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Abstract The global trend of realizing zero-emission transportation involves
transitioning from conventional fossil fuels to electric variants.
This transition exposes public transport operators to increased risk
due to reduced range and unpredictable energy consumption of
their battery electric buses. This thesis presents the design of an
energy consumption forecasting method, aiming to improve pre-
dictability.
A literature study was performed on state-of-the-art methods for
modeling energy consumption, and the Route Characteristics In-
dicator (RCI) and Machine Learning (ML) methods were imple-
mented and evaluated. Both methods’ performance was compared
after simulating experimental data of battery electric buses.
The presented final design splits the energy consumption estimate
into two parts. The drivetrain was modeled with the RCI, and
the auxiliary systems with a historical averaged auxiliary power,
combined with a remaining time estimate. The design was imple-
mented as a cloud service and verified experimentally.
The results demonstrated that the implemented software could pre-
dict energy consumption with an average error of −3%, although
there was a significant spread in the estimation error, which should
be reduced in future work.

Keywords Real-time, Trip, Energy, Consumption, Prediction, Forecasting,
Modeling, Battery, Electric, Urban, City, Bus, Physical, Drive Cy-
cle, Route Characteristics Indicator, Machine Learning, Artificial
Intelligence, Deep Learning (DL).
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Foreword

Three years ago, a group of technology pioneers in their fields of expertise set out to create an online
platform to facilitate operational excellence in zero-emission public transport. This initiative was
called Cloud Your Bus (CYB). The promise of CYB was to reduce capital expenses by at least 10%,
reduce operational disruptions and associated costs radically, and improve the quality of service at the
same time. This system is available and in operation – and it was timely because electric transport is
destined for rapid growth in the years to come.

With Destination Zero, Sycada and Eindhoven University of Technology (TU/e) have taken the game
even further in a project co-sponsored by the Dutch Ministry of Infrastructure and Waterways: the
development of a real-time energy prediction model that can accurately forecast energy usage and
battery state-of-charge at the end of a route, just shortly after a bus has commenced its journey. At
Sycada, we are thrilled, and proud, that this project has led to tangible, demonstrated results.

The practical usability of the EVEE model is twofold: Firstly, it allows for early flagging of critical
SoC deviations that could ruin the current day-to-day planning and hence require adaptations in the
operational planning. Secondly, it allows for continuous improvements in tactical line- and charge
planning by creating transparency in the impact of load, driving style, seasonality, and other environ-
mental factors on energy usage. This creates much more forward visibility and control over operations
than is available now.

EVEE hence provides another very important piece in the puzzle for the transformation towards zero-
emission transportation in Europe.

Thank you, TU/e, for your guidance and support, and indeed to Berend, for a successful and rewarding
cooperation.

Kind regards,

Kristian K. Winge
CEO, Sycada

October 3, 2022
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Preface

This thesis is the final deliverable for obtaining the Engineering Doctorate in Automotive Systems
Design at the Eindhoven University of Technology.

The presented work, titled Energy Consumption Prediction for Battery Electric Buses, has been con-
ducted in collaboration with industry partner Sycada. This project is part of the DKTI-transport project
Destination Zero, funded by the Netherlands Enterprise Agency, and has been a continuation of the
previously conducted Cloud Your Bus project [1].

The document is written for readers with an academic or industrial background, who have technical
knowledge, and are interested in energy consumption modeling for battery electric buses.

Readers who are solely interested in the project results can suffice by reading the introduction in
Chapter 1, the problem analysis in Chapter 2, the final implementation and results in Chapter 6, and
the conclusions and recommendations in Chapter 8.

Those interested in the theoretical background and rationale behind the final design may benefit from
reading the literature survey on energy consumption modeling in Chapter 3, and the Route Character-
istics Indicator and Machine Learning modeling method evaluations in Chapter 4 and 5, respectively.

Berend van den Berg

September 8, 2022
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Executive Summary

The global trend of realizing zero-emission transportation involves transitioning from conventional
fossil fuels to electric energy. This transition exposes bus operators to increased risk in their operation
due to a reduced range and unpredictable energy consumption of their fleet of battery electric buses.
The previously conducted Cloud Your Bus (CYB) project aimed to reduce this risk by providing
insight into the real-time operation of the fleet, realized with an embedded device sending bus data to
an online platform. The operator accesses this platform.

The project Destination Zero continued this work, aiming to extend CYB with an Electric Vehicle
Energy Estimation (EVEE) system capable of forecasting trip energy consumption. This estimation
should improve predictability and reduce operational risks. This risk reduction may reduce the re-
quired investments by allowing the purchase of a smaller bus fleet through optimal allocation. More-
over, reducing the frequency of operational disruptions can reduce operational expenses. Both facili-
tate the adaption of zero-emission transportation.

To realize these benefits, an accurate and reliable energy consumption estimate should be established
that is being updated while driving. Therefore, two methods for modeling the trip energy consumption
have been evaluated by performing simulations with historical trip data. After a benchmark of the
Route Characteristics Indicator and Machine Learning energy consumption modeling methods, the
EVEE software is designed to autonomously estimate the energy and facilitate scaling to large fleets
of buses.

The final design of EVEE employs the Route Characteristics Indicator modeling method, deploys as
a web service, and receives data from the device mounted on the bus. In contrast to the relatively
inaccurate estimate provided by the Original Equipment Manufacturer, which is based on historical
energy consumption, the proposed estimation uses the repetitive and predictive nature of bus trips.
The design has been implemented and validated, after collecting experimental data with 42 buses
driving in a city in the Netherlands. The main results are as follows:

• The estimation error starts relatively high and reduces as the trip progresses

• The mean estimation error at 20% trip progress equals −3% for 3680 trips

• The error after 20% trip completion stays within [−24.9,+18.7]% for 95% of 3680 trips

• Estimation is done 94% of the time while driving on a schedule

• The total data transfer costs are C1.03 per bus per month.

To conclude, the validation demonstrates that EVEE is close to meeting all the requirements, and can
improve the predictability of energy consumption of a battery electric bus. Consequently, it reduces
the risk for the operator, and the recommendation is to continue developing the software. Several
activities for further improving the estimation accuracy are proposed.
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Glossary
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List of symbols

Energy consumption modeling
a Acceleration
A Frontal area
Cr Rolling resistance coefficient
Cd Aerodynamic drag coefficient
Dr Remaining distance
E Energy
F Force
g Gravitational constant
Ga Auxiliary power correction gain
m Mass
m′ Estimated mass
N Normalized energy consumption prediction
P Power
RCI Route Characteristics Indicator
s Distance
t Time
v Velocity (longitudinal)
w Wind speed (in driving direction)
W Weight factor
η Efficiency
ψ Road inclination angle
ρ Air density

Kalman filter
y Observed measurement
ŷ Estimated measurement
Ψ Gradient of model output
θ Parameter to estimate
θ̂ Estimated parameter
e Error
P Error covariance matrix
R Constant covariance matrix
K Kalman gain
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1 Introduction

1.1 Zero-Emission transportation

Global warming has become an important issue, addressed by governments all over the world by
instating laws aiming to reduce the amount of expelled Green House Gas (GHG). Figure 1.1 shows
the projected energy consumption and GHG emission estimated by the European Commission, where
the transport sector is a considerable contributor. Therefore, the aim is to realize Zero-Emission (ZE)
transportation by replacing fossil fuels with ZE variants. These measures stimulate the adaptation of
alternative drivelines.

Figure 1.1: Evolution of total energy consumption and GHG emissions between 1995 and 2050 [2].

A historic overview of the volumes of alternative drivelines for heavy-weight vehicles is presented
in Figure 1.2. Here, significant growth can be observed in the adaptation of the Battery Electric Bus
(eBus). This introduces many challenges, which among others include:

1. Reduced range: in contrast to fossil fuel-powered buses - which have enough range to drive
a full day without refueling - the eBus has significantly less range. Recharging during the day
introduces complex scheduling tasks.

2. Range uncertainty: with the introduction of batteries, a range uncertainty is introduced due to
battery degradation, resulting in a decreasing capacity and thus range over time.

3. Less predictable energy consumption: For example, using electric heating instead of heat
from the Internal Combustion Engine (ICE) introduces different energy usage patterns.

Energy Consumption Prediction for Battery Electric Buses 1
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Figure 1.2: Volumes of alternative drivelines in Western Europe and Poland with a gross vehicle
weight over 8 tons [3].

1.2 The Cloud Your Bus project

The previously conducted Cloud Your Bus (CYB) project [1] addresses these challenges by offering
a vehicle telematics system and a range of Zero Emission (ZE) services. These services aid the public
transport operators in deploying their fleet of electric buses optimally, by reducing the risks and costs
of the operation. The following work packages were defined:

1. Data taxonomy: streaming live data to the operator

2. Live charging data: integrating charging points in the operational planning

3. Driving style optimization: reducing energy consumption through real-time driver feedback
on an in-vehicle display

4. Planning optimization: optimizing fleet allocation with dynamic re-planning during disrup-
tions

5. Battery state monitoring: monitoring the battery state-of-health

6. Energy consumption forecast: predicting trip energy consumption during operation to opti-
mize schedules and detect charge deficiencies early during operation

An overview of the realized CYB system is presented in Figure 1.3. Here, an embedded device com-
municates with the bus through a CAN-bus connection and collects vehicle and Global Positioning
System (GPS) data. The device sends the data to several cloud services, to which the operator has
access, see Figure 2.3. Two generations of devices are currently in use by operators. Approximately
90% are Owasys OWA3x devices and 10% the new generation Owasys OWA450. New buses will be
equipped with the new generation device, which has extended computational, storage, and connectiv-
ity capabilities compared to the old device.
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Figure 1.3: Cloud Your Bus system realization. The device collects GPS and vehicle data and sends
this to the cloud services, to which the operator has access.

1.3 Destination Zero: Electric Vehicle Energy Estimation

The work in this thesis is part of the DKTI-transport project Destination Zero, funded by the Nether-
lands Enterprise Agency, and presents an Electric Vehicle Energy Estimation (EVEE) system. This
addresses work package 6: energy consumption forecast, with the main goal to:

Develop, validate, and productize an Electric Vehicle Energy Estimation system,
that can provide a forecast of the total trip energy consumption for battery electric
city buses, at any point throughout the trip as accurately as possible.

Currently, an estimate may be provided on the driver dashboard by the Original Equipment Manu-
facturer (OEM), which is based on average historical energy consumption, but this is insufficiently
inaccurate for predictions. Realizing EVEE would reduce the uncertainty in the energy consumption
of the eBus. Therefore, the operator can reduce their vulnerability, and improve the deployment of
their fleet through optimized planning. Hence, the scope of this project is defined as follows:

1. Analyzing the energy consumption forecasting problem

2. Modeling the energy consumption:

• Validating the previously developed prototype energy consumption model [1]
• Developing and validating a data-based Machine Learning energy consumption model
• Selecting the best modeling approach through a benchmark

3. Designing and implementing the EVEE software

4. Verifying and validating the implementation through real-world experiments

Energy Consumption Prediction for Battery Electric Buses 3
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Assumptions and Constraints

• EVEE shall estimate energy consumption for battery electric city buses operating in public
transport, which drive along fixed schedules and routes

• EVEE shall work with the Owasys OWA3x and OWA450 Internet of Things (IoT) devices

• Go Programming Language (GoLang) shall be primarily used during implementation

1.4 System development methodology

The system development methodology employed during the development of EVEE, is presented in
Figure 1.4. For a more detailed description of the process, see the project management plan attached
in Appendix A.

Figure 1.4: Employed system development methodology

1.5 Report outline

The report is organized as follows. First, in Chapter 2 the analysis of the problem and domain are
discussed. Next, Chapter 3 presents an overview of state-of-the-art methods for energy consump-
tion modeling, and two methods are selected for further analysis. These are evaluated in Chapters 4
and 5, the Route Characteristics Indicator (RCI) and Machine Learning (ML) methods respectively.
Chapter 6 describes the design phase, including the selection of a modeling method and a software
deployment concept, followed by a presentation of the software design. Chapter 7 discusses the im-
plementation and validation. Finally, Chapter 8 provides the conclusions and recommendations.
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2 Analysis of the problem

This chapter describes the analysis phase of the development methodology (see Figure 2.1), followed
by an exploration and evaluation of energy modeling concepts in Chapters 3-5, and the design phase
in Chapter 6.

Figure 2.1: Development methodology: analysis.

2.1 Domain analysis

The domain analysis in this section is vital for designing an effective solution to a problem, since
the nature of the solution may vary between domains. The considered domain is buses operating in
public transport, which drive with fixed schedules and routes (often called lines). Consequently, the
same sequence of trips is driven repeatedly throughout the year. This repetitive nature can aid the
forecasting of the energy consumption for these schedules.

The schedule of an eBus consists of several blocks of trips, which start at the depot, followed by
several trips, and ends back at the depot for charging. Figure 2.2 illustrates an example where the bus
leaves the depot, drives to the central bus station, visits destinations A and B, and returns to the depot.

Figure 2.2: Operating schedule context example. This figure illustrates one of many blocks of a
schedule. Lines are physical routes that connect destinations. Trips are unique instances
that the bus drives along these lines.
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EVEE shall initially operate in the Netherlands, where schedules are updated approximately twice a
year. The operator constructs these schedules based on many variables, including the estimated range
of the eBus.

2.2 Customer concerns

The customer concerns presented in this section are leading during the design generation. After an
extensive problem analysis in consultation with stakeholders, the identified concerns were reducing
the operation’s costs, vulnerability, and carbon footprint. The CYB system addresses these concerns
through four different value streams, presented in Figure 2.3. EVEE shall extend this system with
real-time energy consumption estimation, providing the following additional customer value:

1. Operators implement battery capacity buffers in their schedules to cope with the energy con-
sumption uncertainty, resulting in buses returning to the charger with up to 25% charge re-
maining. Reducing the uncertainty allows for smaller buffers, leading to better use of material,
and allowing filling the same schedule with fewer buses. Thus, reduced buffers require fewer
investments and operational costs.

