
Semantic Interoperability in Smart Spaces

Sem
antic Interoperability in Sm

art Spaces Sachin Bhardw
aj

Sachin Bhardwaj

Semantic Interoperability in Smart Spaces

Sachin Bhardwaj

© copyright Sachin Bhardwaj, 2024

Printing: ProefschriftMaken || www.proefschriftmaken.nl

ISBN: 9789464698107

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in

any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permis-

sion of the author or the copyright-owning journals for previous published chapters.

Semantic Interoperability in Smart Spaces

PROEFONTWERP

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven,

op gezag van de rector magnificus prof.dr. S.K. Lenaerts,
voor een commissie aangewezen door het College voor Promoties,

in het openbaar te verdedigen
op dinsdag 27 februari 2024 om 11:00 uur

door

Sachin Bhardwaj

geboren te Delhi, India

De documentatie van het proefontwerp is goedgekeurd door de promotoren en de sa-
menstelling van de promotiecommissie is als volgt:

Voorzitter: prof.dr. E.R. van den Heuvel

Promotoren: prof.dr. J.J. Lukkien
 dr. T. Ozcelebi

leden: prof. dr. ir. L.M.G. Feijs
 prof. dr. P. Corcoran (National University of Ireland)
 prof. dr. S.C. Mukhopadhyay (Macquarie University)
 dr. A. A. Syed (Philips Electronics)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in over-
eenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Table of Contents

Acknowledgements 8
Summary 11

Chapter 1 Introduction 15
1.1 Motivation 15
1.2 Smart Space Introduction and Background 19
1.3 Problem Statement and Research Questions 22
1.4 Research Context and Methodology 24
1.5 Contribution and Organization of the Thesis 26

Chapter 2 Smart Space Concepts and Architectures 29
2.1 Introduction 29
2.2 Smart Space Concepts and Building Blocks 30
2.3 Smart Space Architectural Designs 40
2.4 Comparative Analysis of Smart Spaces 48
2.5 Conclusions 57

Chapter 3 Smart Space Properties and Semantic Interoperability Architecture 59
3.1 Example Selection of Smart Space Architecture 59
3.2 Smart Space Properties 66
3.3 Semantic Interoperability Architecture 72
3.4 Conclusions 79

Chapter 4 Semantic Interoperability 81
4.1 Introduction 81
4.2 Fundamental Concepts of Semantic Interoperability 85
4.3 Semantic Interactions in a Smart Application 100
4.4 Semantic Interactions with Multiple Applications 111
4.5 Conclusions 115

Chapter 5 Smart Lighting Case Study 117
5.1 Smart Lighting Applications and Related Work 117
5.2 Smart Lighting Model 123
5.3 Mapping of ICA to the Proposed Architecture 129
5.4 Smart Lighting Use Cases 136
5.5 Conclusions 139

Chapter 6 Smart Space Life Cycles 141
6.1 Smart Node Life Cycle 142
6.2 Smart Service Life Cycle 150
6.3 Smart Application Life Cycle 153
6.4 Conclusions 156

Chapter 7 Implementations and Evaluations 157
7.1 UC-1 Implementation and Evaluations 158
7.2 UC-2 Implementation and Experimental Results 166
7.3 Discussion on Smart Space Properties 175
7.4 Performance Evaluation 177
7.5 Conclusions 180

Chapter 8 Conclusion 181
8.1 Contributions and Answers to Research Questions 181
8.2 Options for Future Works 185
Appendix A: SOFIA Smart Home Pilot Case Study 187
Publications by Author 196
List of Figures 200
List of Tables 203
Acronyms 204
Bibliography 207
Curriculum Vitae 218

8 ACKNOWLEDGEMENTS

Acknowledgements

As a Ph.D. candidate at the IRIS group (formerly the SAN group), I can reflect on the sig-
nificant changes I have undergone. Confronting numerous challenges has not only made
me stronger, more independent, and professional but has also endowed me with a vast
amount of invaluable experience that will undoubtedly prove priceless for my future.
Interacting with a multitude of interesting individuals has played a crucial role in shaping
both my personal growth and scientific development. I would like to express my gratitude
to everyone who has assisted me throughout this enduring journey.

First and foremost, I extend my deepest gratitude to my first promoter, Prof. dr. Johan J.
Lukkien, for providing me with the invaluable opportunity to embark on my Ph.D. journey
at the IRIS group. I vividly recall the memorable Christmas day when you sent me an infor-
mal email, announcing my selection for the SOFIA project. Your official email was to follow
after the holiday, making it one of the most joyous holiday seasons I have ever experi-
enced. Your unwavering support was evident when you praised my first publication in IEEE
PERCOM during the initial year of my Ph.D., marking it with an ‘Excellent’ remark. This en-
couragement fueled my enthusiasm to persevere in my doctoral studies. Our discussions,
often conducted at the whiteboard, pushed me to delve deeper into my thoughts. Your
guidance not only improved my conceptual understanding but also encouraged profound
thinking. I am grateful for your critical comments and thought-provoking questions on my
thesis, which contributed significantly to its remarkable improvement. Your patience in
thoroughly reading and providing constructive feedback underscored your commitment
to my academic growth. I am also thankful for your understanding of my family situation
and your willingness to afford me the time needed to manage personal challenges. It
is difficult to encapsulate the depth of my gratitude for you in a single paragraph. Your
mentorship has been pivotal in my successful completion of various research projects.
Overall, I sincerely thank you for entrusting me with promising projects and for being an
indispensable guide throughout my academic journey.

Further, I would like to thank my second promoter, Dr. Tanir Ozcelebi. You cannot imagine
how much I wish I could have an elder brother like you, always helping me out when I
overthink, comforting me when I feel depressed, and supporting me when I lack confi-
dence. I feel so lucky to have you in my life and start my Ph.D. project with you. Thank you
for teaching me the most important rules of scientific writing, for polishing my manuscript
with great patience, for sharing your gained experience, and for dropping me ideas. With-
out you, I could not have graduated so successfully and fruitfully. Your positive attitude
toward everything is inspiring. As I remember, just before starting the second phase of
my Ph.D., you motivated me and gave time for discussion even when I was not at TU/e. I
sincerely thank you for your constant support.

9ACKNOWLEDGEMENTS

Next, I would like to express my sincere gratitude to all the esteemed committee members
(Prof. dr. Ir. L.M.G. Feijs, Prof. dr. P. Corcoran, Prof. dr. S.C. Mukhopadhyay, Dr. A. A. Syed) for
their dedicated efforts in carefully reviewing my thesis. Your invaluable time and insightful
feedback have significantly contributed to the refinement and enhancement of my work.

I also want to express my gratitude to Dr. Richard Verhoeven. You have been incredibly
supportive of my experiments and pilot demos. I remember the countless late-night dis-
cussions and collaborative work we engaged in. Your doors were always open for discus-
sions and to facilitate experiments. Thanks a lot.

Thank you very much, Prof. dr. Nirvana Meratnia, for motivating me to complete my Ph.D. I
caringly recall your consistent encouragement whenever we met, advising me to expedite
the thesis completion process. I appreciate the opportunity you provided me to conduct
yoga lessons for the cluster members during the COVID period. While I cannot speak for
others, I personally benefitted greatly from practicing yoga during that time, which helped
alleviate a significant amount of stress. Once again, thank you for all your support.

I would like to express my gratitude to my colleagues (Mike, Pieter, Bram, Luis, Leila, Aaqib,
Hrishikesh, Nan) at the IRIS cluster for engaging in insightful discussions during coffee and
lunch breaks. Special thanks to Cecile, Anjolein, and Jolande for efficiently managing all
administrative processes. The bi-weekly games and drinks after our group presentations
were also enjoyable. Thanks to everyone for being such wonderful colleagues.

Most importantly, I would like to extend my heartfelt gratitude to my wife, Yogita, for
unwavering support throughout the journey of my thesis. Managing our children, Sam-
aira and Prisha, single-handedly during times when I could not devote time to them was
indeed a challenging task. Your numerous sacrifices, including the periods when we had
to live apart due to my Ph.D. commitments, did not go unnoticed. I genuinely attribute the
successful attainment of this Ph.D. degree equally to your contributions.

I would like to express my gratitude to Anupam Krishna Dasa Prabhu Ji for guiding me
and my family on the path of Krishna consciousness and introducing us to ISKCON. Your
motivational discussions have been instrumental in helping me to stay focused on my
Ph.D. goal while also fostering Krishna Bhakti. Your guidance has uplifted us in Krishna
Bhakti, striking a balance with my pursuit of the Ph.D. Thank you very much for your
valuable association.

I express my heartfelt gratitude to Sundaripriya Mata Ji and Bhagvat Dhama Prabhu Ji for
providing me with parental care during my time in Eindhoven. You not only provided me
with the chance to live in an environment infused with Krishna consciousness in Eind-

10 ACKNOWLEDGEMENTS

hoven, but you also offered support alike to family. I lovingly remember the time when
we first arrived in Eindhoven and were searching for Tulsi leaves for the bhoga offering
to Krishna. Mata Ji, with a single call to you, Tulsi leaves became readily available. Your
efforts made us feel at home in Eindhoven. Your encouragement in completing my Ph.D.
as soon as possible is deeply appreciated. Thank you very much for your love and support.

I would also like to extend my thanks to Arundhati Mata Ji and Divya Mohan Prabhu Ji
for being pillars of support, creating a sense of complete family. Divya Mohan Prabhu
Ji, your lectures served as a constant source of motivation, keeping me aligned with my
objectives. The soul-stirring Krishna’s kirtan that you led always touched my heart deeply.
Arundhati Mata Ji, your support felt like that of a sister, and I could freely discuss any
problem with you. I vividly recall instances when I felt depressed, and a simple call to you
provided the energy I needed to pursue my goals.

I express my gratitude to my family members, including Amit, Anjali, Sumit, Reena,
Lalit, Ruby, Navneet, and Chinky, for their unwavering support. Additionally, I would like
to extend my thanks to my friends, namely Ragini, Pranav, Radhe Govind, Manu, Nitin,
Shubendu, Sandeep, Gopika, Sahith, Roopali, Gayatri, Mohit and and all others whom I
may not remember while writing this, for their encouragement and companionship.

Finally, I extend my heartfelt gratitude to my parents, and my mother-in-law, for con-
sistently showering me with their blessings, which have been a source of inspiration in
achieving my life goals.

Jai Srila Prabhupada! Hare Krishna!

11SUMMARY

Summary

The vision of ubiquitous computing is to facilitate people’s tasks via the use of applications
that run on embedded devices of various sizes, features and capabilities. One area of
ubiquitous computing is the still emerging concept of smart spaces. A smart space is a
physical environment that contains cooperating “nodes” (i.e., embedded devices) that
continuously and autonomously monitor the environment, interact with users and adapt
their behavior (services) to enhance user experiences using contextual reasoning. Such
reasoning is based on information gathered either from the physical environment (e.g.,
via sensors) or digitally, e.g., from the Internet (e.g., via user profiles). Smart spaces are
most often used to enhance individuals’ living standards and to improve their quality of
life, and they are characterized by an application or set of applications that function with
a common objective. Smart space applications go beyond those applications that can be
offered by a single device. Their potential to enhance the living standards of people is
now being widely investigated in real-world implementations. In facilitating applications
that are tailored to user preferences and are adaptive with respect to user contexts, smart
spaces must conform to applications’ resource needs. These objectives are achievable by
interoperation and cooperation among nodes. Supporting interoperability, therefore, is
a necessity for smart space architecture designs. In general, it is a property that enables
multiple nodes to work together to achieve a shared objective in a smart space and
can be achieved at different levels. For example, at the network level communication
interoperability is essential, allowing nodes to send messages to each other. However,
this is not enough by itself. The nodes in a smart space are diverse and use various types
of technologies, yet they need to understand each other (i.e., the contents of the mes-
sages exchanged). The capacity to communicate meaningful information (semantics)
across nodes and to share a common understanding of such information, across different
heterogeneous networks, is called semantic interoperability. Semantics in a smart space
are described using an ontology language.

This thesis work started about 10 years ago, when the smart space design and imple-
mentation efforts were only at their infancy, with the motivation that the existence of
well-defined architectural concepts, components and mechanisms for semantic interop-
erability among smart space nodes and networks was a key towards the success of smart
spaces. The work was unfortunately interrupted in 2013 close to finalization due to
personal circumstances. In 2017, the work resumed, and we had a chance to carry out
an extensive literature survey to rediscover the positioning of the work after the years
that have passed in between. We found that, even though there have been many more
attempts towards realization of more advanced smart spaces, space architecture designs
out there are still very much application-specific, and their concepts and components
are defined almost from scratch based on the specific needs of one target application. To

12 SUMMARY

this date, semantic interoperability in smart spaces remains a challenge and the way to
achieve it in a generic way is tightly coupled with the need for defining a generic semantic
interoperability architecture, which defines the software components, their physical
deployment and the protocols that they use for this.

To address the semantic interoperability challenge in smart spaces in a generic way, the
first thing that is needed is a precise smart space definition clearly describing its funda-
mental concepts and properties. Prior to this thesis work, such a detailed formal definition
of a smart space was non-existent. This set a barrier in front of achieving technological
breakthrough in generic smart space design. In this thesis, we formally and rigorously
define general smart space concepts and discuss related architectural components (both
hardware and software) in detail. We propose candidate architectures, namely, central-
ized, decentralized and distributed smart space architecture options to choose from.

In developing smart spaces, starting from a generic semantic interoperability architecture
can reduce the design effort significantly thanks to its reusability. We present a compara-
tive analysis of the architectural designs proposed in the literature thus far. We use the
insights gained from this analysis and summarize the discriminating properties that a
smart space must possess, as well as the basic components and services necessary to real-
ize these properties. Consequently, we introduce a semantic interoperability architecture
where semantic interoperability as a key smart space property is central to the design. We
propose semantic interoperability mechanisms based on this semantic interoperability
architecture, enabling semantic interactions among nodes. Candidate architectures for a
new design are then variants of this semantic interoperability architecture, tuned towards
certain performance metrics relevant for the application at hand. We formulate the choice
of the best architecture amongst candidate smart space architectures as a multi-objective
optimization problem.

Smart spaces often include many resource-poor (low-capacity) nodes (e.g., sensors,
actuators) that are not capable of performing complex tasks, e.g., due to insufficient com-
putation, memory, energy and communication resources. We take a gateway approach in
integrating these nodes into a smart space, wherein the gateway node does complex tasks
on their behaves and enables their semantic interactions with each other and with other
resource-rich (high-capacity) nodes.

We test the proposed semantic interoperability architecture solution through the
implementation of a smart lighting application for specific smart lighting use cases; i.e.,
context-adaptive smart lighting and power-managed smart lighting. For this purpose, we
first introduce the concepts that are applicable in the application setting. Therefore, we
propose a novel smart lighting model that is used to continuously monitor and control

13SUMMARY

illumination in an activity space by means of sensing and actuation. Then after, we discuss
the smart space life cycles and the implementation process of smart applications. We
experiment with and verify the usability of this model on the context-adaptive smart light-
ing use case. Moreover, the power-managed smart lighting use case is implemented using
the same smart lighting model, the proposed semantic interoperability mechanisms, and
the proposed architecture. The various communication and hardware technologies used
in these use cases can easily achieve a common objective by using the proposed semantic
interoperability mechanisms in the semantic interoperability architecture.

Overall, the thesis provides formal definitions of smart space concepts and proposes
several candidate architectures. We can choose a suitable smart space architecture for an
application by employing the proposed multi-objective optimization problem formulation.
In addition, the proposed semantic interoperability architecture can deliver a generic so-
lution to the implementations of smart space applications. The semantic interoperability
property of the semantic interoperability architecture simplifies the sharing of semantics
among heterogeneous nodes and networks. The semantic interoperability architecture
also enables semantic interoperability between low and high-capacity nodes via the
gateway approach. Moreover, a novel smart lighting model has been proposed and suc-
cessfully implemented, utilizing the semantic interoperability architecture. Although it is
extensively tested for lighting applications, the semantic interoperability architecture is
generic and provides a competitive solution also for implementing smart space applica-
tions other than smart lighting applications.

14 CHAPTER 1

15INTRODUCTION

1Chapter 1
Introduction

It has been nearly thirty years since the introduction of ubiquitous computing, a paradigm
that has paved the way for numerous applications aimed at enhancing human living stan-
dards. Contemporary studies have yielded substantial solutions, continuously improving
to achieve a satisfactory level of ubiquitous systems. In this chapter, we emphasize the
significance of smart spaces by introducing the concepts of ubiquitous computing and
ubiquitous systems. Furthermore, we delve into the research questions pertaining to
smart spaces and outline our main contributions in addressing these questions. Lastly, we
provide an overview of the organizational structure of the thesis.

1.1 Motivation

In the digital information age, the majority of people, particularly in developed countries,
possess the knowledge of operating a computer or, at the very least, accomplishing basic
tasks like browsing the Internet and using social media. Nevertheless, the relationship
between computers and human beings has not always been as straightforward. There
was a time when considerable technical training and experience were required to perform
even a simple arithmetic operation and obtain the result on a standalone computer. Dur-
ing those days, individuals needed to be proficient in writing low-level machine code just
to carry out the most basic tasks. Fortunately, we are now more privileged. Despite the
increasing complexity of technology, users are shielded from its intricate details through
abstraction. We have made significant progress, transitioning from an era of complex
interactions with massive standalone supercomputers occupying entire rooms to an era
of simplified interactions with personal computers and networks comprised of embedded
devices.

Networked and embedded computing technology, along with the way we interact with it,
have evolved hand in hand over time. Nowadays, many modern buildings are equipped
with networks of embedded devices. For instance, consider a presence sensor appro-
priately positioned on the ceiling of an office room, connected to a lighting service. The
primary task of this setup is to automatically turn the lights on and off based on the
presence of users. Ideally, the sensor and the lighting service seamlessly blend into the
environment, relieving employees of the need to worry about manually controlling the

16 CHAPTER 1

lights upon entering or leaving the office. The presence sensor, in collaboration with an
embedded computing device that implements a control logic, effectively assumes the
responsibility of reducing energy consumption by avoiding wastage, thereby minimizing
the involvement of users. As the lighting service operates smoothly, employees may even-
tually forget about both the sensor and the service. Nevertheless, with each interaction,
valuable data are generated for the purpose of further learning. This instance exemplifies
the contemporary phenomenon of ubiquitous computing, highlighting the seamless and
automated nature of human-computer interaction.

In 1991, Mark Weiser introduced the concept of ubiquitous computing in his description
of the computer for the 21st century [1.1]. Various synonyms are used in the literature for
ubiquitous computing, including the post-PC era [1.2], pervasive computing [1.3], ambi-
ent intelligence [1.4], disappearing computing [1.5], mixed-mode systems [1.6], tangible
bits [1.7], and real-time enterprise [1.8].1 Although these terms have subtle differences
in emphasis, they all pertain to the same vision of ubiquitous computing as defined by
Weiser as follows:

“The most profound technologies are those that disappear. They weave themselves
into the fabric of everyday life until they are indistinguishable from it.”

In this vision, everyday objects that are part of a human user’s environment incorporate
embedded computational devices, systems, or technology that are intentionally concealed
from the user’s perception. In this way, the user can interact with such a system without
consciously acknowledging its presence or complexity. This can be observed in the case of
the office lighting service example, where users interact with the system effortlessly and
without needing to be knowing of its inner workings.

Definition (Ubiquitous System): A ubiquitous system is an infrastructure that
seamlessly and invisibly supports human users through services and applications
offered by its networked and heterogeneous embedded computational devices.

Invisibility is an important property of ubiquitous systems. In [1.10], Weiser explains what
he means by invisible:

“A good tool is an invisible tool. By invisible, I mean that the tool does not intrude
on your consciousness; you focus on the task, not the tool. Eyeglasses are a good
tool – you look at the world, not the eyeglasses.”

1 For a more detailed analysis of these terms and their nuances, please refer to [1.9].

17INTRODUCTION

1A ubiquitous system can exhibit heterogeneity, meaning that the embedded devices
interconnected within it may differ from one another in various aspects. Weiser and his
colleagues envisioned and developed prototypes of three distinct types of ubiquitous de-
vices, namely wearable tabs resembling post-it notes, handheld pads, and large displays
[1.11]. Today, we can observe striking examples of Weiser’s vision in the form of smart-
phones, electronic tablets, and intelligent interactive boards, corresponding to tabs, pads,
and displays, respectively. However, it is important to note that these examples do not
encompass the entire range of devices suitable for ubiquitous computing. In 2009, Stefan
Poslad extended the list of ubiquitous computing devices [1.9], taking into account the de-
vice miniaturization trend in the field of embedded systems. The taxonomies introduced
by Weiser and Poslad primarily focused on the physical form and size of the devices. In
this thesis, we distinguish embedded devices based on their hardware platforms, soft-
ware platforms, and networking capabilities. It is crucial for heterogeneous embedded
devices with varying capabilities to interoperate effectively, enabling the provision of
robust distributed services and applications.

Firstly, in a ubiquitous system, it is crucial for different hardware platforms to be capable
of interoperating. These platforms should have the ability to execute various components
of a distributed application. Typically, a significant portion of embedded devices within
a ubiquitous system consists of hardware components with limited resources, such as
computing power, memory, storage, and energy capacity. Conversely, other embedded
devices may not face such stringent limitations regarding these resources.

Secondly, the software platforms utilized in such embedded systems, including operating
systems, software implementing application logic, and drivers, can vary widely. These soft-
ware platforms may be tailored to specific user interests and application domains under
consideration. Additionally, it is common for these embedded devices to have primitive
low-level user interfaces or no user interface at all. In a ubiquitous system, applications
should be able to run on embedded devices regardless of their specific software platforms.

Lastly, networking capabilities are essential for the embedded devices within a ubiquitous
system to facilitate communication among themselves. This is achieved using various
wired technologies (e.g., Ethernet, broadband, serial) and wireless technologies (e.g.,
Wi-Fi, Bluetooth, IEEE 802.15.4). Different embedded devices may employ one or more of
these networking technologies, but not necessarily all of them.

Overall, a true ubiquitous system enables users to express their goals in an abstract
manner and configures its embedded devices to fulfill those goals. The system takes into
account user preferences, the current context (i.e., the context recorded during a user’s
ongoing activities), and stored contexts (i.e., contexts recorded and stored in a database

18 CHAPTER 1

during a user’s past activities) to determine the optimal state of the ubiquitous system
that best satisfies the user’s goals, while respecting privacy policies.

In order to illustrate the potential of this concept, we present the following example of a
ubiquitous healthcare system as described in [1.12] and depicted in Fig 1.1.

Example Scenario (Ubiquitous Healthcare System): Consider a ubiquitous healthcare
system that supports independent monitoring of patients. This healthcare system records
a patient’s movements using portable bio-electronic devices such as SpO2, Electrocardio-
gram (ECG), Temperature, and Electromyography (EMG) sensors. These devices transmit
the collected data via WiFi or Bluetooth to a smartphone, which further transmits it to the
central base station. At the base station, the received bio-signals are analyzed and stored
in the healthcare database. If critical information is detected, the patient’s doctor receives
this information for further treatment and care. The doctor can then immediately send
assistance to the patient. Additionally, the doctor can query/access the stored history of
the patient in the healthcare database.

Figure 1.1. Ubiquitous healthcare system.

This scenario illustrates the use of a ubiquitous computing system in the healthcare do-
main. The system operates seamlessly, hiding the complexity of embedded devices from
the patient and facilitating ubiquitous information sharing without requiring the patient’s
active involvement. In addition to healthcare, ubiquitous computing finds applications in
various domains such as intelligent lighting, home care, environmental monitoring, robot-
ics, sports, and transportation.

19INTRODUCTION

11.2 Smart Space Introduction and Background

One of the prominent areas of ubiquitous computing is the concept of smart spaces,
which is currently being extensively researched [1.13]. In [1.14], the authors presented a
fundamental conceptual view of a smart space within the context of intelligent environ-
ments. Smart space applications span across diverse fields of interest. To illustrate this,
we provide a few examples of smart space scenarios in various applications, as shown in
Table 1.1.

Table 1.1. Smart space application examples and scenario’s descriptions.
Smart Space Application
Example

Scenario description

Smart Classroom [1.15] A smart classroom can assist lecturers in evaluating students, accessing assignments,
and managing teaching plans. It can also support students in determining learning
outcomes and accessing lecture materials in a comprehensive and organized
manner. Additionally, it facilitates interactions between lecturers and students for
questions and answers.

Smart Home Appliance
Control System for
Physically Disabled
People [1.16]

A smart home can assist individuals with physical disabilities by enabling digital
control of home appliances. A person with disabilities can use a smartphone to
control various appliances. For instance, they can request the smartphone to turn
on the microwave by simply saying, ‘Turn on the microwave’.

Web Services and GSM
based Smart Home
Control System [1.17]

A user can remotely control home appliances using the Internet or GSM (Global
System for Mobile Communications). For instance, critical values of temperature
and gas levels can trigger notifications to a user through the Internet on their
smartphone. Similarly, the notifications via GSM can immediately alert a user about
critical environmental values, such as the presence of gas in the home.

Smart Home Gardening
Management System
[1.18]

A user can maintain their home garden by controlling parameters such as humidity,
temperature, fertilizer compositions, and more. A cloud-based system is used for
analysis, generating alerts, and notifying the user of critical values that require
appropriate action.

Smart Healthcare
Monitoring System using
a Smartphone Interface
[1.19]

The vital health parameters of a patient, including ECG, body temperature, blood
pressure (BP), heart rate, glucose level, and galvanic skin response, can be collected
and evaluated using smart devices. The data is then transmitted wirelessly for
further analysis. The patient’s vital statistics are communicated to a doctor’s
smartphone, allowing remote monitoring without the need for physical presence.
Additionally, if any variations or critical signs are detected, automated notifications
are received on the doctor’s smartphone application.

Smart Healthcare System
Considering Older Adults’
Healthy [1.20]

A smart healthcare system can assist older adults aged 60 or above in their daily
needs and help improve their lifestyle. This system is based on a survey approach in
which older adults actively participate. The information collected through the survey
enables the smart healthcare system to provide personalized assistance and support
to older adults, ultimately enhancing their overall well-being and lifestyle.

20 CHAPTER 1

Table 1.1. Continued
Smart Space Application
Example

Scenario description

Smart Medicine
Dispenser [1.21]

A smart medicine dispenser can assist patients in taking their medication on time, in
a stress-free manner, without the risk of missing doses or accidentally overdosing.
The dispenser includes an Android application that provides a user interface,
controls the medication dispenser, and manages the user’s schedule. An integrated
alarm system is also in place to remind patients when it is time to take their
medicine. Ultimately, the smart medicine dispenser greatly improves medication
adherence, ensuring better treatment effectiveness and potentially saving lives.

Smart Lighting in Home
Environments [1.22]

Smart lighting can enhance the lighting in a home by automatically adjusting the
illumination based on light sensors. For example, the lights can be turned on, off, or
dimmed according to user preferences. Smart lighting also contributes to energy-
saving efforts.

Marketplace for Smart
Cities [1.23]

A smart city can foster the growth of a local economy by facilitating the sharing of
data from Internet of Things (IoT) devices related to market products. For instance,
product owners can use IoT technology to decentralize the posting of product
information on a marketplace, enabling potential buyers to access this information.

Smart Driving [1.24] Smart vehicles play a crucial role in smart cities, with cars being the foremost
type of vehicle that significantly impacts human life. For instance, drivers can
enjoy a comfortable, safe, and easy driving experience in smart cars, thanks to
the information provided by sensors installed both within the cars and in the
surrounding infrastructure. This advanced technology reduces the likelihood of
accidents and enables more convenient travel.

Smart Fire Management
[1.25]

Fire protection is of utmost importance in ensuring the safety and security of large
indoor garages or parking areas. Implementing smart management systems for
fire incidents can greatly enhance the level of protection provided to the parked
vehicles. For instance, gas and temperature sensors can be integrated with sprinkler
systems in indoor parking spaces, following a carefully planned vehicle parking
layout.

Streetlight Control for
Smart Cities [1.26]

Streetlights are controlled using sensors and actuators that respond to human
presence and luminous intensity. For instance, the streetlights turn on or provide
adequate illumination when human presence is detected. This not only helps in
energy savings but also ensures suitable lighting for people walking on the streets.

Smart Logistics using
Smart Contracts [1.27]

Smart logistics assist in supply chain management within industries by incorporating
smart contracts, logistics planners, and asset condition monitoring. For instance,
the entire process from purchase to delivery can be efficiently managed using time
management techniques and smart contracts, minimizing the involvement of service
providers and users.

Smart Homes and
Assisted Living as an
Additional Service
Offered to the Users
[1.28]

A smart home not only promotes energy savings but also provides innovative
services aimed at enhancing the quality of life for end-users. For instance,
the integration of sensors and actuators in the smart home helps to prevent
unnecessary electricity usage. Additionally, the infrastructure supports users in
fulfilling their desires and preferences.

Smart Office [1.29] Smart offices have the capability to control the power status of various electronic
devices, including lamps, projectors, room temperature devices, computers, and
security systems. For instance, these devices can be turned off when they are
not required by the user in the office, and they are turned on only based on user
requirements.

21INTRODUCTION

1From the users’ perspective, the goal of a smart space is to enhance people’s living
standards by offering services that go beyond what can be provided by a single device.
To achieve this goal, a smart space consists of cooperating embedded devices that
seamlessly sense events in their physical environment and monitor relevant contextual
information for services that are interesting for users. This information can be processed
and utilized to deliver personalized services based on user interests and preferences. As
a result, users perceive the smart space as a unified entity that interacts with them and
adapts its services to enhance their experience through reasoning. This reasoning can be
based on contextual information collected from the physical environment (via sensors)
and information obtained from databases (via user profiles). The application responsible
for the reasoning can run on a single embedded device, processing information locally and
making actuation decisions. Alternatively, in a smart space, distributed collaborative ap-
plication logic can be used, which requires information exchange and semantic interoper-
ability between embedded devices and their services. Semantic interoperability ensures
that the exchanged information is interpreted with the same meaning. For instance, in
a distributed application where one user’s smartphone exchanges information with an-
other user’s smartphone, it is essential that both smartphones interpret the information
in the same way. Achieving semantic interoperability in smart spaces remains a significant
challenge.

From a system perspective, a smart space is a specific type of ubiquitous system. The
example of a ubiquitous healthcare system in Section 1.1 explained the scenario in a mix
of deployment aspects and a set of functions. In essence there are many ways that a
functional scenario can be mapped on a deployment architecture (i.e., the operational
part of the architecture). In a smart space, the functional part of a scenario should be the
concern for a designer of the application and the smart space must realize its operational
part (i.e., the exact roles of every component and the communications involved) transpar-
ently. Being a form of a ubiquitous system, a smart space is usually heterogeneous, i.e.,
made up of embedded devices of many vendors with various hardware, software and
communication platforms.

