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Summary

Data-driven modeling and complexity reduction
for nonlinear systems with stability guarantees

Dynamic models of real-life systems are crucial in many engineering applica-
tions. Such models enable the prediction of the system response, analysis of the
system’s dynamic behavior, and controller design. System identification is a data-
driven method to construct a model whose simulated response closely matches
experimentally obtained data from the system under study. Alternatively, accu-
rate models can be retrieved by first-principle modeling. As first-principle models
are often prohibitively complex for the above-mentioned purposes, there is a need
for sufficiently accurate but less complex models. Model reduction methods can
be used to construct such models of lower complexity based on first-principle mod-
els. A great arsenal of techniques exists for both system identification and model
reduction of linear models. However, real-life systems often exhibit nonlinear be-
havior. Hence, predictive nonlinear models are needed. The contributions of this
thesis can be split into three parts, of which two parts concern the system identifi-
cation of nonlinear models and one part concerns the model reduction of nonlinear
models.

The first part of the thesis concerns the problem of system identification of non-
linear models. The following two challenges are addressed for this problem. Firstly,
even if the nonlinear system exhibits stability properties, it is not guaranteed that
the identified model preserves these properties. Consequently, the identified non-
linear model can perform well on the training data but may produce unbounded
responses for new inputs. Secondly, the identification problem often boils down
to solving a nonlinear optimization problem. Solving such a problem requires the
computation of many model responses. Consequently, the computation time of
the identification algorithms depends highly on the efficiency of the computation
of model responses. This efficiency is critical in time-restrictive applications.



viii Summary

An identification approach for a class of nonlinear models that consist of lin-
ear time-invariant (LTT) dynamics placed in feedback with static nonlinearities is
developed in this thesis. This approach enforces a strong form of global stability,
namely exponential convergence. The convergence property ensures the global ex-
ponential stability of time-varying steady-state model responses. Furthermore, a
simulation algorithm is devised that significantly improves the computation time
from hours to minutes in numerical case studies. The proposed algorithm is an-
alyzed in terms of the time-varying steady-state mismatch between the system
and model response. This mismatch is shown to asymptotically drop to zero by
increasing the computational expense of the algorithm.

The identification approach is validated experimentally on a mechanical ven-
tilation setup. The results evidence fast and accurate identification of hose and
patient lung parameters. These identified parameters can be used for control pur-
poses and the decision-making process of medical personnel operating the mechan-
ical ventilator. Furthermore, the proposed identification approach is validated on
benchmark datasets. These results show a trade-off between data fit and model
stability. The identification approach thus identifies predictive models, enforces
model stability, and is computationally efficient, enabling the fast identification of
accurate and stable nonlinear models in time-restrictive applications.

The second part of this thesis concerns the problem of order reduction for non-
linear models. Model order reduction aims to find a sufficiently accurate reduced-
order model that replaces the high-order model while preserving key properties.
In this problem, it is challenging to preserve model stability, which is among the
most important model properties. Furthermore, it is challenging to bound the mis-
match between the high-order and reduced-order nonlinear models. Moreover, it is
challenging to find the optimal reduced-order model that minimizes the mismatch
between the reduced-order and the high-order nonlinear model.

Two challenges for LTI models are addressed as a preliminary step towards
dealing with the challenges for nonlinear models. The specific reduction technique
employed in this thesis is the time-domain moment matching method. Firstly, the
obtained matching property of moment matching in the multivariable LTI case
is established. Secondly, additional moment matching parameters are exploited
in the LTI case to enforce model stability and to ensure optimality between the
high-order and reduced-order models. These results are further exploited to derive
an error bound for the mismatch between the reduced-order and the high-order
LTT models.

An optimal model order reduction technique for nonlinear models that con-
sist of LTI dynamics placed in feedback with nonlinear dynamics is proposed to
address the challenges in the nonlinear case. Hereto, the time-domain moment
matching framework is extended to nonlinear models that enjoy a special type of
global exponential stability, namely exponential convergence. This extension leads
to a natural application of moment matching to this class of nonlinear models.
Reduced-order models found by this reduction method preserve the convergence
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property and are optimal in terms of a minimized error bound. The proposed
methods are validated on various examples, resulting in accurate reduced-order
models that preserve the key stability property.

The third part of this thesis concerns the identification of nonlinear models
using a reproducing kernel Hilbert space approach. Such a black-box learning
method exploits training data to identify models that can predict responses of the
original system for new inputs. Despite offering great flexibility, these models lack
transparency, which makes it challenging to enforce additional model properties,
such as stability. Moreover, a straightforward application of pre-existing methods
often yields statistically biased models in the closed-loop case.

To deal with the first challenge, an identification method that enforces expo-
nential convergence on the identified model is proposed. Using benchmark data,
it is shown that the nonlinear behavior can be accurately captured while model
stability is enforced, whereas models identified using pre-existing methods show
instabilities on new inputs. Furthermore, in the closed-loop case, a statistically
consistent method for LTI systems is extended to the kernel-based nonlinear case,
providing unbiased identification results in numerical examples.

In summary, this thesis presents fundamental approaches for the data-driven
modeling and complexity reduction of nonlinear models with stability guarantees
that are experimentally and numerically validated.






Contents

Summary

1

3

Introduction

1.1 Mathematical models . . . . . . . ... ... ... L.
1.2 Convergent nonlinear state-space models . . . . . . ... ... ...
1.3 Data-driven modeling with stability guarantees . . . . . . . .. ..
1.4 Complexity reduction with stability preservation . . . ... .. ..
1.5 Objectives of this thesis . . . . . . .. ... ... ... ... ....
1.6 Contributions of this thesis . . . . .. ... ... ... ... ....
1.7 Outline of thisthesis . . . . . ... .. .. ... .. .........

Identification of convergent Lur’e-type systems

Identification of continuous-time Lur’e-type systems

2.1 Imtroduction. . . . . . . .. .. ..o
2.2 Convergent Lur’e-type systems . . . .. ... ... ... ... ...
2.3 Identification setting . . . . . .. ... oL
2.4 Cost function minimization strategy . . . . ... ... .. ... ..
2.5 Computation of steady-state responses and gradient information
2.6 Simulation case study: double mass-spring-damper system . . . . .
2.7 Experimental case study: mechanical ventilation . . .. ... ...
2.8 Conclusions . . . . .. ...

Identification of discrete-time Lur’e-type systems

3.1 Imtroduction. . . . .. ... ... ...
3.2 Identification problem setting . . . . . ... ... ... ... ...
3.3 Computationally efficient solution to the identification problem . .
3.4 Numerical examples . . . . . ... ... ... L.
3.5 Conclusions . . . . . . . ...

23

25
26
29
30
33
35
39
45
52



xii Contents
4 Accuracy bounds for nonlinear model simulation 75
4.1 Introduction . . . . . . .. ... . L 76
4.2 Notation and preliminaries . . . . .. ... ... ... .. ... .. 78
4.3 Problem setting . . . . . . ... Lo 80
4.4 Bounds on mismatch . . . ... ..o 86
4.5 Tlustrative examples . . . . . . . . ... 92
4.6 Conclusions . . . . . . . . . . e 101
IT Moment matching for linear and nonlinear models 103
5 Moment matching for MIMO LTI models 105
5.1 Introduction . . . . . . . . . . . . . . . ... 106
5.2  Moment matching for MIMO models . . . . . .. ... ... .... 107
5.3 TIlustrative example . . . . .. ... .. ... ... 115
54 Conclusions . . . . . . . . .. 118
6 Moment matching for nonlinear models 119
6.1 Introduction. . . . . . . . . . . ... 120
6.2 Problem statement . . . . . .. ..o oL 123
6.3 Solution to the approximate moment matching problem . . . . .. 129
6.4 Casestudy . .. ... .. . . 138
6.5 Conclusions . . . . . . . . . .. e 146
7 Optimal model reduction by moment matching 147
7.1 Introduction . . . . . . . . . . .. ... 148
7.2  Optimal model reduction for multivariable LTI models . . . . . . . 151
7.3 Optimal moment matching for nonlinear feedback models . . . . . 157
7.4 Numerical procedure for solving the H,, moment matching problem 165
7.5 Numerical case studies . . . . . .. .. ... oL 169
7.6 Conclusions . . . . .. .. .. 178
IIT Kernel-based identification of nonlinear systems 179
8 Kernelized closed-loop identification of nonlinear systems 181
8.1 Imtroduction. . . . .. ... .. ..o 182
8.2 Problem formulation and notation . . ... ... .. ... ... .. 184
8.3 Function estimation using an LS-SVM approach . . . . ... ... 185
8.4 Identification approach . . . . . . . . .. ... oL 186
8.5 Mlustrative example . . . . . . . .. .. ... L. 191
8.6 Conclusions . . . . . . . . . . . e 192



Contents xiii
9 Kernel-based identification with stability guarantees 195
9.1 Introduction . . . . . . . . . . . . 196
9.2 Problem statement . . . . .. ... ... Lo 198
9.3 Identification via two-level optimization . . . . ... ... .. ... 201
9.4 Numerical case studies . . . . . . . . . . ... . L. 205
9.5 Conclusions . . . . . . . . . . .. 213
IV  Conclusions and recommendations 215
10 Conclusions and recommendations 217
10.1 Conclusions . . . . . . . . . e 217
10.2 Recommendations . . . . . . . . . . .. .. e 221
V  Appendices 225
A Appendices to Chapter 2 227
A.1 Proof of Theorem 2.2. . . . . . . . . . . . ... ... 227
A2 Proof of Theorem 2.4 . . . . . . . . . . . . . . . ... 228
B Appendices to Chapter 3 231
B.1 Proof of Theorem 3.1. . . . . . . . . . .. .. . .. ... ...... 231
B.2 Proof of Theorem 3.2. . . . . . . . . . . . ... ... ... ... 233
B.3 Proof of Theorem 3.3. . . . . . . . . . . . .. ... ... ...... 234
B.4 Technical lemma . . . . . . . . ... ... ... . ... ... 235
B.5 Technical results recalled from the literature . . . . . . . . . .. .. 235
C Appendices to Chapter 4 237
C.1 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . ... . ..... 237
C.2 Proof of Lemma 4.1 . . . . . . . . .. . . .. ... 237
C.3 Proof of Theorem 4.3 . . . . . . . . . . . . .. ... ... . ..... 240
C.4 Proof of Theorem 4.4 . . . . . . . . . . . . . . . . . ... . ..... 242
D Appendices to Chapter 5 247
D.1 Proof of Lemma 5.1 . . . . . . . . .. ... ... ... 247
D.2 Proof of Lemma 5.2 . . . . . . . . . ... ... 248
E Appendices to Chapter 6 251
E.1 Proofof Lemma 6.2 . ... ... ... ... ... ... .. ..., 251
E.2 Proof of Theorem 6.4 . . . . . . . . . . . . .. . ... .. ...... 252
E.3 Proof of Theorem 6.5. . . . . . . . . . . . . . ... ... ... 252



F Appendices to Chapter 7
F.1 Proof of Theorem 7.1
F.2 Proof of Theorem 7.2
F.3 Proof of Theorem 7.3
F.4 Proof of Theorem 7.6

F.5 Matrices related to the reduction problem . . . . ... .. ... ..

F.6 Proof of Theorem 7.7

G Appendices to Chapter 9
G.1 Proof of Theorem 9.1

Bibliography
Samenvatting

List of publications
Dankwoord

About the author

255
255
256
257
257
258
259

261
261

265

285

289

291

295



Introduction

Mathematical modeling is an enabling tool for the design and analysis of engineer-
ing systems. This thesis focuses on the data-driven modeling of nonlinear systems
and the complexity reduction of nonlinear models, both with a focus on certified
stability guarantees. Such stability guarantees enable the safe and generalized
usage of models in unseen scenarios.

This chapter starts with the motivation for the modeling of dynamical systems
and the concept of a mathematical model in Section 1.1. After that, in Section 1.2,
the stability notion of convergence is introduced which guarantees stability and
enables generalized usage of mathematical models. Sections 1.3 and 1.4 present
state-of-the-art methods for data-driven modeling and complexity reduction, re-
spectively, together with open challenges in these fields. These challenges are
embedded in the objectives of this thesis presented in Section 1.5. Section 1.6 de-
scribes the contributions of the thesis toward these objectives. Finally, Section 1.7
gives the outline of the remainder of this thesis.

1.1 Mathematical models

Humankind has always tried to understand the surrounding world. This under-
standing happens through models that we learn and update via interaction with
our environment. For a long time, these models were qualitative, predicting out-
comes based on our observations, e.g., water flows from a higher elevation to a lower
elevation, snow is lingering so it must be freezing, and the trees are moving so it
must be windy. Ever since the development of the disciplines of physics and math-
ematics, quantitative models described by mathematical equations complemented
qualitative ones. Such mathematical models provide a deeper understanding of
the universe around us and play a central role in science, technology, and society
in the modern world. For example, in our solar system, different planets interact
with each other and orbit in ways that are now accurately captured by mathe-
matical models. Closer to our everyday use, mathematical modeling has enabled,
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Figure 1.1.
robot-assisted surgery using the da
Vinci system (figure reprinted from
https://www.davincisurgery.com
/da-vinci-systems/about-da-vin

A surgeon performs

ci-systems).

Figure 1.2. A SpaceX Falcon 9
rocket being prepared for launch at
NASA’s Kennedy Space Center in
Florida, USA (figure reprinted from
https://www.nasa.gov/image-fea
ture/spacex—falcon—9—rolls—out

-for-saturday-launch).

for example, accurate weather forecasting, which is instrumental for our everyday
choices. Mathematical models are thus indispensable to humankind.

In engineering systems, models are, e.g., used for model-based system and
control design. From the very start of such design procedures, models allow for
predicting the system’s future behavior. Based on such predictions, the system
performance can be analyzed in a fast way without the need for prototyping,
controller deployment, or time-consuming experimentation. Subsequently, system
design, control design, or both, can be improved, leading to enhanced performance
with fast design cycles. Such engineering systems have been an enabler of tech-
nological breakthroughs. For example, ever since 2010, da Vinci medical surgical
robots (see Figure 1.1) extend the eye-hand capabilities of surgeons beyond what
the human body allows [301]. This has led to higher medical success rates, less
patient discomfort, and faster patient recovery [52]. Another example is Flight 20
of Falcon 9, conducted on December 22nd, 2015, which was the first successful
vertical landing of the first stage of the Falcon 9 rocket [245] (see Figure 1.2). This
milestone achievement is part of the developments toward cost-reduced rocket sys-
tems, to be used for launching payloads into orbit and, potentially, for a spacefar-
ing civilization [35]. A third example is the first observation of gravitational waves
on September 14th, 2015, using the Advanced Laser Interferometer Gravitational-
Wave Observatory (LIGO) gravitational-wave detector systems [2] (see Figure 1.3).
Arguably, this is one of the biggest accomplishments of humankind and marks an
exciting new era of astronomy. Like these, there are uncountably many exam-
ples of the success of model-based engineering. Without model-based system and
control design, these achievements would not have been possible.

A model is not the true description of the real-life system, but rather an ab-
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Livingston Hanford

Figure 1.3. The Advanced LIGO system in Livingston, USA (left), detected the
first gravitational wave, which was subsequently, about seven-thousandths of a
second later, confirmed by the Advanced LIGO system in Hanford, USA (right)
(figure reprinted from https://www.ligo.caltech.edu).

straction that attempts to explain the system’s behavior with sufficient accuracy.
Here, systems are understood as real-life processes in which different aspects cap-
tured in variables interact and produce signals that we observe and call system
outputs. Furthermore, systems can often be affected by external stimuli called sys-
tem inputs, which can sometimes be chosen by us. The interaction between system
variables can depend on their history, in which case the system exhibits memory
and is called dynamic. The ability of a model to make accurate predictions in
specific scenarios is an important accuracy measure. However, the usefulness of a
model also depends on its ability to predict system outputs for new system inputs
and the simplicity of its description. It is thus natural to have different models for
the same system, none being true or false, but some being more instrumental for
the intended purpose. For example, almost any system exhibits some nonlinear
behavior. However, a linear model for such a nonlinear system, being less accu-
rate but significantly easier to construct and use than a nonlinear one, may suffice
depending on the intended purpose.

Models can be constructed using first-principle laws such as Newton’s laws
of motion, conservation of energy laws, thermodynamic laws, and electrostatic
laws, to name a few. However, engineering systems are becoming increasingly
complex and modeling accuracy requirements are becoming increasingly stringent.
Therefore, the derived first-principle models are often too complex for model-based
system and control design. For example, testing such a complex model for a new
input can be computationally demanding and sometimes even infeasible due to
limited computational and data storage capabilities as well as time restrictions.
To reduce the computational expense, the full model is often replaced by a reduced
model that is less complex but still sufficiently accurate. Besides the reduction in


https://www.ligo.caltech.edu

4 Chapter 1. Introduction

computational demands, such a reduction step has several other benefits, namely:
it facilitates controller design and deployment, and it gives deeper insights into the
essence of the dynamics of the full model. In several fields, such as mathematics,
mechanics, and systems and control, the practice of finding a reduced model is
called model reduction.

The increase in system complexity and accuracy requirements often also results
in first-principle modeling becoming a too difficult or too time-consuming task.
At this stage, it is very tempting to pursue a data-driven modeling approach,
if the system under study is already realized. Such an approach uses observed
inputs and outputs from the system to directly construct compact models that
optimally describe this data. Therefore, data-driven modeling is typically fast and
enables system modeling if first-principle modeling is infeasible. For example, data-
driven modeling provides basic understanding of our brain function, whereas first-
principle modeling of our brain function is considered a challenging task [22, 71]. In
the systems and control field, this practice of turning datasets into mathematical
models is called system identification.

In both the data-driven modeling and complexity reduction problems, the iden-
tified or reduced model is a virtual representation of the true system. Such models
are nowadays used in a large variety of applications, including safety-critical ap-
plications such as autonomous driving [165, 318], aircraft design and control [267],
surgical robotics [167], clinical decision support [93, 212], and many more. Given
the complexity of these applications, the constructed models are in many cases also
complex and analysis of their properties is challenging. A popular static example
with undesired model properties is observed in image classification models, where
small perturbations in the visual input (invisible to the human eye), can result in
a completely different classification [76, 273, 314]. In such a case, the constructed
model does not generalize well to scenarios unseen during the modeling and/or
complexity reduction processes. In recent years, there has been an urge to con-
struct models with safe generalization capabilities [104], especially important for
safety-critical applications and also for modeling dynamic systems [43, 47, 232].
Therefore, constructed models need to be both predictive and safely generalizable
to new inputs. Sometimes predictive capabilities of models are sacrificed to enable
safe generalization to new inputs [104].

One way to enhance generalization capabilities is by enforcing additional prop-
erties on the identified or reduced model. For example, consider the situation
where the output of the system or full model remains more-or-less the same for a
small change in the input signal. In such a situation, the sensitivity of the system
output with respect to input variations is small. Then, besides finding a predic-
tive model, the found model should also exhibit additional (stability) properties
to guarantee such small sensitivity.

Modeling accuracy requirements are becoming increasingly stringent and real-
life systems often display some level of nonlinear behavior. Therefore, such non-
linear system characteristics need to be modeled too to be able to predict essential
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nonlinear behavior. Consequently, tools for data-driven nonlinear modeling of
nonlinear systems and complexity reduction of nonlinear models are essential to
facilitate future model-based system and control designs. Furthermore, in the
nonlinear context, the call for stability guarantees is even more pronounced be-
cause nonlinear models can exhibit complex stability properties. The development
of data-driven nonlinear modeling and nonlinear complexity reduction tools with
stability guarantees forms the scope of this thesis.

1.2 Convergent nonlinear state-space models

The observed output of a dynamic system depends not only on the current ob-
served input but also on the past observed inputs and outputs. Therefore, dynamic
models exhibit a memory of their past. One of the most popular model structures
for capturing dynamic behavior is the state-space model structure. State-space
models relate observed input variables to observed outputs via latent state vari-
ables. The state variables contain all the memory that the model has of its past.

A linear dynamic model lives on a linear (high-dimensional) hyperplane relating
its state update linearly to the current state and input. Consequently, in the
discrete-time case, the state at the next time step is a linear function of its current
state and input. Thanks to linearity, a linear model exhibits the same properties for
any input and any state, i.e., its properties hold in a global sense. Powerful methods
for analysis and design of linear (control) systems are based on the superposition
principle. This principle states that the response caused by the sum of multiple
inputs equals the sum of responses caused by each individual input. This is, for
example, exploited in frequency domain analysis and the design of linear control
systems [257].

Although easy to use, a linear model is often insufficient to explain nonlinear
dynamics. In that case, one has to rely on nonlinear modeling. However, in
contrast to a linear model, local properties of nonlinear models do generally not
hold globally and neither does the superposition principle hold. Therefore, seeing
the model output in a certain part of the input and state space is not sufficient
to predict the model output in a different part of the input and state space. For
example, for some classes of models, it is yet unclear how many fixed-points the
model exhibits [26], let alone finding closed-form expressions for the locations of
such fixed points. For such a model, predicting the model output for new inputs,
for example constant ones, is a challenging task. Hence, in general, nonlinear
models are difficult to generalize toward unseen scenarios.

Models that exhibit certain stability properties can also generalize more reli-
ably to new inputs. Many different stability notions are introduced in the literature
for nonlinear models with inputs, e.g., input-to-state stability [263], incremental
stability [83], contraction analysis [158], and convergence [66, 309]. A comparative
study on these stability notions can be found in, e.g., [219, 282]. Convergent mod-
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els exhibit a uniquely defined bounded time-varying steady-state solution for any
bounded time-varying input. Furthermore, this steady-state solution is globally
asymptotically stable (GAS), meaning that all solutions converge to this steady-
state solution in forward time, for any initial condition. Hence, for any (unseen)
bounded input, convergent dynamics guarantee the following qualitatively pre-
dictable behavior of model outputs, namely: (i) model outputs remain bounded;
(ii) model outputs corresponding to different initial conditions converge to the
steady-state output determined only by the input; and, under minor additional
assumptions, (iii) steady-state outputs corresponding to small changes in the in-
put remain close to each other. For these reasons, convergent models are known
to exhibit nonlinear simplicity [201], not observed in general nonlinear models.
It makes convergent models especially useful in solving many analysis and design
problems. As this thesis concerns the problem of model construction via data-
based modeling and complexity reduction techniques, the convergence property
can be enforced during the model construction via data-driven or model reduction
techniques.

In data-driven modeling, enforcing the convergence property is relevant in two
cases. If the system under study is convergent, e.g., inferred from experiments,
then enforcing convergence is motivated from a property preservation point of
view. Alternatively, if it is unknown whether the system is convergent, enforcing
convergence might be desired to enhance generalization to new, unseen inputs. In
complexity reduction problems, enforcing convergence is motivated from a prop-
erty preservation point of view [31]. In such a problem, if the full model is known
to exhibit convergence, then convergence is desired to be preserved for the reduced
model as well.

1.3 Data-driven modeling with stability guarantees

Data-driven modeling or system identification is a technique to construct mathe-
matical models for systems using experimental data from the system. The iden-
tification cycle is explained in Section 1.3.1. After that, a literature review on
differences between methods for nonlinear system identification is presented in
Section 1.3.2 on a high abstraction level. More detailed and focused literature
surveys are included in the introductory sections of the later chapters.

1.3.1 The four-step identification cycle

The identification cycle first introduced by [312] in the 1950s was a three-step
procedure consisting of data collection, model structure selection, and estimation.
Later, a validation step was added, complementing the four-step system identifi-
cation cycle that is used nowadays [152]. The first step amounts to collecting data
from the system under study into a dataset, which acts as an information source
for the remaining steps. Hereto, identification experiments are conducted with
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the real-life system where the input and measured output signals are recorded.
The second step is to choose a model class. Such class is described by the rela-
tionship between inputs and outputs, e.g., linear vs. nonlinear, and the order of
the difference or differential equations that describe the system. The third step is
the estimation step, which amounts to choosing the model from the model class
that best explains the data according to some criterion. In practice, this comes
down to solving a problem that optimizes for the selected error criterion. Finally,
the fourth step is model validation. Such a validation tests whether the obtained
model is appropriate for its intended use. For example, this can be based on the
model’s ability to explain new datasets that are experimentally obtained from the
system and that were not used in the estimation step, i.e., a cross-validation test.
If the model does not pass the validation test, some of the previous steps should
be revised and repeated, until an appropriate model is found.

The identification of linear systems is a well-established field with many books
discussing the field [18, 40, 75, 152, 205, 261]. In some cases, depending on the pur-
pose of the model, a linear model can be sufficient for a nonlinear system. Hereto,
the methods in [242] characterize nonlinear distortions, enabling the decision-
making process regarding modeling in the linear or nonlinear context. However,
dominant nonlinear behavior appears in many engineering systems, making the
identification problem far more challenging [240]. For example, a linear model class
with a sufficiently large state dimension is sufficiently rich to describe the dynamics
observed during the identification experiment on linear systems. However, in the
nonlinear case, there is no universal model class that is sufficiently rich to capture
any system, inevitably resulting in structural modeling errors. Sometimes, struc-
tural modeling errors are allowed to avoid overly complex models that are useless
for the intended purpose, such as, e.g., control design. Another challenge in the
nonlinear case is the handling of process noise, which is nonlinearly distorted in
the output measurements, making it challenging to derive uncertainty bounds. A
large number of model classes and dedicated identification approaches for nonlinear
systems have been proposed in the literature taking into account these challenges.
Presenting a complete overview of all these approaches is a daunting task beyond
the scope of this thesis. For this reason, the remainder of this section reviews spe-
cific model classes relevant to this thesis and particularly relevant to the problem
of data-driven modeling with stability guarantees. The survey paper [240] is a good
starting point for a more complete overview of the nonlinear system identification

field.

The model structure of a state-space model is characterized by the functions
that describe the state update and output mappings. The amount and type of
information used to describe these mappings decide the shade of gray of the model
[240]. On the one end of the spectrum, a white-box model carefully uses first-
principle laws for the parametrization of the mappings. Such a model provides a
deep understanding of the laws governing the model equations. On the other end of
the spectrum, a black-box modeling approach typically describes the mappings by
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a basis function expansion or uses function estimation techniques from the field
of machine learning. Such black-box models have great expressive capabilities
and require few user choices, however, these models lack interpretability due to
their complicated nature. Between these two ends, several gray shades exist that
combine white-box and black-box modeling [240].

Having a model structure at hand, the model parameters should be estimated
based on the collected input and output data according to some criteria. The
most used criteria are the prediction error minimization (PEM) criterion and the
simulation error minimization (SEM) criterion. The former criterion predicts new
outputs based on previous input and outputs, whereas the latter predicts new out-
puts solely on the basis of past inputs. Construction via the PEM criterion is easier
and the constructed models exhibit accurate short-term predictions, however, long-
term predictions are typically less accurate. Construction via the SEM criterion
is typically more challenging, however, these models do typically exhibit accurate
long-term predictions. The PEM or SEM criteria typically lead to a nonlinear
optimization problem in the model parameters, which is non-trivial to solve. Of-
ten, iterative, gradient-based optimization routines are employed, which, starting
from an initial model, only find the best nearby (locally) optimal model. Initial
models can often efficiently be found using the best linear approximation (BLA)
framework [235, 243]. In general, in data-driven state-space modeling, there is no
guarantee that the best model is found.

Given the iterative nature of such identification schemes, many model responses
are required to be computed. Despite the fact that most nonlinear systems evolve
in continuous-time, there has been a focus on discrete-time nonlinear modeling,
motivated by computationally cheaper discrete-time model simulations [236]. In
general, model simulation of continuous-time nonlinear models is a difficult task,
and assessing the quality of the model simulation is difficult [252]. In the sys-
tem identification problem, in particular, accurate model simulations are required
to distinguish between structural modeling errors and errors due to the numeri-
cal simulation algorithm. A unifying framework to analyze errors between sam-
pled system responses and computed model responses of continuous-time nonlinear
models is lacking in the literature.

1.3.2 State-of-the-art nonlinear system identification approaches

The class of block-oriented models have been a subject of study for a long time
[96, 175, 188, 234, 243, 244, 291, 294, 296, 297]. These models consist of an in-
terconnection of several separate blocks, each exhibiting either linear dynamics or
nonlinear statics. Examples include the Wiener and Hammerstein model struc-
tures, as well as the nonlinear feedback model structure. Block-oriented models
arise naturally in problems with linear dynamics subject to localized nonlineari-
ties, such as nonlinear springs and dampers in mechanical systems, and nonlinear
resistors in electrical circuits. Hence, this knowledge of the model structure can be
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maintained by block-oriented models using the separation between linear dynamics
and nonlinear statics. Furthermore, the BLA framework can be naturally applied
for initialization [243] of these models. Although relatively simple, even block-
oriented models, especially those with nonlinear feedback, can show instability
issues in practice.

The class of polynomial state-space (PNLSS) models is used for black-box mod-
eling in [189, 190] with a range of successful applications [19, 57, 63, 107, 160, 183,
189, 190]. PNLSS models are often initialized by the BLA method and are charac-
terized by monomial basis functions of the state and input, whose parametrization
quickly grows for large state orders or large polynomial orders. To address this,
polynomial decoupling methods [61, 62, 69, 74] were introduced to reduce the
number of parameters. The reduction process replaces multivariate functions with
univariate ones, enabling visual inspection of the dominant nonlinearities. Al-
ternatively, [24] proposed tensor networks for modeling a special case of PNLSS
models, thereby avoiding an excessively large number of parameters to start with
and facilitating faster identification cycles. Although showing excellent expressive
capabilities, PNLSS models are prone to instabilities when used for unseen scenar-
ios [60, 61]. To address this challenge, [64, 292] propose multiple shooting methods
that can scope through unstable regions of the parameter space. An additional
benefit of multiple shooting is the smoothing of the underlying optimization prob-
lem, resulting in less risk of getting stuck in local minima [216, 217]. However, the
identification of PNLSS with formal stability guarantees is still an open problem.

In light of enforcing model stability, another class of black-box modeling ap-
proaches related to the PNLSS modeling have been proposed by [38, 159, 280, 281,
284] based on the usage of conver tools. These methods enforce global incremental
stability on the identified models, which is a stability notion for models with in-
put, close to the notion of convergence. The basis functions used for these models
include polynomials and trigonometric functions. However, these methods require
the availability of a (surrogate) state sequence in addition to inputs and outputs,
which can be hard to obtain in practice.

Methods from the machine learning community have also been proposed for
the identification of nonlinear systems. Examples are the so-called kernel-based
methods [54, 202, 203], which include approaches like regularization networks [58],
Tychonov regularization problems [97], support vector machines [269], Gaussian
process regression [29, 82, 140, 141, 209], and kriging [164]. Under certain condi-
tions, such kernel-based estimators can be shown to be wuniversal approrimators
[58, 202, 266], i.e., can approximate continuous functions arbitrarily well, and en-
able bias-variance tradeoff via regularization. A particularly well-known class of
models is Gaussian process state-space models (GPSSMs) [26, 29, 73, 81, 82, 285].
There are some identification methods for GPSSMs that enforce stability prop-
erties on the identified model. For example, [79, 137, 138, 307] present methods
that guarantee global asymptotic stability of the origin in the autonomous case.
The method in [255] enforces the identified autonomous GPSSM to be locally
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contracting, whereas [36] enforces global contraction. Alternatively [285] focuses
on a particular kernel function and identifies autonomous GPSSMs that exhibit
bounded solutions. These methods are tailored to the problem of imitation learning
[117], where autonomous models are sufficient and also full-state measurements are
available. Enforcing stability on non-autonomous GPSSMs, or in the more generic
case of kernel-based state-space models, is a challenging and open problem.

A method to estimate latent state data from input-output observations directly
is proposed by [298]. Such a state estimate can be further exploited to identify the
state-space mapping, such as in [218] for linear parameter varying (LPV) models.
This method closely relates to subspace identification methods for linear systems,
where the latent state estimation via canonical correlation analysis (CCA) [114]
is also split from the estimation of the linear model matrices, see, e.g., [147, 293].
However, a statistical analysis of the method proposed by [298] used in an identi-
fication setting, such as [218], is lacking in the literature.

A more general class of machine learning methods consists of artificial neural
networks [148, 231], such as deep neural network (DNN) models, long short-term
memory (LSTM) models, and recurrent neural network (RNN) models. These
methods have been explored in the scope of system identification in [80, 155, 166,
176, 256, 272]. For example, [27, 163] uses neural networks to identify encoder
functions for latent state estimation and estimation of the dynamics. Despite
being universal approximators [23, 194] and, therefore, highly expressive, these
models can show extreme sensitivity to inputs changes [53, 273, 299], making
them less suitable for generalization toward new inputs. To address the sensitivity
to input variations, early work on recurrent neural networks imposes the origin
to be a GAS fixed point [271] or imposes local stability with a guaranteed basin
of attraction [270]. The method [172] identifies contractive RNN models using
constraints on the weights of the network model; [142] identifies autonomous DNN
models whose origin is globally exponentially stable; and [37] identifies input-to-
state stable LSTM models using constraints on the weights of the network model.

More recently, [214] proposed a convex parameterization of incrementally sta-
ble models with a prescribed incremental gain using linear matrix inequality (LMI)
constraints. Subsequently, [215] proposed a method that imposes contractivity and
user-defined integral quadratic constraints (IQCs) on a large class of state-space
neural network models, including DNN and RNN models. It is highlighted that
the latter, i.e., [215], imposes these properties in an unconstrained fashion, making
the approach also applicable to large-scale neural network architectures. Moreover,
the IQCs enable further, user-defined model robustness guarantees to new inputs.
The complexity of neural network models and the number of parameters for their
description is controlled by the depth and width of the network layers. The meth-
ods in [65, 303] aim at decoupling the neural network as a collection of univariate
functions, reducing the number of parameters and enabling visual inspection of
these functions.

To summarize, the field of nonlinear data-driven modeling faces the challenges
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of (i) constructing expressive classes of models to capture a large class of non-
linear systems; (ii) enforcing model stability to enhance generalization toward
unseen, new inputs, especially for safety-critical applications; and (iii) enabling
computationally efficient identification for time-restrictive applications, also for
continuous-time modeling.

1.4 Complexity reduction with stability preservation

Complexity reduction aims at finding accurate reduced-complexity models for com-
plex high-fidelity models. Section 1.4.1 provides a scope of complexity reduction
methods in the systems and control field. After that, Section 1.4.2 reviews some
state-of-the-art reduction approaches and points out their technical differences.
More detailed and focused literature surveys are included in the introductory sec-
tions of the later chapters.

1.4.1 The large scope of complexity reduction

Given the ever-increasing system complexity and modeling requirements, dynamic
models of today’s engineering systems are often too complex for model-based sys-
tem and control design. Here, complezity is understood as the number of cou-
pled first-order ordinary differential equations (ODEs), which arise naturally by
first-principle modeling (and after spatial and temporal discretization of partial
differential equations (PDEs)). For highly complex models, model simulation for
the prediction of the system output for new inputs can become an infeasible task
due to storage limitations, finite computational power, and time restrictions. Fur-
thermore, the complexity of the designed controller by many model-based control
techniques, such as the linear quadratic regular (LQR) [6] and H, control, is of the
same complexity as the used model. This can cause serious limitations in control
design for large-scale models because computational accuracy reduces due to poor
numerical conditioning [184] and due to approximation steps [77, 254]. Moreover,
real-time controller deployment can become challenging, e.g., in model-predictive
control [192], due to limited storage capabilities and computational power. For
these reasons, complex models are often replaced by simpler ones. Recalling from
[10], complexity reduction or model reduction aims at using computationally ef-
ficient tools to find less complex models that are accurate with respect to the
full one and preserve additional properties such as stability. Furthermore, error
bounds, bounding the error of the reduced model with respect to the original one,
are instrumental to provide a direct measure of the quality of the reduced model.
For example, for linear systems, some methods provide error bounds in the infinity
norm of the error transfer-function matrix, giving worst-case error bounds.

In the nonlinear case, both stability preservation and error bounds are cru-
cial. The former describes the qualitative behavior of the reduced model, such
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as boundedness and stability of solutions for the convergence property, see Sec-
tion 1.2. The latter quantitatively describes the mismatch between the full and the
reduced model, thereby being a quality measure. A third aspect in the nonlinear
context is model structure preservation, which can provide model interpretabil-
ity. Such preservation enables the analysis and interpretation of individual model
blocks and their connection.

1.4.2 State-of-the-art complexity reduction approaches

Model reduction is a well-established subject in the mathematics and systems and
control fields [10]. A large array of methods exist for the complexity reduction of
linear models, which can roughly be categorized into singular-value-decomposition
(SVD) methods and Krylov-projector methods. Approaches in [102, 264] at-
tempted to merge the SVD and Krylov-projector methods.

The SVD methods for linear models include balanced truncation methods [103]
and Hankel norm approximation methods [98] together with their extensions to
preserve additional properties such as performance criteria [185] and passivity
[67, 108]. These methods transform the full model into a balanced state-space
realization in which the states are ordered in terms of their observability and
controllability properties. From here, difficult to observe and control states are
identified and truncated, i.e., omitted from the reduced model. The SVD methods
are equipped with a priori error bounds and preserve asymptotic stability.

Being instrumental for linear time-invariant (LTT) models, the SVD methods
have found extensions to the nonlinear case [84-86, 133, 230]. Analog to the
linear case, first a balanced representation of the model is found that is valid in
the vicinity of an equilibrium. Subsequently, the state is truncated. Thus, these
methods approximate the full model around an equilibrium point [84-86, 230].
Consequently, only local asymptotic stability is guaranteed in the nonlinear case,
however, without a region of attraction and error bounds.

Krylov-projector methods for linear models, also called moment matching meth-
ods, are considered computationally more attractive, especially in conjunction with
the Lanczos or Arnoldi procedures [78], and, therefore, also applicable to large-scale
models. Here, moments of multivariable LTI models are defined as the coefficients
of the Laurent series expansion of the transfer function along so-called tangential
directions at a complex interpolation point, see [10]. The reduction method aims at
matching the moments of the reduced-order model to those of the full-order model.
The iterative rational Krylov algorithm (IRKA), see [100], iteratively updates the
interpolation points and tangential directions, such that locally optimal reduced
models are found. However, these methods do not guarantee model stability and
neither are these equipped with error bounds.

A connection between the solution of the so-called Sylvester equation and the
transfer-function definition of moments [91] has led to the notion of time-domain
moment matching [17]. Reduced-order models constructed by this method enjoy
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parametric freedom that can be exploited to enforce additional model proper-
ties, such as stability, passivity, and prescribed pole locations [16], or additional,
so-called two-sided, matching conditions [120]. Furthermore, this freedom has
been exploited to satisfy first-order optimality conditions [177, 178] in the two-
norm of the error transfer function matrix, like the aforementioned IRKA method
[100]. Time-domain moment matching methods focus on single-input, single-
output (SISO) models. The multiple-input, multiple-output (MIMO) case is not
yet fully characterized.

The time-domain interpretation of moment matching has naturally led to a
definition of moments for nonlinear models consistent with its LTI counterpart and
to reduced-order nonlinear models that achieve moment matching [16, 225, 226].
In these works, the definition of moments for nonlinear models makes use of the
center manifold theorem and is, therefore, only defined locally in the neighborhood
of the origin. Consequently, the constructed reduced-order model is by definition
only an approximation of the full model for inputs close to the specific input used
in the reduction process and only in the neighborhood of the origin. In general,
an estimate for the size of the neighborhood of the origin is lacking, an error
bound is lacking and, by the same token, the reduction methods do not preserve
the model structure of the full-order model. More recently, [186] has presented
the notion of least squares moment matching for linear and nonlinear models,
where time-domain moment matching techniques are employed to approximate
an excessive number of moments in a least-squares optimal way. This reduction
method provides error bounds for specific classes of inputs.

The time-domain moment matching framework yields great potential as it pro-
vides parametric freedom to enforce additional model properties. This freedom can
potentially be exploited to achieve optimality in the linear and nonlinear context
in some to-be-defined sense. However, a notion of moments of nonlinear models in
a global setting is lacking. Furthermore, current moment matching techniques do
not preserve global stability properties or model structure and are not optimal.

Balancing-based approaches that address the global behavior of the full model,
preserve model stability, and provide error bounds are reported in [31-33, 129,
131, 132, 222]. The approaches in [129, 131, 132, 222] use the concepts of gen-
eralized and extended differential balancing to truncate less important states of
a balanced realization of the full model. These methods preserve the contrac-
tion property and are equipped with error bounds. The work in [33] relies on
the so-called incremental balancing method. The approaches in [31, 32] consider
a class of convergent nonlinear models that can be decomposed into a feedback
interconnection of an LTT subsystem with (dynamic) nonlinear subsystems. Then,
only the LTT subsystem is reduced and convergence is preserved by imposing ad-
ditional conditions. The methods [31-33] provide an a priori error bound. In
addition, [31, 32] preserve the structure of the full model to the reduced model.
In a similar feedback-interconnected setting, [187] employs dominance theory [173]
and proposes a structure- and dominance-preserving model reduction technique.
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Reduced-order models found by this method can also capture limit cycles and also
come with error bounds. The approach in [130] considers the class of monotone
models and proposes a method to preserve monotonicity and the input-to-state
stability property based on so-called nonlinear dc gain functions. This method
is equipped with a lower bound on the reduction error. The above-mentioned
methods do not pursue optimality. The least-squares Petrov-Galerkin methods in
[55, 149] do pursue optimality, as these provide (local) error bounds, which are
subsequently minimized.

Data-driven methods, close to some methods reviewed in Section 1.3 on data-
driven modeling, are also proposed in the literature. Of course, the data-driven
methods presented in [38, 280, 284], already introduced in Section 1.3, can also be
naturally applied to the model reduction problems to find reduced-order black-box
models that preserve incremental stability. Alternatively, the contribution of [1]
finds black-box reduced-order models that preserve incremental stability and an
incremental gain of the full-order model. Using some error criterion, these methods
optimally fit a reduced model to data generated by the full model in simulation
for a particular input. The resulting black-box reduced models do not generally
preserve the structure of the full model and neither do these models come with
error bound.

To summarize, the field of model reduction for gemeric nonlinear models faces
the challenges of (i) structure- and stability-preserving reduction for model gen-
eralization toward new inputs; (ii) finding error bounds for the quantification of
errors between the full and the reduced models; and (iii) optimal reduction to
minimize errors between the full and the reduced models.

1.5 Objectives of this thesis

System identification and model reduction are indispensable tools for system mod-
eling. Despite being frequently used, there are still many open challenges, es-
pecially for nonlinear systems. This section formulates a list of objectives that
together constitute the overarching research objective of this thesis.

Develop tools for the computationally efficient identification and optimal
model reduction of nonlinear models with stability guarantees.

1.5.1 Objectives for nonlinear system identification

Computationally efficient identification

The identification of state-space models often boils down to a nonlinear optimiza-
tion problem that is typically solved using global or gradient-based optimization
routines [240]. As these problems are nonlinear in the model parameters, a large
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number of evaluations of the error criterion and possibly its gradient with respect
to the model parameters are required [193]. Hence, the computational efficiency of
such identification depends largely on the efficiency of the computation of model
responses and gradient information. For linear models, frequency-domain tools
exist for fast computation of steady-state model responses for this purpose. For
nonlinear models, however, efficient computation of model responses is far less
trivial, especially for continuous-time models. For this reason, continuous-time
models are sometimes replaced by discrete-time ones, because the computation of
model responses for the latter is computationally significantly cheaper [236, 240].
Especially in time-critical applications, the fast identification of both continuous-
time as well as discrete-time models is an enabler for future developments.

Research objective 1. Enable computationally efficient identification of non-
linear state-space models.

Identification with stability guarantees

Model construction with stability guarantees enhances model robustness against
new unseen inputs as explained in Section 1.2. In particular, enforcing the con-
vergence property on identified models guarantees that (i) model solutions remain
bounded; (ii) model solutions corresponding to different initial conditions converge
to the GAS steady-state output; and (iii) model steady-state solutions correspond-
ing to small changes in the input remain close to each other. The methods in
[214, 215, 280, 284] impose related stability notions, namely incremental stabil-
ity or contractivity, on black-box nonlinear state-space models of certain specific
forms. For a more generic model class, for example, models that are derived by
first-principle modeling, there is a need for imposing a strong form of model sta-
bility during the identification procedure to guarantee and improve robustness
against new inputs [154].

Research objective II. Enable the identification of monlinear state-space
models with inputs with certification of the convergence property.

Accuracy bounds for model simulation

Numerical model simulation is essential for a wide variety of (nonlinear) systems
and control problems such as system identification [152, 205, 240], performance
analysis of (control) systems [110, 277, 286], parameter optimization of nonlin-
ear control systems [196, 308], state estimation via (non)linear observers [30], and
many more problems. However, even if the model perfectly describes the real-life
system, i.e., both are governed by the same set of differential equations, there is a
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mismatch between the system response and the computed model. This is due to
the fact that real-life systems evolve in the continuous-time world whereas their
models are simulated in the digital world using numerical simulation algorithms,
which have a discrete-time nature [15, 252]. Despite being instrumental in prac-
tice, the numerical simulation of nonlinear models is often performed without error
bounds for such mismatch [252]. Therefore, dedicated simulation techniques are
required that come with insightful error bounds to provide an understanding of
the key factors governing such errors.

Research objective III. Establish error bounds for the mismatch between
responses of real-life nonlinear systems and responses computed using their
models.

Consistency of closed-loop kernel-based system identification

Given uncertain datasets, consistency is one of the most important and favorable
statistical properties of estimators [152]. In some settings, this property is nat-
urally obtained in case of noisy measurement in an open-loop setting. However,
in a closed-loop setting, consistency is not obtained if noise is not appropriately
handled. The kernel-based identification strategy in [298], which is a nonlinear
extension of subspace identification for LTI systems [293], does not explicitly take
into account the effect noise. As this identification strategy has favorable prop-
erties, such as involving only convex optimization problems, it is important to
achieve consistency in both the open-loop and the closed-loop cases.

Research objective IV. Achieve consistency in data-driven kernel-based
state-space modeling.

1.5.2 Objectives for linear and nonlinear model reduction

Tangential interpolation for MIMO LTI models

Krylov-projector methods or moment matching methods for LTI models are a pow-
erful tool for model reduction with a characteristic transfer-function interpretation
[10]. In particular, moments are defined as the coefficients of the Laurent series
expansion of the transfer function at complex interpolation points. While in the
SISO case, this results in the matching of the transfer functions at the interpola-
tion points, this is not true for the MIMO case. In this case, moment matching
achieves matching along the so-called tangential direction of the transfer function
matrices. The time-domain moment matching technique preserves the matching
property for SISO models. However, in general, the time-domain moment match-
ing method does not preserve the matching property along tangential directions
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for the MIMO case and is thus inconsistent with Krylov-projector reduction tech-
niques.

Research objective V. Achieve consistency between the time-domain mo-
ment matching method and the Krylov-projector method for the reduction
of MIMO LTI models.

Global notion of moments for nonlinear models

The time-domain definition of moments for LTI models has naturally led to a
consistent nonlinear counterpart. The current definition of moments in the non-
linear context makes use of the center manifold theorem and is, therefore, only
defined locally in the neighborhood of the origin. Consequently, reduced-order
models found by the current methods are by definition only an approximation of
the full-order model in the neighborhood of the origin. Therefore, there is a need
for a definition of moments in the global case and reduction methods that achieve
moment matching globally.

Research objective VI. Extend the moment matching technique for nonlin-
ear models from the local case to the global case.

Optimal model reduction for linear and nonlinear models

Reduced-order models are used as a replacement for the full-order model when the
full-order model is too expensive for its purpose, e.g., analysis or implementation.
Therefore, it is desired in both the linear and nonlinear cases that the reduced-
order model achieves optimal accuracy. Furthermore, to promote generalizability
to new inputs, stability properties, such as convergence, and the model structure
of the full model should be preserved. Lastly, error bounds should be derived as
these provide a quality measure to form a deeper, quantitative understanding of
the capabilities of the reduced model.

Research objective VII. Enable optimal model reduction for linear and non-
linear models with error bounds whilst preserving the model structure and
the convergence property.

1.6 Contributions of this thesis

This thesis presents novel approaches for the data-driven nonlinear modeling and
complexity reduction of nonlinear models that are validated either experimentally,
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using benchmark datasets, or via simulation studies. The focus is on guaranteeing
a strong form of model stability, namely convergence, which provides robustness
for the usage of the constructed models in unseen scenarios. In the subsequent
sections, the contributions per chapter are detailed for the individual parts of this
thesis.

1.6.1 Part I: Identification of convergent Lur’e-type systems

Chapter 2 proposes a parametric identification approach for a class of continuous-
time SISO Lur’e-type systems that guarantees the identified Lur’e-type model to
be exponentially convergent and uses numerically efficient tools to compute model
responses and gradient information to be used for gradient-based optimization.
Lur’e-type models can be decomposed in the LTI dynamics that are placed in
feedback with a static nonlinearity. The performance and the computational ben-
efits of the proposed identification approach are demonstrated in simulation and
experimental case studies. It is shown that the proposed identification method
significantly reduces the identification time, whilst enforcing the convergence prop-
erty. In particular, the experimental case study in mechanical ventilation highlights
the computational efficiency of this approach, enabling fast identification of both
equipment parameters, as well as patient parameters. This chapter contributes
toward research objectives I and II.

Contribution I. A computationally efficient approach to the identification
of continuous-time convergent Lur’e-type systems that guarantees that the
identified Lur’e-type model is also convergent.

Chapter 3 proposes an identification approach that can be viewed as the discrete-
time counterpart of the approach in Chapter 2 with an extended model class such
that MIMO systems with multiple nonlinear functions in the feedback loop can be
considered. The identification approach is benchmarked on several datasets. This
chapter contributes toward research objectives I and II.

Contribution II. A computationally efficient approach to the identification
of discrete-time multivariable convergent Lur’e-type systems that guarantees
that the identified Lur’e-type model is also convergent.

Chapter 4 analyzes the steady-state mismatch between the response of continuous-
time nonlinear Lur’e-type systems and their continuous-time nonlinear Lur’e-type
models. Even though real-life systems evolve in the continuous-time world, their
measured, sampled responses are only available on a discrete-time grid. Model
responses are computed by numerical simulation algorithms which also have a
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discrete-time nature. The first result of this chapter bounds the steady-state mis-
match between the measured sampled system response and the simulated model
response. This bound provides a measure of how close the simulated model output
is with respect to the sampled measured system output. For the system identifi-
cation problems, in particular, such a mismatch quantification can be exploited to
distinguish between structural modeling errors and errors due to inaccurate model
simulation. The second result bounds the steady-state mismatch between the ac-
tual system response and simulated model response, thereby providing insight into
the intersample behavior of the system that is not captured by sampling its output
response. The bounds are exploited to provide insights into the factors causing the
mismatches. Furthermore, methods to reduce the derived bounds are presented.
This chapter contributes toward research objective III.

Contribution IIL. Error bounds for the mismatch between the steady-state
responses of real-life continuous-time nonlinear convergent Lur’e-type sys-
tems and the steady-state responses of their continuous-time nonlinear con-
vergent Lur’e-type models computed using a discrete-time numerical simu-
lation algorithm.

1.6.2 Part II: Moment matching for linear and nonlinear models

Chapter 5 presents a matching property in terms of the MIMO transfer-function
matrices of the full- and the reduced-order LTI models for model order reduc-
tion by time-domain moment matching. Furthermore, additional conditions on
time-domain moment matching parameters are formulated under which the match
is consistent with classical Krylov-projector methods. This chapter contributes
toward research objective IV.

Contribution IV. A time-domain moment matching method for MIMO LTI
models that achieves a matching property that is consistent with classical
Krylov subspace methods.

Chapter 6 extends the notion of moments of nonlinear models from the local to
the global context for a generic class of convergent nonlinear models. Further-
more, this chapter proposes a constructive model reduction approach for con-
vergent Lur’e-type models that preserves the Lur’e-type model structure, inherits
the frequency-response function interpretation of LTI moment matching, preserves
the convergence property, and is equipped with an a posteriori error bound. The
benefits of this approach are illustrated in a numerical case study. This chapter
contributes toward research objectives VI and VII.
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Contribution V. The extension of time-domain moment matching to the
global case for nonlinear models and a constructive method for the reduc-
tion of Lur’e-type models that preserves its structure and the convergence
property.

Chapter 7 presents optimal model reduction techniques for MIMO LTI models
and MIMO convergent nonlinear models. In the LTI case, moment matching is
achieved, asymptotic stability is preserved, and the approximation error in the
Hoo-norm is minimized. In the nonlinear context, the convergence property is
preserved and optimality is achieved by the minimization of an error bound. The
effectiveness of the proposed methods is demonstrated in numerical case studies.
This chapter contributes towards research objectives V, VI, and VII.

Contribution VI. A model reduction method for linear and nonlinear models
that is structure- and convergence-preserving and optimal in terms of a
minitmized error bound on the steady-state output mismatch between the
full and reduced models.

1.6.3 Part ITI: Kernel-based identification of nonlinear systems

Chapter 8 extends a consistent closed-loop identification method for LTI systems to
the case of kernel-based identification of nonlinear systems. The proposed three-
step approach identifies first the noise sequence, then the state sequence, and
finally the state-space mapping. Although not proving overall consistency, each
step of the proposed procedure corresponds to a consistent estimate under certain
assumptions. Using simulation studies, the performance of the proposed identifi-
cation strategy is evaluated in both the open-loop and the closed-loop cases. This
chapter contributes toward research objective IV.

Contribution VII. A step-wise consistent approach to the kernel-based state-
space identification of open-loop and closed-loop discrete-time multivariable
nonlinear systems.

Chapter 9 presents a kernel-based approach for the state-space identification of
nonlinear systems with a focus on enforcing convergence on compact sets of the
input space and the state space. Certification of the convergence property en-
ables safe and robust generalization toward unseen scenarios. The benefits of the
approach are illustrated by means of simulation and benchmark examples. This
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chapter contributes toward research objective VIII.

Contribution VIII. An approach to kernel-based state-space identification
of discrete-time nonlinear systems that guarantees that the identified model
18 convergent.

1.7 Outline of this thesis

Including this introduction, the thesis consists of ten chapters. Each of the con-
tributions formulated in Section 1.6 is represented by one chapter, where each
of these chapters is self-contained and can be read independently. Furthermore,
Chapters 2-9 correspond to peer-reviewed publications. The conclusions and rec-
ommendations of this thesis are presented in the fourth part of this thesis.

Part I: Identification of convergent Lur’e-type systems

Chapter 2 corresponds to Contribution I and the publications:

e Shakib, M. F., Pogromsky, A. Y., Pavlov, A., & van de Wouw, N. (2022).
Computationally efficient identification of continuous-time Lur’e-type sys-
tems with stability guarantees. Automatica, 136, 110012.

e Shakib, M. F., Pogromsky, A. Y., Pavlov, A., & van de Wouw, N. (2019).
Fast identification of continuous-time Lur’e-type systems with stability cer-
tification. TFAC-PapersOnLine, 52(16), 227-232.

Chapter 3 corresponds to Contribution II and the publications:

e Shakib, M. F., Vervaet, N., Pogromsky, A. Y., Pavlov, A., & van de Wouw,
N. Fast identification of multivariable discrete-time Lur’e-type systems with
stability certification. Submitted for journal publication.

Chapter 4 corresponds to Contribution III and the publications:

e Shakib, M. F., Schoukens, J., Pogromsky, A. Y., Pavlov, A., & van de Wouw,
N. Accuracy bounds for the simulation of a class of continuous-time nonlinear
models. In preparation.

Part I1: Moment matching for linear and nonlinear models

Chapter 5 corresponds to Contribution IV and the publications:

e Shakib, M. F., Scarciotti, G., Pogromsky, A. Y., Pavlov, A., & van de Wouw,
N. Time-domain moment matching for multiple-input multiple-output linear
time-invariant models. Provisionally accepted for publication in Automatica.
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Chapter 6 corresponds to Contribution V and the publications:

e Shakib, M. F., Scarciotti, G., Pogromsky, A. Y., Pavlov, A., & van de Wouw,
N. Model reduction by moment matching with preservation of global stability
for a class of nonlinear models. Submitted for journal publication.

e Shakib, M. F., Scarciotti, G., Pogromsky, A.Y., Pavlov, A., & van de Wouw,
N. (2021). Model reduction by moment matching for convergent Lur’e-type
models. In Proceedings of the American Control Conference, (pp. 4449-
4454).

Chapter 7 corresponds to Contribution VI and the publications:

e Shakib, M. F.; Scarciotti, G., Jungers, M., Pogromsky, A.Y., Pavlov, A., &
van de Wouw, N. Optimal model reduction by moment matching: the linear
and nonlinear feedback cases. Submitted for journal publication.

e Shakib, M. F.; Scarciotti, G., Jungers, M., Pogromsky, A.Y., Pavlov, A.,
& van de Wouw, N. (2021). Optimal H., LMI-based model reduction by
moment matching for linear time-invariant models. In Proceedings of the
Conference for Decision and Control, (pp. 6914-6919).

Part III: Kernel-based identification of nonlinear systems

Chapter 8 corresponds to Contribution VII and the publications:

e Shakib, M. F., Téth, R., Pogromsky, A. Y., Pavlov, A., & van de Wouw,
N. (2020). State-space kernelized closed-loop identification of nonlinear sys-
tems. IFAC-PapersOnLine, 53(2), 1126-1131.

Chapter 9 corresponds to Contribution VIII and the publications:

e Shakib, M. F., Téth, R., Pogromsky, A. Y., Pavlov, A., & van de Wouw,
N. Kernel-based identification of nonlinear state-space models with stability
guarantees. In preparation.
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This chapter proposes a parametric system identification approach for a class of
continuous-time Lur’e-type systems. Using the Mized-Time-Frequency algorithm,
we show that the steady-state model response and the gradient of the model response
with respect to its parameters can be computed in a numerically fast and efficient
way, allowing efficient use of global and local optimization methods to solve the
identification problem. Furthermore, by enforcing the identified model to be inside
the set of convergent models, we certify a stability property of the identified model,
which allows for reliable generalized usage of the model, also for other excitation
signals than those used to identify the model. The effectiveness and benefits of the
proposed approach are demonstrated using a simulation case study. Furthermore,
we have experimentally shown that the proposed approach provides fast identifica-
tion of both medical equipment and patient parameters in mechanical ventilation
and, thereby, enables improved patient treatment.

The contents of this chapter are published in: Shakib, M. F., Pogromsky, A. Y., Pavlov, A., &
van de Wouw, N. (2022). Computationally efficient identification of continuous-time Lur’e-type
systems with stability guarantees. Automatica, 136, 110012. Preliminary results are published
in: Shakib, M. F., Pogromsky, A. Y., Pavlov, A., & van de Wouw, N. (2019). Fast identification
of continuous-time Lur’e-type systems with stability certification. IFAC-PapersOnLine, 52(16),
227-232.
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2.1 Introduction

Accurate dynamical models of complex systems are required for model-based con-
troller design, analysis of the dynamic behavior of the system under study, and
improved system design. System identification deals with the construction of such
dynamic models from observed input and output data. For the class of linear
systems, many identification techniques exist [152], together with user-friendly
software, see, e.g., [153]. However, many physical systems are essentially non-
linear and, depending on the application, one can choose to model it in a linear
framework by neglecting (non-significant) nonlinear phenomena, or can choose to
also model the nonlinearities and, therewith, increase the model accuracy at the
cost of model complexity.