2. Operators often resolve operational disturbances reactively due to a lack of predictive methods.
A reliable energy estimate can be a method to implement predictive problem resolution. For
example, when a bus cannot return to the charger due to excessive energy usage and not enough
remaining charge. The reactive approach may detect and react once the problem has become
unresolvable, leading to a stranded bus. However, the predictive method could identify this
timely, allowing swapping of the bus and avoiding stranding.

3. The monitoring and schedule optimization platforms can be extended with the energy forecast,
allowing the operator to react to disturbances predictively in two ways. This may be done by
monitoring the fleet, and through the adaptive schedule optimization software.

4. The driver feedback algorithm may be improved by including deviations from the planned en-
ergy consumption.

Figure 2.3: Value streams of the Cloud Your Bus system.
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2.3 Stakeholder concerns

A stakeholder analysis was performed to identify communication preferences and their concerns re-
garding the project, which is described detailed in Appendix B. Their main concerns regarding the
system are summarized in Table 2.1.

Table 2.1: Stakeholder concerns regarding the energy estimation.

ID Keyword Concern
C1 Estimation Provide a reliable energy estimate with EVEE
C2 Costs Minimize total costs of operating EVEE
C3 Ease-of-use Minimize effort to use and operate EVEE
C4 Maintainability Monitor and maintain EVEE easily
C5 Compliance Compliance of EVEE with company and government policies
C6 Scalability Ability to scale EVEE by deploying to many devices

2.4 System requirements

The system requirements were elicitated from the stakeholder concerns and grouped into functional
and non-functional requirements, see Table 2.2 and Table 2.3 respectively. The non-functional re-
quirements include the quality aspects of the functional requirements. Both are prioritized using the
MoSCoW1 method, which includes the following classes: must have, should have, could have, and
won’t have. To ensure the generated requirements address the concerns, a requirement tracing chart
was established, which can be found in Appendix C.

Table 2.2: Functional requirements of EVEE, defining the high-level system functionalities, and pri-
oritized with the MoSCoW method.

ID Keyword Requirement Priority Addresses
FR-1 Estimation The EVEE system must provide an estimate of

the total energy consumption in kWh for a trip.
Must C1

FR-2 Ease-of-use The EVEE system must boot-up and configure
itself for use with any battery electric city bus in
Sycada’s portfolio automatically on bus power-
up.

Must C3

FR-3 Monitoring The EVEE system should provide the Root
Mean Squared Error (RMSE) of the trip en-
ergy consumption estimate, for the maintainer to
monitor the operating performance.

Should C4

1Wikipedia, MoSCoW method, accessed 28/7/2022 at https://en.wikipedia.org/wiki/MoSCoW_method
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Table 2.3: Nonfunctional requirements of EVEE, prioritized with the MoSCoW method. Including:
Scalability, Reliability, Regulatory, Maintainability, Serviceability, Utility, Security, Man-
ageability, Data integrity, Capacity, Availability, Usability, Interoperability, and Environ-
mental requirements.

ID Keyword Requirement Priority Addresses
NF-1-A Speed The EVEE system must publish the energy con-

sumption estimate every 55 to 65 seconds.
Must FR-1

NF-1-B Accuracy The EVEE system should estimate the total trip
energy, with less than 25% Mean Percentage Er-
ror (MPE), after 20% of the traveled trip dis-
tance, for at least 95% of at least 500 trips.

Should FR-1

NF-1-C Uptime The EVEE system should provide an energy es-
timate at least 99% of the time while on a sched-
ule.

Should FR-1

NF-1-D Initialization The EVEE system should provide its first energy
estimate within two weeks after a schedule revi-
sion.

Should FR-1

NF-2-A Costs The total costs of operation of EVEE must not
exceed C5 per bus per month.

Must C2

NF-2-B Bandwidth The bandwidth usage of the EVEE system must
be less than 0.05 kilobytes per second per bus,
averaged over a minimum of 1 week.

Must NF-2-A

NF-3-A System start Initialization and configuration of the EVEE
system should take no longer than 30 seconds
after power-up.

Must FR-2

NF-4-A Monitoring The EVEE system should publish the energy
consumption estimate RMSE at least once per
trip.

Should FR-3

NF-5-A Maintainability The EVEE system should be programmed in
GoLang.

Should C4

NF-6-A Compliance The EVEE system must comply with the Gen-
eral Data Protection Regulation of the European
Union.

Must C5

NF-7-A Scalability The EVEE system should be compatible with all
OWA3x and OWA450 devices of Sycada.

Must C6
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2.5 Context of EVEE

The context of EVEE was established, defining the system boundary and all actors that interact with
the system, see Figure 2.4. Here, the driver and operator interact indirectly with the system through the
Zero Emission Services. The maintainer monitors EVEE through the Amazon Web Services (AWS)
CloudWatch platform.

The embedded device collects data from the sensors provided by the OEM. This data is sent in a
request to EVEE, which responds with the estimate. The distribution of the estimate to the ZE services
is realized through an existing interface. The KV6 server provides the real-time trip status of the
vehicle, e.g. trip/line ID, and the NeTEx server provides the schedule.

Figure 2.4: EVEE system context diagram.
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2.6 Mission analysis

EVEE’s main functionalities have been identified by applying a mission analysis, which aims to iden-
tify use cases for each operating phase, see Table 2.4. These use cases are the foundation for the
system design introduced in Chapter 6, which extends the use cases in the table that are denoted with
a + symbol, followed by the added specification.

Figure 2.5 shows the analysis for the mission: to calculate a trip energy estimate and send this to the
Zero Emission cloud services. Here, the top row shows the mission phases, the middle row a timeline
with events, and the bottom row the use cases per phase. The mission repeats itself by starting at
a depot, driving to the start of the first public trip, driving the scheduled trips, returning back to the
depot, and connecting the bus to the charger.

Figure 2.5: Analysis of the energy estimation mission.

2.7 Discussion

To realize EVEE’s mission, an energy consumption model should be realized that satisfies the defined
requirements. Therefore, the upcoming Chapters 3 to 5 explore and evaluate state-of-the-art modeling
methods.
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Table 2.4: Description of use cases derived from the mission analysis.

ID Name Actors Description
UC1 Initialize

EVEE
EVEE Initialize EVEE when the device boots by setting up required

configurations for data storage and communication. It starts
receiving trip status messages and listening to estimate requests.

UC2 Receive
schedule

EVEE
NeTEx

EVEE receives the operator schedule by communicating with
the NeTEx server.

UC3 Request
energy
estimate

Device
EVEE

The embedded device sends a request, that EVEE responds to
with a trip energy estimate.
+ The request contains data collected over one minute, with
timestamp, latitude, longitude, speed, odometer, battery energy,
and drivetrain energy.

UC4 Initialize
processor

EVEE EVEE initializes a processor for a bus.

UC5 Process data EVEE Execute the trip logic, update the energy measurements, append
the trip data log, and update the energy estimate.

UC6 Estimate
energy

EVEE Estimate the total trip energy consumption.
+ This uses an RCI profile with mass estimation for the drive-
train energy, and a time remaining profile with mean historical
power for auxiliary energy estimation.

UC7 Execute trip
logic

EVEE On receiving a request, changes in trip/line are identified, trig-
gering the required start trip or stop trip use case.

UC8 Receive trip
status

EVEE
BISON

Receive the actual trip status from the BISON KV6 server.

UC9 Start trip EVEE Initialize the estimation for the current trip.
+ Initialize trip, configure the mass estimator with the vehicle
mass, and start trip data logging.

UC10 Initialize trip EVEE + Initialize a reference trip from an existing reference, or ini-
tialize one from historical trips.

UC11 Stop trip EVEE Processes all data collected throughout the trip.
+ Do the following: 1. save a datalog for debugging, 2. gen-
erate a new trip, 3. compare new trip quality with reference, 4.
update reference trip, and 5. calculate the estimation error with
measured energy.

UC12 Generate trip EVEE + Generate a new reference trip from logged data.
UC13 Update trip EVEE + Update the loaded reference trip with the newly generated

one.
UC14 Calculate

block energy
EVEE Calculates the energy estimate for a series of trips that form a

schedule block. It receives the schedule from the NeTEx sched-
ule server to realize this.

UC15 Send
performance
metrics

EVEE
Cloud-
watch

On trip completion, the actual energy usage is used to calculate
the estimation’s MPE at every 10% progress of the trip. This is
written to a log file for analysis by the maintainer. The RMSE
of the estimation is sent to the AWS CloudWatch monitor.
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3 State-of-the-art methods for energy consumption
modeling

State-of-the-art methods for the energy consumption estimation of electric vehicles can be divided
into two common approaches. Firstly, physical modeling approaches such as those in [4–8], construct
a vehicle model by estimating its physical parameters, and combine this with a drive cycle to evaluate
the model. Secondly, data-driven methods use historical or real-time data to train a model that best
fits the data [9–16]. For an extensive review of literature on both approaches the reader is referred to
[17], and for a review on data-based energy estimation methods to [13, 14]. The remainder of this
chapter discusses physical models and data-based models in more detail.

3.1 Physical Modeling

The physical modeling approach works with two main components for calculating the energy con-
sumption estimate. A drive cycle is constructed to model the trip. This is combined with a vehicle
model to virtually drive the bus along this drive cycle, while calculating the energy consumption.

3.1.1 Vehicle energy consumption model

A commonly used energy consumption model in literature is composed of two terms that model driv-
etrain systems and auxiliary systems seperately, see (3.1) [15]. The drivetrain component models the
energy required for moving the vehicle. The auxiliary component all secondary energy consumption,
such as heating, air conditioning, lighting, etc. The total energy required is given by

Etotal =

∫ t

0
(Pdrive + Paux)dt, (3.1)

where, Etotal is the total energy consumption, Pdrive the powertrain power, Paux the auxiliary power,
and t is time. Pdrive can be further decomposed as (3.2) [15], where Fdrive is the drive force, v is the
longitudinal velocity, and η the total powertrain efficiency,

Pdrive =
Fdrivev

η
. (3.2)

Next, the driving force (Fdrive) is determined using a longitudinal dynamics model, which includes
forces due to rolling resistance, road inclination, aerodynamic drag, and acceleration. These contri-
butions are given in (3.3), where Cr is the roll resistance coefficient, m total vehicle mass including
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passengers, g the gravitational acceleration, ϕ the road inclination angle, ρ the air density, Cd the drag
coefficient, w the wind speed in the driving direction, mr the equivalent mass of the rotational inertia,
and a(t) the longitudinal acceleration.

Fdrive(t) = Crmg cosϕ(t) +mg sinϕ(t) +
1

2
ρCdA[v(t)− w(t)]2 + [m+mr]a(t) (3.3)

Evaluating the presented physical model requires many parameters (m, Cd, A, w(t), η), which is an
exhaustive process for the diverse fleet of buses in Sycada’s portfolio. Hence, applying such a model
should use the real-time estimation of required parameters.

3.1.2 Drive cycle prediction

After constructing a physical model, a drive cycle should be established to calculate the energy con-
sumption forecast for a trip. This cycle models the trip as speed and acceleration over time, and several
approaches exist for determining such as cycle. Firstly, this could be created by collecting historical
data on a route, which is trivial in public transport, since vehicles drive fixed routes. Alternatively, a
drive cycle generator can be used [5, 7, 10, 18], or standardized drive cycles can be adopted.

3.2 Data-driven methods

Data-driven methods, such as Machine Learning (ML), avoid the physical model and instead derive a
model from historically collected data. Compared to drive cycle-based methods, data-driven methods
often rely on an abstraction of the driving profile. A simplified representation of the driving profile
can be obtained by collecting topological parameters such as the number of stops, road condition,
route length, and operational factors such as trip duration, and average speed [11, 13, 14].

The performance of data-based algorithms can be affected substantially by their input parameters.
Therefore, an analysis was done to identify these parameters, and compare them with findings in the
literature in Appendix D. It shows per parameter if a significant impact was noticed in the literature.

3.3 Route Characteristics Indicator method

Approaches employing a physical model require many model parameters, which may be challenging
to obtain for many bus types. Moreover, data-driven methods require significant amounts of data for
training a model, leading to long initialization times. Therefore, a new approach was proposed in [1],
aiming to realize a generic energy consumption estimation algorithm that initializes quickly.
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3.3.1 Route Characteristics Indicator

The approach aims to simplify the longitudinal dynamics equation (3.3), so it depends on parameters
that can be estimated during operation. In this equation, mass is the dominant parameter and varies
due to the number of passengers on the bus. This fluctuation is significant compared to the vehicle’s
empty weight and therefore has a big impact on the total energy consumption. Hence, the aim is to
estimate the mass, by extracting it from the equation:

Fdrive(t)

m
= Crg cosϕ(t) + g sinϕ(t) + a(t)︸ ︷︷ ︸

route specific

m+mr

m
+

1

2m
ρCdA[v(t)− w(t)]2︸ ︷︷ ︸

negligible

(3.4)

Here, the first part of equation (3.4) no longer depends on mass, and is route specific. Additionally,
m is assumed to be larger than the equivalent mass of inertia of the rotational parts mr, and therefore
varies little. Moreover, aerodynamic drag is small compared to other terms since the considered buses
drive in cities and therefore at low speeds. Both these terms are therefore neglibile compared to the
route specific part. Thus, the right side of the equation is the characterization of a route and is called
the Route Characteristics Indicator (RCI).

