. Training and evaluation of a model predicting high-dose radiotherapy
treatment plans for breast cancer patients (8ZMO00 internship report). 2021.

Joseph DeRosier, Erik Stalhandske, James P Bagian, and Tina Nudell. Using health care failure
mode and effect analysis™: the va national center for patient safety's prospective risk analysis
system. The Joint Commission journal on quality improvement, 28(5):248-267, 2002.

Mark J Gooding, Annamarie J Smith, Maira Tariq, Paul Aljabar, Devis Peressutti, Judith van der
Stoep, Bart Reymen, Daisy Emans, Djoya Hattu, Judith van Loon, et al. Comparative evaluation
of autocontouring in clinical practice: a pra