A major challenge in system identification is to enforce a form of stability on
the identified model [154, 240, 280]. Even if it is known that the true system
under study enjoys some stability property, it is not guaranteed that the identi-
fied model preserves this stability property due to the finite length of the dataset,
noisy datasets, or the presence of unmodeled dynamics. Several methods that
enforce exponential stability are proposed in the literature for the identification
of linear time-invariant (LTT) models [105, 146, 280, 283, 290]. For nonlinear sys-
tems, however, the literature on the identification of nonlinear models with some
guaranteed form of stability is scarce and the consequences of not enforcing stabil-
ity are more pronounced and more complex in the nonlinear context [60, 64, 240].
Firstly, it is well-known that nonlinear models can exhibit multiple stable solutions
being attractive for different sets of initial conditions [135]. Consequently, the re-
sponse of the identified model might be close to the measured system response,
but might as well be far off or even become unbounded, depending on the initial
condition. Secondly, nonlinear models can have a large sensitivity to the excita-
tion signal, and, therefore, their response can be significantly different, or even
become unbounded, even for the slightest change in the excitation signal [135].
Such models have poor generalization capabilities to other excitation signals than
the ones used during identification. With the instability issue of the identified
model in mind, [280, 283] developed a method that imposes global incremental
stability for a class of identified black-box nonlinear state-space models, where the
incremental stability property avoids the above problems of high sensitivity to in-
put changes and initial conditions. In that approach, the dataset includes the state
sequence of the underlying nonlinear system, which is non-trivial and rather case
specific to obtain in practice. Other types of stability properties, e.g., asymptotic
stability of the origin for zero inputs and input-to-state stability, are enforced in
[68, 171, 270, 271, 285], mostly for autonomous black-box nonlinear models. Note,
however, that models that enjoy these other types of stability properties can still
exhibit a large sensitivity to input changes and initial conditions.

To address the challenge of identifying nonlinear models with a form of in-
cremental stability, we focus on a practically relevant class of nonlinear systems,
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namely Lur’e-type systems [135]. These systems are block structured in the sense
that all the LTT dynamics are captured in an LTI block and separated from the
nonlinearities that are captured in a static nonlinear block in the feedback loop.
The class of Lur’e-type systems encompasses so-called Wiener, Hammerstein, and
nonlinear feedback systems and, therefore, captures a large class of nonlinear sys-
tems. In the system identification literature, Lur’e-type systems are also referred
to as nonlinear feedback systems [96], and NonLinear Linear Fractional Represen-
tation (NL-LFR) systems [244, 296].

Different approaches for the identification of Lur’e-type systems have been pro-
posed in the literature [115, 175, 188, 234, 243, 244, 291, 294, 296, 300]. What
most of these approaches have in common is that, as a final step in the identifi-
cation procedure, a non-convex cost function has to be minimized using gradient-
based optimization routines. Furthermore, all these approaches are formulated in
a discrete-time setting. Although continuous-time counterparts of most of these
methods can be formulated readily, it is an open problem how to perform the
gradient-based minimization of the cost function in the continuous-time setting
in a numerically efficient way. More specifically, any gradient-based optimization
routine requires the computation of model responses to evaluate the cost function
and requires the computation of the gradient of the cost function with respect
to the model parameters. While the model simulation of discrete-time nonlin-
ear models boils down to a series of computationally cheap algebraic operations,
the standard means of model simulation for continuous-time nonlinear models is
numerical forward integration, which is computationally extremely expensive.

In this chapter, we present a parametric identification approach for a class
of continuous-time single-input single-output (SISO) Lur’e-type systems that: (i)
guarantees the identified model to be exponentially convergent and, (ii) uses nu-
merically efficient tools to compute model responses and gradient information to
be used for gradient-based optimization. Point (i) guarantees that the identified
model is globally exponentially convergent, which is a property of (non)linear mod-
els that guarantees the uniqueness, boundedness, and global exponential stability
of the steady-state solution [197]. As a consequence, for any bounded excitation,
the identified model ‘forgets’ its initial condition and, therefore, exhibits a uniquely
defined, bounded steady-state solution, which is globally exponentially stable and
depends solely on the applied excitation. Furthermore, the identified model enjoys
the property that a small variation of the excitation signal results in a small varia-
tion of the steady-state output, which adds to the robustness of the identification
result. Point (ii) enables system identification of continuous-time nonlinear mod-
els in a computationally efficient way. Hereto, the so-called mixed-time-frequency
(MTF) algorithm is employed to enable fast computation of steady-state model re-
sponses under periodic excitations [196]. The MTF algorithm facilitates the usage
of global optimization techniques [156] and also enables efficient computation of
the gradient of the underlying cost function with respect to the model parameters,
which can be effectively used in any gradient-based optimization routine.
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We demonstrate the performance and the computational benefits of the pro-
posed identification approach in two case studies. The first case study is a simu-
lation example, where we identify a black-box nonlinear model. We show that the
proposed identification strategy is significantly faster than conventional methods
as the computation time is reduced from hours to only minutes. The second case
study is an experimental study on mechanical ventilation, which is used to regulate
the breathing of patients in respiratory distress during the nursery of intensive-
care and acutely ill surgical patients. Particularly, during the COVID-19 crisis,
mechanical ventilation is extensively used to support the breathing of hospitalized
patients with severe lung damage. In our longstanding relationship with Demcon
Macawi Respiratory Systems, Best, The Netherlands, we mainly focused on the
pressure control aspect [116, 211]. In this chapter, we address the identification
of the parameters of a first-principle model. The model includes the patient’s
lung parameters, which reveal important patient health information that is used
in the medical decision-making process [5, 145] and for pressure control purposes
[116, 275]. We show that the proposed identification method significantly reduces
the computation time, which is crucial as it enables faster patient treatment with
the aim to avoid negative consequences for the patient’s lungs [90, 258] and, saves
valuable time for the medical practitioner.

In summary, the main contribution of this chapter is a computationally efficient
approach to the identification of continuous-time convergent Lur’e-type systems
that guarantees that the identified model is also globally exponentially convergent.
We have demonstrated theoretically that this approach is statistically consistent
and we have demonstrated numerically that this approach is effective and compu-
tationally efficient. Furthermore, we have shown that the developed approach is
an enabler for innovation in mechanical ventilation as it allows to identify physical
parameters in a fast way, which can subsequently be used for improved patient
treatment.

The remainder of this chapter is structured as follows. Section 2.2 introduces
the considered class of Lur’e-type systems and recalls sufficient conditions for con-
vergence. Section 2.3 formally poses the identification problem as a constrained
optimization problem and also shows the statistical consistency of the estimator.
Section 2.4 provides an overview of methods to minimize the cost function, con-
strained to the set of convergent models. Section 2.5 introduces the MTF algorithm
and also shows how the gradient of the cost function is computed accurately and
efficiently. Section 2.6 presents the performance of the identification approach in
a simulation study. Section 2.7 describes the mechanical ventilation case study.
Section 2.8 closes with concluding remarks.
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2.2 Convergent Lur’e-type systems

We consider SISO Lur’e-type systems described by

(2.1)

where x(t) € R™ is the state vector, y(¢) € R is the unmeasured feedback signal,
z0(t) € R is the output, w(t) € R is the user-defined external input, ¢(y (¢), w(t)) :
RXxR — Ris a static nonlinear function. We assume that ¢(0, w) = 0Vw € R. Fig.
2.1 depicts the considered Lur’e-type system schematically. Although checking the
stability of forced LTI systems is well-understood, checking the stability of (forced)
solutions of nonlinear systems is non-trivial. Consequently, enforcing stability on
the identified nonlinear model becomes challenging [154]. To address this challenge,
we use the notion of convergent dynamics defined as follows.

Definition 2.1 ([197]). System (2.1) with input w(t) that is defined and bounded on
t € R, is said to be globally exponentially convergent if there exists a solution x(t)
satisfying the following conditions:

e &(t) is defined and bounded on t € R,

e x(t) is globally exponentially stable.
|

A solution & (t) of the system (2.1), which is defined for ¢ € (t,,+00), is called
globally exponentially stable if there exists a 6 > 0,a > 0, and 5 > 0 such that
lx(to) — @ (to)| < d for any to € (¢4, +00) implies

o (t) — 2 (t)| < ae™ P00 | (1) — & (L) | VE > to

with | - | the Euclidean norm. The solution & (t) is called the steady-state solution
and depends on the excitation signal w(t). For the considered system (2.1), the
following theorem provides sufficient conditions for global exponential convergence.

Theorem 2.1 ([196]). Consider system (2.1) and suppose that
C1 the matriz A is Hurwitz;
C2 there exists a K > 0 such that the nonlinearity ¢(y,w) satisfies
Qa2 20w) | < ¢ for all yy,yo,w € R;

Y2—Y1

C3 sup,,cp [C(jwl — A)7'B| < %
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W yle=Ac+ Bu+ Lw %0
w |y=Cx+Duw y

%0 =Fx + Gu + Hw

Figure 2.1. Schematic representation of Lur’e-type system (2.1).

Then, for any input w(t) that is defined and bounded on t € R, system (2.1) is
globally exponentially convergent according to Definition 1. Moreover, any other
solution x(t) of system (2.1) subject to the same input w(t) satisfies

o (t) — 2 (t)| < e P00 | (t) — & (to)], VE > to.
The constants a > 0 and 8 > 0 are independent of the input w(t). A

For notational convenience, we write exponentially convergent instead of ex-
ponentially convergent for any bounded input w(t) from here on. The conditions
of Theorem 2.1 are used in Section 2.3 to enforce the identified Lur’e-type model
to be globally exponentially convergent according to Definition 2.1. Globally ex-
ponentially convergent systems ‘forget’ their initial condition since, independently
of the initial condition, all solutions x(t) converge exponentially to the steady-
state solution @(t). The conditions of Theorem 1 give the even stronger property
of input-to-state convergence, which implies that small variations (in the infinity
norm) of the input signal w(t) lead to small variations (in the infinity norm) of the
steady-state solution &(t), see Theorem 2.2.17 in [200]. Convergent systems also
exhibit the property that when excited by a periodic excitation signal w(t) with
period-time T, the steady-state solution @ (t) is also periodic with the same period-
time 7" [197]. In the nonlinear identification literature, often the PISPO (Periodic
Input, the same Period Output) system class is considered, which also possesses
this periodicity property [235, 243]. This latter property facilitates the use of only
steady-state data for identification, which is common practice in nonlinear system
identification [240].

2.3 Identification setting

This section formally introduces the identification problem. Hereto, we first intro-
duce the considered model class. After that, we introduce the cost function central
to the identification problem and show that the proposed estimator is statistically
consistent.
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2.3.1 Model parametrization

The considered model class is a copy of (2.1):
@(t,0) = A(0)x(t, 0) + B(0)u(t, ) + L(O)w(t),
y(t,0) = C(0)x(t, 0) + D(O)w(?), (2.2)
z(t,0) = F(0)x(t,0) + G(O)u(t, 0) + H(O)w(t), '
u(t,0) = —p(y(t,0), w(t),0),

parametrized by the vector § € R™. The state dimension n of the true system
(2.1) is considered known.

We distinguish between two parametrization approaches, namely (i) the model
parametrization following from first-principle modeling; and (ii) a black-box model
parametrization. In approach (i), the model parameters of both the linear part and
the nonlinear part have a physical meaning. Such model parametrization is used
in the experimental case study in Section 2.7. In approach (ii), the parameters do
not have a physical meaning. Then, for the state-space matrices, a canonical form
or a full parametrization can be taken, in which each element of the state-space
matrices is one model parameter. In a black-box approach, the nonlinearity ¢ is
typically parametrized by a set of basis functions as follows:

no

@(y(t79)7w(t)79) = Z ekfk(y(t79)ﬂw(t))7 (23)

k=1+nyr1

where np7r is the number of parameters used to parametrize the LTI block. The
user-defined basis functions fi(y(t,6),w(t)) have associated parameters 0. A
black-box model parametrization is used in the simulation case study presented in
Section 2.6.

One of the goals of this work is to guarantee that the identified model is glob-
ally exponentially convergent according to Definition 2.1. To this extent, we define
the set © C R™ with a nonempty interior as the set of parameter vectors 6 for
which model (2.2) satisfies conditions C1 - C3 in Theorem 2.1 (with A, B,C, ¢(y, w)
replaced by A(6), B(9),C(0), o(y,w, ), respectively). The set © serves as a con-
straint on the parameter vector 6 to be respected in the identification process. We
close this section by assuming that the to-be-identified true system (2.1) is also
globally exponentially convergent, which is a stability property that the developed
identification method aims to preserve for the identified model.

Assumption 2.1. The true system (2.1) is in the model class proposed in (2.2) with
parameter vector 6y € int®, and satisfies conditions C1 - C8 of Theorem 2.1.
Therefore, the true system (2.1) is globally exponentially convergent according to
Definition 2.1. [}

Remark 2.1. The nonlinearity ¢ of model (2.2) should be parametrized carefully
in a black-box parametrization approach. In particular, the incremental sector
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bound imposed by condition C2 in Theorem 2.1 should be satisfied globally, i.e.,
for all 41, y2, w € R. Inappropriate choices for the basis functions fi in (2.3) can
lead to unstable models and to models that exhibit multiple co-existing (stable)
steady-state solutions. This is encountered in, e.g., polynomial basis functions [60].
Suitable nonlinearities are, e.g., piecewise linear maps, sigmoids, the arctangent
function, and the hyperbolic tangent function. A

2.3.2 Cost function and consistency

Assumption 2.1 guarantees that the true system is globally exponentially conver-
gent. Therefore, when excited by a periodic input w(t) with period-time 7', the
periodic steady-state output %o(¢) of system (2.1) has the same period-time 7'
In practice, only a discrete version of the measured steady-state output %¢(t) is
available at sampling instants t; = to + kts with k = 1,..., N, where t5 is the
sampling interval and N = PT'/t, is the total number of samples in P steady-state
periods. We assume the following noise scenario.

Assumption 2.2. The measured output is % (ty) = %o(tg) +e(tx). The discrete-time
noise source e(ty,) is zero-mean Gaussian white noise with finite variance o2 and
independent of the applied input signal w(ty). [ ]

By guaranteeing that 6 € O, i.e., the candidate model is also globally exponen-
tially convergent, model (2.2) subject to the same periodic input w(t) results in
the periodic steady-state output z(¢,0) with the same period-time 7. This leads
to the definition of the steady-state error over P periods:

€(ty,0) = z(ty,0) —%(tx), k=1,...,N. (2.4)

The squared simulation error is then taken as the cost function, which is defined

as follows:
N

Jn(8) = % > Etn, 0)*. (2.5)

k=1
Given the dataset {w(ty),%(tx)}o_,, the identification objective is to find the
parameter vector 0 that globally minimizes Jy(-) constrained to the set of con-
vergent models characterized by the parameter set ©, that is

On = arg min JIn(0). (2.6)

To study consistency of the estimator (2.6), define the function Vi (:) as follows:

N
Va(0) = 5 D (200, 0) — Folth)’ (2.7
k=1

This function can be interpreted as a measure of the steady-state mismatch be-
tween the model response zZ(tx,6) and the noiseless system response %¢(t;). The
following persistency of excitation assumption is required.
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Assumption 2.3. The unique global minimum of Vi (0) in (2.7) is 6. |
Assumptions 2.1-2.3 allow formulating the following consistency result.

Theorem 2.2. Under Assumptions 2.1-2.3, the estimate Oy in (2.6) converges in
probability to O, i.e.,
lim E [éN - 00:| =0.
N—o00

A

Proof. The proof can be found in Appendix A.1. O

Remark 2.2. The model parametrization is non-unique [238, 243] in the sense that
a model subject to a similarity transformation of the LTI block, a gain exchange
between the LTI block and the static nonlinear block, or a loop-transformation
[135] produces the same steady-state output. Therefore, the true parameter vector
0y is a set and the consistency claim of Theorem 2.2 should be understood in the
sense that 6y converges in probability to the set 8y as N — oco. A

2.4 Cost function minimization strategy

The identification problem defined in (2.6) is a constrained optimization problem
with the cost function in (2.5). As this cost function is generally non-convex,
we propose a two-step optimization approach to solve (2.6): (i) initialization and
(ii) gradient-based optimization. The result of step (i) should be a set of initial
model parameters 6;,;; in the vicinity of 6y, which globally minimizes the cost
function. For applicability of the numerically efficient tools that we present in
Section 2.5, the initial model with parameters 6;,;; should satisfy the conditions of
Theorem 2.1 and, therefore, be globally exponentially convergent. The gradient-
based search of step (ii) is started from the set of initial parameters 6;,;; and
results in the parameter set Oy that corresponds to the nearest minimum of the
cost function. Again, for applicability of the numerically efficient tools that we
present in Section 2.5, in all optimization iterations of the gradient-based search,
the conditions of Theorem 2.1 should be satisfied.

2.4.1 Initialization

We discuss three approaches for the initialization step that yield a set of initial
model parameters 0;,;;. Again, we want to stress that the model with parameters
Oinit should satisfy the conditions of Theorem 2.1.

Physical insight This method is only applicable for models that are derived by
first-principle modeling, implying that the parameters of these models represent
physical quantities. The user appropriately chooses the initial parameters 6;,;
based on its physical insights. However, it should be kept in mind that the model
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with parameters 6;,;; should satisfy the conditions of Theorem 2.1, which can
make the initial guess challenging, especially for models with a large number of
parameters.

Best Linear Approximation This method relies on estimating the so-called Best
Linear Approximation (BLA) of the nonlinear system [235]. Hereto, the MATLAB
implementations N4SID or TFEST, can be used, which can also enforce the A(f)-
matrix of the identified model to be Hurwitz. In addition, by imposing no feedback,
i.e., choosing C(#) and D(#) both 0, B(6) = 0 or ¢(y,w,d) = 0, the initial model
satisfies the conditions of Theorem 2.1. The BLA framework has the advantages
that it allows for fast estimation of initial model parameters, provides a nonlinear
distortion analysis, and gives a rough estimate for the state dimension.

Global Optimization This method employs global optimization routines such
as genetic-type, swarm intelligent or Monte-Carlo routines [156]. Although global
optimization is typically computationally expensive, we can achieve fast opera-
tion using the efficient numerical tools that we introduce in Section 2.5. Global
optimization routines typically cluster around the global minimum and provide,
therefore, an accurate set of initial model parameters 6;,;; that correspond to a
full nonlinear model rather than a linear model as in the BLA framework. To
limit the search space, (rough) bounds on the parameter values should be known
a priori.

Depending on the application at hand, either one of the three methods detailed
above can be used to find a set of initial model parameters 6;,;;. In the simulation
case study in Section 2.6, we demonstrate the effectiveness of a global optimization
routine. In the experimental case study in Section 2.7, we use available knowledge
on the physical parameters for initialization. Numerous identification results with
the BLA method are presented in the literature, see [243] for an overview.

Remark 2.3. Global optimization can also be viewed as a stand-alone identification
procedure without a local gradient-based search as a second step. To view it as a
two-step approach, consider step one as a less accurate but global search and step
two as a local refinement. VAN

2.4.2 Gradient-based optimization

After an initial parameter vector 6;,;; in the initialization step is obtained, a
gradient-based search can be performed. Hereto, the gradient of the cost function
in (2.5) with respect to the parameter vector 6 is required, namely:

N
=1

In (2.8), the steady-state error €(ty, 6) defined in (2.4), as well as the gradient of this
steady-state error 9&(t,,6)/00 = 0%(ty,0)/00, are required. We show in the next
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section that we can compute both &(tx,0) and 9&(tx,8)/00 in a computationally
efficient and accurate way using the MTF algorithm.

To facilitate the application of the MTF algorithm during a gradient-based
search, the candidate model should be convergent in all iterations, i.e., 6 € O.
In literature, there are many gradient-based methods' that deal with constrained
optimization problems [193]. Alternatively, one can introduce an exterior penalty
function (@), which turns the constrained optimization problem into an uncon-

strained one, where
0 if6eo,
9 =
v(6) { oo if6¢&0.

The modified cost function then reads as follows:

JN,mod(g) = JN(Q) + 1/}(9) (29)

with Jy(-) defined in (2.5). It can be minimized by any gradient-based optimiza-
tion algorithm (such as the Levenberg-Marquart algorithm) to yield

éN,mod = arg Hgn JN,mod(G)~ (210)

The modified cost function Jy mod(:) is unbounded for models not inside the set
of the convergent models, but leaves the cost function Jy(-) unaffected for models
inside the set of convergent models. Consequently, as long as the set of convergent
models is respected, the gradient of the cost function with respect to the model
parameters remains unaffected. In contrast to interior penalty functions (also
known as barrier functions), the exterior penalty function does not result in a bias
in the parameters, i.e., Oy in (2.6) equals 9N7m0d in (2.10).

2.5 Computation of steady-state responses and gradient
information

As shown in the previous section, the steady-state output Z(t, 0) of the model (2.2)
is required at sampling instances t; in the evaluation of the cost function (2.5)
and the computation of its gradient (2.8). First, we introduce the MTF algorithm,
which enables fast computation of the steady-state response of convergent Lur’e-
type models. After that, we present a method to compute the gradient 9€(t, 8)/96,
required in (2.8), again, in a computationally efficient manner using the MTF
algorithm.

IMATLAB provides built-in solvers such as fmincon that can handle constrained optimization
problems.
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2.5.1 Mixed-time-frequency algorithm

To overcome the time-consuming drawbacks of computing model responses using
numerical forward integration, [196] developed the so-called MTF algorithm. If
the underlying Lur’e-type model satisfies the conditions stated in Theorem 2.1,
then this algorithm computes the steady-state model response z(t,6) efficiently
under a periodic excitation w(t). For notational convenience, the dependency on
0 is dropped in this section.

The MTF algorithm is an iterative algorithm. At each iteration ¢, two mappings
are involved:

Uil = Fuy O Yis (2.11a)
Yit1 = Fyu 0 Uit1 + Fyw 0 W, (2.11b)
where the nonlinear steady-state operator Fy, o y; = —@(y;, w), and the linear

steady-state operators F,, Fy.,, map periodic signals u;11 and w to the periodic
steady-state output y;11. The MTF algorithm relies on the fact that the composed
operator Fy, 0F,, is a contraction operator acting from the space? Lo (T') to Lo(T),
if the model satisfies the conditions of Theorem 2.1. For computational efficiency,
the nonlinear mapping F,, o y; is evaluated in the time domain, while the linear
mappings Fy, and F, are evaluated in the frequency domain according to the
frequency response functions (FRFs):

Gyu(jw) = C(jwl — A)7'B,
Gyw(jw) = C(jwl — A)"'L + D.

The MTF algorithm iteratively evaluates the mappings (2.11b), (2.11a), while
transforming the intermediate signals between the time and frequency domains
using the (Inverse) Fast Fourier Transform ((I)FFT), truncated to only M fre-
quency contributions. Hereto, denote by Y [m] the sequence of Fourier coefficients
of §(t). Then, the truncated version of Y[m], denoted by Y™[m] is defined as
follows: ~

v | Y[m] for m| < M,

Yim] { 0 for |m| > M,

and its time-domain representation is denoted by 7™ (t).
Having the steady-state (), one can trivially compute %(t) in the time domain
using F,, and the output z(t) in the frequency domain using the following FRF's:

G.u(jw) = F(jwl — A)™'B + G,
Gow(jw) = F(jwl — A)"'L + H.

2The space L2(T) denotes the space of piecewise-continuous real-valued T-periodic scalar
functions y(t) satisfying ||y||z, < co, where ||yH2L2 = % fOT ly(¢)|2dt.
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The following theorem shows that the MTF algorithm converges to the unique
‘true’ steady-state model response and gives an accuracy bound for the obtained
steady-state solution.

Theorem 2.3 ([196]). Under the conditions of Theorem 2.1, for any M > 0, there
is a unique limit §™ to the sequence y;,i = 1,2,..., resulting from the iterative
process with truncation (2.11a), (2.11b). Moreover,

1 (v%vwa

=9Iz < £ ||w|L2+vyw||w—wM|L2>

= Yyudl \ 1 — 7y K
with
Yyu = SUp |Gyu(]mw)|a 'YyMu ‘= sup ‘Gyu(jmw)|77yw = sup |Gyw (]mw)|
mez m>|M| mez

A

Theorem 2.3 shows that Hg —gM H L, can be made arbitrarily small. Hereto, ob-
serve that, for large M, 'y% drops to zero (thanks to the transfer from u to y
being strictly proper) and that ||w — wMHL2 drops to zero by the Riesz-Fischer

theorem, see, e.g., [25]. From here, also ||2 —zM ||L2 can be made arbitrarily small.
Consider

72—z = Fo0(@—aM) + Fopo (w—w) (2.12)

with F,, and F,, being linear steady-state operators that map the inputs u and
w to the steady-state output z. By the Riesz-Fischer theorem, it is clear that both
Hﬁ —aM ||L2 and ||w —wM HL2 converge to zero for large M, which guarantees that

HZ — 2M||L2 also converges to zero for large M.

The MTF algorithm is presented in Algorithm 2.1. In lines 1 to 4, the contri-
bution of the excitation signal w(t) in the steady-state output g(t) is computed in
the frequency domain and transformed into the time domain. After that, inside
the while loop, first, the nonlinearity is evaluated in the time domain in line 6 and
its output is transformed into the frequency domain in line 7. Next, in lines 8 and
9, the LTI dynamics are evaluated in the frequency domain and the output y(t) is
transformed to the time domain. After convergence of the signal y(t), the model
output z(t) is computed in the frequency domain in line 12 and transformed to
the time domain in line 13. The termination criterion is the normalized mismatch
between the Fourier coefficient Y; and those of the previous iteration Y;_1, mea-
sured in the f5 signal norm, which is defined as ||Z|[7, == > 0-__ |Z[m]|*. The
MTF algorithm with truncation can be considered as a multiharmonic variant of
the describing function method, see [168] for a discussion about the autonomous
case. The computed steady-state response zZ(t,0) can be used together with the
measured response %(t) to compute the output error (2.4), which can be subse-
quently used in (2.5) and (2.8) in an optimization routine to solve the underlying
identification problem.
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Algorithm 2.1 Mixed-Time-Frequency Algorithm

1: Calculate W[m] of w(t) for |m| < M using the FFT.

2: Evaluate the LTI dynamics in the frequency domain

Yo[m] = Gy (jmw)W[m] for |m| < M.

Compute yo(t) of Yy[m] using the IFFT.

Set the iteration counter ¢ = 0.

while |[Y; — Yi1]les/[[Vi-1lley > V* do
Evaluate the nonlinearity in the time domain u;41(t) = —(y;(t), w(t)).
Compute U;y1[m] of u;41(t) using the FFT.
Evaluate the LTI dynamics in the frequency domain
Yipa[m] = Gyu(jmw)Usp[m] + Yo[m] for |m| < M.

9: Compute y;+1(t) of Y;11[m] using the IFFT.

10: Set ¢ =i+ 1.

11: end

12: Evaluate the LTI dynamics in the frequency domain
Z[m] = G (jmw)W[m| + G,y (jmw)U;[m] for |m| < M.

13: Compute z(t) of Z[m] using the IFFT.

@ N> oW

2.5.2 Gradient computation

Any gradient-based optimization routine requires the gradient of the cost function
with respect to the model parameters as in (2.8). It is well known that this gradient
can be computed by simulation of a parameter sensitivity model [134, 272].

The sensitivity model is a continuous-time model with a similar structure as the
proposed model structure. Therefore, in other works, its response is computed in
the same way as the model response, which is typically done by numerical forward
integration. We show that the sensitivity model in our identification problem is
again a convergent Lur’e-type model satisfying the conditions of Theorem 2.1,
which facilitates the use of the efficient MTF algorithm to compute its steady-
state response, i.e., the gradient information of the steady-state model response
with respect to the parameters. The methodology extends that in [196], where the
to-be-optimized parameters only appeared in the static nonlinear block, whereas
in the more generic case in (2.2), the parameters appear in both the LTI and
nonlinear blocks. The theorem below presents the parameter sensitivity model,
where Z(t,0),u(t,0) and §(t,0) of (2.2) enter as inputs. Partial derivatives with
respect to @ are denoted by subscript 0, e.g., xp == dz/00.

Theorem 2.4. Consider model (2.2). Under the conditions of Theorem 2.1, if the
partial derivative Op(y,w,0)/0y exists and is continuous for y € R, § € ©, and
if the partial derivatives @g(y,w,0), Ag(0), Bg(0), Co(8), Dg(0), Fy(), Gg(0),
Hy(0), Lo(0) exist and are continuous fory € R, 8 € ©, then the partial derivative
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0€(t,0)/06; is the unique T-periodic steady-state output Zy,(t,0) of the model:

i, (t,0) = A(0)xg, (t,0) + B(O)U(t,0) + W(t,6),
Yo, (t,0) = C(O)zo, (t,0) + Y (¢, 9~) (2.13)
z0,(t,0) = F(0)xg,(t,0) + GO)U (L, 0) + Z(t,0),

U(t,0) = —py (§(t,0),w(t),0) yo, (t,0),

where

W (t,0) =Ag,(0)Z(t,0) + By, (0)u(t,0) + Lo, (0)w(t) — B(0)py, (5(t,0),w(t),0),
Y (t,0) =Cy,(0)Z(t,0) + Dy, (0)w(t), (2.14)

i

Z(t,0) =Fy,(0)x(t,0) + Go, (0)u(t, 0) + Ho, (O)w(t) — G(0) o, (§(t,0), w(t), ).

Kl

I

Furthermore, (2.13) satisfies the conditions of Theorem 2.1 with A,B,C, ¢(y,w)
replaced by A(9), B(0),C(0), ¢, (§(t,0),w(t),8) v, (t,0), respectively, and is con-
vergent according to Definition 2.1. A

Proof. The proof can be found in Appendix A.2. O

The above theorem shows that the gradient J€(t, 0)/06;, fori = 1,...,ng, is the
steady-state response of a convergent Lur’e-type model satisfying the conditions
of Theorem 2.1. Hence, its steady-state response can be computed using the MTF
algorithm for every parameter 6; in € individually. We emphasize that the gradient
information can be computed with arbitrary accuracy using the MTF algorithm,
which can positively affect the convergence speed of the gradient-based search used
to solve the identification problem in (2.6).

Remark 2.4. Once the steady-state output z(t,6) of (2.2) is computed by the
MTF algorithm, the steady-state state Z(t,0), required in (2.14), is computed in
the frequency-domain from the linear part of (2.2). VAN

2.6 Simulation case study: double mass-spring-damper
system

2.6.1 True system and considered model class

To illustrate the effectiveness of the identification approach, we consider a simula-
tion example using the double mass-spring-damper system depicted schematically
in Figure 2.2. The dynamics are described by the Lur’e-type system in (2.1) with
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Figure 2.2. Schematic view of the mass-spring-damper system.

the matrices:

0 1 0 0 0 0 11"
—(kit+ke) —(dit+d2) ko dy 1 0 0
A == 01 Ol Ol B 78 = 0 a‘C = 0 7C = 0 9
ko da —ky  —d» 0 1 0
mo mo ma ma
F=[0 0 1 0,D=Gg=H=0, (2.15)

and the nonlinearity:

3

oy, w) = Z a; tanh(B;y + vi) — «; tanh(7y;). (2.16)
i=1

The static nonlinearity has the physical interpretation of a nonlinear spring be-
tween the fixed earth and the first cart. The system is characterized by masses
my = 0.15 kg, mo = 0.45 kg, linear damping constants d; = dy = 0.4 Nm/s,
linear spring constants k1 = 1000 N/m, ko = 2200 N/m, and parameters defining
the nonlinear spring ¢(y,w) in (2.16): a3 = L,ay = 0.5,a3 = 1,51 = 10,5, =
20,83 = 20,71 = 3,72 = —3,73 = 0. The excitation w is the force exerted on
the second cart and the output % is the position of the second cart. The Bode
magnitude diagram of the transfer functions of the LTT part of the true system
and the graph of the nonlinearity are given in Figure 2.4.

The goal is to identify a black-box Lur’e-type model for this system. Hereto,
consider the model class in (2.2) with state dimension n = 4 and consider a full
parametrization for the LTI part, i.e., each element of each model matrix is a
model parameter. The nonlinearity is characterized as follows:

oy, w,0) = W ()2 (tanh (W(G)my + b(e)) - tanh(b(e));ww)m) . (2.17)

where each element of the vectors W (), W2/(9),b(0) € R? is a model param-
eter. This nonlinear function represents a specific type of a single hidden layer
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feedforward neural network with hyperbolic tangent activation functions and a
linear output layer [272]. This model is characterized by ng = 44 parameters,
which we collect in the vector § € R™. It can be shown that the conditions of
Theorem 2.1 are satisfied for any 6 € © with

0 := {o ER™ | A(A(9)) € Cco, WH(0), WE(9) € RS,

) 1 1
sup |C(0)(jwI — A(0))'B(0)] < K(e)}’

where A(A(0)) denotes the eigenvalues of the matrix A(6), C.o denotes the set
of complex number with negative real part and K(0) = %W(G)[Q]TW(H)M. For
any 6 € O, the proposed model is globally exponentially convergent according to
Definition 2.1. The true system parametrized by 6 is in the model class, i.e.,

90 € 0.

2.6.2 Identification results

The excitation signal w is a random-phase multisine that excites frequencies be-
tween 0.5 Hz and 200 Hz with 0.5 Hz spacing and is sampled at 500 Hz, implying
a period of T' = 2 seconds. Following Assumption 2.2, discrete-time white noise
is added to the steady-state output %, where the variance o2 is selected such
that a signal-to-noise (SNR) of 20, 40,60 and oo dB is realized. The SNR of oo
corresponds to a deterministic setting. To find an initial parameter set 6;,;;, we
employ the so-called controlled random search (CRS) [112], which is a global,
non-gradient-based optimization routine. In accordance to Remark 2.3, we ter-
minate the CRS prematurely. In the second identification step, we perform a
gradient-based search using Matlab’s fmincon implementation of [45] to solve the
constrained optimization problem (2.6).

Figure 2.3 plots the history of the cost Jy over the first 200 optimization
iterations. Here, it can be observed that the cost function (non-monotonically)
decreases over the iterations. The non-monotonicity is a consequence of avoiding
the so-called Maratos effect close to constraint infeasibility [45]. Table 2.1 gives
the numerical results. Here, it can be seen that the cost function is successfully
minimized to Jy (éN) ~ o2. For the case of a SNR of 60 dB, Figure 2.4 presents the
Bode magnitude diagram of the LTI part and the graph of the nonlinearity of the
true system (6p), initial model (0;,i), and the identified model (Ay). This figure
evidences an accurate match between the identified model and the true system. For
the 20 dB SNR case, the time-domain response is depicted in Figure 2.5. In the top
plot, it can be observed that the steady-state error €(t, 0 ) is significantly smaller
than €(¢, 6;,,;¢). The bottom plot displays a validation test, where a new realization
of the excitation signal w is used that is 10 times larger in amplitude than the w
that is used in identification. This validation test shows that the model accurately
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Figure 2.3. The history of Jy over the first 200 iterations k starting from the
initial parameter set 6;,;; and terminating at the identified parameter set 6.

Table 2.1. Identification results for different SNRs.

SNR [dB] || o2 | InOimi) | In(ON)
20 1.55 x 1073 | 2.75 x 1072 | 1.62 x 1073
40 1.74 x 107 | 1.45 x 1072 | 1.76 x 1075
60 1.57 x 1077 | 3.08 x 107! | 1.61 x 10~ 7
00 0 2.16 x 1072 | 1.67 x 10~17

describes the steady-state response of the true system. We would like to note
that all identified models are guaranteed globally exponentially convergent and,
therefore, these identified models can safely be used for other excitation signals
than the one used in identification, without showing instability issues.

2.6.3 Numerical efficiency

To illustrate the numerical efficiency® of our method, we consider the deterministic
scenario with an SNR of oo, i.e., 02 = 0 in Assumption 2.2. The identification
strategy turns out to yield an ‘almost’ perfect model for the true system evidenced
by the cost Jy(fx) being minimized up to Matlab’s numerical 16-digit precision.
In both identification steps, we compute the steady-state model responses z and
the gradient zy by two methods, namely by the MTF algorithm presented in
Section 2.5.1 and by numerical forward integration (NFI). To guarantee a similar
level of accuracy as in MTF, we simulate NFI for 20 periods and take the last

period as steady-state. The result is presented in Table 2.2. It can be observed

3The computations of the examples in Section 2.6 and 2.7 are carried out on an Intel Core
i7-7700HQ, 2.8GHz processor.



2.6. Simulation case study: double mass-spring-damper system 43

Gyu Gyw
0 Rl T T T T T T T 1111 0 TTTTTIT TTTTTTT T \Hﬂ‘m‘ T TTTTI 1.5 ‘
— | = 0o fﬂ
as) —
3 Il 20 1 momem Oinit N
H R ¥ |
g | —40 On #
= /4
£ i | —60 §
oD 0.5 - 1 -
= _sol W] —80| i f
= 80 3 i
IR A ] S —100 R T 1 A I A V1 ol : N
101 10° 10! 102 10-1 109 10! 102 1
> |
qu sz |
—0.5 |- ; -
00 A A T T TTTRI T P
o2} 0 1 /
= 50| | 1 —50 4 |
Y i
= e f
5 \,]
=
Z —100 [ 1 =100 - a
<
=
I O A A, I A O R R _9 |
10-1 100 10! 107 10-1 10° 10! 107 -10 0 10
Frequency [Hz] Frequency [Hz] Yy

Figure 2.4. Bode magnitude diagrams of the involved transfer functions and the
graph of the nonlinearity of the true system (6), initial model (6;,;:) and identified
model (éN) For visualization, the gain exchange between the LTI block and
nonlinearity is fixed by normalization of W W and a loop transformation is

performed [135].
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Figure 2.5. Measured % and the errors € as defined in (2.4). Top: results for
the identification excitation signal. Bottom: results for the validation excitation

signal.
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Table 2.2. Comparison of computation time between MTF and NFI for both
identification steps. The number of computed steady-state model responses is
included in the second column.

Step || Model response | MTF [sec] | NFI [sec]
1: Controlled random search 935 32 5927
2: Gradient-based search 8450 196 28878
Total | 9385 |28 | 34805

that in the first identification step, where no gradient information is required, the
MTF algorithm reduces the computation time from over 1 and a half hours to
32 seconds. In the second identification step, where also gradients have to be
computed, the MTF algorithm reduces the computation time from over 9 and a
half hours to only 3 minutes and 16 seconds. In total, the computation time is
reduced by a factor of approximately 150. Such small computation time enables the
application of global optimization routines for initialization and also enables an
efficient and effective gradient-based search. Besides highlighting the numerical
benefits of our approach, this example also illustrates one of the reasons that
the literature around the identification of nonlinear models is mainly focused on
the discrete-time setting; namely, computing steady-state model responses and
gradient information is computationally prohibitively expensive in the continuous-
time case using NFI.

2.7 Experimental case study: mechanical ventilation

The identification strategy developed in this chapter is applied to a mechanical
ventilation setup as depicted in Figure 2.6. Mechanical ventilation is used in
intensive-care units to assist or stimulate the respiration of patients who are unable
to breathe on their own. The treatment quality of mechanical ventilation depends
on two aspects. The first aspect is the design of the breathing pressure profile that
is fed to the patient [5, 145]. The second aspect is the ability to track the designed
breathing pressure profile. Hereto, in the literature, pressure control strategies are
proposed to ensure comfortable and stable air flow [39, 116, 211, 275]. In both
these aspects, knowledge of the health condition of the patient’s lungs is crucial as
incorrect treatment can lead to lung damage and, eventually, to patient mortality
[90, 258]. Therefore, by identification of a first-principle model, we aim to provide
the patient’s health information reflected by the patient’s lung parameters in a
fast way.
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Figure 2.6. Experimental mechanical ventilation setup.
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Figure 2.7. Overview of the mechanical ventilation setup.

2.7.1 First-principle modeling and conditions for convergent dy-
namics

Figure 2.7 gives a schematic view of the setup. Using conservation of flow and
taking into account a (signed) quadratic hose resistance, the patient-hose dynamics
can be written as follows [109, 287]:

= — ! x—2 s u
02 (01 + 05) O (61 4 65)
= — 05 T+ w
Y0 105 ’ (2.18)
05 9 0105

22914—9596_ 91+95u’
u=—p(y,0),
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where the scalar nonlinearity is given by

Y

_
oot i/ (0 + 225) + 40

¢(y,0) =

The excitation signal w is the pressure ppiower generated by the blower, the output
z is the airway pressure puirway, the state x represents the lung pressure prung,
the output of the nonlinearity u is a scaled flow Qpose through the hose, and,
finally, the input y of the nonlinearity is a scaled pressure drop pgirway — Pblower
over the hose. The intended leakage flow Qeqx flushes the system from COs-rich
exhaled air. The model is parametrized by the lung resistance ; in mbar sec/ml,
lung compliance 5 in ml/mbar, the linear hose resistance 63 in mbar sec/ml, the
quadratic hose resistance 6, in mbar sec?/ml? and the linear leakage resistance 65
in mbar sec/ml.

For any o > 0, the following nonlinear scaling of the parameters leaves the
steady-state response z of model (2.18) unchanged for any bounded excitation w
[287]:

Gscalcd = [0491 92/0[ a93 04294 0495]T

This scaling corresponds to a gain exchange between the LTI part of the model and
the nonlinearity ¢, see Remark 2.2. Consequently, parameters 61, ...,605 cannot
be uniquely identified on the basis of w and % only. As a remedy, we consider the
parameter 05 to be known a priori and positive in value, since it is only leakage
specific, i.e., independent of the patient and the hose, and it can be found rela-
tively easily through calibration. Given the knowledge on 65, the to-be-identified
parameters are 61, ..., 04, which are collected in 6. It is shown in [287] that model
(2.18) satisfies all conditions of Theorem 2.1 for 6; > 0, for i = 1,...,4, yielding
the set

O:={0cR*¢, >0fori=1,...,4}. (2.19)

Therefore, for any 6 € O, model (2.18) is globally exponentially convergent ac-
cording to Definition 2.1.

2.7.2 Identification experiment

Identification of continuous-time models from discrete data points is a challenging
task due to the unobserved intersample behavior of the true system. Analysis tools
for errors due to intersample behavior and practical guidelines for the design of the
excitation signal are presented [99, 207, 236, 260]. As we are dealing with a medical
application, there is no freedom in the design of the excitation signal; it is the signal
that is also used during conventional operation. We can only set a standard target
pressure profile pigrger for the blower, which is tracked by the blower (using an
internal control loop) to realize the pressure pyower at the blower side of the hose,
see Figure 2.8. The shape of the blower pressure represents a breathing cycle that
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Figure 2.8. Realized (measured) and target breathing pressure.

starts with an inhalation phase and follows by an exhalation phase. The measured
pressure ppower 18 used as the excitation signal w(t) for identification, implying that
the internal control loop generating ppiower from pigrger is not part of the to-be-
identified dynamics. The period time of pyrger is T' = 4 seconds, with a minimum
pressure of 5 mbar and a maximum pressure of 30 mbar. Rather than using
humans in these experiments, the ASL5000 breathing simulator is utilized, which
is specifically designed to emulate the lung behavior of patients. Furthermore, we
consider the case where the patient is completely sedated, implying no breathing
activity from the patient’s side.

We apply 15 periods of the excitation signal depicted in Figure 2.8 and sample
the realized blower pressure pyower and the patient’s airway pressure pgirway Uni-
formly at a sampling frequency of 500 Hz. The average of the last 12 periods of
the measured ppiower is considered as the periodic input data w(t) and the average
of the last 12 periods of pgirway is considered as the steady-state output data %(t),
both with a period time of T' = 4 seconds. The total experiment time is only 1
minute for each experiment, which is of crucial importance in practice as time is
costly in this medical application.

The three hose-patient configurations considered are listed in Table 2.3, where
the lung parameters #; and 6, are set on the ASL5000 unit with an accuracy*
of 10% and 5%, respectively. The lung resistance ; remains unchanged over the
experiments. To cover a set of different configurations, both the lung compliance
0> and the leakage resistance 65 are changed from experiment to experiment. The
same hose with parameters 3 and 64 is used for all experiments. The considered
configurations represent a healthy patient for configurations 1 and 3 and a patient
with less stiff lungs for configuration 2.

4https://www.ingmarmed.com/product/asl-5000-breathing-simulator /



2.7. Experimental case study: mechanical ventilation 49

Table 2.3. Considered experimental cases with uncertain parameters 6, and 6.

Configuration H - 103 \ 05 \ 05 - 103 \ 0, -10° \ 05 - 102
1 45—-5.5 19 —-21 2.6 1.23 2.8
2 4.5—-5.5 | 285—31.5 2.6 1.23 2.8
3 4.5—-5.5 19-21 2.6 1.23 2.1

2.7.3 Identification results

The identification problem in (2.6) is solved using the modified cost function in
(2.9) with the constraints (2.19), resulting in fy. The set of initial parameters
reflects an ‘average’ configuration, see [123, 287]:

Oimic = [275-1072 26.50 2.55-1073 2.40-107°] . (2.20)

This initialization method employs the prior knowledge that parameters are typi-
cally close to the ‘average’ values.

The measured response %(t) for configurations 1, 2 and 3 is shown in Fig-
ures 2.9(a) - 2.9(c), respectively. These figures also depict the steady-state output
error €(t, 0;n;:) and €(t, éN), produced by the initial and identified model, respec-
tively, with € defined in (2.4). For comparison, also an LTI transfer-function model
is identified using the TFEST Matlab routine, initialized by the N4SID routine.
The parameters 017 corresponding to the identified LTT models have no physical
meaning. The steady-state output error €(¢, 8 ry) is also included in the respective
figures.

From Figures 2.9(a) - 2.9(c), we draw the following two conclusions. Firstly,
the optimization problem (2.6) is successfully solved, as the error é(t,0y) of the
identified nonlinear model is significantly smaller than the error €(t, 6;,;:) of the
initial model. Secondly, a linear model is insufficient to describe the nonlinear
dynamics of this system, since the error €(t,fy) of the identified nonlinear model
is significantly smaller than the error €(¢, 0, 7r) of the identified linear model. Both
these conclusions are confirmed by Table 2.4, which shows that the cost .J N(é n) of
the identified nonlinear model is significantly smaller than both the costs Jn (init)
and JN(GLTI).

The identified parameters Oy obtained by solving the optimization problem
in (2.6) are presented in Table 2.5. The model (2.18) is a simplification of the
system depicted in Figure 2.6. For example, calibration experiments suggest that
the leakage component exhibits a quadratic pressure-flow relation, whereas this
relation is linear in model (2.18). Furthermore, the static hose model in model
(2.18) does not account for hose dynamics. Consequently, a part of the unmodeled
dynamics is compensated for by the identified model parameters, which is reflected
as follows. Firstly, although the same hose is used in all configurations, the results
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Figure 2.9. Measured % and the errors € as defined in (2.4).

Table 2.4. Identification results of the mechanical ventilation application in terms
of the value of the cost function (2.5) for the identified black-box LTI model (6.77),
initial model (f;ni) in (2.20) and identified model (Ay) in columns 2-4. Columns
5-6 contain the elapsed computation time in seconds that took to solve the iden-
tification problem (2.6).

Configuration Value of cost function Computation Time
InOrrr) | In(Binie) | In(On) || MTF [sec] | NFT [sec]

1 1.377 1.661 0.167 13.3 166.1

2 2.396 2.549 0.173 11.7 1494

3 1.323 2.177 0.275 12.1 158.2
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Figure 2.10. Identified nonlinearity ¢(y) for each configuration in Table 2.5 over
the domain of interest in y.

Table 2.5. Identification results of the mechanical ventilation application in terms
of the identified parameters 6 after solving the identification problem (2.6).

Configuration Identified parameters On
01-10% | 0y | 05-10% | 64-10° | 05 - 10
1 5.48 23.6 1.05 1.51 2.8
5.78 34.6 0.65 1.85 2.8
3 5.43 22.0 1.69 1.32 2.1

in Table 2.5 show that its associated parameters 63 and 04 are different with
respect to each other and also with respect to the ones in Table 2.3. However, the
graph of the identified nonlinearities in each configuration in Figure 2.10 shows
that all identified models represent the same hose characteristics in the domain
of interest. Besides that, the values for 3 and 6, in Table 2.3 are obtained by a
static calibration measurement, which is not fully representative in case the hose is
used in a dynamic identification experiment. Secondly, the identified parameters
in Table 2.5 show that 6; and 6, are estimated slightly too large compared to
the preset values as in Table 2.3. We are informed by medical personnel that an
accuracy of 15% is sufficient for the lung parameters in the scope of the decision-
making process of patient treatment. If the mean of the uncertain #; and 6, in
Table 2.3 are the true values, then we slightly exceed this accuracy requirement.
We would like to note that a bias in model parameters is not a deficiency of the
identification approach, but rather a matter of unmodelled dynamics.
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2.7.4 Numerical efficiency

To illustrate the computational advantages of the proposed approach, the total
computation time required to solve the optimization problem (2.6) is included
in Table 2.4 in the column MTF. This table also includes the total computation
time required to solve the same optimization problem with numerical forward
integration (NFI). To guarantee a similar accuracy level for NFI as for MTF,
ten periods of the excitation signal w(t) are applied to the model in the NFI
simulations and the last period of z(t, 0) is taken as the steady-state model output
Z(t,0). Table 2.5 shows that the total computation time when using the MTF
algorithm is reduced from roughly 2 and a half minutes to only 14 seconds in all
considered configurations. The quick availability of the knowledge of the model
parameters enables a high treatment quality that can start early.

2.8 Conclusions

This chapter has presented an identification approach for convergent continuous-
time Lur’e-type systems. The benefits of the proposed approach are that it (i)
guarantees that the identified model preserves the convergence property, (ii) is
computationally attractive, and, (iii) applies to a large class of block-oriented
feedback systems. In a simulation example, we demonstrated the effectiveness and
computational efficiency of our identification approach. Furthermore, in an exper-
imental study on mechanical ventilation in hospitals, the identification approach
is effective to identify the parameters of a first-principle model in a fast way, which
enables improved patient treatment.



Fast identification of
discrete-time Lur’e-type
systems with stability
guarantees

This chapter proposes a computationally efficient approach for the system iden-
tification of discrete-time nonlinear Lur’e-type models with stability certification.
Lur’e-type models consist of a feedback interconnection of linear time-invariant
dynamics and static nonlinearities. By enforcing the identified Lur’e-type model
to be inside the set of convergent models, we certify a strong form of stability on
the identified model. This certificate allows for reliable usage of model predictions,
also for excitation signals other than those used during model training. Further-
more, both steady-state model responses and their gradients with respect to model
parameters are computed with a numerical algorithm that is computationally fast.
This allows for the effective usage of both global and local optimization methods
to solve the system identification problem. The effectiveness and the benefits of
the approach are validated via the nonlinear Wiener-Hammerstein benchmark and
Silverbox benchmark datasets.

The contents of this chapter are published in: Shakib, M. F., Vervaet, N., Pogromsky, A.
Y., Pavlov, A., & van de Wouw, N. Fast identification of multivariable discrete-time Lur’e-type
models with stability certification. Submitted for journal publication.
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3.1 Introduction

System identification turns experimentally obtained input-output datasets from
dynamical systems into compact models described by only a few parameters [152,
205]. Given that the vast majority of physically relevant systems exhibit nonlin-
ear dynamic behavior, there is a strong need for the identification of nonlinear
models [240]. Hereto, many nonlinear system identification approaches have been
proposed in the literature, among which methods for the family of block-oriented
nonlinear models [96, 243]. These models capture nonlinear dynamic behavior by
an interconnection of LTI dynamics and static nonlinearities, thereby, enabling
a trade-off between model complexity and representation capability of identified
models [135, 191]. System identification of Lur’e-type models, see Figure 3.1, is
an active research area, see [96, 115, 188, 214, 234, 243, 247, 249, 291, 294, 296].

One of the major challenges in nonlinear system identification is to enforce a
form of stability on the identified model, see [154, 249, 280, 283]. Even though sta-
ble responses are observed for the true system, the responses of a model resulting
from an identification routine may not necessarily obey this property. It is also
well-known that nonlinear models can exhibit multiple stable solutions being at-
tractive for different sets of initial conditions [135]. Moreover, the model response
may exhibit a large sensitivity to variations in the excitation signal. For example,
even though the model explains the identification dataset perfectly well, the model
response to an altered excitation (even when it is only slightly different from those
used during training) can result in unbounded responses [60, 64]. Such models are
not capable of accurately predicting the system response in scenarios other than
the exact identification dataset.

Another major challenge in system identification is the computational effi-
ciency of the identification procedure. These kinds of procedures are reported as
extremely time-consuming, especially for problems with a large number of model
parameters [3, 315]. Typically, the identification problem is cast into a non-convex
optimization problem, which is generally solved either by global optimization rou-
tines or by gradient-based optimization [193]. Either way, a large number of model
responses has to be computed to scan the surface of the objective function central
in the optimization problem or to compute gradient (and Hessian) information of
the objective function with respect to the model parameters. Therefore, compu-
tational efficiency boils down to the efficiency of computing model responses and
the efficiency and accuracy of computing gradient information.

Methods that enforce a form of model stability, e.g., asymptotic stability of
the origin of autonomous models, can be found in [68, 171, 270, 271, 285]. Be-
sides that, methods that enforce a stronger form of model stability and, therefore,
deal with the above-listed challenge of enforcing a strong form of model stability,
are reported in [214, 247, 249, 280, 283]. The approaches in [280, 283] enforce
incremental stability on a particular class of identified models. These approaches
require a dataset that includes the state of the underlying dynamics, which is
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typically hard to obtain. The method in [214] writes recurrent neural network
models as Lur’e-type models and describes convex sets of contractive models that
attain performance criteria expressed via integral quadratic constraints. Lastly,
the method in [247, 249] considers continuous-time Lur’e-type models and deals
with both the above-listed challenges of enforcing model stability, as well as com-
putational efficiency. The identification of discrete-time Lur’e-type models in a
computational efficient manner with a strong form of model stability is still an
open problem.

The main contribution of this chapter is an identification approach that (i)
certifies the identified discrete-time Lur’e-type model with the global exponen-
tial convergence property and (ii) proposes efficient numerical tools to compute
model responses and exact gradient information, while only using steady-state in-
put and output data. Point (i) guarantees that the identified model exhibits, for
any bounded excitation, a bounded and globally exponentially stable steady-state
solution [66]. Steady-state responses arise naturally from periodic excitations,
commonly used in the identification of (non)linear system [205, 240]. To enforce
the convergence property, conditions are presented in the form of linear matrix
inequalities (LMIs). Point (ii) enables system identification in a computationally
efficient way. Hereto, a novel and computationally efficient numerical algorithm
is devised that computes steady-state model responses. This algorithm is the
discrete-time counterpart of the so-called mixed time-frequency (MTF) algorithm,
presented in [196]. Moreover, a method to efficiently compute exact gradient in-
formation is presented. The identification methodology is demonstrated using the
Wiener-Hammerstein benchmark dataset and the Silverbox benchmark dataset.
The identification approach can be viewed as the discrete-time counterpart of the
method proposed in Chapter 2 with an extended model class such that multivari-
able systems with multiple nonlinear functions can be considered.

The remainder of this section introduces preliminaries and notation. Sec-
tion 3.2 introduces the considered Lur’e-type model class together with numer-
ically tractable sufficient conditions to assess the convergence property and poses
formally the identification problem. Section 3.3 proposes a solution to the iden-
tification problem and proposes tools for fast computation of steady-state model
responses and exact gradient information. Section 3.4 showcases the performance
of the identification method on benchmark datasets. Section 3.5 closes with the
concluding remarks of this chapter.

Preliminaries and notation: The imaginary unit j == v/—1. The sets R,N, Z,
Z~g, and C, denote the set of real, natural, integer, positive integer, and complex
numbers, respectively. The n xn identity and zeros matrix are denoted respectively
by I, and 0,. The n x m zeros matrix is denoted by 0, x,,. The sets S™, D"
respectively, denote the space of n X n real symmetric matrices and real diagonal
matrices. A matrix P € S" is positive (negative) definite, denoted by P >~ 0 (P <
0), if all its eigenvalues have strictly positive (negative) real part. For real vectors
z € R", the Euclidean norm is defined by |[z||, = VaTz, and its P-weighted
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norm |-||p for 0 < P € S™ is defined by |jz|, = VaTPxz. For scalar valued
sequences ¢ : N — R, the Banach space £5(N) of all N-periodic sequences having
a finite £o-norm ||-[|,, is such that ||g||f2 = ZkN:1 lg(k)|? < +o00. For vector valued
sequences g : N — R™, the Banach space £5(N) of all N-periodic sequences having
a finite £3-norm |||, is such that ||g||?g =3, Hgi||?2 < +o0, where g; is the
i—th component of g. Let system ¥ define a bounded linear mapping between
sequences u € £5*,y € £5", such that y = Yu. Then, the system’s induced L5-gain

is defined as follows:
[[Zul] g
IZllg, = sup . (3.1)
weepifoy [[ullgpe

The N-point discrete Fourier transform (DFT) maps from z, a periodic se-
quence of N complex vectors of dimension n (with ; € C™ being the i-th vector in
x) into X, another sequence of N complex vectors of dimension n (with X; € C*
being the i-th vector in X). This transform is denoted by the linear operator
F. CVxn o, (CNX” and its inverse (IDFT) is denoted by %‘ L. CNxn 5 cNxn,
The operators & and F~! for the i—th vector are X; = Fa; and 2 = FLX;,

respectively, where

N-1
Xi(k) =Y ai(n)e I Fhn vk e {0,1,...,N —1},
n=0
1 N—-1
Nz Vk e {0,1,...,N —1}.

3.2 Identification problem setting

This section starts with the introduction of the considered class of convergent
Lur’e-type models. After that, the objective function central to the identification
problem is defined. Finally, the identification problem is formalized.

3.2.1 Lur’e-type models

Consider a discrete-time Lur’e-type structure, expressed by the following state-
space equations:

x(k+1) = Axz(k) + Bu(k) + Lw(k),

s y(k) = Cx(k)+ Dw(k), (3.2a)
z(k) = Fx(k)+ Gu(k) + Hw(k),

p: u(k) = e(y(k), k), (3.2b)

where, z(k) € R, z(k) € R™ and y(k) € R™ are the state x, the output z and
the nonlinearity input y, respectively, evaluated at the time-instant k € Z. More-
over, u(k) € R™ and w(k) € R™ are the evaluations of the nonlinearity output
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z(k
™ z(k) = Az(k) + Bu(k) + Lw(k) A

y(k) = Cx(k) + Dw(k)
z(k) = Fa(k) + Gu(k) + Hw(k)

Un, (k) ny (k)
o e G !
i (k) : i (k)

e1(yi(k), k)

Figure 3.1. Schematic depiction of Lur’e-type model (3.2).

u and of the periodic external excitation w at time k € Z. The (possibly time-
varying) memoryless nonlinearity is considered to be decentralized [135], implying
that its i-th output is only a function of its i-th input (with n, = n,) according

to:
T

Sp(y(k)a k) = [@1 (yl (k)a k) s Pny (yny (k)7 k)] . (33)
The Lur’e-type model (3.2) can be interpreted as the feedback interconnection
depicted in Figure 3.1. Throughout this chapter, a discrete-time Lur’e-type model
can be referred to via either (3.2), or the pair (2, ).
For the purpose of model stability, to be defined below, nonlinearity ¢ is re-
quired to satisfy an incremental sector-bound condition, defined as follows.

Definition 3.1. A decentralized memoryless function ¢ : R™ x Z — R™ is said
to be incrementally sector bounded within bounds [S1, S2], for S1, S2 € D™ with
So — 51 > 0, if it satisfies the condition

]T

[o(y™, k) — o(y’ k) — S1(y* — )] x

. ) (3.4)
[y, k) — oy’ k) — Sa(y* —y")] <0,
for all y*, y* € R™ and k € Z. [ |
For the sake of clarity of exposition, we assume that the nonlinearity satisfies
the incremental sector bounds [~1y,,, I, ], i.e., S1 = —I,, and S2 = I,,,. These
bounds make sure that each individual nonlinearity ¢;,7 € {1,2,...,n,}, satisfies
the inequality —Soi(ygf,_,):;j;(yz’k) <1Vyd e Ryt € R, k € Z.

Remark 3.1. Any decentralized nonlinearity that satisfies the incremental sector
bounds [S1, S2], for S1, So € D™ with Sy — S; > 0 (see Definition 3.1), can be
transformed such that it satisfies the incremental sector bounds [—~1Iy,, I ]. See
[135] for more details on transformations of Lur’e-type models.
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3.2.2 Convergent dynamics

The notion of exponential convergence for the class of bounded inputs W =
{{w(k) }rez| w(k) € R™} is recalled from [199].