Unfortunately, there is a lack of global ambition for universal standardization of semantic
interoperability. Large vendors seeking market dominance do not recognize the need for
interoperability with other vendors, while small vendors are often specialized in specific
products and lack the resources and influence to promote standardization. As a result,
there is a proliferation of data formats, taxonomies, and ontologies, resulting in frag-
mented smart space solutions that lack easy interoperability. It is worth noting that this
is true even for smart space solutions that achieve communication interoperability with
each other. Secondly, the capabilities of devices in a smart space vary in terms of sensing,
actuation, processing, storage, and networking. For instance, a wireless sensor-actuator

22 CHAPTER 1

network may consist of low-power sensors and actuators communicating over the IEEE
802.15.4 [1.30] wireless standard, which can be bridged to a network of quad-core smart-
phones and laptops through a gateway. This heterogeneity within a smart space network
highlights the diverse nature of devices and their capabilities.

Using the analogy of a smartphone, a smart space can be seen as a programmable plat-
form capable of running multiple applications concurrently. This platform concept, which
employs an open interface, has been widely acknowledged by various authors and recent
projects, and is considered crucial for advancement. In terms of progress, multimedia ap-
plications have made significant strides in this direction, with initiatives such as the Digital
Living Network Alliance (DLNA) [1.31], Spotify [1.32], and Google technologies [1.33]. In
smart space design, it is important to recognize that there are multiple stakeholders in-
volved and that there are various criteria to consider beyond just functionality. Therefore,
we advocate for smart space design that takes into account the perspectives of multiple
stakeholders and considers multiple qualities assessed by different metrics.

Finally, smart spaces are also associated with the utilization of IoT technology. IoT technol-
ogy is built on the concept of enabling connectivity anytime, anywhere, and for anything,
which holds great promise for the future of computing and communication. It forms a vast
network of Internet-connected objects, including embedded devices, home appliances,
and sensors. Smart spaces can leverage IoT-enabled technologies to establish an infra-
structure for human-computer interactions. For instance, a comprehensive approach that
combines smart spaces and IoT technology is presented in [1.34]. This approach proves
to be effective and facilitates the division of the global IoT into manageable smart spaces.
IoT provides a unified infrastructure that accommodates diverse devices, technologies,
and protocols, thereby enabling the development of applications for smart spaces that
integrate ubiquitous computing and IoT.

1.3 Problem Statement and Research Questions

The presented vision of ubiquitous computing and smart spaces stimulates researchers
to design and build working and living environments that improve user experiences via
applications that run on top of embedded devices. However, research contributions and
implementations in this direction are quite dispersed. This is mainly due to the fact that
there is no generic framework in the literature that defines how to design and implement
a smart space. Smart space architecture designs in the literature are mostly application
specific, their concepts and components defined based on the specific needs of one ap-
plication. Therefore, this thesis addresses the following leading Research Questions (RQs)
related to this problem.

23INTRODUCTION

1In order to formally define a smart space and establish a sharp domain of this research we
formulate the following RQ:

RQ1: What are the concepts, properties and architectural design alternatives of
smart spaces?

RQ1A: What are the fundamental concepts, building blocks and properties of a
smart space?
RQ1B: How can we compare potential smart space architectural design alterna-
tives?
RQ1C: What is an appropriate architectural solution for realizing these concepts?
Which smart space properties are the most essential for this architectural solu-
tion?

Clearly, answering RQ1 requires a thorough analysis and comparison of the smart space
architecture designs available in the literature as well as a thorough examination of (po-
tential) applications.

Regarding semantic interoperability in a smart space with various types of embedded
devices and networks, we formulate the following RQ:

RQ2: How can we establish semantic interoperability of heterogeneous embedded
devices (nodes) in smart spaces?

RQ2A: What are the processes and dependencies for semantic interactions
among components that will enable semantic interoperability?
RQ2B: What are the additional mechanisms and components needed for seman-
tic interoperability in smart spaces? How can we achieve semantic interoper-
ability with resource-poor (low-capacity) devices in a smart space?
RQ2C: How can we achieve semantic interoperability with multiple applications
in a smart space?

To experiment with semantic interoperability in a practical application, we have chosen to
implement smart lighting applications in this thesis. For these smart lighting applications,
we require an appropriate illumination model that can be integrated into the proposed
semantic interoperability approach. To identify and implement our proposed approaches
for RQ1 and RQ2, we have formulated the following research question:

RQ3: How can our proposed solutions be applied in real systems?
RQ3A: How can we map the concepts and properties of smart spaces in real
systems (including an illustration of how to measure the performance of a
smart space architecture)?

24 CHAPTER 1

RQ3B: What are the smart space life cycles?
RQ3C: How can semantic interoperability be established in real systems?

1.4 Research Context and Methodology

Before describing the technical contributions in detail, we explain the research context
and research methodology adopted in this thesis.

1.4.1 Research context
The research in this thesis was done in two phases. Initially, the thesis work was originated
from the European Union Artemis project Smart Objects For Intelligent Applications (SO-
FIA) [1.35]. SOFIA was executed from 2009-2012, with the aim of developing an Interoper-
ability Platform (IOP) that enables collaboration and data exchange between devices of
multiple vendors in various target environments. The main research and development
objectives of the SOFIA project were as follows:
· Objective 1: To develop a reference IOP, enabling the interoperability levels for ex-

changing information between multivendor devices.
· Objective 2: To develop interaction models to support a variety of smart spaces and

users.
· Objective 3: To introduce methods, technological and economical structure and tool-

kits for the development of smart environments and their services and applications.
· Objective 4: To demonstrate the capabilities of the proposed IOP and interaction mod-

els using scenarios and use cases based on personal spaces, indoor spaces and cities.

In line with the aforementioned objectives, SOFIA offered an IOP solution for smart spaces
involving multiple vendors, devices, and domains, known as Smart-M3 (Multi-vendor,
Multi-device, Multi-domain). The Smart-M3 solution allows for the integration of infor-
mation across diverse applications and domains, spanning from the embedded domain
to the Internet domain. It boasts flexibility and modularity, making it compatible with
various transport technologies, application development environments, and program-
ming languages.

Within the scope of the SOFIA project and this Ph.D. research, we conducted experiments
on smart lighting applications. To accomplish this, we closely collaborated with the TU/e
department of Industrial Design, NXP Semiconductors, Philips Research, and CONANTE
Advanced Interface Solutions. The outcome of our collaboration was a combined dem-
onstration of a SOFIA Smart Home Pilot utilizing Smart-M3, as explained in Appendix A.
Additionally, we introduced and developed a novel model for smart lighting applications,
which we implemented using Smart-M3.

25INTRODUCTION

1Years after the completion of the SOFIA project in 2012, the second phase of this thesis
work commenced in 2017. The objective of this phase was to develop and precisely define
general smart space concepts, building blocks, properties, and architectures. Additionally,
we addressed the challenge of semantic interoperability in smart spaces, drawing from
the experiments conducted in the first phase and the findings of the literature review.

1.4.2 Research Methodology
To identify and address the research questions mentioned in Section 1.3, the research
methodology shown in Fig. 1.2 was employed. The methodology comprises several stages
including problem analysis, proposed solutions, solution and implementation mecha-
nisms, implementations and evaluations, and concluding remarks with future directions.

In the first phase, known as the problem analysis phase, we conducted a thorough re-
view of the relevant literature on smart spaces. This review aimed to identify research
questions that have not been formally or sufficiently addressed in previous studies. The
research questions identified during this phase are listed in Section 1.3. The subsequent
phase involved proposing solutions to these research questions. This was followed by
designing solution mechanisms and implementing the proposed solutions on a hardware
infrastructure testbed. Based on the implementations, we further refined the proposed
solutions. Additionally, we evaluated the performance of the implementations and made
improvements accordingly. We then discussed the answers to the research questions
based on the implementation of the smart space solution. Finally, we provided concluding
remarks and outlined future directions for research.

Figure 1.2. Research methodology.

26 CHAPTER 1

1.5 Contribution and Organization of the Thesis

In this section, we outline the main contributions of the thesis, along with the organiza-
tion of the remaining chapters. The main contributions of this thesis are summarized in
the following six chapters and depicted in Fig. 1.3.

Chapter 2 addresses RQ1A and RQ1B. In this chapter, we identify the concepts, building
blocks, and architectural views of a smart space. We provide formal definitions of a smart
space and its concepts, and introduce the main components of its architecture. Addi-
tionally, we propose new architectural designs for smart spaces, including centralized,
decentralized, and distributed architectures, which are then compared with the current
state-of-the-art designs. A comparative analysis of smart space designs in the literature
and the proposed designs is presented in terms of hardware and software capabilities.

Figure 1.3 Contributions in the thesis.

27INTRODUCTION

1Chapter 3 addresses RQ1C and RQ2A: In this chapter, we aim to identify the best smart
space architecture based on an objective evaluation metric. We provide a detailed
description of six smart space properties: adaptation, communication interoperability,
semantic interoperability, openness, extendibility, and self-management. We propose a
semantic interoperability architecture that offers a generic solution for smart space de-
sign. Our analysis determines adaptation, communication interoperability, and semantic
interoperability as the primary properties for the proposed architecture. These primary
properties are selected based on the essential needs of smart spaces (i.e., adaptation and
communication interoperability) and the challenge of achieving semantic interoperability.
We discuss the processes and dependencies among components for semantic interac-
tions, which contribute to achieving semantic interoperability.

We provide guidelines for creating smart spaces using smart embedded devices and their
basic modules introduced in the proposed semantic interoperability architecture. We pro-
vide suitable mechanisms of interaction among smart embedded devices in smart spaces,
thereby achieving semantic interoperability.

Chapter 4 addresses RQ2B and RQ2C: In this chapter, we present a detailed explanation of
semantics and reasoning, highlighting their role in achieving semantic interoperability. We
introduce ontologies and discuss their significance in facilitating semantic interoperability.
We explore the mechanisms of semantic interactions within a smart space and between
smart spaces. Furthermore, we introduce an additional component, namely a gateway
node, in the semantic interoperability architecture, which enables interoperability be-
tween low-capacity and high-capacity smart embedded devices.

Chapter 5 and Chapter 6 address RQ3. These chapters focus on applying the proposed
solutions discussed in chapters 2, 3 and 4 in practice, by mapping them to real use cases.
We first present a case study of smart lighting applications within the scope of the SOFIA
project, requiring the development of a novel smart lighting model. The establishment
of semantic interoperability is thoroughly discussed using the semantic interoperability
architecture. Furthermore, two use cases, namely UC-1: context-adaptive smart lighting
and UC-2: power-managed smart lighting, are introduced. UC-1 primarily emphasizes se-
mantic interoperability between low-capacity and high-capacity smart embedded devices
using the smart lighting model. UC-2 demonstrates semantic interoperability between
multiple smart spaces composed of various nodes with different computing and com-
munication platforms, forming a heterogeneous network. Lastly, in Chapter 6, we propose
and discuss the life cycles of smart spaces. The life cycle of smart spaces involves several
stages, from initial conceptualization to ongoing maintenance and potential decommis-
sioning. We use these life cycles in the development of smart spaces.

28 CHAPTER 1

Chapter 7 describes our implementation of the use cases, namely UC-1 and UC-2. To
achieve this, we examine five example scenarios of lighting conditions based on the ex-
perimental results from the implementation of these use cases. In addition to discussing
the primary properties, we also address other properties using these example scenarios.
Furthermore, we calculate a performance metric, specifically the end-to-end delay be-
tween smart embedded devices. Finally, we evaluate the results to identify suitable solu-
tions in smart spaces.

The origin of Chapters 2, 3, 4, 5, 6 and 7 is based on the following publications:
[P1] S. Bhardwaj, K. M. Lee, J. Lee, “An adaptive framework for applying machine learning in smart

spaces”, SAC 19, Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing,
pp.1263-1270, April 2019.

[P2] S. Bhardwaj, T. Ozcelebi, J. J. Lukkien, and K. M. Lee, “Smart Space Concepts, Properties and
Architectures”, IEEE Access, Vol. 6, pp. 70088-70112, Nov, 2018.

[P3] S. Bhardwaj, T. Ozcelebi, J. J. Lukkien, and K. M. Lee, “Semantic Interoperability Architecture for
Smart Spaces”, International Journal of Fuzzy Logic and Intelligent Systems, Vol. 18, Issue 1,
pp. 50-57, 2018.

[P4] S. Bhardwaj, T. Ozcelebi, O. Ozunlu and J. J. Lukkien, “Increasing Reliability and Availability in
Smart Spaces: A Novel Architecture for Resource and Service Management”, IEEE Transac-
tions on Consumer Electronics, (TCE), Vol.58, Issue 3, August, 2012.

[P5] S. Bhardwaj, T. Ozcelebi, C. Uysal and J. J. Lukkien, “Resource and Service Management Ar-
chitecture of a Low-Capacity Network for Smart Spaces”, IEEE Transactions on Consumer
Electronics (TCE), Vol.58, Issue 2, May, 2012.

[P6] S. Bhardwaj, T. Ozcelebi, R. Verhoeven and J. J. Lukkien, “Smart Indoor Solid-State Lighting
Based on a Novel Illumination Model and Implementation”, IEEE Transactions on Consumer
Electronics (TCE), Vol.57, Issue 4, November, 2011.

[P7] S. Bhardwaj, A. A. Syed, T. Ozcelebi, and J. J. Lukkien, “Power-managed Smart Lighting Using a
Semantic Interoperability Architecture”, IEEE Transactions on Consumer Electronics, Vol.57,
Issue 2, 2011.

Finally, Chapter 8 concludes this thesis by providing a summary of the key results and
the main contributions of our work in relation to our research questions. Additionally, we
highlight potential future research directions for the problems addressed and the solu-
tions presented.

29SMART SPACE CONCEPTS AND ARCHITECTURES

2

Chapter 2
Smart Space Concepts and
Architectures

In this chapter, we focus specifically on the concept of smart space, aiming to define it
rigorously, identify its distinguishing characteristics, and propose universally applicable
architectural concepts. Initially, we offer formal definitions of a smart space and its fun-
damental computational components, namely, smart nodes and information objects.
Subsequently, we present potential architectural designs for smart spaces. Additionally,
we provide a comprehensive review of related work and conduct a comparative analysis of
the proposed architectures. Finally, we conclude the chapter by summarizing our findings
and presenting key insights.

2.1 Introduction

The advancements in the smart space research bring us closer and closer to a future, in
which the living standards of people are greatly enhanced. Many strongly believe that
user needs constitute the main driving force behind technological development, but
sometimes it is the other way around. Technological advancements change the ways that
people interact, perform activities, and connect with their environments. For example, a
smart television can now do much more than simply receiving and displaying video signals.
With Internet Protocol (IP) connectivity, advanced software, and plenty of computational
power, smart televisions allow users to surf the Internet, browse movie libraries of local
media servers, stream and play movies in various encoding formats, play online games,
join video chat sessions, and much more. Nowadays, smart televisions come with a very
capable built-in operating system and a variety of (‘killer’) entertainment applications that
are so easy to use and so difficult to miss out on. Similarly, touch-screen-enabled smart-
phones with 4G and 5G connectivity have changed the way mobile users view cellular
communication technology. Smart spaces also represent another area in which the driving
force is mainly a technological push, i.e., the functionality is not called for by a globally
widespread “killer application” and the utility of such spaces must be understood over
time by experience. The technological push in this instance is the increased prevalence of
electronic devices around and on people combined with the fact that these are networked
and produce valuable information. Smartness here refers to the ability of these devices

30 CHAPTER 2

to perform (collective) behaviors perceived as advanced and useful in some sense. Since
the number of devices is rapidly exceeding the number of human users, this smartness
implies (self-) management and configuration capabilities in a network setting.

Although smart spaces have not been established very precisely, many smart (space)
applications have been developed both as project showcases [2.1-2.4] and for real deploy-
ments. These applications are characterized by the fact that the hardware and software
elements of the system are dedicated to and specifically developed for the application
at hand. Examples can be found in healthcare (e.g., patient monitoring, elderly monitor-
ing), smart lighting, media use, and environmental monitoring. Special-purpose systems,
however, are costly and do not lead to the commoditization of the system components.
Realizing general-purpose smart spaces of the future requires a comprehensive list of
generally applicable smart space architectural concepts and building blocks. For that, we
first need precise definitions of the things that make up a smart space and the definition
of a smart space.

2.2 Smart Space Concepts and Building Blocks

In this section, we first define the terminology regarding smart space concepts. The
proposed list of smart space concept definitions will be used in describing a smart space
formally, allowing to make a distinction between what is a smart space and what is not. A
smart space delivers services such as context-aware information services [2.5-2.6], as well
as physical services through actuation. Note that service refers to a set of functionalities
such as the retrieval of identified information or the execution of a set of processes or
actions. A smart space is generally known by its physical extent, embedded electronics,
embedded networks, and software. In the literature of networked embedded systems
an object is a combination of an embedded networked device (also called a node) with
the software running on top. In this thesis, for clarity of presentation, we distinguish
between smart nodes (hardware) and the software modules running on top that produce
and consume information. We will discuss what smartness entails in detail but let us first
discuss these software modules and their roles. In smart spaces, we refer to the software
modules hosted by smart nodes as information objects (iOs). A given smart node can host
various iOs.

Definition (Information Object): An information object is a software unit that can com-
municate with other information objects and has a local state, which it can change and,
on which it can perform digital computations.

31SMART SPACE CONCEPTS AND ARCHITECTURES

2

In general, an iO has both a state and a behavior. The state of an iO is the present condi-
tion of that iO. Changes in the state of an iO can be autonomous, which models a sensing
capability. Similarly, some changes of an iO state can result in changes in the physical
world, which models an actuation capability. The state of each iO may change over time
and based on a set of (timed) events in which it can engage. Events are recognized by the
changes in the iO state, which may include sensing, actuation, user interface events, and
communication with other iOs.

Definition (iO State): The state of an iO is given by the set of values taken by its properties
that may be static (e.g., iO’s identity, fixed coordinates of an immobile hosting device) or
dynamic (e.g., dynamic IP address of the hosting device, values of dynamic variables).

Definition (iO Behavior): The series of messages sent and received by an iO, its state
changes (events), actuations and the associated timing relations together form the iO’s
behavior.

A certain behavior of an iO may cause (trigger) a particular behavior of another iO. The
behavior of an iO corresponds to state changes, which occur when an action or reaction
takes place. For example, actions are based on sensing illumination by a light sensor, while
reactions are triggered by messages received by a lamp to dim/on/off. The joint behaviors
of the light sensor and the lamp cause the actions and reactions by iOs. For example, an
action can be observed at the light sensor (starts observing illumination reading) and the
reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such
an iO is a producer or consumer of digital information, has a (dynamic) state and can
communicate with other iOs.

All iOs are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a
dedicated computational hardware component that hosts information objects. For a
smart node n, n.iO denotes the set of iOs running on n. As smart spaces are the focus of
this thesis, we will use the term node to refer to smart nodes in the rest of this chapter
and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical
area, called an E_Space, which is connected to the virtual world of information provided
by its nodes.

32 CHAPTER 2

Definition (E_Space): An E_Space is an infrastructure of nodes and network connections
between them in a given physical environment. An E_Space

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

 is modeled by a graph given
by

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

where
1.

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

 denotes the set of nodes, where nodes further contain a set of iOs,

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

 denotes
the set of connections (edges) between the nodes. Note that

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

 may denote a set
of individual physical links or a fully connected network based on some network layer
abstraction. In the latter case,

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

 would include multi-hop end-to-end network layer
connections between nodes and be a fully connected graph.

2. An element e of

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

 is denoted by a pair (e.s,e.t) with e.s(ource) and e.t(arget) chosen
in

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

.

An E_Space may evolve over time because of new nodes that join and existing nodes that
fail or leave, e.g. due to mobility. Fig 2.1 illustrates an example E_Space with three nodes
nA, nB and nC with associated iOs iOA, iOB and iOC, respectively.

The edges between

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

 and

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

,

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

 and

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

, and

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

 and

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

 are given by

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

,

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

 and

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

, respectively and are detailed as follows:

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

For two iOs to communicate they either need to be on the same node or their nodes
should be able to exchange messages over a network. In the graph representation this
corresponds to having a solid edge between the nodes. For example, an iOA on

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

 can
send messages to another iOB on

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

 only when

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

 is an element of

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

.

We shall now answer the question: What makes a smart space smart? The dictionary
definition of “smart” commonly refers to possessing a mental state that enables human
beings (or animals) to demonstrate quick thinking and intelligence as an individual. Hence,
the ability to react to changes adequately and timely is embedded in the notion of smart-
ness. The perception of smartness in this sense in a smart space typically comes from
the interactions between iOs, i.e. a certain behavior of an iO that leads to a particular
behavior of another iO as a reaction based on interactions between them. An example is
the detection of occupancy in a room by a presence sensor node, triggering a state change
of the sensor iO followed by message transmissions to a light controller iO, which in turn
sends actuation commands to an actuator iO on a light source node as shown in Fig 2.2.

33SMART SPACE CONCEPTS AND ARCHITECTURES

2

Figure 2.2. An example of a smart behavior via interactions between iOs.

Note that smartness is also possible to realize even with resource-poor nodes. In fact,
even the so-called passive nodes that require external power sources to become active are
considered to be smart nodes in this sense, for example, Radio Frequency Identification
(RFID) tags. Nowadays a single smart node can contain many sensors and actuators, act as
both a producer and consumer of several types of information and participate in multiple

Figure 2.1. The graph illustrates the iOs (iOA, iOB and iOC) deployed on nodes nA, nB and nC.The solid
arrows represent the edges in

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

 and their directions while the dotted arrow represents a process
level connection between the iOs of nA and nB .

34 CHAPTER 2

applications. Smart nodes exhibit node-to-node, node-to-cloud, node-to-gateway, and
back-end communication patterns.

A smart space is further characterized by the scenarios collectively realized by its iOs,
which are sequences of events (state changes). We refer to these scenarios as the (poten-
tial) applications of a smart space.

Definition (Smart Application): A smart (space) application (

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

) is a set of scenarios
realized by communicating iOs that together aim to serve and interact with applica-
tion users and the electronics these users carry.

The application context

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 of a smart application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 is the collective state of all iOs taking
part in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

, including external states monitored by these iOs that may influence the behav-
ior of

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. Therefore, we can say that the collective behavior of iOs that form and influence

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

defines the application behavior

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. Thus, the application behavior

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 depends on

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

and is, in fact, fully defined by it. In interactions between the stakeholders and the ap-
plication

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

, events are triggered, e.g., a button is pressed, some user interface input or
output is given, or some action is performed. These events affect the corresponding iOs
whose states are part of the application context

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. We refer to these as interface objects,
and their states form a subset of

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. Whether an iO is an interface object is subjective
(influenced by the abstraction level of a stakeholder’s interactions), but we typically
restrict ourselves to iOs that affect the function of the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. If the application
behavior

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 is fully defined by these interface objects, we say that the application is
context-independent; otherwise, we call it context-dependent.

Smartness and other qualities are perceived by stakeholders through interactions and
state observations and are therefore properties of behaviors. We associate these proper-
ties with metrics. A metric m in this setting is a mapping from the application behavior

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

to a non-negative real number. When a lower value is better, the metric is called a cost
function. An application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 is called adequate with respect to a metric m if

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 satisfies a
certain requirement on m, for all behaviors in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

.

We can now define what we mean by a smart space.

Definition (Smart Space): A smart space is an E_Space with embedded information
and communication technologies running a set of smart applications.

As a platform, a smart space must contain and build up knowledge about its capabilities
and resources, its state (contexts) and history. To do so, it employs sensing, user interac-
tion, resource monitoring, communication, computation, cooperation, and services on

35SMART SPACE CONCEPTS AND ARCHITECTURES

2

the Internet. Furthermore, a smart space utilizes a variety of architectural components
to manage applications and the available resources as well as to provide security and
ensure the privacy of the smart space knowledge considering access rights. Further on,
this chapter presents the fundamental hardware and software building blocks that make
up smart spaces, starting with a classification of smart nodes.

2.2.1 Classification of smart nodes
The available node classes in networks of resource-constrained nodes were defined in
[2.7-2.8] based on an investigation of the commercially available chips and embedded
system designs. In this taxonomy, class 0 (C0) nodes are strictly constrained in terms of
processing and memory (dynamic memory and permanent storage much less than 10
KiB and 100KiB respectively) capabilities. Therefore, these nodes are not able to run the
IP stack. We call some nodes belonging to this class passive nodes since they depend on
event-based energy harvesting for sending a few messages back-to-back into the network
before their harvested energy is fully depleted again. A battery-less wireless light switch
is an example of this. C0 passive nodes typically do not facilitate any management or
security services other than pairing with other nodes over a trusted proxy. C0 nodes that
are not passive can handle keep-alive messages and provide basic node state information.
C1 nodes have roughly at least 10 KiB of memory space and 100 KiB of storage space,
and they are mostly battery powered. Such resource limitations still do not allow run-
ning complex network protocol stacks such as the full IP stack. Nevertheless, there are
low-resource (lightweight) protocol stacks specifically designed for this node class. For
example, these nodes can use CoAP (Constrained Application Protocol) [2.9] over UDP
(User Datagram Protocol) and employ 6LoWPAN (IPv6 over Low power Wireless Personal
Area Networks) as adaptation layer to communicate directly with the Internet. Function-
ally (including security), with very careful use of resources, they would act like ordinary
IP endpoints. However, in terms of network latency, throughput, and computational per-
formance, these nodes perform poorly due to resource optimization techniques such as
radio duty cycling. With around 50 KiB of memory and 250 KiB of storage space, C2 nodes
can run conventional network protocol stacks. However, in practice, C2 nodes also employ
low-resource protocol stacks as a performance precaution.

Naturally, such taxonomy needs frequent updates as the classes and their capabilities
change continually thanks to developments in silicon technology. With this in mind and
based on the architectural requirements for involvement in a smart space, we define two
broad categories of smart nodes with respect to the available resources and communica-
tion capabilities: high-capacity smart node (HSN), and low-capacity smart node (LSN).
HSNs are members of C2 or more capable. Typical examples of HSNs are smart phones,
tablets, personal computers, and other high-capacity embedded devices. Contrary to
LSNs, HSNs can employ complex services and protocols and perform relatively high-level

36 CHAPTER 2

and complex reasoning. LSNs are resource-poor passive nodes of C0 such as RFID tags and
battery-less switches and also the members of C1 such as sensor nodes (SNs) and actuator
nodes (ANs).

2.2.2 Types and logical structure of iOs
A smart space allows seamless information sharing among iOs, i.e., information such as
contexts. Smart space applications consist of sets of scenarios that deliver information
services and their associated services through their iOs. The logical structure of relations
between various iOs in a smart space is depicted in Fig. 2.3. The types of iOs shown in Fig.
2.3 are described in Table 2.1.

Figure 2.3. A diagram depicting the logical structure of relations between iOs in a smart space.

37SMART SPACE CONCEPTS AND ARCHITECTURES

2
Table 2.1. Types of iOs shown in Fig. 2.3.
Item Description

 PiO produces information for other iOs.

CiO consumes information of other iOs.

SBiO a module that stores and shares semantics (data with certain meaning)

MiO manages resources, applications, security and privacy.

RMiO an MiO instance that manages resources that iOs can access.

AMiO an MiO instance that manages applications.

SPMiO an MiO instance that provides security and privacy services.

Figure 2.4 shows the possible deployment of iOs on nodes. When we deploy SBiO and MiO
on any node, the node becomes a semantic broker node of a smart space. In Fig 2.4(a), we
deploy PiO and CiO on separate nodes; then the nodes become producer and consumer
nodes in a smart space, respectively. It is also possible to deploy both PiO and CiO on the
same node, in which case the node becomes both a producer and a consumer of informa-
tion in a smart space. In Fig 2.4 (b), we can deploy SBiO, MiO, and PiO on the same node,
and CiO on a different node. This choice makes the semantic broker node also a producer
node. In Fig 2.4(c), PiO and CiO are both deployed along with SBiO and MiO. This means
the semantic broker node also becomes both a producer and consumer in a smart space.
Finally, in Fig 2.4 (d), we deploy PiO on a separate node and the others on the same node.
This choice makes the central entity also a producer node in a smart space. We can choose

Figure 2.4. iO’s deployment possibilities on nodes. The arrows in the figure indicate a two-way mes-
sage exchange.

38 CHAPTER 2

any of the deployment options based on the requirements of smart space applications.
We will discuss the smart space architectural designs in the next section, where we can
choose how to deploy iOs accordingly. Later in Chapter 3, we choose Fig 2.4(a) as the
option to deploy iOs in a smart space architectural design. This choice makes the smart
space distributed for iOs, allowing information sharing by the semantic broker node.

An application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 has application-specific contexts, application logic, and application
ontology. The application context

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 is a set of contexts captured from the environment,
which are represented in the states of iOs (such as user ID, location, activity, and resource
attribute value) and are input to the application logic. The application logic has a set of
instructions (a program code of implementation logic) to execute application-specific
scenarios. The application ontology defines the set of concepts that are relevant, allowing
to provide a flexible description of the application context

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. The application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 realizes
its application behaviors by the collectively adaptive behaviors of iOs taking part in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

.
A smart node has its own capabilities, resources, and network address(es) to associate
with other smart nodes, and to provide sense(), actuate(), and communicate() services.
Producer iOs (PiOs) on a smart node, e.g. a light sensor node, produce knowledge in a
smart space, whereas consumer iOs (CiOs) on a smart node, e.g., a light controller node,
utilize such knowledge. Note that a smart node may host multiple iOs, allowing it to both
produce knowledge and utilize knowledge produced by others.

A context interpreter gathers raw data from one or more iOs of an application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

, sum-
marizes them as

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and converts the results into the established semantics [2.10] of a
smart space. For example, a context interpreter participating in an application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 involv-
ing user interaction can take raw accelerometer data and convert them into gesture
semantics (such as “pointing upwards”) and further into corresponding control semantics
(e.g., increasing the light intensity by 10%). It can also perform conversion in the reverse
direction, i.e., from semantics to contexts. Semantics are represented using a high-level
description language such as the Resource Description Framework (RDF) [2.11]. Contexts
are expressed in a standard way using semantics and can be exchanged between iOs
without loss of meaning. The semantics are then stored by a semantics broker iO (SBiO),
where they are accessible by iOs that can perform reasoning on high-level application
data. The stored semantics are also accessible by manager iOs (MiOs), whose instances
are application manager iOs (AMiOs), resource manager iOs (RMiOs), and security and
privacy manager iOs (SPMiOs). These instances are explained as follows:
· AMiO refers to a software module responsible for managing the installation, configu-

ration, deployment, and monitoring of applications within a smart space computing
environment. It plays a essential role in ensuring that applications run efficiently and
reliably.