3.3.2 Real-time mass estimation

The RCI has the same unit as acceleration, m/s2, and can be used to estimate the driving force using
only a mass estimate. The drivetrain energy consumption estimate is calculated as:

RCI(s) =
Fdrive(s)

mη
≈ Pdrive(s)

mv(s)
, (3.5)

Edrive(s1) = m′(s1)

∫ s2

s1

RCI(s)ds, (3.6)

where Edrive is the drivetrain energy consumption estimate from the current position s1, to a future
position s2. The vehicle mass m is replaced with the imaginary mass m′, estimated while driving
using a linear Kalman filter [19], and indirectly accounts for external factors such as driving style.
Furthermore, η is the powertrain efficiency, Pdrive is the powertrain power, and v is the longitudinal
velocity.

3.3.3 Total energy consumption estimate

The total energy consumption estimate calculation is presented in (3.7). It estimates the energy con-
sumption from (t1, s1) to the end of the trip, (tend, send). The second term on the right side is the
auxiliary estimate, which includes the auxiliary correction gainGa, which corrects the auxiliary power
Paux in real-time using a linear Kalman filter [19].

E(t1) = m′(s1)

∫ send

s1

RCI(s)ds+

∫ tend

t1

Ga(t1)Paux(t)dt (3.7)
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3.4 External information sources

In literature, vehicle data is often combined with external sources. This is done to include external
factors, like the environment, in the estimate. This section presents a brief review of these sources.

The environment can have a significant impact on the energy consumption estimate, thus in [5, 7, 8]
Open Street Map (OSM) is employed for extending the dataset with route topology information.
Moreover, road elevation and inclination can be obtained through Shuttle Radar Topography Mission
(SRTM) [7], or detailed information such as traffic lights and speed bumps can be included through
local systems, like Brussels UrbIS [10]. Besides topological information, also weather data can be
included through platforms such as the OpenWeatherMap (OWM) [5, 7, 8],

The operational domain analysis introduces the repetitive nature of public transport trips, which can
be used to the advantage of the estimation [6, 11]. It may be interesting to investigate possibilities for
obtaining this data in the Netherlands since this is where EVEE shall initially operate.

Public transport operations information in the Netherlands can be accessed through Beheer Informatie
Standaarden OV Nederland (BISON), which facilitates information sharing within the public transport
sector. Information such as schedules, trips, lines, and stops can be obtained through the BISON KV6
[20]. On the European level, this may be obtained through the Network Timetable Exchange (NeTEx).

3.5 Discussion

The literature survey in this chapter discusses several energy estimation methods, ranging from phys-
ical modeling to purely data-based methods, each having its unique qualities. According to require-
ment NF-7-A, EVEE must be usable with any eBus in Sycada’s portfolio, thus many different bus
configurations shall be usable with the estimation method. Using a physical model requires many pa-
rameters which are not provided by the OEM, and must therefore be measured or estimated. This can
be difficult to obtain. Hence, two promising approaches will be compared. The RCI and data-based
methods are evaluated in Chapter 4 and 5 respectively. A comparison of both methods can be found
in Chapter 6.
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4 Modeling approach 1: RCI method

Prior to this project, a prototype of the RCI method was developed, which is discussed in detail in [1],
and summarized in Section 3.3. The model was tested with approximately 50 trips on a single route.
No experiments were done to validate this method for a large number of trips on various routes. This
chapter proposes several improvements to the algorithm and presents a large-scale evaluation of the
RCI method.

4.1 Updated energy estimation method

The simulation results of the method proposed in [1], attached in Appendix E, reveal that the auxiliary
energy estimation error peak up to 250%, and have a significant impact on the total error. This causes
the total estimation error to exceed the accuracy requirement NF-1-B, which requires less than 25%
error after 20% progress. The following improvements are proposed when compared to [1]:

1. The drivetrain and auxiliary estimates, described by (4.2) and (4.3) respectively, are now com-
posed of a measured and an estimated part. The first term is the energy measured from the trip
start t0 to time ti, and the second term is the estimate from time ti until the trip end.

2. The auxiliary energy estimation in (4.3) is simplified by replacing the Kalman filter with a time
remaining estimate and a historically averaged auxiliary power, discussed in Section 4.1.1.

A graphical overview of the updated method is presented in Figure 4.1. The method is described by
the following equations:

Etotal(ti) =Edrive(ti) + Eaux(ti), (4.1)

Edrive(ti) =

∫ ti

t0

Pdrive(t)dt+m′(si)

∫ send

si

RCI(s)ds, (4.2)

Eaux(ti) =

∫ ti

t0

Paux(t)dt︸ ︷︷ ︸
Measured

+ P̄auxtrem(si)︸ ︷︷ ︸
Estimated

, (4.3)

where t is the time, s is the distance, Etotal, Edrive, and Eaux are the trip energy consumption esti-
mates, ti and si are the time and distance at which the estimate is made, t0 is trip start time, send is the
estimated trip length, RCI is the Route Characteristics Indicator, Paux and Pdrive the measured driv-
etrain and auxiliary power, P̄aux is the historical average auxiliary power, and trem is the estimated
time remaining.
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Figure 4.1: Overview of the estimation part of the updated RCI method.

4.1.1 Updated auxiliary energy estimation

Two challenges present themselves in the auxiliary estimate. Firstly, the auxiliary power highly varies
throughout the day and is challenging to predict accurately. Secondly, the remaining time is unknown
and varies due to traffic conditions. The proposed adjustments simplify this model by assuming a
constant power throughout the trip, and modeling the remaining time as a function of traveled distance,
both as historical average. This is described in Equation 4.4.

∫ tend

ti

Pauxdt ≈ P̄auxtrem(si) (4.4)

4.1.2 Reference trip

A reference trip is used for the estimation, which consists of several components. Firstly, it contains
three arrays for the traveled distance, the RCI, and the remaining time profile. These data points are
spaced equally through interpolation, which is done every 5 meters in the current implementation.
Additionally, a single value for the mean auxiliary power and the mass final estimate.

The reference trip is initialized by averaging historical trips, after which the reference is updated after
each new trip. Updating the reference trip allows the method to account for environmental changes
such as seasonal influences on energy consumption. This is done by calculating the weighted average
of the reference trip and the new trip:

Tupdated =
WupdateTreference + Tnew

Wupdate + 1
, (4.5)

where Tupdated is the updated reference trip, Treference is the reference that will be updated, Tnew is
a newly generated trip, and Wupdate is the update weight. This work uses Wupdate = 30.
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4.2 Validation approach

The results presented in [1] were established with 50 trips of a single route, of which 30 were used
for initial reference generation, and 20 for driving simulations. To draw a confident conclusion about
the method’s accuracy, this number should be increased up to a minimum of 500 trips according to
requirement NF-1-B. The goal of the validation described in this report is to extend the work done
previously, by increasing the total number of trips and testing on different routes.

The model validation methodology is described in Figure 4.2. It starts with collecting a dataset con-
sisting of vehicle data and schedule information, followed by the extraction of data segments, grouping
these per route, and sorting them in a training and validation data set. The training data is used for
initializing the reference trip and the validation data for simulations. The final step is to process the
results into graphs and evaluate the performance. Each of the steps in the process will be discussed in
the following sections.

Dataset
collection

Route
Filtering

Sorting training
and validation

Simulate trip
energy estimate

Performance
Evaluation

Figure 4.2: RCI method: validation methodology.

4.2.1 Dataset collection

The employed dataset consists of two months of driving data, logged with the embedded device of
three equal-type 18-meter buses driving in a city in the Netherlands. The data contains various routes,
logged at 10 Hz from the following sources. Vehicle localization is obtained through the Global
Positioning System (GPS) system connected to the CYB device, vehicle data through a CAN-bus
connection, and schedule information over an interface with the BISON KV6 trip status server [20].
An overview of the available data points is presented in Table 4.1.

Source Variable Unit Type
GPS latitude Degree float
GPS longitude Degree float
GPS heading Degree float
CAN Battery Current Ampère float
CAN Battery Voltage Volt float
CAN Drivetrain Current Ampère float
CAN Drivetrain Voltage Volt float
CAN Longitudinal velocity km/h int

BISON Rotation ID - int
BISON Line ID - string
BISON Trip ID - int

Table 4.1: Trip dataset variables for RCI validation.
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4.2.2 Route filtering

A route is characterized by the unique combination of a Line ID, start location, and stop location. The
data for these routes was extracted with the developed Algorithm 1, attached in Appendix F, which
automatically extracts trip segments and groups the data per route. The behavior of this algorithm
can be summarized as follows. First, it extracts the data segments per unique line-trip combination,
and obtains the start and stop names and coordinates from a lookup table. The data segment is then
trimmed to start and stop near the right coordinates. If the segment starts and ends within the defined
radius from the table, it is saved per route.

4.2.3 Sorting training and validation

Sorting the trip data into a training and validation dataset is the next step in the methodology. This
was done with data sorting Algorithm 2, attached in Appendix F. The training data is used to generate
the reference trip for each route by calculating the RCI, averaged auxiliary power, and remaining time
profile, described in Section 4.1.2. The validation data is the input for the simulations discussed next.

4.2.4 Simulate trip energy estimate

The simulation goal is to minimize the Mean Percentage Error (MPE) and the Standard Deviation
(SD) of the Percentage Error (PE), for each point along the route. Additionally, the error at 20%
trip progress should be within the range [-25,+25]%, according to NF-1-B. This is calculated with
Equation 4.6 to 4.8, where Eestimate,i and Emeasured,i are the estimated and measured total energy
consumption for the trip i respectively, s is the distance for which the equation is evaluated, and N is
the total number of trips.

PEi(s) = 100×
Eestimate,i(s)− Emeasured,i(s)

Emeasured,i(s)
(4.6)

MPE(s) =
1

N

N∑
i=1

PEi(s) (4.7)

SD(s) =

√∑N
i=1[PEi(s)−MPE(s)]2

N − 1
(4.8)

The simulations were done by running Algorithm 3, the pseudo-code can be found in Appendix F.
This algorithm automatically simulates the RCI energy estimation method for all trips on a route, and
updates the reference trip using (4.5), with a new trip generated after each iteration of the simulation.

4.3 Results of RCI trip simulations

Extracting the trips from the two months of logged data provided approximately 2000 trips contain-
ing 16 different routes, with a minimum of 50 trips per route. These trips were sorted into training
and validation data sets, with per route 30 trips for training, and at least 20 trips for validation. The
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simulation results for the remaining 1334 validation trips are presented in Figure 4.3, which shows
the mean and standard deviations in separate plots for the total, drivetrain, and auxiliary energy con-
sumption estimate errors. Note here that the y-axis limits are matched, and the auxiliary estimate has
a significantly larger error standard deviation. Additionally, the drivetrain error rapidly converges to
zero mean error, while the auxiliary estimate approaches zero at the trip’s end.

Moreover, the total energy consumption estimate error statistics are used to reflect on the accuracy
requirement NF-1-B. This reveals that the mean converges to zero around 10% progress. However,
with a 2 SD range of [-22.4,+22.9], the error is close to the limits of [-25,+25]%. Evaluating the
dataset reveals that on average, the total energy consumption consists of approximately 20% auxiliary
and 80% drivetrain. Thus, the auxiliary error propagates to a lower extent into the total error.

Figure 4.3: RCI method: error of estimation components: total, drivetrain and auxiliary. The error is
defined as the Mean Percentage Error of the trip total energy estimate.

Lastly, Figure 4.4 presents the comparison of the auxiliary estimation part of the original method
proposed in [1], and the adjusted method outlined in Section 4.1. Note here that both y-axes have
equal limits. From these plots, it becomes clear that the proposed auxiliary estimation method reduces
the MPE, by eliminating the peak at the start of the trip.

(a) Old method [1] (b) Improved method

Figure 4.4: RCI method: comparison of initial and improved auxiliary estimation. The error is de-
fined as the Mean Percentage Error of the trip total energy estimate.
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4.4 Discussion

The results of the enhanced RCI method reveal that the total energy consumption estimate error stays
within the bounds [-22.4, +22.9] percent error for over 1300 simulated trips, which satisfies the accu-
racy requirement NF-1-B. The drivetrain part presents promising results, though the auxiliary part is
relatively inaccurate.

Since the goal is to realize a model that estimates the total energy consumption, while minimizing
both the mean and the standard deviation, the question arises of whether the RCI approach is the best
way to accomplish this. Therefore, the next chapter presents the design and evaluation of a Machine
Learning (ML) method, with as goal to compare it with the RCI method.

22 Energy Consumption Prediction for Battery Electric Buses



Eindhoven University of Technology

5 Modeling approach 2: Machine Learning

The previous chapter established a performance baseline with the Route Characteristics Indicator
(RCI) method. This chapter explores the possibilities of improving the estimation by developing a
data-based method with Machine Learning (ML). The development was done according to the CRoss
Industry Standard Process for Data Mining (CRISP-DM), described in Appendix G. The process
consists of the following steps:

1. Method design (Section 5.1)

(a) High-level design
(b) Energy consumption prediction equations
(c) Evaluation criteria

2. Data preparation (Section 5.2)

(a) Extract trip data
(b) Convert units
(c) Normalize data (e.g. kWh/km, events/km)
(d) Generate features
(e) Filter incomplete entries
(f) Remove outliers

3. Modeling (Section 5.3)

(a) Feature selection (automatic or manual)
(b) Standardize and normalize the data
(c) Splitting the data for training, validation, and testing
(d) Training the algorithm (grid-search or final training)

4. Evaluation (Section 5.4-5.5)

(a) Metrics evaluation through test set predictions
(b) Export the model
(c) Validate through trip simulations

The main steps of this process will be discussed in this chapter.
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5.1 Method design

The evaluated high-level design is presented in Figure 5.1, and has two main inputs. The embedded
device collects vehicle data, and the BISON KV6 system provides real-time trip status information.
More information on the collected data is provided in Section 5.2. The trip status is used for identify-
ing the scheduled route, which is used to calculate the remaining distance. The inputs are sent to a trip
data accumulator, which normalizes these values with respect to traveled distance, and forwards these
to the drivetrain and auxiliary models. The normalization is done to determine an energy consumption
estimate in kilowatt-hours used per kilometer, Ē = kWh/km.