Definition 3.2 ([199, Def. 2]). A discrete-time nonlinear model (3.2) is said to be
globally exponentially convergent for an input class W, if, for every input w € W:

e there exists a unique steady-state solution Z, that is defined and bounded on
Z;

e T is exponentially stable, i.e., there exists a ¢ > 0 and 0 < p < 1, such that
(k) — 2(K)| < ep®Fo) |z (ko) — Z(ko)| Y E > ko, ko € Z.

All solutions of models with the global exponential convergence (GEC) prop-
erty exhibit bounded responses that converge to the unique steady-state solution
independent from the initial condition. The GEC property can be verified by
means of an LMI-based check.

Theorem 3.1. Consider a Lur’e-type model (X, ¢) as in (3.2) with the nonlinear-
ity @ satisfying the incremental sector bounds [—1I, I ]. Consider a symmetric
positive definite matric P € S™ such that the inequalities:

P >0,
T 717 _ T (3.5)
AT P AT _|P=C'C Onyxn, <0,
B B * I,
hold. Then, the Lur’e-type model (3.2) is GEC for the class of bounded inputs W.
A
Proof. The proof can be found in Appendix B.1. O

3.2.3 Identification problem using steady-state data

Consider a N—periodic input w € ég“(N) and assume that the data-generating
system is GEC. Then, it exhibits a unique steady-state response denoted by z €
ESZ(N), with the same period N, see [198, Lemma 1]. Hereafter, boldface fonts
are used to emphasize that the data comes from the data-generating system. In
practice, the input w and the steady-state output z may be corrupted by noise.
Therefore, an integer number of k € Z~( steady-state periods are considered. The
N samples from all periods of the input and steady-state output are collected in
the dataset D, defined as follows:

D= {w(k),z(k)}}_,, N :=krN. (3.6)
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System identification on the basis of steady-state data is a common practice in
the literature, see, e.g., [205, 235, 240]. Amongst others, it allows performing
the so-called nonlinear distortion analysis [235] to gain insights into the dominant
nonlinearities.

The dataset D is used to identify a model of the form (3.2). Hereto, consider the
parameter vector § € R™ which fully parametrizes a GEC Lur’e-type candidate
model (3.2). The relation between 6 and the building blocks of (3.2) depends on
the specific problem at hand. One can adopt a black-box modeling approach, in
which all entries of the linear block matrices and all nonlinear block parameters
represent a model parameter. Contrarily, a white-box modeling routine can impose
additional model structure as a result of, e.g., first-principle modeling. We note
that model parameters can also appear (in a nonlinear fashion) in the nonlinearity
©.

The set of models that satisfy the conditions of Theorem 3.1 is denoted by
© C R™ and defined as follows:

© ={0 € R™ | (3.5) is feasible}. (3.7

Any candidate model 0 from © thus obeys the GEC property. The steady-state
solution z(#) € £5*(N) of a candidate model § € © under the excitation by w €
05 (N) is N-periodic, bounded, unique and globally exponentially stable.

If the data-generating system is inside the model class O, then the identification
goal is to find its parametrization. However, as often this is not the case, a black-
box modeling approach is taken where the aim is to find an accurate model inside
the class © for the data-generating system. These goals are formalized by consid-
ering the steady-state model output errors with respect to system observations as
follows:

5(k,0) = 2(k,0) —2(k), Vke{l,...,N}. (3.8)

Then, the steady-state simulation error criterion is defined according to:

Z =(k, 0)||3. (3.9)

k:

2

Finally, we define the system identification problem to be solved in this chapter.

Problem 3.1. Consider the dataset defined by D in (3.6). The system identification
problem is to solve the optimization problem:

On = argreréiélJN(H), (3.10)

where 8 € © parametrizes the class of GEC models (3.2) that satisfy the conditions
of Theorem 3.1. A
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Remark 3.2. Under the standard assumptions that (i) the system is in the model
class, (ii) the input w is persistently exciting, and (iii) there is additive white noise
in the measurements z that is uncorrelated with the input w, it can be shown that
the estimator (3.10) is asymptotically efficient. Asymptotically efficient estima-
tors achieve the lowest asymptotic mean squared error possible with a consistent
estimator, see [243] for more detail. A

Remark 3.3. The model (3.2) does generally not admit a unique parametrisation
[243, 251]. For example, a similarity transformation of the LTI part changes the
matrices of the LTT part but does not affect the model output. Therefore, Oy is a
set in Problem 3.1. A

3.3 Computationally efficient solution to the identifica-
tion problem

Problem 3.1 is a constrained optimization problem. This section reviews opti-
mization methods, after which computationally fast tools are presented to solve
the identification problem using such optimization methods.

3.3.1 Constrained optimization

In system identification literature, it is common practice to solve constrained op-
timization problems by a two-step approach [240]: (i) parameter initialization,
(ii) gradient-based optimization.

Step (i): Parameter initialization

The objective of this step is to find an initial parameter vector fi,;; € ©, close to the
global minimum and inside the set of GEC models characterized by ©, from which
a constrained gradient-based search in the second step can be started. Hereto, we
propose two methods being the best-linear approximation (BLA) method and the
global optimization method.

Best Linear Approximation

This method relies on estimating the so-called BLA of the nonlinear system [235].
To this end, we approximate the mapping from the excitation w to the system
output z by an LTI model X5 4 that admits a state-space representation charac-
terized by the matrices (Agra, Bera, Cpra, Dpra). The system matrices can
be found via the MATLAB routines N4SID or TFEST, and crucially, these routines
can enforce stability of the linear model X g, 4 by placing the eigenvalues of Agr, 4
inside the open unit disc.
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The matrices (A, L, F, H) of X(0;n::) are, respectively, selected as the matri-
ces (Apra,Bpra,Cera, Dpra) of the BLA. The remaining matrices are selected
such that there is no (nonlinear) feedback, i.e., either (C, D) are zero matrices,
(B, G) are zero matrices, or ¢(+,-) = 0. With this choice, the nonlinear Lur’e-type
model (X(Oinit), ©(finit)) becomes identical to the linear model ¥ gy 4 in terms of
the input-output behavior. The BLA framework enables fast estimation of ini-
tial model parameters, and, additionally, provides a nonlinear distortions analysis
together with an estimate for the state dimension [235]. Also, this initialization
method was applied successfully for nonlinear system identification in prior re-
search, see [243, 244] and references therein.

Global Optimization

Global optimization routines can be employed to identify an initial parameter
vector i, that is sufficiently close to the global minimum of the objective func-
tion. The search can be stopped prematurely to save computational costs since
a gradient-based method, starting from this initial point, can thereafter be used
to effectively find the closest minimum of the cost function. Global optimization
methods typically encompass (sophisticated) random walks through the param-
eter space. Examples are, among others, Monte-Carlo, genetic-type, and swarm
intelligent algorithms [156]. The controlled random search method, as described
in [206], was successfully applied as an initialization method for nonlinear system
identification of continuous-time models [127, 251, 265]. Generally, global opti-
mization routines are considered computationally expensive [156]. Therefore, a
computationally cheap method to evaluate the objective function value, such as
the one proposed in Section 3.3.2 below, can be an enabler for the application of
global optimization routines.

Step (ii): Gradient-based optimization

Off-the-shelf gradient-based optimizers, such as the one in [56], can be employed to
solve the constrained optimization problem in an iterative fashion, starting from
the Oin;4 obtained in Step (i). Any gradient-based method requires evaluating the
objective function gradient with respect to the model parameters. The gradient
of the objective function (3.9) can be expressed as follows:

1o} 2 N 0
v _ & _ TY -

where the steady-state mismatch &(k,6) is defined in (3.8). Typically, finite dif-
ference approximations of the gradient (3.11) are used, which could lead to an
increased number of iterations upon completion of the optimization algorithm. In
this chapter, a computationally efficient approach is presented in Section 3.3.2 to
compute the exact gradient in (3.11).



62 Chapter 3. Identification of discrete-time Lur’e-type systems

3.3.2 Computationally efficient numerical tools

We first propose the discrete-time mixed-time frequency (MTF) algorithm to effi-
ciently compute steady-state responses of Lur’e-type models. After that, we intro-
duce a parameter sensitivity model, the steady-state response of which can again
be computed efficiently using the MTF algorithm and can be used to compute
exact gradient information. In this section, the dependency on model parameters
0 is dropped for notational convenience.

Mixed time-frequency algorithm

In the continuous-time case, [196] proposed the mixed time-frequency (MTF) algo-
rithm for the efficient computation of steady-state model responses of convergent
SISO Lur’e-type models. In this section, the MTF algorithm is extended to the
class of multivariable discrete-time Lur’e-type models.

Before presenting the MTF algorithm, we recall that the asymptotically stable
LTI block maps the periodic inputs w, # to the periodic steady-state output z, i.e.,
Z = Foww + F 1, where the linear operator F.,, is defined for k € Z as follows:

k
(Feww) (k) = > FA* "' Lw(i) + Huw(k). (3.12)

1=—00

In a similar fashion, the linear operators F .., Fyw, and Fy, are defined. Alter-
natively, the same operation can be defined through the frequency-domain steady-
state operators ]:"ZW and .7:"ZU, where the Fourier coefficients Z, denoting the
Fourier transform of z, are computed through Z = FowW +FouU , where W and
U denote the Fourier transforms of w and #, respectively. The operator Faw is
defined for all m € {1,..., N} according to

(fsz) (m) = Gs., (eﬂ'“m*l)) W (m) (3.13)

with & = 27/N and Gs._, () = F(xI,, — A) 'L+ H, x € C. The frequency-
domain steady-state operators Fzy, Fyw, and Fyy are defined similarly. Finally,
the nonlinear operator is defined, in the time domain, as follows:

(Fuyy) (k) = ¢(y(k), k). (3.14)

These steady-state operators can be used in an iterative procedure to efficiently
compute steady-state model responses, as presented in the next theorem.

Theorem 3.2. Consider a periodic excitation w € €5 (N) applied to model (3.2).
Under the conditions of Theorem 3.1, the sequence (y[ﬂ)z‘ez>0 defined by the iter-
ative application of the mappings

U1 = Fuy¥Y[i)» (3.15a)
Ylir1) = ]:yuu[iJrl] + ]:yww- (315b)
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with an arbitrary initial condition yj) € ﬁg‘” (N), has a unique limit, denoted by §.
Furthermore, this unique limit § coincides with the steady-state model output § of
model (X, ¢). A

Proof. The proof can be found in Appendix B.2. O

This theorem can be used to accurately compute the steady-state solution g
of a convergent Lur’e-type model via the iterations in (3.15), starting from any
Yjo] € Egy (N), for example the zero response. Having ¢ at hand, one can trivially
compute Z, to be used to compute the steady-state error £, as required in (3.8).

To improve the computational efficiency of the implementation of the MTF al-
gorithm, we evaluate the LTI dynamics in frequency domain and the nonlinearity
in time domain. The intermediate signals are transformed forth and back between
time and frequency domains using the DFT and IDFT. The MTF algorithm is
summarized in Algorithm 3.1, where the operators F xy and F xw are defined
similarly to Fzw in (3.13). As a stopping criterion, the normalized distance be-
tween the current and the previous approximation of the Fourier coefficients of the
steady-state output Y is used, namely:

[[vect (Vig — Yii—)ll,
[Fvect (Vapll,

M) = (3.16)

in which vect (+) is an operator that reshapes all elements of a matrix into a single
column vector with a column-major layout. The efficiency of the MTF is high-
lighted in the numerical studies in Section 3.4.

Efficient computation of gradient information

Parameter sensitivity models are used to compute %s‘(kz, ), required in the eval-
uation of the gradient in (3.11). By using (3.8), we can further rewrite the partial
derivative in (3.11) as:

%g(m) - %z(k,e) - %Z(k) = %é(kﬁ). (3.17)

=0

Below, a method for calculation of the partial derivative in the right-hand side of
(3.17) is given. For the sake of clarity of presentation and simplified notation, this
part is presented for the case of a scalar . For a vector 6, the partial derivatives can
be directly calculated from the partial derivatives with respect to the components
of 6.

Throughout this section, where no ambiguity occurs, the 6 and y subscripts de-
note a partial derivative with respect to the scalar model parameter 6 and the non-
linearity input y, respectively. Therefore, one can write @g(y, k,0) = %go(y, k,0)
and ¢y, (y, k,0) = %(p(y,k‘,@) for the nonlinearity, as well as, e.g., Ag = %A(G)
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Algorithm 3.1 Mixed-Time-Frequency Algorithm

Input: Lur’e-type model (¥, ) whose nonlinearity satisfies the incremental sector
bound [~1Iy,, I,] and the conditions of Theorem 3.1; stopping tolerance * > 0.

1: Set the iteration counter ¢ = 0 and the stopping criterion 7y = oo.
2: Compute W from w using the DFT.
3: Evaluate LTI dynamics in frequency domain (assume ujg) = Onxn, ):
Yo = FywW.
Compute yjo from Yjg using the IDFT.
while i) > 77* do
Evaluate the nonlinearity in time domain: up41) = ]:'uyy[l-].
Compute Uj;yq) from up;q) using the DFT.
Evaluate LTT dynamics in frequency domain: Y}; 41 = ﬁYUU[i+1] + Yo
Compute yj;41) from Yj; ;) using the IDFT.
10: set ¢ =1+ 1.
11: end
12: Define Y and U as Y; and Up;), respectively.
13: Evaluate LTI dynamics in frequency domain:
Z:]:'ZUU+J:'ZWW, X:fXUU+ﬁXWW.
14: Compute @, , 2,  from U, Y, Z, X using the IDFT.
Output: Steady-state solution of (2, ¢): (4, w,Z, 7, 2).

© ® 3> e

for a matrix. We impose the following assumption on the partial derivatives of
Lur’e-type candidate model components.

Assumption 3.1. The partial derivates ©,(y), vo(y) , Ag, Bo, Lo, Co, Dy, Fy, Gy,
Hy exist and are continuous for all y € R™ and 0 € O. [ |

Using this assumption, the notion of a parameter sensitivity model including its
instrumental properties is formalized in Theorem 3.3 below.

Theorem 3.3. Consider a Lur’e-type model (3, ¢) given by (3.2) with the system
matrices and the nonlinearity dependent on the parameter vector 0 such that As-
sumption 3.1 is satisfied. Let 6 be such that the conditions of Theorem 3.1 are
satisfied. Moreover, let w be a N -periodic input and § be the corresponding N -
periodic steady-state output. Define the parameter sensitivity model (X%, %) as

zo(k+1) = Axg(k) + B’ (k) + wf(k),

»? yo(k) = Czg(k) + 0§ (k), (3.18a)
z29(k) = Fag(k) + G’ (k) + w§(k),

¢’ (k) = (yo(k),5(k), k), (3.18b)
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where w¢ (k),w§(k), and w§(k) are given by

{(k) = Az (k) + Bou(k) + Low(k) + Bpo(y(k), k),
Wy (k) = Cox(k) + Dow(k),
8(k) = Foz(k) + Gou(k) + How(k) + Gog(4(k), k).

w

w

The nonlinearity ¢ is incrementally sector bounded with bounds [(—1n,,In,] and
is defined as

¢ (yo(k), (k) k) = ¢y, (5(k)., k)yo (k). (3.19)

Then, the parameter sensitivity Lur’e-type model (X9,¢%) satisfies the following
properties:

e the conditions of Theorem 3.1 hold, hence (%9, ¢%) is GEC;
o the unique N -periodic steady-state model output Zy is such that Zp = %5’.
A

Proof. The proof can be found in Appendix B.3. O

The parameter sensitivity model presented in Theorem 3.3 takes as input the
steady-state solution of model (3.2), which should be computed in the first step.
After that, the steady-state output of the parameter sensitivity model provides the
objective function gradient with respect to a single parameter 6;,i € {1,...,ng}.
Therefore, ny steady-state solutions of the parameter sensitivity models are to be
computed to obtain the gradient information with respect to all parameters. Since
each sensitivity model satisfies the assumptions of Theorem 3.3, their steady-state
outputs can be computed by means of the MTF algorithm in an accurate and
numerically efficient way, see Theorem 3.2 and Algorithm 3.1. In a constrained
gradient-based optimization routine, the gradient information can be effectively
used to steer towards a minimum in parameter space.

3.4 Numerical examples

This section starts with a simulation example that illustrates the benefits of en-
forcing the GEC property on the identified model. After that, the identification
approach is tested using two benchmark datasets.

3.4.1 [Illustrative academic example

Consider the scalar dynamics in the form of equations (3.2) with matrices A =
01,B=05,L =0;,C=F=1,D = G = H = 0, and the nonlinearity ¢(-) =
atan(-). The parameters 61, ..., 03, are collected in the vector § € R3.
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Table 3.1. Parameters and objective function value for the example in Section
3.4.1.

Model H 01 [ 0 l 03 l JIn
Otrue 0.24 0.75 1 0.2238

Ounc 0.198 | 0.806 | 1.005 | 0.2331
fcec 0.203 | 0.797 | 1.005 | 0.2331

The data-generating system is characterized by 6,4 in Table 3.1 and satisfies
the conditions of Theorem 3.1. A periodic input with N = 1000 samples is drawn
from a zero-mean normal distribution with unit variance. The steady-state output
response z is distorted with noise e drawn from a zero-mean normal distribution
with a variance that ensures a 10 dB signal-to-noise ratio. Using this dataset,
two models are identified. The first model, characterized by @unc, is identified
without enforcing the constraints for GEC, i.e., fune € R3. In this case, the
objective function (3.9) is minimized in an unconstrained fashion. The second
model, characterized by 0ggc, is identified by solving Problem 3.1 as proposed in
this chapter. This model is guaranteed to be GEC, i.e., 0ggc € ©. The identified
model parameters are included in Table 3.1.

Figure 3.2 depicts the steady-state output z+e and the steady-state mismatches
&(Bunc) and E(Agrc) with & defined in (3.8). These small mismatches evidence an
accurate match based on the steady-state data, which is further confirmed by
the objective function value for both models being equally small (Jy = 0.2331).
However, the response of the model characterized by 6,,. converges, depending
on the initial condition, to different fixed points for zero input, as evidenced in
Figure 3.3. Since a GEC model cannot exhibit multiple fixed points, this model
is not GEC. In turn, this implies that for periodic inputs, multiple, stable steady-
state responses exist that are attractive for different initial conditions, which is
an unfavorable property in the scope of this work. The responses of model Oggc
do converge to the same fixed point, irrespective of the different initial conditions.
This example thus shows that even when the data-generating system is GEC, the
identified model does not necessarily preserve the GEC property if the conditions
for convergence are not enforced.

3.4.2 Wiener-Hammerstein benchmark

The Wiener-Hammerstein benchmark, proposed by [239], has been actively stud-
ied in the literature, see [27] for an overview. The system consists of two third-
order Chebychev filters sandwiching a diode-resistor nonlinearity, see Figure 3.4 for
a schematic representation. The dataset consists of 100000 estimation and 88000
test input-output pairs, where the first 1000 samples are treated as transients.
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Figure 3.2. Top: the steady-state system output z(k) + e(k). Bottom: the steady-
state output error &(k, Ounc) and £(k, Ogrc) with & defined in (3.8).
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Figure 3.3. Response of the identified model characterized by 6, for a zero input
for different initial conditions {—0.2,—0.01,0,0.01,0.2}. Depending on the initial
condition, the response converges to a different fixed point.
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Figure 3.4. Schematic of the Wiener-Hammerstein system.

Model structure and parametrization

The two LTI blocks of the Wiener-Hammerstein model, see Figure 3.4, can be cast
into a single LTT model such that output y is the output of the first LTI block,
the input w is the input of the second LTI block and the output z is the output
of the second LTI block. Each of the third-order LTI blocks is parametrized in
a controllability canonical form by seven parameters, yielding 0y, € R'*. The
nonlinearity, parametrized by 0, = [, 8] € R, is given by the equation

o(y) = —log(a + exp(—y)) + log(a + 1) + By. (3.20)

For any a > 0 and 8 > 0, the conditions of Theorem 3.1 boil down to the eigen-
values of the matrix A being located inside the unit disc.

The LTI part of the candidate model is initialized by taking two random stable
third-order LTI models (using Matlab’s drss routine). The parameters of the
nonlinearity are initialized by taking a random positive number for « and setting

B =0.

Identification results

The identification problem is solved by Matlab’s 1sqnonlin implementation of
the trust-region-reflective method [56]. The identified nonlinearity is illustrated in
Figure 3.6. The measured output z is plotted together with the error ¢ := 2(6) — =
in Figure 3.5. It can be observed that the error € is close to zero, evidencing an
accurately identified model. The root-mean-square error (RMSE) on the test data
(excluding transients) is 0.62 mV, where the RMSE is defined as follows:

2

RMSE = > let®)]ls. (3.21)

The performance in terms of the RMSE on the test dataset (0.64 mV) is compa-
rable to the performance on the estimation dataset. These accuracy results are in
close proximity to the best state-of-the-art results in the literature, see [27] for an
overview.

3.4.3 Silverbox benchmark

The Silverbox system, proposed by [304], is an electronic implementation of the
Duffing oscillator, which can be modeled as a second-order Lur’e-type model with a
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Figure 3.5. Measured output z (top) and the error € of the identified model (bot-
tom). The vertical black dashed line represents the split between the estimation
data (left) and test data (right).
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Figure 3.6. Graph of the identified nonlinearity in the Wiener-Hammerstein bench-
mark.
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cubic nonlinearity. The cubic nonlinearity cannot be globally incrementally sector
bounded, therefore, this system does not fit into the class of models that satisfy
the conditions of Theorem 3.1. The goal is to investigate whether an accurate
GEC model can be identified for this system by replacing the cubic nonlinearity
with a spline nonlinearity that can be globally incrementally sector bounded.

Identification data

The scalar excitation signal w used during the identification experiment is shown
in Figure 3.7. The data can be split into a test part (arrow’s ‘head’ in red) and an
estimation part (arrow’s ‘tail’ in blue). The test data is a band-limited Gaussian
white noise sequence with a linear increase in amplitude forward in time. The
estimation data consists of ten random-phase odd multisine realizations, the last
multisine of which is omitted in the identification procedure, consistent with [161].
Note that the excitation amplitude of the test data exceeds the amplitudes seen
during training, allowing to test extrapolation properties of the identified models.

Model structure and parameter initialization

Given the prior knowledge of the Silverbox dynamics, a second-order LTI state-
space model interconnected via feedback by a SISO nonlinearity is selected. Fur-
thermore, the output z also serves as nonlinearity input y, i.e., F'(8) = C(6), G(0) =
0 and H(0) = D(0). Finally, the nonlinearity output v and the external excitation
w enter the model according to B(f) = —L(6). The linear block is parametrized
in a controllability canonical form by fx, € R>.

Two candidate nonlinearities are proposed, namely:

3
pi(y) = > kiy', (3.22a)
i1
0901 = [klv k?a k3]T € R37 (32213)
kyg’ |y| 2 y*a

= . 3.22¢
Pu(y) { 3ky? — sign(y)2ky?, |yl < v, (3.22)
09911 = [k’y*}'l' S R2. (3.22(1)

The nonlinearity ¢y is a cubic polynomial, which fits the prior knowledge on the
Silverbox system. However, it does not allow for stability guarantees via Theorem
3.1, since it cannot be globally incrementally sector bounded. The second nonlin-
earity ¢y is a spline nonlinearity, which behaves as a pure cubic polynomial within
the spline width (including the origin) and is linear outside. For nonnegative con-
stants k and y,, it is incrementally sector bounded within [0, Q] with Q = 3ky2.
Loop transformations are used to transform the nonlinearity such that it satisfies
the incremental sector bound [—1,, , I, ].
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Figure 3.7. Silverbox identification experiment, split between the estimation (blue)
and a test dataset (red).

The parameters characterizing the candidate model of a certain structure are
expressed by

T .

0; =05 6)] ., Vie{lI}. (3.23)

The parameters 6y, are initialized according to the BLA [235], which is charac-

terized by ini;. The nonlinearity ¢ is initialized according to 8,, = 03; and ¢y

according to k = 0 and y, a random positive number.

Identification results

Starting from the BLA characterized by 6., the identification problem is solved
by Matlab’s 1sqnonlin implementation of the trust-region-reflective method [56].
For the model structure with the nonlinearity ¢1, the GEC property is not enforced
and model responses are computed by forward iterating the nonlinear dynamics.
The graphs of identified nonlinearities 1 and 1 are depicted in Figure 3.8, where
the spline nature of (g is recognized.

The identification results in terms of the RMSE are presented in Table 3.2,
where the RMSE is defined in (3.21) and where the model response is computed
by forward iterating the dynamics through the estimation data. The BLA per-
forms the worst, as expected since this model does not include the cubic nonlinear
feedback. The model with cubic nonlinearity performs the best, comparable with
other identification results in the literature, see [27]. However, this model is not
certified with a stability property. The model with the spline nonlinearity per-
forms not as well as the model with the cubic nonlinearity, which is expected as
this model does not extrapolate nonlinearly outside the spline width yy, but it is
certified with the GEC property.

The numerical efficiency of our approach relies on two ingredients, namely:
(i) the MTF algorithm to compute steady-state model responses; and (ii) exact
gradient information computed by the MTF algorithm via the results of Theo-
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Figure 3.8. Identified polynomial (blue) and spline (red) nonlinearities in the
Silverbox example. The spline width y, is indicated by the vertical black dashed
lines.

Table 3.2. Silverbox identification performance in terms of the RMSE [mV] for the
BLA characterized by 6;,i¢, the identified nonlinear model with cubic nonlinearity
characterized by 61, and the identified nonlinear model with spline nonlinearity
characterized by 6.

Dataset H Oinis ‘ 01 ‘ Ot
Estimation 6.94 0.52 | 1.14
Test 13.70 | 0.55 | 4.28

rem 3.3. The total computation time' to find é;; by solving the identification
problem using (i) and (ii) is 363 seconds. The total computation time to solve the
same problem without (i), but with (ii) is 1288 seconds. In this case, steady-state
model responses are computed by forward iterating the dynamics. Solving the
same problem with (i), but without (ii) takes 4187 seconds, where gradient infor-
mation is found by finite-differencing [193]. The total computation time to solve
the same problem without (i) and without (ii) is 7500 seconds. In each of these
cases, the optimization procedure resulted in approximately the same parameter
vector Or;. Our approach thus reduces the computation time by more than 44%,
70%, and 95%, respectively. The computation time can be further reduced to only
175 seconds if, in addition to using (i) and (ii), parallel computing is employed for
the computation of the gradient information.

Performance on test data

The performance of the model is quantified by forward iterating the identified
model throughout the arrow-‘head’ excitation (samples 1 - 40585), see Figure 3.7.

10On an Intel Core i7-7700HQ, 2.8 GHz processor.



3.4. Numerical examples 73

Table 3.3. Elapsed computation time for solving the identification problem on the
basis of the estimation dataset using/not using (i) the MTF algorithm and (ii)
exact gradient information.

Methods || (i),(ii) | €,Gi) | (1).68) | (.68
Time [sec] [[ 363 [ 1288 [ 4187 [ 7500

The RMSE, included in Table 3.2, shows that the BLA cannot catch up with
the nonlinear models. Model I with cubic nonlinearity is a good representation
of the observations. Even in the extrapolation regime, which starts roughly after
50 seconds, only a slight increase in model error is observed, see Figure 3.9. The
behavior of the spline model II is in line with expectations. For small excitation
magnitudes, the nonlinearity behaves in the cubic regime of the model and the
model performance is close to that of model I. For larger excitation magnitudes,
the nonlinearity acts in its linear regime inducing model performance loss.

Finally, the estimated models are compared to state-of-the-art models in the
literature, see [27]. Model I with cubic nonlinearity (without stability guarantees)
accurately models the Silverbox system having its performance measures close to
the best results in the literature. Model II with spline nonlinearity is shown to
be a significant improvement with respect to the BLA and is the only nonlinear
model reported in the literature with stability guarantees. Arguably, the spline
model IT is rendered in the sweet spot of being relatively accurate and predicting
reliably on input sequences that were not seen during model training.

Time [s]

Figure 3.9. The test data z (blue), the error &(finit) of the BLA (red), the error
g(611) of the model with spline nonlinearity (yellow), and the error £(6;) of the
model with cubic nonlinearity (purple). The spline width y, is indicated by the
black dashed lines.
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3.5 Conclusions

This chapter has presented a method for the system identification of discrete-time
Lur’e-type models with certification of the convergence property. The convergence
property guarantees the stability properties of the identified model and reliable
usage of the identified model under generalized inputs. On the basis of suffi-
cient conditions for convergence, we propose a novel numerical algorithm that
enables the efficient computation of the steady-state responses of discrete-time
MIMO Lur’e-type models. Furthermore, a method to efficiently and exactly com-
pute the gradient of the model responses with respect to the model parameters is
presented. These two aspects result in a 95% reduction in the computation time re-
quired to solve the identification problem for the nonlinear Silverbox benchmark.
Furthermore, the identification approach is validated on the nonlinear Wiener-
Hammerstein benchmark.



Accuracy bounds for the
simulation of a class of
continuous-time nonlinear
models

Real-life dynamic systems evolve in the continuous-time world whereas their models
are simulated in the digital world using discrete-time numerical simulation algo-
rithms. Such model simulation is essential for a wide variety of (nonlinear) sys-
tems and control problems such as system identification and performance analysis
of (control) systems. Ideally, both the system and the model should produce the
exact same response, however, this is typically not the case in practice, even if the
model perfectly describes the system. This chapter analyzes the steady-state mis-
match between the response of continuous-time, nonlinear Lur’e-type systems and
their continuous-time Lur’e-type models whose steady-state response is computed
with the so-called mized time-frequency algorithm. This algorithm has practical
importance in a number of performance optimization and identification problems.
Firstly, a bound s derived on the steady-state mismatch between the computed
model responses and the actual system responses. Secondly, a bound is derived on
the steady-state mismatch between the computed model responses and the measured
system responses, sampled by an analog-to-digital device. The derived bounds are
decomposed into several components, each having a clear interpretation that can
be used to reduce the bounds on the mismatch. In a numerical case study, we show
that a reduction of the bounds also leads to a reduced mismatch.

The contents of this chapter are published in: Shakib, M. F., Schoukens, J., Pogromsky, A.
Y., Pavlov, A., & van de Wouw, N. Accuracy bounds for the simulation of a class of continuous-
time nonlinear models. In preparation.
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4.1 Introduction

Dynamic models of real-life systems are of crucial importance in many engineering
applications as they enable prediction of the real-life system response, analysis of
system behavior, and controller design to shape system behavior. Inevitably, most
models fail to describe the dynamics of the system perfectly [152], but even if they
do, there is a mismatch between the system and the model responses due to the
following reasons. Firstly, most real-life, nonlinear systems evolve in continuous
time, but their response is only available as a sampled, discrete-time series, im-
plying information loss due to sampling. Secondly, only occasionally the response
of a continuous-time model can be found analytically, e.g., the responses of linear
time-invariant (LTT) models [135]. For nonlinear models, the response is typically
computed by means of numerical integration, which has a discrete-time nature and
is, inherently, prone to numerical inaccuracies [50, 252]. Thirdly, unmeasured and
unknown disturbances affect the real-life system’s inputs and outputs [152], which
cannot be taken into account in model response computation. These observations
suggest that there is a mismatch between the system response and the computed
model response, even if a perfect model for the system is available.

Model response computation is essential for (nonlinear) model predictive con-
trol [4, 210], performance analysis of nonlinear (control) systems [110, 277, 286],
parameter optimization of nonlinear control systems [196, 308], state estimation via
(non)linear observers [30], (nonlinear) system identification [240, 251], and many
more problems. Among these problems, [110, 196, 251, 277, 286, 308] require
steady-state model responses, for which it is important to analyze and quantify
the mismatch between the steady-state system and model responses. For exam-
ple, the identification problem requires model responses of candidate models for
comparison with the measured system response, thereby assessing the quality of
the candidate model. Even if the candidate model perfectly describes the real-life
system, the aforementioned sources of errors can result in this perfect candidate
model being falsely labeled as a poor model.

Previous research has focused on the LTI case, see, e.g., [204, 205, 241]. For
nonlinear systems, however, it is far more challenging to quantify the mismatch
between the system and model responses. For example, one of the challenges is
that nonlinear systems can produce for even the slightest change of the input a re-
sponse that is wildly different, unbounded, or even undefined [135]. For responses
to remain close to each other under input variations, the system should exhibit an
incremental stability property, like incremental input-to-state stability [8]. This is
even more pronounced given the fact that inputs to the real-life system typically
contain an infinite number of harmonics, which are truncated in any computer
simulation. Therefore, the inputs that excite the system and the model are differ-
ent. Hence, the mismatch between the system response and model response can
become unbounded and, therefore, unquantifiable. Furthermore, the mismatch
depends highly on the particular model simulation algorithm used. Typically, nu-
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merical forward integration (NFI) [252] is used, but other simulation algorithms,
see, e.g., [15, 48, 50, 135, 195, 246, 276], are also proposed in the literature. These
simulation algorithms, however, do not generically come with error bounds on the
steady-state behavior.

Nevertheless, [34, 99, 213, 236, 237] analyze approximation errors when a
continuous-time nonlinear model is replaced by a discrete-time one, enabling faster
model simulation as the NFI simulation method for continuous-time models is com-
putationally expensive. In particular, [99] shows that a continuous-time nonlinear
system can be approximated arbitrarily well by a discrete-time nonlinear model
with an approximation error over a finite time interval that drops inversely pro-
portional with increasing sampling frequency. An improved result is presented in
[236], where the drop rate of the approximation error can be improved by low-pass
filtering the input signal before feeding it to the system. In the scope of controller
design, [51, 180, 181] formulate conditions under which control design based on an
approximate discrete-time model of a continuous-time system also stabilizes the
continuous-time system.

In this chapter, we are interested in continuous-time models since these are
derived naturally from the physical laws of nature, and their parameters have a
physical meaning [94, 207]. To facilitate mismatch quantification, we focus on a
practically relevant class of continuous-time nonlinear Lur’e-type systems that en-
joy a stability property called convergence [200, 309]. Lur’e-type systems consist of
LTT dynamics that are placed in feedback with a static nonlinearity. Convergence
is a property of (non)linear systems that guarantees the uniqueness, boundedness
and global asymptotic stability of the steady-state solution [200]. As a conse-
quence, for any bounded excitation, the convergent model ‘forgets’ its initial con-
dition and, therefore, exhibits a uniquely defined, bounded steady-state solution,
which is globally asymptotic stable and depends solely on the applied input. For
this class of models, [196] developed the so-called mixed time-frequency (MTF) al-
gorithm for efficient computation of the unique steady-state model response. This
algorithm has been used in system identification [247, 251] and control parameter
optimization [196] problems. In these problems, accurate computation of steady-
state model responses is essential. Although [196] does provide an upper bound
on the mismatch between the steady-state model response and the calculated one,
it does not take into account the implementation aspects of the algorithm and the
corresponding aliasing errors. Moreover, it does not incorporate the interface of
the model to the physical world, which gives rise to the aforementioned sources of
erTors.

This chapter derives two upper bounds on the steady-state mismatch between
the system response and the computed model response by the computationally
efficient MTF algorithm [196] for convergent Lur’e-type systems. The first bound
is on the steady-state mismatch between the measured sampled system response
and the model response calculated with the MTF algorithm. This bound pro-
vides a measure of how close the simulated model output is with respect to the
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sampled measured system output including aliasing effects due to sampling, par-
ticularly important in system identification problems [240]. The second bound is
on the steady-state mismatch between the actual system response and the model
response calculated with the MTF algorithm. This bound provides insight into
the intersample behavior of the system that is not captured by sampling its out-
put response. We give an interpretation of the individual terms that comprise the
bounds and show how these can be reduced. Furthermore, we showcase the usage
of the bounds on a nonlinear mechanical system. Finally, we show that the bounds
give valuable insights into the factors causing the mismatches and that a reduction
of the bounds also results in a reduction of the mismatches.
The main contributions of this chapter are summarized as follows.

e The derivation of an upper bound on the steady-state mismatch between the
simulated model response and (i) the measured sampled system response;
and (ii) the actual system response, for the class of convergent Lur’e-type
systems.

e A qualitative analysis of the different terms that contribute to these upper
bounds and how to reduce the bounds.

e A quantitative analysis in which the results of this chapter are validated in
a simulation example.

Firstly, these contributions facilitate parameter selection of the MTF simulation
algorithm to control the tradeoff between simulation accuracy and computational
load. Secondly, the contributions allow for deciding whether to invest resources to
reduce disturbances or improve hardware to facilitate improved interfacing between
the continuous-time and the discrete-time worlds.

The remainder of this chapter is outlined as follows. Section 4.2 introduces
the notation and describes the preliminaries. Section 4.3 defines the considered
dynamics, recalls the MTF-algorithm for model simulation, and formulates the
problem setting. Section 4.4 presents the main results of this chapter in the form
of the aforementioned bounds and, in addition, presents a qualitative analysis of
the bounds. Section 4.5 describes a quantitative analysis and Section 4.6 presents
the conclusions of this work.

4.2 Notation and preliminaries

The set of integer, real, and complex numbers are respectively denoted by Z, R, C.
The unitary complex number i == /—1.

Continuous-time functions By Lo(T') we denote the space of continuous, real-
valued, T-periodic, scalar functions y satisfying Hy||i2 =x fOT ly(t)|?dt < +oc. By
¢y we denote the space of complex-valued sequences Y = {Y[m]}mcz satisfying
Y], < +o0o, where ||YH32 = Y .ez|Y[m][?. Both Ly(T) and /3 are Banach
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spaces. The sequence of Fourier coefﬁcients of y € Ly(T) is denoted by Y. TIts
elements are given by Y[m] = T fo t) exp{—imwt}dt,m € Z, where w = 27/T.
The inverse Fourier transform is glven by y(t) = >_,.cz Y [m] exp{imwt}. For any
y € Lo(T), let Y be its Fourier coefficients. Then, Parseval’s equality holds:
Iyl ., = IY]l,,- The truncation operator (-)a is defined as follows:

Y[m], for — M <m < M,

0, else. (4.1)

)aa] = {

The truncated version of Y is denoted by Y and its time-domain representation
is denoted by yM

A real-valued T-periodic scalar function g is in the space Cﬁ(j(T) of Holder-
a continuous functions for 0 < a < 1, if its derivatives up to order £ > 0 are
continuous and its k-th order derivative, denoted by y*), satisfies |y*) (t) —y ) (t+
7)| < Ky|t|*, vVt € R, and V7 € R, for some finite constant K, > 0. In this
chapter, we mainly use Holder-a functions with @ = 1. The space of function
where k = 0 and o = 1 coincides with the space of Lipschitz continuous functions.
Note that C&%(T) C Ly(T), for any T > 0,0 < K < +00,0 < a < 1, and k > 0.

Discrete-time sequences Discrete sequences are written in bold fonts through-

out this chapter. By L}, we denote the space of real-valued, scalar bequenceb

2 2M
yu = {ylk]}Y satisfying |lynllzp = 557 205 [¥[EIP < +oo. By €37,

denote the space of complex-valued scalar sequences Y = {Y[m]}men satis-
fying [ Yarloy = Spend[Y[mI? < +oo with M = {~M,~M +1,.... M ~
2,M — 1}. Both LY and ¢} are Banach spaces. For a given yjs, the ele-
ments of the sequence Y, are given by the discrete Fourier transform (DFT)

Y[m| = ZiMl yk] exp{—i%m(k — 1)}, for m € M. The inverse DFT (IDFT) is
given by y[k] = 51 > ,.caq YIm]exp{i=m(k — 1)}, for k = 1,...,2M. For any
yar € LY and its corresponding Fourier coefficients Yy, the following equality
holds: V2M ||yl py = 'Y arllgas-

Relation between discrete-time sequences and continuous—time signals All non-
zero Fourier coefficients of the truncated T-periodic y € Ly(T) can be computed
from the time-series yy = {y[k]}3M, = {yM(tx)}3Y,, where 2M is the length
of the time series and t; = tsk are the sampling instants with sampling interval

s = T/(2M). The relation between the Fourier coefficients Yj; and Y™ is as
follows:

—~-Y[m], for m e M
M _ oM ) )
Y*[m] = { 0 olse. (4.2)

Therefore, having the time-series y s at hand, the truncated continuous-time func-
tion 4™ can be computed on ¢ € R via the Fourier coefficients relationship in (4.2).
Moreover, the relation (4.2) ensures [[ya||;y = HyMHLQ.
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k QILI Zy =
{wolk] "=y D-to-A A-to-D |y {zp(t)}2M,
converter converter =
wel(?) 2r(t)
Analog LPF vu(t) va(t) Analog LPF
order o, order o,

& = Az + Bu+ Lw
y=Cz+ Dw

wo(t)

—¢(y)

Figure 4.1. Schematic representation of Lur’e-type system (4.3).

4.3 Problem setting

The considered setup is depicted schematically in Fig. 4.1 and its components are
detailed in the subsequent sections. The considered problem is to find bounds on
the steady-state mismatch between the system response and the computed model
response. In Section 4.3.4, we formalize the problem studied in this chapter.

4.3.1 Class of convergent Lur’e-type systems

The starting point of this work is a model that perfectly describes the system
under study. The model and system equations coincide and are of single-input
single-output (SISO) Lur’e-type form described by

@(t) = Ax(t) + Bu(t) + Lw(t),
y(t) = Cz(t) + Dw(t),

20(t) = Fa(t) + Gu(t) + Hu(t), (4.3)
u(t) = —¢(y(t)),

where z(t) € R™ is the state vector, y(¢t) € R is the nonlinearity input signal,
u(t) € R is the nonlinearity output signal, zo(¢) € R is the output, z(t) = 2zo(¢) +
v,(t) € R is the measured output, wo(t) € R is the realized external input, w(t) =
wo(t) + vy (t) € R is the input to the system, and ¢ : R — R is a static nonlinear
function. The signals v, (t) € R and v,(t) € R are unmeasured input and output
disturbances, respectively.

It is assumed that the dynamics (4.3) exhibit a strong form of model stability.
Hereto, the notion of convergent dynamics is defined according to [200].
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Definition 4.1. The system (4.3) is said to be globally exponentially convergent
if for every input w that is defined and bounded on R, there exists a solution T
satisfying the conditions:

e T is defined and bounded on R,
e X is globally exponentially stable.
|

The solution Z is called the steady-state solution and depends on the applied input
w. For the considered dynamics (4.3), sufficient conditions for global exponential
convergence are recalled next from [196, 309].

Theorem 4.1. Consider system (4.3) and suppose that
C1 the matrixz A is Hurwitz;
C2 there exists a K, > 0 such that the nonlinearity p(y) satisfies
}M < K, for ally; € R,y € R.

Y2—Y1

C3 vy = sup,er |Cjwl — A)7'B| < KL%,
Then, the system (4.3) is globally exponentially convergent. A

Assumption 4.1. System (4.3) satisfies conditions C1 - C8 of Theorem 4.1 for
some constant K, > 0 and is, therefore, globally exponentially convergent. |

Independent of the initial condition, all solutions = of a convergent system con-
verge to the globally exponentially stable steady-state solution Z, which depends
on the input w. Another property of convergent systems is that when excited by
a periodic input w with period-time T, the steady-state solution Z is also periodic
with the same period-time T, see [200]. This property implies that the steady-
state output Zy only contains the harmonics of the periodic input w and its higher
harmonics. Finally, the conditions of Theorem 4.1 guarantee a finite incremental
gain, which implies that small variations of the input w (in the infinity norm)
lead to small variations in the output z (in the infinity norm) [200]. This prop-
erty is instrumental in quantifying the effect of the disturbances v,, and v, on the
steady-state system response z. From here onwards, signals corresponding to the
system are written with a breve diacritic mark, e.g., the state &, whereas signals
corresponding to the model are written without a breve diacritic mark, e.g., the
state x.

Remark 4.1. Assuming that the model perfectly describes the system might seem
restrictive, however, in many systems and control-related problems, this assump-
tion is made. For example, in system identification problems, this assumption
is commonly used in the Cramér-Rao bound for statistical efficiency [152] and
optimal input design problems [268]. VAN
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4.3.2 Interface between the continuous-time system and discrete-
time computer

Input signal reconstruction

Let us first discuss the input signal reconstruction of wgy via the digital-to-
analog (D-to-A) converter, see Figure 4.1. In practice, the time-series w ap) ==
{wolk]}2M, of the user-defined T—periodic wy is available. The following assump-
tion formalizes the realization of wyg.

Assumption 4.2. The T-periodic signal w. (see Figure 4.1) is realized by a D-to-A
converter with the refreshing frequency fs = 1/ts from the user-defined time-
series W(g, ) and with ts the refreshing time. Then, the signal w. is filtered by
a low-pass filter with transfer function G(s) = (wy/(s + wyw))°,s € C, of order
0w > 0 and with cut-off frequency w,, to realize the input signal wo. The constant
0 < Ky, < +oo related to the realized signal wo € CO’;UO (T) is known. Moreover,

the constant 0 < KM < 400 related to the truncated signal ng S C’?{’},M (T) is
wo

known. |

A popular D-to-A conversion technique is the so-called zero-order hold (ZOH)
reconstruction technique, which holds the sample wy[k] for ¢ € [tg,tgt1). It is
well-known that, in addition to the desired harmonics, also unwanted higher har-
monics are realized by any D-to-A conversion technique and are present in the
periodic signal w,.. Therefore, Assumption 4.2 implies that both w, and wg con-
tain frequency contents beyond the first M harmonics, which are attenuated up
to some extent by the low-pass filtering process.

To compute the bounds derived later in this chapter, all Fourier coefficients
of woy are required. These can be computed analytically from the samples w g rr)
under the assumption that the D-to-A conversion technique is known and that the
order o,,, and cut-off frequency w,, of the low-pass filter are known.

Remark 4.2. The low-pass filter order o,, is considered strictly larger than 0 by
Assumption 4.2. Consequently, the low-passed signal wg is Holder-a continuous
with respect to time, even if the output w, of the D-to-A converter is discontinuous.
The condition that the signal wg is Holder-a continuous is required for the main
results of this chapter. A

Data acquisition

Next, we discuss the sampling of the output Z of the system (4.3). In practice,
only a discrete version of the measured steady-state response z is available at the
sampling instants ty = to + kts with k& = 1,...,2M, where t; is the sampling
interval, 2M = T'/t, is the total number of samples in one steady-state period and
to € R is the starting time. To attenuate aliasing effects, we low-pass filter the
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steady-state signal Z prior to sampling it, see Figure 4.1, which is formalized in
the following assumption.

Assumption 4.3. The steady-state signal z is filtered by a low-pass filter with trans-
fer function G(s) = (w,/(s +w,))°=,s € C, of order o, > 0 and with cut-off fre-
quency w, > 0 to obtain the steady-state signal Zp. It is assumed that the first 2M
Fourier coefficients of Zr are equal to those of z. The signal Zp is then sampled
with sampling frequency fs == 1/ts to obtain Zy = {Zp(t)}3Y,. ]
Remark 4.3. For the sake of clarity, from here on we only cover the case in which
the sampling time of the A-to-D converter coincides with the refreshment time of
the D-to-A converter, which are both denoted by t,. A

Remark 4.4. In contrast to Assumption 4.3, the low-pass filter with o, > 1 also
affects the first 2M Fourier coefficients of Zp. Nevertheless, this assumption is
posed as it significantly simplifies the analysis in this chapter. An alternative
interpretation is that the effect of low-pass filtering is negligible on the first 20\
Fourier coefficients of Z¢, which is true for a sufficiently large cut-off frequency
Ws. A

Disturbance setting

The input disturbance v,, affects the input wg of the system such that the input
to the system is w = wgy + vy, see Figure 4.1. An example of input disturbances
is actuator limitations resulting in a non-perfect realization of the user defined-
input wg. Another example is given by external unmeasurable inputs, such as
environmental time-varying factors that excite the system under study.

The output disturbance v, affects the output Z; of the system, such that the
available output for measurement is Z = 2y +4wv,, see Figure 4.1. This disturbance is
typically caused by imperfections in the measurement device. For example, many
measurement devices are subject to environmental effects such as temperature.
Although sensor calibration reduces these effects to some extent, these effects can
not be eliminated. Another example is quantization errors, caused by the finite
number of bits used to represent the measured analog signal.

The disturbances are assumed unmeasured; however, these are assumed to be
periodic and bounded in norm with a known bound. Furthermore, these distur-
bances are assumed to admit a finite Lipschitz constant. These assumptions are
required to bound the effects of the disturbances in the accuracy bounds derived
in this chapter.

Assumption 4.4. The disturbances vy, € L2(T) and v, € Lo(T') satisfy ||vw;, <
Ay, ||vz||L2 < A, for known constant 0 < A, < +00 and 0 < A, < 4o0. |

Assumption 4.5. The disturbances v,, € C?(’i (T) and v, € C(I)(’i (T') have known
constants 0 < K,,, < 400 and 0 < K,, < 400, respectively. |
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Note that we consider a deterministic disturbance setting and exclude a stochas-
tic setting. In a stochastic setting, the signals v,, and v, are realizations of stochas-
tic processes that are defined by moments, i.e., mean, variance, and higher-order
moments. Stochastic signals with a positive variance do not obey the bound in
Assumption 4.4 and, therefore, do not fit in the presented class of disturbances for
any finite A, and A,.

4.3.3 Fast computation of steady-state model responses

The steady-state model response is computed on a discrete-time grid with sam-
pling frequency 7 fs, with 7 a positive integer and 1/ f the sample time in Assump-
tions 4.2 and 4.3. In each iteration i of the MTF algorithm (the iteration index
i is denoted in the subscript in brackets, i.e., [i]), the following two mappings are
evaluated:

W[4 1],0M) = GuyY ([i],nM) > (4.4a)
Y (li+1],nM) = GyuW([i+1].0M) T Gyw W (0,n01) 5 4.4b)
where the sequences W ,n) = {ng(tk)}le\l/[, Y (M) = {y[i][k]}i@f, and

U([i+1),n0) 18 defined similarly to y([i41],,ar)- The nonlinear steady-state operator
guy In (4.4a) is defined as follows:

GuyY (linmr) = — LY ([i].nM)), (4.5)

whereas the linear steady-state operators g, and gy, in (4.4b) map uy1},mn)
and wg ,nr) IntO y([iy1),50r), respectively. Their frequency-domain counterparts
Gyu and gy, respectively, are defined as follows:

(gyuUnM)[m] = Gyu(]wom)U[m]a (46&)
(gwa(O,nM) [m] = Gy (jwom)Wo[m], (4.6b)

for m € pM = {—ngM,—M +1,...,nM — 2,nM — 1}, where wy = 27/T and
with the frequency response functions Gy, (jw) = C(jwI—A) 7' B and G, (jw) =
C(jwI — A)7'L + D. The MTF algorithm relies on the fact that the composed
operator gy © gyu is a contraction operator acting from the space LgM to LgM,
provided that the model satisfies the conditions of Theorem 4.1.

Theorem 4.2. Consider the dynamics (4.3) and suppose Assumption 4.1 holds.
Then, for any integersn > 0 and M > 0, and for any T-periodic input wyg € Lo(T),
there erists a unique limit y, s to the sequence y ([ ), ¢ = 1,2,. .., resulting from
the iterative process (4.4a) - (4.4b). A

Proof. The proof can be found in Appendix C.1. O
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For computational efficiency, the nonlinear mapping g, is evaluated in the time
domain, while the two linear mappings are evaluated in the frequency domain.
Starting from any initial y((o],,ar), €8, the zero response, the MTF algorithm
iteratively evaluates these mappings, while transforming the intermediate signals
between the time- and frequency-domain using the (inverse) DFT. Having the
steady-state y, s, one can trivially compute 6, using the nonlinear operator g,
and compute the output z,; using the frequency response functions G, (jw) =
F(jwl — A)"'B + G and G, (jw) = F(jwl — A)"'L + H. The MTF algorithm
is presented in Algorithm 4.1 with the stop function:

1Y Gimae) = Y (= 11m0) |

Y i mn Y (i) = 1Y (i-11.000) ||
i—1],n L3

This algorithm is closely related to the harmonic balancing method [144, 168].
Furthermore, [46] proposed an algorithm similar to the MTF algorithm, however,
without proof of convergence.

Remark 4.5. A different version of the MTF algorithm has been presented in [196]
with a proof of contraction. Numerical implementation of that previous version
requires choosing additional parameters that affect the accuracy of the steady-state
solution. These effects were not studied in [196]. In Algorithm 4.1 and Theorem
4.2 these parameters are explicitly taken into account, which allows deriving the
accuracy bounds in Section 4.4. VAN

Algorithm 4.1 Mixed Time-Frequency Algorithm.

1: Evaluate the LTT dynamics in frequency domain

{Y[O] [m] = Gyw(jwom)Wo [m]}menM'

Compute y ((o],nar) from Y (o) 5a1)-

Set iteration counter ¢ = 0.

while 6(Y([i],nM)aY([ifl],nM)) >Y*ori<1do
Evaluate the nonlinearity in time domain
{ug k] = —(yp (KD F2Y -
Compute U ((;41),nar) from w(ip1y,narn)-

7 Evaluate the LTI dynamics in frequency domain
{Y(irq[m] = Gyu(jwom) Upipy[m] + Yig [m] }
Compute y ((i+1],nar) from Y (ir1)a1)-

Set 1 =1+ 1.
10: end while
11: Evaluate the LTI dynamics in frequency domain
{Z[m] = G..,(jwom)Wo[m] + G, (jwom)Up;_q[m] }
12: Compute 2z, from Zy .

FANE I

menM’

menM’
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4.3.4 Problem statement

Several error sources are responsible for a steady-state mismatch between the sys-
tem and the model responses, even if the nonlinear model perfectly describes the
real-life system. Firstly, the MTF Algorithm 4.1 considering only nM harmonics
results in higher harmonics of the input signal wy being neglected during simula-
tion; and internal aliasing errors due to the nonlinear feedback ¢ generating an
infinite number of harmonics during model simulation. Secondly, aliasing errors
arise due to the sampling of the system output by a finite sampling frequency.
Thirdly, unknown and unmeasured input and output disturbances affect the sys-
tem response but are unavailable for model simulation.

We are interested in the steady-state mismatch between the computed model
response 2" and the actual system response Z, both available as continuous-time
functions. Note that the computed steady-state model response z"™ is obtained
by first computing Z,; on a discrete grid of 2nM points by means of the MTF
algorithm. After that, Z,ys is transformed via (4.2) to its continuous-time coun-
terpart 2", which only contains nM harmonics by definition. Moreover, we are
also interested in the steady-state mismatch between the truncated model response
(Znmr )M and the measured sampled system response zy7, both available at 2M dis-
crete time instances. Here, the model response z,,s is truncated to M harmonics
to match the number of 2M discrete time instances of the system response.

Problem 4.1. Consider the dynamics (4.3). Suppose Assumptions 4.1 - 4.4 hold.
Find an upper bound for H,? — Z"MHLQ, where z denotes the steady-state system

response and 2™ denotes the model response computed by the MTF Algorithm, 4.1.
A

Problem 4.2. Consider the dynamics (4.3). Suppose Assumptions 4.1 - 4.5 hold.

. % — M o
Find an upper bound for ||zar — (Znnr) HLM’ where z); denotes the measured
2

sampled steady-state system response and (inM)M denotes the truncated model
response computed by the MTF Algorithm 4.1. A

4.4 Bounds on mismatch

The main result is presented in Section 4.4.1 in Theorems 4.3 and 4.4, which,
respectively, solve Problems 4.1 and 4.2. After that, in Section 4.4.2, a qualitative
analysis that decomposes these bound into several components and analyzes their
asymptotic behavior is presented. Finally, in Section 4.4.3, several methods to
reduce these bounds are given.
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4.4.1 Bound on the steady-state mismatch between the system and
the model response
The bounds on the steady-state mismatch between the (measured) system response

and the computed model response are presented in Theorems 4.3 and 4.4. The
following constants are used with w := 27 /T"

Y = sup |Gu(jmw)|, )Y = sup |GL(jmw)|, 7Y = sup |G.(jmw)|, (4.7)
meZ |m|>x [m|<x

where p € {yu,yw, zu, zw} and x € {M,nM}. Furthermore, we introduce the
following two constants:

M nM—
. TK vy Z i (4.82)
\/g ( 'Vyu K ) m=1 m
Two | & 1
M= > 5 (4.8b)

V8 = m? (m2w2 + w?)

where 0,,w, are the low-pass filter parameters in Assumption 4.3. The function
¢(s) with s € C is the so-called Riemann-zeta function defined as follows:

g(s);:i:1+i+—+.... (4.9)

We only use the function ((s) for s = 2, for which the infinite series (4.9) converges
to m2/2, see [278]. This also guarantees convergence of ¥ in (4.8a). Furthermore,
the infinite series in the constant vM also converges, as shown in the proof of
Theorem 4.4 in Appendix C.4.

Prior to presenting the bounds on the mismatch, we first present a technical
lemma.

Lemma 4.1. Consider the dynamics (4.3) and suppose Assumptions 4.1 and 4.2
hold. Suppose that "™ is computed by means of the MTF Algorithm 4.1. Then,
the magnitude of the Fourier coefficients U of 4 = o(y"™), for m # 0, are upper
bounded as follows:
TK, KM
g (4.10)

S e s

where K, is the constant in Assumption 4.1, Kﬁjf)” the constant in Assumption 4.2,
and 'y;’y and 'y;’fl‘f are as in (4.7). Furthermore, the upper bound

Je@™) = (e @)™,

with Y™ defined in (4.8a), holds. A

<M RN (4.11)

2
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Proof. The proof can be found in Appendix C.2. O

The following result presents the bound on the mismatch between the actual
system response Z and the model response "™ calculated with the MTF algorithm.
Thereby, it solves Problem 4.1.

Theorem 4.3. Suppose Assumptions 4.1 - 4.4 hold for system (4.3) with the steady-
state output response z. If the steady-state output of the model (4.3), denoted by
Z™ s computed using the MTF Algorithm 4.1, then the following upper bound
on the Lo-norm on the mismatch between z and 2"™ solves Problem 4.1:

2= 20, < mflwo —wl™|| | +maBu A+ me K (42)
2
with
L P A VIR % ot % M
K1 ~—7+’yzw ) K2 '_74»’72“” A
1—vyuKy 1—vyuKy 1 — vy Ky

and the constants vyu,’yywmzw,vzur‘ywﬁ;’%, defined in (4.7), the constant "™

defined in (4.8a), K, as in Assumption 4.1, K]],g/[ as in Assumption 4.2 and
Ay, A, as in Assumption 4.4. Furthermore, if Ay, = A, =0, then:

Jim [F= 2, =t 22, =0, (@13
A
Proof. The proof can be found in Appendix C.3. O

Similarly, we present the bound on the mismatch between the measured system
response and the truncated model response as a solution to Problem 4.2.

Theorem 4.4. Suppose Assumptions 4.1 - 4.5 hold for system (4.3) with the mea-
sured steady-state output response zyr. If the truncated steady-state output of the
model (4.3), denoted by (ZnM)M, is computed using the MTF Algorithm 4.1, then
the following upper bound on the LY -norm on mismatch between zy; and (ZnM)M
solves Problem 4.2:

Zy — (ZnM)M’ L < ﬁlH’LUO - ng’ L + &AL+ A, (414)
+ SR + LK, + 6K, + GK,
with
[ K2 7 6, = Kt "
L= yuly 1 —vyuky
M M
£ 1= m &=y (% +vzw) :

55 = §4a 66 = ’711\5‘/17
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and the constant ’yyu,vyw,%u,'yzwm%,'y%jﬁgy defined in (4.7), Y1 defined in
(4.8a), v defined in (4.8b), K, as in Assumption 4.1, K3, and KIM as in
Assumption 4.2, Ay, Ay as in Assumption 4.4, and K, , K, as in Assumption
4.5. Furthermore, if Ay, = A, = K,,, = K,,, =0, then for any integer n > 0, the
condition

. v _ M _
A}gnoo zy — (Zygumr) ‘ oy 0 (4.15)
holds. A
Proof. The proof can be found in Appendix C.4. O

Remark 4.6. Increasing the low-pass filter order o, in Assumption 4.2 results in
an increased smoothness of the input signal wy(t). However, it is not yet clear how
to exploit these smoothness properties to derive tighter bounds in Theorems 4.3
and 4.4. A

4.4.2 Qualitative analysis

For each of the individual components of both bounds, an interpretation is pre-
sented first. After that, the hypothetical case in which we have an infinitely fast
sampling frequency f; or an infinitely dense time grid in the MTF algorithm is
analyzed. Next, the special case for LTI systems is treated. Finally, the results
are summarized in Table 4.1 at the end of this section.