39SMART SPACE CONCEPTS AND ARCHITECTURES

2

· RMiO is responsible for allocating resources within a smart space computing environ-
ment. It ensures that resources such as CPU, memory, storage, and network bandwidth
are efficiently utilized by various applications and processes.

· SPMiO is responsible for ensuring that security and privacy measures are implemented
and maintained within a smart space computing environment. It protects sensitive
information, preventing unauthorized access, and complying with privacy regulations
and policies.

Note: An SBiO is the core software component, i.e., an iO of the architecture, where the
semantics are stored and shared by employing an ontology graph. We apply a specific
reasoning at the SBiO for exchanging semantics or to produce results on queries in a smart
space. Therefore, semantic interoperability is supported by the SBiOs in smart spaces. We
will explain this in detail in Chapter 4.

Smart spaces may employ management to deal with factors that may cause an application
to fail, such as attacks, lack of resources, hardware and software failures, and network
topology changes. As trusted systems [2.12], they must ensure data privacy and enforce
security measures by employing SPMiOs. We develop smart spaces in physical environ-
ments that present opportunities for offenders to trigger security incidents and cause
harm. For example, in 2015 [2.13], offenders were able to access the Ukrainian power
grid network to contaminate various nodes, such as a serial-to-Ethernet converter and
power breakers, with malware. The power outage due to this affected more than 200,000
customers. In [2.14], the authors proposed a meta-model to represent security incidents
in smart spaces, especially in smart buildings. They developed an automated approach
to report incidents across a management team of the smart building. They presented a
security incident that occurred in the smart building. An offender entered the toilet and
then connected to a smart light source (installed in the toilet) using a smartphone. This
gave the offender access to the installation bus, allowing to sniff unencrypted network
traffic and collect application data (e.g., data exchanged between a Workstation and an
HVAC). The offender then sent a targeted malware (e.g., exploiting the vulnerabilities
present in HVACs) to disable the HVAC, subsequently causing the servers to heat up. A
model with an automated approach to reporting such incidents is developed in [2.14]. The
mechanisms for security and privacy (as treated by SPMiO) are beyond the scope of this
thesis work, but we discuss SPMiOs as an option with the proposed architectural designs
in the next Section 2.3. The RMiOs monitor the available resources and allocate them to
iOs as necessary. They re-orchestrate iOs when certain iOs fail, change their behavior, or
leave the smart space. In this way, failures are handled at the iO level before they cause
application failure. “Failure” also includes poor application behavior or, equivalently,
failure to adhere to specifications. In this thesis, we focus on MiOs to establish the con-

40 CHAPTER 2

nection between smart spaces. The functionalities and operations of MiOs are discussed
in detail in Chapter 4.

2.3 Smart Space Architectural Designs

The architectural design of a smart space entails the physical components (i.e., smart
nodes), the connections between them, the deployment of iOs and the corresponding
allocation of functionality to a smart node. We discriminate among three types of smart
space architectural designs concerning the physical deployment of iOs on smart nodes,
i.e., centralized, decentralized, and distributed smart spaces. Table 2.2 gives a summary of
the smart node types used in smart space architectural designs. We added a communica-
tion component to each smart node that describes its networking capability based on its
capacity for communication. For example, the communication component of a smart node
of type HSN is capable of running complex protocols, therefore, able to establish standard
network protocols (e.g. the full IP stack). On the other hand, the communication protocol
of a smart node of LSN type is not capable of running complex protocols but can run some
standards for LSNs such as Bluetooth [2.15] and Zigbee [2.16]. Therefore, a node of the
LSN type always depends on a gateway smart node (GSN) for its communication with
HSNs in a smart space, as well as for creating and interpreting semantics that describe
a context. Thus, a GSN implements the communication standards of all networks that it
bridges together and it is responsible for context interpretation for LSNs [2.17] using a
gateway iO (GWiO). A GWiO is a specific type of iO on a GSN that translates contexts into
semantics and vice versa between an LSN and a GSN. In the following three types of smart
space architecture designs, we establish the network using Transport Control Protocol
(TCP) over IP and Smart Space Access Protocol (SSAP) (a solution provided by the SOFIA
project) is used as message transmission protocol for all HSNs. In the case of LSNs, the
communication technology must be suitable for low-resource smart nodes, e.g., consider
Zigbee and Bluetooth standards. It is the responsibility of the gateway node to establish
communication between HSNs and LSNs, by means of translating SSAP messages to mes-
sages that are suitable for LSNs and back. Note that we will discuss the SSAP protocol in
more detail in Section 4.2.2.
In a centralized smart space, most iOs do little or no computation (perhaps some pre-
processing or post-processing), and they merely realize the tasks of input, output, sens-
ing, and actuation. Most of the computation is performed at a central iO (CTiO), which is
deployed on a special high capacity node referred to as central smart node (CSN) from
here on. In practice, the SBiO is also placed on the same CSN as shown in Fig. 2.5. A CTiO
must be able to interpret the contexts of other iOs that depend on it and convert them
into the semantics of the smart space, which are then stored in the SBiO. Adequate ap-
plication behavior is then imposed by the CTiO. In other words, a CTiO corresponds to an

41SMART SPACE CONCEPTS AND ARCHITECTURES

2

application in a centralized smart space and it is where the corresponding application logic
lives. A smart node can host one or more CTiOs and each CTiO realizes the corresponding
application behavior by communicating with other smart nodes.

Definition (Centralized smart space): A centralized smart space refers to a smart space
where a single node, has control and authority over all resources, decisions, and function-
alities within the smart space. This entity is responsible for making decisions, processing
information, and managing the overall operation of the smart space.

The iOs at PSNs do not perform pre-processing. Instead, they are connected to a CTiO at
the CSN over a trusted proxy (PXSN), where pre-processing refers to the actions or opera-
tions carried out by a proxy node before data is transmitted to other nodes, respectively.
For example, a message needs to be translated by the PXSN for it to be understandable to
the PSNs. In practice, the tasks of the proxy can be moved to the CSN. Therefore, the CSN
and the associated CTiO are involved in almost all communications and computations,
which creates a performance bottleneck in the architecture.

The dependency on the CTiO is a concern, as deploying an iO at the CSN requires either
reservation of the needed resources and admission control or compatibility of the iO with
a dynamic (best effort) resource management regime. In the latter case adequacy depends
on the availability of resources and may be jeopardized with the increasing number of iOs
that are deployed. In other words, resource management becomes easier as the entire
set of resources are allocated at the CSN for an application in a network. This means that
it is easy to manage the resources in case the number of iOs increases in a smart space.

Table 2.2. Types of smart nodes.
Item Description

LSN Low-capacity smart node: a low-capacity node in terms of resources and computation, such as a sensor.

HSN High-capacity smart node: a high-capacity node in terms of resources and computation, such as a smart
phone.

PSN Passive smart node: a resource-poor passive node, such as an RFID tag which may require an external
power source.

CSN Central smart node: a smart node running all iOs of a single smart space application.

PXSN Proxy smart node: a node that performs the simple task of transferring services from one iO to another.

SBSN Semantics broker smart node: a smart node that stores and shares semantics using an SBiO in a smart
spacee.

GSN Gateway smart node: a smart node that translates contexts into semantics and vice versa with the help
of a GWiO. It also provides a capability of communication between LSNs and HSNs, basically a gateway
for LSNs to connect with HSNs.

MSN Manager smart node: a node that does management tasks with the help of one or more iOs (i.e. MiO,
AMiO, RMiO, SPMiO), based on the services’ requirements in a smart space.

42 CHAPTER 2

Figure 2.5. Architectural design (deployment view) of a centralized smart space.

Finally, a centralized smart space provides easier installations and updates of an applica-
tion logic, updating the application logic requires updating it at the CSN instead of at many
smart nodes. On the other hand, if the application logic is placed at the CSN, then the
smart nodes must access the application logic from the central server each time it runs.
As a result, it consumes more bandwidth in a network, and latency can also potentially be
an issue. Delays in processing or transmitting data within the centralized smart space can
lead to slower response times and may affect the overall performance. This can be par-

43SMART SPACE CONCEPTS AND ARCHITECTURES

2

ticularly critical in applications where real-time or near-real-time processing is required.
Therefore, a decentralized smart space represents a prospective substitute.

A decentralized smart space architecture is one in which the networked smart nodes do
most of the computations necessary to realize user applications in a distributed way as
shown in Fig. 2.6.

Definition (Decentralized smart space): A decentralized smart space is a smart space
where multiple nodes work together without a central controlling node. Instead of relying
on a single point of control, decision-making, or resource allocation, a decentralized smart
space distributes these functions across various nodes. However, the decentralized smart
space does not have a single point of control; instead, it follows a hierarchy that pertains
to the distribution of authority and decision-making power. While there may be nodes
with varying levels of authority, the ultimate goal is to avoid a single point of control.
Decisions are made at various levels, but no single node has absolute control over the
entire smart space. Instead, each node in a decentralized smart space possesses a degree
of autonomy and can communicate directly with other nodes.

To realize this, it is important that iOs utilize shared communication standards and have
access to enough computational resources. Here the network scope can vary across smart
space implementations, e.g., nodes that have remote connections over the Internet, or
link local connections within an IP domain, or VPN connections. The SBiO has service
primitives and semantic reasoning to enable information sharing. Service primitives refer
to a set of basic operations or functions provided by a communication service or protocol
to enable communication between different iOs in a decentralized smart space. Semantic
reasoning refers to the process of using formal logic and knowledge about the meaning
of information (semantics) to draw conclusions or make inferences about information
represented in a system. As a result, the functionality in a decentralized smart space (ap-
plication) is much more scattered. The main differences from a centralized smart space
are as follows.
i) Unlike a centralized smart space, in a decentralized smart space the total computa-

tional capacity increases with the number of smart nodes that take part. As a result,
the computation bottleneck that exists in a centralized smart space due to running
applications on a CSN is effectively eliminated. With careful application design, this
may improve the computational performance significantly for smart applications,
especially for those that deal with large cumulative streams of data.

ii) A decentralized smart space eliminates the communication bottleneck that exists in its
centralized counterpart as well. By pushing computations towards locations where the
data are generated, the performance dimensions related to latency (response times,

44 CHAPTER 2

latency jitter) can improve dramatically. This improvement can mainly be attributed to
the resulting reduction in the need for communication.

iii) A disadvantage of the decentralized architecture is the increased overall complexity
of management. Resource management becomes more difficult as the entire set of
resources that are allocated to an application are now decentralized in a network.
Application management becomes much more difficult as well, for example, updating
the application logic now requires coordinating the update across many smart nodes

Figure 2.6. Architectural design of a decentralized smart space.

45SMART SPACE CONCEPTS AND ARCHITECTURES

2

where the application logic lives. Security and privacy are bigger concerns as it is more
difficult to monitor and control access to individual smart nodes.

iv) Placing the application logic on smart nodes means that smart nodes and iOs are
partially independent and thus can make decisions locally and perform computations
accordingly. They do not always depend on a central unit to make application-level
decisions. This may reduce communication regarding the application logic through the
network, which is an advantage for bandwidth efficiency in comparison to a central-
ized smart space.

Services supported by the cloud are becoming increasingly popular and can be utilized
in decentralized smart spaces directly or indirectly. The cloud services are available via a
remote cloud computing server rather than an on-site server. In direct utilization [2.18],
the cloud services must have the same ontology format and semantics as the smart space
itself and each cloud service acts as an iO. Using cloud services will shorten the time
from designing an architecture to its deployment. Because cloud computing provides the
facilities of on-demand services to a shared podium of configurable computing resources
(e.g. server, applications, services, storage, and networks) that can be quickly accessed
with minimum administrative efforts. Furthermore, the smart nodes that communicate
directly with the cloud services must be individually reachable (e.g., IP-to-the-leaves using
6LoWPAN [2.19]). A cloud service architecture can be based on models such as Software
as a Service (SaaS), Data as a Service (DaaS), Platform as a Service (PaaS), and Infrastruc-
ture as a Service (IaaS). In this thesis, we emphasize a semantic approach, where an iO can
be used as indirect utilization of the cloud services. In indirect utilization [2.20], a cloud
gateway between the cloud and smart space runs an iO that provides the semantic inter-
face to cloud services, as shown in Fig. 2.7. For example, an SBSN can further connect to
a cloud gateway for availing cloud services, where the cloud gateway can have a semantic
interface to those services. Suppose, a smart node in a smart space requires services from
a cloud server. Firstly, it needs to make a service request at the SBSN. Consequently, the
SBSN is further connected to the cloud gateway, where the cloud gateway translates the
request (which is translated in semantics) into a specific message that is suitable for the
cloud platform and connects to the cloud server. The cloud server returns the query result
to the cloud gateway and further communicates to the SBSN. As a result, the smart nodes
connected to the SBSN can access the services provided by the cloud server.

46 CHAPTER 2

Figure 2.7. Cloud services for smart spaces.

A distributed smart space consists of smart nodes without a certain hierarchical structure.
Each node contains the software components necessary to realize self-management, and
distributed application logic as shown in Fig. 2.8.

Definition (Distributed smart space): A distributed smart space is a smart space in which
nodes are interconnected and collaborate to achieve a common goal. In a distributed
smart space, multiple autonomous nodes, often geographically dispersed, work together
to perform tasks, share resources, and provide services. These nodes communicate and
coordinate their activities through a network, enabling them to operate as a single, co-
hesive system. In a distributed smart space, unlike in a decentralized smart space, there
may not be a clear hierarchy of authority or control. Instead, nodes often interact on a
more equal basis, with each having a degree of autonomy and making decisions based
on local information. This absence of a strict hierarchy can lead to a more collaborative
and dynamic network, where nodes work together based on their capabilities and the
information available to them.

47SMART SPACE CONCEPTS AND ARCHITECTURES

2

Figure 2.8. Architectural design of a distributed smart space.

This architectural design is strongly dependent on the application’s requirements and is
loosely coupled with iOs. Smart nodes handle the application logic individually by com-
municating and cooperating over a network. The distributed smart space architecture has
the following advantages and disadvantages:
· The smart nodes in the distributed architecture are loosely coupled and do not share

their memory. They communicate messages over a communication network using a
protocol (a middleware) to execute smart applications. The distributed architecture
provides a set of concurrent processes and communication channels between smart

48 CHAPTER 2

nodes. Because of this, we can add an unbounded number of smart nodes based on a
network capacity without any effect on the whole architecture. We can also manage
the failures, for example, the failure of one smart node does not lead to the failure
of the entire distributed smart space. On the other hand, scalability can lead to
performance issues due to limitations in network capacity, such as bandwidth and
range, when accommodating a large number of nodes within a single network. As an
example, message overload can occur if a large number of nodes share information in
a network. For this purpose, we need to evaluate the tradeoff between scalability and
performance for calculating message overhead in distributed smart spaces.

· If the smart nodes in a distributed system are scattered across different geographical
domains with various technologies, it complicates the establishment and management
of a coherent security policy. It causes a direct risk of exposure of confidential infor-
mation in the uncontrolled, unprotected use of communication networks between
smart nodes for information exchange. Therefore, all smart nodes and their network
connections are required to be secured in the large scale of distributed smart spaces.
Sometimes the exposure of information is required by an administrator of the system,
for example, to preserve the administration management and usage history of the
system for maintenance of distributed smart spaces. Finally, if a secure distributed
smart space is required, encryption and access controls are essential.

Overall, a suitable architectural design must be chosen based on the target applications,
their goals, and the corresponding performance metrics. We discuss an example for se-
lecting an architectural design in Section 3.1 of Chapter 3.

2.4 Comparative Analysis of Smart Spaces

Many architectural designs for smart spaces have been proposed by researchers. In this
section, we compare a selection of them, specifically those that provide (at least nearly)
complete solutions with respect to the smart space concepts that we have introduced in
Section 2.2 and Section 2.3. The analysis takes as the basis the information on the deploy-
ment of iOs (or rather counterparts of iO types that we define) on smart nodes, and their
contributions to smart space architectural designs as given in Table 2.3. We have drawn
three major observations.

i.) Observation on architectural designs: Most of the smart space architectures in the
literature are decentralized by design, while fully centralized or fully distributed architec-
tures are very rare. We will explain a few examples in the following.

49SMART SPACE CONCEPTS AND ARCHITECTURES

2

An example of distributed smart space architecture is called PERSIST [2.23], which pro-
vides the overall design of a personal smart space (PSS). PSSs are smart spaces based on
personal area networks that follow the user as she moves. PSSs consist of various smart
nodes such as personal computers, mobile devices, wearable sensors, or other wearable
devices. They ensure a minimum level of basic pervasiveness and context-awareness fa-
cilities anytime and anywhere. To provide connectivity to PSS owners, PSSs can operate in
both infrastructure and ad-hoc network modes, allowing wide integration of a multitude
of smart nodes. PSSs can interoperate with other smart spaces for exchanging informa-
tion. They allow smart nodes of different smart spaces to adapt to new environments
automatically in satisfying users’ needs. Software modules in a PSS can be mapped to
our iO concepts introduced in this thesis work, where all contexts are managed at the
AMiO that stores and retrieves context information in a distributed manner. The facilities
it provides to integrate multiple applications, however, are limited.

A centralized smart space design is given in [2.22]. In this design all contexts from the
smart space and its physical environment are collected at a central unit. The received
contexts are processed by a central reasoning module to provide outputs to the iOs, which
also reside in the same central unit. The main focus of [2.22] is on the use of an ontology
graph to enable a reasoning component for various scenarios. For this purpose, a user can
select the services by querying the central unit and can make subscriptions for service
updates. Furthermore, there is no opportunity to integrate LSNs into the design, i.e., no
architectural description of a gateway solution incorporated into the design.

Most of the decentralized architectural designs from [2.24] to [2.37] in Table 2.3 employ
AMiOs and SBiOs, while RMiOs and SPMiOs are mostly not considered in these designs. In
the following, we elaborate on two examples, SPITFIRE [2.27] and CISE [2.21]. There are
two issues that should be noted in the decentralized architecture solution of SPITFIRE.
Firstly, it involves a semi-automatic process of creating semantic sensor descriptions for
LSNs. The semi-automatic process is developed for annotating newly deployed sensors by
considering the hypothesis that sensors with similar semantic descriptions would produce
similar output. For example, two light sensors should produce similar time series if they
are deployed in the same room. Consider one light sensor (first sensor) is already an-
notated with its room number, and later, another light sensor (second sensor) is deployed
in the same room. If the illumination output of the second sensor is strongly correlated
with the first sensor over some time, then it is concluded that both sensors are located
in the same room. And the semantic descriptions of the first sensor are copied to the
second sensor. If both sensors do not find any strong correlation, then the user must
provide the semantic descriptions manually to the second sensor. Note that our proposed
architectural design for decentralized smart spaces allows the semantics to be fetched
directly and automatically if it is available through the GWiO, without requiring manual or

50 CHAPTER 2

Ta
bl

e
2.

3.
 C

om
pa

ris
on

 o
f a

rc
hi

te
ct

ur
al

 d
es

ig
ns

 o
f s

m
ar

t s
pa

ce
s b

as
ed

 o
n

iO
s d

ep
lo

ym
en

t o
n

sm
ar

t n
od

es
.

Ar
tic

le
Ye

ar
Ar

ch
ite

ct
ur

al
 S

ty
le

Pi
O

/C
iO

GW
iO

SB
iO

AM

iO
RM

iO

SP
M

iO

CI
SE

 (C
on

te
xt

-B
as

ed

In
fr

as
tr

uc
tu

re
 fo

r
Sm

ar
t E

nv
iro

nm
en

ts
)

[2
.2

1]

19
99

De
ce

nt
ra

liz
ed

Ye
s

Ye
s

A
co

nt
ex

t-b
as

ed
 lo

ca
l s

er
ve

r
is

us
ed

 a
nd

 re
as

on
in

g
is

pe
rf

or
m

ed
 b

as
ed

 o
n

th
e

sp
ec

ifi
ed

 in
fe

re
nc

e
ru

le
s.

Th
e

fo
cu

s i
s L

SN

m
an

ag
em

en
t a

t t
he

ap

pl
ic

ati
on

-le
ve

l (
iO

s)
.

--

--

Go
h

et
 a

l.
[2

.2
2]

20
07

Ce
nt

ra
liz

ed
Ye

s
N

o
Re

as
on

in
g

is
pe

rf
or

m
ed

 to

m
ax

im
ize

 th
e

us
e

of
 c

on
te

xt
s

an
d

m
in

im
ize

 th
ei

r c
on

fli
ct

s.

Co
nt

ex
t i

s r
ec

ei
ve

d
fr

om
 iO

s
an

d
th

e
ap

pl
ic

ati
on

 c
on

te
xt

s
ar

e
m

an
ag

ed
 a

t a
 c

en
tr

al
ize

d
m

an
ag

er
.

--

--

PE
RS

IS
T

(P
ER

so
na

l
Se

lf-
Im

pr
ov

in
g

Sm
ar

T
sp

ac
es

)
[2

.2
3]

20
09

Di
st

rib
ut

ed

Ye
s

Ye
s

Do
m

ai
n-

sp
ec

ifi
c

in
fe

re
nc

e
ru

le
s a

nd
 p

re
di

cti
on

s a
re

m

ad
e

to
 in

te
ra

ct
 w

ith
 P

SS
s.

Ap
pl

ic
ati

on
s a

re
 d

ist
rib

ut
ed

an

d
m

an
ag

ed
 in

 se
ve

ra
l P

SS
s

in
di

vi
du

al
ly.

M
an

ag
es

 iO

re
so

ur
ce

s
fo

r s
er

vi
ce

s
re

sid
in

g
in

 e
ac

h
PS

S.

Ap
pl

ie
s p

riv
ac

y
co

nt
ro

l m
ec

ha
ni

sm
s

at
 e

ac
h

PS
S

(a
s

in
 so

ci
al

 n
et

w
or

k
co

m
m

un
iti

es
).

GU
PS

S
(A

 G
at

ew
ay

-
Ba

se
d

U
bi

qu
ito

us

Pl
atf

or
m

 fo
r S

m
ar

t
sp

ac
es

) [
2.

24
]

20
09

De
ce

nt
ra

liz
ed

Ye

s
Ye

s
Re

as
on

in
g

is
pe

rf
or

m
ed

 o
n

a
st

an
da

rd
 w

eb
 se

rv
er

.
Ap

pl
ic

ati
on

 c
on

te
xt

s a
re

m

an
ag

ed
 e

ith
er

 o
n

a
GW

iO

or
 a

n
iO

 o
f t

he
 a

pp
lic

ati
on

.

--

--

(v
an

 d
er

) V
lis

t e
t a

l.
[2

.2
5]

20

09
De

ce
nt

ra
liz

ed

Ye
s

N
o

Kn
ow

le
dg

e
re

pr
es

en
ta

tio
ns

in

to
 se

m
an

tic
s a

re
 p

ro
du

ce
d

an
d

st
or

ed
 in

 a
n

on
to

lo
gy

la

ng
ua

ge
 a

t a
n

SB
iO

, w
he

re

se
m

an
tic

 re
as

on
in

g
is

pe
rf

or
m

ed
.

Co
nt

ex
ts

 a
re

 m
an

ag
ed

 a
t

iO
s fi

rs
t a

nd
 a

re
 fu

rt
he

r
in

te
rp

re
te

d
fo

r a
pp

lic
ati

on

lo
gi

c
at

 a
n

SB
iO

.

--

--

So
ng

 e
t a

l.
[2

.2
6]

20

10
De

ce
nt

ra
liz

ed

Ye
s

N
o

Kn
ow

le
dg

e
re

pr
es

en
ta

tio
ns

in

to
 se

m
an

tic
s a

re
 p

ro
du

ce
d

an
d

st
or

ed
 in

 a
n

on
to

lo
gy

la

ng
ua

ge
 a

t a
n

SB
iO

, w
he

re

se
m

an
tic

 re
as

on
in

g
is

pe
rf

or
m

ed
.

Ap
pl

ic
ati

on
 c

on
te

xt
s a

re

m
an

ag
ed

 a
t i

O
s a

nd
 fu

rt
he

r
in

te
rp

re
te

d
at

 a
 w

eb
 se

rv
er

.

Se
rv

ic
e

di
sc

ov
er

y
pr

ot
oc

ol
s a

re

us
ed

 to
 m

an
ag

e
re

so
ur

ce
s a

nd

se
rv

ic
es

.

--

51SMART SPACE CONCEPTS AND ARCHITECTURES

2

Ta
bl

e
2.

3.
 C

on
tin

ue
d

Ar
tic

le
Ye

ar
Ar

ch
ite

ct
ur

al
 S

ty
le

Pi
O

/C
iO

GW
iO

SB
iO

AM

iO
RM

iO

SP
M

iO

SP
IT

FI
RE

 [2
.2

7]

20
11

De
ce

nt
ra

liz
ed

Ye

s
Ye

s
Kn

ow
le

dg
e

re
pr

es
en

ta
tio

ns

in
to

 se
m

an
tic

s a
re

 c
ol

le
ct

ed

an
d

st
or

ed
 a

t I
oT

-b
as

ed

se
rv

er
, w

he
re

 se
m

an
tic

re

as
on

in
g

is
pe

rf
or

m
ed

.

A
qu

er
y-

ba
se

d
m

an
ag

em
en

t
sy

st
em

 is
 in

 a
n

SB
iO

, w
hi

ch

m
an

ag
es

 se
m

i-a
ut

om
ati

c
cr

ea
tio

n
of

 se
m

an
tic

s a
nd

pr

ov
id

es
 m

an
ua

l i
nt

eg
ra

tio
n

of
 se

ns
or

 se
m

an
tic

s.

--

--

IN
ST

AN
S

[2
.2

8]

20
12

De

ce
nt

ra
liz

ed

Ye
s

N
o

Kn
ow

le
dg

e
re

pr
es

en
ta

tio
ns

in

to
 se

m
an

tic
s a

re
 p

ro
du

ce
d

an
d

st
or

ed
 in

 a
n

on
to

lo
gy

la

ng
ua

ge
 a

t a
n

SB
iO

, w
he

re

se
m

an
tic

 re
as

on
in

g
is

pe
rf

or
m

ed
.

Co
nt

ex
ts

 a
re

 m
an

ag
ed

 a
t i

O
s

an
d

fu
rt

he
r i

nt
er

pr
et

ed
 a

t
a

w
eb

 se
rv

er
; e

ve
nt

-b
as

ed

pr
oc

es
sin

g
to

 m
an

ag
e

ev
en

ts

is
pr

op
os

ed
.

--

--

M
or

an
di

 e
t a

l.
[2

.2
9]

20
12

De
ce

nt
ra

liz
ed

Ye

s
N

o
Kn

ow
le

dg
e

re
pr

es
en

ta
tio

ns

in
to

 se
m

an
tic

s a
re

 p
ro

du
ce

d
an

d
st

or
ed

 in
 a

n
on

to
lo

gy

la
ng

ua
ge

 a
t a

n
SB

iO
, w

he
re

se

m
an

tic
 re

as
on

in
g

is
pe

rf
or

m
ed

.

Ap
pl

ic
ati

on
 c

on
te

xt
s a

re

m
an

ag
ed

 a
t i

O
s a

nd
 fu

rt
he

r
in

te
rp

re
te

d
at

 a
 w

eb
 se

rv
er

.
Ad

di
tio

na
lly

, a
 su

bs
cr

ip
tio

n
m

ec
ha

ni
sm

 is
 a

dd
ed

 to

im
pr

ov
e

qu
er

y
re

su
lts

.

--

--

N
at

al
ia

 e
t a

l.
[2

.3
0]

20

13
De

ce
nt

ra
liz

ed

Ye
s

N
o

Kn
ow

le
dg

e
re

pr
es

en
ta

tio
ns

in

to
 se

m
an

tic
s a

re
 p

ro
du

ce
d

an
d

st
or

ed
 in

 a
n

on
to

lo
gy

la

ng
ua

ge
 a

t a
n

SB
iO

, w
he

re

se
m

an
tic

 re
as

on
in

g
is

pe
rf

or
m

ed
. A

n
ad

di
tio

na
l

co
m

po
ne

nt
 in

te
gr

at
es

 fu
zz

y
re

as
on

in
g

an
d

le
ar

ni
ng

al

go
rit

hm
s.

Ap
pl

ic
ati

on
 c

on
te

xt
s a

re

m
an

ag
ed

 a
t i

O
s a

nd
 fu

rt
he

r
in

te
rp

re
te

d
at

 a
 w

eb
 se

rv
er

.

--

--

52 CHAPTER 2

Ta
bl

e
2.

3.
 C

on
tin

ue
d

Ar
tic

le
Ye

ar
Ar

ch
ite

ct
ur

al
 S

ty
le

Pi
O

/C
iO

GW
iO

SB
iO

AM

iO
RM

iO

SP
M

iO

Ei
la

 e
t a

l.
[2

.3
1]

20
14

De
ce

nt
ra

liz
ed

Ye

s
N

o
Kn

ow
le

dg
e

re
pr

es
en

ta
tio

ns

in
to

 se
m

an
tic

s a
re

 p
ro

du
ce

d
an

d
st

or
ed

 in
 a

n
on

to
lo

gy

la
ng

ua
ge

 a
t a

n
SB

iO
, w

he
re

se

m
an

tic
 re

as
on

in
g

is
pe

rf
or

m
ed

.

Ap
pl

ic
ati

on
 c

on
te

xt
s a

re

m
an

ag
ed

 a
t i

O
s a

nd
 fu

rt
he

r
in

te
rp

re
te

d
at

 a
 w

eb
 se

rv
er

.
A

fr
am

ew
or

k
fo

r m
an

ag
in

g
ru

nti
m

e
qu

al
ity

 a
tt

rib
ut

es

vi
a

ad
ap

ta
tio

n
is

pr
op

os
ed

.

--

O
nt

ol
og

y
fo

r
in

fo
rm

ati
on

 se
cu

rit
y

is
us

ed
 fo

r s
ec

ur
ity

.

Ju
ss

i e
t a

l.
[2

.3
2]

20
14

De
ce

nt
ra

liz
ed

Ye
s

N
o

Io
T

ba
se

d
pr

od
uc

ts
 a

re
 u

se
d.

Kn

ow
le

dg
e

re
pr

es
en

ta
tio

ns

in
to

 se
m

an
tic

s a
re

 p
ro

du
ce

d
an

d
st

or
ed

 in
 a

n
on

to
lo

gy

la
ng

ua
ge

 a
t a

n
SB

iO
, w

he
re

se

m
an

tic
 re

as
on

in
g

is
pe

rf
or

m
ed

.

Ap
pl

ic
ati

on
 c

on
te

xt
s a

re

m
an

ag
ed

 a
t i

O
s a

nd
 fu

rt
he

r
in

te
rp

re
te

d
at

 a
 w

eb
 se

rv
er

.