Figure 5.1: Machine Learning model architecture. The schedule and trip data are fed to an accumu-
lator, which normalizes the data and forwards it to the prediction models.

Two main variants were evaluated throughout the project. Equation 5.1 describes the first method, em-
ploying two estimators that model the drivetrain and auxiliary parts separately. Equation 5.2 describes
the second, which uses a single model for estimating the total energy consumption:

Etrip(s) = Emeasured(s) +Dr(s)Ēdrive(s) + trem(s)P̄aux(s) (5.1)

Etrip(s) = Emeasured(s) +Dr(s)Ētotal(s) (5.2)

Here, the symbols are defined as follows. Etrip is the trip energy consumption estimate, Dr the
remaining distance, trem the remaining time, Ēdrive and Ētotal the corrected normalized drivetrain
and total energy, and P̄aux the corrected auxiliary power estimate.

The model predictions Ēdrive, Ētotal, and P̄aux are corrected with the measured values by evaluating
(5.3), which is used for all estimates. Here,Nc is the corrected estimate, for either the total, drivetrain,
or auxiliary energy consumption. Nestimate is the estimate, Nmeasured is the measured normalized
energy consumption value, W is the weight calculated with (5.4).

Nc(s) = (1−W (s))Nestimate +W (s)Nmeasured (5.3)

W (s) = max
(
0,
p(s)− pinit
1− pinit

)
, p(s) =

scurrent
striptotal

(5.4)
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The weight W (s) in the correction can be considered as a measure of confidence in the measured
value. Initially, a weight of 0 is used until the progress exceeds the initialization distance threshold
pinit, from where it linearly approaches 1 at 100% trip completion. The implementation discussed in
this thesis used pinit = 0.15.

Evaluation criteria

The main criteria for selecting a ML model are running time, accuracy, and transparency, on which the
existing algorithms score differently. Simple methods such as linear regression require less running
time than nonlinear methods and are easier to interpret. The more complex non-linear methods require
more running time, are more accurate for non-linear data relations, and are more difficult to interpret.
Since the selection of a suitable model is not trivial, the remainder of this chapter evaluates several
methods before selecting the most suitable one.

Performance metrics

The main criterion for EVEE is to have an estimate of the highest accuracy, requirement NF-1-B,
which shall be updated approximately once per minute, requirement NF-1-A. Therefore, running time
is not considered a vital selection criterion and the three applied metrics measure the accuracy of
the prediction. First of all, the Mean Absolute Percentage Error (MAPE) is minimized during model
training:

MAPE =
1

N

N∑
i=1

∣∣∣ytrue,i − ypred,i
ytrue,i

∣∣∣. (5.5)

Additionally, the Coefficient of Determination (R2) is evaluated with model predictions after training.
The R2 metric is a measure of the goodness of fit of a model [21], and varies from 0 to 1, with a
perfect score being 1. It is calculated as follows:

R2 = 1−
∑N

i=1(ytrue,i − ypred,i)
2∑N

i=1(ytrue,i − ȳpred,i)2
. (5.6)

Lastly, the Root Mean Squared Error (RMSE) in Equation 5.7 is used as a measure for the residual
error of the model:

RMSE =

√∑N
i=1(ytrue,i − ypred,i)2

N
. (5.7)

In Equation 5.5-5.7, ytrue,i is the real value, ypred,i is the predicted value, and ȳpred,i is the mean of
the predictions.

5.2 Data preparation

The accuracy of a Machine Learning (ML) model is affected significantly by the amount and quality
of the data used for training the model. The collection of a new dataset is outside of the scope of this
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project, due to the limited time available for doing so. Thus, two prior available datasets are evaluated,
which have been recorded by 42 equal-type 18-meter buses, driving in the same city as described in
Chapter 4. Some data characteristics are listed in Table 5.1.

Name Data point count Start date End date Duration
Driver segments 112.000 June ’19 Dec ’21 2.5 yr
Trip segments 56.000 Jan ’21 Dec ’21 1 yr

Table 5.1: Datasets evaluated during machine learning model development.

These datasets have a slightly different representation of trips, since the driver segments dataset
contains blocks of trips, which are grouped per driver, and the trip segments data consists of vehicle
trips, which are reset when the ignition switches off/on. The remainder of this report presents the
results of the trip segments dataset only, which resulted in the best prediction accuracy.

Available data points

A complete overview of the available signals with their description can be found in Appendix I, and
can be summarized as follows:

• Energy: total, auxiliary, drivetrain, regenerated, battery SoC at start and stop
• Operations: distance, duration, idle time, rolling time, driving time, ambient temperature
• Bands: speed, acceleration, accelerator pedal, motor rpm, engine load, battery load
• Driving events: hard & excessive acceleration and braking, full throttle, mechanical braking
• Drivestyle feedback display: time that display lights up green, yellow, and red
• GPS start and stop: latitude, longitude, heading, stop name
• Trip info: rotation ID, trip ID, line ID

Feature generation

Feature generation considers the augmentation of the data to realize additional variables for model
development, and was done by combining data points into e.g. a Driving Score, and performing
mathematical operations on the data. These operations aim to transform the data, by for example
linearization, improving suitability for a linear regression model.

5.3 Model development

The nature of the prediction problem fits in the class of regression methods. Hence, this section dis-
cusses the development of such a model, which was realized using a Python-based Jupyter notebook.

Feature selection

During feature selection, the aim is to select variables that best fit the model, thereby maximizing
its accuracy. This was done by selecting variables that have a high correlation with the target vari-
able: normalized energy consumption. Initially, this was done through Pearson correlation analysis,
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but since this only identifies linear correlations, an additional analysis was performed by pair-wise
inspecting the data points to identify nonlinear relations, such as the effect of ambient temperature.
This analysis is discussed in detail in Appendix I.

In practice, feature selection proved to be an iterative process, starting with model training, followed
by trip simulations, resulting in a change of training features. Experiments reveal that using more
parameters during training results in a higher training accuracy. However, trip simulations are affected
negatively due to volatility in the estimates. The root cause investigation presented in Appendix H
exposes the data accumulator as the cause for this. Thus, feature selection included finding parameters
with little variation from the accumulator, while having a high correlation with the model.

Algorithm selection and optimization

The selection and optimization of a modeling method has been achieved through a grid-search opti-
mization that minimized Equation 5.5-5.6. The methods included linear regression up to non-linear
Neural Networks. The grid-search results are presented in Table 5.2. Of all methods, the Neural
Network architecture demonstrated the highest accuracy and was selected as the primary modeling
method. Since this method can be considered a black box, a sensitivity analysis was required to
identify the dominant parameters in the estimate, which is further discussed in Appendix I.

MAPE R2 RMSE
Method [%] [-] [kWh/km]
Multiple Linear Regression 9.2 0.49 0.018
Ridge 9.2 0.49 0.018
Lasso 10.5 0.38 0.022
ElasticNet 9.4 0.49 0.018
Decision Tree 8.1 0.56 0.016
Random Forest 7.6 0.62 0.013
Gradient Boosted Tree 4.5 0.84 0.006
Neural Network: Multi-Layer Perceptron 4.0 0.84 0.006

Table 5.2: Machine Learning algorithm grid-search results. Optimized for target energy kWh/km. 30
features are included which have a correlation of over 0.05 with the total energy consump-
tion. The Neural Network architecture consisted of three hidden layers with 30 nodes each
and a ReLU activation function, with a single output node with linear activation.

5.4 Training results

The Neural Network architecture consisted of three hidden layers with 30 nodes each and a ReLU
activation function, with a single output node with linear activation. The training results for the
total, auxiliary, and drivetrain models are presented in Figure 5.2, which have been developed with a
train/validation/test data size ratio of 80/16/4%. The validation data has been used to terminate the
training process once overfitting had been detected. The models use the following inputs:
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• Ambient temperature: Ta, T 2
a , (Ta − 20)2.

• Date: Month of the year, day of the week, periodical features, e.g. cos(MoY ), sin(MoY ).
• Time: hour of the day, periodically, periodical features cos(HoD), sin(HoD), and a rush hour

boolean with rush hours between 6:30-9:30 and 15:30-19:00.
• Drive Score: a measure of driver aggressiveness, established by evaluating the relative time

that the driver spends in defined acceleration bands. DriveScore =
∑N

i=1Wi × (Ti − Tref,i),
where Ti is the relative time in band i, and Tref,i is a target value.

• Route identifier: a unique combination of the lineID, and start and stop names
• Energy ratios, used in the auxiliary model only: ratio of measured energy auxiliary/total,

drivetrain/total, and regenerated/total.

Data analysis shows that the energy ratios have a strong correlation with the energy estimate. How-
ever, a drivetrain model trained on this performs insufficiently due to volatility in the variables, see
Appendix H. The auxiliary model is less sensitive to this and therefore uses these variables as inputs.

(a) Auxiliary power (kW) (b) Drivetrain energy normalized (kWh/km)

(c) Total energy normalized (kWh/km)

Figure 5.2: Machine Learning model predictions for the auxiliary, drivetrain, and total energy models.
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5.5 Trip data simulation

The trip simulations, which are used for verifying the accuracy requirement, are realized similar to the
RCI validation methodology to allow a fair comparison of the results. The simulations have been done
with newly collected data, since the RCI data lacked several required parameters, and the training data
lacked intermediate data points. The new data was collected by two buses, sampled at 1 Hz, containing
the accumulator variables, and the BISON KV6 trip status.

Due to time constraints, 113 trips were collected, compared to approximately 2000 trips for the RCI
method in Section 4.2. Experiments revealed that the lowest MPE was achieved for the split model,
consisting of a drivetrain and auxiliary estimator. The results of this model are presented in Figure 5.3.
Note here, that during training only the MAPE metric was available, but that the trip simulations
evaluate the MPE to allow the calculation of the standard deviation.

Figure 5.3: Machine Learning model trip simulations. The Mean Percentage Error for 113 simulated
trips.

5.6 Discussion

The results presented in Figure 5.3 show that the MPE converges to zero rapidly, and the total estima-
tion error stays within the range [-23,+19.8]% for 95% of 113 simulated trips. Moreover, the auxiliary
estimation has a considerably high standard deviation, indicating the Machine Learning model is rel-
atively inaccurate, similar to the RCI method.

Two models have been developed for estimating the energy consumption while driving, based on the
RCI and Machine Learning methods. Therefore, the next chapter selects a method as the foundation
for the final design EVEE.
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6 Design of the EVEE system

In the previous chapters, the problem analysis has been presented and several methods for trip energy
consumption estimation have been evaluated. This chapter builds on this by presenting the second
part of the development methodology, see Figure 6.1. First an energy consumption estimation mod-
eling method is selected in Section 6.1, followed by a selection of a software deployment concept in
Section 6.2. Moreover, based on these decisions a design is presented for the software in Section 6.3-
6.5. All design figures presented in this chapter are according to the Systems Modeling Language
(SysML).

Figure 6.1: EVEE system development methodology: design phase

6.1 Modeling concept selection: RCI versus Machine Learning

The selection of an energy estimation method was done with the non-functional requirement NF-1-B,
which states that the estimate should have less than 25% MPE, after 20% of the traveled trip distance,
for at least 95% of at least 500 trips. Therefore, a 95% confidence interval is established with the
mean error and two standard deviations (SD). The results of the simulations described in Chapter 4
and 5 are summarized in Table 6.1.

From comparing the total estimate with MPE ± 2SD it seems that both algorithms have similar per-
formance, and both satisfy requirement NF-1-B. However, the standard deviation of the RCI method
is 1% higher than the ML method. This difference can be explained by the fact that the evaluated
number of trips for the ML model is significantly lower. Hence, the RCI model is expected to perform
better while it seems to have a slightly higher error at 20%.

Furthermore, the RCI method appears to have a lower error in the drivetrain part, which can be ex-
plained by the detailed trip modeling with the drive-cycle-like approach. In contrast, the ML method
uses high-level trip characteristics only. Moreover, the ML method seems to have a lower error in
the auxiliary part. Concluding, the RCI method was selected for the initial version of EVEE, since
it performs better on the drivetrain estimate, which is often approximately 80% of the total energy
consumption estimate.
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MPE ± 1SD MPE ± 2SD
Model Estimation Nr trips at 0%

trip progress
at 20%
trip progress

at 40%
trip progress

at 20%
trip progress

RCI Total 1334 -0.5 ± 14.8 0.2 ± 11.3 0.2 ± 8.5 [-22.4, 22.8]
ML Total 113 -6.1 ± 13.8 -1.6 ± 10.7 1.6 ± 8.0 [-23, 19.8]
RCI Drivetrain 1334 -0.5 ± 12.1 0.2 ± 6.9 0.0 ± 5.1 -
ML Drivetrain 113 -9.2 ± 10.2 -7.5 ± 9.7 -3.6 ± 7.9 -
RCI Auxiliary 1334 16.5 ± 53.6 6.6 ± 32.8 5.1 ± 24.7 -
ML Auxiliary 113 6.1 ± 40.3 3.3 ± 32.9 1.4 ± 23.1 -

Table 6.1: Comparison of Machine Learning and RCI energy estimation models. Mean Percentage
Error (MPE) at 0, 20, and 40 percent trip distance progress.

6.2 Deployment concept selection: device versus cloud

The selection of a software deployment concept is vital to the operation of EVEE, and therefore three
concepts were compared. These include deploying on the OWA3X embedded device, on the OWA450
and OWA3X devices, and as a cloud service. The comparison of these concepts was done with the
following decision variables:

1. Cost of data transfer is the dominant cost of the product and constrains the reduction in opera-
tional costs, as well as indirectly influencing the profit margin. This is specified in requirement
NF-2-A.