Component-level interpretation

The first component in the bounds in (4.12) and (4.14) accounts for the frequency
contents in wy beyond the first nM harmonics. These contents are inevitably
realized by any D-to-A conversion technique and propagate to the system out-
put, while these are missing in the output computed by the MTF Algorithm 4.1.
Furthermore, these contents also influence the system response at the first nM
harmonics due to the nonlinear feedback. The second component accounts for the
unknown input disturbance v,, that affects the system output. The third com-
ponent accounts for the unknown output disturbance, which is directly observed
in the system output Z, while its low-passed version is visible in Zp. The fourth
component, related to K{])Q/[ , is due to internal aliasing in the MTF Algorithm 4.1
due to the limited number of harmonics that can be considered. The fifth compo-
nent, related to K,,, is due to aliasing errors during the sampling of the system
output and is, therefore, only present in the bound in Theorem 4.4. The remaining
components, related to K, and K, in the bound in Theorem 4.4 are due to the
disturbances v,, and v, generating contents beyond the first M harmonics in the
system output and give rise to aliasing errors during the sampling of the system
output Zr.



90 Chapter 4. Accuracy bounds for nonlinear model simulation

Asymptotic analysis

Theorems 4.3 and 4.4 show that the respective mismatches are zero for infinitely
large n and/or M and no disturbances. This is an important result, as it shows
that faster sampling and/or increased accuracy of MTF Algorithm 4.1 reduces the
analyzed mismatches. In this section, we give the interpretation for this asymptotic
result and treat the case in which the disturbances are non-zero. Before we do so,
we note that for either 7 — 0o or M — oo, we have ||wo—w™ ||z, = 0, so the first
component in either bound is irrelevant in the asymptotic case and is not further
treated below.

The second component is related to the input disturbance v,,. We have the
following result:

K
lim R = lim Ko = lim 52 = Yo + M
77— 00 M—o0 M —o00 1— fyyuK(p
and y
Kovzuy
li =AM e Tz Tyw
B B o

In the asymptotic case, there is an error due to the input disturbance v,,, which is
expected as it only affects the system output, independent of M or 5, but not the
computed model output. Similarly, the output disturbance v, affects the system
output, independent of M or 7, but not the computed model output.

The remaining components are related to K{Lﬂ/[ , K> Ku, and K, and are due
to aliasing effects. The following result holds for the components related to K 3{)\4 :

li = 1l = i = 1l =0. 4.16
R = i s =l G = i G (4.16)
This result shows that there are no internal aliasing errors in the MTF Algo-
rithm 4.1 if either n or M is increased, which implies that the simulation is per-
formed on a dense time grid. For the components related to K, , K,, and K,_,
the following result holds:
li = 1l = 1l =0.
M 1—r>noo 54 M 1—r>noo 55 M 1—r>no<> 56

This result implies that there are no aliasing errors due to the sampling of the sys-
tem output with an infinitely large sampling frequency. The coefficients &4, . . ., &g,
are independent of 7, as aliasing due to the sampling of the system output only
depends on the sampling frequency related to M.

The special case of LTI systems

As all the LTT dynamics are captured in the LTI block, the special case of LTI
systems is covered by taking a zero nonlinearity, i.e., K, = 0. In this case, it can
be trivially verified that in the bound (4.12), k1 = 32 Ky = 7., and k3 = 0.
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This implies that there is only a steady-state mismatch between the actual system
response and the computed model response due to the harmonics beyond nM
in the input wg and due to the input and output disturbances. Given the fact
that k3 = 0, we conclude that there is no mismatch due to aliasing in the MTF
algorithm, which shows that the bound preserves the superposition property of LTI
systems. In essence, it guarantees that if the input wg contains content beyond the
first M harmonics, then this content does not influence the first M harmonics
of the response of the LTI system.

The bound (4.14) between the measured system output and the computed
model output is treated next. First of all, for K, = 0, it can be trivially verified
that &, = & = 0 and & = M. This implies that there are no internal aliasing
errors in the MTF algorithm and the only errors arise due to the input and the
output disturbances. The components related to K7, , K, and K,_, quantifying
the aliasing effects of the sampling of the system output, are as follows for K, = 0:

§a=& = 72‘4 ('qu'wa + ’Yzw) , &= Wéb‘I- (417)

This implies that there is a steady-state mismatch between the measured system
response and the computed model response due to aliasing effects during the sam-
pling of the system output. The system output possibly contains harmonics larger
than M due to the reconstruction of the input signal wg and due to the distur-
bances. For large low-pass filter orders o, the constant v becomes zero, resulting
in the coeflicients £, = €5 = £ = 0. In such a case, there are no aliasing occurs
and the only mismatch is due to the disturbances.

4.4.3 Reduction of the mismatch

We present various methods to reduce the bounds in Theorem 4.3 and Theorem
4.4. We demonstrate numerically in the next section that a reduction of the bounds
typically also reduces the mismatch.

Increase of MTF parameter 7. The integer n controls the time grid used by the
MTF Algorithm 4.1. It has been shown in Theorem 4.3 that in the disturbance
free case, i.e., A, = A, = 0, there is no mismatch for n — co. Therefore, it is
expected that an increase in 7 results in a decrease of the bound in Theorem 4.3.
We also expect that the bound in Theorem 4.4 decreases for an increase in 7,
because the mismatch ||wo —w{™ ||, becomes smaller and, as shown in (4.16), the
coefficient &3 drops to zero for 7 — co. A negative consequence of increasing 7 is
that the computational load increases. Thus, the parameter n enables a tradeoff
between simulation accuracy and computational load.

Decrease of sampling/refreshing time. Decreasing ¢, leads, on the one hand,
to capture more harmonics during sampling of the system output, i.e., a larger M,
and, on the other hand, to more accurate model simulation, i.e., a larger nM . In the
bound in Theorem 4.4, this translates to a reduction of the constant v in (4.8b),
implying less aliasing errors due to sampling of the system output. Additionally,



92 Chapter 4. Accuracy bounds for nonlinear model simulation

increasing M has the same effect as increasing 7, therefore, the arguments of
Increase of MTF parameter 1 also apply here.

Decrease of reconstruction errors. Increasing the low-pass filter order o,, or
decreasing its cut-off frequency w,, in Assumption 4.2 results in a decrease of the
mismatch ||wo—wg M Iz, This results subsequently in a reduction of the bounds in
both Theorems 4.3 and 4.4. Low-pass filtering of the input signal, prior to feeding
it to the system is a well-known practice, also used in [236].

Decrease of output aliasing errors. Aliasing errors are attenuated by the low-
pass filtering of the system output. Increasing the low-pass order o, or decreasing
its cut-off frequency w, in Assumption 4.3 results in a decrease of v in (4.8b)
such that lim,, 7}” = 0. In turn, the coefficients &4, &5, & in Theorem 4.4 all
reduce for increasing o, .

Decrease of disturbances. The last method is to attenuate the input distur-
bance v,, and the output disturbance v,. For example, one can improve the band-
width of the actuator or perform a more accurate sensor calibration to reduce
these. Moreover, a reduction of the Lipschitz constants of these disturbances, i.e.,
K,, and K, in Assumption 4.5, results in reduced aliasing errors while sampling
the system output.

4.5 Illustrative examples

‘We consider a mechanical system for which the bounds in Theorems 4.3 and 4.4 are
computed in several scenarios. Furthermore, the methods outlined in Section 4.4.3
are applied to reduce the bounds and, evidently, also the mismatch. Finally, the
special case of LTI systems is covered.

4.5.1 Nonlinear mass-spring-damper system

We consider a mass-spring-damper system with a nonlinear spring element. The
linear dynamics in the form of (4.3) are represented by the following system ma-
trices:

m m m

A:{Ok %]»B=[?}702F:[0 1. (4.18)

D=G=H=0,L=pB,

where m = 0.1 kg is the mass, k¥ = 1000 N/m is the spring stiffness, b = 2.5
N/(msec) is the damper constant, and p = 0.1 is the actuator gain. The non-
linearity ¢(y) = kosign(y) max (0, |y| —d), Vy € R, is a nonlinear spring with
a deadzone characteristic with length § = 10~* and slope k; = 500. We per-
form a loop transformation such that the transformed nonlinearity, transformed
Amatrix, and transformed F' matrix, read as ¢(y) = ¢(y) — %y, A=A- %BC,
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F=F-— %GC, respectively. The transformed model satisfies all conditions of
Theorem 4.1 for K, = %

4.5.2 Case study settings

The system is excited by a random phase multisine with a period time T" = 128
seconds that contains frequencies up to 6.25 Hz. The excitation signal is realized
by a ZOH reconstruction filter, running at a refreshing frequency f; = 32 Hz,
and is subsequently low-pass filtered according to Assumption 4.2. The low-pass
filter order is varied in different scenarios. The constants K, and ngf]” are found
numerically. The filtered system output Zp is measured according to Assump-
tion 4.3. Furthermore, both the input and the output disturbances are active.
Their Lipschitz constants K, and K, are computed analytically.

All steady-state model responses are computed by the MTF Algorithm 4.1.
The MTF algorithm considers 7M harmonics, in which the parameter M = 2!
depends on the sampling frequency fs via M = T'f,/2, and 7 is varied. To facilitate
the computation of the mismatch between the system and the model responses,
the system response is also computed by the MTF algorithm considering M, har-
monics, where M, = 2'9. Such large M, guarantees that the system response
is computed with high accuracy, see the analysis in Section 4.4.2. We assume
that the computed system response contains no errors with respect to the system
response in the continuous-time world.

From here onwards, the steady-state mismatch between the system and the
model response in Problem 4.1 is called the actual mismatch. Furthermore, the
steady-state mismatch between the measured system response and the model re-
sponse in Problem 4.2 is called the measured mismatch.

4.5.3 Numerical results

As a starting point, we select 0o, = 2 and o, = 0 for the low-pass filter orders in
the input and output sides, respectively. Figures 4.2a and 4.3a depicts the change
of the bounds, the component of the bounds, and the mismatch as a function of
the MTF-parameter 7.

We start with the actual mismatch for which the results are presented in Fig-
ure 4.2a. The component (——), accounting for the errors caused by the harmonics
beyond nM in the input signal, shows a drop over 7, which is expected given the
analysis in Section 4.4. The components (—e—) and (—&—), related to the distur-
bances v,, and v,, are n-independent as these play no role in the MTF algorithm.
The component (—v—), related to internal aliasing errors within the MTF algo-
rithm, drops over n. However, this drop is at a slow rate, which is due to the
slow decrease of the constant v i.e., the slow convergence of the Riemann-zeta
function. This component dominates the total upper bound (- é-) due to several
approximation steps used in the proofs of Lemma 4.1 and Theorem 4.3. The com-
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puted mismatch (—+) is (almost) n-independent, evidencing that it is dominated
by the in- and the output disturbances v,, and v,.

The same conclusions for the components (——), (—e—), (—=—), and (—v—)
can be drawn for the measured mismatch, for which the results are presented in
Figure 4.3a. The additional components (—e—) and (—=—) account for the aliasing
errors caused by the disturbances v,, and v, while sampling of the system output.
These components are n-independent as expected from the analysis in Section 4.4.
From Figure 4.3a, it is clear that the bound (-é-) on the measured mismatch
is dominated by the component (—w—). The computed mismatch ( ) is n-
independent, implying that it is dominated by the in- and the output disturbances
vy and v, or the aliasing errors (——) due to the sampling of the system output.

Reduction of disturbances

As a first step, we attenuate the disturbances v,, and v,. The results are presented
in Figures 4.2b and 4.3b.

The results for the actual mismatch are depicted in Figure 4.2b. The compo-
nents (—) and (—v—) are not reduced with respect to the start situation, since
these are independent of the disturbances. The disturbance-related components
(—e—) and (—=—) are naturally reduced. The bound (- ¢-) on the actual mismatch
is still dominated by (—w—), which bounds the internal aliasing errors by the MTF
algorithm. The computed mismatch ( ) is significantly reduced and it is now
n-dependent, implying that it is either dominated by (——) or by (—+—).

Next, we turn to the measured mismatch, for which the results are depicted in
Figure 4.3b. The same conclusions as in the actual mismatch case can be drawn for
the components (—*—), (—e—), (—&—), and (——). The component (——) remains
unchanged with respect to the starting situation as it is independent of the distur-
bances. The disturbance-related components (—e—) and (—=—), accounting for the
aliasing errors due to the output sampling, are reduced thanks to their Lipschitz
constants also being reduced. The bound (- 9-) on the measured mismatch is still
dominated by (——), which bounds the aliasing errors due to output sampling.
The computed error (——) is also reduced, however, still n-independent, implying
that it is dominated by the in- and output disturbances v,, and v, or the aliasing
errors (——) due to the sampling of the system output.

Increase of low-pass filter order

Next, we increase the order o,, of the low-pass filter at the input side from 2 to 4.
Furthermore, we increase the order of o, of the low-pass filter at the output side
from 0 to 8.

Let us first focus on Figure 4.2c concerning the actual mismatch. These results
are independent of the increase of 0., as this parameter does not affect the actual
steady-state response of the system. In line with the analysis in Section 4.4, an
increase of o, results in the component (——) dropping with a larger rate over
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7. Furthermore, the component (—%—), related to aliasing errors within the MTF
algorithm, drops slightly thanks to the increase of o,,, also resulting in a slight
reduction of the bound (- é-). The computed error (—+—) also reduces, however,
not significantly, implying that aliasing errors within the MTF algorithm dominate
the error. Note that the disturbance-related components (—e—) and (—&—) remain
unaffected by a change of o, (or 0,), as expected from the analysis in Section 4.4.

Now we turn to Figure 4.3c concerning the measured mismatch. The same
conclusions as drawn in the actual case hold for the components (——), (—e—),
(—=—), and (—v—). The component (——), related to aliasing errors due to the
sampling of the system output, is reduced significantly as an increase of the low-
pass filter order o, results in more suppression of high-frequency contents prior to
sampling. The increase of o, also results in less aliasing errors due to the distur-
bances, i.e., the components (—e—) and (—=—). The total bound (- ¢- ), however,
is still dominated by (——). The computed mismatch (—) drops significantly
compared to the previous situation, especially for larger 1. In particular, it also
becomes n-dependent for small . However, for large n a constant value is reached,
evidencing that the error is dominated by aliasing errors (—&—) due to sampling
of the system output.

To decrease the actual mismatch even further, a larger 1 could be taken, result-
ing in a decrease of (—v—), which is in line with the asymptotic analysis in Section
4.4.2. A larger n results in the more accurate computation of model responses,
however, at the expense of computation time. To decrease the measured mismatch
further, a larger o,, should be taken to decrease (—&—), representing the aliasing
errors due to sampling of the system output. After that, the limiting component
will be (—+—), which can be further reduced by taking a larger 7.

The example shows that the bounds (4.12) and (4.14) are conservative, stem-
ming from the conservatism of the conditions in Theorem 4.1 and several worst-case
approximations in the derivations of the bounds. Nevertheless, the example also
illustrates that a reduction of the bounds (- ¢-) and its components generally also
reduces the mismatch ( ). This insight, together with the qualitative analysis
presented in Section 4.4, gives both a theoretical foundation and intuitive insights
for the quantification and reduction of these types of mismatches.

4.5.4 Linear mass-spring-damper system

In this example, the parameter ko of the nonlinearity is set to 0, such that the
considered system is LTI. The conditions of Theorem 4.1 are trivially satisfied and
K, = 0 is taken for the computation of the bounds in Theorems 4.3 and 4.4. We
present several studies that highlight the features of the derived bounds for LTI
systems. In all cases, we consider the steady-state response computed by the MTF
algorithm with M, = 2'° harmonics as the ‘true’ system response Z.

We consider the 7 studies that are included in Table 4.2. In all these studies,
the sampling frequency fs is fixed to 32 Hz and the MTF parameter 7 is fixed to
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Figure 4.3. Mismatch between the actual system response and computed model response. The bound (4.12) (-¢-) is
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depicted.
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1. The first three studies, i.e., A, B and C, consider a disturbance-free situation,
ie, Ay =A, =K, =K, =0, for which the bounds in Theorems 4.3 and 4.4
(for K, = 0) reduce to:

> _nM —nM M
HZ_ZU ||L2 S'Y;’w Hwo_wg ‘ L27 (4193’)
& = M
zZy — (Zygmr) ‘ L < ng(vzuvyw + Yaw) Koy - (4.19b)
2

The latter four studies, i.e., D, E, F and G, consider an input-free situation, i.e.,
wo(t) = 0,t € R. The bounds in Theorems 4.3 and 4.4 (for K, = 0) in the
input-free situation reduce to:

||§ _ gnMHLz < Vol + A, (4.20a)

iM - (ZUM)M‘ M S 'Y%;Aw + Az + 'Yj]«"\/[('}/zu')/yw + 'Yzw)Kvw + '}/ngvz- (420b)
2
Figure 4.4 presents the results of Studies A, B and C. The order o, of the
low-pass filter at the input side is increased from Study A to Study B. As a
consequence, the actual mismatch (——) is relatively large in Study A compared

to Studies B and C where o,, is increased. An increase in o,, results in a decrease

, which is the only component in (4.19a), thus yielding a smaller
2

actual mismatch. Going from Study B to C, only the order o, of the low-pass filter
at the output side is changed, which has no consequence for the actual mismatch.
The bound (—&—) for the actual mismatch shows the same trend and shows to be
slightly conservative.

The measured mismatch (—e—) and its bound (—«) also drop when increasing
oy from Study A to B. This is thanks to the constant K, becoming smaller in
(4.19b), resulting in fewer aliasing errors due to output sampling. Furthermore,
increasing the order o, of the low-pass filter at the output side from Study B to
Study C results in the measured mismatch (—e—) and its bound (——) becoming
significantly smaller. This is thanks to the suppression of frequency components
beyond the first M harmonic in the system output by the low-pass filter before
sampling the system output.

Studies D and E consider an input free situation, thus the order o,, is irrelevant.
These studies consider the same sine wave disturbance v,, and v, with a frequency
below the Nyquist frequency fiax = fs/2 = 16 Hz. Since only the order o,
changes from Study D to E, the actual mismatch (——) and its bound (—&8—)
remain unchanged because these are independent of 0,. In these studies, no aliasing
occurs during sampling of the system output, since the system output only contains
the same frequency as the disturbances below the Nyquist frequency. Therefore,
increasing the order o, does not have any effect on the measured mismatch (—e—).
However, its bound (——) in (4.20b) decreases, since the constant v in (4.8b)
becomes smaller for larger o,.

. nM
1 j|wo — Wy



Table 4.2. Studies A, ..., G, on the LTI system.

: Study A 7 Study B 7 Study C 7 Study D 7 Study E 7 Study F 7 Study G
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Mismatch
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Study A Study B Study C Study D Study E Study F Study G

Figure 4.4. Results of Studies A - G in Table 4.2. The actual mismatch represented
by (——) together with its upper bound (4.12) represented by (—8—). The measured
mismatch represented by (—e—) together with its upper bound (4.14) represented

by (——).

Studies F and G are analog to Studies D and E, except that the disturbances
now have a frequency above the Nyquist frequency. For the same reasons as before,
nothing changes in the actual mismatch (——) and its bound (—8—) when increas-
ing 0, from Study F to G. However, since now aliasing due to output sampling
occurs, it can be observed that the measured mismatch (—e—) is now reduced when
the order o, of the low-pass filter at the output side is increased. This is thanks
to the low-pass filter attenuating the frequency components of the system output
beyond the first M harmonics prior to sampling. Similarly, also the bound (—«)
in (4.20b) reduces since the constant v¥ in (4.8b) reduces by increasing o0,. The
Lipschitz constants K,,, and K, are increased for Studies F and G with respect to
Studies D and E due to the frequency of the disturbances being increased, causing
faster variations of the disturbance. Consequently, the bound (——) is larger in
Studies F and G compared to D and E and, therefore, is more conservative.

4.6 Conclusions

Model response computation is required for a variety of systems and control prob-
lems. However, the responses computed by numerical simulation algorithms are
typically different from the real-life system responses. This chapter has presented
for the class of convergent Lur’e-type systems bounds on the steady-state mismatch
between the simulated model response computed by means of the MTF simulation
algorithm and (i) the actual system response; and (ii) the sampled measured sys-
tem response. The bounds can be decomposed into several components, namely,
a component that upper bounds the effect of (i) missed higher harmonics of the
input signal in the MTF algorithm; (ii) aliasing errors within the MTF algorithm;
(iii) aliasing errors due to sampling of the system output; and (iv) a mismatch due
to in- and output disturbances being active on the system, but being unavailable
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for model simulation. Although conservative, the bounds derived in this chapter
provide essential insights that can be used to reduce the mismatch. In a numeri-
cal example, we show that reducing the derived bounds typically also results in a
reduced mismatch, making the reduction methods presented in this chapter prac-
tically valuable. The results in this chapter facilitate the decision-making process
regarding simulation parameters and hardware selection, thereby enabling accurate
computation of the model responses required for many engineering applications.
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Moment matching for linear and
nonlinear models






Time-domain moment matching
for multiple-input
multiple-output linear
time-invariant models

Model reduction by moment matching for linear time-invariant (LTI) models is a
reduction technique that has a clear interpretation in the Laplace domain. In par-
ticular, for the multiple-input multiple-output (MIMO) LTI case, Krylov subspace
methods aim at matching the transfer-function matriz (and possibly its derivatives)
of the reduced-order model to the transfer-function matriz of the full-order model
along so-called tangential directions at desired interpolation points. A straightfor-
ward application of time-domain moment matching to MIMO LTI models does
not result in such a match in the transfer-function matriz. In this chapter, we
derive a relation between the MIMO transfer-function matrices of the full- and
the reduced-order models that follows from the application of time-domain mo-
ment matching on MIMO LTI models. This is subsequently exploited to formulate
conditions on the parameters of time-domain moment matching under which the
transfer-function matrixz is matched along tangential directions, thus ensuring con-
sistency with classical Krylov subspace methods.

The contents of this chapter are published in: Shakib, M. F., Scarciotti, G., Pogromsky, A.
Y., Pavlov, A., & van de Wouw, N. Time-domain moment matching for multiple-input multiple-
output linear time-invariant models. Provisionally accepted for publication in Automatica.
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5.1 Introduction

Moment matching (MM) is a powerful and computationally efficient method to
construct reduced-order dynamical models for large-scale systems. Originally, MM
techniques were based on Krylov subspaces, which allow for efficient computation
of reduced-order models [10, 11, 100]. These methods have the property that in the
single-input single-output (SISO) case, the transfer functions of the full- and of the
reduced-order model are matched at desired interpolation points in the complex
plane. In the multiple-input multiple-output (MIMO) case, the transfer-function
matrices are matched along so-called left and/or right tangential directions at
desired interpolation points in the complex plane [20, 92, 100].

In [91], the notion of moments was connected to the solution of the so-called
Sylvester equation, which gave rise to a novel MM method in a time-domain frame-
work [16, 17]. The advantages of time-domain moment matching are twofold,
namely: it facilitates parametric freedom, which can be conveniently exploited
to enforce properties such as stability and passivity on the reduced-order model
[16]; and it has a natural extension to model order reduction for nonlinear models
[16, 225, 248).

For SISO models, this time-domain framework preserves the property of the
classical Krylov methods [10, 11, 100] that the transfer functions of the full- and
of the reduced-order model are matched at desired interpolation points in the
complex plane [16, 17]. For MIMO models, classical Krylov subspace methods
ensure that the transfer-function matrices are matched along the so-called left
and/or right tangential directions at desired interpolation points in the complex
plane [20, 92, 100]. However, the time-domain MM framework does not generally
preserve this property in the MIMO case.

In this chapter, we derive explicitly a matching property in terms of the MIMO
transfer-function matrices of the full- and the reduced-order model for time-domain
MM. Subsequently, the derived matching property is exploited to formulate ad-
ditional conditions on the parameters of time-domain MM under which a match
along the tangential directions of the transfer-function matrices is indeed ensured.
Finally, a numerical example is provided that illustrates the obtained matching
property. The results in this chapter can be used to connect time-domain MM for
MIMO models to MM based on Krylov subspace methods by specific parameter
selection for time-domain MM.

To summarize, the main contributions of this chapter are as follows.

e We derive a relation between the MIMO transfer-function matrices of the
full- and the reduced-order models that follows from the application of time-
domain MM on MIMO LTI models.

e We show under which conditions time-domain MM ensures a match of the
MIMO transfer-function matrices along the tangential directions, consistent
with classical Krylov subspace methods.
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The remainder of this chapter is outlined as follows. In Section 2, we present
the main results of this chapter, namely a matching property of time-domain
MM together with additional conditions to ensure a match that is consistent with
classical Krylov subspace methods. Section 3 applies the derived results to a
numerical example. Section 4 closes with concluding remarks.

Notation: The set of real numbers is denoted by R and the set of complex
numbers is denoted by C. The empty set is denoted by §). The complex conjugate
of a complex number s € C is denoted by §. The n x n identity matrix is denoted
by I, the n X n zero matrix is denoted by 0,, and the n X m zero matrix is
denoted by 0,,x.m. The eigenvalues of the matrix A € C"*™ are denoted by o(A).
The transpose (not conjugate transpose) of A € C"*" is denoted by AT. The
imaginary unit v/—1 is denoted by j.

5.2 Moment matching for MIMO models

The moment matching problem for MIMO LTT models is defined in Section 5.2.1, in
which moments are defined through the transfer-function matrix of the LTT model.
After that, Section 5.2.2 characterizes moments in the time-domain framework.
Subsequently, consistent with methods for SISO models, a family of MIMO LTI
models is constructed that achieves a generalized matching property. Section 5.2.4
proposes specific selections of time-domain MM parameters to ensure a match that
is consistent with classical Krylov methods. Finally, Section 5.2.5 presents families
of models that achieve zeroth-order moment matching. For brevity, we focus on
moments along the right tangential directions and omit the dual of moments along
the left tangential directions. The results of this chapter can be readily extended
to the case of matching moments along the left tangential directions as well.

5.2.1 The MIMO moment matching problem
Consider the MIMO LTI model

¥: &=Azx+ Bu, y=~Cuz, (5.1)

where z(t) € R™,u(t) € R™,y(t) € RP, A € R"*" B € R"™ and C € RP*"™. The
SISO case is retrieved for m = p = 1. The transfer-function matrix of this model
is

K(s)=C(sI — A)"'B, K:C—CP*™, (5.2)

Throughout the rest of this chapter, we assume minimality of model (5.1). The
moments of model (5.1) are defined according to [179, Definition 1], which is a
MIMO extension of [16, Definition 1.
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Definition 5.1. The k-moment of (5.1) at s € C\ o(A), along tangential direction

{ e C™ gs: o
s (s,0) = (7]61!) d (ﬁés)ﬁ e CP?, k>0, integer. (5.3)
|

Now consider the MIMO LTI model
S: £=F¢+Gu, = HE, (5.4)

where £(t) € R, u(t) € R™,¢(t) e RP, F € R”*¥ G € R"*™ and H € RP*¥. The
relation between models (5.4) and (5.1) is defined as follows.

Definition 5.2. Consider the interpolation point s € C\ o(A), the tangential direc-
tion £ € C™, and an integer k > 0. Model (5.4) is called a model of (5.1) at (s,¥)
if it achieves moment matching according to

n?(s,ﬁ) :ng(s,ﬁ), k=0,... k. (5.5)

In addition, if v < n, then model (5.4) is called a reduced-order model of (5.1) at
(s,0). [ |

Such matching is analog to tangential Hermite interpolation [10] and is consistent
with, e.g., [101].
The problem addressed in this chapter is to find a parametrization for F, G,

and H, such that » in (5.4) is a (reduced-order) model of (5.1), according to
Definition 5.2. This problem includes the case in which v > n.

5.2.2 Time-domain characterization of moments

The definition of moments in Definition 5.1 relies on the transfer-function ma-
trix. Alternatively, in time-domain moment matching, moments are characterized
through the solution IT € C™"*¥ of a Sylvester equation, namely

ATl + BL =I5, (5.6)

where the matrix L. € C™*¥ contains information about the tangential directions
and the matrix S € C”*¥ contains information about the interpolation points. The
matrices S and L play a central role in time-domain moment matching and are
further specified in the remainder of this chapter. Note that under the condition
a(S) Na(A) =0, the solution IT € C"*” is unique, see [59].

We distinguish between two cases. The first case deals with repeated sin-
gle complex interpolation points, being the eigenvalues of the matrix S in the
complex-valued Jordan form. This results in a reduced-order model that consists
of complex-valued model matrices. The second case deals with a repeated pair of
complex conjugated interpolation points, being the eigenvalues of the matrix .S in
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the real-valued Jordan form. This case is the most useful case since it results in
reduced-order models that are described by real-valued model matrices. Hereafter,
we call these cases the complex-valued Jordan case and the real-valued Jordan case,
respectively. In Remark 5.2, we explain how the general case without any Jordan
structure can be treated.

The results for the complex-valued Jordan case are summarized in the following
lemma. This lemma is an extension of Lemma 2 in [16] from the SISO case to the
MIMO case.

Lemma 5.1. Consider model (1) with m inputs and p outputs, the interpolation
point s* € C, the integer k > 0 and ly, ..., 0, € C™. Define v :=k + 1. Suppose
s* ¢ o(A). Then

no(s*,0o) "
no(s*, 1) " —m(s*,Lo) "
(cim’ = : (5.7)
Zf:_(}(—l)iﬁi(S*a Ch1-i) "
S (= 1)mi(s*, lei) T

where n;(s*,-),i =0,...,k, are defined in (5.3) and where IT € C™™" is the unique
solution of the Sylvester equation

ATl 4+ BL = T1®(s*) (5.8)
with
L= [lo,by,....0;) e C™”
s 1 0 0
0 s 1 0
§ (5.9)
(IDk(s*) — c Ccvxr,
0 0 s 1
0 0 s*
A
Proof. The proof can be found in Appendix D.1. O

The results for the real-valued Jordan case are summarized in the next lemma.

Lemma 5.2. Consider model (1) with m inputs and p outputs, the interpola-
tion point s* = a* 4+ jb* € C with a*,b* € R, b* # 0, the integer k > 0 and
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Loy ... lopy1 € R™. Define v:=2(k+1). Suppose s* ¢ o(A). Then,

(s*, 00 +jl1) ")

Im(no(s*, Lo + 3e) ")
S (—1)"Re(ni(s*, lo—2i + jls—2:) )
Y Im(ni(s*, ba—zi + jl3—2:) ") , (5.10)

Z;::o(—l)ljRe(m(S*, log—2i + jlak—2i41) ")
Soimo (1) Im(ni(s*, bap—2i + jlak—2i41) ")

where n;(s*,-),i =0,...,k, are defined in (5.3) and where IT € R™™" is the unique
solution of the Sylvester equation

ATl + BL = T, (s*) (5.11)
with
L= [0, 1, ... lopqr] € R™X
(2 I, - 0y 0
0, = I, --- 09
*\ . . . . . . VXV
\Ilk(s ) T : : . <. : eR ) (512)
02 -+ 02 = I
02 02 -+ 0y E*
== | V] e,
|—b" a
A
Proof. The proof can be found in Appendix D.2. O

Lemma 5.1 and Lemma 5.2 establish a connection between the elements of CTI
and the moments in Definition 5.1. Both lemmas carry the same information in
the corresponding variable II. However, in Lemma 5.2, this information is split
into a real and imaginary part, hence, yielding a twice as large number of columns
in IT € R™*2(k+1) compared to the complex-valued II € C***+1 in Lemma 5.1.

Remark 5.1. Despite L being a real-valued matrix in Lemma 5.2, (5.10) shows
that the tangential directions are generally complex-valued. VAN

5.2.3 Generalized family of reduced-order models

In the same fashion as in [16], this section exploits the connection between CTI
and the moments in Lemmas 5.1 and 5.2 to construct families of reduced-order
models. These models, however, achieve a generalized matching property, which
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is exploited in Section 5.2.4 to formulate families of models that achieve moment
matching in accordance with Definition 5.2. The result for the family of models
in the complex-valued Jordan case is summarized in the following theorem.

Theorem 5.1. Consider the model (5.1) with m inputs and p outputs, the integer
k >0, the constant v := k+1, the non-derogatory matrizt S € C**V with det(sI —
S) = (s — )" where s* € C is the interpolation point, and any matriz L €
C™*¥. Suppose s* ¢ o(A). Then, for any G € C**™ such that s* ¢ o(S — GL),
model (5.4) with F .= S — GL, H := CII, and with II € C™*" the unique solution
to the Sylvester equation

All + BL =115, (5.13)

achieves the following match:
i;: . i;: . -
DN R ) = D (=1 (% 4 y), (5.14)
i=0 i=0

for k=0,....k, and where {; € C™,i =0,...k, are the columns of the matriz LT
with any T € C¥*V that is obtained via the Jordan decomposition S = T®y,(s*)T~*
with @ (s*) € C¥*¥ as given in (5.9). A

Proof. Consider the class of models (5.4). Given that s* ¢ o(F), the Sylvester
equation F'P + GL = PS has a unique solution P € C¥*”. Selecting P = I,
results in ' = S — GL for any G € C"*™ such that o(S — GL) N o(S) = 0.
Moreover, selecting H = CTI results in the matching HP = CTI. It is only left
to show that the elements in CTI are described by (5.14). Hereto, notice that the
matrix S € CY*¥ contains v repeated eigenvalues at s* and is non-derogatory,
which guarantees that there exists a (non-unique) non-singular matrix 7' € C**¥
that brings 7-'ST into the Jordan form as in (5.9), see, e.g., [302]. Therefore,
application of Lemma 5.1 with ®;(s*) = T~1ST and L = LT, gives the relation
between the moments (5.14) and the matrix CII with IT € C"*¥ the unique solution
to the Sylvester equation (5.8). The solution IT € C"*¥ of the Sylvester equation
in (5.13) is related to IT by II = IIT'. Since T is invertible, matching the elements
of the matrix CTI by the reduced-order model (5.4) guarantees that the linear
combination of moments in (5.14) are matched, which completes the proof. O

Similarly to Theorem 5.1, we can construct a family of models for the real-
valued Jordan case, which is presented in the following theorem.

Theorem 5.2. Consider the model (5.1) with m inputs and p outputs, the integer
k > 0, the constant v = 2(k + 1), the non-derogatory matriz S € R¥*" with
det(sI — S) = ((s — s*)(s — )", where s* € C\ R is the interpolation point,
and any matriz L € R™*¥. Suppose s* ¢ o(A). Then, for any G € R"*™ such

LA matrix is non-derogatory if its characteristic and minimal polynomials coincide.
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that s* ¢ o(S —GL), model (5.4) with F := S—GL,H = CII, and with I € R™*"
the unique solution to the Sylvester equation

ATl + BL =TIS, (5.15)

achieves the following match:

(*1)i7712(5*’ lojgi T jéQic—mH)’
(5.16)

(*1)1.777:2(5*75212722' +jgzk—mﬂ) =

(*1)1‘771’2(5*’6212722' - j€21}72i+1) = (*1)1-7712(5*’621}721' - ‘7[21272”1)’

M 14~
o

Il
o

M 1~
o

I
o

2 (2

for k = 0,....k, and where {; € R™ i = 0,...2k + 1, are the columns of the
matriz LT with any T € RY*Y that is obtained via the Jordan decomposition
S =TW(s*)T~ with Uy,(s*) € RV as given in (5.12). A

Proof. The proof is analog to the proof of Theorem 5.1 up to the statement that the
linear combination of moments at the complex conjugate §* of s* is also matched
along the complex conjugate of the tangential direction. This fact is guaranteed
by the following property for real rational transfer functions:

nk(s*,€) = (57, 0),
for s* € C and ¢ € C™. The rest of the proof is omitted for brevity. O

The matrix S being non-derogatory in Theorems 5.1 and 5.2 is required to
ensure the existence of a similarity transformation that brings S into the complex-
Jordan form in (5.9) or the real-Jordan form in (5.12). The results of Theorems 5.1
and 5.2 are used in Section 5.2.4 to facilitate choices for the pair (S, L) such that
application of Theorem 5.1 and 5.2 results in (5.4) being a (reduced-order) model of
(5.1), consistent with Definition 5.2. Furthermore, in Section 5.2.5, these theorems
are exploited to formulate families of models that achieve zeroth-order moment
matching.

Remark 5.2. Lemmas 5.1 and 5.2 can be used as building blocks when multiple
distinct interpolation points are considered. Any matrix S € CY*" can be trans-
formed into a block-diagonal matrix by a similarity transformation, where the
block-diagonal terms are either in the complex-valued Jordan form as in (5.9), or
in the real-valued Jordan form as in (5.12). Consequently, the matching prop-
erty can be retrieved for each block-diagonal term by application of the results of
Lemma 5.1 and 5.2. VAN

Remark 5.3. It is emphasized that the tangential directions in Theorems 5.1
and 5.2 are the columns of the matrix LT rather than the columns of the ma-
trix L. Thus, selecting a matrix S that is not in Jordan form also results in a
coordinate transformation in the tangential directions. VAN
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5.2.4 Family of models achieving higher-order moment matching

Theorems 5.1 and 5.2 characterize a matching property for time-domain MM for
MIMO models in terms of the transfer-function matrices of the full- and of the
reduced-order models. However, since there is a summation over moments in
(5.14) and (5.16), in general, models found by application of these theorems do
not achieve moment matching in accordance with Definition 5.2. In this section, we
exploit the results in Theorems 5.1 and 5.2 to arrive at a family of (reduced-order)
models that do achieve moment matching according to Definition 5.2. Hereto, we
present specific selections of the tangential directions g, . . . , £, while restricting S
to be either in the complex-valued Jordan form in Theorem 5.1 or in the real-valued
Jordan form in Theorem 5.2.

Let us first turn to the case in which the reduced-order model is obtained
via the result in Theorem 5.1. In that case, it can be shown that if S is in
complex-valued Jordan form, i.e., S = ®y(s*), either of the specific choices for
L= [60 l ... Ek] € CmxktL

C1 [1:&):"':€k€Rm;
C2 =0y eR™and ¥; =0,,x1 fori=1,...,k,

ensures the following match:
77%(3*,6) :ng(s*,ﬁ), for k=0,... k. (5.17)

Consequently, model (5.4) is a (reduced-order) model of (5.1) at (s*,¢). The
transfer-function matrices of the full- and of the reduced-order models and their
first k derivatives match along the direction ¢ € C™ at the interpolation point s*.
If the matrix S is not in Jordan form, then after a similarity transformation (with
matrix T, see Theorem 5.1), the columns of the matrix LT should satisfy C1 or
C2 for (5.4) to be a model of (5.1) in accordance with Definition 5.2.

Next, we treat the case where the reduced-order model is obtained via the
result in Theorem 5.2 and S in real-valued Jordan form, i.e., S = ¥(s*). In that

case, it can be shown that either of the specific choices L = [ﬂo /... Eng] €
Rme(k—i—l):
Rl (:=0y="-- :€2k+1 e R™;

R2 /=40y e R™and ¢; = 0,,x1 fore=1,...,2k+ 1;
R3 /=01 e R™ and £y = l; = 0,51 for i = 2,...,2k + 1;

ensures that the transfer-function matrices of the full- and of the reduced-order
model match as follows:

(s*,0), (5.18a)
(s%,0), (5.18b)
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for k =0,...,k. Consequently, model (5.4) is a (reduced-order) model of (5.1) at
(s*,¢) and (5*,£). If the matrix S is not in Jordan form, then after a similarity
transformation (with matrix 7', see Theorem 5.2), the columns of the matrix LT
should satisfy R1, R2, or R3, for (5.4) to be a model of (5.1) in accordance with
Definition 5.2.

The selections of ¢;’s given above for the complex- and real-valued Jordan
cases ensure that the families of models in Theorems 5.1 and 5.2 achieve moment
matching as classically intended, i.e., in the sense of Definition 5.2. However, note
that Theorem 5.2 can also be used to provide generalized matching conditions with
a complex tangential direction. For instance, in the case

R4 (; = {, for i even and £; = ¢; for j odd, i,j < 2k + 1, i.e.,
L [50 l ... Ly gl] € Rmx2(k+1)

the following match is obtained for £ := £y + j¢1:

(s*,0), (5.19a)
(5*,0), (5.19b)

for k = 0,...,k. Model (5.4) is then a (reduced-order) model of (5.1) at (s*,¢)

and (§*,¢) in accordance with Definition 5.2. The tangential direction ¢ € C™, in
this case, is generally complex-valued.

Remark 5.4. Time-domain moment matching for MIMO models was also pursued
informally in [119, 121, 179, 224]. In those works, however, the statements for
the MIMO case were ambiguously formulated without proof and only for a special
case. A

5.2.5 Family of models that achieve zeroth-order moment matching

Finally, in this section, we present a family of models that achieves moment match-
ing for zero moments at multiple interpolation points. This family is described by
real-valued matrices, which is the most practical case, and may be viewed as a
MIMO counterpart of the results of [16].

Theorem 5.3. Consider model (5.1) with m inputs and p outputs, the non-derogatory

matriz S € RY*Y with all distinct eigenvalues, and any matrixz L € R™*Y. Suppose
o(A)No(S) =0 and write the eigenvalues o(S) of the matriz S as follows:

o(S) ={s1,51,. .., 50,5, Sp1, Sr42, .-+, 8¢} (5.20)

consisting of r pairs of complex conjugated eigenvalues and ¢ = v — 2r real eigen-
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values. Furthermore, consider any non-singular matriz T € RY*Y such that

[Wo(s1) - 0a 01 co Ogn ]
G - 02 <o Wo(s,) Oax1 s Oy
§=T7'8T = 5.21
O1x2 O1x2 (I)O(Sr+1) 0 ( )
| Oix2 -+ O1xe 0 s B(sy)]

with ®g(-) and Vo(-) defined in Lemmas 5.1 and 5.2, respectively, Then, for any
G € R"*™ such that o(S)No(S—GL) = 0, model (5.4) with F := S—GL,H = CII,
and with TI € R™*" the unique solution of the Sylvester equation

All + BL =115, (5.22)
achieves matching according to
0y (k. Lok—r + Glar) = 1y (51 Ca—1 + jlat), (5.23a)
03 (8es L1 — Glor) = 15 (8s Lon—1 — jlar), (5.23b)
for k=1,...,r, and achieves zeroth-order moment matching according to
0 (St Cart) = 10 (Srris Lar ) (5.24)
fork=1,...,q, where {1,...,£, € R™, are the columns of the matriz LT, i.e.,
LT =[t -+ 4]. (5.25)
A

Proof. Notice the block-diagonal structure of the matrix S in (5.21). Then, by
the results of Theorems 5.1 and 5.2 for zeroth moments, applied to each block-
diagonal element of S and corresponding columns of the matrix LT, the matching
properties (5.23) and (5.25) are guaranteed. O

Application of Theorem 5.3 results in model (5.4) being a (reduced-order)
model of (5.1) at ¢(S5), in accordance with Definition 5.1, along the tangential
directions as given in the theorem. Notice again that the tangential directions are
the columns of the matrix LT rather than L, see also Remark 5.3. Analogue to
Theorem 5.3, a theorem for complex-valued matrices (S, L) can be formulated.

5.3 Illustrative example

Consider the following 4-th order model with two inputs and one output:

= [1’ (8+5)] 1x2
K= (s+1)(s+2)(s+3)(s+4) eC (5.26)
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with s € C. Denote the transfer function from input 1 to the output by K (s) and
the transfer function from input 2 to the output by Ks(s). We pick the following
matrix S with interpolation points o(S) = £j and matrix L:

0 1
S = {_1 O} and L =1Is. (5.27)

For this choice of (S, L), the matching property according to R4 in Section 5.2.4
applies with

0= H , (5.28)

and it can be verified that CII is as follows:
Cll = [Re(K(j)) Im(K(j)] =[5 31]- (5.29)

with K(s) = K(s)¢ = K1(s) + jK2(s). The relation (5.29) holds for any minimal
realization of (5.26).

The family of reduced-order models with state dimension v = 2, parametrized
by G is described by (5.4) with FF = S — GL and H = CII. Here, S and L are
given in (5.27) and CTI is given in (5.29). For simplicity, we select G = I, which
yields

-1 1
F=S8-GL= [1 J : (5.30)
and satisfies o(F) N o (S) = . The transfer function of the reduced-order model
is then as follows:

K(s) = CIl(sl, — F)"'I,
. on s+1 1 (5.31)
T(sH+1)241 | -1 s+

Using the results in Section 5.2.4, it is expected that the matching property
(5.19) is satisfied for k = 0, which reads as follows:

()¢ (5.32a)

K(j)¢ ,
K(—j)e. (5.32b)

K(=j)t

It can indeed be verified that both sides of (5.32a) are equal to —340 + 1705 and
both sides of (5.32b) are equal to —340 — 1705, which shows that the equalities
(5.32a) and (5.32b) hold. The Bode magnitude plots of K (jw)¢ and K (jw)¢ in
Figure 5.1c evidently show that there is a match at w = 1 rad/sec. Thus the
reduced-order model achieves a generalized matching condition (corresponding to
(5.19)) with a complex-valued tangential direction and is a model of (5.1) at (4, ¢)
and (—j, f) according to Definition 5.2.

I
> N)
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5.4 Conclusions

This chapter has pointed out that time-domain moment matching applied to
MIMO LTT models does not always achieve a match in moments that is consistent
with classical moment matching techniques based on Krylov subspaces. To achieve
a match that is consistent with classical Krylov subspace methods, the parameters
for time-domain moment matching should be carefully chosen. In particular, the
matrix characterizing the tangential directions should be chosen with a specific
structure. Furthermore, the matrix characterizing the interpolation points should
be chosen either in Jordan form or the tangential directions should be corrected
by means of a coordinate transformation. The results of this chapter facilitate
parameter selection for time-domain moment matching such that the match in the
transfer-function matrix is consistent with the match that is achieved by classical
Krylov subspace methods.



Model reduction by moment
matching with preservation of
global stability for a class of
nonlinear models

Model reduction by time-domain moment matching extends naturally to nonlinear
models, where the notion of moments has a local nature stemming from the center
manifold theorem. In this chapter, the notion of moments of nonlinear models is
extended to the global case and is, subsequently, utilized for model order reduction
of convergent Lur’e-type monlinear models. This model order reduction approach
preserves the Lur’e-type model structure, inherits the frequency-response function
interpretation of moment matching, preserves the convergence property, and al-
lows deriving an a posteriori error bound. By the grace of the preservation of the
convergence property, the reduced-order Lur’e-type model can be reliably used for
generalized excitation signals without showing instability issues. In a case study,
the reduced-order model accurately matches the moment of the full-order Lur’e-
type model and accurately describes the steady-state model response under input
vartations.

The contents of this chapter are published in: Shakib, M. F., Scarciotti, G., Pogromsky, A.
Y., Pavlov, A., & van de Wouw, N. Model reduction by moment matching with preservation of
global stability for a class of nonlinear models. Submitted for journal publication. Preliminary
results have been presented in: Shakib, M. F., Scarciotti, G., Pogromsky, A.Y., Pavlov, A., &
van de Wouw, N. (2021, May). Model reduction by moment matching for convergent Lur’e-type
models. In Proceedings of the American Control Conference, (pp. 4449-4454).
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6.1 Introduction

High-fidelity dynamical models of systems are essential in many engineering ap-
plications for analysis, prediction, and control design. Such models are typically
described by a large number of coupled first-order differential equations. Model
simulation of such large dimensional models is computationally expensive and,
sometimes, even infeasible due to limited computational and data storage capa-
bilities. To reduce the computational cost and make model simulation feasible,
the full-order model is replaced by a reduced-order model which preserves some
key properties of the full-order model, e.g., stability properties. Techniques to find
a reduced-order model from a full-order model are called model order reduction
techniques.

For the class of linear time-invariant (LTI) models, several reduction methods
such as balanced truncation [174], Hankel-norm approximations [98] and the in-
terpolation approach [91] have been proposed in the literature. However, most
systems are essentially nonlinear and their models are, consequently, nonlinear
too. The moment matching approach, categorized in the class of the interpola-
tion approaches, has a natural extension to nonlinear models. Moments of LTI
models are defined as the coeflicients of the Laurent series expansion of the trans-
fer function at a complex interpolation point, see [10], and the reduction method
aims at matching the moments of the reduced-order model to those of the full-order
model. In [17], a time-domain interpretation of moment matching is given, exploit-
ing the connection between the solution of the so-called Sylvester equation and the
transfer-function definition of moments [91]. This time-domain interpretation has
naturally led to the definition of moments for nonlinear models consistent with
the definition of moments for LTI models and to reduced-order nonlinear models
that achieve moment matching [16, 225, 226]. In these works, the definition of
moments for nonlinear models makes use of the center manifold theorem and is,
therefore, only defined locally in the neighborhood of the origin. Consequently,
the formulated reduced-order model is by definition only an approximation of the
full-order model for the same specific input generated by the signal generator and
only in the neighborhood of the origin. In general, an estimate for the size of the
neighborhood of the origin is lacking, an error bound is lacking and, by the same
token, the reduction methods do not preserve the model structure of the full-order
model.

In this chapter, the time-domain moment matching approach in [16, 225, 226]
is extended to the global case for the class of convergent Lur’e-type nonlinear
models. Lur’e-type models, see Figure 6.1, consist of LTI dynamics placed in
feedback with a static nonlinearity and arise naturally in problems with localized
nonlinearities [135], making them practically relevant. Convergent models exhibit
for any bounded input, a bounded and globally asymptotically stable steady-state
solution, implying that initial conditions fade out. Furthermore, these models
have a finite incremental gain, implying that a small perturbation of the input
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Figure 6.1. Full-order (left) and reduced-order (right) Lur’e-type model. Only the
dimension of the LTT block is reduced.

results in a small perturbation of the output. In this chapter, the notion of a
moment of a generic nonlinear model is extended from the local context, as in
[16, 225, 226], to the global context by replacing the center manifold theorem with
a global invariant manifold theorem, assuring the existence of a globally invariant
manifold given that the model is convergent as detailed in this chapter.

The reduction method for Lur’e-type models only reduces the state dimension
of the LTT block and inherits the static nonlinearity of the full-order model. Con-
sequently, the reduction method preserves the Lur’e-type model structure of the
full-order Lur’e-type model. On the one hand, such structure preservation also
preserves the physical interpretation of the Lur’e-type model. On the other hand,
for the class of Lur’e-type models, a rich array of analysis and controller design
tools are available in the literature, see, e.g., [135], which are then compatible
with the reduced-order model too. To achieve moment matching and to preserve
the Lur’e-type model structure including the static nonlinearity, the frequency re-
sponse functions (FRFs) of the LTI dynamics should match at an infinite number
of interpolation points, which is generally not possible if the model order is re-
duced. Therefore, the proposed reduction methodology only matches the FRF
at a finite number of interpolation points, thereby approximating the moments of
the full-order model by the moments of the reduced-order model. The proposed
reduction method enjoys several benefits besides (Lur’e-type) structure preserva-
tion: namely, it preserves the convergence property (which implies preservation of
global, as opposed to local, stability properties), it inherits the FRF interpretation
of moment matching, and it provides a computable a posteriori error bound. The
error bound bounds the Ly-norm of the difference between the moment of the full-
order and reduced-order model and also generalizes to the steady-state mismatch
between the response of the full-order Lur’e-type model and the response of the
reduced-order Lur’e-type model for generalized inputs. Such error bound is im-
portant given the fact that moment matching is only achieved in the approximate
sense defined in Section 6.2.

To summarize, the main contributions of this chapter are (i) the extension of
the notion of moments to the global case for a generic class of convergent nonlin-
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ear models; and (ii) a constructive model order reduction approach for convergent
Lur’e-type models that preserves the convergence property in addition to preserv-
ing the Lur’e-type model structure. Furthermore, this reduction approach has
an FRF interpretation and is equipped with a corresponding error bound. The
methods developed in this chapter are quantitatively analyzed in a case study on
a flexible beam.

Related work includes methods [38, 280] that require solely input, output,
and state data generated by the full-order model to construct a reduced-order
model that is incrementally stable. The resulting reduced-order model is limited
to certain classes of nonlinear models, including polynomial state-space models,
thereby does not generally preserve the model structure of the full-order model
and lacks an error bound. The methods in [31, 32] consider nonlinear models
that can be decomposed into a feedback interconnection of an LTI subsystem
with a (dynamic) nonlinear subsystem. These methods reduce only the state
dimension of the LTI subsystem and formulate conditions under which the reduced-
order nonlinear model preserves the same stability properties of the full-order
model. Furthermore, these methods provide an a priori error bound if the reduction
technique used for reducing the LTI subsystem provides one. The work in [33] relies
on the so-called incremental balancing method and also preserves stability.

The remainder of this chapter is structured as follows. The end of Section 1
introduces the notation used throughout the rest of this chapter. Section 2 extends
the notion of moments to the global case for generic convergent nonlinear models
and formally introduces the model order reduction problem for convergent Lur’e-
type models. Section 3 proposes an approach to the model order reduction of Lur’e-
type models. Section 4 describes the results of a case study that illustrates the
application and benefits of the proposed model-order reduction approach. Section
5 gives the concluding remarks.

Notation and preliminaries Throughout this chapter, the following notation
is used. By Z,Z>0,R,R>q,C, C° C~ we respectively denote the set of integers,
non-negative integers, real numbers, non-negative real numbers, complex numbers,
complex numbers with zero real part and complex numbers with a negative real
part. For a vector z € R", we denote the Euclidean norm by |z| :== V& Tz. The
set of eigenvalues of a matrix A € R"*" is denoted by o(A) and the matrix A is
positive (negative) definite, denoted by A = 0(A < 0), if all its eigenvalues are
positive (negative). A continuous function « : [0,a) — [0, +00) is said to belong
to the class K if it is strictly increasing and «(0) = 0. It is said to belong to
the class Ko if @ = 400 and «a(r) — +oo as r — +00. A continuous function
B :[0,a) x [0,400) — [0,400) is said to belong to the class KL if, for each fixed
s, the mapping B(r, s) belongs to class K with respect to r and, for each fixed r,
the mapping SB(r, s) is decreasing with respect to s and 8(r,s) — 0 as s — co. By
Lo(T) we denote the space of continuous real-valued T-periodic scalar functions

y(t) satisfying |[|y||,, < +o0, where Hy||i2 = fOT ly(t)|?dt is the Lo-norm.
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6.2 Problem statement

Moments of nonlinear models are defined in the literature based on the existence
of a solution to a partial differential equation (PDE) which characterizes a center
manifold that is only defined locally. Section 6.2.1 introduces a global invariant
manifold theorem that replaces the center manifold theorem allowing for defining
moments in a global context for the generic class of convergent nonlinear models.
Section 6.2.2 presents tractable conditions for Lur’e-type models under which mo-
ments are well-defined. Section 6.2.3 motivates that ezact moment matching can
generally not be achieved, leading to the introduction of the approzimate moment
matching problem.

6.2.1 Moments of generic nonlinear models

Consider a single-input, single-output (SISO), continuous-time minimal nonlinear
model described by the equations

&= f(z,u), y=nh(z) (6.1)

with x(t) € R™,u(t) € R,y(¢t) € R, the mapping f locally Lipschitz in a and
continuous in u and the mapping h locally Lipschitz in x. Furthermore, consider
a signal generator described by the equations

7=s(1), u=I(1) (6.2)

with 7(¢) € R”, the mappings s and [ locally Lipschitz in 7. We assume that the
solutions of (6.2) exist on the whole time axis R, which is the case, e.g., if s is
globally Lipschitz in 7. Moreover, consider the interconnected model

T=s(r), = f(x,l(7)), y=h(x). (6.3)
Prior to defining the moments, we define the notion of observability.

Definition 6.1 ([226]). The signal generator (6.2), characterized by the pair (s, 1),
is observable if for any pair of initial conditions 7,(0) € R¥ and 7,(0) € RY, such
that 7,(0) # 1(0), the corresponding output trajectories 1(74(t)) and l(1p(t)) are
such that 1(,(t)) — l(1p(t)) # 0. |

Definition 6.2. Consider the interconnected model (6.3) and suppose that the pair
(s,1) is observable according to Definition 6.1. Suppose that there exists a unique
function m: R” — R™ : 7 — w(7) such that the graph

M ={(r,z):z =n(r), T € R’} (6.4)

is invariant with respect to the interconnected model (6.3). Then, the function how
is called the moment of the model (6.1) at (s,1). [ |
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The definition of moments in Definition 6.2 is consistent with its counterpart for
LTT models [226], though different from [16, 225, 226], see Remark 6.1. Different
types of sufficient conditions are formulated in the literature for the function 7
to exist and be unique, see, e.g., [122, 135]. In the scope of this work, we pose
two assumptions that guarantee the existence and uniqueness of the function 7 in
Definition 6.2.

Assumption 6.1. For any a > 0, there exists a b > 0 such that the initial condition
|7(0)| < a implies that the state evolution T(t) € R” of the signal generator (6.2)
satisfies |T(t)| < b for allt € (—o0,0). Furthermore, the signal generator (6.2) is
observable according to Definition 6.1. |

Next, we pose an assumption on the stability properties of the nonlinear model
(6.1). Hereto, define U as the set of piecewise continuous functions u(¢) € R that
are defined and bounded on t € R.

Definition 6.3 ([200]). The model (6.1) is said to be globally (uniformly, exponen-
tially) convergent if for every input u € U, there exists a solution T, to (6.1)
satisfying the following conditions:

e T, is defined and bounded on t € R,
e T, is globally (uniformly asymptotically, exponentially) stable.

The solution Z,, is called the steady-state solution. The notion of input-to-state
convergence is an even stronger stability property and is defined as follows.

Definition 6.4 ([200]). Model (6.1) is said to be input-to-state convergent if it is
globally uniformly convergent for the class of inputs U and for every input u €
U, model (6.1) is input-to-state stable with respect to the steady-state solution
Ty(t), i.e., there exist a KL-function B(r,s) and a Ko-function ~v(r) such that
any solution x(t) of model (6.1) corresponding to some input 4(t) = u(t) + Au(t)
satisfies

2(t) — zu(t)] < B(|z(to) — z(to)|,t — o) + ( sup |Au(t)|> ;. (6.5)

to<7t<t
for all t,;tg € R, t > to. The functions B(r,s) and ~(r) may depend on the
particular input u. |

Convergent models forget their initial condition and converge to the uniquely
defined steady-state solution Z,. In addition, as evidenced from (6.5), input-to-
state convergent models are robust against input variations. Indeed, (6.5) guaran-
tees that in steady state the difference |z(t) — Z,(t)| increases monotonically with
|Au(t)|, implying that a small |Au(t)| results in a small |z(t) — Z,, ().
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Assumption 6.2. The model (6.1) is input-to-state convergent according to Defini-
tion 0.4. ]

Assumptions 6.1 and 6.2 guarantee the existence of a globally asymptotically
stable invariant manifold. This invariant manifold is the counterpart of the center
manifold used in previous literature [16, 225, 226].

Lemma 6.1 ([200]). Under Assumptions 6.1 and 6.2, there exists a unique, contin-
uous function 7 as in Definition 6.2, such that the graph M in (6.4) is invariant
with respect to the interconnected model (6.3). Moreover, for every input u(t) € U,
the steady-state solution T, = 7(7(t)) is globally uniformly asymptotically stable.
Furthermore, if 7(7) is continuously differentiable, i.e., w(t) € C*, then =(7)
solves the partial differential equation

o ()
or

s(t) = f(n(7),l(7)), 7(t)eR". (6.6)
A

Lemma 6.1 guarantees that moment h o 7, see Definition 6.2, is well-defined
(also non-locally) for nonlinear models that enjoy the input-to-state convergence
property. Furthermore, since the graph M in (6.4) is described by the globally
asymptotically stable steady-state solution Z,,, it can be found by computer sim-
ulation of the dynamics of the interconnected dynamics (6.3). For example, the
graph M can be computed efficiently using the so-called MTF simulation algo-
rithm [196] for the class of Lur’e-type models. Remark 6.2 below comments on
finding reduced-order models that preserve the convergence property. The notion
of a moment of a nonlinear model in a global context is employed in the remainder
of this chapter to devise a numerically tractable reduction approach for the class
of convergent Lur’e-type models.