--

--

Ze
ng

 e
t a

l.
[2

.3
3]

20

15
De

ce
nt

ra
liz

ed

Ye
s

N
o

A
pl

atf
or

m
 li

br
ar

y
se

rv
er

 is

in
tr

od
uc

ed
 fo

r d
at

a
flo

w
 in

 a

sm
ar

t s
pa

ce
.

--

--

-

Se
rg

ey
 e

t a
l.

[2
.3

4-
2.

35
]

20
17

De
ce

nt
ra

liz
ed

Ye

s
N

o
Kn

ow
le

dg
e

re
pr

es
en

ta
tio

ns

in
to

 se
m

an
tic

s a
re

 p
ro

du
ce

d
an

d
st

or
ed

 in
 a

n
on

to
lo

gy

la
ng

ua
ge

 a
t a

n
SB

iO
, w

he
re

se

m
an

tic
 re

as
on

in
g

is
pe

rf
or

m
ed

.

Ap
pl

ic
ati

on
 c

on
te

xt
s a

re

m
an

ag
ed

 a
t i

O
s a

nd
 fu

rt
he

r
in

te
rp

re
te

d
at

 a
 w

eb
 se

rv
er

.

--

--

An
dr

ey
 [2

.3
6]

20
17

De
ce

nt
ra

liz
ed

Ye

s
N

o
Kn

ow
le

dg
e

re
pr

es
en

ta
tio

ns

in
to

 se
m

an
tic

s a
re

 p
ro

du
ce

d
an

d
st

or
ed

 in
 a

n
on

to
lo

gy

la
ng

ua
ge

 a
t a

n
SB

iO
, w

he
re

se

m
an

tic
 re

as
on

in
g

is
pe

rf
or

m
ed

.

Ap
pl

ic
ati

on
 c

on
te

xt
s a

re

m
an

ag
ed

 a
t i

O
s a

nd
 fu

rt
he

r
in

te
rp

re
te

d
at

 a
 w

eb
 se

rv
er

.
Ex

tr
a

fu
nc

tio
na

lit
y

is
ad

de
d

to
 m

an
ag

e
su

bs
cr

ip
tio

ns

at
 ru

nti
m

e
fo

r s
ca

la
bi

lit
y

im
pr

ov
em

en
t.

--

--

53SMART SPACE CONCEPTS AND ARCHITECTURES

2

Ta
bl

e
2.

3.
 C

on
tin

ue
d

Ar
tic

le
Ye

ar
Ar

ch
ite

ct
ur

al
 S

ty
le

Pi
O

/C
iO

GW
iO

SB
iO

AM

iO
RM

iO

SP
M

iO

Sh
ab

ir
[2

.3
7]

20

18
De

ce
nt

ra
liz

ed

Ye
s

N
o

A
cl

ou
d

se
rv

er
 is

 e
m

pl
oy

ed

fo
r s

to
rin

g
se

m
an

tic
s a

nd
 fo

r
se

m
an

tic
 re

as
on

in
g.

A
vi

rt
ua

l d
ev

ic
e

m
an

ag
er

is

in
tr

od
uc

ed
 to

 m
an

ag
e

se
rv

ic
es

 in
 c

lo
ud

-b
as

ed
 w

eb

ap
pl

ic
ati

on
s

M
an

ag
es

re

so
ur

ce
s a

nd

se
rv

ic
es

 in

cl
ou

d.

--

W
ill

ia
m

 e
t a

l.
[2

.4
5]

20
19

Ce
nt

ra
liz

ed

Ye
s

N
o

Da
ta

 a
cq

ui
siti

on
 th

ro
ug

h
Io

T
an

d
st

or
ed

 a
t t

he
 c

en
tr

al

en
tit

y
an

d
de

riv
ed

 se
m

an
tic

s
by

 th
e

bi
g

da
ta

 a
na

ly
sis

Ap
pl

ic
ati

on
 c

on
te

xt
s a

re

m
an

ag
ed

 a
t i

O
s a

nd
 fu

rt
he

r
in

te
rp

re
te

d
at

 c
en

tr
al

 e
nti

ty
.

--

--

Ze
yn

ep
 e

t a
l.

[2
.4

6]
20

20
Ce

nt
ra

liz
ed

Ye

s
N

o
A

ce
nt

ra
l e

nti
ty

, w
he

re

al
l n

od
es

 a
re

 p
lu

g
in

 a
nd

re

ce
iv

es
 in

fo
rm

ati
on

 fo
r

fu
rt

he
r a

na
ly

sis
 to

 c
on

cl
ud

e
se

m
an

tic
s.

Ap
pl

ic
ati

on
 c

on
te

xt
s a

re

m
an

ag
ed

 a
t i

O
s a

nd
 fu

rt
he

r
in

te
rp

re
te

d
at

 c
en

tr
al

 e
nti

ty
.

--

--

Te
kl

er
 e

t a
l.

[2
.4

7]
20

22
Ce

nt
ra

liz
ed

Ye

s
N

o
In

fo
rm

ati
on

 re
ce

iv
ed

 a
t t

he

ce
nt

ra
l e

nti
ty

 a
nd

 se
m

an
tic

s
ar

e
de

riv
ed

 u
sin

g
a

de
ep

le

ar
ni

ng
 a

lg
or

ith
m

Ap
pl

ic
ati

on
 c

on
te

xt
s a

re

m
an

ag
ed

 a
t i

O
s

--

--

Ba
dr

 e
t a

l.
[2

.4
8]

20
23

De
ce

nt
ra

liz
ed

Ye

s
N

o
Io

T
ba

se
d

pl
atf

or
m

 fo
r s

ha
rin

g
in

fo
rm

ati
on

Ap
pl

ic
ati

on
 c

on
te

xt
s a

re

m
an

ag
ed

 a
t i

O
s

--

Io
T

St
an

da
rd

pr

ot
oc

ol
s f

or

se
cu

rit
y

an
d

ac
ce

ss

co
nt

ro
l

54 CHAPTER 2

semi-automatic creation of semantics. This means that the sensors will update contexts
to the GWiO and the GWiO is self-managed to convert contexts into semantics. Secondly,
SPITFIRE directly connects sensors to the semantic web, and the sensor data are updated
frequently, which causes heavy network traffic and leads to performance issues. In our
decentralized architectural design, this is easily solvable by locally processing the sensor
data and sharing only the high-level semantics in the smart space over the GWiO.

A similar solution is provided in the CISE architecture, which focuses on the requirements
for dealing with smart space contexts. CISE provides an architectural solution with the
following components: contexts, a context server (which is responsible for context ag-
gregation), a context interpreter (which is responsible for context interpretation), and a
communication module for information sharing. CISE hides the context details of LSNs
(such as sensors), and can be replaced or added without affecting the smart application
if the new sensor is capable of performing the same services provided by the removed
sensor. It also facilitates the addition of contexts to existing applications. Although this
solution provides many facilities for building smart spaces, it does not support high-level
interoperability (i.e. semantic interoperability) for generic infrastructures suitable for any
application in smart spaces. The information shared only includes the basic descriptions
of nodes. A common ontology language based on a semantic web is required for large-
scale applications.

ii.) Observation on the deployment of smart nodes: The smart nodes considered in vari-
ous smart space designs are summarized in Table 2.4, which shows that HSNs are used
dominantly in most smart space designs. Improved gateway approaches are necessary to
accommodate large numbers of LSNs in smart spaces, which is one of the main issues to
be considered in this thesis (initial approaches available in [2.30] and [2.31]).
iii.) Observation on the deployment of iOs: It can also be seen from the comparison of
various smart space architectures in the literature that RMiO and SPMiO are rarely ever
considered. This is a huge problem for mainstream adoption of smart spaces, considering
ethical aspects and gradually introduced laws enforcing data privacy in many countries.
Dependability of smart space applications is also a main concern for user experience, e.g.,
changing an electric circuit (manual) light switch that is almost 100 percent reliable with
a smart switch that works 99 percent of the time is not acceptable. For this, it is essential
to integrate resource and service management mechanisms into smart spaces, which is
also an area for improvement.

In addition to Table 2.3, some researchers such as Zeng et al.[2.38] explained the smart
space concept based on a flow model. The flow model is a coarse-grained computational
model called HyperspaceFlow, where a smart space is differently modeled than our ap-
proach using physical flow, data flow, and human flow components. The physical flow

55SMART SPACE CONCEPTS AND ARCHITECTURES

2

specifies the relations between the cyberspace and the physical space. The data flow
involves computations and communication related to the cyberspace. The human flow
is utilized to model the interaction between the cyberspace and the human space. In
addition, a system-level smart space design method using the HyperspaceFlow model
was proposed. The feasibility and the effectiveness of this method were examined in a
healthcare case study, which indicated that the specifications of a smart space can be
further transformed into the underlying architecture by employing the HyperspaceFlow
model. This proposed designed approach offers relatively user preference of a design
solution. However, it allows modeling of a smart space only for a single user. In addition,
heterogeneous wireless networks are not considered, which would enable tailoring for
more complicated communication scenarios when designing smart spaces.

Some researchers have tried to explain smart space architectures using hierarchical
models as in MavHome [2.39]. The smart space architecture in MavHome is realized by
providing a complete solution to a smart home. The architecture proposed MavHome
agents that are similar to our iOs. These agents are the software components deployed on

Table 2.4. Smart nodes considered in various smart space designs.
Article LSN HSN SBSN GSN MSN

CISE [2.21] - + + - -

Goh et al. [2.22] - + - - -

PERSIST [2.23] + + - - -

GUPSS [2.24] + + + + -

(van der) Vlist et al. [2.25] - + + - -

Song et al. [2.26] + + + - +

SPITFIRE [2.27] + + + - +

INSTANS [2.28] - + + - -

Morandi et al. [2.29] - + + - -

Natalia et al. [2.30] - + + - +

Eila et al. [2.31] - + + - +

Jussi et al. [2.32] + + + + -

Zeng et al. [2.33] + + + - +

Sergey et al. [2.34-2.35] + + + + -

Andrey [2.36] + + + - -

Shabir [2.37] + + + - +

William et al. [2.45] - + + - -

Zeynep et al. [2.46] - + + - -

Tekler et al. [2.47] - + + - -

Badr et al. [2.48] - + + - +

*Considered (+) and Not Considered (-)

56 CHAPTER 2

nodes and placed in four cooperating layers: a decision layer, an information layer, a com-
munication layer and a physical layer. The decision layer selects the actions for an agent
(an iO) to execute based on the information supplied by the other layers. The information
layer gathers, stores, and generates knowledge useful for decision making. The commu-
nication layer facilitates the communication of information, requests, and queries among
agents. The physical layer corresponds to the agents within the smart home. These layers
provide the features necessary for self-managing smart home automation. The functional
process of these layers is a bottom-up approach. For example, a sensor monitors the
environment (e.g. light information) in the physical layer and transmits the information to
another agent through the communication layer. Further, the information layer updates
this information to maintain records and the predictions or decisions by the decision layer.
This approach is reversed, i.e., Top-down when the actions are executed. The decision
layer selects an action (turn on the lights) and relays the action to the information layer.
After updating the information layer, the communication layer routes the action to an
appropriate agent at the physical layer. Moreover, MavHome was implemented using a
common object request broker architecture [2.40] interface between software compo-
nents and powerline technologies such as X10 [2.341] and Lon Works [2.42] as electric
devices. Although this architecture enables the integration of several technologies in a
smart home, it fails to provide a solution for LSNs, efficient interoperability and adequate
responses. It addresses only context-based interoperability and avoids any management
of resources and services.

Finally, we discuss a similar project, i.e., ISHEWS [2.43] that explains application develop-
ment in a smart space based on the concepts of interoperability. In ISHEWS, a smart home
environment is introduced with five main sub-systems: surveillance and access control,
home automation systems, digital entertainment systems, assistive computing systems,
and an energy management system. These sub-systems interoperate in three levels: basic
connectivity interoperability, network interoperability, and syntactic interoperability.
The basic connectivity interoperability provides a common standard for data exchange
between two sub-systems and establishes communication links. It represents the physical
and data-link layers of the standard Open Systems Interconnection (OSI) model. Ethernet,
the IEEE 802.11 family of Wi-Fi protocols, and Point-to-Point Protocol (PPP) are the com-
mon standards for basic connectivity interoperability. Network interoperability enables
message exchange between systems across a variety of networks in a smart home envi-
ronment. It is represented by the network, transport, session, and application layers of
the OSI model. TCP, UDP, File Transfer Protocol (FTP), Address Resolution Protocol (ARP),
and IP/IPv6 are the common standards for network interoperability. Syntactic interoper-
ability refers to the agreement of rules that manage the format and structure for encoding
information exchange among the sub-systems. Simple Object Access Protocol (SOAP)
encoding, Representational State Transfer (REST) [2.44] encoding, and message exchange

57SMART SPACE CONCEPTS AND ARCHITECTURES

2

patterns such as asynchronous publish/subscribe patterns are the common standards
for syntactic interoperability. These interoperability solutions increase the complexity
of integrating all three levels in a single smart space. Our proposed architectural design
alternatives avoid this complexity and provide a solution for integration at the semantic
level. Therefore, we can conclude that there is a demand for a semantic interoperability
architecture for the following main reasons.
· Data Integration: In complex smart spaces, data often originates from various sources,

including different databases, software applications, and devices. Semantic interoper-
ability allows these diverse data sources to communicate and integrate seamlessly,
enabling a more holistic view of information.

· Meaningful Data Exchange: Semantic interoperability ensures that data exchanged
within a smart space is not only syntactically compatible (i.e., the format matches) but
also semantically compatible (i.e., the meaning is understood). This ensures that data
is interpreted correctly and consistently.

· Cross-Platform Compatibility: In a world with numerous hardware and software
platforms, semantic interoperability allows information to be shared and understood
across different systems and technologies. This is essential for data sharing and col-
laboration.

We will introduce a semantic interoperability architecture in Chapter 3 and discuss it in
detail in Chapter 4.

2.5 Conclusions

We formally defined fundamental smart space properties, the components that make up
a smart space, and the smart space concept. The roles of information objects and smart
nodes are discerned in the development of smart space designs. Moreover, the smart
space architectural designs presented in this chapter generalize over a broad range of
smart space implementations in the literature. Based on the comparison with the state-
of-the-art, we conclude that most of the smart space designs are decentralized and used
mostly high capacity smart nodes. This analysis concludes that there is a demand for a
semantic interoperability architecture, which can also integrate low capacity smart nodes
efficiently for sharing information in smart spaces.

58

59SMART SPACE PROPERTIES AND SEMANTIC INTEROPERABILITY ARCHITECTURE

3

Chapter 3
Smart Space Properties and
Semantic Interoperability Architecture

When studying smart space architectural designs for smart applications, starting with
a generic template smart space architecture with semantic interoperability support can
significantly reduce the design effort thanks to its reusability. Such architecture should
facilitate the fundamental properties of a smart space, which we first need to define.
We can quickly build candidate architectures as variants of the semantic interoperability
architecture, tuned towards certain performance metrics relevant for the application at
hand. To accomplish this, we require a measurable objective and a systematic way of
choosing amongst candidate smart space architectures based on this objective. In this
chapter, we achieve this by formulating a multi-objective optimization problem for se-
lecting the best smart space architecture. Additionally, we present an inventory of the
fundamental properties of a smart space. Finally, we propose a semantic interoperability
architectural design for smart spaces.

3.1 Example Selection of Smart Space Architecture

The selection of the architectural design is dependent on the metrics considered and
evaluated with respect to the smart space applications under consideration. For many
smart applications timing is very important due to their interactive nature. For example,
for an intelligent lighting application that controls lights based on users’ presence, it is an
annoyance factor when a user walks into a dark room and the lights are not turned on
in her presence or their actuation is delayed, i.e. the quality of experience (measurable,
e.g., by checking adherence to a maximum response time constraint) drops significantly.
In general, the selection of the best smart space architecture for a set of applications
can be formulated as a multi-objective optimization problem (MOP) where each objective
represents a performance metric to be satisfied. The smart space architecture that gives
the best optimization trade-off, i.e., an average over all possible contexts (or a weighted
average if contexts vary in frequency or importance), is the winner and should be selected
for the application(s) under consideration. For instance, an application’s average perfor-
mance in some objective can be improved by adapting iOs’ behaviors appropriately to

60 CHAPTER 3

changing contexts of the application. Candidate architectures will vary in how well they
facilitate such adaptation while preserving performance in other objectives.

Consider the selection of the best smart space architecture for a ChairLight application in
an office room with the infrastructure shown in Fig. 3.1. The users (η) with identities 1, …,
η have regular team meetings in this room and a given meeting may be chaired by any one
of the η users. The application goal is to provide the preferred light settings of the user
who is chairing a meeting. In the following, we examine this example in more detail and
illustrate how the ChairLight application’s performance changes across different smart
space architectures.

Figure 3.1. Bird’s eye view of a smart lighting infrastructure of a meeting room in an office building.
There is a table in the center of the room, and five seats are placed around it. Near the seat of the
meeting chair, there is an RFID reader to identify the session chair. The users carry RFID tags. Two light
sources are on the ceiling. A calibrated presence sensor on the ceiling detects room occupancy, and a
user interaction node can be used by the meeting chair to control the lights manually. All sensors, light
sources and the user interaction node communicate over a network.

The application utilizes dimmable lamps that emit cool and warm white light (with bright-
ness percentages L1 and L2, and operated by L1_Brightness_iO and L2_Brightness_iO,
respectively) and an RFID reader for identifying the user who is chairing the meeting.
We consider two smart nodes, a presence sensor node with Presence_Detecting_iO for
detecting events (with binary value PS) and a wireless user interaction node with Push_
Button_iO having two states being Push=0 (interaction button is released) and Push=1 (in-
teraction button is pressed). The RFID reader is placed next to the seat that is designated
for the chair of the meeting (from here on referred to as the primary seat) communicates
with passive tags carried by the users. Based on the received signal strength, it tries to
detect the serial number

p 51

l number 𝑓𝑓𝑓𝑓 ∈ {𝑓𝑓𝑓𝑓1, … ,𝑓𝑓𝑓𝑓𝜂𝜂𝜂𝜂} that is closest in physical distance to the primary seat. The serial number
carried by a user may change over time,

p53

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖+1(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜂𝜂𝜂𝜂 + 1), 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝜂𝜂𝜂𝜂) . Because this servic

P55

{𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2, … , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜆𝜆𝜆𝜆} . A comparison of multiple smart space architectures with respect to the performance
of 𝙰𝙰𝙰𝙰 can be formally represented as a MOP. Without loss of generality, we can assume that all the
objectives are cost functions to be minimized as given in the following formalization.

minimize
𝑖𝑖𝑖𝑖={1,…,𝜆𝜆𝜆𝜆}

𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰) |𝑣𝑣𝑣𝑣 ∈ {1, … ,𝑉𝑉𝑉𝑉}

subject to (𝛿𝛿𝛿𝛿1, … , 𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿) (3.1)

p56
It may be the case that none of the candidate system architectures satisfies the given set of constraints
and then we say the application 𝙰𝙰𝙰𝙰 is not feasible in these architectures. We can apply this formalization
to our example with only two candidate architectures, leading to the following MOP (𝜆𝜆𝜆𝜆 = 2, 𝑉𝑉𝑉𝑉 = 2, and
L = 3):

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

 subject to �
𝛿𝛿𝛿𝛿1:𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)≤1 𝑖𝑖/𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

𝛿𝛿𝛿𝛿2:𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏(𝙰𝙰𝙰𝙰))≤1 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝛿𝛿𝛿𝛿3:0≤𝜂𝜂𝜂𝜂≤𝜂𝜂𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

� (3.2)

where the last constraint indicates that the application 𝙰𝙰𝙰𝙰 is required to support up to 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 users, such
that adequate behavior of application, i.e., 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 is guaranteed if 𝜂𝜂𝜂𝜂 ≤ 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 holds. This does not
necessarily imply that the application 𝙰𝙰𝙰𝙰 will fail whenever 𝜂𝜂𝜂𝜂 > 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟.

P57
cluded, i.e., 𝙰𝙰𝙰𝙰𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 . It is

p66

According to our definition of a smart space, the following relationships hold for smart nodes in a smart
space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 (3.3)

 that is closest in physical distance to the primary
seat. The serial number carried by a user may change over time, as the tags are likely to
be replaced due to wear or loss. The mapping of serial numbers to actual user identities is
maintained on a separate User Profile Server (UPS), together with their preferred lighting

61SMART SPACE PROPERTIES AND SEMANTIC INTEROPERABILITY ARCHITECTURE

3

set-points (SPη for the user η). The users update their profiles and choose their favorite
set-points via the web interface of the UPS.

For three users (η = 3), example set points are given in Table 3.1. Assume that the same
application can run on two different smart space infrastructures SS1 and SS2, where the
former has a local UPS, while the latter utilizes a remote cloud server (deployed with
Cloud_Services_iO) through a gateway (deployed with a Translator_iO) for this purpose,
as shown in Fig. 3.2 and the physical deployment of associated iOs on smart nodes is
shown in Fig. 3.3.

Table 3.1. User preferences (set points) in the example with η = 3.
Set-point L1 L2

SP0 (default) Off Off

SP1 (of user 1) 50% 50%

 SP2 (of user 2) 100% Off

SP3 (of user 3) Off 100%

Figure 3.2. Physical configurations of (a) SS1 and (b) SS2 . In (a), the ellipse shows the smart space nodes
in a high capacity network (e.g., an IP network). In (b), the ellipse indicates a low capacity network
behind a gateway, or it may indicate an IP sub-network behind an edge router.

62 CHAPTER 3

(a)

(b)

Figure 3.3. Physical deployments of iOs in (a) SS1 and (b) SS2.

63SMART SPACE PROPERTIES AND SEMANTIC INTEROPERABILITY ARCHITECTURE

3

When the current light settings are not in line with the preferences of the user chair-
ing the meeting (e.g. as a result of the wrong user identity being detected), the user
has the option to push the user interface button to toggle between set-points. This ac-
tion communicates to the UPS that the light set point should be switched from

p 51

l number 𝑓𝑓𝑓𝑓 ∈ {𝑓𝑓𝑓𝑓1, … ,𝑓𝑓𝑓𝑓𝜂𝜂𝜂𝜂} that is closest in physical distance to the primary seat. The serial number
carried by a user may change over time,

p53

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖+1(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜂𝜂𝜂𝜂 + 1), 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝜂𝜂𝜂𝜂) . Because this servic

P55

{𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2, … , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜆𝜆𝜆𝜆} . A comparison of multiple smart space architectures with respect to the performance
of 𝙰𝙰𝙰𝙰 can be formally represented as a MOP. Without loss of generality, we can assume that all the
objectives are cost functions to be minimized as given in the following formalization.

minimize
𝑖𝑖𝑖𝑖={1,…,𝜆𝜆𝜆𝜆}

𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰) |𝑣𝑣𝑣𝑣 ∈ {1, … ,𝑉𝑉𝑉𝑉}

subject to (𝛿𝛿𝛿𝛿1, … , 𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿) (3.1)

p56
It may be the case that none of the candidate system architectures satisfies the given set of constraints
and then we say the application 𝙰𝙰𝙰𝙰 is not feasible in these architectures. We can apply this formalization
to our example with only two candidate architectures, leading to the following MOP (𝜆𝜆𝜆𝜆 = 2, 𝑉𝑉𝑉𝑉 = 2, and
L = 3):

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

 subject to �
𝛿𝛿𝛿𝛿1:𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)≤1 𝑖𝑖/𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

𝛿𝛿𝛿𝛿2:𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏(𝙰𝙰𝙰𝙰))≤1 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝛿𝛿𝛿𝛿3:0≤𝜂𝜂𝜂𝜂≤𝜂𝜂𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

� (3.2)

where the last constraint indicates that the application 𝙰𝙰𝙰𝙰 is required to support up to 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 users, such
that adequate behavior of application, i.e., 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 is guaranteed if 𝜂𝜂𝜂𝜂 ≤ 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 holds. This does not
necessarily imply that the application 𝙰𝙰𝙰𝙰 will fail whenever 𝜂𝜂𝜂𝜂 > 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟.

P57
cluded, i.e., 𝙰𝙰𝙰𝙰𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 . It is

p66

According to our definition of a smart space, the following relationships hold for smart nodes in a smart
space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 (3.3)

 to

p 51

l number 𝑓𝑓𝑓𝑓 ∈ {𝑓𝑓𝑓𝑓1, … ,𝑓𝑓𝑓𝑓𝜂𝜂𝜂𝜂} that is closest in physical distance to the primary seat. The serial number
carried by a user may change over time,

p53

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖+1(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜂𝜂𝜂𝜂 + 1), 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝜂𝜂𝜂𝜂) . Because this servic

P55

{𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2, … , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜆𝜆𝜆𝜆} . A comparison of multiple smart space architectures with respect to the performance
of 𝙰𝙰𝙰𝙰 can be formally represented as a MOP. Without loss of generality, we can assume that all the
objectives are cost functions to be minimized as given in the following formalization.

minimize
𝑖𝑖𝑖𝑖={1,…,𝜆𝜆𝜆𝜆}

𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰) |𝑣𝑣𝑣𝑣 ∈ {1, … ,𝑉𝑉𝑉𝑉}

subject to (𝛿𝛿𝛿𝛿1, … , 𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿) (3.1)

p56
It may be the case that none of the candidate system architectures satisfies the given set of constraints
and then we say the application 𝙰𝙰𝙰𝙰 is not feasible in these architectures. We can apply this formalization
to our example with only two candidate architectures, leading to the following MOP (𝜆𝜆𝜆𝜆 = 2, 𝑉𝑉𝑉𝑉 = 2, and
L = 3):

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

 subject to �
𝛿𝛿𝛿𝛿1:𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)≤1 𝑖𝑖/𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

𝛿𝛿𝛿𝛿2:𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏(𝙰𝙰𝙰𝙰))≤1 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝛿𝛿𝛿𝛿3:0≤𝜂𝜂𝜂𝜂≤𝜂𝜂𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

� (3.2)

where the last constraint indicates that the application 𝙰𝙰𝙰𝙰 is required to support up to 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 users, such
that adequate behavior of application, i.e., 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 is guaranteed if 𝜂𝜂𝜂𝜂 ≤ 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 holds. This does not
necessarily imply that the application 𝙰𝙰𝙰𝙰 will fail whenever 𝜂𝜂𝜂𝜂 > 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟.

P57
cluded, i.e., 𝙰𝙰𝙰𝙰𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 . It is

p66

According to our definition of a smart space, the following relationships hold for smart nodes in a smart
space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 (3.3)

. Because this service is highly interactive, it is neces-
sary for the user to observe the changes resulting from the interaction nearly immediately
after the button is pressed. Otherwise, i.e., if it takes a long time to observe the change,
the user tends to push the node again, switching the set-point for a second time before
actuation can occur.

There are two cost functions m1 and m2 associated with this application. m1 is the number
of user interventions per use, whose upper limit is 1 (application constraint). m is the time
it takes until a meeting chair is presented with her preferred lighting set-point, whose
upper limit is 1 sec. Referring to the architectures depicted in Fig 3.2, suppose all the lights
in the two rooms of the two smart spaces are initially off. User 3 is the meeting chair, she
takes her seat at time t = 1 sec, and the RFID tag of user 2 is incorrectly detected as the
closest tag to the RFID reader in both smart space infrastructures. Figure 3.4 illustrates
the changes in contexts in the two infrastructures, with the contents of the messages
exchanged and timing relations, i.e., the ChairLight application’s behaviors in SS1 and SS2.
For simplicity of presentation, we assume that the sensing, actuation, communication,
and computation within SS1 and SS2 are all instantaneous, except for the network propaga-
tion delay between the remote cloud server and the other nodes of SS2, which is 0.5 sec.

In this example scenario, the costs of user intervention per use, m1 (SS1,

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

) and m1 (SS2,

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

),
are 1 and 5, respectively, where the smart application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 is the ChairLight Application
for both smart space infrastructures. The delay costs of reaching the preferred light set-
point, m2 (SS1,

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

) and m2 (SS2,

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

) are 0.5 sec and 9 sec, respectively. Hence, the ChairLight
application in SS1 satisfies the application constraints with respect to both performance
metrics, and we say that its behavior is adequate in SS1. Since the upper limits allowed
by the application are exceeded in SS2 for both metrics, the ChairLight application is not
adequate in SS2. It may be argued that adequateness may be achieved in SS2 if the applica-
tion maintains a cache of the most recent pairs of RFID serial numbers and light set-points
at the RFID reader, which sends actuation commands to the two lamps immediately when
there is a cache hit. Such a cache is adaptive by nature. The selection of the meeting
chair may not be completely random, e.g., the boss is the chair when he joins a meeting.
The application can also make use of such information collected at runtime and learn to
improve its performance (e.g., if in doubt prefer the RFID tag that was most frequently
the chair’s in the past).

64 CHAPTER 3

(a)

(b)

Figure 3.4. Contexts (L1, L2, PS, f, Push, SP) and behaviors in Smart Space Infrastructures (a) SS1 and
(b) SS2.

65SMART SPACE PROPERTIES AND SEMANTIC INTEROPERABILITY ARCHITECTURE

3

In general, consider an application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 with V objectives (performance metrics) mv to be
optimized subject to L constraints ∂l (e.g., speed, accuracy, response time, and resource
utilization). mv may also be conflicting, in which case a tradeoff must be considered in
choosing the best smart space architecture SS* among a set of λ candidate architectures

p 51

l number 𝑓𝑓𝑓𝑓 ∈ {𝑓𝑓𝑓𝑓1, … ,𝑓𝑓𝑓𝑓𝜂𝜂𝜂𝜂} that is closest in physical distance to the primary seat. The serial number
carried by a user may change over time,

p53

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖+1(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜂𝜂𝜂𝜂 + 1), 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝜂𝜂𝜂𝜂) . Because this servic

P55

{𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2, … , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜆𝜆𝜆𝜆} . A comparison of multiple smart space architectures with respect to the performance
of 𝙰𝙰𝙰𝙰 can be formally represented as a MOP. Without loss of generality, we can assume that all the
objectives are cost functions to be minimized as given in the following formalization.

minimize
𝑖𝑖𝑖𝑖={1,…,𝜆𝜆𝜆𝜆}

𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰) |𝑣𝑣𝑣𝑣 ∈ {1, … ,𝑉𝑉𝑉𝑉}

subject to (𝛿𝛿𝛿𝛿1, … , 𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿) (3.1)

p56
It may be the case that none of the candidate system architectures satisfies the given set of constraints
and then we say the application 𝙰𝙰𝙰𝙰 is not feasible in these architectures. We can apply this formalization
to our example with only two candidate architectures, leading to the following MOP (𝜆𝜆𝜆𝜆 = 2, 𝑉𝑉𝑉𝑉 = 2, and
L = 3):

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

 subject to �
𝛿𝛿𝛿𝛿1:𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)≤1 𝑖𝑖/𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

𝛿𝛿𝛿𝛿2:𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏(𝙰𝙰𝙰𝙰))≤1 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝛿𝛿𝛿𝛿3:0≤𝜂𝜂𝜂𝜂≤𝜂𝜂𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

� (3.2)

where the last constraint indicates that the application 𝙰𝙰𝙰𝙰 is required to support up to 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 users, such
that adequate behavior of application, i.e., 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 is guaranteed if 𝜂𝜂𝜂𝜂 ≤ 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 holds. This does not
necessarily imply that the application 𝙰𝙰𝙰𝙰 will fail whenever 𝜂𝜂𝜂𝜂 > 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟.