2. Deployability is important for the product to have a useful impact on the current operations.
The software should be useable with as many buses as possible (NF-7-A).

3. Trip initialization time is characterized by the delay between the start of a trip and the en-
ergy consumption estimation. The RCI method needs a reference trip before the estimation
can start. These trips need to be stored in the cloud, since logging individually would lead to
initialization time before the software can provide the first estimate. Hence, the time required
for downloading the trip has an impact on the delay before starting estimation (NF-1-D).

4. Operational risk should be minimized. The software stack currently deployed on the embed-
ded devices is a stable release, and making any additions to this stack needs extensive testing.
Inherently, making changes to this software could lead to instability in the operation (NC-1-C).

5. Storage resources should be considered especially for the OWA3x, which currently has only
10MB of storage available.

6. Computational resources are again limited especially on the OWA3x device.

7. Implementation effort is important to consider given the limited time for project completion.

A selection matrix including all concepts and decision variables is presented in Table 6.2. Additional
information on the concept selection, such as hardware specifications, and cost calculations of the
data transfer can be found in Appendix J. In the presented matrix the cloud Service concept scores
best overall and was therefore selected for the software implementation.
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Deployment concept
Decision variable Weight factor OWA3x OWA450 Cloud Service
Costs of data transfer 3 1 1 3
Deployability 3 3 1 5
Trip initialization time 2 1 3 5
Operational risk 2 1 1 3
Storage resources 2 1 3 5
Computational resources 1 1 3 5
Implementation effort 3 5 5 1

Total: 34 38 58

Table 6.2: Software deployment concept selection matrix. Values range from 1 (poor) to 5 (good).

6.3 Use case relationships

The previous sections present the selection of the RCI modeling method, combined with a cloud-
based software deployment concept. Next, the desired functionality that has been identified through
the mission analysis (see Section 2.6), is further specified by defining relationships between use cases
and actors. For indicative purposes, the use cases of existing ZE services are presented in Figure 6.2.
In addition, the desired use cases implemented by EVEE are presented in Figure 6.3. In both fig-
ures, use cases denoted green have been realized prior in the Zero Emission services and embedded
devices, white use cases are implemented by the presented EVEE design, and red use cases are rec-
ommended for future implementations. These were not realized due to the prolonged development
time for realizing the interface.

Figure 6.2: Zero Emission Services Use Cases (SysML). Indicative by presenting the relationship
between existing services and the EVEE system to be developed. Green use cases, de-
noted with a check mark, were prior realized in the Zero Emission cloud services and
the embedded device, and are therefore not implemented by EVEE. White use cases are
implemented by the presented EVEE design.
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Figure 6.3: EVEE system use case diagrams (SysML). The white use cases are implemented by the
current version of EVEE, and those colored red, denoted with an X, are future work.

6.4 Architecture

The architecture diagram in Figure 6.4 presents the components of the software that implement the
use cases described by Table 2.4 and Figure 6.3. The embedded device requests an energy consump-
tion estimate from the EVEE service, which responds with the estimate. The architecture includes
recommended future work, which extends the trip energy consumption estimation to a block of trips.
This requires extending the software with an interface to the NeTEx server.

The communication works as follows. The embedded devices post the request on the MQTT Message
Broker, which distributes the message to anyone listening to the topic name of the message. The AWS
Kinesis Datastream listens to these topics, collects the messages, and stores them in a datastream,
which can be described as a message queue. Using this datastream allows the collection of all the
messages, even when EVEE is temporarily not available. For example, when a software update is
released, or many messages arrive at the same, exceeding the throughput limit. EVEE processes the
messages with the First In First Out (FIFO) principle, to ensure messages processing in chronological
order. Additionally, this allows scaling of the software by connecting multiple services to the stream,
thereby addressing the scalability requirement NF-7-A.

The service initializes a concurrent processor per embedded device, allowing the processing of re-
quests in parallel. The processors execute the trip start/stop logic, using the trip status messages
stored in the trip status database, which are obtained from the BISON KV6 server. After executing the
trip logic, the estimator updates the energy consumption estimate, which requires a mass estimator
and a reference trip. Lastly, the performance metrics are then sent to the AWS Cloud Watch platform.
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Figure 6.4: EVEE system architecture diagram (SysML), presenting EVEE’s main components, the
relationships of actors to these components, and what use cases (ellipses) are imple-
mented in these components. Use cases in red (denoted with an X) are recommended
for future work.
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6.5 Use case specifications: system behavior

The defined use cases are specified with the activity diagrams presented in this section, which model
the behavior of the system. The core functionality of EVEE is presented in Figure 6.5, and the trip
logic is shown in Figure 6.6. Each diagram has a title and a use case specification, indicating which use
case is implemented. The colors indicate the coupling between diagrams. For example, the activity
’Start request consumer’ runs the ’Start request consumer’ diagram.

Figure 6.5: EVEE system behavior 1: use case specification diagrams (SysML). Colors denote a cou-
pling between activities and diagrams. The diagrams for ’start KV6 trip status consumer’,
’start estimate consumer’, and ’process data’ are specified in Figure 6.6.
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Figure 6.6: EVEE system behavior 2: use case specification diagrams (SysML). Colors denote a
coupling between activities and diagrams.
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6.6 Mission implementation

The previous sections present all the ingredients for realizing EVEE’s mission, introduced in Sec-
tion 2.6, which is to calculate the trip energy consumption estimate and send this to Sycada’s Zero
Emission cloud services. An overview of the realized implementation is presented in Figure 6.7.

Figure 6.7: EVEE mission implementation: a SysML sequence diagram combining the architecture
and the behavior for realizing the mission.

This figure visualizes the message flow beginning with the embedded sending a request, which is
forwarded all the way through the EVEE system up to the estimator, from where a response message
is generated which is returned back to the embedded device. Since the embedded device already
possesses communication with the cloud services, this is not implemented by the EVEE system.

6.7 Discussion

This chapter presents the final design of the EVEE software, which is based on the RCI energy con-
sumption modeling method, and combined with a cloud-based software deployment concept. All
ingredients for realizing the mission were introduced, and the implementation of the mission was vi-
sualized. Having presented the implementation of the mission, the question arises whether it satisfies
the requirements defined in Table 2.2 and 2.3. This will be discussed next in Chapter 7.
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7 Validation

The final step in the system development methodology is validating the implementation of the design
presented in Chapter 6, through system-level testing of the software during operation.

The EVEE design was implemented in GoLang, and deployed as a service on an AWS web server. The
validation was done through experiments with the same 42 buses as discussed the RCI in Chapter 4
and ML in Chapter 5.

The validation focuses on the nonfunctional requirements since these include the specification of the
functional requirements. A summary of the validation results is presented in Table 7.1, and additional
materials supporting the validation can be found in Appendix L.

This section presents a detailed validation of NF-1-B, which states that the system should estimate
the total trip energy, with less than 25% Mean Percentage Error (MPE), after 20% of the traveled
trip distance, for at least 95% of at least 500 trips. The estimation error of the final implementation
is presented in Figure 7.1. The total estimation error should be within the range [−25, 25] for the
mean plus-minus two standard deviations to satisfy this requirement. As the Figure indicates, the total
estimate error verifies this requirement and has a negative bias of −3%, which is still considered to be
acceptable.

Figure 7.1: Pilot test estimation error: total, drivetrain, and auxiliary components. In total 3680
complete trips were evaluated.

To conclude, the majority of the requirements are satisfied according to Table 7.1, and the up-time
requirement NF-1-C is nearly satisfied. Since the proposed customer value is to reduce the risk in the
fleet operation, it is vital to have an estimate that meets all the requirements. Therefore, Chapter 8
presents the main conclusions and recommendations for improving and validating the software.
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Table 7.1: Validation of nonfunctional requirements through the results of a pilot test. Supporting
material is available in Appendix L for validations that are marked with *.

ID Requirement Priority Measurement Status
NF-1-A The EVEE system must publish the en-

ergy estimate every 60 ± 1.0 seconds
while having a maximum standard devi-
ation of 3.0 s measured for a single bus
over one day.

Must mean(∆t) = 60.0 s
SD(∆t) = 2.5 s

Verified
*

NF-1-B The EVEE system should estimate the to-
tal trip energy, with less than 25% Mean
Percentage Error (MPE), after 20% of the
traveled trip distance, for at least 95% of
at least 500 trips.

Should Mean error of 3680
trips: -3%, with 95%
of trips within:
E = [−24.9, 18.7]%

Verified

NF-1-C The EVEE system should provide an en-
ergy estimate at least 99% of the time
while on a schedule.

Should 94.2% average over
15 days

Failed
*

NF-1-D The EVEE system should provide its first
energy estimate within two weeks after a
schedule revision.

Should route initialization
time of 1 week

Verified

NF-2-A The total costs of operation of EVEE must
not exceed C5 per bus per month.

Must Data: C1.03/month Verified
*

NF-2-B The bandwidth usage of the EVEE system
must be less than 0.05 kilobytes per sec-
ond per bus, averaged over a minimum of
1 week.

Must 16 day average
0.013 kB/s

Verified

NF-3-A Initialization and configuration of the
EVEE system should take no longer than
30 seconds after power-up.

Must Ntests = 11
tinit = 5.0 s

Verified

NF-4-A The EVEE system should publish the es-
timation RMSE at least once per trip.

Should Done Verified

NF-5-A The EVEE system should be programmed
in GoLang.

Should Done Verified

NF-6-A The EVEE system must comply with the
General Data Protection Regulation of the
European Union.

Must Done Verified

NF-7-A The EVEE system should be compatible
with all OWA3x and OWA450 devices of
Sycada.

Must Done Verified

40 Energy Consumption Prediction for Battery Electric Buses



Eindhoven University of Technology

8 Conclusions and recommendations

The transition from conventional fossil fuel towards battery electric buses introduces additional risk
in the operation through the reduced range and less predictable energy consumption. This risk can be
produced by providing insight into the real-time operation of the bus through an online monitoring
platform. Project Destination Zero had as its main goal to provide an energy consumption forecast,
thereby improving predictability and reducing operational risks. This chapter presents the main con-
clusions and proposes directions for future work.

8.1 Conclusions

Two methods for modeling the trip energy consumption have been evaluated by performing simu-
lations with historical trip data. The modeling was done by splitting the total energy consumption
into a drivetrain and an auxiliary energy consumption component, where the average ratio of drive-
train/auxiliary energy is 80% to 20%. From both methods, the Route Characteristics Indicator (RCI)
demonstrates a slightly higher accuracy in the drivetrain estimate, and the Machine Learning (ML)
method has slightly higher accuracy in the auxiliary estimate. However, both methods have a rela-
tively large estimation error in the auxiliary component. Additionally, the RCI method demonstrates
better performance for real-time prediction during trips, and the ML method for high-level prediction,
which ignores detailed trip information.

Based on these results, the final design of the energy estimation software employs the RCI model-
ing method, deploys as a web service, and receives data from the embedded device in the bus. The
proposed method utilizes the repetitive and predictive nature of the trips. The design has been imple-
mented and validated, after collecting experimental data with 42 buses. Analysis of 3680 recorded
trips provides the following results:

• The mean estimation error at 20% trip progress was −3% for 3680 trips

• The error after 20% of the trip has been completed stays within the range [−24.9,+18.7]%, for
95% of 3680 trips

• The estimation was done 94% of the time while driving on a schedule

• The total data transfer cost was established at C1.03 per bus per month.

To summarize, the implementation’s validation passes on 10 out of 11 requirements. The up-time
did not reach the target of 99%. Nevertheless, the pilot experiments demonstrated that the Electric
Vehicle Energy Estimation (EVEE) software can improve the predictability of energy consumption,
and consequently, it could reduce the risk for the operator. Therefore, the recommendation is to
continue developing the software by addressing the activities proposed in the next section.
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8.2 Recommendations for future work

To improve the performance of the software, and to satisfy all requirements in a future version, the
following activities are proposed:

• Further improving the auxiliary estimate. The proposed adjustments of the auxiliary esti-
mate in this report, reduce the error, especially at the start of a trip. However, there are still
opportunities to further reduce the error of this part. A possibility is to realize a machine learn-
ing model for predicting the mean auxiliary power.

• Implement NeTEx schedule interface. The NeTEx interface could not be developed in time
for this project. Hence, a workaround was established that identifies the route for each Line-Trip
combination. This is identified as an issue that causes the up-time requirement to be invalidated.
For enhancing the up-time, the temporary workaround should be replaced with the schedule
implementation. Moreover, the schedule is required for realizing a block estimation.

• Extending the energy estimate from trip to block estimation. Currently, energy forecasting
is done for individual trips of up to approximately 30 minutes. Realizing an estimate for a
block of trips can enlarge the prediction horizon to the point that the bus has returned to the
depot. This allows it to predict the remaining charge at the end of service, thereby enhancing
the usability of the estimate. Moreover, the auxiliary power fluctuates significantly within trips,
making short-term estimation difficult. Possibly this fluctuation has less impact on the estimate
when the prediction horizon is longer.

• Maintaining reference trips per time of the day. A single reference trip is presently main-
tained per route, which represents the average of many trips throughout the day. By maintaining
a reference trip per trip ID, which is driven once per schedule, the reference trip becomes de-
pendent on the time of day. Therefore the effect of external factors such as rush hour traffic, and
temperature fluctuations throughout the day can be included.

• Scaling the drivetrain RCI profile. The moving average reference trip updating strategy al-
lows adapting to changing circumstances such as seasonal influences. To improve short-term
prediction, a high-level prediction model could be established that adapts the RCI profile based
on parameters such as the weather forecast, time of day, driving style, etc.

• Realizing a continuous real-time correction. Currently, the Kalman filter re-initializes at the
start of every trip. To avoid the re-initialization time, it can be worthwhile to investigate the
effect of maintaining the Kalman filter’s state between consecutive trips.