Remark 6.1. The notion of moments of nonlinear models has been introduced
in [16], see also [225, 226]. In these works, under certain assumptions, it was
guaranteed that 7(7) is C! in the neighborhood of the origin. Subsequently, the
definition of moments was based on the solution of the partial differential equation
(6.6). However, in this work, Assumptions 6.1 and 6.2 do not guarantee that 7(7)
is C!, but only guarantee that the invariant manifold described by the graph M
in (6.4) exists, is unique and continuous. Therefore, the notion of a moment as
in Definition 6.2, is solely based on M in (6.4), rather than the solution of the
PDE (6.6). A definition of moments based on a similar invariant set as in (6.4)
was introduced in [227] for linear differential inclusions. A

Remark 6.2. Combining the results in [226] with the insight that the convergence
property allows for the well-defined global definition of moments (as in Definition
6.2 of the current chapter), an extension towards a family of reduced-order models
can be formulated that achieves moment matching in the global context. To pre-
serve the convergence property, the reduced-order model should satisfy conditions
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for convergence, e.g., the so-called Demidovich’s condition resulting in input-to-
state convergence, see [200, Theorem 2.29]. A

6.2.2 Moments of convergent Lur’e-type models

Section 6.2.1 presents the definition of moments for generic nonlinear models ex-
pressed by (6.1). In general, it is a challenging task to verify whether a nonlinear
model of the form (6.1) enjoys the convergence property. However, for the class of
convergent Lur’e-type models, easy-to-check conditions are proposed in the litera-
ture, which we recall here to guarantee the existence and uniqueness of the graph
M in Definition 6.2.

Lur’e-type models consist of a static nonlinear block placed in feedback with
an LTT block, see Figure 6.1. The considered Lur’e-type models are described by
the following state-space equations:

& = Az + Biu+ Bayp(y),
¥: y =Chiz, (6.7)
z = Chx,

where x(t) € R" is the state, u(t) € R is the input, y(¢) € R is the input to the
nonlinear mapping ¢ : R — R, 2(¢) € R is the output and A € R"*" B, By €
R™*1 (C1,Cy € RY™™™ are model matrices. The associated FRFs are defined as
follows:

®(; 1) (jw) = Ci(jwl — A)" "By, for i,k € {1,2}. (6.8)

The following theorem presents conditions for the convergence of the Lur’e-type
model (6.7).

Theorem 6.1 ([200]). Consider the model (6.7). Suppose that for some constant
~v > 0, the nonlinear function ¢ satisfies the following incremental sector condition:

‘w(yz) —elyy) <7v, Vy,y2€R. (6.9)

Y2 — Y1

Denote A; = A —yByCy and At == A+ yByC,. If there exists a P = PT > 0
such that

- - + T
PAS +(A7)TP <0 and PAT + (A)TP <0 (6.10)

hold, then model (6.7) is globally exponentially convergent according to Definition
6.3 and input-to-state convergent according to Definition 6.4. A

From here onwards, we simply say that a model is convergent to imply that the
model is both exponentially convergent according to Definition 6.3 and input-to-
state convergent according to Definition 6.4. Since the dimension n of the full-order
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model is assumed large, it is not practical to solve the linear matrix inequalities
(LMIs) in Theorem 6.1 to verify whether the full-order model is convergent. Al-
ternatively, one can equivalently verify the following three conditions (see, e.g.,
[200]): 1) the incremental sector condition (6.9); 2) the matrix A being Hurwitz,
ie., 0(A) € C; and 3) satisfaction of the following inequality:

. . _ 1
sup |® (1 ) (jw)| = sup [C1(jwl — A) "' By| < —. (6.11)
w€eR weR v

This latter inequality can be verified graphically, e.g., using the Bode magnitude
plot of ®; ) (jw).

The reduction method to be presented in Section 6.3 inherits the FRF interpre-
tation of LTI moment matching thanks to only considering linear signal generators,
defined as follows:

T=51, u=0Lt (6.12)

with state 7(t) € R”, output u(t) € R and matrices S € R**¥, L € R1*”. The
following assumption ensures boundedness of trajectories and observability of the
states of the signal generator, which implies that Assumption 6.1 is satisfied.

Assumption 6.3. The matriz S of (6.12) has simple eigenvalues that are located
on the imaginary axis. In addition, the pair (S, L) is observable. |

Finally, the next assumption guarantees the convergence property for the full-
order Lur’e-type model (6.7) and implies Assumption 6.2.

Assumption 6.4. The model (6.7) satisfies the conditions of Theorem 6.1 for vy = ~*
for some v* > 0 and is, therefore, convergent. |

Since Assumptions 6.1 and 6.2 are implied by Assumptions 6.3 and 6.4, ap-
plication of Lemma 6.1 guarantees that the moment of the Lur’e-type model is
well-defined, i.e., it guarantees the existence of a globally exponentially stable in-
variant manifold described by Z,(t) = w(7(¢)) with 7 : RY — R" : 7 +— 7(7). The
moment of the full-order model (6.7) at (S, L) is denoted by Com with 7 as in Def-
inition 6.2. Moments of convergent Lur’e-type models can efficiently be computed
using the MTF algorithm [196]. In conclusion, a global definition of moments
of nonlinear models is presented and conditions under which these moments are
well-defined are given for the class of Lur’e-type models.

6.2.3 Approximate moment matching problem

Model order reduction of Lur’e-type models boils down to reducing the state di-
mension of the LTI block since all the dynamics are captured therein. Conse-
quently, the proposed reduction method preserves the Lur’e-type structure of the
full-order model and inherits the FRF interpretation that is characteristic to mo-
ment matching for LTT models. Solely reducing the dimension of the LTI block
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results inevitably in the moments of the full-order Lur’e-type model being approx-
imated rather than being exactly matched, which is further explained below.
Consider the class of models ¥, of order v:

£ = F&t+ Gru+ Gap(p),
Y p o= Hié, (6.13)
C = H2€7

where £(t) € R” is the state, u(t) € R is the input, p(t) € R is the input to
the same nonlinear mapping ¢ : R — R as in (6.7), ((¢) € R is the output and
F € R G1,Gy € RV Hy, Hy € R are model matrices. Note that ¥, in
(6.13) is of the same structure as ¥ in (6.7). The moment of this model at (S, L) is
denoted by Hop, where the function p plays the role of the function 7 in Definition
6.2. The FRF's associated with the LTT part of (6.13) read as:

Lip) (jw) = H;(jwl — F)"'Gy, for i,k € {1,2}. (6.14)

The main obstacle in achieving moment matching is that the steady-state out-
put z, of the full-order model, related to the moment via z,, = CoZ, = Com(7(1)),
contains typically an infinite number of frequency components. Since the signal u
is generated by the signal generator (6.12), its only content is at the frequencies
characterized by the interpolation points o(S). However, due to the nonlinear
feedback ¢, the signal ¢(7,) can have contents at an infinite number of frequen-
cies. Therefore, to match the steady-state output z, of the full-order model by the
steady-state output (, of the reduced-order model, a match should be achieved
between the FRFs of the LTI part of the full-order and the reduced-order models
at an infinite number of interpolation frequencies. Even though some methods
have been proposed to match moments at infinitely many interpolation points, see
[226], these cannot be trivially generalized to the current setting. Therefore, in
this work, only a finite number of interpolation frequencies are matched in each of
the FRFs in (6.8), resulting inevitably in a mismatch in the nonlinear moment.

Having a mismatch between the moment of the full-order and of the reduced-
order Lur’e-type model makes it important to derive an error bound for this mis-
match. In addition to preserving the convergence property, deriving such an error
bound is an important part of the approrimate moment matching problem.

Problem 6.1. Consider the full-order Lur’e-type model (6.7) with state dimension
n and the signal generator (6.12) with state T7(t) € RY characterized by (S, L) and
suppose v < n. Suppose Assumptions 6.3 and 6.4 hold for some v* > 0. Denote
the moment of the full-order Lur’e-type model (6.7) at (S, L) by Cam.

The approximate moment matching problem is to find matrices F, G1, Go, Hy, Hs,
which define the v-th order model (6.13) with moment Hap, such that this reduced-
order model satisfies the condition in Theorem 6.1, and to find a constant 0 < ¢ <
400 such that the mismatch between the moment of the full-order and reduced-
order Lur’e-type model is upper bounded as follows:

|Com(T) = Hap(7)l, <ellL7ll,- (6.15)
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A

The next section presents a reduction method that guarantees a small ¢, re-
sulting in a small mismatch between the moments.

Remark 6.3. Other methods, e.g., the method in [16], do achieve moment matching
rather than approximate moment matching, for example, by considering a Wiener
model, i.e., linear dynamics followed by a static nonlinear output map. However,
in those methods, the model structure is generally not preserved. Furthermore,
Lur’e-type models represent a broader class of systems than Wiener models do. A

6.3 Solution to the approximate moment matching prob-
lem

Section 6.2 presents the approximate moment matching problem in Problem 6.1.
This problem is replaced by a constrained optimization problem in Section 6.3.1.
Subsequently, a solution is proposed in Section 6.3.2, which also solves Problem 6.1
as presented in Section 6.3.3. An overview of the reduction method closes this
section.

6.3.1 Constrained optimization problem formulation

Frequency-domain insights are used to formulate a constrained optimization prob-
lem, which, on the one hand, allows finding a constant € to solve Problem 6.1 and,
on the other hand, aims at reducing € to improve the accuracy of the estimated
reduced-order model. Let us first further motivate moment matching at a finite
number of interpolation points by the following two properties.

Property 6.1 ([200]). Consider the model (6.7) and suppose Assumption 6.4 holds.
If the input u € Lo(T) is periodic with period T', then the corresponding steady-state
outputs z, and ¥, are also periodic with the same period T'. A

Property 6.2. Consider the model (6.7) and suppose Assumption 6.4 holds. If the
input u € Lo(T) has a finite Lipschitz constant 0 < £ < +oo with respect to time
t, ie., |u(t) —u(t + K)| < Llk|Vt, Kk € R, then the magnitude of the k-th Fourier
coefficient of the Fourier series of Z,, and g, converges to zero according to O(1/k)

for k #£0. A

Proof. The input u having a finite Lipschitz constant 0 < ¢ < 400 results in each of
the steady-state outputs z,, and g, of model (6.7) also admitting a finite Lipschitz
constant, possibly different from £. Functions that admit a finite Lipschitz constant
have a roll-off in the magnitude of the Fourier coefficients according to O(1/k) for
k # 0, see, e.g., [128, Theorem 4.6]. O
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IT(g27 1) 7T

f1 fo f3

Figure 6.2. The FRFs of the reduced-order and full-order model match at the
frequencies in the set Q0 = {fi, f2, f3}. The mismatch between the FRFs is
minimized at the frequencies in QM here taken on the red grid illustrated in the
figure.

Property 6.1 ensures that the signal ¢(g,) contains the same frequencies as u,
but also an infinite number of higher harmonic frequencies. Property 6.2 ensures
that the Fourier coefficients corresponding to large frequencies vanish in absolute
value, justifying matching only a finite number of frequencies in the corresponding
FRF's (note that by Assumption 6.3, the output of the linear harmonic oscillator
does admit to a finite Lipschitz constant as required in Property 6.2). Considering
these properties, for approximate moment matching, it is beneficial to match the
involved FRFs of the LTI block of the Lur’e-type model at the first few harmonics
and/or at frequencies corresponding to important model characteristics, such as
the 0-Hz frequency or the (anti-)resonance peaks. Hereto, we collect 7; x) user-
defined interpolation frequencies in the vector Q(()i,k) € R0 for each i, k € {1,2},
where indices 7, k refer to the transfer functions (6.8).

To achieve robustness against input variations, we also minimize the mismatch
in these FRFs at other frequencies, which has two additional benefits. Firstly,
it allows for reducing the mismatch at the harmonic frequencies that are not in-
cluded as interpolation frequencies in QOZ. k) resulting in a better approximation
of the moment of the Lur’e-type model. éécondly, it adds to the robustness of the
reduced-order Lur’e-type model for new inputs that excite different frequencies
than the interpolation frequencies. We collect M(; j) user-defined frequencies in
the vector Qé‘;{k) € RMiw for each 4,k € {1,2}, at which the mismatch in FRFs

is minimized. An illustration of the sets Q° and QM for a single FRF is presented
in Figure 6.2.

Before formally presenting the constrained optimization problem, we define the
mismatch in each FRF as follows:

T,k (Jw) = @iy (Jw) — Tipy(Jw), i, k € {1,2}, (6.16)

where ®(; 1)(jw) and T'¢; 1) (jw), i,k € {1,2}, are defined in (6.8) and (6.14), re-



6.3. Solution to the approximate moment matching problem 131

spectively. Furthermore, we define the cost function to be minimized:

2

)

2 2
J(F,G1,Ga, Hi, H) =Y > > | (amy (i n (6) (6.17)

where w(; 1) (¢) is the /-th component of Q?Lk) and Y(; 1) is defined in (6.16).

Problem 6.2. Consider the full-order Lur’e-type model (6.7) and suppose Assump-
tion 6.4 holds for some v* > 0. Furthermore, consider some given sets of frequen-
cies Q?i,k) € R"i,ﬂé\ﬁk) € RMa.m fori,k € {1,2}. The reduced-order model (6.13),
characterized by F, Gy, Ga, H1, Hs is found by solving the constrained optimization
problem:

o, min J(F,G1,Ga, Hy, Hy) (6.18a)
subject to Y (w) =0Vw € Q) 4,0,k € {1,2}, (6.18b)
Q=Q" =0, (6.18c)
QF, + (F.)'Q =0, (6.18d)
QFf +(FL)'Q <0, (6.18e)

where F_. = Ff’y*GzHl,F,;t = F+~*GoH;y and J(F,G1,Go, Hy, Hy) as defined
in (6.17). A

Problem 6.2 has the following interpretation. The minimization of the cost
function J(F,G1,Gq, Hy1, Hy) in (6.18a) ensures an optimal fit between the FRFs
of the full-order and the reduced-order model, for i,k € {1,2}, at the frequencies
Qé\f’k), for i,k € {1,2}. The constraint (6.18b) ensures that the FRF ®; ;) of the
full-order model equals to the FRF T'(; 1) of the reduced-order model at the interpo-
lation frequencies Qi = 1,2, for i,k € {1,2}. The remaining constraints (6.18c)
- (6.18¢) guarantee that the reduced-order Lur’e-type model (6.13) preserves the
convergence property of the full-order Lur’e-type model (6.7) by satisfying the
conditions of Theorem 6.1, guaranteeing that a constant € exists to solve Problem
6.1.

Next, a solution to Problem 6.2 is presented. After that, the connection to
Problem 6.1 is made explicit.

Remark 6.4. For the sake of exposition, a frequency-dependent weighting in the
cost function (6.17) is not introduced; one could trivially equip the cost function
with such weighting. A weighting can be useful to emphasize the importance of a
good fit for desired frequency ranges. A

6.3.2 Solution to Problem 6.2

The proposed solution to Problem 6.2 works as follows. Firstly, by application
of time-domain moment matching for LTI models, a family of Lur’e-type models
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(6.13) is derived such that constraint (6.18b) of Problem 6.2 is satisfied. As shown
below, this step yields freedom in parameters G, G2, which is exploited to solve
the optimization problem (6.18a) while satisfying the constraints (6.18¢c) - (6.18¢)
in order to ensure the convergence property.

Family of reduced-order Lur’e-type models

Let us recall an adapted version of time-domain moment matching for SISO LTI
models from [16]. Consider a minimal LTI model described by:

& = Az + Bu, y=Cux, (6.19)

where z(t) € R™ is the state, u(t) € R is the input, y(¢) € R the output, and
A e R B e R C € R are model matrices. Consider the reduced-order
LTT model

f = Fx + Gu, y = Ha, (6.20)

where £(t) € RY is the state, u(t) € R is the input, y(t) € R the output, and
F e RV G ¢ R, H € R are model matrices and v < n. The following
theorem borrowed from [16] is specialized to simple interpolation points on the
imaginary axis.

Theorem 6.2. Consider the SISO LTI model (6.19) characterized by the matrices
A, B,C. Furthermore, consider the given matriz S € R¥*Y with simple eigenvalues
a(S) ={s1,...,s,}, the given matriz L € R*", and v < n. Suppose Assumption
6.3 holds. Then, for any G € RV*! such that o(S)Na(S — GL) = 0, the reduced-
order model (6.20) with matrices F :== S —GL,H = CII with II € R™*¥ the unique
solution to the Sylvester equation

All 4+ BL =115, (6.21)
matches the 0-th moments of LTI model (6.19) at the eigenvalues of S, i.e.,
Clsil —A)'B=H(s; I —F)~'G, i=1,...,v
A

Theorem 6.2 is applied to each of the transfer functions of the LTI part of the
Lur’e-type model (6.7) in order to satisfy constraint (6.18b). Hereto, we introduce
matrices S ) € RY:0 and L xy € R¥>*¥G.m for i,k € {1,2}. Furthermore, we in-
troduce the notation o (S; ) ~ Q?Lk), i,k € {1,2}, meaning that if 0 < a € Q?i,k),
then +jo € o(S; k) and if 0 € Q(()i,k), then 0 € o(S(; k). Loosely speaking, the
notation o (S k) =~ Q(()Z.’k),z',k; € {1,2}, ensures that the interpolation frequen-
cies in Q(()i,k) are excited by the signal generator. Using this notation, constraint
(6.18b) is satisfied by the results presented in the next theorem.
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Theorem 6.3. Consider the LTI part of the Lur’e-type model (6.7) characterized by
matrices A, By, Ba,C1,Cs. Consider the given sets of frequencies Q?i’k) € R"G.x)
and matrices S(; )y € RYGwXV@r L 1y € R¥>vew 4k € {1,2}, and suppose that
a(S(ik)) =~ Q(()i,k,)’ i,k € {1,2}. Furthermore, suppose all pairs (S¢ i), Lik)), 4,k €
{1,2}, satisfy Assumption 6.3. For each i,k € {1,2}, application of Theorem 6.2
with (A, B,C) = (A, B;,Cy) and (S, L) = (S k), LK) results in an LTI model of
the form (6.20) with matrices

(Fiiw)> Giiky» Heigy) = (F, G, H)
= (St — G Liry, Gy, Cell i py) -

Then, under the conditions that G 1y € O py, 4,k € {1,2}, with

(6.22)

Ok = {G(ir) ERYM [0 (Siky) Mo (S — GumLar) =0f,  (6.23)

the LTI part of the Lure’-type model (6.13) characterized by the matrices

F = blockdiag (F(l’l),F(])Q),F(Q)l)’F(2’2))’ (6.24a)
G(1,1) 0

Gi = Gg,l) , G2= G%’” , (6.24b)
0 G2,2)

Hy=[Huyy Hap 000], (6.24c)

Hy=[0 0 Hpy Hegl, (6.24d)

ensures that Y (; y(jw) = 0 for w € Q?i)k),i,k € {1,2}. Hence, constraint (6.18b)
of Problem 6.2 is satisfied. A

Proof. The FRFs (6.14) of the LTI part of the Lur’e-type model (6.13) with model
matrices (6.24) reads as follows:

. —1 .
Liw = Hegy (Jwl — Fup) Gy i k€ {1,2}.

For each i, k € {1,2}, by Theorem 6.2, a match is ensured between I'(; 1y (s) and the
FRF of the full-order model ®; 1(s), for all s € o(S(; 1)) if condition (6.23) holds,
ie, Tir(s) =0 forall s € o(S; ). Since o(S( k) ~ Q?i,k),i,k € {1,2}, we
can conclude that Y; »)(s) = 0,4,k € {1,2} for all s € 0(S(; 1)), hence constraint
(6.18b) of Problem 6.2 is satisfied. O

Theorem 6.3 presents the matrices of the LTI block of a family of Lur’e-
type models of the form (6.13) that satisfy constraint (6.18b). The family is
parametrized by G(; ) € O p),4,k € {1,2}. In the next section, we present a
method to find G(; »y € O k), i,k € {1,2}, such that the remaining constraints
(6.18¢c) - (6.18e) are also satisfied, while (6.18a) is minimized.
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Remark 6.5. The diagonal structure of the model matrix F in (6.24a) leaves the
dynamics decoupled between the four transfer functions. A negative consequence
is that when a match is desired in all FRFs at the same frequency, then that
same frequency should be included in all Q(()i’k),i,k € {1,2}, which results in a
reduced-order model with a larger-than-needed state dimension. As a remedy,
one could apply moment matching for multi-input, multi-output (MIMO) models,
since the LTI part of the Lur’e-type model is of MIMO nature. However, current
moment matching techniques only allow for moment matching along the so-called
tangential directions [10, 28, 100]. As a consequence, not the individual FRFs are
matched, but rather their weighted sum, which is undesired in the scope of this
work. A

Constrained gradient-based optimization

Let us denote 6 == {G(1:D, G(12) G321 G221 which contains all to-be-optimized
parameters. We note that the parameters 6 only appear in the matrix F, G; and
Ga, see (6.24). Therefore, from here on, we write F(6), G1(0) and G2(6) to make
their dependency on 6 clear. Next, we define J as follows:

J(0) = J(F(0),G1(0), G2(0), Hy, H>) (6.25)

with J as in (6.17). Besides minimizing J , we aim to preserve the convergence
property, which is encoded in the constraints of the following optimization problem:

0 = argmin J(0), (6.26)
6€6

where © is the set of 6 defined as follows:
0= {0 e (R x R 02 x RY@D x RY22) | 3P =P =0

PF(0)5. + (F(0).)"P <0, PF(O)%. + (F(6)3.)"P <0} (6.27)

with F(G)f = F(0)+~7*G2(0)H; and v* as in Assumption 6.4. We note that © C
{et) o2 @1 @(22)} ie. for any § € O, the condition (6.23) is satisfied,
since satisfaction of (6.27) guarantees that o(F(6)) € C~, while o(S(; )) € C° by
Assumption 6.3 for all 4,k € {1,2}. One could interpret the minimum in (6.26) as
an infimum, for which a numerical solver should then find a sufficiently accurate
approximation of that infimum.

The set © in (6.27) is derived from the statements in Theorem 6.1 and its LMI
constraints are linear in P for fixed #, hence the constraints in © are LMIs. Since
J in (6.26) is nonlinear in 6, by gradient-based optimization, a local minimum of
J at 6 can be found, which solves the constrained optimization problem (6.26)
and, thereby, also solves the constrained optimization problem (6.18a) - (6.18e¢)
in Problem 6.2. To launch the gradient-based search to solve (6.26), an initial
convergent reduced-order model is required. A method to find such an initial
convergent model is presented next.
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Convergent initial reduced-order model

The full-order model satisfies the conditions of Theorem 6.1 by Assumption 6.4. In
particular, condition (6.10) is equivalent to bounding the H ., norm of the transfer
function of the LTI block of (6.7) from the nonlinearity ¢ to the output y by the
constant 1/+*, see [200], i.e.,

1

|[Cy(sT = A)7' By < pord (6.28)
where the H ., model norm is defined for stable models, i.e., o(A) € C, as follows:
[Ci(sI = A)'By| = S[up |Cy (jwI — A) "' By). (6.29)

we(0,00

To guarantee convergence of the reduced-order model, it is required that the H,
norm of the transfer function I'(; 2) is also bounded by the same constant 1/~*.
Hereto, the following lemma presents a reduced-order LTI model that achieves
moment matching and preserves the H., norm of the full-order LTT model.

Lemma 6.2. Consider the SISO LTI model (6.19) characterized by the matrices
A,B,C. Assume that o(A) € C~ and ||C(s[—.»4)_13||oo < 1/v*, implying that
there exists a matriz P = 0 such that the LMIs (6.10) are satisfied for A =
A By = B,C; = C,P = P and v = ~*. Application of Theorem 6.2 for any
matriz S € RY*Y and matriz L € RY" that satisfy Assumption 6.3 results in a
reduced-order model that achieves moment matching at o(S). The reduced-order
model is of the form (6.20) with matrices (F,G,H) = (S — GL,G,CII) and II the
solution to the Sylvester equation in (6.21). Then, for

G:= (' PI) " 11" PB, (6.30)

the matriz F is Hurwitz, i.e., o(F) € C™, and the transfer function of the reduced-
order model satisfies

|H(sI —F)~'g||_ <1/9". (6.31)
A
Proof. The proof can be found in Appendix E.1. O

The following theorem presents an LMI-based method to find a parametrization
0° € © for the reduced-order model such that all conditions of Theorem 6.1 are
satisfied.

Theorem 6.4. Consider the reduced-order Lur’e-type model (6.13) with matrices
(6.24) and suppose Assumption 6.4 holds for a certain v*. If there exist symmetric
positive definite matrices P ) = P(Zk) = 0 € RYGw>X¥6@w - matrices X ) €
R¥Gm | for i,k € {1,2}, such that the following two LMIs are satisfied:

L+ (L5) " <0 and £5. +(£5.) " <0 (6.32)
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with
P,y 0 0 0
£ - v XaoHay Pag v Xaz 0 0
g 0 0 P21 0
Ty X2y Hay TV X2 Haz) 0 P2,2)
and

Py =Pir)Seky — Xk Lar, ke {1,2},
Xa.2) =Xa2Ha2):-

Then, the conditions of Theorem 6.1 are satisfied for the reduced-order Lur’e-type
model (6.13) with model matrices G ; ) = P(;}C)X(i_’k), i,k € {1,2}. Furthermore,
condition (6.23) is satisfied, i.e., G ) € O ) for i,k € {1,2}. Finally, the set
of LMIs (6.32) is feasible under the stated assumptions. A

Proof. The proof can be found in Appendix E.2. O

The initial model matrices G?i,k)’ i,k € {1,2}, found via Theorem 6.4 and col-
lected in 6°, render the reduced-order Lur’e-type model (6.13) convergent. Sub-
sequently, 6° is used to launch a gradient-based search to solve the constrained
optimization problem (6.26).

Remark 6.6. The results of Lemma 6.2 can be used beyond the scope of finding
an initial convergent Lur’e-type model as presented in Theorem 6.4. For example,
these results can be used to compute a G such that moment matching is achieved
for LTI models and the ¢5-gain of the full-order model is not exceeded. VAN

6.3.3 Solution to Problem 6.1

The solution to Problem 6.2 has been presented in Section 6.3.2. This section
derives an error bound for the mismatch between the moment of the full-order
and the reduced-order model, which is used to compute a constant ¢ such that
Problem 6.1 is solved. Moreover, it is shown that this error bound holds in the
more generic case where inputs u are taken from the class of bounded, periodic
inputs Lo (T).

Thanks to Assumption 6.4 and by the grace of the fact the reduced-order model
is also convergent, a worst-case upper bound on the error between the steady-
state outputs Z, of the full-order model and (, of the reduced-order model can
be formulated. Hereto, the supremum of the mismatch in each FRF is defined as
follows:

T = e sup 1T (i, (Gw)]- (6.33)

Note that T thus upper bounds the mismatch in all FRFs.
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Theorem 6.5. Consider the full-order model with moment Com(7) and the signal
generator (6.12) with state 7(t) € RY. Suppose Assumptions 6.3 and 6.4 hold
for some v = ~*. Furthermore, consider the reduced-order model with moment
Hop(7) following from application of Theorem 6.3 and the optimization problem
(6.26). Then, the following mismatch between the moments Com(T) and Hap(T)
holds:

|Com(7) = Hop(T)ll, < YAIL7], (6.34)

5= (1+ Vou?Y *) <1+ VepY *)
1 =90 1 — vy

and Y as in (6.33) and the constants:

with

Ypu = Sup |F(171)(jw)|, Ypp = SUp |F(1,2) (Jw)l,
weR weR

Ve = SUP [R20) ()|, Yy = sup |19y (jw).
w€ER w€eR

Thereby, Problem 6.1 is solved for ¢ == Y7. Moreover, for any u € Lo(T), the
following upper bound on the steady-state output mismatch holds:

7 = Gull, < Tl = Ve (6.35)
A
Proof. The proof can be found in Appendix E.3. O

The error bounds in Theorem 6.5 gives the essential insight that a small mis-
match in the FRF's of the LTI blocks results in a small error since the bounds in
(6.34) and (6.35) are linear in Y. The optimization problem in (6.18a) aims at
minimizing |1 ; k) (jw)|? on a discrete frequency grid for w, for all 4,k € {1,2},
thereby, also helping to reduce T in (6.33). The formulated bounds in Theorem
6.5 are likely to be conservative due to (i) the stability conditions in Theorem 6.1
being conservative; (ii) the constant T holding for any input u(t) € Lo(T); (iii)
usage of the worst-case approximation in the derivation of v*; and (iv) usage of the
triangular inequality, which is conservative by its definition. Below, in Remark 6.7,
comments are given on how to obtain tighter bounds. Despite some conservatism,
the bounds give the valuable insight that the mismatch in time-domain signals
remains bounded for arbitrary input functions selected from the space Lo(T'). In
a more generic setting without a (global) stability assumption, bounded errors
cannot be guaranteed for reduced-order nonlinear models obtained by reduction
methods that do not impose a stability property on the reduced-order models,
including the time-domain moment matching methods in [16, 225, 226].
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Remark 6.7. The constant T can be made smaller by only evaluating the supre-
mum in (6.33) at the excited frequencies in the corresponding FRF. The constant
7 in (6.34) and (6.35) can be made smaller by redefining the constants v,y . .., Yy,
in Theorem 6.5 such that the supremum is not taken over w € R, but only at the
excited frequencies in the corresponding FRF. A

6.3.4 Overview of the reduction method

An overview of the reduction method is presented in Algorithm 6.1 below.

Algorithm 6.1 Model order reduction algorithm

Input: The full-order Lur’e-type model ¥ in (6.7), the constant v* as in Assump-
tion 6.4 and the sets of frequencies Q?i k) Qé‘fk), i,k € {1,2}.

1: Define the signal generators (S;, L;), i = 1,2, in (6.12) such that o(S;) ~ Q)
and Assumption 6.3 holds for each pair.

2: For each i,k € {1,2}, compute the matrices CTI(; ) from (6.21) with
A=A B=DB,;,and C = C}.

3: Define the reduced-order model matrices F'(0),G1(0), G2(0), Hy, and Ha, as in
(6.24).

4: Compute initial #° using Theorem 6.4.

5: Using Qé‘f’k), i,k € {1,2}, and 6°, solve the constrained optimization problem

(6.26) to find 6.

Output: The reduced-order model ¥, in (6.13) with model matrices
F(9),G1(0),G2(0), Hy, Hy as in (6.24).

6.4 Case study

6.4.1 Model of a flexible beam

In this case study, a one-sided clamped flexible beam supported by a one-sided
spring is considered, see Figure 6.3 for a schematic depiction. The beam has di-
mensions length x width x height =2 m x 50 mm X 30 mm and is characterized
by its Young’s modulus of 200 GPa and density of 7746 kg/m3. The linear beam
dynamics, characterized by partial differential equations, are discretized by the
finite-element method on an equidistantly spatial grid of 40 points, leaving a state
dimension of n = 160 consisting of position coordinates, velocity coordinates, incli-
nation coordinates, and angular velocity coordinates. The beam deflection at the
end of the beam is considered as the model output z, see Figure 6.3. Furthermore,
the output y is considered as the deflection of the beam at the location of the
one-sided spring. Moreover, an external disturbance u(t) acts in the middle of the
beam. The Bode magnitude diagram of the LTI part of the full-order LTI model
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Figure 6.3. One-sided clamped flexible beam supported by a one-sided spring.

is depicted in the solid blue curve in Figure 6.4. The one-sided spring is modeled
as

¢(y) = ymax(0,y) (6.36)

with stiffness v = 7.3-10°, which is also the maximum slope of the nonlinearity. The
model is cast in the Lur’e-type form of (6.7) and is denoted by 3. The conditions
of Theorem 6.1 are satisfied for the aforementioned 7, which guarantees that the
full-order model is convergent.

The goal of this example is to use the reduction method described in Algorithm
6.1 to find a reduced-order Lur’e-type model that approximates the moment of the
full-order Lur’e-type model. Furthermore, the method in [226] for generic nonlinear
models is also applied, which does not enforce any type of model stability. The two
models allow comparing the steady-state mismatch between the model responses
for different disturbance situations.

6.4.2 Moment matching for generic nonlinear models

In this subsection, we demonstrate the application of the method in [226]. Consider
a linear harmonic oscillator s(r) = S7,5 € R"*¥,0(S) € C° and I(1) = L7, L €
RYX¥. This linear signal generator in combination with a function §(¢) = G € R¥
(i.e., independent of &) results in the reduced-order dynamics of Wiener form:

&= (S —GL)¢ + Gu,

6.37
¥ = h(x(©)) (037
where the £-dynamics are linear and the model output v is a static nonlinear map
of the state, see [226]. Under the assumption that the pair (S, L) is observable, the
eigenvalues of (S — GL) can be placed at any desired location in C~ by a suitable
G € R”. The eigenvalues of (S — GL) being located in C~ guarantees that model
(6.37) is convergent.
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The signal generator is characterized by the following pair (.S, L):

0 0 0 0 0 0 0]
0 0 204 0 0 0 0
0 —204 0 0 0 0 0
S=xl0 0 0 0 1252 0 0|,
0 0 0 —1252 0 0 0 (6.38)
0 0 0 0 0 0 360
0 0 0 0 0 -360 O |

L=[1 1010 1 0],

and the initial condition 7(0) = LT. This pair of matrices (S, L) satisfy the con-
ditions of Assumption 6.1 and corresponds to the following interpolation points
s =2x - {0,410.24, +62.65, +1805 }, yielding a state-dimension of 7 for the reduced-
order model. The numerical values for G are found by a pole placement procedure
that places the poles of the reduced-order dynamics in (6.37) to a subset of poles
of the LTI part of the full-order Lur’e-type model. It is non-trivial to compute
the mapping h o w analytically. Therefore, inspired from [226], steady-state data
is generated on an equidistantly time grid by simulation of the full-order model
by means of the MTF algorithm, see [196]. This data is subsequently used to
estimate a mapping between 7 and Z, using linear least-squares regression, where
the estimated mapping is a second-order polynomial in the elements of 7.

The reduced-order model reads as (6.37) with h o 7w replaced by hon. In the
remainder of this section, model (6.37) is called the reduced-order Wiener model.
The performance of the reduced-order Wiener model is presented in Section 6.4.4
below.

6.4.3 Moment matching for Lur’e-type models

In this subsection, the application of Algorithm 6.1 for Lur’e-type models is demon-
strated. The following interpolation points for the reduction of the LTT part are
selected:

[0 10.2 62.6 180],

05" =0 102 641 180],
(6.39)
—[0 102 65.7 180]
[ ]

OP? =0 102 641 180

)

The selected frequencies imply a match of the respective FRF at 0-Hz and at
the first three largest resonance peaks, see Figure 6.4 where the interpolation
frequencies are marked by crosses. Subsequently, the matrices (S (i.k) L(Z”f))7 i,k €
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{1,2}, are defined as follows:

SR — blockdiag (0, =00 Efj(’jfg)) :

Sk 0 wi™ - 2m (6.40)

S A (3,k) ) :
—w, " 2m 0

LOM =1 1 0 ... 1 0er"™,

where w,(;’k) is the k-th element of Q((f’k) e R""" . Assumption 6.3 holds for all
pairs and o(SF)) ~ Qéi’k),i,k € {1,2}. Based on the number of interpolation
points, it can be concluded that the state dimension of the reduced-order model is
28. Note that the state dimension of the reduced-order Lur’e-type model is four
times larger than the state dimension of the reduced-order Wiener model presented
in Section 6.4.2.

The LMIs in Theorem 6.4 are solved to obtain #°, that, together with (6.24),
characterize the initial convergent reduced-order Lur’e-type model ¥, in (6.13).
The Bode magnitude diagram of X? is shown in Figure 6.4 in the dotted yellow
curve. It can be observed that the respective FRFs of the LTI part of ¥ and X9
match at the corresponding interpolation points in (6.39), i.e., constraint (6.18b)
is satisfied. However, for other frequencies, there is a significant mismatch.

Next, the constrained optimization problem (6.26) is solved, starting at 6°.
Hereto, the sets QS\Z’}C) =27 - 10% =: Qs are defined with £ € RM linearly spaced
with M = 1000 elements between -2 and 5, implying that elements of the set
Qpr are logarithmically spaced between 0.01 Hz and 10 kHz. The resulting 0
defines the (final) convergent reduced-order Lur’e-type model ¥, in (6.13). The
Bode magnitude plot of the LTI part of X, is depicted in the dashed red curve in
Figure 6.4. With respect to X7, a significant improvement of the fit of 3, to X can
be observed at almost all frequencies. Furthermore, it can be concluded that an
accurate match is obtained up to the frequency corresponding to the third-largest
resonance peak. After that frequency, the FRF of the reduced-order model does
not match any of the (anti-) resonance peaks.

6.4.4 Performance of reduced-order models

By means of simulations, the quality of the reduced-order Wiener and Lur’e-type
model in terms of approximating the steady-state response of the full-order Lur’e-
type model is analyzed. Throughout the rest of this section, Z is called the steady-
state output of the full-order model, (i iener is the steady-state output of the
reduced-order Wiener model and (.. is the steady-state output of the (final)
reduced-order Lur’e-type model.

The steady-state output Z of the interconnected full-order model (6.3) with
(S, L) in (6.38) and 7(0) = LT is depicted in Figure 6.5, together with the steady-
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Input u Input ¢(y), ¢(p)
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Figure 6.4. Bode magnitude diagram of the LTI parts of the Lur’e-type models
Y (full-order model - solid blue), ¥, (final reduced-order model - dashed red)
and X2 (initial reduced-order model - dotted yellow). The interpolation points
Q(()Z’k), i,k € {1,2} in (6.39) are marked by a cross (the interpolation point at 0 Hz
is not visible).
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state outputs éWienW and E Lure Of the reduced-order Wiener and Lur’e-type mod-
els. It can be observed that the beam deflection is in the order of 100 pm, whereas
the approximation error is roughly two orders of magnitude smaller. This con-
cludes that both reduced-order models accurately approximate z. The same con-
clusion can be drawn from the column ‘training’ of Table 6.1, where it can be
seen that the approximation error in the Lo-norm is roughly three orders of mag-
nitude smaller than the norm of Z. The best approximation is obtained by the
reduced-order Lur’e-type model.

To further investigate the accuracy of the reduced-order models, all models are
subject to a test with the following two new inputs:

10

ur(t) =Y sin(2rkfyt), (6.41a)
klzol

us(t) = Z sin(2mk f5t), (6.41b)
k=1

where fi = 10 Hz is the base frequency of u; and f@ = 100 Hz is the base
frequency of us. The input u; excites the beam up to the frequency of 100 Hz, for
which an accurate match between the FRFs of the LTI part of the full-order and
reduced-order Lur’e-type model is obtained. The input us excites the beam up to
the frequency of 1 kHz, which also excites frequencies for which the match in FRF
is not accurate. It can be observed in Figure 6.6 that for up, the accuracy of the
reduced-order Wiener model deteriorated significantly. The accuracy of (ryye, on
the other hand, is comparable to the previous test. At this point, it can already be
concluded that the reduced-order Lur’e-type model approximates the steady-state
output well as long as the input signal excites roughly the same frequencies as those
matched in the FRFs. For input us, however, the accuracy of the reduced-order
Wiener model has a significant mismatch in the 0-Hz component, see in Figure
6.7. The reduced-order Lur’e-type model, however, approximates the steady-state
response of the full-order model reasonably well, even for input signals that contain
frequencies for which not a good match is obtained in the FRF. The mismatch is
quantified in Table 6.1, from which the same conclusions can be drawn.

Table 6.1 includes the upper bound V,, in (6.35) for the mismatch Hé — Crure HLQ.
It can be concluded that this bound is satisfied in all cases and that the bound is
extremely conservative for this example.

6.4.5 Discussion

The case study above clearly highlights the benefits of the reduction approach;
namely, the reduced-order model preserves the convergence property and provides
robustness to input variations. The steady-state mismatch between the response
of the full-order and the reduced-order Lur’e-type models depends on the qual-
ity of the fit in the FRFs. In particular, if the FRFs are accurately fitted over a
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Table 6.1. Quantitative performance analysis.

|| Training | Validation 1 uy(t) | Validation 2 uy(t)

[E 1.46 - 104 1.27-10* 1.30-10°¢

|z - EWienerHLz 2.32-1077 2.85-107° 2.00-107°

12 = Crurel|,, || 1:36-1077 8.47-1078 5.29-1077
Vu 0.30 0.43 0.43

large frequency range, then the reduced-order Lur’e-type models generally approx-
imate the steady-state output accurately, even though only approximate moment
matching is achieved (rather than moment matching). Such frequency-domain in-
sights are valuable as in many engineering applications, frequency-domain tools
are used for analysis and control design. The model robustness against input vari-
ations is generally lacking in other moment matching methods, e.g., the ones in
[16, 225, 226]. However, as explained in Remark 6.5, the state dimension of the
reduced-order model is typically larger than reduced-order models obtained via

methods [16, 225, 226].
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6.5 Conclusions

This chapter has extended the notion of moments of nonlinear models from the
local case to the global case. Subsequently, this notion is exploited to propose
a model order reduction technique by time-domain moment matching for Lur’e-
type nonlinear models that enjoy the convergence property. The reduction method
approximates the moment of the nonlinear model rather than matching it exactly.
Preservation of the convergence property of the full-order model guarantees that
the reduced-order model exhibits a bounded and asymptotically stable steady-state
response for any bounded input and provides robustness against input variations.
Furthermore, it allows deriving a bound on the mismatch between the moment of
the full-order and the reduced-order models. Moreover, the Lur’e-type structure of
the model is preserved during reduction and the characteristic frequency-domain
interpretation of moment matching is inherited. In a numerical case study on
a one-sided supported beam, the moment of the reduced-order model matches
accurately to the moment of the full-order model. Furthermore, the reduced-order
model also accurately captures the steady-state response to generalized inputs.



Optimal model reduction by
moment matching: the linear
and nonlinear feedback cases

This chapter considers the problem of model complexity reduction for both lin-
ear models and nonlinear feedback models. We propose an optimal variant of the
time-domain moment matching method in which the Ho norm of the error transfer
function matriz is minimized. In the linear case, it optimizes the match between
the transfer function matriz of the original and reduced-order models. These re-
sults are extended for a class of nonlinear feedback models, consisting of linear
time-invariant (LTI) dynamics placed in feedback with nonlinear dynamics, where
only the order of the LTI dynamics is reduced. In this nonlinear case, the proposed
approach aims at minimizing an error bound on the steady-state outputs for any
bounded input. Furthermore, the proposed approach preserves both the nonlinear
feedback model structure and global stability properties of the full-order nonlinear
model. Both the problems for the LTI and the nonlinear cases are formulated as
constrained optimization problems with bilinear constraints, solved with a numeri-
cal procedure. The effectiveness of the approach is illustrated in the reduction of a
structural dynamics model of a linear beam subject to nonlinear support.

The contents of this chapter are published in: Shakib, M. F.; Scarciotti, G., Jungers, M.,
Pogromsky, A.Y., Pavlov, A., & van de Wouw, N. Optimal model reduction by moment matching:
the linear and nonlinear feedback cases. Submitted for journal publication. Preliminary results
have been presented in: Shakib, M. F., Scarciotti, G., Jungers, M., Pogromsky, A.Y., Pavlov,
A., & van de Wouw, N. (2021, December). Optimal Ho, LMI-based model reduction by moment
matching for linear time-invariant models. In Proceedings of the Conference for Decision and
Control, (pp. 6914-6919).
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7.1 Introduction

Dynamic models enable the prediction of the system response, analysis of the
system’s dynamic behavior, and controller design. Given the complexity of engi-
neering systems, accurate models are often too complex for the aforementioned
purposes. Model order reduction aims at replacing the full-order model with a less
complex, reduced-order model. Hereto, it is important to find the reduced-order
model that accurately describes the dynamics and that preserves certain proper-
ties of the full-order models of which model stability is among the most crucial
ones.

Many techniques have been proposed in the literature for linear time-invariant
(LTT) models, such as balanced truncation [10], Hankel-norm approximations [98]
and the interpolation approach [91]. Optimality has been pursued in the H., and
‘Ho norm of the error transfer function matrix. The optimal H ., reduction problem
has been posed as a constrained nonlinear optimization problem with bilinear
matrix inequalities (BMIs), see [72, 95, 111], following from the Bounded Real
Lemma [228]. By fixing certain variables, [95] avoided BMI constraints and wrote
an approximate problem using linear matrix inequality (LMI) constraints only.
Furthermore, [72] points out the connection between this problem and Hankel-
norm approximation. Optimal Hs reduction problems have also been studied for
a long time, pointing out necessary conditions for optimality, see, e.g., [7, 118, 169,
306], developing sophisticated numerical algorithms [21, 44, 88, 113, 150, 310], and
providing extensions, e.g., using frequency weighting [106, 317], or the connection
to the Sylvester equation [289]. One of the most popular approaches based on the
moment matching technique is reported in [100], which uses first-order optimality
conditions to perform moment matching until a locally optimal model is found,
which is extended in [9] to include a frequency weighting and in [49] to converge
faster in exchange for surrogate optimization. In this chapter, we also focus on
moment matching techniques.

Reduced-order models constructed by the moment matching method match
the moments of the reduced-order model to the moments of the full-order model,
see [10]. For single-input, single-output (SISO) LTI models, moment matching
enforces a match in the transfer function at the interpolation points. For multiple-
input, multiple-output (MIMO) LTI models, a match in the transfer function
matrix along so-called tangential directions is achieved [92]. Unfortunately, in
the MIMO case, the match in the individual transfer functions of the transfer
function matrix can be poor. Although such MIMO reduced-order models do
achieve moment matching along tangential directions, in some cases, for example in
the nonlinear feedback case discussed below, an accurate match in each individual
transfer function is desired.

The time-domain moment matching technique constructs a family of reduced-
order models that are parameterized by a small number of parameters, see [16].
These parameters provide freedom to enforce desired model properties, such as



7.1. Introduction 149

prescribed pole locations; prescribed zero locations; and an Le-gain constraint
[16]. Alternatively, the freedom can be exploited to optimally fit transient model
responses [223] or achieve two-sided moment matching [120]. Furthermore, the
approaches in [177, 178] exploit the parametric freedom of time-domain moment
matching to achieve optimality in the Ho-norm of the error transfer function
matrix. Time-domain moment matching extends naturally from LTI models to
nonlinear models with a well-defined notion of moments consistent with its LTI
counterpart [226]. However, optimality has not been pursued yet in the nonlinear
case.

In the first part of this chapter, the parametric freedom in the time-domain
moment matching technique for multivariable LTI models is exploited such that
optimality in the H,,-norm of the error transfer function matrix is achieved. As a
result, the peak error in the transfer function matrix is minimized, resulting also
in a small error in all individual elements of the transfer functions matrix. The
problem is formulated as a constrained optimization problem with bilinear matrix
inequality constraints. To numerically solve this problem, a tailored coordinate
descent algorithm (CDA) [253] is proposed. Potentially, this CDA prevents from
getting stuck prematurely and provides numerical robustness, as is demonstrated
in a numerical example.

In the second part of this chapter, the results of the first part on LTI models
are extended to the case of nonlinear feedback models consisting of high-order LTI
dynamics placed in feedback with low-order nonlinear dynamics, see Figure 7.1.
The proposed method preserves the model structure by only reducing the order of
the LTI dynamics and inherits the nonlinear dynamics from the full-order model.
Unfortunately, this approach results in a mismatch between the moments of the
full-order and the reduced-order nonlinear models. However, under a global stabil-
ity assumption, namely input-to-state convergence [200], an upper bound for this
mismatch can be derived, which is in fact more generic as it bounds the £.-signal
norm of the mismatch between the steady-state responses of the full-order and
the reduced-order nonlinear models for any bounded input signal. Crucially, this
upper bound is zero if the H,-norm of the error transfer function matrix of the
LTI part is zero, implying that a small H.,-norm of the error transfer function
matrix of the LTI part results in a small error bound. Therefore, it is exploited
to formulate a reduction problem that aims at minimizing the H..-norm of the
error transfer function matrix of the LTI part, in addition to preserving the global
stability property for the reduced-order nonlinear model.

The literature on optimal model reduction in the nonlinear case is rather scarce.
The data-based approaches in [55, 149] are an exception, as these provide (local)
error bounds, which are subsequently minimized. Two of the challenges in achiev-
ing optimality are stability preservation for the reduced-order model and error
characterization between the full-order and the reduced-order nonlinear model.
To this extent, the approaches in [129, 131, 132, 222] use the concepts of gener-
alized and extended differential balancing to truncate less important states of a
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Figure 7.1. Full-order (left) and reduced-order (right) nonlinear feedback model,
both consisting of LTT dynamics placed in feedback with nonlinear dynamics. Only
the order of the LTI dynamics is reduced.

balanced realization of the full model. These methods preserve the contraction
stability property and are equipped with error bounds. The balancing methods
in [31, 32] study the same class of nonlinear feedback models as in this chapter,
preserve model stability, and are equipped with an error bound. However, mini-
mization of the error bound has not been pursued in [31, 32, 129, 131, 132, 222]. In
this chapter, the error bound in [31] is minimized to achieve optimality in the con-
text of moment matching. Data-based methods that enforce stability and pursue
optimality for one specific input are presented in, e.g, [1, 38, 280], also interpreted
as system identification methods. These methods result in black-box models that
do not preserve the model structure and neither are these equipped with error
bounds.

To summarize, the main contributions of this chapter are, firstly, a model order
reduction technique for multivariable LTT models that matches the moments of the
full-order model, preserves model stability, and minimizes the approximation error
in the Hoo-norm and, secondly, a structure-preserving model order reduction tech-
nique for multivariable nonlinear feedback models that is stability preserving and
that minimizes an upper bound on the error between the steady-state response of
the full-order and the reduced-order nonlinear model. Thirdly, a numerical proce-
dure is presented to solve these model reduction problems, which is of independent
interest as it can be applied with minor adaptions to a wide variety of optimization
problems with BMI constraints. Finally, the effectiveness of the proposed meth-
ods for the LTI and nonlinear feedback cases is demonstrated in an example on an
actuated beam with nonlinear support.

The remainder of this chapter is structured as follows. Section 7.2 proposes
an approach to model order reduction for LTI models, which is extended to the
nonlinear feedback case in Section 7.3. Section 7.4 presents a numerical procedure
to solve these model order reduction problems. Section 7.5 describes the results of
two numerical case studies. Section 7.6 gives the concluding remarks.

Notation: The symbols R, C,C% C~, and Z* denote the set of real numbers,
complex numbers, complex numbers with zero real part, complex numbers with
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negative real part, and positive integers, respectively. The symbol I,, denotes the
n X n identity matrix and the symbol 0,,«, the zero matrix of dimensions n X v.
The spectrum of a matrix A € R”*" is denoted by o(A). For a matrix A € R"*™,
the notation He (A) is short-hand for AT + A. A symmetric matrix A is called
positive (negative) definite, denoted by A = 0 (4 < 0), if all its eigenvalues are
strictly positive (negative). In symmetric block matrices, the symbol * represents
an element that is induced by transposition. The set of symmetric positive definite
matrices of dimension n X n is denoted by S,,. For a vector x, its Euclidean norm
is denoted by |z|. For a signal x defined on R, the L., signal norm is denoted by
||lz|| . and defined by ||z| ., = sup,cg |#(7)|. Denote by L7 the class of functions
u(t) € R™ that are defined on R and bounded by ||ul|,, < +oo. Functions of
class K, K, and KL are defined in accordance with [135]. The identity function
id satisfies id(s) = s, Vs € R. Consider an LTI model with m inputs, p outputs,
and n poles, and denote its transfer function matrix by Y(s) € CP*™ with s € C.
Suppose all its n poles are located in C~. The Ho norm of T is denoted by
[T(s)]l, and defined according to [228]: [|T(s)||,, = sup,e[o,00) 7( L (jw)) With &
the maximum singular value and j := y/—1 the imaginary unit. Its peak-to-peak
or Leo-induced norm is denoted by ||Y(s)||; and defined according to:

@), = sup 1l (7.1)

0< || o <oo Jull
Furthermore, the following relation between || Y(s)|| ., and ||Y(s)||; holds, see [12]:
1

\/ﬁllﬁf(S)Hoo <TGy < @n+ DVm|T(s)] - (7.2)

7.2 Optimal model reduction for multivariable LTT mod-
els

The considered reduction problem aims at achieving (i) moment matching along
tangential directions and (ii) a minimal mismatch in terms of the infinity norm of
the transfer function matrix of the error dynamics. This problem is formalized in
Section 7.2.1 and a solution is proposed in Section 7.2.2.

7.2.1 The optimal moment matching problem

Consider the class of LTI models described by the following state-space equations:
¥(A,B,C): & =Ax+ Bu, y=_Cz, (7.3)

where x(t) € R™ is the state, u(t) € R™ is the input, y(t) € RP is the output, and
A e R B e R"™™ C € RP*" are the model matrices. Minimality of model
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(7.3) is assumed throughout this chapter. The associated transfer function matrix
of model (7.3) is defined as follows:

®(s) = C(sl, — A)"'B, seC. (7.4)

Based on the transfer function matrix ® in (7.4), the notion of moments along
tangential directions is defined next.

Definition 7.1. Let s* € C\ o(A). The 0-moment of model (7.3) at s* along the
right-tangential direction ¢* € C™ is n (s*,£%) == ®(s*)L*. |

Consider the v-th-order (reduced-order) model characterized as follows:
S(F,G,H): €£=F&+Gu, =H¢ (7.5)

with £(t) € R”,u(t) € R™, ¢(t) € RP, and F € RV*¥ G € RV*™ H € RP*¥. The
transfer function matrix of model (7.5) reads as follows:

I'(s):=H(sl, - F)"'G, secC, (7.6)

and its moments at s* € C along ¢* € C™ are denoted by noi(s*, £*). Tt is assumed
throughout this chapter that v < n. The relation between models (7.5) and (7.3)
is characterized next.

Definition 7.2. Consider the collection of k € ZT distinct interpolation points
s ={sf € C\ (c(A)No(F))}r, and tangential directions £ = {{; € C™} .
Model (7.5) is a reduced-order model of (7.3) at (s,£) if its order v satisfies v <n

and if it achieves moment matching according to ny (st 5) = ng (s¥,4F) fori =
1

ey K. ]

To enable a frequency-response function (FRF) interpretation of moment match-
ing and to limit the complexity of the exposition, only interpolation points on
the imaginary axis, real tangential directions, and 0-th moments along the right-
tangential directions are considered. The results can be extended to interpolation
points in the complex plane, complex tangential directions, higher-order moments,
and left-tangential directions.

The problem considered in this section aims at minimizing the Hs.-norm error
of the difference between ® and I'. This difference is denoted by Y and defined as
follows:

T(s) =®(s) —T'(s), seC. (7.7)

The following stability assumption is used in the problem statement presented
next.

Assumption 7.1. The matriz A of the LTI model (7.3) is Hurwitz, i.e., c(A) € C~.
|
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Problem 7.1. Consider the full-order model (7.3), the reduced-order model (7.5),
Kk € Z7T distinct frequencies w; > 0,i = 1,...,k, and the tangential directions
l; eR™ G =1,...,k. Suppose Assumption 7.1 holds. The problem of Optimal Hso
model reduction by moment matching consists of solving the following constrained
optimization problem:

P vy (7.8a)
subject to 1Tl < s (7.8b)
ne (jws, £;) :ng(ijwi,ﬂi), fori=1,... k. (7.8¢)

A

Constraint (7.8c) ensures that (7.5) is a (reduced-order) model of (7.3) accord-
ing to Definition 7.2. Constraint (7.8b) ensures that the H,,-norm of the error
transfer function matrix remains below ~, and also ensures stability preservation
of the reduced-order model as unstable models have an infinitely large H,.-norm.
Furthermore, a small v ensures a small || Y(s)|,, implying an accurate match be-
tween all individual (scalar) transfer functions of the transfer function matrices,
over all frequencies.

Remark 7.1. The minimum in Problem 7.1 can be interpreted as the infimum over
all values of v for which the set defined by (7.8b) - (7.8¢) is feasible. A numerical
solver for (7.8a) - (7.8c) should then find a sufficiently accurate approximation of
that infimum. A

Remark 7.2. The interpolation frequencies can be chosen as the zero frequency,
resonance frequencies, and other frequencies of interest. The tangential directions,
however, are less intuitive to choose as a full characterization between the tangen-
tial directions and the optimal solution of Problem 7.1 is lacking. In other moment
matching approaches, e.g., [100] and [177], the tangential directions are also part
of the optimization variables. A

7.2.2 Parametrization of models satisfying the constraints of Prob-
lem 7.1

Reduced-order LTI models achieving moment matching

The set of models that satisfy the constraint (7.8c) of Problem 7.1 is presented
in the following theorem. For this purpose, construct the matrices S € R¥*¥,
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L € R™*¥ with v = 2k as follows:

0 w 0 0
—w; 0 0 0
S=] oo : (7.9a)
0 0 0wy
0 0 —w, 0
L = [gl 0, -+ L Om] , (7.9b>
where w; > 0,¢;,1 = 1,...,K, are given in Problem 7.1. The case where w; = 0,
for an i € {1,...,k}, is treated in Remark 7.5 below.

Theorem 7.1. Consider the full-order model (7.3) and the matrices S € R"*" and
L e R™*" qsin (7.9). For any G € Gy with

Gu ={GeR™™ : o(S)No(S—GL) =0}, (7.10)

the reduced-order model (7.5) of order v with matrices
F=S5-GL, H:=CII, (7.11)

where IT € R™*Y s the unique solution to the equation
IS = All + BL, (7.12)

achieves moment matching according to:

nE(Ejwi, b)) = 1o (£jwi, &), i=1.. k. (7.13)
A
Proof. The proof can be found in Appendix F.1. O

Under specific selection of the tangential directions, the set Gy; presented in The-
orem 7.1 contains all the models that satisfy constraint (7.8c), i.e., that achieve
moment matching along the right-tangential directions, as stated in the next the-
orem.

Theorem 7.2. Consider the matrices S € RY*” and L € R™*” as in (7.9) and
suppose that all tangential directions coincide with £, i.e., {; = £,i € {1,...,K}.
Furthermore, suppose that the pair (S,L) is observable. Then, for any strictly
proper transfer function matriz W(s) € CP*™ that achieves moment matching
according to

W (tjwi)l = 03 (£jwi, £), i=1,...,kK, (7.14)
there exists a G € Gy such that
Wi(s)t =T(s)¢, seC, (7.15)

with T'(s) as in (7.6). A
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Proof. The proof can be found in Appendix F.2. O

The set Gps thus contains all reduced-order models that achieve (7.13) in the case
where all tangential directions coincide and the pair (S, L) is observable. In the
next section, a subset of Gy, is characterized that, in addition to constraint (7.8c¢),
also satisfies the constraint (7.8b) for a fixed .

Remark 7.3. Theorem 7.2 is a MIMO extension of [16, Proposition 1]. It is chal-
lenging to derive conditions under which a stronger property than (7.15) can be
guaranteed. For example, an instrumental property would be the existence of
G € Gy such that W(s) =T'(s), for any W(s) that achieves (7.14). A

Reduced-order LTI models satisfying all constraints of Problem 7.1

Consider the error dynamics between the original model and the reduced model
described in the following form:

| | A 05w T B
T 0uwn S—GL| el Tla|™
-~ =~

A z B (716)
(= [C’ —CH] zZ.
| —

C

Define, for matrices X € S"*" A € R"*" B € R"*™ C € RP*" and constant
v > 0, the following matrix:

He(XA) XB cr
Ny(A,B,C,X) = * Yl Omxp| - (7.17)
* * -1,

The so-called Bounded-Real Lemma is recalled next.