P57
cluded, i.e., 𝙰𝙰𝙰𝙰𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 . It is

p66

According to our definition of a smart space, the following relationships hold for smart nodes in a smart
space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 (3.3)

. A comparison of multiple smart space architectures with respect to
the performance of

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 can be formally represented as a MOP. Without loss of generality,
we can assume that all the objectives are cost functions to be minimized as given in the
following formalization.

p 51

l number 𝑓𝑓𝑓𝑓 ∈ {𝑓𝑓𝑓𝑓1, … ,𝑓𝑓𝑓𝑓𝜂𝜂𝜂𝜂} that is closest in physical distance to the primary seat. The serial number
carried by a user may change over time,

p53

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖+1(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜂𝜂𝜂𝜂 + 1), 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝜂𝜂𝜂𝜂) . Because this servic

P55

{𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2, … , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜆𝜆𝜆𝜆} . A comparison of multiple smart space architectures with respect to the performance
of 𝙰𝙰𝙰𝙰 can be formally represented as a MOP. Without loss of generality, we can assume that all the
objectives are cost functions to be minimized as given in the following formalization.

minimize
𝑖𝑖𝑖𝑖={1,…,𝜆𝜆𝜆𝜆}

𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰) |𝑣𝑣𝑣𝑣 ∈ {1, … ,𝑉𝑉𝑉𝑉}

subject to (𝛿𝛿𝛿𝛿1, … , 𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿) (3.1)

p56
It may be the case that none of the candidate system architectures satisfies the given set of constraints
and then we say the application 𝙰𝙰𝙰𝙰 is not feasible in these architectures. We can apply this formalization
to our example with only two candidate architectures, leading to the following MOP (𝜆𝜆𝜆𝜆 = 2, 𝑉𝑉𝑉𝑉 = 2, and
L = 3):

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

 subject to �
𝛿𝛿𝛿𝛿1:𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)≤1 𝑖𝑖/𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

𝛿𝛿𝛿𝛿2:𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏(𝙰𝙰𝙰𝙰))≤1 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝛿𝛿𝛿𝛿3:0≤𝜂𝜂𝜂𝜂≤𝜂𝜂𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

� (3.2)

where the last constraint indicates that the application 𝙰𝙰𝙰𝙰 is required to support up to 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 users, such
that adequate behavior of application, i.e., 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 is guaranteed if 𝜂𝜂𝜂𝜂 ≤ 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 holds. This does not
necessarily imply that the application 𝙰𝙰𝙰𝙰 will fail whenever 𝜂𝜂𝜂𝜂 > 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟.

P57
cluded, i.e., 𝙰𝙰𝙰𝙰𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 . It is

p66

According to our definition of a smart space, the following relationships hold for smart nodes in a smart
space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 (3.3)

 subject to

p 51

l number 𝑓𝑓𝑓𝑓 ∈ {𝑓𝑓𝑓𝑓1, … ,𝑓𝑓𝑓𝑓𝜂𝜂𝜂𝜂} that is closest in physical distance to the primary seat. The serial number
carried by a user may change over time,

p53

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖+1(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜂𝜂𝜂𝜂 + 1), 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝜂𝜂𝜂𝜂) . Because this servic

P55

{𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2, … , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜆𝜆𝜆𝜆} . A comparison of multiple smart space architectures with respect to the performance
of 𝙰𝙰𝙰𝙰 can be formally represented as a MOP. Without loss of generality, we can assume that all the
objectives are cost functions to be minimized as given in the following formalization.

minimize
𝑖𝑖𝑖𝑖={1,…,𝜆𝜆𝜆𝜆}

𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰) |𝑣𝑣𝑣𝑣 ∈ {1, … ,𝑉𝑉𝑉𝑉}

subject to (𝛿𝛿𝛿𝛿1, … , 𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿) (3.1)

p56
It may be the case that none of the candidate system architectures satisfies the given set of constraints
and then we say the application 𝙰𝙰𝙰𝙰 is not feasible in these architectures. We can apply this formalization
to our example with only two candidate architectures, leading to the following MOP (𝜆𝜆𝜆𝜆 = 2, 𝑉𝑉𝑉𝑉 = 2, and
L = 3):

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

 subject to �
𝛿𝛿𝛿𝛿1:𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)≤1 𝑖𝑖/𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

𝛿𝛿𝛿𝛿2:𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏(𝙰𝙰𝙰𝙰))≤1 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝛿𝛿𝛿𝛿3:0≤𝜂𝜂𝜂𝜂≤𝜂𝜂𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

� (3.2)

where the last constraint indicates that the application 𝙰𝙰𝙰𝙰 is required to support up to 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 users, such
that adequate behavior of application, i.e., 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 is guaranteed if 𝜂𝜂𝜂𝜂 ≤ 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 holds. This does not
necessarily imply that the application 𝙰𝙰𝙰𝙰 will fail whenever 𝜂𝜂𝜂𝜂 > 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟.

P57
cluded, i.e., 𝙰𝙰𝙰𝙰𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 . It is

p66

According to our definition of a smart space, the following relationships hold for smart nodes in a smart
space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 (3.3)

 (3.1)

The optimization goal is to find SSi that minimizes all the cost functions. In practice (some
of) the objectives under consideration may be conflicting, i.e., optimizing for one cost
function may worsen the performance in others. In that case the optimization shall find
the best tradeoff. This can be done, for example, via aggregated (requires assigning proper
weights to objectives) or constrained optimization using Lagrange multipliers [3.1] or via
Pareto analysis [3.2]. The specific MOP solution techniques are beyond the scope of this
thesis work and the readers are referred to the provided literature for more information
on this topic.

It may be the case that none of the candidate system architectures satisfies the given set
of constraints and then we say the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 is not feasible in these architectures. We
can apply this formalization to our example with only two candidate architectures, leading
to the following MOP (λ = 2, V = 2, and L = 3):

p 51

l number 𝑓𝑓𝑓𝑓 ∈ {𝑓𝑓𝑓𝑓1, … ,𝑓𝑓𝑓𝑓𝜂𝜂𝜂𝜂} that is closest in physical distance to the primary seat. The serial number
carried by a user may change over time,

p53

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖+1(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜂𝜂𝜂𝜂 + 1), 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝜂𝜂𝜂𝜂) . Because this servic

P55

{𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2, … , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜆𝜆𝜆𝜆} . A comparison of multiple smart space architectures with respect to the performance
of 𝙰𝙰𝙰𝙰 can be formally represented as a MOP. Without loss of generality, we can assume that all the
objectives are cost functions to be minimized as given in the following formalization.

minimize
𝑖𝑖𝑖𝑖={1,…,𝜆𝜆𝜆𝜆}

𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰) |𝑣𝑣𝑣𝑣 ∈ {1, … ,𝑉𝑉𝑉𝑉}

subject to (𝛿𝛿𝛿𝛿1, … , 𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿) (3.1)

p56
It may be the case that none of the candidate system architectures satisfies the given set of constraints
and then we say the application 𝙰𝙰𝙰𝙰 is not feasible in these architectures. We can apply this formalization
to our example with only two candidate architectures, leading to the following MOP (𝜆𝜆𝜆𝜆 = 2, 𝑉𝑉𝑉𝑉 = 2, and
L = 3):

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

 subject to �
𝛿𝛿𝛿𝛿1:𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)≤1 𝑖𝑖/𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

𝛿𝛿𝛿𝛿2:𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏(𝙰𝙰𝙰𝙰))≤1 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝛿𝛿𝛿𝛿3:0≤𝜂𝜂𝜂𝜂≤𝜂𝜂𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

� (3.2)

where the last constraint indicates that the application 𝙰𝙰𝙰𝙰 is required to support up to 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 users, such
that adequate behavior of application, i.e., 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 is guaranteed if 𝜂𝜂𝜂𝜂 ≤ 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 holds. This does not
necessarily imply that the application 𝙰𝙰𝙰𝙰 will fail whenever 𝜂𝜂𝜂𝜂 > 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟.

P57
cluded, i.e., 𝙰𝙰𝙰𝙰𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 . It is

p66

According to our definition of a smart space, the following relationships hold for smart nodes in a smart
space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 (3.3)

 subject to

p 51

l number 𝑓𝑓𝑓𝑓 ∈ {𝑓𝑓𝑓𝑓1, … ,𝑓𝑓𝑓𝑓𝜂𝜂𝜂𝜂} that is closest in physical distance to the primary seat. The serial number
carried by a user may change over time,

p53

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖+1(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜂𝜂𝜂𝜂 + 1), 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝜂𝜂𝜂𝜂) . Because this servic

P55

{𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2, … , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜆𝜆𝜆𝜆} . A comparison of multiple smart space architectures with respect to the performance
of 𝙰𝙰𝙰𝙰 can be formally represented as a MOP. Without loss of generality, we can assume that all the
objectives are cost functions to be minimized as given in the following formalization.

minimize
𝑖𝑖𝑖𝑖={1,…,𝜆𝜆𝜆𝜆}

𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰) |𝑣𝑣𝑣𝑣 ∈ {1, … ,𝑉𝑉𝑉𝑉}

subject to (𝛿𝛿𝛿𝛿1, … , 𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿) (3.1)

p56
It may be the case that none of the candidate system architectures satisfies the given set of constraints
and then we say the application 𝙰𝙰𝙰𝙰 is not feasible in these architectures. We can apply this formalization
to our example with only two candidate architectures, leading to the following MOP (𝜆𝜆𝜆𝜆 = 2, 𝑉𝑉𝑉𝑉 = 2, and
L = 3):

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

 subject to �
𝛿𝛿𝛿𝛿1:𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)≤1 𝑖𝑖/𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

𝛿𝛿𝛿𝛿2:𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏(𝙰𝙰𝙰𝙰))≤1 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝛿𝛿𝛿𝛿3:0≤𝜂𝜂𝜂𝜂≤𝜂𝜂𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

� (3.2)

where the last constraint indicates that the application 𝙰𝙰𝙰𝙰 is required to support up to 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 users, such
that adequate behavior of application, i.e., 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 is guaranteed if 𝜂𝜂𝜂𝜂 ≤ 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 holds. This does not
necessarily imply that the application 𝙰𝙰𝙰𝙰 will fail whenever 𝜂𝜂𝜂𝜂 > 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟.

P57
cluded, i.e., 𝙰𝙰𝙰𝙰𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 . It is

p66

According to our definition of a smart space, the following relationships hold for smart nodes in a smart
space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 (3.3)

 (3.2)

where the last constraint indicates that the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 is required to support up to

p 51

l number 𝑓𝑓𝑓𝑓 ∈ {𝑓𝑓𝑓𝑓1, … ,𝑓𝑓𝑓𝑓𝜂𝜂𝜂𝜂} that is closest in physical distance to the primary seat. The serial number
carried by a user may change over time,

p53

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖+1(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜂𝜂𝜂𝜂 + 1), 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝜂𝜂𝜂𝜂) . Because this servic

P55

{𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2, … , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜆𝜆𝜆𝜆} . A comparison of multiple smart space architectures with respect to the performance
of 𝙰𝙰𝙰𝙰 can be formally represented as a MOP. Without loss of generality, we can assume that all the
objectives are cost functions to be minimized as given in the following formalization.

minimize
𝑖𝑖𝑖𝑖={1,…,𝜆𝜆𝜆𝜆}

𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰) |𝑣𝑣𝑣𝑣 ∈ {1, … ,𝑉𝑉𝑉𝑉}

subject to (𝛿𝛿𝛿𝛿1, … , 𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿) (3.1)

p56
It may be the case that none of the candidate system architectures satisfies the given set of constraints
and then we say the application 𝙰𝙰𝙰𝙰 is not feasible in these architectures. We can apply this formalization
to our example with only two candidate architectures, leading to the following MOP (𝜆𝜆𝜆𝜆 = 2, 𝑉𝑉𝑉𝑉 = 2, and
L = 3):

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

 subject to �
𝛿𝛿𝛿𝛿1:𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)≤1 𝑖𝑖/𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

𝛿𝛿𝛿𝛿2:𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏(𝙰𝙰𝙰𝙰))≤1 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝛿𝛿𝛿𝛿3:0≤𝜂𝜂𝜂𝜂≤𝜂𝜂𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

� (3.2)

where the last constraint indicates that the application 𝙰𝙰𝙰𝙰 is required to support up to 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 users, such
that adequate behavior of application, i.e., 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 is guaranteed if 𝜂𝜂𝜂𝜂 ≤ 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 holds. This does not
necessarily imply that the application 𝙰𝙰𝙰𝙰 will fail whenever 𝜂𝜂𝜂𝜂 > 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟.

P57
cluded, i.e., 𝙰𝙰𝙰𝙰𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 . It is

p66

According to our definition of a smart space, the following relationships hold for smart nodes in a smart
space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 (3.3)

users, such that adequate behavior of application, i.e.,

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 is guaranteed if

p 51

l number 𝑓𝑓𝑓𝑓 ∈ {𝑓𝑓𝑓𝑓1, … ,𝑓𝑓𝑓𝑓𝜂𝜂𝜂𝜂} that is closest in physical distance to the primary seat. The serial number
carried by a user may change over time,

p53

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖+1(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜂𝜂𝜂𝜂 + 1), 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝜂𝜂𝜂𝜂) . Because this servic

P55

{𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2, … , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜆𝜆𝜆𝜆} . A comparison of multiple smart space architectures with respect to the performance
of 𝙰𝙰𝙰𝙰 can be formally represented as a MOP. Without loss of generality, we can assume that all the
objectives are cost functions to be minimized as given in the following formalization.

minimize
𝑖𝑖𝑖𝑖={1,…,𝜆𝜆𝜆𝜆}

𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰) |𝑣𝑣𝑣𝑣 ∈ {1, … ,𝑉𝑉𝑉𝑉}

subject to (𝛿𝛿𝛿𝛿1, … , 𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿) (3.1)

p56
It may be the case that none of the candidate system architectures satisfies the given set of constraints
and then we say the application 𝙰𝙰𝙰𝙰 is not feasible in these architectures. We can apply this formalization
to our example with only two candidate architectures, leading to the following MOP (𝜆𝜆𝜆𝜆 = 2, 𝑉𝑉𝑉𝑉 = 2, and
L = 3):

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

 subject to �
𝛿𝛿𝛿𝛿1:𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)≤1 𝑖𝑖/𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

𝛿𝛿𝛿𝛿2:𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏(𝙰𝙰𝙰𝙰))≤1 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝛿𝛿𝛿𝛿3:0≤𝜂𝜂𝜂𝜂≤𝜂𝜂𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

� (3.2)

where the last constraint indicates that the application 𝙰𝙰𝙰𝙰 is required to support up to 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 users, such
that adequate behavior of application, i.e., 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 is guaranteed if 𝜂𝜂𝜂𝜂 ≤ 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 holds. This does not
necessarily imply that the application 𝙰𝙰𝙰𝙰 will fail whenever 𝜂𝜂𝜂𝜂 > 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟.

P57
cluded, i.e., 𝙰𝙰𝙰𝙰𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 . It is

p66

According to our definition of a smart space, the following relationships hold for smart nodes in a smart
space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 (3.3)

 holds.
This does not necessarily imply that the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 will fail whenever

p 51

l number 𝑓𝑓𝑓𝑓 ∈ {𝑓𝑓𝑓𝑓1, … ,𝑓𝑓𝑓𝑓𝜂𝜂𝜂𝜂} that is closest in physical distance to the primary seat. The serial number
carried by a user may change over time,

p53

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖+1(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜂𝜂𝜂𝜂 + 1), 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝜂𝜂𝜂𝜂) . Because this servic

P55

{𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2, … , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜆𝜆𝜆𝜆} . A comparison of multiple smart space architectures with respect to the performance
of 𝙰𝙰𝙰𝙰 can be formally represented as a MOP. Without loss of generality, we can assume that all the
objectives are cost functions to be minimized as given in the following formalization.

minimize
𝑖𝑖𝑖𝑖={1,…,𝜆𝜆𝜆𝜆}

𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰) |𝑣𝑣𝑣𝑣 ∈ {1, … ,𝑉𝑉𝑉𝑉}

subject to (𝛿𝛿𝛿𝛿1, … , 𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿) (3.1)

p56
It may be the case that none of the candidate system architectures satisfies the given set of constraints
and then we say the application 𝙰𝙰𝙰𝙰 is not feasible in these architectures. We can apply this formalization
to our example with only two candidate architectures, leading to the following MOP (𝜆𝜆𝜆𝜆 = 2, 𝑉𝑉𝑉𝑉 = 2, and
L = 3):

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

 subject to �
𝛿𝛿𝛿𝛿1:𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)≤1 𝑖𝑖/𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

𝛿𝛿𝛿𝛿2:𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏(𝙰𝙰𝙰𝙰))≤1 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝛿𝛿𝛿𝛿3:0≤𝜂𝜂𝜂𝜂≤𝜂𝜂𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

� (3.2)

where the last constraint indicates that the application 𝙰𝙰𝙰𝙰 is required to support up to 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 users, such
that adequate behavior of application, i.e., 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 is guaranteed if 𝜂𝜂𝜂𝜂 ≤ 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 holds. This does not
necessarily imply that the application 𝙰𝙰𝙰𝙰 will fail whenever 𝜂𝜂𝜂𝜂 > 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟.

P57
cluded, i.e., 𝙰𝙰𝙰𝙰𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 . It is

p66

According to our definition of a smart space, the following relationships hold for smart nodes in a smart
space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 (3.3)

.

The example illustrates i) that when the application behavior

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 is context dependent two
identical sets of smart nodes may show entirely different behaviors in different contexts,
and ii) that the chosen smart space architecture significantly impacts the performance of
smart space applications.

66 CHAPTER 3

3.2 Smart Space Properties

According to our literature survey, the fundamental properties of smart space designs
in the literature are as shown in Table 3.2. In the following, we define these properties,
i.e., adaptation, communication interoperability, semantic interoperability, openness,
extendibility and self-management. Depending on whether a thorough consideration of
each of these properties exists in candidate smart space architectures or not and looking
at performance metrics that are important for an application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

, it can be determined to
which extent a smart space architecture is suitable for

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

.

Table 3.2. Properties of smart space solutions in the literature.
Project / Article Adaptation Communication

Interoperability
Semantic
Interoperability

Openness Extendibility Self-
management

CISE [2.21] + + + - + -

Goh et al. [2.22] + + + + + +

PERSIST [2.23] + + - + + +

GUPSS [2.24] + + - + + +

(van der) Vlist et al.
[2.25]

+ + + + + -

Song et al. [2.26] + + + + + -

SPITFIRE [2.27] + + + + - +

INSTANS [2.28] + + + + + -

Morandi et al. [2.29] + + + + + +

Natalia et al. [2.30] + + + + + +

Eila et al. [2.31] + + + + + +

Jussi et al. [2.32] + + + + + +

Zeng et al. [2.33] + + + + - +

Sergey et al. [2.34-
2.35]

+ + + + + -

Andrey [2.36] + + + + + -

Shabir [2.37] + + + + + +

William et al. [2.45] + + - + + -

Zeynep et al. [2.46] + + - + + +

Tekler et al. [2.47] + + - + + -

Badr et al. [2.48] + + - + + -

* (+) means that the solution includes a thorough consideration of the respective property and (-)
means that it does not.

When an application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 is context-dependent, it may adapt the application behaviors

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

and trigger services as required by the scenario in question. Let the context domain of a
smart space be given by Cs such that a particular context domain for an application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 is

67SMART SPACE PROPERTIES AND SEMANTIC INTEROPERABILITY ARCHITECTURE

3

included, i.e.,

p 51

l number 𝑓𝑓𝑓𝑓 ∈ {𝑓𝑓𝑓𝑓1, … ,𝑓𝑓𝑓𝑓𝜂𝜂𝜂𝜂} that is closest in physical distance to the primary seat. The serial number
carried by a user may change over time,

p53

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖+1(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜂𝜂𝜂𝜂 + 1), 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝜂𝜂𝜂𝜂) . Because this servic

P55

{𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2, … , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜆𝜆𝜆𝜆} . A comparison of multiple smart space architectures with respect to the performance
of 𝙰𝙰𝙰𝙰 can be formally represented as a MOP. Without loss of generality, we can assume that all the
objectives are cost functions to be minimized as given in the following formalization.

minimize
𝑖𝑖𝑖𝑖={1,…,𝜆𝜆𝜆𝜆}

𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰) |𝑣𝑣𝑣𝑣 ∈ {1, … ,𝑉𝑉𝑉𝑉}

subject to (𝛿𝛿𝛿𝛿1, … , 𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿) (3.1)

p56
It may be the case that none of the candidate system architectures satisfies the given set of constraints
and then we say the application 𝙰𝙰𝙰𝙰 is not feasible in these architectures. We can apply this formalization
to our example with only two candidate architectures, leading to the following MOP (𝜆𝜆𝜆𝜆 = 2, 𝑉𝑉𝑉𝑉 = 2, and
L = 3):

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

 subject to �
𝛿𝛿𝛿𝛿1:𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)≤1 𝑖𝑖/𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

𝛿𝛿𝛿𝛿2:𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏(𝙰𝙰𝙰𝙰))≤1 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝛿𝛿𝛿𝛿3:0≤𝜂𝜂𝜂𝜂≤𝜂𝜂𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

� (3.2)

where the last constraint indicates that the application 𝙰𝙰𝙰𝙰 is required to support up to 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 users, such
that adequate behavior of application, i.e., 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 is guaranteed if 𝜂𝜂𝜂𝜂 ≤ 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 holds. This does not
necessarily imply that the application 𝙰𝙰𝙰𝙰 will fail whenever 𝜂𝜂𝜂𝜂 > 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟.

P57
cluded, i.e., 𝙰𝙰𝙰𝙰𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 . It is

p66

According to our definition of a smart space, the following relationships hold for smart nodes in a smart
space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 (3.3)

. It is possible to dynamically change

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 at runtime to cope with
performance issues that are stemming from changes in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

.

Definition (Adaptation): An application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 is said to exhibit adaptation with respect to
metric m if it behaves to increase A’s adequacy with respect to m as a response to changes
in application’s contexts

p 51

l number 𝑓𝑓𝑓𝑓 ∈ {𝑓𝑓𝑓𝑓1, … ,𝑓𝑓𝑓𝑓𝜂𝜂𝜂𝜂} that is closest in physical distance to the primary seat. The serial number
carried by a user may change over time,

p53

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖+1(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜂𝜂𝜂𝜂 + 1), 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝜂𝜂𝜂𝜂) . Because this servic

P55

{𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2, … , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜆𝜆𝜆𝜆} . A comparison of multiple smart space architectures with respect to the performance
of 𝙰𝙰𝙰𝙰 can be formally represented as a MOP. Without loss of generality, we can assume that all the
objectives are cost functions to be minimized as given in the following formalization.

minimize
𝑖𝑖𝑖𝑖={1,…,𝜆𝜆𝜆𝜆}

𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰) |𝑣𝑣𝑣𝑣 ∈ {1, … ,𝑉𝑉𝑉𝑉}

subject to (𝛿𝛿𝛿𝛿1, … , 𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿) (3.1)

p56
It may be the case that none of the candidate system architectures satisfies the given set of constraints
and then we say the application 𝙰𝙰𝙰𝙰 is not feasible in these architectures. We can apply this formalization
to our example with only two candidate architectures, leading to the following MOP (𝜆𝜆𝜆𝜆 = 2, 𝑉𝑉𝑉𝑉 = 2, and
L = 3):

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

 subject to �
𝛿𝛿𝛿𝛿1:𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)≤1 𝑖𝑖/𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

𝛿𝛿𝛿𝛿2:𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏(𝙰𝙰𝙰𝙰))≤1 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝛿𝛿𝛿𝛿3:0≤𝜂𝜂𝜂𝜂≤𝜂𝜂𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

� (3.2)

where the last constraint indicates that the application 𝙰𝙰𝙰𝙰 is required to support up to 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 users, such
that adequate behavior of application, i.e., 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 is guaranteed if 𝜂𝜂𝜂𝜂 ≤ 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 holds. This does not
necessarily imply that the application 𝙰𝙰𝙰𝙰 will fail whenever 𝜂𝜂𝜂𝜂 > 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟.

P57
cluded, i.e., 𝙰𝙰𝙰𝙰𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 . It is

p66

According to our definition of a smart space, the following relationships hold for smart nodes in a smart
space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 (3.3)

.

Adaptation may be user initiated or autonomous. The changes in application’s contexts

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 are due to direct interactions of users with smart nodes when the adaptation is user
initiated, and the users are at best notified about the variations in contexts

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 in case
of autonomous adaptation. For example, user-initiated adaptation occurs when a user
enters a building: a sensor identifies the presence of the user and sends a command to
turn the lights on. In this example, the user directly interacts with the smart nodes in the
smart space. In contrast, autonomous adaptation occurs when a music player changes the
light presets based on the music that is playing in the background. In this example, the
users do not interact directly but may (or may not) be directly or indirectly notified about
the changes. In this thesis, we take both user initiated and autonomous adaptations into
consideration.

These adaptations are realized based on iOs’ state changes to adapt application’s contexts

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. The changes in states of iOs to adapt

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 adequately need to occur within a limited
time interval. One of the main reasons is that slow adaptation of actions taken by any iO
may prevent timely adaptations of other iOs within application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

, effectively leading to
inadequate execution of

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. Therefore, for adaptive applications, the latency of an event
to changes in contexts of any iO is often a critical performance metric, i.e., a cost func-
tion to be minimized. Latency is the time interval between stimulation of an iO belonging
to

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and the time at which the corresponding changes take effect in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. In computing
the total adaptation latency, we need to account for the latencies added by all iO tasks.
The iOs perform the following tasks for adaptation: i) monitor contexts in the application
environment, ii) analyze the contexts and find the needs for adaptation, iii) execute the
adaptation. These three steps followed by any iO will result in a change of

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. Based on
these observations, we can classify the iO’s adaptation into the following three types:
1.) Periodic Adaptive iO: Gathering contextual information from an environment of a

smart space and periodically updating it to the iO, potentially changing its state.
2.) Triggered Adaptive iO: Triggering a certain event based on context information re-

ceived from another iO in a smart space, the result of which may change the receiving
iO’s state.

3.) Controlled Adaptive iO: Controlling the iO state explicitly to take decisions for achiev-
ing a certain application goal in a smart space.

68 CHAPTER 3

We consider an adaptive lighting example (Fig. 3.5) to explain the classification of adaptive
iO. Let the adaptive lighting example have the following goal and assumptions:

Goal: The example system needs to achieve the goal of maintaining light intensity accord-
ing to user preferences.
Assumptions: An SiO (deployed on an SN) serves as a light sensor and an AiO (deployed
on an AN) acts as a luminary with an actuator, both connected to the GWiO (deployed on
a GSN) in a room infrastructure. The SiO updates current light intensity values periodically,
every 10 seconds. The AiO needs to control its light output based on the commands given
by the GWiO and a user sets the preferred light intensity at the GWiO.

The SiO updates the light intensity periodically at the GWiO every 10 seconds, allowing
the SiO to exhibit the periodic adaptive iO. The GWiO at the GSN calculates the actuation
commands based on user’s set preferences and the light intensity, demonstrating the
controlled adaptive iO. Finally, the AiO at the AN receives actuation commands from the
GWiO and actuates the light output accordingly, showcasing the triggered adaptive iO.
The goal of the adaptive lighting application example is achieved by maintaining the light
intensity at the desired level, as defined by user preferences.

Figure 3.5. An adaptive lighting example to explain the classification of adaptation in iOs.

To conclude the discussion on adaptation, we can state that a smart application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 may
adapt and reconfigure according to changes in states as demanded by the encountered
scenarios. The joint behaviors of a set of iOs in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

, aimed at achieving an application goal,
result in adaptive application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

.

69SMART SPACE PROPERTIES AND SEMANTIC INTEROPERABILITY ARCHITECTURE

3

Smart nodes consist of diverse hardware and software platforms and interoperability
among them is a requirement. Interoperability, which refers to the ability to exchange
information at different levels, between two iOs requires compatibility of the hardware
and software platforms used by their smart nodes. Broadly, interoperability is achieved in
two ways: communication interoperability and semantic interoperability.

Definition (Communication Interoperability): The ability of smart nodes in a smart space
to exchange messages over a network, following certain (communication) protocols, mes-
sage formats and syntax, is called communication interoperability.

Once communication interoperability is established in a smart space, semantic interoper-
ability plays a crucial role in exchanging semantically meaningful information. Achieving
semantic interoperability means representing contexts as structured knowledge that holds
meaning for the iOs sharing them. Semantics are constructed through syntax and prag-
matics. Syntax refers to the principles and processes by which symbols are constructed in
specific languages, while pragmatics explores the relationships between the symbols of a
language and their meanings.

Many researchers in the fields of linguistics and programming languages are currently
engaged in semantics [3.3-3.6], which traditionally focuses on the study of the meaning
of (parts of) words, phrases, sentences, and texts. According to Euzenat [3.7], semantics
‘provide the rules for interpreting syntax, which does not directly provide meaning but
constrains the possible interpretations of what is declared’. In other words, semantics
involve interpreting information applied to specific types of data structures designed for
representing information content.

In linguistics, semantics refers to the ‘study of meaning’, aiding in understanding human
expression through the elements of a language. These elements, known as symbols, are
physical entities (such as character strings) used to convey meaning. Meaning is derived
from the relationships between symbols, concepts, and real-world entities. A concept
can be expressed in two different sets of symbols, but the meaning of these symbols
aids in understanding the concept. This implies that two or more symbols can have the
same meaning in the real world. For instance, ‘human’ in English is known as ‘menselijk’
in Dutch and ‘humain’ in French, yet the meaning of these symbols remains consistent
across all languages.

In literature [3.8-3.9], semantic interoperability is defined as the ability of computer
systems to exchange data with unambiguous meaning, referring to the exchange of the
meaning of data. In this thesis, we study the meaning of contexts, which is referred to as
the semantics of those contexts. The translation of contexts into these meaningful repre-

70 CHAPTER 3

sentations, i.e., semantics, is important for achieving semantic interoperability. Semantic
interoperability can be established between two iOs in a smart space, if the meaning of
contexts maps to the shared ontology of the smart space. When the meaning of contexts
maps with the shared ontology, it means that the understanding of the situations or
environments matches the agreed-upon framework of concepts and their relationships
within that specific domain. We will discuss the properties related to mapping in Chapter
4 with semantic reasoning.

Definition (Semantic Interoperability): The ability of iOs in a smart space to interoper-
ate using only the meaning (semantics) of contexts is called semantic interoperability.
Semantic interoperability of iOs is built on top of communication interoperability and is
typically achieved by utilizing a shared ontology.