• Scaling the software. The pilot test of EVEE included 42 buses of the same model. Once the
remaining requirement is satisfied, the software shall be used with different buses with varying
properties and thus different configurations of EVEE, for example, a different initial mass of
the reference trip. The automatic configuration for different bus types needs to be realized.

• Validating the value proposition. The system requirements have nearly been satisfied, with an
accuracy that stays within the defined limits. The proposed customer value, of reducing costs
and risks of the operation, should be validated by applying the software in practice. This can
include validating the proposed savings by optimizing the planning, by reducing the battery
capacity buffers in the schedule.
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A Project management

This appendix includes the project management plan that was established prior to the development of
the EVEE system.
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1. Project Overview 

The goal of Destination Zero is to reduce the risks and costs of zero-emission (ZE) bus operations 

and hence accelerate the overall transition from fossil fuel to zero-emission bus operations. It creates 

an online data hub that provides live electric bus and charge-point data to OEM’s, bus operators, 

charging infrastructure providers and operational planning solutions, with the aim to create 

operational excellence in zero emission bus operations. 

 

When different actors in the ecosystem are connected and agree to share data for the collective 

optimization of the system, great efficiency gains can be realized in terms of costs, risks, and time. 

 

1.1. Purpose, scope, and objectives 
The current solution is realized with an onboard device that streams bus data real-time to the cloud. 

From here, raw data or planning assistance tools can be provided to bus operators, thereby aiding the 

fleet scheduling process. The overall project consists of several work packages: 

1. A high-fidelity energy usage prediction model. 

2. Integration of live energy forecasting in an adaptive planning system 

3. Generation of early warnings for potential operational disruptions regarding buses completing 

their active or planned assignments 

The scope of the PDEng project described in this document is on work package 1 only: extending the 

onboard device with capabilities for performing real-time energy and range estimation considering 

the bus’s route information. Within this work package, the following tasks are defined for this project: 

 

1. Realizing a first Energy Estimation System V1 (EES-V1) that employs the estimation model 

previously developed by TUE [2]. The goal is to make a production ready version of the 

software, that is scalable and flexible enough to be deployed in buses for further validation of 

the model’s accuracy. 

2. Verification and validation of V1  

3. Design of EES-V2, that is based on a machine learning algorithm, rather than the physical 

model employed in [2]. 

4. Verification of a prototype version of V2 

1.2. Assumptions and constraints 
Throughout this project, the developed software is constrained to be deployed on the Owasys Owa450 

IoT platform that has already been selected for this purpose.  

 

1.3. Deliverables 
The following deliverables are considered throughout the project: 

1. Project Management Plan 

2. Software requirements document 

3. Test plan for pilot 

4. PDEng thesis (confidential) 

5. Executive summary 

6. Presentation during thesis defense and graduation day 
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1.4. Schedule summary 
 

DATE DESCRIPTION 

01-11-2021 Project start 

19-11-2021 Return day: workshop 

26-01-2022 Return day: presentations 

22-03-2022 Return day: presentations and supervision 

30-05-2022 Return day: presentations and technical reflection 

18-07-2022 Return day: presentations and supervision 

TBD Thesis final submission deadline 

TBD Thesis defense 

21-10-2022 Graduation ceremony & project end 

 

1.5. Evolution of the plan 
The project management plan (PMP) shall be updated after every Project Steering Group (PSG) 

meeting, if changes were agreed upon. These meetings are approximately once per month.  

 

2. References 

 

[1]  ISO/IEC/IEEE: Software and systems engineering, "ISO/IEC/IEEE 16326," no. 2nd edition 

2019-12, 2019.  

[2]  D. Jagga, "Cloud your bus: real-time energy consumption prediction for electric city buses.," 

TU/e, Eindhoven, 2020. 

[3]  B. van den Berg, "Project management excel register: risk FMEA, stakeholder analysis, and 

RASCI matrix," 2021. 

[4]  B. van den Berg, "Atlassian Confluence Cloud-Your-Bus documentation wiki," 2021. [Online]. 

Available: https://sycada.atlassian.net/wiki/spaces/GDD/pages/2458943489/Owasys. 

[5]  B. van den Berg, "JIRA project board," 2021. [Online]. Available: 

https://sycada.atlassian.net/jira/software/projects/CYB/boards/25. 
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3. Definitions 

 

3.1. Involved parties 
 

AFFILIATION NAME ROLE 

Eindhoven University of 

Technology 

Berend van den Berg 

Ion Barosan 

Igo Besselink 

Riske Meijer 

PDEng candidate 

University supervisor 

University supervisor 

Program manager 

Sycada Mobile Solutions Kristian Winge 

Rogier Mulder 

CEO 

Company supervisor 

 

 

3.2. Terminology 
 

ABBREVIATION DESCRIPTION 

Bitbucket A git-based source code repository hosting service owned by 

Atlassian. It offers GIT version control to source code 

EES Energy Estimation System 

Jira Software for issue tracking and project management offered by 

Atlassian 

Confluence A web-based wiki tool offered by the Atlassian tool suite that 

facilitates information sharing inside an organization 

OEM Original Equipment Manufacturer 

ML Machine Learning 

Version Control System Method for managing the versions of a software or document 

ZE Zero Emission 
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4. Project context 

4.1. Process model 
As described in the project scope, the project consists of the development and verification of two 

systems. Therefore, a double V-cycle model is employed for the project: 

 

V1 

Development 

V2 

ML Development 

  
   

Elapsed time 

 

4.2. Infrastructure and enabling systems 
The system shall be developed for the Linux-based OWA450 IoT device.  

 

 

4.3. Methods, tools, and techniques 
The following tools and techniques shall be used throughout the project: 

 

• Agile project management with Jira board for issue tracking 

• Two-cycle V-model process for development 

• Bitbucket for code version control 

• CAFCR (viewpoint hopping) and TRIZ methodologies for system architecting 

• GoLang shall be mainly used for programming 

• Confluence wiki for project documentation 

 

4.4. Product acceptance 
The main aspect of final product acceptance is delivering production ready software: 

1. Satisfactory estimation accuracy (>95% within 20% of trip duration) 

2. The system shall adapt to changes in the environment, to ensure high accuracy over time. 

3. Works on any route and bus type 

4. Robust and crash-free  
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To ensure compliance with the stakeholder’s requirements, a set of requirements will be established 

that will continuously evolve in consultation with the project supervisors. Throughout the 

development of the software, the stakeholder’s set of requirements will be the leading factor for the 

proposed design solutions. A mid-term presentation is planned where progress of product is presented, 

and compliance will be evaluated. 

 

4.5. Project Organization 
This section of the PMP will outline the interfaces, both internal and external, between the 
development team and third parties as well as define roles and responsibilities for the project. 

External interfaces 

The external interfaces of the project are presented in the graph below: 

 

 
 

A detailed analysis of all involved parties, including name, affiliation, concerns, and communication 

preferences can be found in the stakeholder analysis document [3]. 

 

Authorities and responsibilities 

Responsibilities shall be determined by breaking down the major work activities into tasks. For each 

of these tasks, relevant authorities and responsibilities shall be determined in a RASCI matrix, which 

states the people that are: responsible, accountable, supporting, consulted, and informed throughout 

this task. The RASCI matrix shall be found in [3].  
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Eindhoven University of Technology

Contracted for development

Owasys

Provide hardware 

ICRON

Use data to provide optimized fleet scheduling

Vodafone

Provide internet services for Owasys hardware

Amazon Web Services

Provide web services for cloud platform

Bus operators: Connexxion, GVD, R-net, Hermes etc.

Use to improve fleet scheduling

Bus producers: Ebusco, VDL, Solaris, etc.

Build in produced busses
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5. Project Planning 

5.1. Project work plans 
The following work activities are identified throughout the various phases of the project: 

1. Realize production version of V1 

o Simulator: realize a simulation setup that runs on a laptop 

o Develop code interface for V1 in GoLang 

o Implement E-rate management service (E-rate initialization & cloud sharing) 

o Review, validate, optimize V1 during operational test/pilot phase 

2. Develop a new version V2 based on Artificial Intelligence 

o Literature survey 

o Collecting data 

o Development of offline prototype 

o Validation of prototype 

o Optional: Implementation of prototype in real-time estimation 

o Optional: Verification real-time 

3. Comparison of V1 and V2 accuracy 

6. Project assessment and control 

6.1. Requirements management 
The main platform for exchanging requirements is the company confluence wiki environment [4]. 

The latest version of the requirements shall be published here to ensure transparency for all parties 

involved. The requirements shall be linked to the Jira project board [5]. Any changes in the 

requirements will be communicated as stated in section 8.2. 

6.2. Scope change control 
When a scope change is proposed by Sycada, the trainee will evaluate the impact of this change on 

the project within one workday. This impact assessment shall include: 

a. The consequences in terms of deliverables 

b. Feasibility of timely delivery 

c. Updated risk assessment 

d. Discussion with TU/e supervisors 

These assessments shall be communicated to the project supervisors from both Sycada, and TU/e. 

and an informed decision shall be agreed upon between all parties involved. Only after confirmation 

during the PSG meeting, or email communication when this meeting is far away, can the scope change 

be accepted. 

6.3. Schedule control 
The backlog of the project is ranked by importance of the features that should be in the delivered 

software. Backlog items with the highest importance are addressed first. The backlog priority of the 

backlog items is continuously updated. 
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6.4. Quality assurance 
Quality that should be managed in the projects are as follows: 

1. Coding 

a. Execution time 

b. Complexity 

c. Readability 

2. Model development 

a. Accuracy 

b. Required hardware resources 

To monitor the quality, these points shall be included in the requirements documentation. Throughout 

the project, this shall be monitored on a regular basis. 

6.5. Project closeout plan 
During project close out, the following items shall be stored on a cloud research drive, managed by 

Igo Besselink, with access provided to Sycada: 

1. meeting minutes 

2. presentations 

3. architecture documents 

4. final report 

5. software product 

7. Product delivery 

This section describes how the delivery of the deliverables, presented in Section 1.3, will be handed 
over at project completion. The final version of the software shall be delivered through the Bitbucket 
repository. A final presentation will be held for the client to showcase the usability and functionality 
of the software product. All documents that are not yet in the confluence wiki and are relevant for 
both TU/e and Sycada, will be uploaded into a shared research drive managed by Igo Besselink. 
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8. Supporting process plans 

8.1. Project supervision and work environment 
The project shall be mainly executed from the Eindhoven University of Technology. Supervision 

throughout the project is realized as follows: 

 

1. From Sycada, the main supervisor is Rogier Mulder, who will be responsible for the 

supervision of the development of the Energy Estimation System (EES). 

2. From TU/e, Ion Barosan and Igo Besselink will supervise the project by providing feedback 

on the direction and content of the project.        

 

8.2. Decision management 
This section describes the strategy that is employed when taking decisions throughout the project. 

The table below describes for each decision type the following things: 

1. Who should be involved during the decision? 

2. Who needs to be informed about the choice? 

3. What actions must be taken before deciding? 

Decision about Involve Inform Actions 

Project scope 

 

Kristian, Rogier 

Igo, Ion 

Riske Evaluate consequences regarding 

planning and deliverables 

Project process Igo, Ion  Check team satisfaction 

Requirements Kristian, Rogier, 

Ion 

Igo Check conflicts with design 

Consult Sycada about changes 

Software design 

 

 

Rogier  Evaluate pros and cons 

Create decision matrix 

Evaluate consequences for planning 

 

8.3. Risk management 
An FMEA analysis shall be performed at the start of the project [3]. In here, internal, and external 

risks are identified and prioritized according to their Risk Priority Number. During each monthly 

update meeting with both company and TU/e supervisors, the risks shall be addressed. 

8.4. Configuration management 
The main platform for code configuration management will be Bitbucket. A cloud-storage folder will 

be used for other document storage. All documents shall be as follows: 

Format: YYYYMMDD_owner_description_version 

Example: 20211201_BB_PMP_V1 
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8.5. Information management 
The project information that is to be managed is:  

1. Meeting minutes 

2. Project documentation 

3. Developed software 

8.6. Quality assurance 
The quality of the deliverables is monitored throughout the project in the following ways: 

1. The quality of the code, being the readability and modularity. Review moments shall be 

scheduled with the Company supervisor to receive feedback on the work. 

2. The overall quality of the program, being its functionality, is evaluated during company 

stakeholder meetings. 

8.7. Measurement 
For the verification of the system, the following measures shall be employed: 

1. Estimation accuracy: the accuracy of the energy estimation, is determined using the error between 

the actual energy consumption, and the calculated estimate. 

2. Estimation frequency: the frequency at which the energy estimations are calculated 

8.8. Reviews and audits 
The reviews and audits required to check the progress of the project for visibility, comprehensibility, 

and acceptability have been outlined in this section. The following reviews and audits are scheduled 

throughout the project: 

1. Monthly meeting with TU/e supervisors 

2. Monthly Project Steering Group (PSG) meeting with TU/e and Sycada (2 weeks after 1.) 

3. Mid-term evaluation 

4. Final evaluation 

5. Final presentation 

8.9. Verification and validation 
The verification and validation procedure contains the following: 

1. The verification of the production version of EES-V1 shall be done by establishing a test plan 

that describes tests for all defined requirements. This comprises of a series of system tests that 

will be executed according to the test plan, to verify whether the designed software satisfies the 

customer requirements.  

2. The validation of EES-V1 will be done to ensure that the designed system provides the value to 

the customer as was proposed during project initialization. In this phase, it shall be evaluated 

whether the provided EES can improve the scheduling of fleets, thereby reducing CAPEX & 

OPEX. 

3. The verification of EES-V2 (based on Machine Learning), shall only include the verification of 

the prototype software, as described in point (1). Since the main functionality remains the same 

for V2, validation of the system is covered by point (2). 
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B Stakeholder Analysis

Within the project there are two main groups of stakeholders: Eindhoven University of Technology
(TU/e) (Table B.1, and Sycada Mobile Solutions (Table B.2). A stakeholder analysis was done to
identify the preferred level of communication, as well as the main concerns of the stakeholders.