Lemma 7.1 ([228]). Consider a MIMO LTI model characterized by the model ma-
trices A € R"™*"™ B € R"™™ and C € RP*™. For any v > 0,

o(A)eC™ and ||C(sI— A)leHOO <7

hold true if and only if the following set of LMIs is feasible:

Ny(A,B,C,X) <0, X>0. (7.18)
A
Proof. The proof can be found in [228]. O

Using Lemma 7.1, the set of models satisfying all constraints of Problem 7.1 is
described in the following theorem.
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Theorem 7.3. Consider the full-order model (7.3) and the set of reduced-order
models ¥(S — GL, G, CII) characterized by G € Gyr in Theorem 7.1. Given a fized
v >0, for any G € G, C Gpr with

Gy ={G R :3X € Spy, : Ny(A,B,C, X) < 0}, (7.19)

the constraints (7.8b) - (7.8c) of Problem 7.1 are satisfied, where N, (A, B,C,X)
is defined in (7.17) and where A,B,C are as in (7.16). Moreover, if the full-order
model is balanced' with Hankel singular values® hi>...>h, > 7Lu+1 > ... > fzn,
then the set G, is empty for v < hygr. A

Proof. The proof can be found in Appendix F.3. O
Using the results of Theorem 7.3, Problem 7.1 can be rewritten as follows:
min ol

Gy (7.20)
subject to G € G,

with the set G, as in (7.19). Compared to (7.8), the optimization problem (7.20)
contains a smaller number of v x m model parameters. The matrix N, (A, B,C, X)
in (7.17) contains products between G and X, and is, therefore, bilinear in these
matrix variables. Section 7.4 presents a numerical procedure to minimize v while
satisfying the BMI constraints in Theorem 7.3, returning a numerical solution to
Problem 7.1.

Remark 7.4. If the full-order model is balanced, then Theorem 7.3 provides a lower
bound for « in constraint (7.8b). Namely, for any triple (F, G, H) (characterizing
I'(s)), the following bound holds true:

IT(s)llo = 12(s) = T()ll o > Put1, (7.21)

where h,1 is the (v + 1) largest Hankel singular value of the full-order model.
This bound is likely to be conservative in the scope of moment matching since
the triple (F, G, H) are constrained by the moment matching constraint (7.8¢c) of

Problem 7.1. A
Remark 7.5. Suppose w = 0 is an interpolation frequency (in addition to w; >
0,...,ws > 0) with corresponding tangential direction £.,;. Then Theorem 7.1
holds with the matrices S € R**” and L € R™*" | given by

- S 0 -

S = [0 0} . L=[L t.1], (7.22)

playing the role of S and L, where v = 2k 4+ 1. Theorem 7.3 holds irrespective of
w = 0 being an interpolation frequency or not. A

LA model is called balanced if its observability and controllability Gramians are equal and
diagonal.

2The Hankel singular values of a balanced model are the diagonal entries of the Gramian
matrix.
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Remark 7.6. In the single input case (m = 1), the model set characterized by
G € G, in Theorem 7.3 contains all models that satisfy the constraints of Problem
7.1 for a given v > 0 under the condition that the chosen tangential directions
;e Ryie{l,...,k}, render the pair (S, L) observable. A

7.3 Optimal moment matching for multivariable nonlin-
ear feedback models

This section proposes a moment matching approach for the class of nonlinear
models consisting of a feedback interconnection of high-order LTI dynamics with
low-order nonlinear dynamics, as depicted in Figure 7.1. The aim is to find a
structure-preserving reduced-order model that is optimal in terms of minimizing
an error bound and that preserves the input-to-state convergence (ISC) property
of the full-order model. The ISC property ensures the existence, uniqueness, and
asymptotic stability of steady-state solutions. In addition, it guarantees that the
difference between two steady-state responses corresponding to two different inputs
is finite. First, the considered class of nonlinear models is introduced and the ISC
property is recalled in Section 7.3.1. After that, the notion of moments is defined
and the moment matching problem is formalized in Section 7.3.2, followed by a
proposed solution strategy in Section 7.3.3.

7.3.1 Class of convergent nonlinear feedback models

The considered models are described by:

& = Az + B,u + Byw,
Siin z =C,x, (7.23a)
Yy = nya
: v =g(v,2),
St : { w — o) (7.23b)

where z(t) € R™ is the state of the LTI block, u(¢) € R™ is the input, y(t) € R?
is the model output, z(t) € R? is the input to the nonlinear block, w(t) € R® is
the output of the nonlinear block, and A € R**", B, € R"*™ B, € R"*5,C, €
R9*™ C, € RP*™ are model matrices. The state of the nonlinear block is denoted
by v(t) € R", and g : R” x R? — R® is a mapping locally Lipschitz in v and
continuous in z, and A : R” — R? is a continuous mapping. Figure 7.1 depicts
model (7.23) schematically. The transfer functions, associated with (7.23a), are
defined as follows:

Dy (s) = Ci(sI —A)7'By, seC, (7.24)
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for i € {z,y},k € {u,w}. The overall transfer function matrix collects the indi-
vidual ones: o (5) @ (s)
,_ (z,u)\S (zw)\S
D(s) : Bor(s) Bryu(s)]” seC. (7.25)
To define moments of the nonlinear model (7.23) in a global context, a strong
form of model stability is required. Hereto, the convergence and input-to-state
convergence property are recalled next for generic nonlinear models of the form

z = f(z,u) (7.26)
with z(t) € R™ u(t) € R™.

Definition 7.3 ([200]). The model (7.26) is said to be globally uniformly convergent
if for every input uw € LT, there exists a solution T, to (7.26) salisfying the
following conditions:

e T, is defined and bounded on R.

e T, is globally uniformly asymptotically stable.
|

The solution Z,, is called the steady-state solution. The input-to-state convergence
(ISC) property is a stronger property and is defined as follows.

Definition 7.4 ([200]). Model (7.26) is said to be input-to-state convergent if it is
globally uniformly convergent for the class of inputs L7} and, for every input u €
LT model (7.26) is input-to-state stable with respect to the steady-state solution
Ty (), i.e., there exist a KL-function B(r,s) and a Koo -function vz, (r) such that
any solution x(t) corresponding to some input 4(t) = u(t) + Au(t),Au € LT,
satisfies

ol0) = 2u(0)] < Aolto) — a(t)lt = 1)+ (s [Bul0)]) (721
to<7T<t

for all t,tg € R, t > to. The functions B(r,s) and Y (r) may depend on the

particular input u. |

The function v, is called an incremental gain function from input u to state x.

Given these definitions, conditions for the uniform convergence and ISC prop-
erty of the model (7.23) are recalled next. Starting with the linear part of model
(7.23), the matrix A being Hurwitz is necessary and sufficient for the ISC prop-
erty. Therefore, there exist incremental gain functions iy, Vew € Koo from
inputs u,w to state x, respectively. Furthermore, the steady-state operators
Fi(u,w) == CiTyw, % € {z,y}, are incrementally bounded as follows:

[1Fi(ur, wr) = Fi(ug, wa) |l oo < Xia(Vau(llur — uzllo) + 72w (lwr — w2l ) (7.28)
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for i € {z,y} and for all ui,us € LI, w1, we € L3,. The functions X.z, Xy € Ko
in (7.28) represent incremental bounds on the output equations. For the nonlinear
block X,,; of model (7.23), it is assumed that ~2(0) = 0 and that the incremental
bound

|h(v1) = h(v2)] < Xwo(|v1 — v2l) (7.29)
holds for all v1,v9 € R". Under the assumption that X,; is ISC, there exists a
class Ky function 7,, such that the nonlinear steady-state operator F,;z := v,

satisfies
| Friz1 — ]:anQHOO < Yor(ll21 — ZQHoo) (7.30)

for any 21,22 € L£4,. Finally, it is assumed that there exist functions p1, p2 € Ko
such that the small-gain condition

(ld + pl) O Yzw © Xwv © (ld + P2) O Yvz © Xza ('I") S r, (731)

holds for all » > 0. The aforementioned assumptions are sufficient for the ISC
property of model (7.23).

Assumption 7.2. Model ¥y, in (7.23a) is asymptotically stable and ¥, in (7.23b)
is input-to-state convergent; the function h in (7.23) satisfies h(0) = 0 and (7.29);

and the small-gain condition (7.31) is satisfied. |
Theorem 7.4. Suppose that Assumption 7.2 holds. Then, model (7.23) is input-to-
state convergent. A
Proof. The theorem is a special case of [31, Theorem 2]. O

7.3.2 The optimal nonlinear moment matching problem

Consider k € Z™ distinct frequencies w; > 0,7 = 1,...,x, and the tangential
directions ¢; € R™,i = 1,..., k, characterizing the matrices S € R¥*¥ [ € R¥*™
in (7.9) with v = 2k. The pair (5, L) forms the signal generator

T=9587, u=0Lt (7.32)

with 7(t) € RY, generating input v = L7 for model (7.23). Note that by the
construction of S, the linear signal generator is marginally stable and produces
signals 7 and w of class L%, and L7}, respectively.

Definition 7.5. Consider the model (7.23) with input u = L7 driven by signal gen-
erator (7.32) with the pair (S, L) observable. Suppose there exist unique functions
m:RY 5> R : 7 7 (7) and mo : RY = R" : 7 — mo(7), such that the graph

M= {(r,2,v) 1z =m(7),v = ma(7), T € R} (7.33)

is invariant. Then, the function Cymy is called the moment of the model (7.23) at
(S,L). |
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Given the fact that 7 € LY and u € L}, Assumption 7.2 guarantees the
existence and uniqueness of the functions 7y, 72, see [200, Theorem 4.4]. Further-
more, since the steady-state solution of (7.23) is globally asymptotically stable by
Assumption 7.2, the graph M in (7.33) can be found by numerical simulation of
model (7.23) subject to input u generated by the signal generator (7.32). Note
that, in contrast to [16, 226], moments as in Definition 7.5 are defined globally.

Consider the (v + r)-th-order model

£ =F&+ Guu+ Gy,

Stin ¢ =H, (7.34a)
Y= Hy,
, =g ),
Yo { = hiw), (7.34D)

where £(t) € R” is the state of the LTI block, u(t) € R™ is the input, ¥(t) € RP
is the model output, ¢(t) € RY is the input to the nonlinear block, A(¢) € R® is
the output of the nonlinear block, and F' € R"*¥, G, € R"*™ G\ € R"** H, €
R?>*¥ H, € RP*” are model matrices. The state of the nonlinear block is denoted
by u(t) € R". The reduction approach proposed in this chapter only reduces the
state dimension of the LTI part, motivated by nonlinear behavior only appearing
locally in engineering systems or being described by low-order nonlinear dynamics.
Consequently, the same mappings ¢ and h as in model (7.23b) are utilized in the
reduced model (7.34). Figure 7.1 depicts model (7.23) schematically. The transfer
function matrices associated with the LTI part of (7.34) are denoted by I'(; 1, for
i € {(,}, k € {u, A}, and are defined similarly to ®; ) in (7.24). The overall
transfer function matrix I' is defined similarly to ® in (7.25). The moment of
model (7.34) at (S, L) is denoted by H.,p1, where the function p; plays the role of
the function 7 in Definition 7.5.

The reduction method proposed in this chapter preserves the ISC property
for the reduced-order model. Hereto, since the nonlinear part X,; of (7.34) is
inherited from (7.23), the only conditions for ISC of model (7.34) are: i) the
matrix F' is Hurwitz; and ii) a small-gain condition of the form (7.31) is satisfied
for the reduced-order model. The (incremental) gain functions of the nonlinear
part of the reduced-order model can be inherited from the full-order model, i.e.,
Yu¢ and X, can be chosen as 7,, and X, respectively. Therefore, the small-gain
condition (7.31) can be written as follows for the reduced-order model:

(id 4+ p1) 0 yex © xapu © (id + p2) 0 Yue © x¢e(r) < ) (7.35)

where x¢e and 7¢y are the linear (incremental) gain functions of the LTT part of
the reduced-order model in (7.34). Thus, the satisfaction of (7.35), together with
F being Hurwitz, guarantees the ISC property for the reduced-order model. Fur-
thermore, the matrix F' being Hurwitz guarantees the existence of the additional
linear (incremental) gain functions Yey, Xype € Koo-



7.3. Optimal moment matching for nonlinear feedback models 161

Due to the nonlinear feedback, matching the moment Hyp; of the reduced-
order model (7.34) to the moment Cym of the full-order model (7.23) implies
matching the transfer function matrices at an infinite number of interpolation
points. As this is non-trivial to achieve, in this work, only a finite number of
interpolation points are considered, inevitably resulting in a mismatch between
the moments. To address this issue, the next theorem recalls from [31, Theorem 3]
an upper bound for the steady-state mismatch between ¥, and 1, for any u €
L7 . This bound also holds for input signals generated by signal generator (7.32),
thereby also bounding the mismatch between the moment Hyp, of the reduced-
order and the moment Cym; of the full-order model.

Theorem 7.5. Consider the model (7.23) and suppose that Assumption 7.2 holds.
Furthermore, consider the model (7.34) and suppose that F' is Hurwitz and con-

dition (7.35) holds. Then, for any input uw € LT, the following steady-state error
bound holds:

17 = dull < evlllulle), (7.36)
where
(1) ::(5yu + Eyw © (id + pgl) ° 7um (7.37)
+ (Xyz © Yaw + Eyw © (1d+ ps5)) © S ) (1)
with eqp(r) = 7‘||T (a,b)(5 ||17 Vr >0, defined for input/output pairs a € {y,z},b €

{u,w} of the LTI block, and ps an arbitrary class Koo function. The following
functions are used in (7.37):

Nwu(T) =Xuwv © Yoz © Nzu(r),

Nz (1) =(9d — Xzz © (id+ p3) © Yow © Xuww © ’sz)_l
0 Xzz © (id+ p3 ") © Yau(r),

Suwu(T) =Xwv © Yoz © 00 (T),

o (1) =(id — (Xaz © Vaow + E2w © (id + p4)) © Xaww © Yoz)
0 (E2u + €20 0 (id+ p; ) © Nuwu) (1),

—1

where ps and py are arbitrary class Koo functions. A
Proof. The proof can be found in [31, Theorem 3]. O

Theorem 7.5 evidences that the error between the LTI blocks in terms of
[IT(s)]l; plays an important role in the error bound via the functions €y, €yw, €zu,
and €,,,. Using the relation (7.2), for all input/output pairs of the LTT block, the
L-induced norm [|Y(s)||; of the error transfer function matrix YT can be upper
bounded by its Ho, norm || Y(s)|,, as follows:

()l < Vm+s2(n+v) + DIT(s)] (7.38)
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where m + s are the number of inputs and n + v are the number of poles of the
transfer function matrix Y. Furthermore, in case || Y(s)|/,, = 0, the error bound
(7.36) drops to zero, i.e., €,(r) = 0Vr > 0. Besides matching the moments of
the linear block, the reduction problem defined next aims at preserving the ISC
property and minimizing ||Y(s)||.,, and therewith minimizing an upper bound on
T (s)|l;- The minimization of ||Y(s)||, is favored over the direct minimization
of [[Y(s)||; because necessary and sufficient matrix inequality conditions for the
computation of the former exist in the literature, whereas only sufficient matrix
inequality conditions exist for the latter.

Problem 7.2. Consider the full-order model (7.23), the reduced-order model (7.34),
Kk € Z7T distinct frequencies w; > 0,i = 1,...,k, the tangential directions {; €
R™*s i =1,...,k. Suppose Assumption 7.2 holds. The problem of Optimal Hso
model reduction by approximate moment matching consists of solving the following
constrained optimization problem:

min ( )
F,Gu,G/\7H<7Hw,’Y
subject to 1T()] o < s (7.39b)
Satisfaction of (7.35), ( )
(

n()zli"'(:tjwi,&) = noi””(j:jwi,&), fori=1,... K.

The objective of Problem 7.2 minimizes || Y(s)||,,, playing an important role in the
upper bound on the reduction error in Theorem 7.5 via (7.38). Constraint (7.39¢)
guarantees the satisfaction of condition (7.35), resulting in the preservation of
the input-to-state convergence property. Constraint (7.39d) guarantees moment
matching of the LTI parts.

7.3.3 Parametrization of models satisfying the constraints of Prob-
lem 7.2

Reduced-order LTI models achieving moment matching

The tangential direction ¢; € R™*% i € {1,...,k}, in Problem 7.2 include the
tangential directions for both the inputs v and w. Application of Theorem 7.1
with B :== [By, By] € R™™¥* and C == [C] C’J]T € RPHaX" regults in a set
of reduced-order LTI models (7.5) that satisfy constraint (7.39d). This family is
described by the set G in Theorem 7.1, recalled here for convenience:

G = {G eRV™S  5(S)No(S—GL) = Q]} . (7.40)
The obtained matrix H = [HCT Hlﬂ T € RITP*¥ can be decomposed into He =
C.II € R?*" and Hy, = CyII € RP*¥, where II € R™ ¥ is the solution to the
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Sylvester equation (7.12). Similarly, the matrix G = [Gu G,\] € R¥*™T$ can be
decomposed into G,, € RV*™ and G, € RV*5.

Reduced-order models satisfying all constraints of Problem 7.2

Consider the LTT error dynamics described in the following form:

R e e S

A B .
-l 0
& 4]

¢
It is a challenging problem to enforce constraint (7.39¢) during the reduction proce-
dure without introducing additional conservatism. To make the problem tractable

and to limit the introduction of additional conservatism, we pose the following
assumption.

Assumption 7.3. Satisfaction of the inequality HF(C)\)(S)HOO < H<I>(Z,w)(s)||oo =
Y implies satisfaction of (7.39c). |

Given that the nonlinear block is inherited from the full-order model, upper bound-
ing the L -induced norm of I'¢ 5y by the L-induced norm of ®, ., is sufficient
for the constraint (7.39¢) to hold. Then, Assumption 7.3 replaces the £.-induced
norm with the H,, norm. Although the preservation of the H., norm does not
formally imply the preservation of the Ly -induced norm, these two norms are
closely related to each other, e.g., via relation (7.2). Additional comments on this
assumption are presented in Remark 7.7.

For any fixed ~, the following theorem presents a class of models that satisfy
all constraints of Problem 7.2.

Theorem 7.6. Consider the full-order model (7.26) and the set of reduced-order
models (7.34) characterized by G € Gy with Gy _in (7.40). If Assumption 7.3
holds, then given a fized v > 0, for any G € G, C Gy with

G, = {G eRV*™ . 3X, € S,4,,FX, €S, :
N, (A, B,C, x1) <0, (7.42)

nyzw (S — GL, G,\, HC’ XQ) < 0},
the constraints (7.39b) - (7.39d) of Problem 7.2 are satisfied, where matriz N, is
defined in (7.17), A,B,C are as in (7.41), and 7., is defined in Assumption 7.3.
Furthermore, if the LTI part of the full-order model is balanced with Hankel singular

yalues hi > ...>h, > hyy1 > ... > hy,, then the set QNW is empty for v <
hVJrl- A
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Proof. The proof can be found in Appendix F.4. O
The following optimization problem replaces the one in Problem 7.2:

min ¥
Gy ) (7.43)
subject to Geg,.

Compared to (7.39), optimization problem (7.43) contains a smaller number of
v X m + s model parameters. Note that the set Gv in (7.42) is characterized by
bilinear matrix inequalities due to products between G and X7, Xs. A numerical
procedure to find the gain matrix G such that v is minimized is presented in the
next section.

Remark 7.7. Assumption 7.3 does not hold in general. Alternative approaches
that do guarantee the satisfaction of the constraint (7.39¢) are conservative. The
first approach is to use the inequality (7.2) to write the following inequalities:

1
200 (8) ]| oo < @y (9]

Va4
[Ty < @v+DVs[Tien )] .

where v, ¢, s are the dimensions of £(t) € RY,z(¢),((t) € R?, and w(t), A(t) €
R#, respectively. In this approach, satisfaction of the inequality ||F(C7,\)(s)||1 <
H<I>(Z’w) (s) H , is sufficient for (7.35) to hold and can be guaranteed by the following
conservative inequality:

(7.44)

[P < EPew ()] (7.45)

with & := (2v + 1)~'(gs)~ /2. This approach does not allow the preservation of
the Hoo norm of the full-order model, which is undesired because it does not allow,
e.g., for moment matching at the locations of resonance peaks. Furthermore, it
can be conservative as the inequality (7.45) may be conservative for the small-gain
condition (7.35) to hold. The second approach is to use the sufficient matrix in-
equality condition for the computation of the £..-induced norm presented in [229],
which is also conservative. It is an open question which of these two alternative
approaches introduces the most conservatism. The model reduction problem for
nonlinear models with the preservation of the ISC property is inherent to conser-
vatism, as is, for example, also the case for the approach in [31]. The conservatism
stems from the ISC property being guaranteed by the satisfaction of the small-gain
condition (7.31). This small-gain condition relies on the £..-induced norm of the
LTT part of the model, the computation of which for a MIMO LTI block is not
exact and can only be upper bounded in practice, hence introducing conservatism.

In contrast to these alternative approaches, using Assumption 7.3, constraint
(7.35) is written as a necessary and sufficient matrix inequality constraint in (7.42),
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which aims at not exceeding the Ho, norm of the transfer function ®, ,,). Satis-
faction of Assumption 7.3 needs to be verified a posteriori and, if this assumption
does not hold, then the reduced-order model is not guaranteed to be ISC. It is
noted that, in general, preservation of the L -induced norm of @, ,,) is not re-
quired, because, in general, the small-gain condition (7.35) is satisfied with a strict
inequality. In the example presented in this chapter (see Section 7.5 below), this
Loo-induced norm is slightly exceeded after reduction, whereas Assumption 7.3
does hold. If the resulting reduced-order model does not satisfy Assumption 7.3,
then one can replace 7,,, by F¥., with & as in (7.45), and solve the optimization
problem again. A

7.4 Numerical procedure for solving the H,, moment
matching problem

This section proposes a numerical procedure for solving Problems 7.1 and 7.2,
which are both written as optimization problems with BMI constraints. A popular
method to solve such optimization problems with BMI constraints is the so-called
coordinate-descent algorithm (CDA) [253]. The CDA for the constraints as derived
in the previous sections is presented in Section 7.4.1. Alternatively, the constraints
can be written in the so-called Finsler’s form, for which a CDA is presented in
Section 7.4.2. These two CDAs are combined to form a single, novel numerical
procedure, as presented in Section 7.4.3. Finally, a method to find a feasible
starting point, required in both CDAs, is presented in 7.4.4.

7.4.1 CDA for constraints in primal form

The set G, in (7.19) is characterized by the existence of an auxiliary matrix X,
whereas the set G, in (7.42) is characterized by the auxiliary matrix variables
X1, Xy, With some abuse of notation, the variable X is used to denote A" in the
case of G, in (7.19) and to denote Xy, Xy in the case of G, in (7.42). Using X,
both the constraints of G, in (7.19) and G, in (7.42) can be written in a standard
form R,(X, G, v) < 0, which is called the primal form, and where R,(X,G,7) is
defined as follows:

Rp(X,G,7) = Mi(X,G, ) + He (M2(X)N(G)) . (7.46)

The matrices M; € R*** My € R**8 N € R**# and their dimension variables
«, B, are defined in Appendix F.5, see (F.9) and (F.10). It is emphasized that these
matrices are linear in their arguments. Evidently from (7.46), the bilinear terms
are due to products between Ms and N, multiplying X with G. A CDA iteratively
fixes either X or G to yield an optimization problem with linear constraints, and
optimizes y for the other variables, for example, by a bisection search over . Even
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Algorithm 7.1 CDA for constraints in primal form
Input: Constraints R, < 0 in (7.46), any 7% > 0 and vector GI ¢ G (or
Gl ¢ QNW[U]), and an accuracy threshold € > 0.

1: Set iteration index ¢ = 1.
2. while (v — 4l) /4l > ¢ do
3: Solve the optimization problem

(X[i], ) = arg min~y subject to R, (X, G[i_l],'y) =< 0.
X,y

4: Solve the optimization problem

(Gmﬁm> = argmin 7 subject to R, (X, G, ~) < 0.
Gy

5: Update i =i + 1.

6: end

Output: Matrix G; = G~ and scalar v; = 4~

without formal a proof of convergence, CDAs work well in practice and guarantee
a non-increasing sequence of v over the iterations [253].

Consider the CDA listed in Algorithm 7.1. In Step 3 of this algorithm, for
a given, fixed G, the corresponding constrained optimization problem is solved,
where the constraints are LMIs in the variable X. Essentially, this step computes
a tight upper bound for ||Y(s)||,, for the current fixed G. The computed X in
Step 3 is fixed in Step 4 and the corresponding constrained optimization problem
is solved for GG, where the constraints are now LMIs in GG. Algorithm 7.1 requires
an initial GI9 and 0 < 7[0] < 400 such that GO e G0 (or Gl e C;,Y[o]). Such
initial GI9, 4[% always exists, as is shown in Section 7.4.4.

Remark 7.8. To reduce the complexity of the exposition, the matrix X is completely
fixed in Step 4 of Algorithm 7.1. However, it is not necessary to fix the complete
matrix X, it suffices to only fix its elements that are multiplied by G. A

7.4.2 CDA for constraints in Finsler’s form

In the scope of minimizing vy while respecting the constraints of Problems 7.1
and 7.2, a constraint formulation that does not contain products between X and
G is favorable. Thanks to Finsler’s Lemma, see, e.g., [41], the constraints are
rewritten into the so-called Finsler’s form: Rp(X, N,G,v) < 0 with N € Re+Ax5
a new, additional variable. The matrix R reads as follows:

Ru(X, N, G,7) = M(X, ) + He <[J\£ (I(; )} NT) , (7.47)
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Algorithm 7.2 CDA for constraints in Finsler’s form
Input: Constraints Ry < 0 in (7.47), any 7% > 0 and vector Gl ¢ G (or
Gl ¢ QNW[U]), and an accuracy threshold € > 0.

1: Set iteration index ¢ = 1.
2. while (v~ — 4l1) /4l > ¢ do
3: Solve the optimization problem

(-,Nm, ) =argmin~y subject to Rp(X, N, G[i_l],'y) < 0.
X,N,y

4: Solve the optimization problem

(-,GM,VM) =argminy subject to Rp(X, N, G,~) < 0.
X,G,y

5: Update i =i+ 1.

6: end

Output: Matrix G;; = GI=1 and scalar ~;; = 1.

where

Mi(X,y) Ma(X)

M(X,7) = N Opes |

(7.48)
Note that the matrix Rp (X, N, G,~) does not contain products between X and G,
but instead contains a product between G and the new variable N.

Analogously to Algorithm 7.1, Algorithm 7.2 presents the CDA for iterations
in the Finsler’s form of the constraints. The largest difference is that in Step
4, the variable N is fixed, leaving X a decision variable in both Steps 3 and 4.
Algorithms 7.1 and 7.2 are combined in the numerical procedure presented in the
next section.

Remark 7.9. By the Finsler’s Lemma, see, e.g., [41], the constraints in primal
and Finsler’s form are equivalent, i.e., for any given X, G,~, the matrix inequality
R,(X,G,7) < 0 holds true if and only if an additional matrix N exists such that
RF(X,N,G,’Y)KO. A

7.4.3 Combination of CDAs

Algorithms 7.1 and 7.2 enable switching when the respective algorithm cannot
decrease v anymore. For example, suppose that Algorithm 7.1 is performed and
returned v; and G; € G,,. Then, Gy,7; can be used as a starting point for

Algorithm 7.2, i.e., G[IOI] = Gl,vﬁ = ~7. Similarly, after running Algorithm 7.2

and obtaining v;; and Grr € G,,,, G[IO] =Gy, 7}0] = 77 can be used as a starting



168 Chapter 7. Optimal model reduction by moment matching

Algorithm 7.3 Combination of CDAs
Input: Constraints R, < 0 in (7.46), constraints Rp < 0 in (7.47) any 7% > 0
and vector Gl G, (or Gl ¢ Q:Y[o] ), and an accuracy threshold € > 0.
1: Set iteration index k = 1.
2: while (y[F=1 — yIF) /5 [F > ¢ do
3: Obtain G[Ik] = G and 71¥! = 4; by running
Algorithm 7.1 starting from G[kal].
4 Update k =k + 1.
Obtain G[Ikl] = Gyr and 'y[k] = 777 by running
Algorithm 7.2 starting from G[kal].
6: Update k£ =k + 1.
7: end
Output: Matrix G = G[IkI] and scalar y = ¥,

point for Algorithm 7.1. Switching is enabled thanks to the constraints in the
primal and Finsler’s form being equivalent, see Remark 7.9. The resulting novel
numerical procedure is formalized in Algorithm 7.3.

Studying properties of Algorithm 7.3, e.g., convergence and robustness with
respect to the starting point, is left for future work, although a preliminary study
in Section 7.5, shows that this algorithm can potentially avoid getting stuck pre-
maturely. Furthermore, the switching nature of Algorithm 7.3 provides robustness
if either of Algorithms 7.1 or 7.2 runs into numerical problems, especially relevant
for the involved high-dimensional matrix inequalities.

7.4.4 Initial GI°

In order to launch Algorithm 7.3, an initial Gl ¢ G0 (or G o ¢ QNV[O]) and 'y[o] are
required. For the LTI case, any GI% that renders o(S—GI°/ L) € C~ guarantees the
existence of a y[%. For example, by pole placement, the eigenvalues of S — GIOIL
can be placed at any desired location thanks to the observability of the pair (S, L)
(by the construction of this pair in (7.9)). Placing the eigenvalues of S — GI/L to
a subset of the eigenvalues of A works well in practice as is demonstrated in the
numerical case studies in Section 7.5.

For the nonlinear case, any G[°! that renders o(S—GIO L) € C~ and guarantees
IT2w(8)|| o < 2w is valid. Hereto, an LMI feasibility problem is presented in the
following theorem.

Theorem 7.7. Consider the reduced-order model (7.34) and suppose Assumptions 7.2
and 7.3 hold. If there exists a matriz X € S, and matrices Q1 € RV*™ Qo € RV**
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such that
He (XS - [Ql QQ] L) QQ HS'
* ~Aowls  Oguq | <0 (7.49)
* * _ﬁzwlq

with ., defined in Assumption 7.3, then (S — GI°ML) is Hurwitz and constraint
(7.39c¢) is satisfied for Gl = xy—1 [Ql Qg]. Furthermore, there exists a constant

0 <~ < 400 such that GI% € Q:{[o] with G, in (7.42). A
Proof. The proof can be found in Appendix F.6. O

The results of this theorem can be used to find a feasible starting point in the
nonlinear case.

7.5 Numerical case studies

Two numerical case studies are presented. Firstly, a cantilever beam with nonlinear
dynamics support is considered. In this case study, the benefits of the reduction
approach in Section 7.3 are highlighted. Secondly, an LTI example is given which
demonstrates the benefits of the numerical procedure in Algorithm 7.3.

7.5.1 Cantilever beam with nonlinear dynamic support

This case study is inspired by [31]. Consider the flexible beam schematically
depicted in Figure 7.2. The beam is clamped rigidly to the fixed world at its
left end, whereas it is supported near its other end by the first-order nonlinear
dynamics ¥,,; reading as follows:

S 0=—v—0v342 w=ov, (7.50)

with ¢ > 0. The nonlinear dynamics are ISC with (incremental) gain functions
Xuwo(r) = or and 7, (r) = r + 23, see [31] for more details. The beam has di-
mensions length x width x height =2 m x 50 mm x 30 mm and is characterized
by its Young’s modulus of 200 GPa and density of 7746 kg/m3. The beam dy-
namics are described by a n = 48-dimensional LTI model that is obtained by the
finite-element method. The deflection at the end of the beam is considered as the
model output y, see Figure 7.2. The output z is considered as the deflection of
the beam at the location of the nonlinear support. Moreover, an external distur-
bance u € L, acts at the middle of the beam. The LTI dynamics have 2 inputs
(m=1,s=1) and 2 outputs (p = 1,¢ = 1). An upper bound for the composed
linear gain function X, o Yz is computed using the method described in [220],
resulting in

Xaoz © You(r) < 2.39- 1074 Vr > 0. (7.51)
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Figure 7.2. One-sided clamped flexible beam supported by a nonlinear dynamic
element.

For the choice o = 3.5 - 103, the conditions of Theorem 7.4 are then satisfied.
The interpolation frequencies w; = 0, wy = 2710.2, and w3 = 2764.1 rad/sec are
chosen, corresponding to the zero frequency and the frequencies of the two first
resonance peaks. The tangential directions are all chosen as ¢ = [1 1]T, ie.,
l;=20i=1,23.

An initial model, i.e., GI%, is found by placing the poles of Siin at a subset of
the poles of ¥j;,. The composed gain function X[gog] o 'yg (r) < 2.73-10~*r of the
initial reduced-order model has a slightly larger slope than the one of the full-order
model in (7.51). Nevertheless, the conditions of Theorem 7.4, in particular (7.35),
are satisfied. A solution to Problem 7.2 is obtained by running Algorithm 7.3
starting from GI%, reducing  from 4.16 - 10~° to 5.5- 10~ 5. Based on Remark 7.4,
a lower bound for 7 in this case study is 2.65 - 1076, which is in close proximity
of the resulted « found by Algorithm 7.3. Again, an a posteriori check shows that
the conditions of Theorem 7.4 are satisfied for the final reduced-order model with
composed gain function x¢e 0 Yea(r) < 2.42 - 10~*r. Therefore, we conclude that
Assumption 7.3 is satisfied in this example and, consequently, the ISC property of
the full-order model is preserved. In the remainder of this section, the superscript
(+)° corresponds to the initial reduced-order model, e.g., f)fm The reduced-order
nonlinear feedback model, following from Algorithm 7.3, is referred to as the final
reduced-order model and denoted by Siin-

The Bode magnitude plots of the LTT part of the full-order nonlinear model,
the initial ifm and the final ilm reduced-order nonlinear models are depicted in
Figure 7.3. It can be observed that both the initial and final reduced-order models
are only accurate for low frequencies. Figure 7.4 depicts the Bode magnitude
plot of the LTI part of the error dynamics. It can be concluded that solving
Problem 7.2 indeed reduced the peak error in all transfer functions. Furthermore,
from the two right subplots, it can be observed that moment matching along the
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Figure 7.3. Bode magnitude plot of the full-order model ¥;,, initial reduced-order

model 2?”1, and final reduced-order model 3,,.

tangential direction ¢ is achieved since the LTI part of both the initial and final
reduced-order models attain zero error for the frequencies ws, ws.

Next, the time response of the full-order model and the initial and final reduced-
order models is analyzed for a block-wave excitation with a frequency 10 Hz. The
excitation signal is depicted in the bottom plot of Figure 7.5, whereas the last
period of the output response (out of 100 periods) of these models is depicted
in the top plot. It is assumed that the model responses are in steady-state in
this last period. In the middle plot, it can be seen that the error of the final
model is significantly smaller than the error of the initial model. The mismatch
ngu — @UHOO is quantified as 0.135 and 0.019, respectively, for the initial and final
reduced-order models. The computation® of the time response of the full-order
model took 36.4 seconds, whereas the simulation of the final reduced-order model
only took 0.5 seconds. This amounts to a reduction of over 98%. A significant
reduction in the computation time of model responses is one of the main reasons
for performing model reduction.

The error bound in (7.36) for the initial (¢9) and final (e,) reduced-order
nonlinear models is depicted in Figure 7.6. It can be observed that for small

3By numerical forward integration carried out on an Intel Core i7-7700HQ, 2.8 GHz processor.
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Figure 7.4. Figures 7.4a - 7.4b: Bode magnitude plot of the error dynamics 3;, —3° and the error dynamics ¥, IM::.

lin
Here, the horizontal dashed lines indicate the peak error in the correspondingly colored transfer function. Figure 7.4c:

Bode magnitude plot of the error dynamics along the tangential direction T L " The vertical black dashed lines in

the plots represent the interpolation frequencies wo and ws.
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Figure 7.5. Top: one period of the steady-state output response of the full-order,
the initial reduced-order, and the final reduced-order nonlinear models. Middle:
one period of the steady-state error between the outputs of the full-order and the
reduced-order models. Bottom: one period of the applied excitation signal.
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Figure 7.6. Error bound (7.36) computed for the initial model (¢)) and final
nonlinear model (g,).
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input amplitudes both error bounds are nearly zero. For larger input amplitudes,
however, the error bound €, of the final model is significantly smaller than the
error bound €}, of the initial model, thanks to solving Problem 7.2. Finally, it can
be observed that the error bounds are conservative, due to several approximation
steps in the derivations [31]. Nevertheless, this numerical case study shows that
reducing the error bound also results in a reduced mismatch in the steady-state
responses, as observed in Figures 7.4 and 7.5.

The matrix inequalities characterizing the set G, in Theorem 7.3 and C;.Y in
Theorem 7.6 can be considered high-dimensional as these contain the matrices of
the LTI part of the full-order model. Nevertheless, the example in this section took
less than 30 minutes to complete on an Intel Core i7-7700HQ, 2.8 GHz processor,
successfully reducing the LTT part from a n = 48-th order model to a v = 5-th
order model.

7.5.2 LTI example highlighting the benefits of Algorithm 7.3

This example demonstrates the benefits of Algorithm 7.3 on a SISO LTI example.
The considered full-order LTT model with transfer function ® has state dimension
n = 20 and is already balanced. We apply the reduction method presented in
Section 7.2 to find reduced-order models with state dimensions v = 2,4, and 6
with corresponding transfer function I'.

The magnitude of the FRF of the full-order model is depicted in Figure 7.7. The
interpolation frequencies are selected according to wy = 272.24 rad/sec and wy =
270.82 rad/sec to obtain a match at the two largest resonance peaks, and ws =
270.01 rad/sec to capture low-frequency behavior, resulting in the interpolation
points {s1,..., 86} = {£jwi, tjwa, £jws}. The frequencies wq,ws,ws are marked
with a cross in Figure 7.7. For the v = 2-dimensional reduced-order model, we only
match s, s corresponding to the largest resonance peak, for the v = 4-dimensional
model, we match si, ss, s3, 54 corresponding to the two largest resonance peaks,
and for the v = 6-dimensional model, we match all s;,7 = 1,...,6. For each case
of v, we define the matrix S according to (7.9a) and we take

L=[1 0,L=[1 0 1 0,L=[1 01 0 1 0],

for the v = 2,4, 6 cases, respectively.

Next, for each case of v, we solve equation (7.12) for the unique IT and define F
and H according to (7.11), which defines the set Gpr. From the set Gps, we select an
initial Gl € G, by pole placement. Hereto, we choose the placement locations as
a subset of the eigenvalues of A, namely: p; = {—0.337+£14.0535}, po = {—0.798+
5.21295}, ps = {—0.225, —10.490}. To assess sensitivity to the pole locations of the
initial reduced-order model, we run Algorithm 7.3 multiple times for each v, each
time starting with different initial locations as indicated in Table 7.1, where for
‘Random’, the pole locations are drawn from a normal distribution and mirrored
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Table 7.1. Considered studies for the case study in Section 7.5.2.

Study H v ‘ hyt1 H U(S—G[O]L) ‘ 7[0] ‘ Yfinal
1 D1 1.250 1.195
2 2 | 0.777 || pa2 44.084 | 1.218
3 D3 21.348 | 1.225
4 p1 and po 1.244 0.557
5 4 | 0.321 || p; and p3 11.628 | 0.550
6 p2 and ps3 16.236 | 0.557
7 p1,p2 and p3 | 0.797 | 0.066
8 6| 0.038 Random 14.943 | 0.066

to C~. The approximation error in the M., norm of the initial model with GI% is
included in Table 7.1 in the column .

Figure 7.7 depicts the magnitude of the FRF @ of the full-order model and the
magnitude of the FRFs I' of the reduced-order model for studies 1,4,7. The FRFs
obtained in Studies 2 and 3, Studies 5 and 6, and Study 8 are left out of this figure
as they are similar to the FRFs in Study 1, Study 4, and Study 7, respectively.
It can be seen that for any v, the error |®(jw) — I'(jw)| is 0 at the corresponding
interpolation frequencies wq, ws, and ws, i.e., for the v = 2 case (Study 1) at wy, for
the v = 4 case (Study 4) at wy,ws, and for the v = 6 case (Study 7) at wq, ws, ws.
This is a characteristic property of moment matching in the SISO case. Secondly,
it can be observed that increasing v yields a reduced-order model that significantly
more accurately matches the FRF of the full-order model.

The approximation error after application of Algorithm 7.3 is included in Ta-
ble 7.1 in the column ~g,,. Firstly, as expected, a larger v allows for a reduced
approximation error thanks to the increased model flexibility. Secondly, it can be
seen that in all cases, the approximation error is significantly reduced from ~!°!
t0 Yanal; in all cases within a factor 2 of the fundamental lower bound h, 1, i.e.,
Yinal < 2-hy,41. Thirdly, it can be seen that in all considered cases, Algorithm 7.3
is robust for the initial starting GI%, as it converges to the same level of approxi-
mation error in terms of v for any of the tested initial starting G, Given the fact
that the approximation error ||®(s) —I'(s)|[;,__ is relatively close to the conserva-
tive lower bound h,; in all cases and observing the robustness of Algorithm 7.3
against the initial starting G1%, we conclude that the proposed method is effective.
Nevertheless, studying the properties of Algorithm 7.3 in terms of convergence and
robustness for the starting point G remains a topic for future work. A second
conclusion is that placing the poles of the initial reduced-order model to a subset
of 0(A) is also effective. For example, placing the poles of the initial reduced-order
model at p; captures the largest resonance peak.

The iteration history for v is depicted in Figure 7.8 for each v. Based on this fig-
ure, we would like to highlight two important observations for the considered cases.
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Figure 7.7. Bode magnitude plot of the full-order model ¢ and the reduced-order
model I' of Studies 1,4 and 7 of Table 7.1.

Firstly, if we have a reasonable initial GI%, then the algorithm converges within
100 iterations, for which the computational time is approximately 10 minutes (on
an Intel Core i7-7700HQ, 2.8 GHz processor). Secondly, the switching nature of
Algorithm 7.3 helps to reduce . For example, in Study 8, several switches are
made between the CDAs in Algorithms 7.1 and 7.2, when the corresponding al-
gorithm failed to reduced ~ further. Thus, in the considered cases, Algorithm 7.3
avoids getting stuck prematurely at suboptimal reduced-order models by switching
between the different CDAs.

The switching nature of Algorithm 7.3 is further investigated for the v = 2 case
(reduction to a second-order model) with G € R”. Figure 7.9 depicts the surface
of « over a fine grid of the two entries of G, denoted by G(1),G(2), where flat
surface for large v indicates an unstable reduced-order model. The trajectories of
v in Studies 1, 2 and 3 in Table 7.1 are depicted in Figure 7.9 and the switching
points are indicated by yellow circles. From this figure, it is clear that there
exists a unique Gopt corresponding to 7opt inside the inspected range. It can be
observed that the initial point G[% of Study 2 and Study 3 is chosen relatively
close to Gops, which explains the relatively low number of iterations required upon
convergence, see Figure 7.8. The initial point G of Study 3, however, is chosen
relatively far away and requires, therefore, a relatively large number of iterations
to converge. The trajectory of Study 3 also reveals that the search direction is
changed significantly at some of the switching points represented by the yellow
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Study 1
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Study 3 ‘
Switching points '

10!

10

Figure 7.9. Surface of v over a grid of G(1) and G(2) for the Studies 1, 2 and 3 as
considered in Table 7.1. The yellow circles correspond to switches in Algorithm 7.3
between Algorithms 7.1 and 7.2.

circles, enabling further minimization of v after getting stuck prematurely.

7.6 Conclusions

This chapter has presented a model reduction approach based on time-domain
moment matching. In the LTI case, the approach exploits parametric freedom to
minimize the Ho,-norm of the transfer function matrix of the error dynamics in
addition to achieving moment matching along tangential directions. The extension
to the nonlinear case considers nonlinear models that consist of LTI dynamics
that are placed in feedback with nonlinear dynamics and only reduces the state
dimension of the LTI dynamics. The proposed approach minimizes an error bound
on nonlinear steady-state model responses. Furthermore, both the model structure
and the input-to-state convergence stability properties of the full-order nonlinear
model are preserved.
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In this chapter, we propose a kernel-based non-parametric state-space identifica-
tion approach for open-loop and closed-loop discrete-time nonlinear systems with
multiple inputs and multiple outputs. Employing a least squares support vector
machine (LS-SVM) approach in a reproducing kernel Hilbert space framework, a
nonlinear auto-regressive model with exogenous terms is identified to provide a non-
parametric estimate of the innovation noise sequence. Subsequently, this estimate
is used to obtain a compatible non-parametric estimate of the state sequence in an
unknown basis using kernel canonical correlation analysis. Finally, the estimated
state sequence is used together with the estimated innovation noise sequence to
find a non-parametric state-space model, again using an LS-SVM approach. The
performance of the approach is analyzed in simulation studies with a nonlinear sys-
tem operating both in open loop and closed loop. The identification approach can be
viewed as a nonlinear counterpart of consistent subspace identification techniques
for linear time-invariant systems operating in closed loop.

The contents of this chapter are published in: Shakib, M. F., Téth, R., Pogromsky, A.
Y., Pavlov, A., & van de Wouw, N. (2020). State-space kernelized closed-loop identification of
nonlinear systems. IFAC-PapersOnLine, 53(2), 1126-1131.
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8.1 Introduction

Identification of nonlinear systems is a challenging and active field of research
[54, 243]. One aspect that makes it challenging is the variety of systems, which has
led to a large number of model classes proposed in the literature. A generic model
class is the class of nonlinear state-space models. This model class is attractive
as it is particularly suitable for the parsimonious representation of multiple-input
multiple-output (MIMO) systems. Furthermore, many analysis and controller de-
sign tools exist for this class of models, see [135].

A discrete-time nonlinear state-space (NL-SS) model is characterized by its
state-transition map relating the current state and inputs to the state at the next
time stamp, and its output map relating the current state and inputs to the output
of the model. As there is a recursion loop in the evolution of the hidden state
variable, identification of these mappings is a challenging task [162]. Many NL-
SS identification methods exist that are based on direct identification of these
mappings using specific parametric model structures. However, the identification
corresponds to a computationally-demanding nonlinear optimization problem with
the need for efficient initialization and a model parametrization to be provided by
the user, see [96, 243]. Alternatively, non-parametric identification techniques exist
for the identification of nonlinear input-output models, see [203]. However, for
control, NL-SS models are favored over nonlinear input-output models as many
design techniques use Lyapunov’s second method, which requires a state-space
model representation. Unfortunately, state-space realization of nonlinear input-
output models is a difficult task with many unsolved problems, see [143].

If the state sequence of the underlying NL-SS model would be available, for ex-
ample, by means of additional measurements, the identification of the state-space
mappings would become a static problem, which simplifies the identification prob-
lem significantly. However, the state sequence is often unavailable, whilst obtaining
an accurate estimate of it is non-trivial. For linear time-invariant (LTI) systems,
subspace techniques, see [147] and [293], can be employed for the estimation of
the state sequence. For nonlinear systems, to this extent, [162] proposed a method
to approximate the state sequence by, in the first step, identifying a linear model,
and, in the next step, minimizing a linear cost function yielding an approximation
of the state sequence. Alternatively, [298] proposed a method based on a least-
squares support vector machine (LS-SVM) approach to obtain a state sequence,
which solves an intersection problem between future and past input/output data
using a kernelized version of canonical correlation analysis (CCA).

The method of [298] estimates the state sequence of the underlying NL-SS
model. However, in that work, the effect of noise, being inevitably present in
practice, was not taken into account, which can result in biased identification
results. To this extent, we relate to the consistency property of an estimator,
which, loosely speaking, ensures that the true model is recovered if the number of
data points tends to infinity [152]. Consistent subspace techniques for LTI systems
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operating in closed loop commonly rely on the identification of a consistent noise
model first using an auto-regressive model with exogenous inputs (ARX), see, e.g.,
[288]. Then, in the next steps, the identified noise model is used in the consistent
estimation of the state sequence and the state-space matrices (up to a similarity
transformation). In particular, we highlight the SSARX technique, see [124], which
uses a three-step approach. In the first step, a consistent ARX model is estimated
to obtain a one-step-ahead prediction model of the output, which is an aggregated
form of the system and its noise model. In the second step, the state sequence is
obtained by performing CCA to infer the state sequence as an intersection of future
and past input/output data. The third step entails the estimation of the state-
space matrices, which is formulated as a problem that is linear in the parameters
and solved using linear least squares.

In this chapter, we extend the methodology of SSARX for the identification
of LTI systems to the case of nonlinear systems. In the first step, rather than
identifying an ARX model, a nonlinear ARX (NARX) predictor model is identified
by an LS-SVM approach, which is proven to be consistent, see [58]. The prediction
error of this NARX model serves as an estimate of the innovation noise sequence,
similar to [170] for the LTI case. Next, in the second step, we use the estimated
innovation noise sequence as an additional pseudo-input to estimate the state
sequence using the kernelized CCA method presented in [298]. After that, having
also an estimate of the state sequence at hand (in an unknown state basis), in the
third and final step, we identify the state-transition map and the output map of the
NL-SS model non-parametrically, again using an LS-SVM approach. The resulting
model is characterized by the state-transition map and output map, both given
non-parametrically. An overview of the proposed approach is given in Figure 8.1.

Although we do not give an overall consistency proof, each step of the proposed
procedure corresponds to a consistent estimate under the assumption that the true
noise and state sequence are provided in the previous steps. Simulation studies,
presented in Section 8.5, show that the proposed identification strategy, both in
the open-loop and closed-loop case, outperforms the case where noise is not taken
into account in the identification process, i.e., direct application of the method
of [298]. This simulation result demonstrates that using the estimated innovation
noise sequence obtained by the identified NARX model, significantly improves the
quality of the identified model. Future work aims at proving rigorously that the
proposed method is consistent, even in the closed-loop case.

The remainder of this chapter is organized as follows. In Section 8.2, the iden-
tification problem is formally introduced. The concept of function approximation,
used in the steps of the identification strategy, is described in Section 8.3. The
overall identification approach is presented in Section 8.4. Simulation examples
are given in Section 8.5. Section 8.6 presents the conclusions of this chapter.
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Figure 8.1. Existing SSARX approach [124] for LTI systems (left). Proposed
identification approach for nonlinear systems (right).

8.2 Problem formulation and notation

We consider MIMO discrete-time nonlinear systems that can be represented by
the following set of first-order difference, i.e., state-space, equations:

Tk+1 = f(xk; Uk ek)a (813‘)
Y = h(l‘k) + ek, (glb)

where, at time instance k, the state is denoted by x; € R™, the input by u; € R™,
and the output by y; € R!. The functions f and h are called the state-transition
map and output map, respectively. The innovation noise sequence e; € R!, is
assumed to be drawn from a zero mean normal distribution with finite diagonal
covariance matrix X.. The problem we consider is to identify the state dimension
n, to identify the functions f and h non-parametrically, and to give an estimate
of the noise variance X, based on a data-set D = {uy, yr }5_, generated by (8.1),
where N is the number of data points. Conditions imposed on the mappings f and
h are given in Section 8.4, where the proposed identification method is presented.

As many systems are unstable by themselves, or only a part of the dynamics of
a more complex system is to be identified, we also consider systems that operate in
closed loop. However, to avoid the existence of an algebraic loop, i.e., the output
not being uniquely determinable, we require the assumption that either the plant
or the controller (or both) has (have) no feedthrough. Such an assumption is also
commonly adopted in the LTI case, see [288]. Here, for the sake of notational
simplicity, we assume that the plant has no direct feedthrough, i.e., the mapping h
is not a function of uy, in (8.1b). This implies that the covariance matrix E {uke;r},



8.3. Function estimation using an LS-SVM approach 185

where E denotes the expectation w.r.t. the random variables u; and eg, is a
zero-matrix if j > k, but can be non-zero for j7 < k in the closed-loop setting,
which typically results in a bias if the noise is not handled appropriately during
identification.

In the sequel, the following notation for vectors of shifted sequences of inputs is

T s . .
used: aff == [u) ... wl ., ,] . Similarly, vectors of shifted outputs and shifted
noise are denoted by g;j and ég7 respectively. Furthermore, iterative evaluations of

mapping f with respect to x; are denoted as follows:

Tr(zr) = f(ag, uk, er) = Trt1,

L (8.2)
F @, 0, e8) = frra—10...0 frs10 fu(zp).
Finally, the vector of sequential outputs is defined as:
h(lL’k) + ex
ho f1(xk, Uy, €,) + er+1
7 = hi(xy, ﬂi‘l,ég) = i (8.3)

_ A1 —d—
ho fi=Y(z, uj, 1,ek Y+ errat

8.3 Function estimation using an LS-SVM approach

In this section, we describe an approach to non-parametric function estimation.
Such function estimation is used in Section 8.4.1 to identify a NARX model and
in Section 8.4.3 to identify the mappings f and h of system (8.1).

The core concept of function estimation is to search for a function inside a
Hilbert space H, which is equipped with an inner product (-, -) and is complete with
respect to the induced norm ||g||;, = /{9, g). Given the data-set D = {z),, wi }1;,
where w € R is the set of observed outputs and z € Z C R"™= the set of (observed)
inputs, the search goal is to find the function g that minimizes the cost functional

N
. v o 1 2

min | 5 ;(wk 9(z1))* + S lallz, | - (84)
In (8.4), the first term penalizes mismatch in data-fit and the second term penalizes
function complexity measured in a Hilbert space norm, which acts as regulariza-
tion with positive regularization parameter . This (continuous) regularization
parameter can be viewed as the counterpart of the (discrete) tunable parameter
that defines, e.g., the model order in classical parametric system identification ap-
proaches. As the data-set D only contains N samples, the optimization problem
(8.4) is only well-posed if the search is restricted to the reproducing kernel Hilbert
space (RKHS) over Z. This is a space of functions g : Z — R that satisfy the
following boundedness criterion:

VgeHand Vz € Z, 30<c<o0:|g(2)] <clglly- (8.5)
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The theorem of Moore-Aronszajn, see [14], ensures a one-to-one correspondence
between RKHS of functions H over Z and symmetric positive semidefinite! kernel
functions K : Z x Z — R. Tt ensures that for every RKHS # satisfying (8.5),
a unique symmetric reproducing kernel function K : Z x Z — R exists which is
positive semidefinite and obeys the reproducing property g(z) = (g(-), K(-, 2)).
The optimization problem in (8.4) has a closed-form solution by means of the
Representer theorem, see [139]. In particular, for the RKHS #, the minimizer §
of (8.4) is given by

i) = Zdisz-) (8.6)

with K,,(-) == K(-,2) and & = [&1 ... d&n]| € RY being given by
1 o\t
Y= | — zz I FVE4S)
@ (N’C 7 N) N

where W = [wl . wN} T, In € RV*N is an identity matrix and K., € RV*N
is the Gram matrix defined by K, (i, j) == K(z;, z;). The RKHS optimal function
estimator (8.6) is known in the literature as the LS-SVM approach for function
estimation.

The quality of the data-fit depends on the selected kernel function K(-,-),
the hyper-parameters defining the kernel function, and the regularization param-
eter. A typical choice is the radial basis function (RBF) kernel: K(z;,z;) =

exp{ (—||zi - zj||§/02) }, where o > 0 is tunable hyper-parameter. The selection

of the kernel function is rather case-specific, where, among others, linear, polyno-
mial, rational, spline, and wavelet kernel functions are proposed in the literature,
see [233]. The hyper-parameters of the kernel and the regularization parameter
can be tuned in various ways, e.g., by maximizing the so-called log marginal likeli-
hood function, see [305]. The marginal likelihood function expresses the likelihood
that the mapping § maps inputs z to observations w.

Remark 8.1. If g : Z — R"s is multidimensional, i.e., ny, > 1, then n, individ-
ual functions g(;)(-), are estimated and concatenated to form the n,-dimensional

function g(-) = [9(1)(') g(ng)(‘)]T' o

8.4 Identification approach

This section presents the three-step identification approach. First, a NARX model
is estimated in Section 8.4.1 to obtain an estimate of the innovation noise sequence
er- Next, the state sequence is estimated in Section 8.4.2. Finally, the mappings
f and h are estimated in Section 8.4.3.

'K : ZxZ — R is positive semidefinite, if Yn € N, 37 Z?zl kK (2, z5)c; >
O,V{Zk,ck}zzl €7Z xR.
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8.4.1 Consistent noise sequence estimation

A nonlinear auto-regressive model with exogenous terms (NARX) is used to es-
timate the innovation noise sequence. A NARX model is an input-output model
that can be written in the following form:

Yk = fnarx(2k) + €k, (8.7a)
T
=Y o Uiy i1 e Upp] (8.7b)

In the NARX model (8.7a), the output y; € R! at time k is a function of previous
outputs yi_,; and inputs uy_; for i = 1,...,p, where p is the past window length.

Let us rewrite system (8.1) to a NARX model of the form (8.7a). First, notice
that (8.1a) can be written in the predictor form by substituting ey = yx — h(xy)
in (8.1a):

LTe+1 = f(xk,Uk, Y — h(xk)) = f(d?k,uk,yk), (88)

Next, following the notation of (8.2), x4, can be written as x4, = f?(zk, T}, 7;)-
At this stage, in the LTI case, under the assumption that a stable observer exists,
it can be shown that for p — oo, the effect of zj in x4, diminishes completely,
see [316]. In fact, this assumption is not only required to transform a state-space
model into an ARX model but is also a fundamental assumption in any subspace
identification algorithm, see [288]. In the context of subspace identification, it is
reasonable to take a sufficiently large p, such that the influence of state xj in x4,
is negligibly small, see [124]. A similar assumption is required in the nonlinear case
as well. To this end, we assume that the effect of zj on fP(xy, a},y;) is negligible
as follows.

Assumption 8.1 (Fading memory). The NL-SS model (8.1) satisfies the following
condition:

Y7z, V1o, Y1y, Vo, Yug, VYo, Ve, 3P s.t.
Vg, Ty € Byr,up € Byt yx € By, p > P ensures

‘ fp(xlmﬂZvyZ) - fp(i'k,ﬁi,yZ)“z <e

with the ball B = {z € R" : ||z — 2|, < r}. [ ]

This assumption implies that the state can be written as a function of only the
p past values of the input and output, up to an error term A(e):

T = F(’U’i_pv gﬁ_p) + A(€)>

where F(a},_,, 7 ,) = fp(O,ﬂi,yZ). By Assumption 8.1, the error A(e) can be
bounded as ||A(€)||, < €, which implies that the finite memory approximation

z ~ F(U), U p)- (8.9)
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can be made arbitrarily accurate by taking p sufficiently large. Therefore, in
the sequel, we assume that A(e) = 0. Using (8.9) in (8.1b) results in y, =
hE (G _p Ty _,)) + ex = fuarx(2x) + ek, which is of the form (8.7a).

For the estimation of fnyagrx, the function estimator described in the previ-
ous section is employed. After defining the window length p, the kernel function
Knarx(+,+) and having optimized its hyper-parameters and the regularization pa-
rameter 7, the estimate fxarx is given by (8.6), where the input data z, is as
defined in (8.7b) and, as output data, wy = yi is used. The estimate of the
innovation noise sequence is then given by

e = Yp — fNARX(Zk)- (8.10)

Assuming é is zero mean, the empirical estimate for the noise covariance matrix
3, is given by 3, = % Zi\;l ékéz.

This type of NARX modeling is analyzed in [58]. There, it is shown that if the
input zj is uncorrelated with ey, and if some other mild technical conditions on
the mapping f hold, then the estimate (8.6) is consistent, i.e.,

R 2
lim E{HfNARX_fNARXH } =0. (8.11)
N—oo HNARX

As ey, is uncorrelated with z; (even in the closed-loop case due to the absence of a
feedthrough term in h(xy) in (8.1b)), the estimate of the innovation noise sequence
in (8.10) is also consistent, i.e., the true innovation noise sequence is recovered if
the number of data points tends to infinity. Based on this estimate, we define the
extended data-set D = {ug, yi, ék}{f:pﬂ.