The next smart space property is openness. For openness, the hardware and software
platforms of smart nodes in a smart space should allow third parties to develop and imple-
ment iOs that can be used in the smart space. The smart space architecture must support
portability of iOs and enable interoperability in heterogeneous networks of smart nodes.
Let the set of protocols, message formats and syntax in smart space SSi be denoted by
SyntaxFormat (SF), i.e., SFi. Consider a new iO (iOnew that has just joined SSi. Let the set of
protocols, message formats and syntax employed by iOnew be given by SFnew. The set SFnew
needs to be a subset of SFi or the smart space needs to facilitate a translation between SFi
and SFnew (e.g. by means of a communication gateway) for openness. In addition, semantic
interoperability of the iOnew in SSi is achieved if the additional condition holds that the
ontologies of iOnew are a subset of the ontologies of SSi . Therefore, openness exists in the
architecture when the joining of new smart nodes in the architecture can be established
by a third party.

Definition (Openness): A smart space architecture is said to be open if its protocols, data
formats and syntax are well-described such that third parties can design new iOs and
nodes that will integrate with an existing smart space.

The next smart space property is extendibility. A smart space architecture must also be
extendible to allow for additions to the smart space, e.g., to enable smart nodes to ac-
cess the smart space easily in new applications. It must enable programmers to develop
applications without having to interact with the physical world of embedded devices. In
other words, the smart space must provide an interface that can decouple programming
and application development from physical infrastructure deployment and integration.
Extendibility indicates that new nodes and applications can easily be inserted into a smart
space; meaning installation and bootstrapping should be with minimal technical expertise
involvement.

71SMART SPACE PROPERTIES AND SEMANTIC INTEROPERABILITY ARCHITECTURE

3

Definition (Extendibility): A smart space is said to be extendible if new smart nodes can
connect and new applications can be installed to the smart space.

A smart space is typically composed of heterogeneous smart nodes and networks. Smart
nodes have varying capabilities in terms of resources such as communication bandwidth,
computational power, memory and energy. LSNs are examples of resource-poor nodes
such as SNs and ANs, whereas HSNs are not limited in terms of resources. LSNs can execute
simple protocols and simple tasks. This requires a management mechanism to handle
LSNs’ resources and their associated services to facilitate efficient and timely responses
to changes in contexts.

Definition (Self-management): Self-management is the capability of smart space to moni-
tor and manage its resources and services.

Self-management services can be assigned to a particular smart node to be accessed by
all iOs. Alternatively, these services can also be distributed. A smart space should give
ample opportunities to the associated applications for enhancing their persistence by
self-management as a failure-free (dependable) operation of smart space applications is
key to user satisfaction.

Self-management for resources and services in smart space architectures can be extended
to include management for security and privacy. For example, the iOs taking part in smart
applications not only require access to sensitive data and services, but also insert their
own data and services into the smart space, which calls for security measures to be taken
(e.g. using encryption). Protecting privacy properties related to its users is an important
concern for a smart space. A privacy property is a mapping from an information receiver
IR and a data item D to a data handling property Dp: “IR will only do Dp with D”. A smart
space should, therefore, aim to guarantee and enforce privacy properties while exchang-
ing contextual knowledge with iOs.

Finally, we call the first three properties, namely adaptation, communication interoper-
ability and semantic interoperability, the primary properties of a smart space. They
represent the minimum requirements for a smart space to function. Specifically, i) the
behavior of each iO needs to adapt according to the state changes of smart applications,
a requirement derived from our definition of a smart space; ii) communication is a basic
necessity for exchanging information among smart nodes that produce and consume it;
and iii) semantic interoperability is required to establish a shared meaning for the ex-
changed information. Secondary smart space properties, namely openness, extendibility
and self-management can be implemented as needed based on application requirements
within smart spaces.

72 CHAPTER 3

3.3 Semantic Interoperability Architecture

Before we propose the semantic interoperability architecture in smart spaces, we would
like to discuss the following observations on challenges and considerations in the architec-
ture based on the discussion so far in this thesis.

Semantic Interoperability as a challenge in smart space architectures: We have in-
troduced two types of interoperability: communication interoperability and semantic
interoperability. Communication interoperability in smart spaces can be easily established
by using standard network protocols or by employing a gateway to connect with LSNs.
Example of standards include powerline technologies like X10 and LonWorks, wireless
technologies such as IEEE 802.15.4 for wireless sensor networks, and CAT5 for audio, video
or data communication. Additionally, middleware solutions like Jini [3.10], HAVi [3.11],
UPnP [3.12], and IoT middleware [3.13] can be utilized to connect with smart nodes. For
a comprehensive overview of communication interoperability utilized in various smart
space projects or applications, refer to Table 3.3.

The core challenge in smart space architectures is achieving semantic interoperability,
because different systems may use different terminologies, taxonomies, or ontologies to
represent information. Furthermore, the semantic interoperability architecture consists
of heterogeneous smart nodes that comprise a network of interconnected nodes with
varying capabilities, features, or specifications. These nodes may have different process-
ing power, memory capacity, communication protocols, or sensor types. To address this,
we need to develop semantic interoperability on top of communication interoperability to
facilitate information sharing among these iOs. This task is not trivial due to the heteroge-
neity of smart nodes, presenting a research challenge.

For instance, contexts from iOs must first be translated into semantics and then shared us-
ing a common ontology model. Each iO in the architecture should be capable of performing
this translation and aligning with the common ontology model. However, not all iOs (e.g.,
those of LSNs) can directly perform semantic translation. In such cases, indirect methods,
such as using a gateway node to translate contexts into semantics, can be employed. Con-
sider a distributed application where a body sensor node, attached to a user, exchanges
information with the user’s smartphone. Achieving a common understanding between
the body sensor node and the user’s smartphone requires knowledge representation.
However, this task is not straightforward due to resource limitations (energy, processor,
memory, and storage) in the body sensor node, presenting another research challenge.

Among the primary properties of smart spaces, we prioritize solving semantic interoper-
ability within the semantic interoperability architecture. Semantic interoperability also

73SMART SPACE PROPERTIES AND SEMANTIC INTEROPERABILITY ARCHITECTURE

3

Table 3.3. Communication interoperability related work.
Article Communication Interoperability

CISE [2.21] For lightweight communication, application layer protocols like HyperText Transfer
Protocol (HTTP) and Simple Mail Transfer Protocol (SMTP) are used for sending and
receiving messages, with the default language being Extensible Markup Language
(XML).

Goh et al. [2.22] The request and response messages are transmitted using SOAP, which utilizes
application layer protocols like HTTP and SMTP.

PERSIST [2.23] Various connectivity technologies, including Ethernet, Wi-Fi, Global Positioning
System (GPS), and 3G, are utilized for different types of nodes such as mobile
phones, home appliances, and surveillance cameras.

GUPSS [2.24] Communication with sensors was established using the low-power IEEE 802.15.4
standard, which defines the physical and Medium Access Control (MAC) layers for
a low-power Personal Area Network (PAN). The sunSPOT system and technologies
are employed for data transmission schemes that are similar to the UDP and TCP
protocols used on the internet.

(van der) Vlist et al. [2.25] Basic communication is achieved by using Ethernet and Wi-Fi.

Song et al. [2.26] Interoperability is established by combining services of devices based on the non-IP
Bluetooth and UPnP specifications.

SPITFIRE [2.27] To integrate the sensor into the web, 6LoWPAN in combination with CoAP is
introduced, as it can provide what are known as RESTful web services.

INSTANS [2.28] The connectivity is established using TCP over IP, and SSAP is utilized as the message
transmission protocol.

Morandi et al. [2.29] The connectivity is established using TCP over IP, and SSAP is utilized as the message
transmission protocol.

Natalia et al. [2.30] The connectivity is established using TCP over IP, and SSAP is utilized as the message
transmission protocol.

Eila et al. [2.31] The connectivity is established using TCP over IP, and SSAP is utilized as the message
transmission protocol.

Jussi et al. [2.32] The connectivity is established using TCP over IP, and SSAP is utilized as the message
transmission protocol.

Zeng et al. [2.33] The connectivity is established through Bluetooth, Zigbee and WiFi.

Sergey et al. [2.34-2.35] WiFi is commonly used as the wireless technology to interconnect various IoT
devices. Additionally, SSAP is employed as the message transmission protocol.

Andrey [2.36] The connectivity is established using TCP over IP, and SSAP is utilized as the message
transmission protocol.

Shabir [2.37] Communication between the cloud and IoT toolbox and the cloud and real devices
uses an HTTP approach, whereas CoAP is used to communicate between the cloud
and the IoT toolbox, as well as between the cloud and real devices, utilizes an
HTTP approach. On the other hand, CoAP is used for communication between the
toolbox and actual resources.

ISHEWS [2.43] Basic connectivity in communication is established through Ethernet, Wi-Fi, and
PPP protocols. CAT5 cables are used for audio, video, and data communications.
Network interoperability for communication is achieved through protocols such as
TCP, UDP, FTP, ARP, IP, and IPv6.

74 CHAPTER 3

facilitates adaptation in smart spaces through the adaptation in iOs. For instance, multiple
iOs collaborate to achieve specific goals in an application and dynamically adjust their
contexts to meet the requirements of these goals. These iOs adapt their contexts at run-
time without the need for prior configuration.

Integration of LSNs as a challenge in the semantic interoperability architecture: First, we
ensure that the LSNs are compatible for integration with the gateway in terms of commu-
nication protocols and hardware. To achieve this, we install any required drivers or soft-
ware on both the LSNs and the gateway to facilitate communication and data exchange.
The gateway requires an internet connection to further connect with a smart space. Once
the connection is established, we install iOs to produce or consume information within a
smart space.

We deploy SiOs and AiOs on LSNs which are typically not capable of doing complex
computations due to power and memory constraints. There is a wide range of potential
applications such as those in smart homes [3.14], smart healthcare [3.15], transport and
logistics management [3.16], inventory and product management [3.17], firefighting
systems [3.18], social networks [3.19], smart cities [3.20], and smart lighting systems
[3.21], to name just a few. However, the translation of contexts into semantics poses a
bottleneck for LSNs. In some infrastructures [3.22-3.28], LSNs are capable of semantically
sharing information using semantic web technologies such as the Sensor Web Enable-
ment (SWE) specification. SWE defines sensor data representation in the Sensor Model
Language (SensorML), which utilizes an XML-based structure. SensorML describes the
semantics and relationships between different data elements of sensor nodes using XML
representations. SWE provides models and interfaces to handle sensor data (represented
in SensorML) in applications based on heterogeneous sensor networks. It aims to enhance
the practicality of producing semantics for smart nodes and establish interoperability with
the semantic web. Similar approaches exist for LSNs to comply with the semantic web,
including Sensorpedia [3.29], SensorWare [3.30], and SensorMap [3.31].

However, while these approaches are effective in integrating LSNs with the semantic web,
they yield unfavorable results when LSNs themselves need to represent semantics, as this
significantly increases their power consumption and relies heavily on processing capacity.
This tradeoff between the lifespan and computational capability of LSNs creates an op-
portunity to integrate an external unit—a gateway node—that can provide the necessary
computational power and knowledge representation capabilities to enable information
sharing with other smart nodes. The GSN in the semantic interoperability architecture
offers an excellent solution to address the computation and memory bottleneck of LSNs.
By deploying a GWiO on the GSN, we can compute knowledge representations for LSNs
and process them to achieve improved results. Consequently, the GSN becomes a power-

75SMART SPACE PROPERTIES AND SEMANTIC INTEROPERABILITY ARCHITECTURE

3

ful smart node capable of performing computations and executing semantics through the
GWiO, using the contexts received from resource-limited LSNs.

Consideration of management tasks in the semantic interoperability architecture:
Management tasks in the semantic interoperability architecture, such as application man-
agement, resource management, and security and privacy management, depend on the
specific requirements of the applications. The application management task is performed
by the iOs themselves (explained in chapter 4); eliminating the need for a separate com-
ponent called AMiO in the proposed architecture. Resource management involves repre-
senting the more abstract concept of smart nodes and their service discovery as defined
in the architecture. For example, when a smart node leaves an application, its services
should be handed over to another smart node within the application. Another example
of resource management is workload balancing among SBiOs. This involves distributing
the workload based on the number of iOs communicating with a single SBiO. If an SBiO
becomes overloaded, some services can be transferred to another SBiO. It is important to
note that resource management is beyond the scope of this thesis; however, we propose
a workload balancing mechanism for SBiOs in [3.32].

Finally, the security and privacy management task in the architecture involves a concept
of membership with different authorization levels. To address this, we propose a single
management component, the MiO, associated with each SBiO in the semantic interoper-
ability smart space architecture.

Developers can implement tasks related to AMiOs, SPMiOs and RMiOs as needed, based
on the application requirements. By centralizing all management tasks within the MiO,
developers can choose and configure the specific management task required for their
application. In this thesis, the management task of MiO is to deploy and maintain a basic
ontology graph at the SBiO. The role of MiO becomes more apparent in Chapter 4 when
we delve into the discussion of ontologies.

We now propose the design of a semantic interoperability architecture in smart spaces, as
depicted in Fig. 3.6. This architecture generalizes the smart space architectures studied in
Section 2.3. Depending on the requirements of the application at hand, users can employ
specific instantiations of this semantic interoperability architecture. Figure 3.7 illustrates
the component diagram, depicting the processes and dependencies among iOs in the
architecture.

In a smart space application, various iOs are present. All iOs convert contexts into seman-
tics using a semantic representor. The semantic representor refers to a module that is
responsible for representing semantic information in a structured format. This involves

76 CHAPTER 3

converting contexts into a standardized semantic representation, such as RDF, which al-
lows for the explicit representation of meaning and relationships between entities. The
PiOs rely on the contexts received from the environment and generate semantics using
the semantic representor that are intended to be shared with other iOs. The updated
semantics at the SBiO are processed by semantic reasoning (discuss in Chapter 4), utilizing
an ontology graph that defines the relationships between different semantics.

Further, these semantics are stored in the SBiO repository and can be accessed by CiOs.
This enables meaningful interaction between a source iO and receiver iO through the
exchange of semantics via the SBiO in a smart space. Please note that we will delve into
the details of semantic interactions and the ontology graph in Chapter 4. The GWiO com-
ponent consists of two handlers: a sensor handler and an actuator handler. The sensor

Figure 3.6. Semantic interoperability architectural design.

77SMART SPACE PROPERTIES AND SEMANTIC INTEROPERABILITY ARCHITECTURE

3

handler processes information from SiOs, while the actuator handler processes informa-
tion towards AiOs. These handlers rely on input and output information from sensors and
actuators, respectively.

Application logic refers to the set of rules, procedures, and operations that govern the
behavior and functionality of a smart application. It determines how the application
processes data, responds to events and user inputs, performs calculations, and carries
out specific tasks or functions. The contexts received from an SiO are transferred to the
application logic through the GWiO, and AiO receives the actuation commands from the
application logic via the same GWiO. The application logic concludes actuation commands
based on the contexts received from SiOs and the semantics received from the SBiO.
Before being used by the application logic, the semantics received from the SBiO is first
translated into contexts by the GWiO. Lastly, an MiO manages communications between
smart spaces and is installed on the same node as an SBiO.

In this proposed architecture, consisting of an SBSN, a set of distributed HSNs or GSNs
along with LSNs, represents a single smart space. Multiple smart spaces are formed by a
collection of different SBSNs, with each SBSN corresponding to a single smart space.

Figure 3.7. Processes and dependencies among iOs in the semantic interoperability architecture.

78 CHAPTER 3

According to our definition of a smart space, the following relationships hold for smart
nodes in a smart space SS and denoted by SS.N.

p 51

l number 𝑓𝑓𝑓𝑓 ∈ {𝑓𝑓𝑓𝑓1, … ,𝑓𝑓𝑓𝑓𝜂𝜂𝜂𝜂} that is closest in physical distance to the primary seat. The serial number
carried by a user may change over time,

p53

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖+1(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜂𝜂𝜂𝜂 + 1), 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝜂𝜂𝜂𝜂) . Because this servic

P55

{𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2, … , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜆𝜆𝜆𝜆} . A comparison of multiple smart space architectures with respect to the performance
of 𝙰𝙰𝙰𝙰 can be formally represented as a MOP. Without loss of generality, we can assume that all the
objectives are cost functions to be minimized as given in the following formalization.

minimize
𝑖𝑖𝑖𝑖={1,…,𝜆𝜆𝜆𝜆}

𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰) |𝑣𝑣𝑣𝑣 ∈ {1, … ,𝑉𝑉𝑉𝑉}

subject to (𝛿𝛿𝛿𝛿1, … , 𝛿𝛿𝛿𝛿𝐿𝐿𝐿𝐿) (3.1)

p56
It may be the case that none of the candidate system architectures satisfies the given set of constraints
and then we say the application 𝙰𝙰𝙰𝙰 is not feasible in these architectures. We can apply this formalization
to our example with only two candidate architectures, leading to the following MOP (𝜆𝜆𝜆𝜆 = 2, 𝑉𝑉𝑉𝑉 = 2, and
L = 3):

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

minimize
𝑖𝑖𝑖𝑖={1,2}

𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)

 subject to �
𝛿𝛿𝛿𝛿1:𝑚𝑚𝑚𝑚1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝙰𝙰𝙰𝙰)≤1 𝑖𝑖/𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

𝛿𝛿𝛿𝛿2:𝑚𝑚𝑚𝑚2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏(𝙰𝙰𝙰𝙰))≤1 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝛿𝛿𝛿𝛿3:0≤𝜂𝜂𝜂𝜂≤𝜂𝜂𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

� (3.2)

where the last constraint indicates that the application 𝙰𝙰𝙰𝙰 is required to support up to 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 users, such
that adequate behavior of application, i.e., 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 is guaranteed if 𝜂𝜂𝜂𝜂 ≤ 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 holds. This does not
necessarily imply that the application 𝙰𝙰𝙰𝙰 will fail whenever 𝜂𝜂𝜂𝜂 > 𝜂𝜂𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟.

P57
cluded, i.e., 𝙰𝙰𝙰𝙰𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 . It is

p66

According to our definition of a smart space, the following relationships hold for smart nodes in a smart
space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 (3.3)

 (3.3)

where nSB, nH, nGW, nS and nA denote the SBSN, the set of HSNs, the set of GSNs, the set of
SNs and the set of ANs in SS.N, respectively. Note that in a smart space it is necessarily
the case that y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty

set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

. More specifically, in a smart space there is one SBSN and a non-
empty set of smart nodes, i.e.,

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

. Furthermore, logic dictates that y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

 if and only if

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

 or

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

.

Each smart node has an iO or a set of iOs. The set of all iOs in a smart space is denoted
by SS.iO:

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

 (3.4)

where SB, MO, P, C, GW, S and A denote the SBiO, the MiO, the set of PiOs, the set of
CiOs, the set of GWiOs, the set of SiOs and the set of AiOs respectively. The terms on the
right-hand side of the equation denote the sets of specific types of iOs hosted by smart
nodes as follows:
· The combination of sb and mo are together hosted by a node

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

, where

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

 and

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

; and more than one combination of this can be hosted by the
node

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

.
· p or c are hosted by a node

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

, where

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

 and

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

; and more than one p or
c can be hosted by the node

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

. This is also possible that the combinations of p and c
can be hosted by the node

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

.
· gw is hosted by a node

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

, where

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

; and more than one gw can be
hosted by the node

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

.
· s is hosted by

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

, where

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

; and more than one s can be hosted by the node

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

. Similarly, a is hosted by

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

, where

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

; and more than one a can be hosted
by the node

y the case that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.𝑁𝑁𝑁𝑁 ≠ ∅ . More specifically, in a smart space there is one SBSN and a non-empty
set of smart nodes, i.e., 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 ∪ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ∪ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅ . Furthermore, logic dictates that 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≠ ∅ if
and only if 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 ≠ ∅ or 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 ≠ ∅.

Each smart node has an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. The set of all 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in a smart space is denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∪ 𝑆𝑆𝑆𝑆 ∪ 𝐴𝐴𝐴𝐴 (3.4)

 The combination of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are together hosted by a node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 ; and more than one combination of this can be hosted by the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 .

 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 are hosted by a node 𝑛𝑛𝑛𝑛ℎ ∈ 𝑛𝑛𝑛𝑛𝐻𝐻𝐻𝐻 , where 𝑝𝑝𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆 and 𝑐𝑐𝑐𝑐 ∈ 𝐶𝐶𝐶𝐶 ; and
more than one 𝑝𝑝𝑝𝑝 or 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ . This is also possible that the
combinations of 𝑝𝑝𝑝𝑝 and 𝑐𝑐𝑐𝑐 can be hosted by the node 𝑛𝑛𝑛𝑛ℎ.

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is hosted by a node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝑛𝑛𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ; and more than one 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
can be hosted by the node 𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.

 𝑠𝑠𝑠𝑠 is hosted by 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 ∈ 𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 , where 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆 ; and more than one 𝑠𝑠𝑠𝑠 can be hosted by
the node 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 . Similarly, 𝑎𝑎𝑎𝑎 is hosted by 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 , where 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 ; and more
than one a can be hosted by the node 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 .

.

Note: s and a cannot communicate and share semantics directly, they first always need
to communicate with a gw to translate contexts into semantics and to communicate with
other iOs in a smart space.

79SMART SPACE PROPERTIES AND SEMANTIC INTEROPERABILITY ARCHITECTURE

3

3.4 Conclusions

In this chapter, we have discussed the process of selecting the best smart space archi-
tecture, specifically tailored to meet a specific performance metric, i.e., response time
relevant to smart applications. To achieve this, we formulated a multi-objective optimiza-
tion problem to find an optimal architectural solution among feasible alternatives based
on the specific requirements of applications in a smart space. We concluded that the
choice of a smart space architecture is highly dependent on the specific requirements
of the application, taking into consideration performance metrics that may vary depend-
ing on the context. Additionally, we explored the various properties of smart spaces
and proposed the semantic interoperability architecture. Through this discussion, we
identified communication interoperability, semantic interoperability, and adaptation as
the primary properties of smart spaces, while others such as openness, extendibility, and
self-management are considered secondary properties. Lastly, we recognized that achiev-
ing semantic interoperability and integrating low-capacity devices within the architecture
pose the most challenging issues to be resolved.

80

81SEMANTIC INTEROPERABILITY

4

Chapter 4
Semantic Interoperability

We proposed the semantic interoperability architecture in Chapter 3 where we empha-
sized that semantic interoperability is a property that is both vital (a primary smart space
property) and challenging to realize. In this chapter, we lay out the details of how to
achieve semantic interoperability between iOs in a smart space and present iO interaction
mechanisms. To accomplish this, we discuss fundamental concepts such as semantics and
reasoning, and explore SSAP transactions for facilitating semantic interactions in smart
spaces. Additionally, we provide scenario examples to illustrate semantic interactions in
two parts: i) semantic interactions among iOs of LSNs and HSNs to enable adaptations
within a single smart application of a smart space, and ii) semantic interactions among iOs
for adaptations with multiple interconnected smart applications of a smart space.

4.1 Introduction

Interoperability refers to the ability of two systems to operate together. In [4.1], interoper-
ability is structured into multiple levels, including the no connection level, technical level,
syntactical level, semantic level, dynamic level, and conceptual level interoperability.
This 6-level model of interoperability is quite complex. Other researchers have proposed
simplified models with fewer levels. For instance, [4.2] presents an interoperability model
with node, service, and information levels.

In this thesis work, we adopt the simple two-level interoperability model from the SOFIA
project [1.35]. In this model, interoperability is defined at the connection level (commu-
nication interoperability, as explained in Chapter 3) and at the semantic level (semantic
interoperability, as defined in Chapter 3). The connection level interoperability of nodes
in the SOFIA project utilizes the standard OSI model, ranging from the physical layer to
the transport layer, for process-to-process data transfer. In general, communicating nodes
may use different hardware and software platforms, as well as different communication
protocols, resulting in a heterogeneous network. However, communication interoper-
ability alone does not guarantee that the exchanged information can be understood and
utilized by the receiver. To achieve that, the iOs need to interoperate at a higher level,
namely the semantic level interoperability (or simply semantic interoperability). Semantic

82 CHAPTER 4

interoperability ensures that the meaning of the exchanged information is consistent
across iOs that have access to it.

For semantic interoperability, sharing information in a smart space requires a suitable
abstraction technology that specifies how to express shared concepts and their relation-
ships, as well as an ontology that establishes the mapping between the exchanged infor-
mation and the corresponding knowledge within a specific domain, ensuring its validity.

There is a considerable body of literature on information sharing in the semantic web
using web technologies. One common approach to implementing semantic web technolo-
gies is through the utilization of the blackboard architecture style [4.3]. The blackboard
architecture style is analogous to a classroom blackboard used for collaborative problem-
solving. It is a data-directed and partially data-driven architecture. The architecture is
divided into two main components: the blackboard (which stores data) and knowledge
sources (representing the knowledge of a local domain), as shown in Fig 4.1. Knowledge
sources do not interact with each other directly; rather, they interact and respond to the
blackboard. It is also possible to introduce an additional component, known as the con-
troller, to coordinate the interactions between knowledge sources and the blackboard.

Figure 4.1. Blackboard architecture style.

In the experimental section of this thesis, we utilize the solution provided by SOFIA for
publishing and subscribing semantics in the proposed semantic interoperability architec-
ture. SOFIA employs a publish-subscribe pattern based on the blackboard architecture
style for semantic solutions in smart spaces. It consists of two entities: the Knowledge
Processor (KP) as a knowledge source and the Semantic Information Broker (SIB) as a
blackboard. SOFIA offers a platform for interoperability across domains, devices, and
vendors, known as Smart-M32 (Multi-vendor, Multi-device, Multi-domain). It enables

2 https://github.com/smart-m3/sib-tcp

83SEMANTIC INTEROPERABILITY

4

the integration of information domains that participate in smart applications using web
technologies. For instance, an information domain can be represented as an ontology.
SOFIA enables the integration of ontologies at SIB, where KPs participate in producing or
consuming information through SIB. We leverage the Smart-M3 architecture to align with
the proposed semantic interoperability architecture. In this context, HSNs and GSNs be
like the KPs, while the SBSN corresponds to the SIB. Therefore, the PiOs, CiOs and GWiOs
do not directly communicate with each other; rather, they interact and communicate
with the SBiO using the SSAP protocol, as depicted in Fig 4.2. An additional iO, the MiO,
serves as a controller responsible for managing semantics at an SBiO and is colocated with
the SBiO on the same node. It operates differently from the controller in the blackboard
architecture style, as the MiO does not directly interact with other iOs in a smart space.
Its tasks include deploying and managing application ontologies at the associated SBiO on
the SBSN node. Lastly, the MiO has the capability to modify or delete RDF triples, thereby
managing the semantics stored at the SBiO.

Figure 4.2 Interactions of iOs with the SBiO and MiO.

In this chapter, we address research question RQ2, aiming to achieve semantic interoper-
ability within the proposed semantic interoperability architecture. It is natural to question
what conditions are necessary to achieve semantic interoperability. In this context, we
discuss the following three necessary conditions.

1.) First and foremost, in order to establish a shared understanding of the information
being shared, the participating entities must possess a common understanding of the
knowledge domain. This necessitates a precise description of the domain, such as a
taxonomy. A taxonomy serves as a classification scheme and functions as a knowledge
map. An ontology, on the other hand, is a tool used to describe such a taxonomy, defin-
ing its concepts and the relationships between them. To formally specify an ontology
for a domain and enable communication using that ontology, two key components

84 CHAPTER 4

are required: i) a syntax for referencing concepts and their direct relationships, and
ii) a language for representing the knowledge encapsulated within the domain tax-
onomy. The former allows for expressing any semantics and relationships, regardless
of whether they are valid within the domain taxonomy, while the latter enforces the
validity of the expressed information. For instance, consider the taxonomy statement
“Brown is a Doctor”, where Brown belongs to the human class and Doctor belongs to
the profession class within the domain taxonomy. Consequently, a valid expression
would be “Brown is a human name, Brown is a Doctor”, whereas an invalid expres-
sion would be “Brown is a color”. In Section 4.2.1, we discuss RDF triples in detail,
which consist of a subject, predicate, and object. The predicate is used to validate the
property type of the subject. If “Brown” is the name, the predicate will represent the
“name” property, and if “Brown” is the type, the predicate will represent the “type”
property. Thus, the validity of an RDF triple depends on how the statement is properly
represented and aligned with the intended semantics.

In the proposed semantic interoperability architecture outlined in Chapter 3, we
introduced the concept of knowledge representation. RDF (Resource Description
Framework) is employed to represent knowledge, while the Ontology Web Language
(OWL) is utilized to represent the knowledge embodied in a domain taxonomy, e.g.
in the domain of lighting applications. In Section 4.2.1 of this chapter, we provide a
comprehensive explanation of the underlying concepts of semantics and reasoning.

2.) The second essential condition for achieving semantic interoperability is that the com-
municating entities must reach a consensus on a domain ontology that will govern
their interactions. The domain ontology defines the necessary specifications for an iO,
such as the information or services expected to be shared by the iO within the smart
space. To fulfill this requirement, iOs that communicate semantics to other iOs must
adhere to the constraints imposed by the designated domain ontology.

In this thesis, we adopt an approach that utilizes application ontologies for designing
smart lighting applications within the proposed semantic interoperability architecture.
Consequently, we confine the implementation of ontologies to the smart lighting
domain. In Section 4.2.1, we provide a comprehensive explanation of the smart light-
ing domain and its relevance to the application ontologies employed in the proposed
semantic interoperability architecture.

3.) Thirdly, for semantic interactions between the communicating entities in smart
spaces, it is essential to establish a protocol that facilitates their interaction. This
protocol should encompass a precise description of how connectivity is managed and
semantics are shared between iOs. Regarding the protocol for purposeful interactions

85SEMANTIC INTEROPERABILITY

4

among iOs, three key components are required: i) a set of transactions that outline the
procedures for joining and leaving a smart space, ii) a set of transactions for updat-
ing, querying, and subscribing to semantics by iOs, and iii) a transaction mechanism
within the protocol that enables seamless interaction between iOs. To fulfill these
requirements, we utilize the SSAP protocol, which enables iOs to modify and access
semantics. Section 4.2.2 provides a detailed explanation of the SSAP protocol and its
role in facilitating semantic interactions among iOs.

In Section 4.2, we introduce the fundamental concepts of semantic interoperability,
specifically semantics and reasoning, as well as SSAP transactions. Section 4.3 delves into
the mechanism of semantic interactions among iOs in a smart application, covering two
aspects: i) semantic interactions of PiOs and CiOs with an SBiO, and ii) semantic interac-
tions of a GWiO with an SBiO. Finally, in Section 4.4, we present a mechanism for semantic
interactions among multiple smart applications within a smart space.