Name Affiliation Position Project role
Ir. Riske Meijer TU/e EngD program manager Manager
Dr. Igo Besselink TU/e Associate professor Supervisor modeling
Dr. Ion Barosan TU/e Assistant professor Supervisor systems design
Yuzhe Ma TU/e PhD candidate Energy modeling support

Table B.1: TU/e stakeholders

Name Affiliation Position Project role
Rogier Mulder Sycada CTO Supervisor company
Kristian Winge Sycada CEO Advisor

Table B.2: Sycada stakeholders

Besides the directly involved stakeholders presented in the tables, additional external stakeholders can
be identified.

Since the aim is to offer the developed solution to bus operators to enhance their operation, these
should also be considered during the development of the solution. Therefore, the operators interest
(e.g. Transdev, GVB, and Connexion) are also considered during requirement elicitation.

To further analyze the influence of stakeholders on the project, a Power Interest Matrix was created in
Figure B.1.
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Figure B.1: Stakeholder Power Interest Matrix. Stakeholders from Sycada are marked green, and
stakeholders from TU/e in red.

58 Energy Consumption Prediction for Battery Electric Buses



Eindhoven University of Technology

C Requirements tracing

A requirement tracing chart was constructed to ensure that the generated requirements address at least
one of the customer needs, This chart is presented in Figure C.1.

Figure C.1: Tracing requirements to stakeholder concerns
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D Energy consumption parameters literature overview

Parameters influencing energy consumption. An X in a source’s column indicates that a correlation
is explicitly mentioned in the document.

Type Description Symbol [12] [15] [16] [22] [13]
Vehicle Mass m X X X X X
Vehicle Powertrain Efficiency η X X X X X
Vehicle Roll Coefficient Cr X X X
Vehicle Drag Coefficient Cd X
Vehicle Frontal Area A X
Vehicle State of Charge SoC X X
Operational Auxiliary Power Paux X X X
Operational Speed/acceleration profile v X X X
Operational Regenerative Braking Breg X
Operational Mechanical Braking Bmech X
Operational Passenger Load mpas X
Topology Trip Length Dtrip X X X X X
Topology Stop Density S X X X
Topology Road condition rc
Topology Road Slope α X X
External Ambient Temperature Ta X X
External Air Density ρ X
External Headwind speed vwind X X
External Gravitation g X X X X X
Derived parameters
Vehicle Battery Temperature Tbat
Vehicle Battery Capacity Cbat

Vehicle Tire Air Pressure ρtire
Operational Time ToD X
Operational Weekday DoW
Operational Month ToY
Operational Acceleration Profile a
Topology Maximum Speed vmax

Topology Speed bump density Nbump

External Air Humidity h
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E Reference RCI method [1] trip simulation results

Extracting the trips from the two months of logged data provided approximately 2000 trips containing
16 different routes, with a minimum of 50 trips per route. These trips were sorted into training and
validation data sets, with per route 30 trips for training, and at least 20 trips for validation. In total,
1334 validation trips were simulated, and the reference trip was updated after each trip.

Performance metric

The performance of the algorithm is defined as the MPE, and is calculated as in Equation E.1, where
Eestimate is the energy estimate, and Eactual is the actual total trip energy consumption.

MPE =
100%

N

N∑
n=1

Eestimate,n − Eactual,n

Eactual,n
(E.1)

Results

Figure E.1 presents the total energy consumption for all simulated routes. It shows the Absolute Per-
centage Error of the projected energy estimate, for each route averaged over all its trips. It represents
the mean, and std for each route individually, and the error of all routes combined.

The results in Figure E.1 show that the accuracy goal is not reached (see Section 2.3). For identifying
the root cause of the large error, the drivetrain estimate errors (see Figure E.2), and auxiliary estimate
errors (see Figure E.3) were plotted individually. In this figure it is obvious that the drivetrain estimate
error is relatively low compared with the auxiliary error, which has a mean error peaked at 100%.

Moreover, analyzing the entire dataset revealed that on average, the drivetrain component contributes
80% to the total energy consumption, and the auxiliary component the remaining 20%. Hence, the
conclusion of the validation is that the auxiliary part of the estimation does not perform well enough
for a production-ready version of the software. Improvements should be realized in the auxiliary
estimation part.
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Figure E.1: Initial RCI model: total energy consumption error. Absolute Percentage Error per route.
The legend shows the [LineID-StartLocation-StopLocation-NumberOfTrips].

Figure E.2: Initial RCI model: drivetrain energy consumption error. Absolute Percentage Error per
route. The legend shows the [LineID-StartLocation-StopLocation-NumberOfTrips].
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Figure E.3: Initial RCI model: auxiliary energy consumption error. Absolute Percentage Error per
route. The legend shows the [LineID-StartLocation-StopLocation-NumberOfTrips].
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F RCI simulation algorithms pseudo-code

The algorithm works as follows: first, it loops over all the data and extracts the data for each unique
line-trip combination. It then looks up the GPS start and stop coordinates and location names from a
reference table. The extracted data is trimmed to start and stop and the right coordinates. If the quality
of the data is OK, it is saved in its line-start-stop folder and used during simulations.

Algorithm 1 Trip data filtering algorithm
Input: Input and output directories

Schedule excel sheet
Stop location GPS lookup table

Output: filtered data sorted in line-start-stop folders
1: for all files do
2: D = load(datafile)
3: for all unique lines (L) in D do
4: Dline = filterLine(D, L)
5: for all unique trips (T) in Dline do
6: Dtrip = filterTrip(Dline, T )
7: Dsplit,i = splitData(Dtrip,tsplit)
8: for all i do
9: check trip day

10: check trip duration (d ≥ tmin)
11: GPSstart, GPSstop = lookupGpsFromRotationTable(table, L, T )
12: Dtrim = trimStartStop(Dsplit,i, GPSstart, GPSstop)
13: if all checks OK then
14: saveDataAsLineStartStop(Dtrim)
15: end if
16: end for
17: end for
18: end for
19: end for
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Algorithm 2 Data preparation script
Input: Minimum samples Ntr in training data

Minimum samples Nval in validation data
input and output directories

Output: data sorted in training and validation
Erate profiles in validation folders

1: Nerates = 0
2: if output directory exists then
3: Remove output directory
4: end if
5: for all route folders do
6: makeDirectory(output/training/routeid)
7: makeDirectory(output/validation/routeid)
8: for all trip data files (i) do
9: D = load(datafile)

10: if Nerates ≤ Ntraining then
11: Eratei = generateErateFromTrip(D)
12: copyTripToTraining(D)
13: Nerates = Nerates + 1
14: else
15: copyTripToValidation(D)
16: end if
17: end for
18: end for
19: mergedErate = mergeTripsIntoErate(Erate1 to ErateN )
20: save merged Erate in validation folder

Algorithm 3 Automated simulation
Input: Directory of validation data
Output: Energy consumption plots with mean and standard deviation

1: for all route folders do
2: for all validation data do
3: load vehicle data
4: load main Erate
5: run simulink model
6: generate Erate with trip data
7: if New Erate is okay then
8: Update main Erate
9: end if

10: save simulation data in structure
11: end for
12: end for
13: plot total energy consumption
14: plot inidividual drivetrain and auxiliary energy consumption
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G CRISP-DM process

The ML model was developed following the CRISP-DM [23], see Figure G.1. This process model
consists of the following steps. The process starts with understanding the underlying business problem
that the model aims to solve. Next, data is collected and its quality is analyzed. After this, iteratively
the data is prepared and a model is established. This is a continuous process during which many
features will be created and evaluated in combination with different modeling methods. When the
model is completed, it is evaluated by determining whether the underlying business problem is solved
sufficiently. Lastly, when approved the model is deployed into the production environment. When in
service, the model may be needed to update periodically to include new data.

Figure G.1: CRISP-DM: CRoss Industry Standard Process for Data Mining. From ’What is CRISP
DM?’ by Data Science Process Alliance, 2022 (https://www.datascience-pm.com/crisp-
dm-2/)
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H Investigating ML estimate volatility

The data accumulator is a system that is present in the current Cloud Your Bus system. It averages the
driving data throughout the ride until a driver change event is triggered. The accumulator then resets.

Simulations demonstrated that using the accumulator as input for the machine learning model resulted
in extremely volatile energy consumption estimates. Investigation of this issue revealed that this is
caused by the convergence of the parameters throughout the trip. When the accumulator just starts
averaging the trip data, a lot of volatility is present in the parameter signals. The longer the ride, the
less these parameters vary since new driving data has less influence on the averaged signal.

Figure H.1 demonstrates the convergence of these parameters. The examples here are acceleration
bands, energy ratios, and speed bands.

Figure H.1: ML data accumulator during consecutive trips, for energy ratios, speed bands, and accel-
eration bands. Each color indicates a unique trip.
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I Additional information on ML model development

This appendix contains the following additional information on the Machine Learning model devel-
opment:

1. Description of the estimation concepts that were evaluated

2. Definition of the data points available in the data

3. Analysis of normalized energy consumption per route

4. Discussion of some noticed correlations in the data

5. Presentation of the performed sensitivity analysis
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Estimation concepts

The estimation concepts operate with the previously identified variables that have a high correlation
with the target variable, which is the trip energy estimate. Several considered concepts concepts
are presented in Table I.1, and differ in the following ways. The data complexity indicates what
parameters are employed, with the high level being parameters that can be determined pre-ride, and
low level includes driving data. The estimation approach either models the combined energy usage,
or the split auxiliary and drivetrain components.

Name Data complexity Estimation approach
Concept 1 High level Auxiliary and drivetrain
Concept 2 High level Total
Concept 3 Low level Auxiliary and drivetrain
Concept 4 Low level Total

Table I.1: Machine Learning modeling concepts overview.

The combined estimator in Equation I.1 employs a ML model that predicts the total energy per kilo-
meter. Here, Etrip is the total trip energy, s the distance, Em the measured energy up to that distance,
Ētotal/km is the normalized total energy consumption, and Dr the remaining distance of the trip.

Etrip(s) = Em(s) + Etotal/km(s)Dr(s) (I.1)

The split estimation in Equation I.2 employs two estimators which estimate drivetrain energy per
kilometer (Ēdrive/km), auxiliary power (Paux). The equation is extended with a term that includes a
prediction of the remaining time tr.

Etrip(s) = Em(s) + Ēdrive/km(s)Dr(s) + P̄aux(s)tr(s) (I.2)

Both the combined and split estimators are combined with a real-time correction, which combines
the normalized predictions with the measured values, by calculating the weighted average of both,
see Equation I.3. Here, Nc is the auxiliary or drivetrain normalized estimate. The same correction is
employed for both estimates. W is the weight used for calculating the weighted average, Npredicted is
the estimate, and Nmeasured is the measured value.

Nc(s) = (1−W (s))Npredicted +W (s)Nmeasured (I.3)

Here, the weight is defined by Equation I.4, and is a measure of confidence that we have in the
measured value. This function returns starting with a value of 0 during the first phase of the trip, until
it passes the initialization distance pinit (we used pinit = 0.15). From there, it linearly increases up to
1 at 100% trip progress, indicating we fully trust the measurement. The progress of the trip is denoted
by p(s).

W (s) = max
(
0,

1

1− pinit

)
(p(s)− pinit), p(s) =

scurrent
striptotal

(I.4)
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Datapoints in ML datasets

Category Parameter Unit
Energy Total kWh

Auxiliary kWh
Drivetrain kWh
Regenerated kWh

Battery SoC at start %
SoC at stop %

Environment Ambient temperature °C
Operations Distance m

Duration s
Idle time s
Rolling time s
Driving time s

Vehicle Speed % time in bin
Acceleration % time in bin
Gaspedal % time in bin
Motor rpm % time in bin
Engine load % time in bin
Battery load % time in bin
Artemis Speeds % time in bin

Driving events count Hard and excessive acceleration -
Hard and excessive braking -
Full throttle -
Mechanical braking -

Driving aid display Green led on time %
Yellow led on time %
Red led on time %

GPS Latitude °
Longitude °
Heading °

Bus stop Start description -
Stop description -

Trip info Rotation ID -
Trip ID -
Line ID -

Table I.2: Data points available in the ML datasets.
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Analysis of normalized energy consumption per route

The data understanding phase aids in the selection of an appropriate model, as well as suitable pa-
rameters for the input variables. Derived from the project goal, the target variable can be set in two
ways. Firstly, a combined energy estimate could be modeled, and secondly a split auxiliary and driv-
etrain estimate. Therefore, the auxiliary and drivetrain energies were analyzed separately. Figure I.1
compares the average auxiliary power and drivetrain energy normalized per unit of distance), plotted
per route in box plots. Here, the auxiliary power plot has a noticeable spread in the data, while the
means seem to vary little when comparing the routes. Moreover, the drivetrain plot shows similar data
spread, though the means seem to vary slightly more compared to the auxiliary power plot. This could
indicate that especially modeling the drivetrain energy could benefit from using data per line instead
of aggregated data points.

Figure I.1: ML model: Box-plots of normalized auxiliary power and drivetrain energy per route. A
route is identified as a combination of a line, with a start and stop location.
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Noticeable correlations in trip segments dataset

The first correlation concerns the effect of the ambient average temperature on the normalized aux-
iliary power, presented in Figure I.2a. From this graph, it seems that the auxiliary power varies
significantly with ambient temperature, which may be explainable since the major part of this power
is consumed by the heating and air conditions systems. Hence, at low temperatures, the heating is
consuming energy, while at high temperatures the air conditioning is activated, which explains the
minimum of around 20 degrees.