The consistent estimation of the innovation noise sequence is key in our three-
step approach as it allows us to perform the subsequent two steps, namely, esti-
mation of the state sequence and estimation of the state-space mappings, also in
a consistent manner. In the LTT case, it is already shown that the crucial step of
estimating a noise model is essential to prove consistency for the subsequent steps
in the closed-loop case, see [288]. Although we do not prove that our overall iden-
tification procedure is consistent, simulation examples show that the quality of the
model fit improves significantly when using the estimate é in the next identification
steps, compared to the case where the noise sequence is not used.

8.4.2 State sequence estimation

Having the data-set D at hand, the goal in this section is to provide a method
to estimate the state sequence. In this respect, [298] proposed a method to do
this based on input and output data. However, in that work, noise was neglected,
which could lead to poor model quality in case noise is present, especially in the
closed-loop case. Considering the data-set D, we view the estimated innovation
noise sequence as an additional pseudo-input. In that way, we can use the method



8.4. Identification approach 189

proposed in [298] to find an estimate of the state sequence. Furthermore, a form
of consistency can be proven for this state sequence estimate, assuming that the
true innovation noise sequence was obtained in the previous step. What follows is
a brief recap of the approach of [298] adapted to our notation.

The CCA method, introduced by [114], is a statistical method to study the
linear relations between sets of variables. It is the foundation of the so-called
intersection-based subspace algorithms for LTI systems, which rely on the state
sequence being a minimal interface between past and future input and output
data. In those algorithms, CCA is applied to find the state sequence as a linear
combination of the past data, such that it optimally predicts the future data.
By introducing a kernel function, linear CCA can be performed in a kernel feature
space, hence the name kernel CCA (KCCA). KCCA transforms the sets of variables
nonlinearly in order to find their maximal correlation.

The basic idea is to, first, write the state xj as a function of, on the one hand,

past inputs and outputs ¢f == [(7i_,) " (al_,)" (éﬁ_d)T]T and, on the other

hand, future inputs and outputs ¢ 4, i.e., 2x = Cpy (¢f) = Py (941 4) where d is
the window length. The existence of mapping ®,, (gbg) is ensured by Assumption
8.1, see (8.9). To support the existence of mapping Py (Q_Sg+d), the notion of

strong local observability is adopted.
Definition 8.1 ([182]). System (8.1) is strongly locally observable at (xy,uy,er) if

rank 8h”(a:k,az_1,é§§) =n.
8Ik

It is assumed that (8.1) has a fixed-point (z% u% €% 3°), such that 20 =
F(@% 1l e%) and y° = h(2®) + €°. Next, the following observability assumption is
posed.

Assumption 8.2. System (8.1) is strongly locally observable according to Definition
8.1 at the equilibrium (x°,u°,e®, 4°). [ ]

Assumption 8.2 ensures that the state x; can be uniquely determined from
a finite sequence of future input vectors az_l,ég and output vectors gjg, in the
neighborhood of the equilibrium.

By formulating a KCCA problem on past data QZZ and future data J)ﬁ 4q using
an LS-SVM approach, we arrive at the regularized generalized eigenvalue problem
(RGEP)

vplKpp + 1 0
0 vees +1

Kpp 0

n
K

n
K

A, (8.12)

where A is the diagonal matrix containing the eigenvalues, v, and vy are the regu-
larization parameters (to be optimized), and ICp, and K¢y are the Gram matrices
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whose elements are evaluations of the selected kernel function K, (-, -) and Kz (-, )
on the past data (ﬁﬁ and future data QEZ +a> Tespectively. The state dimension n can
be estimated by the number of dominant eigenvalues values in the RGEP (8.12).
Solving this RGEP results in the canonical vectors n and k. Subsequently, the
estimate for the state sequence obtained from future data is # = ., K s, where
Kim = [/ﬁ /1"] and n is the state dimension. Similarly, the estimate for
the state obtained from past data is & = 7., K,,. The sequences & and i are
estimates of x in an unknown nonlinearly transformed state basis. With the state
estimate at hand, the data-set D is extended with the estimated #; and denoted
by D = {Uk,yk,ék,@k}f;;id_ﬂ- The regularization parameters v, vy, and the
hyper-parameters of the kernel functions Kp,(-,-) and Kss(-,-) can again be tuned
in various ways. In general, this is a nonlinear optimization problem that can be
solved, for example, by a grid search.

Consistency of the estimation of the state sequence via this KCCA approach
is claimed by [87] and is understood in the sense that the so-called regularized F-
correlation is consistently estimated if the number of data points tends to infinity.
Hereto, it is required that the mappings ®,,(-) and ®;(-) belong to the RKHS #,,
and H s, defined through the kernel functions K,,(-,-) and Kys(-,), respectively.
The consistency claim only holds if the true innovation noise sequence is recovered
in the previous step.

8.4.3 State transition and output mappings estimation

Once the estimate & for the state is available, the identification of the state tran-
sition map f and the output map h of (8.1) becomes a static problem. Hereto,
again, the function estimator introduced in Section 8.3 is employed to identify the
mappings f and h non-parametrically based on the data-set D.

For the identification of f, the input z = [#] u} ékT]T and output wy, =
Zp41 are selected. Then, after defining the kernel function Ky(-,-) and tuning its
hyper-parameters and the regularization parameter, the identified f is given by
(8.6). The mapping h is identified using the input 2z = 2} and the corrected
output wy =y — é;. Again, after defining the kernel function Kp(-,-) and tuning
its hyper-parameters and the regularization parameter, the identified output map
h is given in (8.6).

The identified NL-SS model is then given by

Tri1 = flan,up,er),  yp = h(zy) + ex, (8.13)

where the mappings f and h are non-parametric. This non-parametric model is
characterized by the data-set ’15, the kernel functions Ky and K, their associated
hyper-parameters and the regularization parameters used to estimate f and h.
The identification of the mappings f and h is a special form of the identification
of the NARX model in Section 8.4.1. Therefore, a similar consistency claim as in
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(8.11) can be formulated. Again, for consistency here, it is crucial that in the
previous steps the true innovation noise sequence and the true state sequence are
recovered.

8.5 Illustrative example

In this section, we assess the performance of the proposed identification approach
in a simulation study, both in the open- and closed-loop case. The system under
study is inspired by the so-called logistic map:

1
Tyl = Exk(l — :L'k) +ug + ek, Yr = Tk + €k. (8.14)

In the open-loop case, the input u is selected as a zero-mean normal distribution
with variance 02 = 0.01. The closed-loop case considers the simple feedback law
up = rE — Y, where 7y, is the reference trajectory, taken from a zero-mean normal
distribution with variance o2 = 0.01. The innovation noise sequence ey, is drawn
from a zero-mean normal distribution with variance o2, which is chosen to ensure
the prescribed signal-to-noise ratio? (SNR) of {1,10,20} dB. For each SNR, a
training and validation data-set containing N = 1000 samples starting from a zero
initial condition is generated.

To assess the influence of using the estimated innovation noise sequence (ob-
tained by identifying a NARX model), three models are identified on each data-set,
namely Mg, M; and M.. Model M corresponds to the case where noise is not
handled in the identification process, implying that only the second step, state es-
timation by KCCA, and the third step, identification of the state-space maps, are
performed. Model M; corresponds to the case where the three-step identification
approach is performed, thus the estimated innovation noise sequence é is used to
estimate the state sequence and to identify the state-space mappings. Model M,
corresponds to the case where the NARX model returns the true innovation noise
sequence, which would be the case for N — oo under the consistency claim (8.11).
Thus the true innovation noise sequence e is used in the estimation of the state se-
quence and the identification of the mappings f and h of model M,. Performance
of each identified model M;, for i = {0, é, e}, is assessed using the so-called best
fit rate (BFR), which is defined as follows:

BFR := 100% - max (1 _ M= Gl ,0) . (8.15)
|yx — mean(yx) ||,

Regarding implementation, the NARX model and the mappings f and h are
identified using the Gaussian Process toolbox, see [208]. The KCCA problem

T
det 7#det>(ydet 7Hdet)

eel

2SNR [dB] := 10 - log; (<y ) where ydet is the output of system (1) for

el = 0V k and pdet := mean(ydet).
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(8.12) is solved by the KMBOX-toolbox, see [295]. The regularization parameters
of the KCCA problem are specified as v, = vy = 3000 for all cases. A polynomial
kernel k(z;,z;) = (2, 2; + ¢)¢ with order £ = 2 and constant ¢ = 1 is used in all
identification steps. The window length p = 2 for the estimation of the NARX
model is selected and the window length d = 2 for the estimation of the state
sequence is selected.

Table 1 presents the results of the open-loop case, whereas Table 2 presents
the results of the closed-loop cases. It can be observed that model My performs
the worst, in both the open- and closed-loop cases. This is expected, as during
the identification of this model, no information on the innovation noise sequence is
used. The identification approach presented in this chapter, yielding the model Mg,
shows that estimating the innovation noise sequence using a NARX model indeed
improves the model fit quality significantly. However, the quality of the estimated
innovation noise sequence determines the quality of the estimated state sequence
and, subsequently, the quality of the identified mappings f and h. Therefore, when
assuming that the NARX model returns the true innovation noise sequence, as is
done in the identification of model M., it can be seen that an almost perfect fit
is ensured for any SNR, validating the second and third steps of the identification
approach. Obtaining a good estimate of the innovation noise sequence is a matter
of collecting a sufficiently large dataset. It can also be observed that the BFRs
in the closed-loop case are generally better than the BFRs in the open-loop case.
This is a result of the feedback in the closed-loop case forcing the variance of uy
to become larger than the variance of uj in the open-loop case.

For the open-loop case with an SNR of 1, a window of the true innovation
noise sequence e and the estimated é are depicted in the top plot of Figure 8.2.
The bottom plot shows the true response y and the simulated response ¢ of model
M. For the sake of comparison, also an LTI state-space model is identified on
the data-set D, which produces the output g1, also depicted in the same plot.
Clearly, it can be concluded that the nonlinear nature of (8.14) cannot be captured
by an LTT model, which is also reflected in the BFR being only 22.2% for the LTI
model.

8.6 Conclusions

This chapter has presented a three-step approach to the identification of kernel-
based non-parametric nonlinear state-space models for discrete-time nonlinear sys-
tems operating both in open and closed loop. In the first step, a NARX model is
identified using an LS-SVM approach, which yields an estimate for the noise se-
quence. In the next step, the noise sequence is used to estimate the state sequence
using KCCA. The final step estimates the state-space mappings using, again, an
LS-SVM approach. Although we do not give an overall consistency proof, the iden-
tification approach relies on consistent estimations in each step. Proving overall
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Table 8.1. Open-loop identification results.

Data-Set Training Validation
SNR [dB] 1 10 20 1 10 20
BFR (%] My || 34.8 | 64.6 | 83.5 | 32.5 | 62.3 | 84.8
BFR [%] M. || 84.4 | 84.8 | 98.2 | 83.9 | 85.6 | 97.8
BFR [%] M. || 99.3 | 99.7 | 99.5 | 99.2 | 99.7 | 99.5

Table 8.2. Closed-loop identification results.

Data-Set Training Validation
SNR [dB] 1 10 20 1 10 20
BFR [%] Mg || 28.1 | 69.6 | 88.1 | 27.7 | 69.4 | 88.6
BFR [%] Mg || 94.1 | 96.6 | 98.4 | 93.4 | 96.9 | 98.4
BFR [%] M. || 99.8 | 99.8 | 99.8 | 99.8 | 99.8 | 99.8
g
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Figure 8.2. Top: true innovation noise sequence e and estimated innovation noise
sequence é. Bottom: true response y, response y of nonlinear model M; and
response g1 of the identified LTI model.
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consistency is considered a part of future work. In simulation studies, the iden-
tification approach obtains accurate predictions on both training and validation
data, both in the open-loop and closed-loop cases. The proposed approach can be
viewed as a kernel-based non-parametric counterpart for nonlinear systems of the
SSARX approach for LTI systems.



Kernel-based identification of
nonlinear state-space models
with stability guarantees

This chapter presents a kernel-based approach for the identification of non-parametric
nonlinear state-space models with a focus on enforcing a strong form of model sta-
bility on a user-defined compact state and input set. Such a form of model stability
provides robustness of the identified models to new inputs unseen during the train-
ing phase. The stability concept enforced in this work is called convergence, which
guarantees that responses converge to a bounded time-varying steady-state solution
and remain inside a user-defined positively invariant set. Using a two-level op-
timization approach, the optimal model structure in terms of hyper-parameters is
selected via a nonlinear optimization problem at the top level, whereas a specific
model is selected at the bottom-level problem by solving a convex optimization prob-
lem. The benefits of the approach are illustrated using a simulation example and
using the Silverbox benchmark dataset.

The contents of this chapter are published in: Shakib, M. F., Téth, R., Pogromsky, A. Y.,
Pavlov, A., & van de Wouw, N. Kernel-based identification of nonlinear state-space models with
stability guarantees. In preparation.
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9.1 Introduction

Given the complexity of today’s engineering systems, it can be a challenging task
to derive parametric dynamic models from first-principle laws. Therefore, data-
based modeling using black-box non-parametric nonlinear state-space models has
become more and more popular in the recent years [27, 29, 215, 313]. However,
non-parametric models often lack interpretability as these are typically described
by a large number of model parameters that do not have any physical meaning. In
particular, it is difficult for humans to predict the model response to new inputs,
given the fact that even a slight input perturbation can result in a wildly different,
possibly unbounded, response of the identified nonlinear model. Consequently,
there is a trend towards the identification of non-parametric models with stability
guarantees [70, 125, 215, 221, 274], ensuring, e.g., bounded trajectories. Such
stability properties add to the robustness of the identified nonlinear model to
inputs that were unseen during training.

A particular class of methods for non-parametric nonlinear state-space model-
ing is the class of the so-called kernel-based methods [54], which include approaches
like regularization networks [58], support vector machines [269]), and Gaussian re-
gression [82, 141]. These methods are extensively used as these provide a high
level of modeling flexibility and are, under certain conditions, universal approxi-
mators [58, 202, 266], i.e., can approximate continuous functions arbitrarily well.
However, given the complex function description of kernel-based nonlinear state-
space models, analysis of model properties, such as stability, is challenging. To
address this challenge, the work in [26] considers autonomous kernel-based non-
parametric state-space models and analyzes fixed points and their local stability
for a selection of kernels. Despite these analysis results, these works also show that
analysis of such models is non-trivial as, for example, computing the fixed-points of
such a model with the popular squared-exponential kernel can, in general, not be
done analytically [26]. There are also identification methods that enforce stability
properties on the identified model. For example, the works in [79, 137, 138, 307],
present methods to identify autonomous kernel-based non-parametric state-space
models whose origin is globally asymptotically stable. The method in [255] enforces
the identified autonomous model to be locally contracting, whereas [36]) enforces
global contraction. The method in [285] focuses on the squared-exponential kernel
and identifies autonomous models that exhibit bounded solutions.

The above-mentioned kernel-based state-space modeling methods only deal
with autonomous systems, i.e., systems without external (time-varying) inputs.
As many systems are subject to inputs, the non-autonomous modeling counterpart
calls for new kernel-based methods that enforce a strong form of model stability
on identified non-autonomous models. There are several works in the scope of
enforcing a strong form of stability on identified non-autonomous models. For
example, [215] imposes contraction on a large class of neural network models,
[1, 280, 283] impose incremental stability for black-box polynomial state-space
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models, and [247, 251] imposes convergence for models that can be decomposed
into a feedback interconnection between linear dynamics and static nonlinearities.
However, none of these methods is directly applicable to kernel-based state-space
models.

In this chapter, an identification method for mnon-autonomous kernel-based
discrete-time state-space models that enforces the convergence stability property
is presented. This stability notion guarantees the boundedness, uniqueness, and
global asymptotic stability of the steady-state solution [66, 197, 200]. However, in
our proposed approach, a non-global version of convergence is used, namely con-
vergence on compact invariant sets. Such a version is naturally suitable for system
identification as system data is only observed in compact sets. The identification
problem is cast as a two-level optimization problem. The top-level problem deals
with the minimization of the simulation error criterion and selects the ‘model
structure’ by tuning, e.g., the kernel hyper-parameters. The bottom-level problem
deals with the minimization of the regularized equation error criterion. Crucially,
at the bottom level, convergence can be enforced in a conver manner using linear
matrix inequality (LMI) constraints.

Using a simulation example, it is shown that identification without enforcing
model stability can result in an unstable model response on a new dataset. Such
unfavorable scenarios are excluded using the proposed approach in this chapter.
Moreover, the Silverbox benchmark dataset is used to evaluate the predictive per-
formance of the identified model and to highlight again the stability benefits of
the proposed approach.

The remainder of this chapter is organized as follows. The identification prob-
lem is formally introduced in Section 9.2. A two-level solution to the identification
problem is proposed in Section 9.3. The simulation and benchmark study are
presented in Section 9.4. Section 9.5 closes with the conclusions of this chapter.

Notation: The symbols R,R>¢,C, and Z denote the set of real numbers, non-
negative real numbers, complex numbers, and integer numbers, respectively. The
symbol I,, denotes the n x n identity matrix and the symbol 0,, denotes the zero
vector of dimensions n x 1. A symmetric matrix A € R™*™ is called positive
(negative) definite, denoted as A > 0 (A < 0), if all its eigenvalues are strictly
positive (negative). For a vector x € R", its Euclidean norm is denoted by |z|.
Given a matrix P > 0 and a vector x € R", |z|p denotes Va T Pz.



198 Chapter 9. Kernel-based identification with stability guarantees

9.2 Problem statement

9.2.1 Data-generating system

Consider MIMO discrete-time nonlinear data-generating systems represented by
the following set of first-order difference equations:

Ty = f(@g, up), (9.1a)

Uk = WMTx, ug) + ex, (9.1b)

where, at time instance k € 7Z, the state is denoted by Z; € R™, the input is
denoted by u; € R™ and the output is denoted by 7 € R!. The noise e; € R/,
is assumed to be independent and identically distributed white with a zero-mean
normal distribution with finite diagonal covariance matrix ¥., making (9.1) to
have an output error (OE) type of noise structure. The mapping f is called
the state-transition map and the mapping & is called the output map. Without
loss of generality, we assume that the origin is a fixed point for zero input, i.e.,
0, = f(0pn,0p,). System (9.1) is called the data-generating system. The class of
bounded inputs U, is defined as follows for any constant ¢ € R>q:

Ue = {Hurtrez | ur € Ue, Yk € Z} (9.2)
with U, being a ball around the origin defined as follows:
U ={ueR™||ul <c}. (9.3)

Solutions of system (9.1a) for inputs u € U, are all sequences {Zy,, uy }32,, € R"™
that satisfy (9.1a) with Zy € R™. If no confusion arises, such a solution is denoted
by Z.

It is assumed that the data-generating system (9.1a) exhibits a strong form
of model stability for any input from an a priori known input class U.. Hereto,
the notion of global convergence, defined in [199], is adapted to convergence on
compact sets and is defined as follows.

Definition 9.1. The discrete-time nonlinear system (9.1a) is said to be exponentially
convergent in a set X C R™ for a class of inputs U, if for every u € U,:

o there exists a solution T, called the steady-state solution, that is defined and

lies in X for all k € Z;

o the steady-state solution T is exponentially stable for any initial condition in
X, i.e., there exist scalars T € R>g and 0 < p < 1 such that for any Tg € X,
the solution T satisfies:

T — Tp|? < Tp"|E0 — o>V > 0. (9.4)
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Note that for the zero input, i.e., up, = 0, for all k € Z, the origin of a convergent
system (9.1a) is an exponentially stable fixed-point for initial conditions in X
Furthermore, for any time-varying input sequence from U,, the exponentially stable
steady-state solution Z is in general also time-varying. Consequently, the effect of
initial conditions fades out, which can be exploited in an identification setting that
uses steady-state response data to avoid the dependency on initial conditions, as
is done in [251].

Assumption 9.1. The data-generating system (9.1a) is exponentially convergent
according to Definition 9.1 on the user-defined convergence region X for the user-

defined class of inputs U,. ]

Remark 9.1. With some adaptions, the identification approach proposed in this
chapter can be extended to include systems with process noise. In that setting, the
identification approach in [250] enables the estimation of the noise realization e
and a sample-based estimate of the covariance matrix X, from input-output data
directly. Consequently, the noise sequence can be treated as an additional input
during the subsequent estimation of f and h. A

9.2.2 Model class

For the estimation of f and h, a reproducing kernel Hilbert space (RKHS) based
modeling approach is taken, where basis functions are defined through a so-called
kernel function. The considered model class is defined as follows:

Expyr = f(x, ug) E o K (g, u),

Yk = h(w, u) Zﬂz (ks ),

where the functions KX (zg,ur) : R” x R™ — R and Kf(xk,uk) :R*xR™ - R
are kernel slices, generated by symmetric, positive definite kernel functions. The
weights a; € R™, 5; € R, for alli € {1,... N}, with N5 the number of kernel slices
used, and the matrix F € R"*"™ are model parameters. An example of a popular
kernel function is the squared-exponential kernel function defined as follows [233]:

a _ ,b|2
K(2%,2%) := exp (_|225Z|> , (9.6)

where the kernel width ¢ > 0 is tunable hyper-parameter and 2%, 2% € R? and p
a positive integer. For the problem at hand, the kernel slices in (9.5) are then
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defined as follows:

woiese (7))

where 2 € R",uf € R™ i = 1,..., Ny, are so-called pseudo inputs [259] or in-
ducing variables [279]. The pseudo inputs are also part of the tunable hyper-
parameters and facilitate efficient sparse implementation [259, 279].

The kernel function choice translates to the resulting function space. The
identification approach in this chapter can be applied to almost any kernel function,
e.g., linear, polynomial, rational, spline, and wavelet kernel function [233], or the
squared-exponential kernel function as in (9.6). The only requirement is that
the kernel K¢ is differentiable with respect to z in the convergence region X.
Furthermore, the kernel functions generating the kernel slices in f and h in (9.5)
can be selected independently. The selected kernel functions, together with the
choice for kernel hyper-parameters and pseudo-input locations, define a, possibly
infinitely large, set of basis functions [14, 139].

9.2.3 Identification problem

The dataset denoted by D contains N samples of the input u, output g, and the
state Z of the data-generating system (9.1), and is defined as follows:

D = {up, Gk, Tk hor- (9.8)

The availability of the state sequence Z is exploited in the solution to the identifi-
cation problem proposed in Section 9.3. In practice, however, full-state measure-
ments are not always available in addition to input and output measurements. A
compatible state sequence can then be estimated using a kernelized version of the
canonical correlation method, as outlined in [218, 250, 298]. It is assumed that
the data is generated from the zero initial condition.

For the input u from the dataset D, the response of model (9.5) starting from
the zero initial condition is denoted by {zy, yk}fc\f:l. Based on the model response,
the simulation error criterion is defined as follows:

1 N
Jeo = — ie — vl 9.9
N 2 9% — vl (9.9)

Furthermore, the convergence region X is defined as the convex hyperellipsoidal
set:
X:={zecR" |z Xz <1}, (9.10)

characterized by the user-defined matrix 0 < X € R™*™. Note that the matrix
X can always be chosen such that X contains the state sequence Z in the dataset
D, i.e., {ik}szl € X. However, the user is free to choose the set X arbitrarily
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large to accommodate model extrapolation without instability issues. Based on
the simulation error criterion (9.9), the convergence region X', and the user-defined
input class U,, the identification problem is formalized as follows.

Problem 9.1. Consider the data-set D in (9.8), the convergence region X in (9.10),
and the class of inputs U, in (9.2). Find a model of the form (9.5) such that the
simulation error criterion Js. in (9.9) is minimized and such that the identified

model (9.5) is exponentially convergent on the convergence region X for the class
of inputs U,. VAN

In practice, verifying whether the true system is convergent on X’ for the class
of input U, is a non-trivial task. Therefore, Problem 9.1 can be interpreted in
two different ways. Firstly, if the data-generating system is indeed convergent,
e.g., inferred by analyzing its responses, then Problem 9.1 aims at preserving
this property for the identified model. Secondly, if it is unknown whether the
data-generating system is convergent, then Problem 9.1 aims at enforcing the
convergence property because it is a favorable model property for the usage of the
model, e.g., for reliable model simulation for new inputs.

Problem 9.1 considers the simulation error criterion, which is preferred over,
e.g., the equation error criterion, as models identified using the simulation error
criterion typically exhibit accurate long-term predictions [240]. However, simula-
tion error minimization comes at the expense of an optimization problem that is
nonlinear in its parameters due to the recursive evaluation of the to-be-identified
state-transition dynamics. Therefore, a tailored approach to solve Problem 9.1 is
presented in the next section.

9.3 Identification via two-level optimization

In this section, the identification problem is formulated as a two-level hierarchical
optimization problem. At the top level, the kernel hyper-parameters, regulariza-
tion parameters, and the pseudo-input locations are optimized using the simula-
tion error criterion defined in (9.9). At the bottom level, the weights o, §; for
i€ {l,...,Ng}, and the matrix E are optimized using the equation error criterion.
The latter problem is formulated as a jointly convex optimization problem in the
error criterion as well as in its constraints encoding the convergence property.

9.3.1 Convex identification of convergent models

To facilitate convex identification of convergent models of the form (9.5) at the
bottom level, the regularized equation error criterion is introduced together with
a convex characterization of the convergence property. Consider the regularized
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equation error criterion defined as follows:

- 2 N 2
L Z Th Z ~ g
Jee 1= — HExk-H -Tlmuk Hz + 2N — Hyk h(xk7uk)H2

2

(9.11)

)

R +1
)H 2 H

; (ﬁu)

where H”?—t = (-,-) is the squared Hilbert-space norm, defined for functions in a
RKHS, and f(i) : R™ x R™ — R is the i-th element of the vector-valued function

f:R* x R™ — R" (and h;y is defined similarly). The RKHS is defined through
the kernel function (and its hyper-parameters), see [14] for details. Essentially,
the error criterion (9.11) is the one-step-ahead prediction error criterion with ad-
ditional regularization terms (the last two terms in (9.11)) to avoid overfitting and
control the bias-variance trade-off via the regularization-parameters v¢, v, € R>g.
The model parameters F and «;,3; € R™, ¢ = 1,..., Ny, are collected in the pa-
rameter vector § € R™ with ng := n? + 2nN,, where N, is the number of pseudo
inputs. The equation error criterion in (9.11) is quadratic and hence convex in
the model parameter vector §. Using the convex set X defined in (9.10), an LMI
feasibility test for the convergence property on X for models of the form (9.5) is
presented in the next theorem using the notation:

N

Az, u) = Z o 6;? (x,u). (9.12)

Theorem 9.1. Consider model (9.5), the convergence region X in (9.10), and the
class of inputs U, in (9.2) defined through U, in (9.3). Assume that A(x,u) ezists
for all (z,u) € (X,U,.). If there exists a matriz P € R™™"™ such that:

P> 0, (9.13a)

T_ T .U
[EX(L;’U)P A (P’ )] -0, (9.13b)
E+ET—X  f(z,u) .
WA (9-13¢)

for all (x,u) € (X x U.). Then, model (9.5) is exponentially convergent in the set
X under any inputs from U.. As a consequence, any two solutions starting from
xd, 28 € X, with the same input u € U, will remain in X, i.e., xE, azz eX,Vk>0.
Furthermore, there exist scalars T € Ry and 0 < p < 1 (defined in the proof in
Appendiz G.1), such that any two solutions starting from xg,z8 € X with the same
input u € U, converge exponentially to each other, i.e.,

|z¢ — 2% |2 < 7p"|ad — 22, VE > 0. (9.14)

A
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Proof. The proof can be found in Appendix G.1. O

Condition (9.13b) enforces (exponential) incremental stability on (X,U.),
whereas condition (9.13¢) enforces positive invariance of the set X for inputs from
U.. The latter property of the set X’ for the model (9.5) implies that there exists
a solution = that lies in X for all k € Z, see [198, Lemma 2]. As a consequence,
(exponential) convergence according to Definition 9.1 is guaranteed. The condi-
tions of Theorem 9.1 are convex in the matrix P and the parameter vector 6 as
these appear linearly in the conditions (9.13).

For most kernel choices, the function f in (9.5) is non-convex in z and w.
Consequently, the conditions of Theorem 9.1 have to be verified for all (x,u) € (X' x
U,). For some specific parametrization of the state-transition map f in (9.5), the
conditions of Theorem 9.1 can be verified efficiently, for example using a polynomial
basis function expansion for f and the sum of squares programming techniques,
see [1, 280, 283]. Unfortunately, that approach does not apply to kernel-based
modeling using a generic class of kernels, as is the considered case in this chapter.
To make the conditions computationally tractable, the verification is performed
on a grid, where the sets A8, Ug denote the gridded version of the convergence
region X' and the input space U, respectively. This is further motivated by the
observation that the matrices in the conditions of Theorem 9.1 depend continuously
on (z,u). The grid density trades off the risk of violating the constraints (9.13)
for some (x,u) € (X,U.) against the numerical complexity.

Besides the parameter vector #, an additional parameter vector is introduced
which collects all remaining parameters. This vector is denoted by ¢ € R™® with
Ng = Nhyp + 2 + (n + m)Ny, and collects (i) the nyyp, number of kernel hyper-
parameters; (ii) the regularization parameters ~ys,vs, in (9.11); and (iii) the N,
number of pseudo-input locations (xf,u?),i =1,..., N;.

Given the conditions of Theorem 9.1 and the gridded sets A%, U, the model
set ©(¢) is defined as follows:

O(¢) := {0 € R™ | (9.13) is feasibleV (z,u) € (X8,U%)}. (9.15)

The set ©(¢) encodes the convergence property such that any candidate model
0 € O(¢) satisfies the conditions of Theorem 9.1 on the grid (X9,U9). It is
assumed that this grid-based test, for a sufficiently dense grid, gives exponential
convergence on the non-grid-based convergence region X with the non-grid-based
input space U.. The dependency of the set © on ¢ is via the constraints (9.13b)
and (9.13c), both depending inherently on ¢. Note that for any 6§ € ©(¢), the
quadratic form x"(E + ET)x is positive definite, guaranteeing the existence of
E-1.

With some abuse of notation, the equation error criterion (9.11) is written as
Jee (0, ¢) with arguments 6 and ¢. Using this notation, for any given choice of
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parameters ¢, the following constrained optimization problem is formulated:

90pt,ee(¢) = arg min Jee(97 ¢)7 (916)
0€0(9)

which is jointly convex in the parameter vector € in the criterion as well as in its
constraints. The constrained optimization problem (9.16) is called the bottom-level
optimization problem.

Remark 9.2. For any ¢ € R™, and any selected kernel function, the set ©(¢)
in (9.15) is non-empty because model (9.5) with F = X, o; = 0,5; = 0,i =
1,..., Ny, satisfies the conditions of Theorem 9.1. In fact, such a model is globally
convergent. A

Remark 9.3. A selection for vector ¢ can be interpreted as a selection of the model
class. For example, a change in the kernel hyper-parameters or the pseudo-input
locations results in different functions generated by the kernels. The vector 6 can
be interpreted as the parametrization of the specific model. A similar two-level
optimization problem was also proposed in [136] for system identification. VAN

9.3.2 Two-level hierarchical optimization problem

The bottom-level convex problem (9.16) is exploited to formulate a two-level op-
timization problem:

(eopt’ (bopt) = arg min Jse(eopt,ee (¢)? (b) (917)
Gopt,eeeRnG ,ti’ER"d’

subject t0 Oopiee(P) = argmin Je. (0, ¢).
0€O(9)

The top-level problem minimizes the simulation error criterion Jg. in (9.9) for the
kernel hyper-parameters, regularization parameters, and pseudo-input locations,
all collected in ¢. As the top-level optimization problem is unconstrained, by
the grace of Remark 9.2, it can be solved in various ways including global, non-
gradient-based optimization such as particle swarm optimization.

The bottom-level problem considers a fixed ¢, coming from the top level. Given
the fact that the equation error criterion Je. in (9.11), as well as the constraints,
are jointly convex in € (and the matrix P in Theorem 9.1), the bottom-level op-
timization problem can efficiently be solved using, e.g., interior-point methods or
the ellipsoid method [42]. As a result, the bottom-level optimization problem can
be interpreted as a mapping from ¢, D to the optimal Oyp.cc With a unique Oopsce
for each ¢, D, allowing for efficient implementation.

To initialize the problem, the following unconstrained optimization problem is
solved:

(eini‘m ¢init) - arg min Jee(ea ¢) (918)
OER™0 ,pcR"¢
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with the regularized equation error criterion J.. defined in (9.11). Taking a
Bayesian view, this problem boils down to Gaussian Process regression [209] and
can be efficiently solved using, e.g., the GPML toolbox [208], which allows learn-
ing all parameters in ¢ and 6, including the pseudo-input locations using, e.g., the
Fully Independent Training Conditional (FITC) approach [259] or the Variational
Free Energy (VFE) approach [279]. Initialization results in (i) a small number of
optimal pseudo-input locations; and (ii) optimal initial values for hyper and reg-
ularization parameters. However, the resulting model does not necessarily satisfy
the conditions of Theorem 9.1. Furthermore, this model may not be optimal in
terms of the simulation error criterion Js. defined in (9.9).

Starting from an initial parameter vector ¢ini;, the two-level optimization prob-
lem (9.17) can be solved effectively using nonlinear optimization. The identified
model is guaranteed to be convergent on the user-defined convergence region X
for the class of user-defined inputs U.. Moreover, since the simulation error forms
the top-level criterion, the identified model has optimal long-term prediction ca-
pabilities.

9.4 Numerical case studies

This section first presents a simulation case study that highlights the benefits of the
identification strategy proposed in this chapter. After that, the proposed approach
is evaluated using the Silverbox system benchmark dataset ([304]). The main
contribution of this chapter is the identification of the state-transition mapping
with the convergence property enforced. Therefore, the focus of this section is
on the identification of the state-transition mapping. The predictive quality of
the identified mapping is evaluated using the best fit rate (BFR) of the simulated
model response. The BFR is defined as follows:

BFR := 100% - max (o, TR ki PR ) , (9.19)
[|Z — mean(Z)|,

where # is the (measured) response of the data-generating system and z is the
model response computed by the forward simulation using the input from the
dataset. The BFR can be computed for both the training and test datasets. For
national convenience, the variable v is used in the remainder of this section to
denote the collection of parameters 6 and ¢.

9.4.1 Implementation details

In both studies, the top-level optimization problem is solved using the controlled-
random search algorithm ([206]). The bottom-level optimization problem is solved
using MOSEK ([13]) in combination with YALMIP ([157]). Initialization is performed
using the GPML toolbox ([208]), where the optimal pseudo-input locations are found
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using the FITC method, see ([259]). These pseudo-input locations were not opti-
mized further after initialization.

9.4.2 Demonstration of benefits on a simulation case study

Consider the following data-generating nonlinear system:

up — 222 + 3221y, if v > m,,
Tpe1 =8 up+) if |z| < a4, (9.20)
uy + 223 + 3223, if 2 < —xy,

where x, = 0.5. The dataset D of length N = 100 is generated using an input
sequence drawn from a normal distribution and scaled such that |ug| < 1, for
all k € {1,..., N}, thus u € U. with ¢ = 1. Using this dataset, two models are
identified using the third-order polynomial kernel and a number of Ny = 10 pseudo
inputs. Firstly, in a traditional fashion, a model of the form (9.5) is identified in an
unconstrained manner according to [209], hence not guaranteed to be convergent.
This model is referred to as the non-convergent model with estimated parameter
vector 1, (collecting both € and ¢). Secondly, a model of the form (9.5) is
identified using the proposed approach in this chapter for the set X' characterized
by X =1, ie., X := {z € R | |z|] < 1}, and for the class of inputs U, as in
(9.2) with ¢ = 1. This model is referred to as the (optimal) convergent model
with parameter 1.. For the implementation of the LMI constraints characterizing
the set ©(¢) in (9.15), the input and state-space are gridded equidistantly to
give 5 points in X and U.. The identification results are depicted in Figure 9.1.
Although both models perform well, the non-convergent model performs slightly
better on the estimation data, which is also evident by a best-fit-rate of 95.4% for
the non-convergent model versus 91.0% for the convergent model. This accuracy
result is expected as the proposed approach in this chapter sacrifices accuracy for
guaranteed model stability via the convergence property.

Next, both models are subjected to a new test input that is again drawn from
a normal distribution and scaled such that its maximum absolute value is 1. This
test input is again from the class of input U, with the same constant ¢ = 1 as used
in the identification step. It can be observed in Figure 9.2 that the response of the
identified non-convergent model for this new input grows unbounded, even though
the response of the data-generating system remains bounded. The response of the
identified convergent model, however, remains within X, i.e., within |z| < 1, as
enforced. The BFR for the convergent model is 78.7% on the test data.

For scalar models, the conditions of Theorem 9.1 can only be guaranteed to hold
if the Jacobian of the state-transition mapping £ 1 f with respect to x remains in
absolute value below 1 for (z,u) € (X, U.). This necessary condition is violated for
the identified non-convergent model for zero input, as can be seen from Figure 9.3.
The identified convergent model does satisfy this necessary condition.
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Figure 9.1. Response of the data-generating system together with the simulation
error of the identified convergent and non-convergent models.
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Figure 9.2. Bounded response of the data-generating system for the test input.
The response of the identified convergent model remains within |z| < 1, whereas
the response of the identified non-convergent model becomes unbounded.
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Data-generating system

2 \

Convergent model 1), Non-convergent model .
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Figure 9.3. The state-transition mapping (top) of the data-generating system,
identified convergent model, and identified non-convergent model for zero input,
together with their Jacobian (bottom) for zero input.
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This example illustrates the potential instability hazards of identified models
with traditional approaches, even in a noiseless scenario and without input ex-
trapolation. Furthermore, it highlights the benefits of the proposed approach in
this chapter, namely guaranteed bounded model responses inside the user-defined
convergence region X’ for any input from the user-defined input class U.. The con-
vergence property thus provides robustness of the identified model to new inputs
from U,.

9.4.3 Silverbox benchmark

The Silverbox system is an electronic implementation of the Duffing oscillator,
which can be modeled as a second-order mass-spring-damper system with a non-
linear cubic spring nonlinearity. The benchmark dataset was proposed by ([304])
and has attracted many researchers to test their identification methods, see ([27])
for an overview.

The benchmark dataset consists of input @ and output § sequences that can
be split into an estimation part and a test part. Notably, the excitation amplitude
of the test data exceeds the excitation amplitude of the estimation data, thereby
subjecting the identified model to an extrapolation test. Using this dataset, a
surrogate state sequence is defined as follows:

@kz[N Yr ]ERQ, k=2,..., N, (9.22)
Ye — Yk—-1

where the second state element has the interpretation of the ‘velocity’. The model
output y is defined as the first state element 2(1). Using this dataset, two models
are identified using a third-order polynomial kernel and a number of only Ny = 10
pseudo inputs. Similar to the simulation study in the previous section, firstly, a
model of the form (9.5) is identified in an unconstrained manner, referred to as the
non-convergent model with parameter .. Secondly, a model of the form (9.5) is
identified using the approach in this chapter for the set X’ characterized by

X = [_95 185} , (9.23)

and for the class of inputs U, with ¢ = 0.15 as in (9.2). Both the state sequence in
the estimation and test data lie in the interior of the set X'. This identified model
is referred to as the convergent model and is characterized by the parameters ..
For implementation purposes of the LMI constraints, the input and state space
are both gridded. The grid location locations & are depicted in Figure 9.6. The
input space is equidistantly gridded at 10 points in U,. The identification results
are depicted in Figure 9.4. The reported BFRs are 83.6% for the convergent model
and 91.7% for the non-convergent model. The so-called root-mean-square (rms)
error [304], used for benchmarking, is 8.9 mV for the convergent model and 4.5
mV for the non-convergent model. Again, the convergent model is expected to
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Figure 9.4. Response of the identified models for the estimation data input.
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Figure 9.5. Response of the identified models for the test input.

give less accuracy as this model sacrifices accuracy for guaranteed model stability
via the convergence property.

The responses of both models are depicted in Figures 9.5 for the test input.
Especially for large input amplitudes, both models exhibit large errors with the
rms values of 12.3 mV for the convergent model and 6.0 mV for the non-convergent
model. The responses of both the convergent and non-convergent model for this
test input lie in the interior of the set X, as is observed from the z(1),z(2) plane
in Figure 9.6.

Although less accurate in this example, the identified convergent model exhibits
additional stability properties, which are highlighted next by a simulation study.
As an input, we take a random binary sequence between —0.14 and 0.14, see the
top plot of Figure 9.7. These limits are smaller than the amplitudes of the input in
the test dataset. The model responses are depicted in Figure 9.7, where it can be
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Figure 9.6. The response of the identified models for the test input in the
x(1), z(2)-plane. The green circles represent the grid points in X,.

seen that the non-convergent model produces unbounded responses. Thus, even
if the non-convergent model produces bounded responses for the test data (see
Figure 9.5), there are no guarantees that the model produces bounded responses
for new inputs, even if the new inputs do not exceed the input amplitude of the
test data. The convergent model, however, produces bounded responses, which
also remains inside X as verified in the x(1), z(2)-plane in Figure 9.8.
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Figure 9.7. The input (top) and response (bottom) of the identified models for
a new binary test input. The response of the non-convergent model becomes
unbounded, whereas the response of the convergent model remains bounded.
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Figure 9.8. The response of the identified models for the binary test input in the
x(1), z(2)-plane. The response of the identified convergent model remains inside
the set X
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9.5 Conclusions

This chapter has presented an approach for the identification of kernel-based non-
linear non-parametric state-space models with stability guarantees. The identified
models are guaranteed to remain inside a user-defined positively invariant set for
a class of user-defined inputs. Consequently, these models safely generalize toward
unseen scenarios, which provides robustness of the identified models to new inputs.
The benefits of the approach are illustrated by means of a simulation example and
the Silverbox benchmark dataset. In both cases, the identified models generalize
in a favorable manner for new inputs, whereas other methods produce unbounded
responses for unseen scenarios.
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10.1 Conclusions

The data-driven modeling and complexity reduction problems are considered in
this thesis. As follows from the literature review in Sections 1.3 and 1.4, the field of
nonlinear data-driven modeling faces the challenges of (i) constructing expressive
classes of models to capture a large class of nonlinear systems; (ii) enforcing model
stability to enhance generalization toward unseen, new inputs, especially for safety-
critical applications; and (iii) enabling computationally efficient identification for
time-restrictive applications, also for continuous-time modeling. Furthermore, the
field of model reduction for gemeric nonlinear models faces the challenges of (i)
structure- and stability-preserving reduction for model generalization toward new
inputs; (i) finding error bounds for the quantification of errors between the full
and the reduced models; and (iii) optimal reduction to minimize errors between
the full and the reduced models. These challenges have formed the overarching
research objective of this thesis.

Develop tools for the computationally efficient identification and optimal
model reduction of nonlinear models with stability guarantees.

This objective is further split into the Research objectives I - VIII formulated in
Section 1.5. The contributions of this thesis toward these research objectives are
detailed next.

Chapters 2 and 3 propose identification approaches based on steady-state data
for the class of Lur’e-type models. Lur’e-type models can be decomposed into a lin-
ear time-invariant (LTT) block that is placed in feedback with a static nonlinearity
and fall into the class of block-oriented models. The identification approach guar-
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antees the identified model to be exponentially convergent. This property ensures
the boundedness and global exponential stability of uniquely defined steady-state
solutions. Hence, for any (unseen) bounded input, qualitative predictions of model
outputs can be given, namely: model responses remain bounded, model responses
corresponding to different initial conditions converge to the exponentially stable
steady-state response, and model responses corresponding to small changes in the
input remain close to each other. This provides robustness to the identified model
for unseen inputs. Furthermore, these identification techniques utilize numerically
efficient tools to compute model responses and gradient information, enabling fast
identification cycles. The approach in Chapter 3 can be viewed as the discrete-
time counterpart of the continuous-time approach in Chapter 2 with an extended
model class such that multiple-input, multiple-output (MIMO) systems with mul-
tiple nonlinear functions can be considered.

The benefits of these approaches are demonstrated in numerical and exper-
imental case studies. The continuous-time approach in Chapter 2 reduces the
total identification time from hours to only minutes in simulation studies. Fur-
thermore, this approach is experimentally validated in mechanical ventilation, a
technique used to regulate the breathing of patients in respiratory distress during
the nursery of intensive-care and acutely-ill surgical patients. In this study, the
identification of the parameters of a first-principle model, including the patient’s
lung parameters, is addressed. The proposed identification method significantly
reduces the identification time, thereby enabling faster patient treatment with the
aim to avoid negative consequences for the patient’s lungs and saving valuable time
for the medical practitioner. The identification approach for the discrete-time case
in Chapter 3 is demonstrated on the Wiener-Hammerstein benchmark dataset and
the Silverbox benchmark dataset. In conclusion, the methods in Chapters 2 and
3 present computationally efficient approaches for the identification of Lur’e-type
models with stability guarantees.

Chapter 4 proposes a framework for analyzing the mismatch between steady-
state system responses and steady-state model responses caused by model simu-
lation, output sampling, and disturbances. Such a mismatch is inevitable in prac-
tice as real-life dynamic systems evolve in the continuous-time world whereas their
models are simulated in the digital world using discrete-time numerical simulation
algorithms. The model response is then used in a variety of systems and control
problems, e.g., the system identification problem in Chapter 2. Two types of mis-
matches are analyzed for the class of convergent Lur’e-type models, namely (i) the
steady-state mismatch between the sampled measured system response and the
simulated model response; and (ii) the steady-state mismatch between the actual
system response and the simulated model response. Here, the steady-state model
responses of Lur’e-type models are computed using the mixed time-frequency al-
gorithm. The first bound (i) provides a measure of the mismatch between the
sampled measured system response and the simulated model response. This bound
also addresses aliasing effects due to sampling, which are particularly important
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in system identification problems. The second bound (ii) gives essential insights
into the intersample behavior that is not captured by sampling the system’s out-
put response. For example, in the system identification problem, such an error
quantification can be instrumental to distinguish between structural model errors
and errors caused by the sampling process or model simulation algorithm. Us-
ing a simulation study, valuable insights into the factors causing the mismatches
are gained. Furthermore, this study showed that a reduction of the bounds also
results in a reduction of the mismatches. This latter insight gives value to the
formulated methods to reduce the derived bounds and, thereby, the mismatches.
In conclusion, Chapter 4 enables qualitative and quantitative characterization of
the steady-state mismatch between system and model responses for the class of
convergent Lur’e-type models.

Chapter 5 considers the model order reduction by time-domain moment match-
ing problem for MIMO LTI models. Pre-existing Krylov-projector methods ob-
tain a match between the transfer-function matrices of the full-order and of the
reduced-order models along so-called tangential directions. This chapter derives a
matching property of time-domain moment matching for MIMO LTT models and
shows that, in general, this property is not consistent with the matching property
obtained by pre-existing Krylov-projector methods. To achieve consistency, the
derived matching property is exploited to formulate additional conditions on the
time-domain moment matching parameters. In conclusion, Chapter 5 derives a
matching property of time-domain moment matching for MIMO LTT models and
formulates additional conditions to guarantee consistency with Krylov-projector
methods.

Chapter 6 extends the notion of moments of nonlinear models from the local
to the global case for a generic class of convergent nonlinear models. Hereto, the
center manifold theorem used in the local context is replaced by a global invariant
manifold theorem for convergent models. Using this global extension, a construc-
tive reduction approach for convergent Lur’e-type models is proposed. In this
approach, only the dimension of the LTI block of the Lur’e-type model is reduced
by a tailored approach using the LTI time-domain moment matching method.
Such a reduction approach is motivated by the fact that many engineering sys-
tems exhibit only local and low-order nonlinear behavior. The proposed approach
is structure-preserving, inherits the frequency-response function interpretation of
the LTI moment matching method, preserves the convergence property, and is
equipped with an a posteriori error bound. The preservation of the convergence
property, in particular, enables reliable model usage for generalized inputs with-
out showing instability issues. This benefit is highlighted in a case study, where
the reduced-order model accurately matches the moment of the full-order Lur’e-
type model and accurately describes the steady-state model response under input
variations. In conclusion, Chapter 6 presents a global extension of time-domain
moment matching for generic convergent nonlinear models and proposes a tailored
reduction approach for Lur’e-type nonlinear models.
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Chapter 7 presents optimal model order reduction techniques for MIMO LTI
models and MIMO nonlinear feedback models. In the LTI case, this approach
matches the moments of the full-order model, preserves model stability, and min-
imizes the approximation error in the H..-norm. The nonlinear case considers
convergent models that can be decomposed into a feedback interconnection be-
tween LTI dynamics and nonlinear dynamics. Then, the LTI reduction technique
is further exploited and adapted to reduce the dimension of the LTI dynamics
of nonlinear feedback models. This reduction approach is structure-preserving,
convergence-preserving, equipped with an error bound between the steady-state
response of the full-order and the reduced-order nonlinear models, and minimizes
this error bound. Moreover, this chapter proposes a numerical procedure to solve
the model reduction problems. This numerical procedure is of independent inter-
est as it can be applied with minor adaptions to a wide variety of optimization
problems with bilinear matrix inequality (BMI) constraints. In numerical case
studies, this iterative algorithm prevents getting stuck prematurely and effectively
finds accurate reduced models, both in the LTI and nonlinear feedback cases.
In particular, in the nonlinear feedback case, the found optimal nonlinear model
achieves higher accuracy compared to other methods that are not necessarily opti-
mal. In conclusion, Chapter 7 presents optimal model order reduction techniques
for MIMO LTT models and MIMO nonlinear feedback models.

Chapter 8 considers the problem of kernel-based identification for closed-loop
systems. For this problem, an identification technique is proposed that is inspired
by the three-step approach of the consistent SSARX method for the identification
of LTT systems that operate in a closed loop. In the first step, rather than iden-
tifying an auto-regressive model with exogenous inputs (ARX), a nonlinear ARX
(NARX) model is identified by a least-squares support vector machine (LS-SVM)
approach. The residual of the fit of the NARX model serves as an estimate of the
noise sequence. Next, in the second step, the estimated noise sequence is treated
as an additional deterministic input to estimate a state sequence using a kernelized
version of canonical correlation analysis. Finally, having also an estimate of the
state sequence at hand, in the third step, the state-transition and the output map
of the nonlinear state-space model are identified again using an LS-SVM approach.
Each of the three steps of the proposed procedure corresponds to a consistent es-
timate under the assumption that the true noise and state sequence are provided
in the previous steps. Using simulation studies, the performance of the proposed
identification strategy is analyzed. A Comparison with the case where noise is not
taken into account highlights that the proposed approach significantly improves
the model quality. In conclusion, Chapter 8 presents a three-step kernel-based
identification procedure for closed-loop systems, where each step corresponds to a
consistent estimator.

Chapter 9 considers the identification problem of kernel-based state-space mod-
els with stability guarantees. The proposed approach enforces the convergence
property on compact sets using linear matrix inequality (LMI) constraints. This
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stability property guarantees that model solutions remain inside a user-defined
positively invariant set for user-defined input classes. Consequently, these mod-
els safely generalize toward unseen scenarios, which adds to the robustness of the
identified models. The benefits of the identification approach are illustrated us-
ing simulation examples and the Silverbox benchmark dataset. In both cases, the
identified models generalize favorably to new inputs, whereas other methods pro-
duce unbounded responses for unseen scenarios. In conclusion, Chapter 9 presents
an approach to the kernel-based identification of nonlinear state-space models with
stability guarantees.

Summarizing, this thesis presents approaches for data-driven nonlinear model-
ing and complexity reduction of nonlinear models. The focus is on guaranteeing a
strong form of model stability, namely convergence.

10.2 Recommendations

This final section presents recommendations for future research directions for data-
driven nonlinear modeling and complexity reduction of nonlinear models. The
recommendations are grouped per chapter.

Chapters 2 and 3 present numerical tools for the efficient computation of
steady-state model responses, instrumental for the system identification problem.
Given the increasing interest in neural network models and their long identifica-
tion times [315], it is recommended to research the applicability of the numerical
tools in these chapters to neural network models. For example, in [214, 215], it
is shown that a large class of neural network models can be written in a model
structure close to the model structure considered in Chapter 3. In particular, the
approach in [215] uses unconstrained optimization to identify large-scale neural
network models with the contractivity property (a global stability notion, simi-
lar to convergence) and input-output properties expressed by integral quadratic
constraints. It is recommended to merge the unconstrained optimization method
from [215], together with the fast model simulation tools presented in Chapter 3
of this thesis to form an identification strategy that is flexible and computationally
efficient for identification problems utilizing steady-state data. For the continuous-
time counterpart presented in Chapter 2, it is recommended to research the com-
bination of a continuous-time Lur’e-type model with a neural network model to
maintain model interpretability (obtained from first-principle modeling), enhance
modeling flexibility (obtained from the neural network), and enhance identification
speed (thanks to the simulation method in Chapter 2). Furthermore, for enhanced
model flexibility, it is recommended to extend the methods in Chapters 2 and 3 to
a more generic model class, e.g., where the nonlinear feedback can also be dynamic,
similar to the model class considered in Chapter 7.

Chapter 4 introduces a unifying framework in which errors between system re-
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sponses and model responses due to sampling, model simulation, and disturbances
can be analyzed for the class of convergent Lur’e-type models. It is recommended
to use the results of this chapter to analyze and reduce errors between model
responses and measured system responses for the identification of Lur’e-type sys-
tems. Furthermore, as simulation accuracies are of fundamental importance for
many other systems- and control-related problems, e.g., model-predictive control,
it is recommended to research how this framework can be extended to other non-
linear model structures and other stability concepts, e.g., input-to-state stability.
Moreover, it is recommended to pursue less conservative error bounds, e.g., in
the direction of Remark 4.6 aiming to exploit the smoothness properties of the
excitation signal in the derivations of the bounds. Finally, it is recommended to
also account for modeling errors. Such modeling errors can already be taken into
account via the disturbance signals. However, treating these separately enables
utilizing more information, possibly leading to tighter error bounds.

Chapter 5 proposes conditions under which time-domain moment matching for
MIMO LTI models is consistent with the Krylov-projector method. The MIMO
case is essential for certain applications, for example, the ones in Chapters 6 and
7 of this thesis where a MIMO LTT block is interconnected with static or dynamic
nonlinear elements. Besides the conditions for consistency, it is recommended to
research other properties of time-domain moment matching for MIMO LTT models.
For example, in the single-input, single-output (SISO) case, tangential directions
do not play a role and completeness can be shown, i.e., all models achieving mo-
ment matching are inside the parametrized set of reduced-order models, see [16,
Proposition 1]. However, in the MIMO time-domain moment matching case, com-
pleteness is only shown partially, see Theorem 7.2, and it is challenging to obtain
a stronger completeness claim, see also Remark 7.3. Furthermore, it is also rec-
ommended to research the effect of the selection of the tangential directions on
additional properties in the MIMO case. For example, an instrumental property
would be to select the tangential directions such that matching in the individual
transfer functions is obtained.

Chapter 6 extends the notion of a moment of a nonlinear model from the local
to the global context. Based on this extension, Remark 6.2 states that families of
reduced-order nonlinear models can be found similarly as is done in [16]. These re-
duced models are constructed based on the availability of the mapping between the
state of the signal generator and the steady-state state of the full-order nonlinear
model. In general, finding an exact representation of this mapping can be chal-
lenging. Therefore, it is recommended to research how this mapping can be found
analytically or numerically for certain classes of nonlinear models. To estimate
this mapping, in [225, 226], a basis function expansion is used. However, to guar-
antee the convergence property for the reduced model, the so-called Demidovich
condition should be satisfied for the selected basis functions. It is recommended
to research what choices for basis functions are instrumental for complying with
the Demidovich condition to efficiently find convergent reduced-order models. A



10.2. Recommendations 223

final recommendation is to utilize the parametric freedom of time-domain moment
matching to fit the transient response of the reduced nonlinear model to the tran-
sient response of the full nonlinear model, similar to [223] for LTT models. Such a
fit aims at accurately capturing the transient response of the full nonlinear by the
reduced nonlinear model (in addition to the steady-state response).

Chapter 6 also introduces a constructive reduction method for Lur’e-type mod-
els. This method uses a grid-based quantification of the mismatch between the LTI
part of the full-order and of the reduced-order models via a frequency-domain er-
ror criterion. Firstly, it is recommended to complement this error criterion with a
frequency-domain weighting in accordance with Remark 6.4, enabling emphasized
accuracy demands in certain frequency ranges. Secondly, as a grid-based quantifi-
cation does not provide optimality guarantees for frequencies not on the grid, it is
recommended to exploit the smoothness properties of the frequency-domain error
criterion to conclude for frequencies not on the grid. Thirdly, it is recommended to
explore alternatives that do provide optimality guarantees for all frequencies, e.g.,
by the minimization of the Hs- or Ho.-norm of the error transfer function matrix
of the LTI part, similar to the proposed approach in Chapter 7 of this thesis.
Finally, as the grid density is a user choice, it is recommended to investigate the
effect of grid density on the reduction performance and computational expense.

Chapter 7 proposes an optimal model reduction method for linear and nonlinear
models. This approach utilizes BMI constraints to characterize the mismatch
between the LTI part of the full and of the reduced models. The main drawback
of this approach is that these BMI constraints are high-dimensional, making the
approach computationally demanding. It is recommended to research ways to
relax the computational demands, especially for large-scale problems. For example,
employing a grid-based quantification of the mismatch between the LTI part of
the full and reduced models, similar to the one proposed in Chapter 6, may reduce
the computational demands. Even though a grid-based quantification does not
provide formal accuracy guarantees, such an adaption may be favored for large-
scale problems. Finally, it is recommended to research the effect of the choice
of interpolation points and tangential directions on the accuracy of the reduced
nonlinear model.

Chapter 7 also introduces a numerical procedure to solve optimization prob-
lems with bilinear constraints. This combined algorithm combines two coordinate
descent algorithms (CDA). In the numerical examples in this chapter, it is demon-
strated that this combined algorithm is robust with respect to the initial starting
point and prevents from getting stuck as would have happened using either of the
two CDAs independently. Given this potential, it is recommended to research the
properties of this algorithm in terms of its convergence and its convergence speed.
Furthermore, this numerical procedure can be applied to a variety of systems- and
control-related problems, such as the model reduction by time-domain moment
matching (as in Chapter 7 of this thesis), the model matching problem, and the
optimal static output feedback problem. It is recommended to research whether
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this proposed combined algorithm can find better numerical solutions to these
problems compared to the two CDAs or other traditional solvers that are available
in the literature.

Chapter 8 proposes an identification approach for kernel-based nonlinear mod-
els that also handles closed-loop systems. This approach consists of three steps,
where each step corresponds to a consistent estimate. However, overall consis-
tency has not been proven for the three steps combined and is recommended to
be pursued in future research. Furthermore, it is recommended to validate this
approach experimentally. Choosing a suitable kernel function in an experimental
setting can be more challenging compared to the simulation study in Chapter 8.

Chapter 9 introduces an approach for the identification of kernel-based non-
linear models with stability guarantees. This approach uses a grid-based LMI
feasibility test to enforce the convergence property. It is recommended to research
the effect of gridding on the computational complexity and the reliability of en-
forcing the convergence property. Furthermore, it is recommended to exploit the
structure of certain kernels, e.g., the convergence constraints for models using the
polynomial kernel may be enforced via the sum of squares programming method,
without the need for gridding. This can reduce the computational complexity
and improve the reliability of the results. Moreover, it is recommended to extend
the approach to the continuous-time setting as well. Finally, it is recommended
to merge the approaches in Chapters 8 and 9 to form an overall identification
approach to be validated experimentally.
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Appendices to Chapter 2

A.1 Proof of Theorem 2.2

Proof. The proof consists of three parts. In the first step, the expected value of the
cost function (2.5) with respect to the noise e is analyzed. Under Assumption 2.2,
it can be shown that

E[Jn(0)] =Vn(0) + 07 (A1)

with Viy(6) defined in Assumption 2.3. Since the noise variance o2 is f-independent,
by Assumption 2.3 (persistency of excitation), a unique global minimum of E [Jx (6)]
exists. By Assumption 2.1 (system in the model class), this unique global minimum
is (90, as VN(H()) =0.