4.2 Fundamental Concepts of Semantic Interoperability

In this section, we discuss the concept of semantics and reasoning in Section 4.2.1 and
SSAP transactions in Section 4.2.2. These concepts are based on three necessary condi-
tions of semantic interoperability introduced in Section 4.1.

4.2.1 Semantics and reasoning
In chapter 3, we defined semantic interoperability as the extraction of semantics from
the information to be shared by iOs in a smart space. The sharing of semantics in a smart
space is made possible by SBiO, where SBiO generates the results of queries and subscrip-
tions through semantic reasoning. Therefore, in this section, we first define and discuss
semantics, and then we explain semantic reasoning.

We introduced the concept of semantics, where knowledge is represented using RDF
graphs. An RDF graph is composed of graph_nodes and directed edges. Graph_nodes rep-
resent objects in the domain of discourse while edges represent relationships indicated
by the label. We represent the combination of graph_nodes and directed edges as RDF
triples. An RDF triple, or simply a triple, is an object of the form {rdf_subject, rdf_predi-
cate, rdf_object}. The rdf_subject and rdf_predicate are resources (Uniform Resource
Identifier (URI)s) defined by graph_nodes in an RDF graph, while the rdf_object is another
resource identified by a URI or a literal and also defined by a graph_node. Literals have
datatypes that define the range of possible values, such as strings, numbers, and dates.
An example of RDF graph is shown in Fig 4.3.

86 CHAPTER 4

For instance, the context set

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 of a smart application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 = {α1,α2}= {“light has an intensity
in unit”, “light has color”} is represented as a set of RDF triples

P72
Where 𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 ⊆ 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 and 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 ⊆ 𝑂𝑂𝑂𝑂𝑠𝑠𝑠𝑠

P 87
We consider an SBSN (𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) in the smart space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, with an 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂 (𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔) and an 𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂 (𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔). The
nodes of the application 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (i.e., 𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠 and 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎) are attached to 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 using TCP/IP and exchange
semantics using SSAP transactions. We develop a basic application ontology graph (𝑂𝑂𝑂𝑂_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) for the
smart space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 that is shown in Fig 4.13 and deploy at 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 using 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔. The graph 𝑂𝑂𝑂𝑂_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 includes
the description of nodes, deployment of 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂s and interaction states of 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂s in the smart space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and it
includes the following RDF triples.

{, ("𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"), �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"� ,
�"𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"�, ("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"), ("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"),

 �"𝑔𝑔𝑔𝑔𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�, �"𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�}

P92

{("𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"), �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛ℎ_𝑝𝑝𝑝𝑝"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛ℎ_𝑐𝑐𝑐𝑐"�,,
�"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"�,

�"𝑛𝑛𝑛𝑛ℎ_𝑝𝑝𝑝𝑝", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔ℎ_𝑝𝑝𝑝𝑝"�, �"𝑛𝑛𝑛𝑛ℎ_𝑐𝑐𝑐𝑐", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐ℎ_𝑐𝑐𝑐𝑐"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"�
("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠")("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"),

�"𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"�, �"𝑔𝑔𝑔𝑔ℎ_𝑝𝑝𝑝𝑝", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�, �"𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�,
�"𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�, �"𝑐𝑐𝑐𝑐ℎ_𝑐𝑐𝑐𝑐", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�}

P97

{�"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑢𝑢𝑢𝑢"� , �"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑎𝑎𝑎𝑎"�, �"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎"�,
�"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠"�, �"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠"�,

 �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢𝑢𝑢"�, �"𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎"�, �"𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎"�,
 �"𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠"�, �"𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠"�, ("𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎")

("𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎") , ("𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"), ("𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎")}

 ={σ1,σ2,σ3}, where P72
Where 𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 ⊆ 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 and 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 ⊆ 𝑂𝑂𝑂𝑂𝑠𝑠𝑠𝑠

P 87
We consider an SBSN (𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) in the smart space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, with an 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂 (𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔) and an 𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂 (𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔). The
nodes of the application 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (i.e., 𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠 and 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎) are attached to 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 using TCP/IP and exchange
semantics using SSAP transactions. We develop a basic application ontology graph (𝑂𝑂𝑂𝑂_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) for the
smart space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 that is shown in Fig 4.13 and deploy at 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 using 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔. The graph 𝑂𝑂𝑂𝑂_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 includes
the description of nodes, deployment of 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂s and interaction states of 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂s in the smart space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and it
includes the following RDF triples.

{, ("𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"), �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"� ,
�"𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"�, ("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"), ("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"),

 �"𝑔𝑔𝑔𝑔𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�, �"𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�}

P92

{("𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"), �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛ℎ_𝑝𝑝𝑝𝑝"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛ℎ_𝑐𝑐𝑐𝑐"�,,
�"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"�,

�"𝑛𝑛𝑛𝑛ℎ_𝑝𝑝𝑝𝑝", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔ℎ_𝑝𝑝𝑝𝑝"�, �"𝑛𝑛𝑛𝑛ℎ_𝑐𝑐𝑐𝑐", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐ℎ_𝑐𝑐𝑐𝑐"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"�
("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠")("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"),

�"𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"�, �"𝑔𝑔𝑔𝑔ℎ_𝑝𝑝𝑝𝑝", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�, �"𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�,
�"𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�, �"𝑐𝑐𝑐𝑐ℎ_𝑐𝑐𝑐𝑐", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�}

P97

{�"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑢𝑢𝑢𝑢"� , �"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑎𝑎𝑎𝑎"�, �"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎"�,
�"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠"�, �"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠"�,

 �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢𝑢𝑢"�, �"𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎"�, �"𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎"�,
 �"𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠"�, �"𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠"�, ("𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎")

("𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎") , ("𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"), ("𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎")}

 and
P72
Where 𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 ⊆ 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 and 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 ⊆ 𝑂𝑂𝑂𝑂𝑠𝑠𝑠𝑠

P 87
We consider an SBSN (𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) in the smart space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, with an 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂 (𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔) and an 𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂 (𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔). The
nodes of the application 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (i.e., 𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠 and 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎) are attached to 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 using TCP/IP and exchange
semantics using SSAP transactions. We develop a basic application ontology graph (𝑂𝑂𝑂𝑂_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) for the
smart space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 that is shown in Fig 4.13 and deploy at 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 using 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔. The graph 𝑂𝑂𝑂𝑂_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 includes
the description of nodes, deployment of 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂s and interaction states of 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂s in the smart space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and it
includes the following RDF triples.

{, ("𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"), �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"� ,
�"𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"�, ("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"), ("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"),

 �"𝑔𝑔𝑔𝑔𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�, �"𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�}

P92

{("𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"), �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛ℎ_𝑝𝑝𝑝𝑝"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛ℎ_𝑐𝑐𝑐𝑐"�,,
�"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"�,

�"𝑛𝑛𝑛𝑛ℎ_𝑝𝑝𝑝𝑝", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔ℎ_𝑝𝑝𝑝𝑝"�, �"𝑛𝑛𝑛𝑛ℎ_𝑐𝑐𝑐𝑐", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐ℎ_𝑐𝑐𝑐𝑐"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"�
("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠")("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"),

�"𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"�, �"𝑔𝑔𝑔𝑔ℎ_𝑝𝑝𝑝𝑝", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�, �"𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�,
�"𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�, �"𝑐𝑐𝑐𝑐ℎ_𝑐𝑐𝑐𝑐", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�}

P97

{�"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑢𝑢𝑢𝑢"� , �"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑎𝑎𝑎𝑎"�, �"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎"�,
�"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠"�, �"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠"�,

 �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢𝑢𝑢"�, �"𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎"�, �"𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎"�,
 �"𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠"�, �"𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠"�, ("𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎")

("𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎") , ("𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"), ("𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎")}

· σ1 = (“Light”, “hasLightIntensity”, “LightIntensity”),
· σ2 = (“LightIntensity”, “hasUnit”, “LightUnit”),
· σ3 = (“Light”, “hasColor”, “LightColor”)

Figure 4.3. A graph of RDF triples with example.

Now we can give a formal definition of ontology as follows:

Definition (Ontology): An ontology is a collection of interconnected RDF graphs that de-
fines a set of concepts and categories in a particular domain, illustrating their properties
and relationships. It is also commonly referred to as an ontology graph.

This means that we represent concepts as RDF triples, allowing us to define a model for
representing concepts and their relationships in ontologies. In this thesis, we consider
application ontologies to design smart lighting applications within the semantic interoper-
ability architecture, which is introduced with the smart lighting model in Chapter 5. These
application ontologies represent a specific application or a set of related applications.
They define concepts and relations for smart lighting applications and are made available
at the SBiO. Every concept can be expressed with all possible relationships. For example, a
sensor ontology graph can include all conceivable concepts and relations illustrated in Fig
4.4. This figure is self-explanatory and can be easily correlated with Fig 4.3.

87SEMANTIC INTEROPERABILITY

4

Figure 4.4. An example of the sensor ontology graph in the smart space ontology.

In this thesis, we adopt the approach of using application ontologies in smart spaces. It is
important to note that our focus will specifically be on the lighting domain, considering the
implementation of smart lighting applications in subsequent chapters, which will utilize
the proposed semantic interoperability architecture. To achieve this, we design ontologies
using OWL to express concepts in smart spaces. An example of an application ontology
for a smart space, also applicable for smart lighting applications, is presented in Fig 4.5.

In an ontology, classes and subclasses help organize information and relationships within
a domain. They provide a structured framework for representing knowledge, making it
easier to reason about and query information related to that domain. Classes are catego-

88 CHAPTER 4

ries that represent a set of individuals or things in a particular domain. Subclasses are
specific categories that are more specialized and specific than the broader classes. The
taxonomy within the application ontology describes the following classes and subclasses.
It is important to note that these classes and subclasses are based on the necessary con-
cepts and relationships required for semantic interoperability in later chapters. Specifi-
cally, the relationships between nodes and iOs, node locations, and the interaction states
of iOs are highlighted as necessary concepts for achieving semantic interoperability in a
smart space. The interaction state of an iO defines the state used to share semantics in
a smart space for producing and consuming information. For example, a lamp can have
a possible state: ‘brightness level’. Additionally, a sensor can have a sensor value as the
interaction state for sharing in a smart space.

The superclass of the ontology graph shown in Fig 4.5 is ‘SmartSpace’. This class is further
connected to the classes of smart nodes through the predicate ‘hasSmartNode’. The smart
node classes define their associated iOs as subclasses by establishing a relationship using
the predicate ‘hasiO’. A smart node is also associated with a specific location, defined by a
relationship using the predicate ‘hasLocation’ within the smart space. The location of the
node is also specified by a literal value called ‘location’. All iOs have an interaction state,
represented by a literal value called ‘state’. These interaction states are used to execute
specific scenarios in smart applications. For instance, a sensor node with a PiO has a state
that contains sensor values. This state is considered the interaction state in the ontology.

It is important to note that we have included only the relationships in the graph that are
necessary to explain application scenarios in later chapters. In principle, there can be
many associated relationships, as exemplified in Fig 4.4 with the sensor ontology graph.
Therefore, we consider this graph as the basic ontology graph for a smart space, based on
the definition provided in Chapter 3. In fact, we will establish additional relationships as
predicates in subsequent chapters as needed to map smart lighting applications.

We deploy the basic ontology graph at SBiO with the help of MiO in a smart space. The
deployment view of the application ontology in a smart space is shown in Fig. 4.6. All iOs
are able to represent contexts into RDF triples using a semantic representor. The semantic
representor translates contexts into semantics on iOs and creates RDF triples to produce
or access information. In the case of LSN, the corresponding GWiO takes over the task of
translating contexts into semantics on behalf of iOs of LSNs. We also refer to the GWiO as
a translator, responsible for translating contexts into semantics (RDF triples) and vise vera.

89SEMANTIC INTEROPERABILITY

4

Figure 4.5. An ontology graph for a smart space.

Figure 4.6. Deployment view of application ontologies in a smart space.

90 CHAPTER 4

The iOs share semantics within a smart space through the SBiO, which is supported by
semantic reasoning. Semantic reasoning involves RDF matching operations and the ap-
plication of rules or axioms to existing relationships among concepts in order to infer
new relations within an ontology graph. The SBiO implements semantic reasoning us-
ing semantic reasoners, which are software tools capable of matching RDF triples and
deducing additional concepts and relationships from the original descriptions of concepts.
OWL provides a comprehensive set of RDF matching operations and predefined axioms
to facilitate this process. Some of the key functionalities of a semantic reasoner defined
using OWL, are as follows:

1. Consistency checking: A reasoner can verify the logical consistency of concepts in an
ontology graph, ensuring the absence of contradictions or conflicts. In the context of
OWL, logical consistency refers to the ontology’s lack of contradictions or conflicts.
A consistent ontology ensures the absence of logical errors, such as assertions that
violate defined rules or lead to contradictory statements. When inconsistencies are
detected during the consistency checking process, the reasoner will identify and
report the specific conflicting statements or logical errors within the ontology. This
feedback aids ontology developers in identifying and resolving inconsistencies in their
ontologies.

2. Inference of logical relationships: A reasoner can infer logical relationships between
entities based on defined properties and their characteristics. This encompasses the
inference of subclass relationships, property restrictions, and inverse relationships. In
OWL, there are several key logical relationships that can be inferred, including:
· Subclass relationships: A reasoner can infer subclass relationships between classes

based on the defined class hierarchy and the properties of the classes. For example,
if it is explicitly stated that “A” is a subclass of “B” and “B” is a subclass of “C” the
reasoner can infer that “A” is also a subclass of “C”.

· Equivalent class relationships: A reasoner can infer equivalent class relationships,
where two or more classes are semantically equivalent. If it is explicitly stated
that “A” is equivalent to “B”, the reasoner can infer that instances of “A” are also
instances of “B” and vice versa.

· Property relationships: A reasoner can infer relationships between properties
based on their characteristics and the defined restrictions. We list property re-
lationship inferences that are commonly integrated with semantic reasoning as
follows:
- Inverse property: An inverse property in ontology refers to a relationship be-

tween two properties where if one property connects entity A to entity B, the
inverse property connects entity B to entity A. For instance, ‘hasNode’ is inverse
of ‘hasiO’.

91SEMANTIC INTEROPERABILITY

4

 given relationship, ------- inferred by semantic reasoning

- Functional property: A functional property in ontology associates each instance
of a class with at most one unique value of another class. Node1 has an iO called
iO1. If there is another instance of the same relation, iO1 exhibits the existence
of the same individual.

- Inverse functional property: An inverse functional property in ontology associ-
ates each value of a class with at most one unique instance of another class. If
iO1 is the iO of Node1 and another instance of the same relation implies that iO1
is the same individual.

- Transitive property: A transitive property in ontology refers to a relation that
applies not only to a given element but also to all elements related to that
element. If SS1 has a node called Node1, and Node1 has an iO named iO1, then it
can be inferred that SS1 has iO1.

92 CHAPTER 4

- Symmetric property: A symmetric property in ontology refers to a relation
between two elements where if the relation holds between the first element
and the second, it also holds between the second element and the first. Node1
and Node2 have the property that they have the same smart space.

- Asymmetric property: An asymmetric property in ontology is a relation be-
tween two elements where if the relation holds between the first element and
the second, it does not hold in the reverse direction.

· Property domain and range: A reasoner can infer the domain and range of a prop-
erty based on the assertions and restrictions defined in the ontology. For example,
if it is explicitly stated that the property “hasChild” is defined on the class “Person”,
the reasoner can infer that if an individual has a child, that individual must be a
person.

· Disjointness relationships: A reasoner can infer disjointness relationships between
classes, indicating that they cannot have any common instances. If it is explicitly
stated that “A” and “B” are disjoint classes, the reasoner can infer that no instance
can be both of “A” and “B”.

3. RDF matching mechanism: A reasoner incorporates an RDF triple matching mecha-
nism. This mechanism involves matching RDF triples against specific criteria or pat-
terns. SPARQL (SPARQL Protocol and RDF Query Language) is used to express these
patterns or queries. RDF triple matching compares the rdf_subject, rdf_predicate, and
rdf_object components of triples with the corresponding components in the patterns
or queries. A match occurs when all components of a triple align with the pattern
or query. Various operations are involved in the matching process, including Equality
Comparison, Wildcard Matching, Range Matching, and Pattern Matching. Here is a
brief explanation of these matching operations:

93SEMANTIC INTEROPERABILITY

4

· Equality comparison: Equality comparisons in RDF triple matching involve com-
paring values within the rdf_subject, rdf_predicate, or rdf_object components of
RDF triples. These comparisons are used to determine if the values match specific
criteria or conditions. When performing equality comparisons, URIs or literals are
compared to check for equality. For example, when checking if the rdf_subject
of a triple matches a specific URI, an equality comparison is made between the
rdf_subject value and the URI being compared. If the URIs are the same, the com-
parison evaluates as true, indicating a match. Similarly, equality comparisons can
be applied to rdf_predicates and rdf_objects within RDF triples. For rdf_predicates,
URIs are compared to check for a specific URI match, while for rdf_objects, literals
are compared to determine if they match a particular value or condition.

· Wildcard matching: Wildcard matching involves using wildcard symbols or vari-
ables to represent unknown or unspecified components of RDF triples. Wildcards
enable flexible pattern matching, where the specific value of an rdf_subject, rdf_
predicate, or rdf_object component is either unknown or unnecessary to specify.
The most commonly used wildcard symbol is the question mark “?” (also known
as a variable or placeholder). When a question mark is used as a component in an
RDF triple pattern or query, it matches any value for that component during the
matching process. For instance, when the question mark “?” is used as a wildcard
for the rdf_subject component, it matches any rdf_subject value when the pattern
is matched against actual RDF triples. As long as the rdf_predicate and rdf_object
components match the specified criteria regardless of any rdf_subject value, will
be considered an RDF triple match.

· Range matching: Range matching involves comparing values in the rdf_object
component of triples against specified ranges or conditions. It is used to determine
if the rdf_object value falls within a specific range or satisfies certain criteria. The
rdf_object component can contain literal values such as strings, numbers, dates,
etc. Range matching enables the filtering or selection of RDF triples based on the
value range of the rdf_object component. For example, range matching can be
applied to the rdf_object values when matching the pattern against actual RDF
triples. Let us consider the scenario where we want to match only those triples
where the rdf_object value is a number between 10 and 20. In this case, the range
matching operation compares the numeric value of the rdf_object against the
specified range. If the value falls within the range, the triple is considered a match.
Range matching can be extended to other data types as well, such as dates or
strings. For instance, range matching on dates could involve checking if the rdf_ob-
ject value is within a specific date range, while range matching on strings could
involve performing string comparisons.

· Pattern matching: Pattern matching refers to the process of matching the structure
and relationships between the rdf_subject, rdf_predicate, and rdf_object compo-

94 CHAPTER 4

nents of RDF triples to a given pattern or template. A pattern refers to a specific
arrangement or structure that is searched for within a dataset. Patterns are defined
by a set of rules or criteria that specify what is being sought. For example, in a text
search, a pattern might be a sequence of characters that is desired to be found
within a larger body of text. Let us consider a list of email addresses and the objec-
tive is to extract all the email addresses ending in “.com”. This scenario exemplifies
the application of pattern queries. Wildcard matching is a specific type of pattern
matching that employs wildcard characters to represent unknown parts of a string.
Pattern matching, on the other hand, is a broader concept that encompasses find-
ing specific patterns or structures within data using defined rules or patterns.

In this subsection, we discussed the fundamental concepts of semantics and reasoning.
Ontology tools such as OWL and OWL2 come equipped with features like consistency
checking, inference of logical relationships, and a specific matching operation. In this the-
sis, we use OWL2 for semantic reasoning with a wildcard matching operation at SBiO in
the proposed semantic architecture to retrieve query and subscription results in the smart
space. Let us consider an example query from an iO where the query is (“Node1”, “hasiO”,
“?”) to the SBiO. We assume that the SBiO contains the following RDF triples: (“Node1”,
“hasiO”, “PiO1”) and (“Node1”, “hasiO”, “CiO1”). Matching RDF triples involves determining
if two triples (the querying triple and a triple at SBiO) are equivalent or compatible based
on their rdf_subject, rdf_predicate, and rdf_object components. To begin the matching
operation, we first start matching the rdf_subject of two triples. If the rdf_subjects are the
same, it indicates a match. The comparison is based on the URIs of the rdf_subjects. Next,
we compare the rdf_predicates of the two triples. If the rdf_predicates are the same,
it suggests a match. The comparison is based on the URIs of the predicates. Finally, we
compare the rdf_objects of the two triples. The specific comparison depends on the type
of rdf_object.
· If the rdf_objects are URIs, we compare their URIs. If the URIs are the same, it indicates

a match.
· If the rdf_objects are literals, we compare their literals. If the values are the same, it

suggests a match.

In this example, the rdf_object is a placeholder. Therefore, the matching operation yields
two possible triples as results: (“Node1”, “hasiO”, “PiO1”) and (“Node1”, “hasiO”, “CiO1”).

In Section 4.2.2, we will discuss the format of query and subscription transactions along
with other SSAP transactions. Additionally, the literature offers a wide range of other
semantic reasoners with similar functions and operations; a few of them are listed in
Table 4.1.

95SEMANTIC INTEROPERABILITY

4

Table 4.1 Semantic Reasoners.
Items Description

Pellet 3 Pellet is an open-source reasoner based on Java and OWL 2. It provides functionalities
that explain inferences and answer SPARQL queries; check the consistency of ontologies
and compute a classification hierarchy.

Apache Jena 4 Apache Jena is an open-source semantic web framework for Java. The RDF graphs are
represented in an abstract model and are queried through SPARQL.

Prova5 Prova is an open-source programming language and rule-based scripting middleware.
It supports java-based inference rules and provides users an ontology development
platform.

Flora-26 Flora-2 is an open-source semantic rule-based reasoner and supports for knowledge
representation and reasoning.

Gandalf7 Gandalf is an open-source decision engine based on PHP and is used for big-data
analysis.

KAON28 KAON2 is an inference engine for answering conjunctive queries using SPARQL.

Apache Marmotta9 Apache Marmotta is a rule-based reasoner and support for SPARQL queries

SPIN10 SPIN (SPARQL Inferencing Notation) supports advanced properties and rules for
semantic reasoning. SPIN is a W3C11 Member Submission created and manipulated
by TopQuadrant12. The SPIN rules are expressed in SPARQL that allows creating new
individuals and finding individuals using CONSTRUCT and WHERE keywords, respectively.
The SPIN rules can run directly on RDF databases.

HermiT13 HermiT is an open-source reasoner for determining consistency and identifying
subsumption relationships between classes.

4.2.2 SSAP transactions
The iOs must support a standard protocol to modify and access semantics at the SBiO.
Therefore, we use SSAP transactions for exchanging semantics by iOs with the SBiO in
the proposed semantic interoperability architecture. These transactions include JOIN,
LEAVE, INSERT, REMOVE, UPDATE, SUBSCRIBE, UNSUBSCRIBE and QUERY. When an iO
sends a transaction request to the SBiO, it receives a transaction confirmation. However,
in the case of QUERY, SUBSCRIBE, and UNSUBSCRIBE transactions, the iO also receives a
separate message containing the result of the subscription or query, in addition to the
confirmation message, as shown in Fig. 4.7. All transactions must be executed atomically
by the following two aspects: i) Ensuring that the operations either complete success-
fully or are completely rolled back. We have acknowledgment systems in transactions to

3 https://www.w3.org/2001/sw/wiki/Pellet.
4 https://jena.apache.org/.
5 https://prova.ws/.
6 http://flora.sourceforge.net/.
7 https://gndf.io/.
8 http://kaon2.semanticweb.org/.
9 http://marmotta.apache.org/ind.
10 http://www.spinrdf.org.
11 https://www.w3.org/.
12 https://www.topquadrant.com/.
13 http://www.hermit-reasoner.com/.

96 CHAPTER 4

ensure this. ii) Ensuring that no other transaction operates on the triple that is being used
by another transaction at the SBiO. This is similar to a binary semaphore in an operating
system, which is used to control access to shared resources. The transaction involving a
specific RDF triple receives a signal when it needs to be executed; otherwise, it waits until
the current transaction on the triple finishes. This ensures that only one transaction can
be executed at a time on a specific triple at the SBiO. This is particularly important for
queries, which may require multiple accesses to the underlying data structures within
the SBiO. Therefore, each transaction involves only two entities: an iO (a PiO or a CiO or a
GWiO) and an SBiO.

Figure 4.7. The basic operations of all transactions by iOs at the SBiO.

In more detail, the rules and functionalities of these transactions are explained as follows:
· JOIN and LEAVE transactions are (eventually) employed by all iOs. An iO starts a ses-

sion with the SBiO using a JOIN transaction and ends the session by using a LEAVE
transaction. The session provides access to the semantics stored at the SBiO using
other transactions. No further transaction requests are accepted from the connection
until a new JOIN transaction is invoked after the LEAVE transaction.

· INSERT, UPDATE and REMOVE transactions are employed by PiOs or GWiOs
o By using an INSERT transaction, a PiO or GWiO inserts RDF triples at the SBiO,

causing the SBiO to generate a specified graph node in the ontology graph.
o A PiO or GWiO can remove and update the application ontology graph at the SBiO

by means of REMOVE and UPDATE transactions, respectively. UPDATE transaction

97SEMANTIC INTEROPERABILITY

4

is an atomic combination of REMOVE and INSERT transactions, where REMOVE is
performed first.

· QUERY, SUBSCRIBE and UNSUBSCRIBE transactions are employed by CiOs or GWiOs.
o A CiO or GWiO can query for RDF triples at the SBiO by using a QUERY transaction

and get results from the SBiO in reply.
o Any CiO or GWiO in a smart space can subscribe to specific RDF triples, which means

placing a persistent query for triples stored at the SBiO by using the SUBSCRIBE
transaction. In this case, the CiO or GWiO is notified of changes in the correspond-
ing stored triples. Similarly, an UNSUBSCRIBE transaction terminates the persistent
query at the SBiO.

PiOs or GWiOs can modify semantics in the ontology graph at the SBiO using SSAP transac-
tions. When a new PiO joins a smart space, a specified URI for RDF triples associated with
the new PiO is generated within the application ontology graph using the INSERT transac-
tion. Afterwards, the new PiO can modify RDF triples using the UPDATE transaction.

Smart applications utilize these SSAP transactions within a smart space to realize their
intended behavior. The producing and consuming iOs employ these transactions with the
SBiO to execute scenarios in applications. We will now explain these transactions per-
formed by iOs to the SBiO. Let us consider a first example: a smart space (SSx) has a smart
application (

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

x) consisting of two light sensor nodes; na with a PiO pa, and nb with a PiO pb.
Both pa and pb have two interaction states to represent the status of light information i.e.,
‘on’ and ‘off’. These nodes are connected to the smart space SBSN node (nx), which itself
has two iOs: an SBiO (sbx) and an MiO (mox). The initial design of the basic application
ontology graph, created by the smart space developer and stored at sbx using mox, is
shown in Fig 4.8.

An iO has the ability to perform various SSAP transactions at sbx, including adding, remov-
ing, updating, querying, and subscribing to any triple. In order to successfully execute
these transactions, the iO must have knowledge of the basic structure of the information
stored in the ontology graph at sbx. For instance, if the iO intends to query the rdf_object
in a triple, it needs to have information about the rdf_subject and rdf_predicate associ-
ated with that triple. Now, let’s explain some transaction examples that can be performed
by an iO at sbx:

(i) Add and remove semantics: To add semantics (RDF triples) to the basic application
ontology graph at sbx, we utilize the INSERT transaction through the PiOs (pa and pb).
When the interaction states of PiOs are off, the PiOs add corresponding off states to the
graph. The graph, with the newly added RDF triples, is illustrated in Fig 4.9, where the

98 CHAPTER 4

RDF triples are INSERT{("pa ","hasState","OFF")} and INSERT{("pb ","hasState","OFF")}
by pa and pb, respectively.

Figure 4.9. The basic application ontology graph of Fig. 4.8 added with RDF triples.

The PiOs can also utilize the REMOVE transaction to remove RDF triples from the basic
application ontology graph. The graph, after the removal operation, is depicted in
Fig. 4.10 and the RDF triples are REMOVE{("pa ","hasState","OFF")} and REMOVE{(pb
","hasState","OFF")} by pa and pb, respectively.

Figure 4.8. The basic application ontology graph at sbx.

Figure 4.10. The basic application ontology graph with removed RDF triples.

99SEMANTIC INTEROPERABILITY

4

(ii) Update semantics: The PiOs have the capability to update RDF triples in the basic
ontology graph using the UPDATE transaction. The update operation involves using
a wildcard to identify the field that needs to be removed or updated. The UPDATE
transaction provides a persistent update operation, where the REMOVE/INSERT part
of SPARQL Update is executed only if the WHERE pattern produces a solution. This
ensures that the UPDATE transaction does not result in duplicate inserted triples at the
SBiO, since the REMOVE transaction is applied first. In this way, the UPDATE transac-
tion is guaranteed not to have the same inserted triples at the SBiO. The ontology
graph in Fig 4.9, with the updated RDF triples, is depicted in Fig 4.11.

Figure 4.11. The ontology graph of Fig 4.9 with updated RDF triples.

For example:

UPDATE{("pa ","hasState"," ?")|("pa ","hasState","ON")} by pa

UPDATE{("pb ","hasState"," ?")|("pb ","hasState","ON")} by pb

Now let us discuss accessing semantics from sbx using CiOs. In a particular application
scenario, a user may want to retrieve information from the smart space SSx. To achieve
this, the user needs to connect to sbx through a CiO. Let’s consider an example where
the user’s smartphone has an interface with a CiO (cs_phone) and establishes a connec-
tion with sbx.

(iii) Query semantics: cs_phone can query RDF triples at sbx using the QUERY transaction after
joining SSx. The QUERY transaction allows for the use of wildcard entries in the triples
for which we need answers to the query. When cs_phone initiates a query, sbx matches
the query using the pattern matching operation and retrieves the corresponding URIs

100 CHAPTER 4

from the ontology graph. It then lists all possible RDF triples in the query answer. Here
are a few examples:

Query: QUERY{("SSx ","?","?")}
Results: {(“SSx”,”hasSmartNode”,”nx”),(”SSx”,”hasSmartNode”,”na”),
 ("SSx ","hasSmartNode","nb ") }

Query: QUERY {("pa ","hasState","?"),("pb ","hasState","?")}
Results: {("pa ","hasState","ON"),("pb ","hasState","ON")}

(iv) Subscribe semantics: cs_phone can subscribe to RDF triples at sbx using the SUBSCRIBE
transaction. Similar to the QUERY transaction, we use wildcards in the RDF triples
for which we want to establish the subscription. sbx matches the wildcard URI using
the pattern matching operation and retrieves the corresponding RDF triples from the
ontology graph. It then lists all possible RDF triples in the subscription notification.
Once subscribed, cs_phone will receive notifications on any updates to the subscribed
RDF triples until the subscription is terminated using the UNSUBSCRIBE transaction.