Moreover, an interesting relation was noticed by plotting average trip speed against auxiliary power
consumption, see Figure I.2b. The noticeably higher auxiliary power at speeds may be experienced as
surprising since driving is included in the drivetrain energy, which shows relatively less correlation.
An explanation for their effects could be that additional energy is provided in the auxiliary portion
for cooling the battery pack, and the bus travels at low speeds which makes aerodynamic drag forces
negligible.

(a) Average Ambient Temperature [°C] (b) Average Speed [m/s]

Figure I.2: ML model: correlation of normalized energy consumption with other parameters.
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A third correlation can be noticed when plotting energy against the hour of the day, see Figure I.3a.
Here, the drivetrain energy appears to peak between 6 am and 16 pm, which could be due to extra
traffic on the road, and more passengers on the bus, and thus a higher total mass (Figure I.3a). Addi-
tionally, the auxiliary power consumption has a minimum between 8am and 14 pm, and rapidly rises
after that.

To conclude, the driving score, which is a measure of driving aggressiveness, shows correlated with
the auxiliary power in this dataset. Hence a high score indicates an aggressive driving style with
excessive acceleration and braking. The extra energy consumption with a high drive score could be
explained by additional battery heat generated due to the aggressive driving style, which needs to be
cooled.

(a) Hour of day (b) Drive score

Figure I.3: ML model: correlation of normalized energy consumption with other parameters.
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Sensitivity analysis

Model transparency is an important factor for evaluating a ML model (see Section 5.1). The developed
model is considered a black box, and hence the model itself cannot directly explain how it behaves for
varying inputs. This is an important factor since this influences the selection of the final parameters
used in the model, and helps in reducing the sensitivity of the model to external noise.

To address this issue, a sensitivity analysis was done that establishes insight in the behavior of the
developed model, which works as follows. First, the raw training dataset is used for establishing a
baseline model. Then, for each of the inputs, a noise of three times the Standard Deviation of that
variable is added (-3 STD or +3 STD), while keeping the other variables the same as used for the base-
line. Again a model is trained, however now on the modified training data. Lastly, the performance
of the new model is compared with the baseline by calculating the MAPE between both predictions.
This process is repeated for all variables.

The results of the sensitivity analysis of the final model are presented in Figure I.4. From this analysis,
it is clear to see that the estimate is extremely sensitive to changes in the variables representing the
ratios of Drivetrain, Auxiliary, and Regenerated Energy compared to the Total Energy.

Figure I.4: ML model: sensitivity analysis example for a trained model.
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J Additional information on concept selection

Hardware specifications

This section presents a brief overview of several specifications of the Owasys OWA3x1 and OWA4502,
which are relevant to the concept selection.

OWA3X OWA450
Processor ARM9 400Mhz ARM Cortex A8 32bit 800MHz

Internal storage 64 MB 1GB
RAM Memory 32 MB 512MB

Internet GSM (2G) LTE (4G)
GPS Updaterate 4 Hz 10Hz
GPS Accuracy 2.5 m 2m

Table J.1: Overview of relevant hardware specifications of the OWA3x and OWA450

From this data, it can be seen that the OWA450 has significantly more storage capacity than the
OWA3X, which is noticed with the current product because its storage is almost completely full (only
10MB left). Moreover, it has double the computational resources, and many multiples of ram avail-
able. It has a more accurate GPS receiver, which is updated at a higher frequency.

The initialization time of the RCI method is constrained by the time required for preparing the ref-
erence trip. Due to storage constraints, and the desire to exchange references between buses, the
decision was made to store RCI references in the cloud. Downloading the reference characterizes the
initialization time of the software. To test this, experiments were done by downloading a 500KB refer-
ence on both devices. Results revealed a download time of approximately 7 minutes for the OWA3x,
while the OWA450 did so in several seconds.

1Owasys OWA3x, accessed 31/08/2022, at https://www.owasys.com/en/products/owa3x
2Owasys OWA450, accessed 31/08/2022, at https://www.owasys.com/en/products/owa450
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Concept cost calculation

The cost calculations were done using the following assumptions:

• Costs are calculated only for GSM data usage and the required AWS IoT connection.

• Data price is C0.03/MB

• A bus drives approximately 5700 km/month (checked for bus 9501)

• Network overhead data usage is 4%

• Variables are stored with 16 decimal precision (%.16f)

• RCI sizes for the concepts are determined experimentally by creating test messages

Server side estimation

The server-side estimation concept sends all the data points to the cloud, calculates the estimate there,
and sends the request back to the client device. For this concept, the costs were calculated by measur-
ing the average amount of data points sent per kilometer. Using this, and the assumption that buses
drive between 5000 and 7000 km monthly, the monthly costs of sending the data are calculated for
each bus. Table J.2 presents an overview of the estimated monthly costs per bus.

5000 Km/Month 7000 KM/Month
Maximum C1.17 C1.63
Practical C0.64 C0.89

Table J.2: Data transfer costs for server-side estimation

A detailed description of the calculations is as follows. The device requests an estimate each minute
while moving. It packs (at most) 60 data points with each request encoded with protocol buffers.
Each time the odometer progresses 5 meters, a data point is captured. SAE J1939 defines an odometer
update at 1Hz so if the vehicle is driving faster than 22 km/h, it will miss 5-meter-ticks. In a test with
the 9501 in EHV, it shows that 54% of the ticks are captured.

Based on a measurement of 1954 datapoints grouped per 60, the average size compressed 2174 (com-
pression ratio of 45.5%). This results in the following on-the-wire size of an estimation request:
(2174+40+17)*1.04=2320 bytes. The server-side estimator answers with a response of 30 bytes. On-
the-wire this results in (30+40+17)*1.04=90 bytes. This leads to a total of 2320+90=2410 bytes per
exchange. Per 100km, there are maximally 20000 and practically 54% * 20000 = 10800 data points.
This means between 333 and 180 exchange based on one request per 60 seconds.

The additional costs of keeping the AWS IoT Core connection alive is the same for all options
(250+40)*1.04 = 302 *3*24*31 = 0.64MB
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Client side estimation

For the client-side estimation concept, the major costs arise from downloading the reference trip from
the cloud. Several possibilities were evaluated. First, a raw text file, second a compressed text file
(Gzip), and lastly a Protobuf serialized message. The results of the cost calculation are presented in
Table J.3.

Transfer concept reference trip size [KB/km] data usage [MB/month] cost [C/month]
Raw rext file 16 190 C5.70

Compressed text file 4.9 57 C1.72
Protobuf message 16.1 191 C5.72

Table J.3: Data transfer costs for client-side estimation

The device downloads a reference trip from storage updates it locally and sends an updated version
back to storage. There are four arrays that mainly determine of the reference trip size:

1. RCI

2. Time Remaining

3. GPS latitude and longitude

These arrays have a datapoint every 5 meters. Hence, for a trip of 1km, it consists of 4x(1000/5) =
800 variables. Furthermore, we assume that:

• Data price is C0.03/MB

• A bus drives approximately 5700 km/month (checked for bus 9501)

• Network overhead data usage is 4%

• Variables are stored with 16 decimal precision (%.16f)

• RCI sizes for the concepts are determined experimentally by creating test messages

Datausage[MB/month] =
1.04 ∗ [distance/month] ∗ [KB/distance] ∗N

1000
(J.1)

Cost[eur/month] = datausage[MB/month] ∗ pricing[eur/month] (J.2)

Energy Consumption Prediction for Battery Electric Buses 83



Eindhoven University of Technology

84 Energy Consumption Prediction for Battery Electric Buses



Eindhoven University of Technology

K Delay testing KV6 schedule messages

Analysis of historical trip data recorded with the embedded device demonstrated situations where the
trip schedule change did not match with the actual start or stop coordinate of that trip. To investigate
this potential source of system failure, an analysis was done to determine the delay in receiving and
processing the KV6 schedule messages.

The message flow of the KV6 schedule is as follows. The trip start or stop message is initiated by a
device that is mounted in the bus (not a Sycada device), and sends this message to the BISON servers.
The Sycada servers receive this schedule message through a developed interface with the BISON KV6
API. From here, the schedule is sent to the device. See Figure K.

Bus device BISON server Sycada Server Sycada Embedded device

Figure K.1: BISON KV6 delay testing process.

The hypothesis is that the source of the mismatch is the delay between the bus device, and the sycada
embedded device. This hypothesis was tested using the timestamp in the KV6 message which in-
dicates the trigger of the event in the bus. With this timestamp, GPS data logged by the embedded
device, the coordinates of the event are determined. The results of the tests are presented in Figure K.2.

In the right figure, the orange circles indicate the delay in receiving the KV6 message. This is the time
is takes from the bus to reach the Sycada server. The blue circles indicate the timestamp difference
with the closest GPS coordinate point that was logged by the embedded device. We only plotted KV6
messages that have a GPS coordinate point with a timestamp that deviates less than 2 seconds.

The left figure shows the GPS coordinates of the start and stop events as black circles. The central
station, depot, and several stops (A-F) are marked on the map. This plot shows that the vast majority
of the 4.5k messages plotted starts or stops close to the actual locations. However, a minority of
messages arrives positions that are far from the trip start or stop.

The conclusion of the tests is that the majority of the messages arives close to the correct locations.
However, a small number of messages arrives at an incorrect position. This will happen during oper-
ation, and should be dealt with appropriately in the production version of the estimation software.
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Figure K.2: BISON KV6 start and stop events.
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L Additional information on the validation

This appendix contains additional supporting materials for the following requirements:

• Estimation message frequency

• Up-time of estimation

• Data costs

Estimation message frequency

The message frequency was determined by calculating the interval between estimated message times-
tamps per device. The resulting intervals are presented in Figure L.1. The result is an interval of 60.0
± 2.5 seconds.

Figure L.1: Estimate message frequency during a pilot test of two weeks.

Energy Consumption Prediction for Battery Electric Buses 87



Eindhoven University of Technology

Estimation up-time

The up-time was evaluated by parsing the log data over a period of two weeks during the pilot test
operation. The trips were counted which were successfully initialized with a reference trip, and thus
were performing the estimation. The up-time was evaluated based on the daily average, which is
presented in Figure L.2. The average up-time was 94.2% during this test.

Figure L.2: Estimation up-time during a pilot test of two weeks.

Data costs

The data costs for EVEE were determined with the full implementation, which logged the requests
for a total of 16 days for 42 buses. This includes approximately 99% of all request data. The updated
communication protocol is defined by the following Google Protobuf messages:

enum MessageType { TraceType = 0;
EstimateRequestType = 1; EstimateResponseType = 2;}

message RemoteHeader {
google.protobuf.Timestamp time = 1;
string originator = 2;}

message EnergyEstimateRequestDatapoint {
google.protobuf.Timestamp deviceTime = 1;
float gpsLatitude = 2; float gpsLongitude = 3;
float vehicleSpeed = 4; int64 vehicleOdometer = 5;
float evBatteryEnergy = 6; float evDrivetrainEnergy = 7;}

enum estimationResult {Estimated = 0; CannotEstimate = 1; Error = 2;}

message EnergyEstimationResponse {
RemoteHeader header = 1; string id = 2;
estimationResult estimationResult = 3;
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string tripID = 4; string lineID = 5;
string blockID = 6; string vehicleID = 7;
float estimationRemaining = 8;
float estimationTotal = 9;
float estimationConfidence = 10;}

message EnergyEstimationRequest {
RemoteHeader header = 1; string id = 2;
repeated EnergyEstimateRequestDatapoint datapoints = 3;}

The size of these messages is evaluated by averaging 1 million compressed test messages with ran-
domized inputs of similar value to the real messages:

Message Size Unit
Request size 2807 + 40 + 17 = 2864 bytes
Reponse size 86 + 40 + 17 = 143 bytes

Table L.1: Request and response message sizes.

Using these messages, and the data obtained from the logged data requests, the following calculations
are made to estimate the costs:

dataPointCount = 15.153.097;
dayCount=16; daysInMonth=30.4;
busCount=42; datapointsPerRequest=60;
requestsPerBusPerMonth= (datapointCount/datapointsPerRequest)*

(daysInMonth/dayCount)*(1/busCount) = 11.439

requestSizeMBytes= 2864/1e6; responseSizeMBytes = 143/1e6;
mbPerMonthPerBus = requestsPerBusPerMonth*

(requestSizeMBytes+responseSizeMBytes) = 34.4;

pricePerMb = 0.03; % GSM data bundel
priceTotalPerMonth = mbPerMonth*pricePerMb = C1.03

The overall results of these calculations are presented in Table L.2.

Description Value Unit
Datapoints/16 days 15.153.097 datapoints/16days
Device count 42 -
Datapoints per device 360.788 datapoints/16days
Requests per device per month 11.439 request/month
Datapoints per device per sec 0.26 datapoints/sec
Data per device per month 34.4 MB/month
Cost per device per month C1.03 C/month

Table L.2: Data cost calculation results.

Energy Consumption Prediction for Battery Electric Buses 89



Eindhoven University of Technology

90 Energy Consumption Prediction for Battery Electric Buses



Eindhoven University of Technology

About the Author

Berend van den Berg received his bachelor’s de-
gree in Automotive Engineering, and his master’s
degree in Mechanical Engineering at the Delft Uni-
versity of Technology, where he specialized in Ve-
hicle Dynamics and Control. During his thesis,
he researched a generic motion planning algorithm
for autonomous driving in urban and highway driv-
ing scenarios. Afterward, he pursued his Engi-
neering Doctorate in Automotive Systems Design at
the Eindhoven University of Technology, expanding
his theoretical knowledge with the necessary skills
to take on challenging and innovative technology
projects.

Energy Consumption Prediction for Battery Electric Buses 91



EngD    AUTOMOTIVE SYSTEMS DESIGN
Track    AUTOMOTIVE SYSTEMS DESIGN

PO Box 513
5600 MB Eindhoven
The Netherlands
tue.nl