In the second step, uniform convergence of Jy(6) to E[Jy(6)], in the mean
squared sense, is analyzed. Under Assumption 2.2, the following expression is
derived:

0) —E[InO))?] = 20t + 02 A2
E (/v (0) ~EINO))] = w0t + 102, (A.2)
where v == & :itf {(ﬁo(tk) — Z(tg, 9))2} < 00 is a bounded constant represent-

ing the squared error between the bounded measured steady-state response % ()
and the bounded steady-state model response Z(tj,6) over one steady-state pe-
riod. Since 02,02 are finite by Assumption 2.2 and + is finite for any § € © by

Assumption 2.1 (thus also in a neighborhood of 6y), the following limit holds:

lim E [(JN(e) -E [JN(e)])ﬂ = 0. (A.3)

N —oo

In the final step, having (A.1) and (A.3) at hand, along the same lines as the
proof of Theorem 2 in [262], it is concluded that On converges in probability to g
as N — oo, i.e.,

lim E [y — 6] =0.

N —oc0
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This completes the proof. O

A.2 Proof of Theorem 2.4

Proof. The proof is given for the scalar case of # and can be repeated analogously
for each component of a vector-valued 6. First, consider the following property of
Lur’e-type models (2.2) satisfying the conditions of Theorem 2.1.

Property A.1 ([196]). Consider model (2.2). Under the conditions of Theorem 2.1,
if 01(h) converges to 03 as h — 0, and T-periodic w1(t, h) converges to T-periodic
wa(t) uniformly in t € [to,to + T), then the corresponding steady-state solution
Ty, (t,0) (L, 01(R)) converges to Ty, (1) (t, 02) uniformly int € [to,to+T) ash — 0. A

Let us show that for p(t,6,h) := +(Z(t,0 + h) — Z(t,0)) there exists the limit
xg(t,0) := 0x/00(t,0) = limy,_0p(t,0,h). For notational convenience, we drop
the argument ¢ from here on and we define 0+ := 0 + h.

As follows from the definition of the steady-state solution Z(6) of the model (2.2),
for h # 0,p(0, h) is a T-periodic function satisfying the dynamics

dp(0, h)
dt

(A(0T)z(07) — A(0)z(9)) +

(=BOF)e(HO), w,0") + B(0)p(5(0), w.0)) + % (L(OF) = L(9)) w,

S =

which can be written as

AOH)z(0F) — A(0T)3(0)) + % (A(6)z(0) — A(0)z(6)) +

—BOT)p(5(07),w,0") + B0 )p(5(0"), w,0)) +
=B )p(5(07"),w,0) + B0 )((0), w,0)) +
—B(07)e(5(0),w,0) + B(0)(y(0), w,0)) + % (L) = L(6)) w.

The existence of the partial derivatives with respect to # and the uniform con-
vergence of p(6, h) to xg is proven in the same way as in [196]. Taking the limit
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limp 0 p(6, h) and applying Property A.1, allows to write

ig(0) =A(0)x0(0) + Ag(0)7(0) — Bo(0)((0), w,0)
— B(0) (pa(5(0), w, 0) + ¢y (5(0), w, 0)ya(0)) + Lo (0)w,

where w, Z(0) and §(#) are considered as inputs. From here, it is straightforward
to show

and present the sensitivity system as in (2.13).

Let us next prove that model (2.13) satisfies conditions C1 - C8 of Theorem
2.1. Condition C1 is satisfied since the matrices A, B and C of the LTI block of
(2.13) are the same as those of model (2.2). Condition C2 holds with the same K
as for the model (2.2) since |9p/dy(g(0),w,0)| < K for all §(0) € R,w € R, and
0 € ©. Condition C3 holds automatically since A, B, C, and K remain unchanged.
Application of Theorem 2.1 to model (2.13) concludes that for the T-periodic input
[Z(0),w,y(0)], model (2.13) has a unique T-periodic steady-state solution Zg(6).

O
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B.1 Proof of Theorem 3.1

Proof. The proof is split into two parts. In the first part, it is shown that the
conditions of Theorem 3.1 imply satisfaction of the conditions of Theorem B.1 in
Appendix B.5.1 for global exponential convergence (GEC). These conditions are
recalled from [126] for the case where D = 0,,,xn,,- The second part shows that
model (3.2) is GEC, also for D € R™v*"w,

Part 1: Consider model (3.2) with D = O, xn,, and with the nonlinearity satis-
fying the incremental sector bounds [~1y , I,,,]. Consider the loop-transformation
u(k) = u(k)—Cz(k), resulting in the nonlinearity satisfying the incremental sector
bounds [0,,,,21,,] and the transformed matrix A= A— BC, see [135]. This trans-
formation can be incorporated in inequality (3.5) by pre- and post-multiplication
with the matrix

[ 1,, -CT
_Ony XNy I’ny :| ’

and its transpose, respectively, resulting in:

AT] . [AT]" [P —CT
{BT}P BT} —[* L ]<o. (B.1)

Under the conditions of Theorem 3.1, there exists a P > 0 such that the matrix
inequality (3.5) holds for P = P. In turn, this implies that the inequality (B.1)
holds for P = P. Observe that inequality (B.1) is equivalent to inequality (B.19)
in Appendix B.5 if (A, Pi1,S51,9Q,7) are replaced by (;1, P, %Iny,QIny, 1). Note
that 7 = 1 is not allowed as 0 < 7 < 1 in Theorem B.1. By application of [126,
Lemma 3], it can be concluded that an additional variable 7 exists, with 0 <
7 < 1, such that (B.19) holds for 7 = 7. Satisfaction of inequality (B.19) implies
satisfaction of inequality (B.20) if (A4, €, P, Sz) are replaced by (A, 2I,,,P,11,,).
Since all conditions of Theorem B.1 hold and the transformation u(k) = a(k) —
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Cx(k) does not affect the GEC property [200], model (3.2) with D = 0, xn,, and
whose nonlinearity satisfies the incremental sector bounds [~1y,,, I, ], is GEC for
any bounded input.

Part 2: Given that model (3.2) with D = 0,,xn, satisfies the conditions
of Theorem 3.1, it only remains to show that the model (3.2) is also GEC in
the generic case with D € R™*™»_ The statements of Theorem B.1 rely on
global exponential incremental stability and the existence of a compact positively
invariant set in which the steady-state dynamics reside. It is sufficient to show
that, irrespective of the presence or absence of matrix D, the dynamics obey these
two properties.

Consider the incremental Lyapunov function V (k) = ||z1(k) — ;vg(k)H?s Sat-
isfaction of (3.5) guarantees that such V exists and satisfies

V(k+1)—7V(k) <0, Vay,z0€R™ keZ, (B.2)

for some 0 < 7 < 1. Since the nonlinearity ¢ is globally incrementally sector
bounded, the incremental stability property is invariant in the presence or absence
of matrix D. Therefore, V' can also be used as an incremental Lyapunov function
for the dynamics (3.2) with D € R *"w,

Next, we prove that a compact positively invariant set exists in which the
steady-state solution Z resides. Define the mapping f : R"* x R"» x Z — R"= as

follows:
f(z,w, k) = Az + Bo(Cx + Dw, k) + Lw. (B.3)

Consider the following metric:
1f (& w, k)I[B <I1f (@, w, k) = 0,0, k)5 + (10, w, k)| (B.4)
By global incremental stability, inequality (B.2) can be applied as follows:
2 _ o2
||f(l‘,’w7k’)—f(07’w,/€)H13 STH‘THI:“ (B‘5)

Furthermore, thanks to the incremental sector bounds [~Iy,, I,,] on the nonlin-
earity ¢, for any bounded input w, there exists a constant 0 < C,, < 400 that
bounds the term || f(0, w, k)||?5 as follows:
1£(0,w,k)[[3 = | Bo(Dw, k) + Luwl?
2 2
< |[Be(Dw, k)5 + [ Lw|/p
< |BDwl|% + ||Lw||% < Cu < +00.

Then, | f(z,w, k)||?5 < %||x||§5 + Cy upper bounds (B.4), resulting in the compact
positively invariant set

1-7

{"”” eR™ | flal/3 < -2 } (B.6)
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Together with the global exponential incremental stability property, this implies
GEC for the dynamics (3.2) and for bounded inputs. In conclusion, the conditions
of Theorem 3.1 guarantee that model (3.2) with D = 0,,,xn,, is GEC (Part I) and
model (3.2) with D = R, xp,, is GEC (Part 2), which closes the proof. O

B.2 Proof of Theorem 3.2

Proof. Consider two arbitrary nonlinearity input signals yf, yf’i] € (5" (N) defined
at an arbitrary iteration ¢ > 0 of the iterative process (3.15). Application of (3.15)
on yf’i] with p € {a, b} results in:

y€+1] = (]:'yu o ]:'uy) yﬁ] + Fyw 0w, (B.7)

in which ]:'yu and }A'gw are linear steady-state operators (defined similarly to
(3.12)). Furthermore, F,, is the nonlinear steady-state operator defined in (3.14).

Consequently, the ‘distance’ between yﬁ +1) and yf’l +1) reads

b I T T T b
HyfliJrl] ~ YL+ o = H (]:yu © ]:uy) yﬁ] - (]:yu © ]:uy) Yl (B.8)

ov’
This distance can be upper bounded using the following two inequalities:

1. By the incremental sector bounds [~1,,, I,

], the following inequality for the
nonlinear steady-state operator ]:'uy holds true for any yy,ya € 5" (N):

||U1 - u2||zg“ = H]}uyyl - ]:-uyy2 S chHyl - y2‘|g;?f (B9)

o
with K, = 1.

2. The following inequality for the linear steady-state operator ]:"yu holds true
for any uy,us € 65 (N):

< Ks|lui — ug

LN
EZ

||y1 — y2||é;y = Hﬁyu/LLI — ﬁyuUQ [gu . (B.].O)

Under the conditions of Theorem 3.2, the conditions of Lemma B.1 in Ap-
pendix B.4 are satisfied, which guarantees Ky, = ||Gs,, (z)HH <1

Combining inequalities (B.9) and (B.10) reveals the following bound for any y;,y2 €
0y (N):

H (]}yu ° ﬁ“y) b — (]:—Uu °© ]}uy) Y2

v S chKEHyl - y2‘|e;y7
2
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which is the right-hand side of (B.8) after substituting y; = yﬁ] and yo = yfi].
Therefore, we conclude

i S KoK Hyﬁ] — (B.11)
~—— £

<1

Hyﬁﬂ] - yf

Since K,Kx < 1, the composed mapping (]}yu ) fuy) is a contraction mapping
having a unique fixed point y. Noting that the true steady-state solution g of
(X, ) is a fixed point of the iterative procedure in (3.15), i.e

= (]i"yu o ﬁuy) 7§+ Fyuw, (B.12)

we conclude that the limit of the iterative procedure (3.15), i.e., yj;) for i — oo,
equals the true steady-state solution g of (X, p).

B.3 Proof of Theorem 3.3

Proof. This proof uses the notations as introduced in Section 3.3.2 to improve
readability. The product- and chain rule for differentiation are applied to the
model (3.2), such that

xo(k +1) = Agz(k) + Axg(k) + Byu(k) + Bug(k) + Low(k), (B.13a)
yo(k) = Coz(k) + Cxg(k) + Dow(k), (B.13b)
z9(k) = Fox(k) + Fro(k) + Gou(k) + Gug (k) + Hyw(k), (B.13¢)
uo(k) = o (G(k), k) + ¢y (5(k), k) yo (k). (B.13d)

where it used that wy = 0. All partial derivatives exist by Assumption 3.1. After
substituting (B.13d) into (B.13a) and (B.13c), we arrive at the parameter sensitiv-
ity system (3%, ©?) as in Theorem 3.3 with a nonlinearity ¢% = ¢, (y(k), k)yg(k).
The incremental sector condition on ¢ guarantees that cpy(’(k), k) also satisfies
[~1I,,In,], guaranteeing that the nonlinearity ¢’ in (3.19) also satisfies the incre-
mentally “sector bounds (10, In,]

The sensitivity of steady-state model output Z with respect to a model parame-
ter # can thus be described by the steady-state solution of the parameter sensitivity
model. Via (3.11) and (3.17), this steady-state output sensitivity is directly related
to the objective function gradient with respect to the model parameter. Finally,
recall that (X, ¢) is GEC by verifying the conditions in Theorem 3.1. These condi-
tions only dependent on the variables {A, B, C}, and because all these variables
are shared between (X, ) and (X%, ¢?), the parameter sensitivity model is GEC
as well. O
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B.4 Technical lemma

The proof of Theorem 3.2 (contraction of the MTF algorithm) uses a connection
between the conditions in Theorem 3.1 and the H..-norm of the transfer function
from the input u to output y of the Lur’e-type model (X, ¢), as presented in the
following lemma. The H.-norm of the transfer function matrix Gy, , is defined as
follows:

||gzyu(%)||7-[oo = sup 0 (gEyu(iw)),
0<w<27

where ¢ denotes the maximum singular value of a matrix.

Lemma B.1. Consider a Lur’e-type model (3.2). Under the conditions in Theo-
rem 3.1, the following inequality holds true:

G, (2)]|5,_ < 1. (B.14)
A

Proof. By application of Lemma B.2 in Appendix B.5 for v = 1, the inequality
(B.14) is equivalent to the following matrix inequality:

ATPA—P ATPB cT
* BTPB—1I,, Ou xn.| <0, (B.15)
* * —1Ip,

where A, B, C of model (3.2) parametrize the state-space realization of the transfer
function Gs,,. The relation y = Cz is used to manipulate inequality (B.15) by
pre- and post-multiplying it with the matrix

In, 077, XM, CT
e o 7T B.16
{onn I, onn} (B.16)
and its transpose, respectively. This results in the equivalent inequality:
ATPA-P+CTC ATPB
{ N B PB—1I,, =< 0. (B.17)

Inequality (B.17) is equivalent to inequality (3.5), which is feasible under the
conditions of Theorem 3.1. Therefore, under the conditions of Theorem 3.1, all
conditions of Lemma B.2 are satisfied for v = 1, where this « is an upper bound
as follows:

1G5, )|, <v=1, (B.18)
which closes the proof. O

B.5 Technical results recalled from the literature

This appendix recalls results used in the proofs of Theorems 3.1 and 3.2.
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B.5.1 Convergence characterization [126]

A characterization of the GEC property for models (3.2) without feedthrough from
input w to output y, i.e., D = 0y, xn, is given in [126, Theorem 7], for nonlineari-
ties that are sector bounded within [0,,,,€],0 < ©Q € D™ and incrementally sector
bounded within [0,Q],0 < Q € D"v.

Theorem B.1. Consider the model (X,¢) in (3.2) with D = 0,,xn, . Consider
Pyy, Py € S™ positive definite matrices, Sy1,S2 € D™ diagonal positive definite,
a positive scalar T € (0,1) such that the following inequalities hold:

AT AT [Py —CT S0
[ BT ]Pn [ BT } - [ N 25, <0, (B.19)
AT AT1T [Py —CT80
|: BT :| P21 I: BT :| - |: * 252 < 0 (B20)
Then, the Lur’e-type model (3.2) with D = 0y, xn,, is GEC for the class of bounded
inputs as per Definition 3.2. A

Proof. The proof follows a similar line of reasoning as [126, Theorem 7] and is,
therefore, omitted. O

The proof of Theorem 3.1 in Appendix B.1 makes use of the fact that, if Q = Q,
the satisfaction of (B.20) is implied by satisfaction of (B.19) for any 7 € (0, 1).
B.5.2 The Bounded Real Lemma [89]

The Bounded Real Lemma relates the Ho, norm of a transfer function matrix to
the feasibility of a matrix inequality. It is used in the proof of Theorem 3.2 in
Appendix B.4.

Lemma B.2 ([89, Lem. 5.1]). Consider a discrete-time LTI model ¥ whose trans-
fer matriz Gx(x) admits a state-space representation (A, B, C, D), where A €
Re*ne B e R"=X"u (e R™WwX" D e R"™>",  Then, the inequality

1G5 (=)ll3,, <7

holds if and only if there exist 0 < P € S™ and v € Ry, such that

ATPA-P ATPB cT
* B"PB—-~I,, D' | <0. (B.21)
* * —v1n,

Proof. See [89, Lemma 5.1]. O
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C.1 Proof of Theorem 4.2

Proof. For notational convenience, the superscript L to the norm operator is
omitted in this proof. Operator g, and frequency-domain counterparts of gy, gyw,
are defined in (4.5) and (4.6), respectively.

Consider two different sequences yé&lrl],n My € LI and yéfi)ﬂ]m iy € LM

(a)

with integer ¢ > 0 and define their difference as follows: dy(;41) = Y({irtmn) —

b o :
yé[i)HMM). Application of the step (4.4b) to ||dy;+1)|| results in

6y (i+11 ]| = lgyudug || < vyul[du]; (C.1)

with vy, defined in (4.7) and dup; defined similarly to dy(;;1. Application of
step (4.4a) to (C.1) results in

(@ ®)
9us¥ (1 ar) = 9¥ Q)| € Vo 0319

B

where condition C2 of Theorem 4.1 is used in the latter inequality. The iterative
mappings in (4.4a) and (4.4b) constitute a contraction mapping, since v, K, < 1

16541 <

holds true by Assumption 4.1. By the fact that LgM is a Banach space, we
conclude by the Banach fixed-point theorem that there exists a limit y, s that
satisfies ¥,0r = (Gyu © Guy) Y + GywW(onary- This limit can be found by the
iterative procedure (4.4a) and (4.4b). O

C.2 Proof of Lemma 4.1

Proof. As a first step (i), we derive a bound for the Fourier coefficients U of "™,
which depends on properties of §"*. In the second step (ii), we derive the required
properties of §"". In the third step (iii), the results from steps (i) and (ii) are
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combined to derive the bound (4.10). In the final step (iv), we formulate the
bound in (4.11). Throughout this proof, we make use of the triangular inequality.
Furthermore, for a € C’%i(T),T > 0,0 < K, < oo, the notation (da), . is used:
(6a)tr =a(t) —a(t —7),t,7 €R.

(i) Bound on the Fourier coefficients magnitude. The derivation of the bound
(4.10) is inspired by [128, p. 26]. Consider the truncated function §"™ €
C%! L (T), T > 0 with some 0 < KM < 400 and @ = o(y"™) € C%’i(T) with

nM
Ky

K, = K¢K;’M. By definition, we have

Ulm] = %/0 u(t) exp{—imwt}dt, (C.2)

m € Z with w = 2% Thanks to the shifting property of Fourier series, see, .e.g,
[128, p. 4], the following manipulation for m # 0 can be performed:

Ulm] = %1/0 @ (t — ) exp{—imwt}dt (C.3)

with 7 := T'/(2m). The average of (C.2) and (C.3) is

1 T
Ulm] = ﬁ/o 0ty exp{—imwt }dt,

for m # 0. Proceeding by taking the absolute value and using Condition C2 of
Theorem 4.1, leaves for m # 0:

|U [m]| < [;}’/OT ‘(5@?7M)m‘dt . (C.4)

Assuming §"™ € C’Ioé},M (T) (this property is proven in Step (ii) below), the in-
Y
equality | (5§"M)t 1< KJM|r|,7 =T/(2m) can be used in (C.4) to write:

_ K, KM /T _TE KM 0 ©5)
0

|U[m]| < 4|m| 4|ml|

(ii) Properties of the nonlinearity input signal. Next, we derive an upper bound
for the constant K;]M , proving that the steady-state signal g7 is in the space

%!, (T). Consider the absolute value of the mismatch:

K;}]\/I
nM
Gyw (6w0 )

The frequency-domain counterparts of the steady-state operators gy, and g, are
defined in (4.6a) and (4.6b), respectively. It is well-known that (see, e.g., [196])

‘(5?7"M)t,f‘ < (C.6)

Iyu ((mnM) t,T ‘ +

t, 7

M

lgyual < VP2 lal,  lgywb| < 8" 10], (C.7)
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where 47} and 43 are defined in (4.7) and a = (5ﬂ"M)t b = (5ng) .
T t,T

Inequality (C.7) holds for any ¢,7 € R, where |g,,a| is the evaluation at ¢, T of the
absolute value of the function resulting from operating gy, on a. The inequalities
in (C.7) can be used in (C.6) together with Condition C2 of Theorem 4.1 (by
Assumption 4.1) to write:
oug™) .
( wo t,T

Collecting terms and using the constant K{L{)W of Assumption 4.2 results in:

) (6gnM)t,7' MKW ‘ (5gnM)t,7" + ’72’147"]“\4

nM grnM
< o, (C.8)
1=y Ky

(65, ,

which is well-defined since the denominator 7,, K, < 1 by Assumption 4.1. For
condition (C.8) to hold, the constant K must satisfy:

nJWKnM
0< KM < 7}{ < oo, (C.9)
Tyu

which guarantees that " € CE{’;, w(T).

(iii) Bound (4.10). Combining the bound (C.9) on K with the bound (C.5)
on the magnitude of U results in the derived bound in (4.10).

(iv) Bound (4 11) The definition of truncated signals in (4.1) allows writing
™M =

bound

Zm__n v Ulm] exp{imwt}. Subsequently, we can derive the following

_ _ 2
la — a1, <2
m=nM

where |U[m]|* = |U[-m]|*,m € Z is used. Using the upper bound (4.10) for
|U[m]|, m # 0, we find that:

TK, K”M >
-, < S 5

8(1 —’vﬂwa)Q 2

m=nM
o (TRGEL ) i L
- 8(1—%,” Ko \ni ™ m?

Taking the square root of this expression and noting Y °_; - =((2) results in
(4.11). The Riemann-zeta function ¢(2), defined in (4.9), converges [278].
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C.3 Proof of Theorem 4.3

Proof. Firstly (i), we introduce an alternative iterative procedure that is equivalent

o (4.4a) - (4.4b). Secondly (ii), we derive the bound (4.12). Thirdly (iii), we

present an asymptotic analysis supporting the validity of (4.13). For notational

convenience, we do not write the superscript L to the norm operator in this proof.
(i) Equivalent iterative procedure. Consider the iterative procedure:

M % M

u?i-i—l] = guyy[Z] ) (C.10a)
M ~ M ~ M

yﬂ_;,_” = gyuuﬁ'_._l] + gywwg (CIOb)

with the frequency-domain counterpart §yu and §uy of operators gy, and Gy,
respectively, defined as follows:

GyuU[m] == Gy (iwom)U[m, (C.11a)
GywWolm] = Gy (iwom)Wo[m], (C.11b)
for m € Z, where wy = 27/T. Operators éyu and §yw work on an infinite

number of harmonics as opposed to §,, and gy, in (4.6a) and (4.6b), respec-
tively, which work only on the first nM harmonics. Consider the sequences
Y ([i],nM)» U([i],nM)> W(0,nar) and their continuous-time counterparts, obtained via
(4.2), denoted by yE]M, ﬁw,wOM7 respectively, containing only nM harmonics.
Then, by linearity of operators §yu, Gyw, gyu, and gy, operation (C.10b) is equiv-
alent to operation (4.4b) for the first /M harmonics.

Next, we show that the operation (C.10a) is equivalent to operation (4.4a)
under an appropriate definition of operator fjuy Operation (4.4a) is by definition
equivalent to:

{010 K12 = {=¢ (Yo [K]) 1ol (C.12)

However, taking the continuous-time counterpart y[Z]M of y((ijnar) through the
nonlinearity results in

wiry = (v (C.13)

which now possibly contains an infinite number of harmonics. Observe that the
samples u([;4+1],,ar) Obtained via (C.12) are equivalent to the samples {41 (tk)}ilj\f
obtained via (C.13). However, sampling the continuous-time signal u; ;1] gives rise
to aliasing. Therefore, we achieve consistency between the first nM harmonics of
U([i41),np) and upyq), if aliasing is handled:

M = M M M
ug+1] = guyy[z] = (Sﬁ(yﬂ] ))n]W + galmSu?(?[i],tail)’ (014)
N————

ari)
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M M M\ MM 1 M ..
where u?[i],tml) = (gp(y& ) — (gp(yﬂ] )) ) is the ‘tail’ of @(yg} ), containing
only harmonics beyond nM. The operator gqiqs is the aliasing operator [205],
which we do not define explicitly. However, below, we do make use of the fact
that for any u?[lz\]/f tail) € Lo(T), aliasing does not increase the signal norm, but only
folds back (and attenuates) harmonics [205], i.e.,

M M
|| = ‘g@liasu?[i],tail) ‘ < Hu?[i],tail) ‘ (C.15)
(ii) Derivation of upper bound (4.12). Consider
|| u - UUM) + gzw (U)O - U)O + 'Uw) + v, (ClGa)

< vzu||a — @] 4+ 328w — wf™ || + 2w + A2 (C16D)

Here, the constants A,, and A, as in Assumption 4.4 are used to bound v,,,v, €
Ly(T). The linear operators g., and §.,, are defined similarly to gy, and gy, in
(C.11a) and (C.11b), respectively. The constants 7., V.« and 37 are defined in
(4.7). Next, we deal with the term ||z — @™ ||, where & = ¢(y) and the function
a"™ = (p(g™))"™ 4 G consistent with (C.14). We write:

[ = @™ || = lle@) = (@)™ +a

< HSO () — o™ +a7]t]\¢:[il) ’ + Hﬂz%n ‘
< K|y — g™ + 292 KM (C.17)

where ||a|| is bounded using (C.15). In the last step, the inequality C2 of The-
orem 4.1 is used and inequality (4.11) of Lemma 4.1 is applied to upper bound
(tml) by VWMK”M with 47 as in (4.8a) and ngf]\/[ as in Assumption 4.2.

Next, we derive a bound for Hﬂ — g™ H as follows:

g = g™ | <[lgya@ -] +

Gyw (wO - UﬂM) H + [|Gywvwl|

<7yu||u—u7lMH + Yo ‘wo—wo H + YywDw- (C.18)

The constants vy, Yyw and ”y;’gj[ are defined in (4.7). Substitution of inequaltiy
(C.18) into (C.17) results in:

K 4nM
i — a™|| < &H wo _ngH
L=k (C.19)
+ Kovyw A M KM

1—’yyuK(p U}+1 ’quK wo !



242 Appendix C. Appendices to Chapter 4

which is well-defined since the denominator 1 — vy, K, > 0 thanks to Assump-
tion 4.1. Substituting inequality (C.19) into (C.16b) yields the bound (4.12).

(iif) Asymptotic analysis. Consider the bound in (4.12) and A, = A, = 0.
In the asymptotic case n — oo or M — o0, the first term is zero thanks to
lim, o0 [|wo — wi™ || = limas o0 Jwo — wd™ || = 0 by the Riesz-Fischer theorem.
The only remaining term is then related to 7™ which also vanishes in either of
the limits 7 — co or M — oo, which completes the proof. O]

C.4 Proof of Theorem 4.4

Proof. In the first step (i), we present an equivalent upper bound that can be split
into two parts, each part further addressed in steps (ii) and (iii). In the fourth step
(iv), we present the bound (4.14). In the final step (v), an asymptotic analysis is
presented.

(i) Equivalent upper bound. Denote by 5@4 the continuous-time counterpart
of the measured sequence zy;, which has only contents up to the M-th harmonic.
Similarly, (2”M )M denotes the continuous-time counterpart of the computed se-

quence (z, M)M. Using these definitions, we observe:
o oMM
{2 @) - ()™ ()}

From here onwards, we only work with continuous-time signals and, therefore, do
not write the subscript Lo for the norm operator anymore for notational conve-
nience.

First, notice that ?fg” is related to Zp according to:

2M

(C.20)

- -

k=1 Lé\/[ Lo

215\'/[ = Eﬁ\«! + Yalias (';F - E?7‘4) (C.21)

with ga1ias the aliasing operator [205]. Using (C.21) in (C.20), we write

|2 + gatas (2 — 22) = ()™ <

- M|+ g - 2D, c22)

where inequality (C.15) is used to bound the effect of the aliasing operator guiias-
(ii) Mismatch between the first M/ harmonics. Note that 5% = (gL pFE)M
ZM | since by Assumption 4.3, the LPF does not affect the first M harmonic.

Therefore, consider the mismatch

M
’Ui\/[ + (gzu (a - aan))M + (gzw ('LUO - ng =+ vw)) H

e

M
<AL+ yM|a—a™|| + H (sz (wo — ng)) H M A,

=0
<AL+ M —a™ || + 2 A (C.23)
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Substituting the bound (C.19) for ||a — a"7*|| results in:

. K M ~nM
e = | o - ] (T

L= ke (C.24)
2 nM ., M K M w
+ K:L]o\/[ Ya zZu + Aw (7% + ©VauVy ) + Az~
1- ’quKga 1- ’quKtp

(iif) Effect of aliasing. Consider the Fourier coefficients Zr [m] of Zp and note
that ||Zp — 5{}/{“2 <2Y> ;1Zr[m]%. Now, using the fact that Zp is a low-passed
version of Z, we arrive at:

s 2 — 2 :
ZF —z%” <2 g |Z[m] |G Lpr(imw)|*. (C.25)
m=M

Taking similar steps as in the proof of Lemma 4.1 steps (i - iii), we can show that

TK.,
Afm]”

|Z[m]| < (C.26)

where 0 < K, < +oo is such that zp € C?(’zl(T). Let us find an upper bound for
K, next by analyzing the following mismatch:

|(6§)t,f| < [(0v2)e,r| + |gzu(5a)t,r| + 1920 (0wo)t,r | + 92w (50w )1, | (C.27a)
S |(5Uz)t,7'| + Yzu }(51214)25,7" + Yzw |(6w0)t,‘r + Yzw |(6'Uw)t,7'| . (027b)

~

We use the fact that u = ¢(y) to write:
[(60)s,7| < Ko [(69)1,7] (C.28)
where
|09 < Yy (017 ] + Yo 1(F00) 17| + Yy (G0

Substituting (C.28) in (C.27b) results in

’(aé)t,r| S |(§Uz)t,7" + V= |(§w0)t,‘r + Yz |(6Uw)t,‘r|

with o

=k, (C.29)
being well-defined since v,,K, < 1 by Assumption 4.1. Next, we use the con-
stants K, (in Assumption 4.2) and K,_, K,, (in Assumption 4.5) to formulate:
|(6§)t77| < (Ko, +7: (K3, + Ky,)) |7], which can only be true if

0< K. <K, +7. (Kp +Ko,), (C.30)



244 Appendix C. Appendices to Chapter 4

proving that Zp € C?{’Zl(T).
Now, we proceed by deriving an upper bound for |Gppr(imwg)|?. Hereto,
consider

20
wyF

\GLpp(imwo)F = (C?)l)

(mPw + w2)™

Next, we use the bound (C.26) for | Z[m]| and substitute (C.31) for |G pr(imwo)|?
n (C.25) to find:

5 - 2| < R z: (C.32)

m2w0 + w2)®*

Convergence of the infinite series in (C.32) is analyzed as follows. Note that the
following inequality holds:

> 1 > 1
< — e 7es C.33
m;% m?2 (m2wg +w2)” ~ m;% m2+202 20 ( )

The latter infinite series is equivalent to:

M
C(2(1+40,))
20z Z m2+2°zw (0'34>

m=1

with ¢ (2(1 + 0,)) the converging Riemann-zeta function, defined in (4.9). By the
monotone convergence theorem [311], the infinite series in (C.32) is also convergent.

Finally, we take the square root of (C.32) and use (C.30) to bound the constant
K, to yield:

|2r — 27 || = v e (Kg, + Ku,,) + 71 Ko, (C.35)

with ~, defined in (C.29) and v} defined in (4.8b).
(iv) Derivation of upper bound (4.14). Substituting the bounds (C.35) and
(C.24) into (C.22) results in:

K yMandt KM
o oM M nM LPFqu,wa M LPrqu’yyw
= ()Y <l ( TEEE ) o, (24 fT ) g,
H (") 0 1 — vy K, 1 — vy Ky
2,ynJV[ M
4+ KM _Zla Tzu

o M M
Wo 1 Yyu Ky +K o’}/F ¥z + Ko, 7p 72 + Ko vp, (C.36)

which is equivalent to the upper bound in (4.14).
(v) Asymptotic analysis. Assuming A, = A, = K,, = K,. = 0, the only
remaining terms in (C.36) are the terms concerning |jwo — wi™ ||, KM and K3, .
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The first term is zero by the Riesz-Fischer theorem for either n or M —> Q.
The second term is also zero for either n or M — oo, since hmn_moy =
lim oo *ya = 0. The last term is only zero for M — oo, i.e., limp;_, ’yF = O
(and not for only  — o0). Therefore, in the limit M — oo, the mismatch is
limpz— oo H?F - (EWM)MH = 0, which is equivalent to (4.15) and completes the

proof. [






Appendices to Chapter 5

D.1 Proof of Lemma 5.1

Proof. Let II = [ﬁo o, --- ﬁk} e C"*¥ I, ... € C", and note that (5.8)
can be written as follows:

Aﬁo + Bgo = S*ﬁo,

Al:.[l + Bgl = S*ﬁl + ].:[0,

Aﬂk + By, = S*ﬁk + ﬁkfl.
As a result, we find the following equalities:

ﬁo = (S*I - 14)71B€07
I, = —(s*I — A) 2Bty + (s*I — A) "' By,

k—1
ey =Y (—1)(s*T = A)~TIBy
=0
~ k . .
Op =Y (~1)"(s*1 = A)~0FIBY, ;.
=0

Pre-multiplication of I, . . ., I by C' yields the desired result. O
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D.2 Proof of Lemma 5.2

Proof. The goal is to prove the relation between CII and the moments as given in
(5.10). Hereto, we write s* = a* 4 jb*. From here onwards, we write respectively
a and b instead of a* and b* for notational convenience.

Let us first prove the case where a = 0 and &k = 0. Partition II € R"*2 as

follows: ~ ~ }
II= [ II] (D.1)

with Ilg,II; € R™. Using this partitioning, we find the following two matrix
equalities from the Sylvester equation (5.11):

Ally + Bty = —bII, (D.2a)
ATl, 4+ Bty = bId,. (D.2b)
Multiply (D.2a) by b to obtain
AbIly + bBly = —b114. (D.3)
Now, substitute (D.2b) into (D.3) to obtain
ATy + ABYy + bBly = —b?Tl,. (D.4)
Solving for II; yields
I, = —(A%2 4+ 0%1,) "' (AB¢, + bBly). (D.5)
Similarly, one can obtain
My = (A2 + b’L,) "' (bBl, — ABYy). (D.6)
Let us now find an expression for ng(jb, ¢y + j¢1) from Definition 5.1:

0 (b, bo + j61) = C(jbl, — A)"'B(ly + jt1)
= —C(A — jbl,) " (A+jbL,) " (A+ jbl,)B(ly + jt1)
= —C(A? +b%L,) (A + jbl,)B(ly + jty). (D.7)

It can be verified from (D.7) that Re(no(jb, £o + j¢1)) equals to CTly in (D.6) and
that Tm(no(jb, £o + j¢1)) equals to CTI; in (D.5), which concludes the proof for the
case a = 0 and k = 0.

For the case where ¢ # 0 and k = 0, it can be shown that the same steps
as taken above result in A replaced by A — al, in (D.6) and (D.5), which gives
expressions for Iy and II;, respectively. Furthermore, it can be shown that in
the expression of ng(a + jb, ¢y + j¢1) in (D.7), again A is replaced A — al,,, which
concludes the proof for a # 0 and k = 0.
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_ Let us now turn to the case where a = 0 and k = 1. Hereto, we partition
II € R**4 as follows:

M=, M, M I (D.8)

with Iy, ..., I3 € R™. Using this partitioning, we find the following four matrix
equalities from the Sylvester equation (5.11):

ATl + Bty = —bll4, (D.9a)
ATI, + B, = b, (D.9b)
Ally 4 Bly =TIy — bIl3, (D.9¢)
All; + Bls = II; + blL,. (D.9d)

The solution to the set of equations (D.9a) and (D.9b) for 1:[~0 and 1:[~1 is given in
(D.6) and (D.5), respectively. Let us find the solution for II; and II3. Rewrite
(D.9¢) and (D.9d) as follows:

Aﬁg + Bifg = —bﬁ37 (DlOa)
ATl + Bls = bIl,. (D.10b)
with Bly = Bls — Iy and Bf3 := Bls —1II;. Notice that (D.10a) and (D.10b) have
the same form as the set of equations (D.2a) and (D.2b). Therefore, their solution
reads as follows (with a pre-multiplication by C'):
CTl, = C(A2 + b21,,) ! (szg —bIl, — ABUy + Aﬁo)
= Re(no(jb, {2 + jl3)) (D.11a)
+C(A% +b°1,)! (_bﬁl + Aﬁo) ;
Cll; = —C(A% + b2I,,) " (AB€3 — ATL, + bBls — bﬁo)
= Im(1o(jb, L2 + jl3)) (D.11b)
+ C(A% +b°1,) ! (Afh + bﬁ0> .

It is left to show that the following two equalities hold:

C(A% + b21,) ! (—bﬁ1 + Aﬁo) = (D.12a)
— Re(n(jb, bo + jt1)),
O(A? 1 21,)"! (Aﬁ1 + bﬁ0> - (D.12b)

— Im(n1(jb, €o + jl1)).
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Let us start with working out the left-hand side of (D.12a):

(A2 + b2, (—bﬁ1 + Aﬁo) (D.13)
= (A% + b°1,,) " 'b(A% 4+ b%1,) "' (ABty + bBly)
+ (A2 +b21,) T A(A? + b21,) " (0B — ABL)
= (A% +b%L,) (A% + b°1,,) " 'b (AB, + bBly)
+ (A% 4 b°1,,) "1 (A2 +°1,) YA (bBt, — ABl)
= (A* +0%1,,)7? (2bABl; 4+ b*Bly — A*Bly)
where the fact that any matrix A commutes with (A2 + b2I,)~! is used and the
existence of (A% + b?I,)~! is guaranteed by the assumption that s* = jb & o(A).
Next, we derive an expression for 1 (jb, fo + j¢1) as follows:
m(jb, bo + jl1) = C(jbI, — A)">B(Lo + jt1)
= C(jb[ — A)72(jbl, + A) 72 (jbI, + A)’B(lo + jl1)
C(=0"In = A%)72(jbln + A)*B(lo + j)
C(b*I, + A2) 2(A% + 2jbA — b21,)B(lo + j¢1)
C(A? +b%1,,)"2(2jbAB + A>B — b>B) (4 + jl1).
From here, it can be easily verified that the relation in (D.12a) holds. The proof

for (D.12b) can be performed in a similar fashion and is omitted here for the sake

of brevity.

The proof for a # 0 and & = 1 involves the same steps as given above for
the case a # 0 and k = 0 and, therefore, omitted. The proof for k > 1 can be
continued similarly as above and is omitted for the sake of brevity. O



Appendices to Chapter 6

E.1 Proof of Lemma 6.2

Proof. The following notation for real square matrices A is used: He(A) :== A+AT.
The matrix F = S — GL is Hurwitz and the inequality in (6.31) holds if and
only if there exists a positive definite matrix @ such that

He (Q(S — GL £ ~+*GCII) < 0. (E.1)

Let us show that (E.1) holds for the specific choice G in (6.30) and @Q := I1T PII.
Note that this choice for matrix ) ensures that it is positive definite, i.e., @ = 0,
since II is full column rank, see, e.g., [121]. Furthermore, note that QG = I1" PB.
Substitution of this G and @ in (E.1) results in:

He (TII" PIIS — IT" PBL + 4*I1" PBCII) < 0. (E.2)
Note that the Sylvester equation (6.21) can be rewritten as:
BL =115 — AlI, (E.3)
which is substituted in (E.2) to yield:
He (II" PILS — 11T P(I1S — ATI) & ~*I1" PBCII)
= He (IT" PAII £ +*I1" PBCII)
=He (II" P (A +~*BC)II) < 0. (E.4)

To show that (E.4) holds, first note that since by assumption ||C(sI — A)*IBHOO <
1/~*, the following LMIs hold

He (P(A+~*BC)) < 0 (E.5)
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for some positive definite matrix P. Pre- and post-multiplication of (E.5) with IT"
and II, respectively, concludes that (E.4) is negative definite (since II is full column
rank). Therefore, we conclude that (6.31) must hold and that the matrix F is
Hurwitz. The reduced-order model achieves moment matching since o(F)No(S) =
(), guaranteed by o(F) € C~ while o(S) € C° by Assumption 6.3.

E.2 Proof of Theorem 6.4

Proof. We first prove that if the LMIs in (6.32) are satisfied, then all the conditions
of Theorem 6.1 are satisfied. After that, we prove that there always exists a feasible
solution to the LMIs in (6.32).

Condition (6.9) is satisfied for the same 7* as in Assumption 6.2 thanks to the
nonlinear function ¢ in the reduced-order model (6.13) being the same nonlinear
function as in the full-order model in (6.7). The LMI condition in (6.10) with
(A, B2, Ch) replaced by (F,Ge, Hy) in (6.24), respectively, is equivalent to (6.10)
for P = blockdiag(P(1,1y, P1,2), P(2,1), P(2,2)) and the change of variables X(; ») =
PGk, i,k € {1,2}. Thus, satisfaction of the LMIs (6.32) is equivalent to
satisfaction of the LMIs (6.10) of Theorem 6.1. Therefore, satisfaction of the
LMIs (6.32) guarantees that all the reduced-order Lur’e-type model (6.13) with
Gk = P(;}C)X(i’k),i, k € {1,2}, satisfies all the conditions of Theorem 6.1.

Satisfaction of LMIs (6.10) guarantees that the matrix F' is Hurwitz, i.e.,
o(F) € C~, which in turn guarantees that G; xy € O x) for i,k € {1,2} , since
a(Se,k) € CO, which completes this part of the proof.

Finally, we prove the feasibility of the LMI condition in (6.32). Thanks to the
block-triangular structure of Efyi, for the first (i,k) = (1,1), third (i, k) = (2,1)
and fourth (7, k) = (2, 2) block diagonal elements, feasibility of (6.32) is guaranteed
if and only if there exists a G(; i) such that o(S; k) — Gx)Lek) € C. Such a
G(i,r) exists by the observability assumption on the pairs (S(i?k),L(i’k)),i,k: €
{1,2}. For the second block diagonal element (i, k) = (1,2), feasibility of (6.32) is
equivalent to the existence of a Gy 2y such that the ., norm of the corresponding
transfer function is bounded by 1/4*. Hereto, we apply the results of Lemma 6.2,
which shows that there exists a specific G 2) such that the H,, norm of the
corresponding transfer function is bounded by 1/4*. Since such a Gy 9) exists, we
conclude that the LMIs (6.32) are feasible under the stated assumptions. O

E.3 Proof of Theorem 6.5

Proof. We start by recalling some inequalities before proving the theorem. For
a single-input—single-output LTT model characterized by (A, B, C) and excited by
a T-periodic input u € Lo(T), if the matrix A is Hurwitz, there exists a unique
globally exponentially stable T-periodic steady-state solution Z,(¢) with the cor-
responding steady-state output g, with g, € L2(T). Hence, this model defines a
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linear operator gy, : Lo(T) — Lo(T') according to

Gyuri(t) = Yu(t). (E.6)

The transfer function of model (A, B,C) from input w to output y reads as
Gyu(s) =C(sI — A)~'B, se€ C. We recall from [196] that

1gyuull, < sup [Gyu(Gmw)lllull,, <yulullL, (E.7)
meEZL
with w = 27/T, vyu = sup,epr |Gyu(jw)|. For every transfer function of the

LTI part of the full-order and reduced-order Lur’e-type model, a linear operator
between inputs u, ¢ and outputs y, z, p and ¢ can be defined consistent with gy,
in (E.6). Then, for any input u(t) € Lo(T), the following relation holds:

gy = gpu)u®ll, < Tlu@®)L, (E8)

with T the constant defined in (6.33). Since Y bounds the mismatch in all
Y(ik), 4, k € {1,2}, similar relations hold also for the other involved FRFs with the
same constant Y. Furthermore, by the satisfaction of the conditions in Theorem
6.1 (for both the full-order and reduced-order models), the following bounds hold
for signals 3(t), p(t) € La(T):

le(@(®) = e(P)l L, <"15(E) = p(D)ll L, (E.9a)
le@EL, < lg®)llL,, (E.9b)

where v* is the constant in Assumption 6.4 (incremental sector condition of the
nonlinearity). Moreover, satisfaction of the conditions in Theorem 6.1 guarantees
that

Ve <1 and ~*y,, <1 (E.10)

with vy, and 7,, defined in Theorem 6.5.
It is shown in this proof that the bound (6.34) is a special case of the bound
(6.35). Therefore, we prove the latter first and show at the end of the proof that

the former is implied. Observe that the steady-state response of the full-order
model satisfies

Y(t) = gy p(U(t)) + gyuu(t), (E.11a)
Z(t) = gz0p(Y(t)) + gzuul(t), (E.11b)

and that the steady-state response of the reduced-order model satisfies

p(t) = gppe(p(t)) + gpuu(t), (E.12a)
C(t) = gepp(p(t)) + geuul(t). (E.12b)
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Consider the difference:

Z(t) = C(t) =g200(F(t)) — geoe(P(t)) + (gzu — geu)u(t), (E.13a)
=920 (2((t)) — 2(p(1)) + (92 — e )0 (p(1))

+ (gzu - g(u)u(t) <E.13b)

(E.

Taking the Ly-norm and using inequalities (E.8) and (E.9a) results in

12() = <Ol < =7 N3#) = 60|, + T (12O, + Null,)  (E.14)

with v,, defined in Theorem 6.5.
Next we upper bound the terms [|g(¢) — p(t)||;, and [|p(t)];,. Consider the
difference

Y(t) — p(t) =gyep(y(t)) — gppp(p(t)) + (gyu — gpu)u(?), (E.15)
=0y (P(F(1)) — @ (p(1))) + (gyp — pe)(p(2))

+ (gyu — gpu)u(t). (E.16)

Again, taking the Lo-norm and using inequalities (E.8) and (E.9a) results in
15(E) = POl 1, <y 19E) = 2O, + T (VllpOl, + lu@®l,)  (E17)

Y
<—— (It + ||u(t .
T (1A, + a0l

The latter step is allowed since 7,,7* < 1 by (E.10). Lastly, using again inequali-
ties (E.8) and (E.9a), we find:

2@z, = 900 2(p(1) + gour(®)ll 1, (E.18a)
<Y 1P, + voullu®ll L, (E.18b)
< u u(t , E.18¢c
< T2l (B15¢)

where 7y, is defined in Theorem 6.5. The latter step is again allowed since v,,7* <
1 by (E.10).

Substitution of (E.18¢) into (E.17) and (E.14) and collecting terms yields the
bound presented in (6.35), which completes the proof of the bound (6.35).

Finally, we show that the bound (6.34) is a special case of the bound (6.35).
Observe that the moment Com(7) coincides with the steady-state response z, of
the full-order model and that the moment Hap(7) coincides with the steady-state
response (, of the reduced-order model. Therefore, we can replace the left-hand
side of (6.35) with the left-hand side of (6.34). Furthermore, substituting L7
(output of the signal generator) for the input w in (6.35) results in the bound
(6.34), which completes the proof. O
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F.1 Proof of Theorem 7.1

Proof. The Sylvester equation FFP + GL = PS has a unique solution P € R¥*¥ if
o(F)Nao(S) = 0. Selecting P = I, results in F = S — GL for any G € Gy with
G as in (7.10). Moreover, selecting H = CTI results in the match HP = CII.

It is only left to show that the match H P = CTI enforces a match as described
by (7.13). The matrix IT € R™*¥ is partitioned as follows:

HZ[Hl 11, ...,Hl,,l,Hy],HiERn,i:L...,ll.

Using this partitioning, the Sylvester equation (7.12) can be written as the follow-
ing v equations:

—wll_[g = AH1 + Bﬁl, (Fla)
UJ1H1 = 141_[27 (Flb)

: (F.1c)

—w,IL, = All,_y + BY,, (F.1d)
well,_1 = AIL,. (F.1e)

The solution IT € R™*” to (F.1) reads as follows:

I, = —(A? + I,w?) ' ABY, (F.2a)
My = —(A? + Iw})'wi By, (F.2b)

: (F.2c)

M, =—(A* + Lw?) 'ABY,, (F.2d)

I, = —(A? + I,w?) " 'w, Bl,. (F.2e)
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From (F.2), it is trivial to show that

CTL; = Re(ng (jw1, 41)), (F.3a)
CTly = Im(ng (jwr, £1)), (F.3b)

: (F.3¢)

CTL,_1 = Re(ny (jwe, Lx)), (F.3d)
CTL, = Im(n3 (jwe, Le)). (F.3e)

Repeating these derivations for P € R”*¥ for the reduced-order model (7.5) results
in

HPy = Re(ny (jor, f1)), (F.4a)
HPy =T (i (jeor. (1)), (F.4b)
(F.4c)

HP,_y = Re(n (jwx, (). (F.4d)
HP, = Tn(n (jwx, b))- (F.4e)

Thus, CII = H P guarantees moment matching according to
ne (jwi, £;) = ng(jwi,&), fori=1,...,k.

The transfer function matrices being real and rational ensures that moment match-
ing according to 13 (—jwi, ;) = 0y (—jwi, 4i),i = 1,..., K is also achieved, which
completes the proof. O

F.2 Proof of Theorem 7.2

Proof. The transfer function matrix W (s) can be written as W(s) = ggf;, where

D(s) € Cis ascalar polynomial in s of degree v and N(s) is a matrix of polynomials
not exceeding degree v — 1 thanks to W(s) being strictly proper. The transfer
function matrix of reduced-order models characterized by G € Gy; can be written
as follows: .
I(s) = CTadj(sI, — (S — GL))G. (F.5)
det(sI, — (S — GL))

Define the column N(s) := N(s)¢ and:

[(s) == CMadj(sI, — (S — GL))GY. (F.6)

It is sufficient to show that there exists a G € Gy such that det(sl, — (S — GL)) =
D(s) and T'(s) = N(s). By observability of the pair (S, L), there exists a G € RV*™
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such that det(sI, — (S — GL)) = D(s). In the multi-input case (m > 1), such G
is possibly non-unique. To show that T'(s) = N(s) for any such G, consider the
i-th entry of N(s) and the i-th entry of I'(s), where 1 <4 < p with p the number
of outputs. By the restriction that all tangential directions coincide, i.e., ¢; = ¢
for all i € {1,...,x}, the scalar polynomials in the i-th entry of N(s) and I'(s)
are constrained at the same v locations in the complex plane via conditions (7.14)
and (7.13), respectively. Since these polynomials are both at most of the degree
v — 1, each of these can only interpolate v locations. Hence, these polynomials
must coincide. This rationale can be repeated to conclude that all entries of N(s)
and I['(s) coincide, which completes the proof. O

F.3 Proof of Theorem 7.3

Proof. Consider the parametrization (7.11) for the reduced-order model (7.5) and
the error model (7.16). Direct application of Lemma 7.1 for the given v > 0 reveals
that ||C(sI — A)_IBHOO < v and o(A) € C~ hold true if and only if the following
matrix inequalities hold:

N, (A,B,C,X) <0, X 0. (F.7)

Note that, thanks to the block-diagonal structure of A and o(A) € C~ by As-
sumption 7.1, o(F) = (S — GL) € C™ if and only if 6(A) € C~. Furthermore,
the transfer function Y(s) satisfies Y(s) = C(sI — . A)~'B,s € C. Therefore, con-
straints (7.8b) is satisfied for a fixed 7 if and only if the inequalities (F.7) are
satisfied. Inequalities (F.7) are satisfied for any G € G, guaranteeing that con-
straints (7.8b) is satisfied. Moreover, the set G, is a subset of Gy, since for any
G € G, it trivially holds that o(F) N o(S) =0, since o(F) € C~ and o(S) € C°.

Application of [72, Corollary 1] shows that the mismatch ||Y(s)|,, is lower
bounded by ﬁy+1 if ® and I'" are both stable transfer functions and if the state-
space realization of ® is balanced. Therefore, the set G, is empty for v < hys1,
completing the proof. O

F.4 Proof of Theorem 7.6

Proof. Along the same lines of the proof of Theorem 7.3, satisfaction of con-
straints (7.39b) and (7.39d), and the emptiness of G, for v < h, 41 can be proven.
It is only left to show that constraint (7.39c) is satisfied for any G € giy. The
constraints

Xy € Spin N (S — GL, Gy, He, Xy) < 0, (F.8)

zw

ensure via Lemma 7.1 that HP(CA)(S)HOO < A,w- Finally, Assumption 7.3 guaran-
tees satisfaction of constraint (7.39c). O
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F.5 Matrices related to the reduction problem

The constraints in the set G, in (7.19) can be written in the standard form (7.46)

0n+u><n+u+p+m

* S

SN(GQ) =

with
[—x
M) = | M([A Onscs
[0t vxnto
Mal)i= |
| Opxntw

)
0y xm

)]

OnJru Xn+v

(F.9)

ey

[Omxn GT]
Op><n+z/

Their dimensions read as follows: M; € R*** My € R¥*8 N € R**8, where

a=2(n+v)+m+pand f:=n+v.

The constraints in the set QN7 in (7.42) can be written in the standard form

(7.46) with
My (X, Xo,y) =
_Xl On+V><u 0n+l/><n+u+m+s+p+q
* —X OV><ﬂ+V+m+s+p+q
A 0 B
* * N nxv ,
v ([* S :| 0u><7n+s
* * *
_0n+u><n+y 07L+D><V_
0V><n+y Ouxu
Xl 0n+1/><1/
N Om+s><n+z/ 0m+s><u
Mo (X, Ay) = 0 0 ;
p+gxXn+v p+gXxv
0V><n+y XQ
Os><n+u Osxy
L qun+u 0q><1/ i
0n+u><n+1/ 0n+u><y 1
Oan-i-l/ OVXV
Onxn Onxy 0
* (_GL)T n+vxXv
N(G) — [0m+s><n GT} Om+s><l/
0p+q><n+1/ 0p+q><l/
01/><n+1/ (_GL)T
05><n+u GI
L 0q><n+l/ 0q><1/

On+1/><u+s+q
0V><V+s+q

,C, X1) Ontvtmtstpraxvtstq

N’y (SvouxsvHQXZ)

zw

(F.10)



F.6. Proof of Theorem 7.7 259

Their dimensions read as follows: M; € R**® My € R**# N € R**8 where
a=2n+v)+2v+2(s+1)+m+pand f:=n+2v.

F.6 Proof of Theorem 7.7

Proof. The matrix inequalities in Lemma 7.1 for the transfer function T'¢¢ ) are,
after the application of the change of variables [Ql QQ] =X [Gu G A], equiv-
alent to the inequalities (7.49) and X € S,. Therefore, if (7.49) and X € S, are
satisfied, then HF(CJ\)(S)HOO < A and (S — GL) is Hurwitz. The latter, together
with Assumption 7.2 (guaranteeing that A is Hurwitz), implies that the linear
error dynamics (7.41) are asymptotically stable, guaranteeing the existence of a
finite 7% such that G € QLO]. Furthermore, by Assumption 7.3, constraint (7.39¢)
is satisfied. O






Appendices to Chapter 9

G.1 Proof of Theorem 9.1

Proof. Convergence is implied by model (9.5) being incrementally stable on the
set X for the class of inputs U, and by the set X being positively invariant for the
class of inputs U, with respect to the model dynamics (9.5), see [282, Theorem 13].

Incremental stability: For brevity of the expressions, the following notation is
used throughout this proof:

Sx(z®2b) =% — 2 Sf(x® 2% u) = flx u) — f(2b, u).

Consider the incremental Lyapunov function V(z?, 2°) := |Eéz(2®,2")[%_, for an
invertible matrix £ € R™*™ and a positive definite matrix P € R"*". The time
increment AV of V is given by:

Av(mav xb7 u) = V(f(waa U), f(xb7 ’LL)) - V(xaa xb)
= ‘Sf(xa7 xba u)|2P*1 - |E(S$(xa7 xb)|2P*1 :
Incremental stability on X for U, is guaranteed by the satisfaction of the following
condition:
AV (2% 2% u) <0, Va®,zb € X 2% # 2’ u € U.. (G.1)
Define the function ¢(A) as follows:
d(N) = 6f(x%, 2, u) TP (2 + Nz — 2°),u)
—0x(x®,2®) TETPTIE(2® + Az — zb)).
and notice that ¢(1) — ¢(0) = AV (2%, zb u). By application of the mean-value
theorem, the following relation holds for some A € [0, 1]:

96 -
AL (G.2)

= 0f(z%, 2, u) T Pt A(z5, u)dz(z, 2°) — |Edx (2, 2%) |5,

AV (z%, 2%, u) =
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with x5 = b + 5\(56“ — %) also being in X' by convexity of X. Using the same
reasoning as in the proof of [282, Theorem 14], it can be concluded that

Sf(x®, 2’ u) " P A(zs, u)dw(2®, 2°)

< dx(x®,2") T A(zs,u) " P~ A(zs, u)dz(2®, 2P). (G-3)
Using (G.3) on (G.2) results in
AV (2%, 2%, u) <|A(ws, w)dz(z®, 2%)| %1 — |Béx(z®,2°) |51 (G.4)
For positive definite matrices P, the following matrix inequality holds:
—-E'"P'E<P-E" - E, (G.5)
which can be used to upper bound AV (2%, 2% u) in (G.4) as follows:
AV (2%, 2% u) < [A(z5,u)dz(z®, 2’ |50 + [6x(z®, 2°)|%_p_pr- (G.6)

Condition (G.1) is then implied if the following matrix inequality holds for all
(x5,u) € (X,U,):

AT (v5,u)P A(z5,u) + P— E - E" <0. (G.7)
Since (G.7) needs to hold for all (x5, u) € (X,U,), it is equivalent to check
AT (z,u) P A(z,u) + P—E—-E" <0 (G.8)

for all (z,u) € (X,U.). Application of the Schur Complement Lemma (see,
e.g., [42]) to (G.8) ylelds the matrix inequality (9.13b), which should hold for
all (z,u) € (X,U,.). Thus, if condition (9.13b) holds for all (z,u) € (X,U.), then
satisfaction of condition (G.1) is implied. Furthermore, satisfaction of condition
(9.13b) guarantees positive definitness of the matrix £ + ET, hence E is invert-
ible. This validates the choice for the incremental Lyapunov function V', proving
incremental stability of model (9.5) on (X, U.).

To show that the bound (9.14) holds, define @ = ETP~!E and note that
(G.1) is equivalent to:

|6 (21, 2R 101G < 162 (2, 23) 13- (G.9)

Because (G.9) is a strict inequality, there exists an € > 0 such that

0a (21, 2740)[5 < ploa(ag, 27)[G (G.10)
with p := 1 —e. By recursive evaluation and using the min-max theorem [151], we
find

. a) P < o 22D (s ) (@)
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where 0.5 (Q) and opmin(Q) denote the maximum and minimum eigenvalues of
the positive definite matrix @, respectively. The bound (G.11) is equivalent to
(9.14) for the choice T = omax(Q)/omin(Q), which proves incremental stability.
Positively invariant set: By definition, a set X is positively invariant with
respect to dynamics (9.5) if (and only if) any 2 € X implies that E~!f(z,u) € X
for any u € U,.. Given the definition of the set X in (9.10), the set X" is positively
invariant under any input u € U, if and only if the following condition holds:

(B f(a,u)) XE fla,u) < 1, (G.12)

for all (z,u) € (X,U.). By the Schur Complement Lemma, this inequality can be
written as follows:

Ty-—1 £
P;Ti;uf f(xl’ w0 V(au) € (X,0.). (G.13)
The term E" X1 E is an upper bound for —X +E " + E, yielding condition (9.13c).
Thus, if (9.13c) holds, then satisfaction of (G.12) is implied, guaranteeing that X
is a positively invariant set for the class of inputs U..

Using [198, Lemma 2], it be concluded, on the basis of X being positively in-
variant, that there exists a solution z that is bounded for all £k € Z. This fact,
together with the fact that the system is proven to be exponentially incrementally
stable implies that (9.4) holds. Now, it can be concluded that the model is expo-
nentially convergent on the set X' for inputs U, and that the exponentially stable
steady-state solution T € X for all k£ € Z. Hence, the proof is completed. O
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