Similar to the JOIN and LEAVE transactions, all other transactions also receive a confir-
mation message (cnf). When a CiO successfully performs a QUERY, SUBSCRIBE, or UN-
SUBSCRIBE transaction, it receives the notification (a list of all possible RDF triples) of
subscribed triples. In the case of SUBSCRIBE transaction, a CiO receives the notification of
the subscribed triples at the SBiO, while the CiO receives the notification as the list of last
updated triples (for the subscribed triples at the SBiO) before terminating the subscrip-
tion using the UNSUBSCRIBE transaction. When a CiO performs a QUERY transaction, it
receives the notification as the query results from the SBiO.

4.3 Semantic Interactions in a Smart Application

In this section, we discuss the semantic interactions among iOs within a smart application
in a smart space. To denote these interactions, we assign labels to each transaction as
follows: JOIN (Tj), LEAVE (Tl), INSERT (Ti), UPDATE (Tu), REMOVE (Tr), QUERY (Tq) SUBSCRIBE
(Ts) and UNSUBSCRIBE (Tus) transactions. The format of semantic interactions, which in-
volves the exchange of RDF triples using specific transactions, between an iO and the
SBiO, is depicted in Fig 4.12. In this thesis, we adopt this format due to its simplicity in
expressing semantic exchanges in the interaction diagrams of smart spaces. This format
contains the transaction type, message type and the message. Transaction types are Tj,
Tl, Ti, Tu, Tr, Tq, Ts and Tus, whereas the message types are ‘request’ or ‘result’. The mes-
sage includes RDF triples. For instance, if we have a triple like (“Lamp”, “hasState”, “ON”),

101SEMANTIC INTEROPERABILITY

4

the corresponding message would be denoted as σ: (“Lamp”, “hasState”, “ON”), where
σ represents a triple. However, it is important to note that JOIN and LEAVE transactions
differ in their content. Unlike other transactions, they do not contain RDF triples; instead,
their message consists of the ID of the joining iO.

Figure 4.12. The format of sematic interactions between an iO and the SBiO

As per the rules outlined in the previous section, Tj and Tl transactions for semantic in-
teractions are performed by all PiOs, CiOs and GWiOs. PiOs exclusively execute the Ti,
Tu and Tr transactions, while CiOs handle the Tq, Ts and Tus transactions. It is important
to note that if both types of iOs (PiO and CiO) are deployed on the same smart node,
then that node can perform all semantic transactions. For instance, a GWiO possesses the
functionalities of both PiO and CiO types, enabling it to utilize all transactions.

Note: The INSERT and REMOVE transactions involve the atomic insertion or removal of
RDF triples from the SBiO. On the other hand, the UPDATE transaction utilizes two lists:
one for deletion and another for insertion. This approach helps resolve conflicts that may
arise when attempting to remove and insert the same RDF triple content. In the case of
the QUERY and SUBSCRIBE transactions, they can comprise a set of triples where one or
more elements of a triple may contain a wildcard entry. Importantly, these operations are
assured to be executed in the same order as they were performed at the SBiO. For opera-
tions performed by parallel or distributed iOs, the iOs must join a particular namespace at
the SBiO. This ensures that the SBiO does not process any later operation before process-
ing the earlier ones, thereby resolving potential conflicts.

4.3.1 Semantic interactions by PiOs and CiOs with an SBiO
We will now explain semantic interactions between PiOs and CiOs through an SBiO in a
smart space. Consider a second example of a smart space (SSsl) that includes a basic smart
lighting application (

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

). The objective of this application is to turn a luminary ‘on’ when
a user presence is detected in a room. In the smart space SSsl, we consider two nodes:
a presence sensor node (np_s) and a luminary node with an actuator (nl_a). The presence

102 CHAPTER 4

sensor node np_s has a PiO (pp_s) because it needs to produce information about the user
presence in the smart space SSsl. pp_s implements the application logic of event-based
detection of the user presence in the room, with the interaction states YES and NO (where
YES indicates user presence and NO indicates the absence of the user in the room). On the
other hand, the node nl_a has a CiO (cl_a) because it needs to consume information of the
user presence from the smart space SSsl. The application logic at cl_a turns on the luminary
when the user presence information is received, where the interaction states are on and
off (on means the luminary is being turned on and off means it is off). Thus, the objective
of the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 is to respond to the event of user presence generated by pp_s and
perform the associated action of turning the luminary on performed at cl_a in.

We consider an SBSN (nsl) in the smart space SSsl, with an SBiO (sbsl) and an MiO (mosl).
The nodes of the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 (i.e., np_s and nl_a) are attached to nsl using TCP/IP and
exchange semantics using SSAP transactions. We develop a basic application ontology
graph (O_graphsl) for the smart space SSsl that is shown in Fig 4.13 and deploy at sbsl
using mosl. The graph O_graphsl includes the description of nodes, deployment of iOs and
interaction states of iOs in the smart space SSsl, and it includes the following RDF triples.

Figure 4.13. The ontology graph O_graphsl inserted by mosl at sbsl.

103SEMANTIC INTEROPERABILITY

4

The deployment view of the smart space SSsl is shown in Fig 4.14, and the semantic inter-
actions between pp_s and cl_a through sbsl are shown in Fig 4.15.

Figure 4.14. Deployment view of the smart space SSsl.

P72
Where 𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 ⊆ 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 and 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 ⊆ 𝑂𝑂𝑂𝑂𝑠𝑠𝑠𝑠

P 87
We consider an SBSN (𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) in the smart space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, with an 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂 (𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔) and an 𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂 (𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔). The
nodes of the application 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (i.e., 𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠 and 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎) are attached to 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 using TCP/IP and exchange
semantics using SSAP transactions. We develop a basic application ontology graph (𝑂𝑂𝑂𝑂_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) for the
smart space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 that is shown in Fig 4.13 and deploy at 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 using 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔. The graph 𝑂𝑂𝑂𝑂_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 includes
the description of nodes, deployment of 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂s and interaction states of 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂s in the smart space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and it
includes the following RDF triples.

{, ("𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"), �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"� ,
�"𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"�, ("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"), ("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"),

 �"𝑔𝑔𝑔𝑔𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�, �"𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�}

P92

{("𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"), �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛ℎ_𝑝𝑝𝑝𝑝"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛ℎ_𝑐𝑐𝑐𝑐"�,,
�"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"�,

�"𝑛𝑛𝑛𝑛ℎ_𝑝𝑝𝑝𝑝", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔ℎ_𝑝𝑝𝑝𝑝"�, �"𝑛𝑛𝑛𝑛ℎ_𝑐𝑐𝑐𝑐", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐ℎ_𝑐𝑐𝑐𝑐"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"�
("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠")("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"),

�"𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"�, �"𝑔𝑔𝑔𝑔ℎ_𝑝𝑝𝑝𝑝", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�, �"𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�,
�"𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�, �"𝑐𝑐𝑐𝑐ℎ_𝑐𝑐𝑐𝑐", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�}

P97

{�"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑢𝑢𝑢𝑢"� , �"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑎𝑎𝑎𝑎"�, �"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎"�,
�"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠"�, �"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠"�,

 �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢𝑢𝑢"�, �"𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎"�, �"𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎"�,
 �"𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠"�, �"𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠"�, ("𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎")

("𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎") , ("𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"), ("𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎")}

104 CHAPTER 4

In Fig 4.15 (a), we explain the following steps:
1. pp_s joins at sbsl

2. Joining of pp_s is confirmed after the session of
pp_s starts at sbsl

3. cl_a joins at sbsl

4. Joining of cl_a is confirmed after the session of cl_a
starts at sbsl

5. cl_a subscribes at sbsl to the information of user
presence in the room using the wildcard entry in
the triple

6. sbsl activates the subscription of cl_a

7. cl_a receives the subscription confirmation
8. No user is present in the room
9. pp_s updates its state ‘NO’ at sbsl

10. The transaction by pp_s updates the triple state
value to ‘NO’ at O_graphsl (by removing any stored
state value and inserting ‘NO’)

11. pp_s receives confirmation of the updated triple
state ‘NO’ by sbsl

12. sbsl notices the subscription result to be communi-
cated to cl_a and notifies to the session of cl_a) using
internal D-Bus.

13. cl_a receives the results of subscription, i.e., state
‘NO’

14. Luminary is being ‘off’ because of the user pres-
ence is not detected.

In Fig 4.15 (b), we explain the following steps of the example:
15. User presence is detected in the room
16. pp_s updates the triple of the state ‘YES’ at sbsl

17. The transaction by pp_s updates the triple state
value to ‘YES’ at O_graphsl (by removing any
stored state value and inserting ‘YES’)

18. pp_s receives confirmation of the update

19. sbsl notices the subscription result to be communi-
cated to cl_a and notifies to the session of cl_a using
internal D-Bus.

20. cl_a receives the results of subscription, i.e., state
‘YES’

21. Luminary is being ‘off’ because of the user pres-
ence is detected.

Figure 4.15 describes the execution of application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 in the smart space SSsl. The luminary
automatically adjusts its state based on the presence of the user. We observed that it
is necessary to establish a user presence subscription from cl_a to sbsl. As a result, the
luminary automatically turns to on when the event of user presence is updated at sbsl
by pp_s. The user’s presence information will be received at cl_a until the subscription is
terminated by sbsl using the transaction Tus. Thus, both pp_s and cl_a exchange semantics
through sbsl to achieve the objective of application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

.

Note: pp_s can use the REMOVE transaction to remove the inserted or updated triples from
sbsl if they are no longer needed. If pp_s leaves without removing these triples, they will
remain available at sbsl without any further use. In such cases, it is the responsibility of
mosl to manage the removal of these triples from sbsl if they are no longer required. This
is possible when mosl subscribes to the information of an iO who has left the smart space
and further checks for the related triples updated by the iO at sbsl.

4.3.2 GWiO semantic interactions with an SBiO
SSAP was developed by SOFIA to work with the internet protocol for HSNs and is not
practical for LSNs. Therefore, we propose a gateway approach for LSNs, utilizing a GSN
to integrate them into a smart space. The GSN collects abstract information in the form
of states from SiOs and AiOs. The GWiO deployed on the GSN translates received states
into RDF triples. For instance, in smart lighting applications, we consider the states of

105SEMANTIC INTEROPERABILITY

4

SiOs as illumination readings within an activity space, and the states of AiOs as luminary
brightness values represented as a percentage (0% for off and 100% for on). The GWiO
functions as both a PiO and a CiO, enabling it to update or modify the semantics of states
in RDF triples at the SBiO using transactions similar to those used by PiOs, as well as access
semantics from the SBiO using transactions similar to those used by CiOs.

(a)

(b)

Figure 4.15 (a) and (b). Execution of the smart application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 .

106 CHAPTER 4

Generally, LSNs communicate with the GSN to update states using low-power communica-
tion protocols such as Zigbee over IEEE 802.15.4. Regardless of the communication protocol
used by LSNs, they can share semantics in a smart space through the GSN. The translation
of states into RDF triples by the GWiO is crucial for their participation in a smart space.
Therefore, we do not specify a particular communication protocol to explain transactions
between LSNs and the GSN in this section. It depends on the hardware or software used
by LSNs and the GSN, as well as on a specific application in a smart space. In Chapter 5,
we will consider the implementation of a specific communication protocol (Zigbee, based
on the IEEE 802.15.4 standard). Thus, we present an abstract format of transactions that
includes the transaction type with a message with state of iOs as shown in Fig 4.16. We
introduce a transaction, referred to as an update transaction (Tlsn), which is accompanied
by a message. The message has two types, i.e., sense_value() and actuate_value(). The
sense_value() message facilitates communication between SiOs (deployed on SNs) and
the GWiO (deployed on GSN) to report the states of SiOs, from SiOs to the GWiO. The
actuate_value() message enables communication between the GWiO and AiOs to update
states at AiOs based on actuation commands from the GWiO.

Figure 4.16. An abstract format of transactions that contain the transaction type with a message for
LSNs.

We explain the semantic interactions between the GWiO and the SBiO in a smart space
with the following example: “The user presence is detected, and the luminary in the room
turns ‘on’ (Objective A). Furthermore, the user desires to obtain precise light informa-
tion in the room (Objective B)”. We implement an example that incorporates both LSNs
and HSNs to illustrate the semantic interactions between them in a smart space. Let us
consider the third example of the smart space (SSsr) with a smart room application (

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

)
having the following nodes and iOs:

SSsr.N = {nl_s , nl_a , nh_p , nh_c , ngw_sr , nsb_sr} and SSsr.iO = {sl_s, al_a , ph_p , ch_c , gwsr , sbsr , mosr};

Where,
· nl_s is the LSN to measure light sensor readings and deployed with sl_s, i.e., SiO. The

state of sl_s is an illumination value of light in the room.

107SEMANTIC INTEROPERABILITY

4

· nl_a is the LSN luminary deployed with al_a , i.e., AiO. The states of al_a are ‘on’ (being
the luminary on) and ‘off’ (being the luminary off)

· nh_p is the HSN to detect presence of a user and deployed with ph_p , i.e., PiO. The
interaction states of ph_p are ‘YES’ (the user presence detected) and ‘on’ (the user is not
present).

· nh_c is the HSN that can make queries in the smart space and deployed with ch_c, i.e.,
CiO, for example a smartphone of the user. The interaction states of ch_c will depend on
user’s queries to sbsr .

· ngw_sr is the GSN deployed with gwsr , i.e. GWiO and further connects with nl_s and nl_a.
· Finally, nsb_sr is the SBSN of the smart space deployed with sbsr , i.e., SBiO and mosr, i.e.,

MiO.

The smart nodes nh_p, nh_c and ngw_sr are connected to nsr using TCP/IP and exchange se-
mantics using SSAP transactions. The smart nodes nl_s and nl_a are connected to nsr using
low-power communication protocols such as Zigbee over IEEE 802.15.4. We develop a
basic application ontology graph (O_graphsr) for the smart space SSsr that is shown in Fig
4.17 and store at sbsr using mosr . The graph O_graphsr includes the following RDF triples:

The deployment view of the smart space SSsr is shown in Fig. 4.18, where the semantic
interactions between iOs are shown in Fig 4.19.

P72
Where 𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 ⊆ 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 and 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 ⊆ 𝑂𝑂𝑂𝑂𝑠𝑠𝑠𝑠

P 87
We consider an SBSN (𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) in the smart space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, with an 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂 (𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔) and an 𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂 (𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔). The
nodes of the application 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (i.e., 𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠 and 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎) are attached to 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 using TCP/IP and exchange
semantics using SSAP transactions. We develop a basic application ontology graph (𝑂𝑂𝑂𝑂_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) for the
smart space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 that is shown in Fig 4.13 and deploy at 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 using 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔. The graph 𝑂𝑂𝑂𝑂_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 includes
the description of nodes, deployment of 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂s and interaction states of 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂s in the smart space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and it
includes the following RDF triples.

{, ("𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"), �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"� ,
�"𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"�, ("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"), ("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"),

 �"𝑔𝑔𝑔𝑔𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�, �"𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�}

P92

{("𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"), �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛ℎ_𝑝𝑝𝑝𝑝"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛ℎ_𝑐𝑐𝑐𝑐"�,,
�"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"�,

�"𝑛𝑛𝑛𝑛ℎ_𝑝𝑝𝑝𝑝", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔ℎ_𝑝𝑝𝑝𝑝"�, �"𝑛𝑛𝑛𝑛ℎ_𝑐𝑐𝑐𝑐", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐ℎ_𝑐𝑐𝑐𝑐"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"�
("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠")("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"),

�"𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"�, �"𝑔𝑔𝑔𝑔ℎ_𝑝𝑝𝑝𝑝", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�, �"𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�,
�"𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�, �"𝑐𝑐𝑐𝑐ℎ_𝑐𝑐𝑐𝑐", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�}

P97

{�"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑢𝑢𝑢𝑢"� , �"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑎𝑎𝑎𝑎"�, �"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎"�,
�"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠"�, �"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠"�,

 �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢𝑢𝑢"�, �"𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎"�, �"𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎"�,
 �"𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠"�, �"𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠"�, ("𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎")

("𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎") , ("𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"), ("𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎")}

108 CHAPTER 4

Figure 4.19 explains the process of achieving objectives of the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 in the smart
space SSsr. Figure 4.19(a) explains the following steps:

1. gwsr joins at sbsr

2. Joining of gwsr is confirmed after the session for
gwsr starts at sbsr

3. ph_p joins at sbsr
4. Joining of ph_p is confirmed after the session of ph_p

starts at sbsr

5. gwsr subscribes at sbsr for the state of ph_p using the
wildcard entry

6. sbsr activates the subscription of gwsr
7. gwsr receives the subscription confirmation
8. User presence detects in the room

9. ph_p requests at sbsr to update the state ‘YES’
10. The status ‘YES’ added to the O_graphsr graph
11. ph_p receives confirmation of the updated state

‘YES’ by sbsr

12. sbsr extracts the subscription result from the
O_graphsr graph and notifies to the session of gwsr

13. gwsr receives the results of subscription, i.e., state
‘YES’

14. gwsr sends the command ‘on’ to al_a
15. The luminary turns ‘on’

Figure 4.19(b) explains the following steps:

16. ch_c joins at sbsr
17. Joining of ch_c is confirmed after the session of ch_c

starts at sbsr

18. sl_s measures illumination value (eg. 123) and
sends to gwsr

19. gwsr creates a triple of illumination value and
requests to update at sbsr

20. The illumination value 123 added to the O_graphsr
graph

21. gwsr receives the confirmation of updated triple
from sbsr

22. ch_c queries at sbsr for the illumination value in the
room using the wildcard entry in the triple

23. sbsr extracts the query result from the O_graphsr
graph and notifies to the session of ch_c

24. ch_c receives the query confirmation by sbsr

25. ch_c receives the query results, i.e., the illumina-
tion value, i.e., 123

Figure 4.17. The ontology graph O_graphsr inserted by mosr at sbsr.

109SEMANTIC INTEROPERABILITY

4

Fi
gu

re
 4

.1
8.

 D
ep

lo
ym

en
t v

ie
w

 o
f t

he
 sm

ar
t s

pa
ce

 S
S s

r.

110 CHAPTER 4

(a)

(b)

Figure 4.19. Execution of the smart application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

, where (a) explains Objective A and (b) explains
Objective B.

In Fig 4.19(a), we explained the execution of

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 for Objective A in the smart space SSsr.
The event of the user’s presence is generated at ph_p, and as a result, the associated action
is executed to turn on the luminary at al_a. On behalf of al_a, gwsr established the necessary
subscription at sbsr to receive the user presence information. In Fig 4.19(b), we explained
the execution of

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 for Objective B in the smart space SSsr. The user wants to get informa-
tion on the illumination value in the room. Specific information on lighting (illumination)
can be beneficial to the user, where the user can further change the lighting according
to preferences. This can improve visibility or comfortability for the user. The illumination

111SEMANTIC INTEROPERABILITY

4

control algorithm based on preferences will be discussed in the smart lighting model in
Chapter 5. In Objective B, our focus is solely on the details of the light information (il-
lumination value) in the room. The event is generated at sl_s to measure the illumination
value, and the associated action is executed at sbsr to add the illumination value to the
ontology graph O_graphsr. Subsequently, the user queries to get this information using
ch_c. Finally, the user receives the illumination value in the room from the smart space SSsr.

In this example, gwsr resolves the complexity for sl_s and al_a, eliminating the need for them
to directly join at sbsr. Furthermore, ph_p and ch_c do not require direct interaction with
al_a and sl_s, respectively. The exchange of information between both sides is facilitated
through gwsr, allowing them to achieve the common objectives of the

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 application.

4.4 Semantic Interactions with Multiple Applications

In this section, we explore semantic interactions within a smart space involving multiple
applications. Each application represents the infrastructure of smart nodes associated
with a specific application within the smart space. To illustrate this, we consider the fol-
lowing scenario example that involves two applications in a smart space:

“A user’s smart space comprises two applications: the smart home and the smart office.
Assuming that the user is outdoor and wants to know the light’s information in both
locations. If the luminaries are ‘on’ in both applications, the user proceeds to turn them
‘off’.”

Let us consider the fourth and last example of a smart space in this chapter as follows:
Consider two applications, i.e.

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 for the smart home and

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 for the smart office in a user
smart space (SSu). The smart space SSu contains the following nodes and iOs as follows:

SSu.N = {np_a ,nc_a ,np_b ,nc_b ,nsb_u} and SSu.iO = {pa ,ca ,pb ,cb ,mou ,sbu}

where, pa and pb are PiOs deployed on the nodes np_a and np_b, respectively; ca and cb are
CiOs deployed on the nodes nc_a and nc_b, respectively; mou is MiO and sbu is SBiO deployed
on the node nsb_u. The nodes np_a, nc_a , np_b and nc_b are attached to nsb_u using TCP/IP and
are able to exchange semantics using SSAP transactions. The nodes np_a and np_b are the
switches or smartphones (installed with an application to regulate a luminary). The nodes
nc_a and nc_b are the smart home and the smart office luminaries, respectively. Further, the
roles of pa , pb , ca , and cb are as follows:
· pa generates events for the home luminary in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 , where each event can have the state
either ‘on’ or ‘off’. For example, a switch or a smartphone application can generate an

112 CHAPTER 4

event to turn on/off the luminaries. Thus, pa can publish the interaction state for the
home luminary, i.e., either ‘the home luminary gets on’ or ‘the home luminary gets
off’.

· ca subscribes to receive information about the current state of the home luminary at
sbu , enables the necessary action (either turning it on or off) for the home luminary
in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. Consequently, ca receives the interaction state, indicating either ‘the home
luminary is currently on’ or ‘the home luminary is currently off’.

· Similarly pb generates events for the office luminary in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

, where the interaction state
can be ‘the office luminary is turned on’ or ‘the office luminary is turned off’.

· Likewise cb subscribes to receive information about the current state of the office
luminary at sbu , which helps cb determine whether to turn the office luminary ‘on’ or
‘off’ in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 . The interaction state received by cb can indicate either ‘the office luminary
is currently on’ or ‘the office luminary is currently off’.

We design a basic ontology graph (O_graphu) of SSu and store at sbu through mou where
the graph is shown in Fig 4.20. The ontology graph O_graphu has the following initial RDF
triples:

Figure 4.20. The ontology graph O_graphu inserted by mou at sbu .

P72
Where 𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 ⊆ 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 and 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 ⊆ 𝑂𝑂𝑂𝑂𝑠𝑠𝑠𝑠

P 87
We consider an SBSN (𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) in the smart space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, with an 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂 (𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔) and an 𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂 (𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔). The
nodes of the application 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (i.e., 𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠 and 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎) are attached to 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 using TCP/IP and exchange
semantics using SSAP transactions. We develop a basic application ontology graph (𝑂𝑂𝑂𝑂_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) for the
smart space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 that is shown in Fig 4.13 and deploy at 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 using 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔. The graph 𝑂𝑂𝑂𝑂_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 includes
the description of nodes, deployment of 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂s and interaction states of 𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂s in the smart space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and it
includes the following RDF triples.

{, ("𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"), �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"� ,
�"𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"�, ("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"), ("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"),

 �"𝑔𝑔𝑔𝑔𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�, �"𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�}

P92

{("𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"), �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛ℎ_𝑝𝑝𝑝𝑝"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛ℎ_𝑐𝑐𝑐𝑐"�,,
�"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"�, �"𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"�,

�"𝑛𝑛𝑛𝑛ℎ_𝑝𝑝𝑝𝑝", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔ℎ_𝑝𝑝𝑝𝑝"�, �"𝑛𝑛𝑛𝑛ℎ_𝑐𝑐𝑐𝑐", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐ℎ_𝑐𝑐𝑐𝑐"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎"�
("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠")("𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"),

�"𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠"�, �"𝑔𝑔𝑔𝑔ℎ_𝑝𝑝𝑝𝑝", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�, �"𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�,
�"𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�, �"𝑐𝑐𝑐𝑐ℎ_𝑐𝑐𝑐𝑐", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"�}

P97

{�"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑢𝑢𝑢𝑢"� , �"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑎𝑎𝑎𝑎"�, �"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎"�,
�"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠"�, �"𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠"�,

 �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢"�, �"𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑢𝑢𝑢𝑢", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢𝑢𝑢"�, �"𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎"�, �"𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎"�,
 �"𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠"�, �"𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂", "𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠"�, ("𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎")

("𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎") , ("𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎"), ("𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠", "ℎ𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎", "𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎")}

113SEMANTIC INTEROPERABILITY

4

The deployment view of the smart space SSu is shown in Fig 4.21, where the semantic
interactions among iOs are shown in Fig 4.22.

Fi
gu

re
 4

.2
1.

 D
ep

lo
ym

en
t v

ie
w

 o
f t

he
 sm

ar
t s

pa
ce

 S
S u

 .

114 CHAPTER 4

Fi
gu

re
 4

.2
2.

 S
em

an
tic

 in
te

ra
cti

on
s a

m
on

g
iO

s
of

 tw
o

ap
pl

ic
ati

on
s i

n
th

e
sm

ar
t s

pa
ce

 S
S u

 .

115SEMANTIC INTEROPERABILITY

4

We explain the sharing of semantics among iOs of applications in Fig 4.22 using a four-step
process. Step 1 illustrates the joining of all iOs at sbu , establishing their connection to
the smart space. In Step 2, we describe how pa and pb update the interaction states in
the smart home and smart office, respectively. Additionally, ca and cb subscribe at sbu to
receive the latest updates on interaction states from pa and pb, enabling them to regulate
the luminaries. As a result, the luminaries in both applications adapt based on the recently
updated interaction states within the smart space SSu.

In the example scenario, the user is outdoors and carrying a smartphone. The smart-
phone is equipped with a PiO and a CiO (i.e., pcu) to enable the user to both produce and
consume information within the smart space SSu. The user’s objectives are twofold: first,
to obtain the status of luminaries in both applications (consuming information from the
smart space), and second, to turn ‘off’ the luminaries if they are currently ‘on’ in both
applications (producing information in the smart space). To achieve these objectives, the
user joins the smart space SSu through the joining of pcu at sbu. In Step 3, pcu queries at
sbu for the interaction state of the home luminary, where the interaction state is ‘on’.
Consequently, the user updates the interaction state ‘off’ at sbu for the home luminary,
the luminary turning ‘off’. Similarly, in Step 4, the user queries at sbu for the interaction
state of the home luminary using pcu, where the interaction state is ‘on’. As a result, the
user updates the interaction state ‘off’ at sbu for the office luminary, causing it to turn ‘off’.
In the example scenario above, we explained the execution of a smart lighting applica-
tion involving two applications within a smart space. Throughout this scenario, we have
observed the importance of regular updates of lighting information events in both appli-
cations, as they are required for user queries. Furthermore, the user has the possibility to
modify and regulate the luminaires in both applications based on the information received
from the smart space. The user’s smartphone acted as both producer and consumer of
information within the smart space. It produced semantics to switch off the lights in the
applications and accessed information about the status of the lights from the smart space.
It is worth noting that a smart space works in a similar way when more than two applica-
tions or smart applications are used.

4.5 Conclusions

In this chapter, we have explained the fundamental concepts of semantic interoperability
and emphasized the importance of developing application ontologies in smart spaces.
Semantic interoperability is enhanced by the use of semantic reasoning with matching op-
erations to extract the results of queries and subscriptions. Semantic reasoning enabled
the inference and matching of concepts based on existing ones within a smart space. In
addition, we have elaborated on semantic interactions through the use of SSAP trans-

116 CHAPTER 4

actions and have provided examples for both single and multiple applications in smart
spaces. SSAP transactions facilitate the manipulation, querying, and subscription of RDF
triples in a smart space.

Furthermore, we presented a mechanism for information sharing between resource-poor
nodes and high-capacity nodes through a gateway approach in smart spaces. Looking
ahead, we will conduct experiments on smart lighting applications using semantic interac-
tions via SSAP transactions in subsequent chapters.

117SMART LIGHTING CASE STUDY

5

Chapter 5
Smart Lighting Case Study

We aim to demonstrate the practical utility of the smart space and semantic interoperabil-
ity concepts, along with the proposed semantic interoperability architecture discussed in
previous chapters. To achieve this, we apply these concepts to a case study of smart light-
ing applications, encompassing multiple use cases. In this chapter, we begin by examining
the existing literature on smart lighting applications for indoor spaces. Subsequently, we
propose a novel smart lighting model that is specifically designed to align with the smart
space concepts and semantic interoperability architecture presented earlier. This model
facilitates the control of illumination and the adaptation of lighting behaviors in indoor
spaces, such as homes and office buildings. Additionally, we elucidate the mechanisms of
semantic interoperability interactions among smart nodes employed in smart lighting ap-
plications. Finally, we present two use cases, namely context-adaptive smart lighting and
power-managed smart lighting, which serve as the basis for our experimental evaluations.

5.1 Smart Lighting Applications and Related Work

The existence of sufficient light is crucial for any task one may want to carry out. Human
beings feel comfortable with different levels of illumination for different tasks. They per-
ceive, interact with, and are affected by lighting in many ways. The introduction of smart
lighting applications, as a particular type of smart space application, not only facilitates
better use of natural light sources (e.g. by actuating blinds to control exposure to daylight
and moonlight), but also provides more control over man-made artificial light than ever.
We provide a summary of typical smart lighting applications and their goals. Note that,
many smart lighting applications cannot be classified purely in just one of the following
categories. Some applications are designed to achieve multiple goals at the same time,
and thus, have combined goals of multiple categories.

1.) Environment friendly lighting with energy and cost efficiency: Lighting constitutes
around 19% of the total electricity consumption of the earth’s population [5.1]. Smart
indoor and outdoor lighting can increase the energy efficiency of lighting by dimming
or turning off light sources where they are not needed based on occupancy and activ-
ity monitoring. It is not only the total amount of energy consumed that determines the
energy bill. Since energy is very difficult to store, electricity providers encourage their

118 CHAPTER 5

consumers to maintain a total power consumption that complies with a fixed energy
budget, allowing planning of power generation capacity in a cost-effective manner.
For this, they apply cheap rates within the energy quota and higher rates for the extra
usage. Thus, keeping the energy consumption tightly below the quota can lead to
significant cost savings for their customers. The energy consumption due to lighting
can be very accurately controlled by a power-managed smart lighting [2.32] indoors
as well as outdoors. The stakeholders of this type of application are building owners,
municipalities, and energy companies.

2.) Lighting supporting user comfort and performance: User studies show that light af-
fects people’s feelings of comfort [5.2] [5.3]. It is also proven that the level of light
illuminance affects performance-related human attributes such as alertness, vitality,
and the level of sustained attention in tasks done. According to a study on perception
of lighting quality in offices [5.4], office users’ preferences for color temperature vary
between 3000 K and 6000 K, and employee satisfaction is increased when they are in
control of lighting in their personal area. Therefore, the goals of smart lighting applica-
tions that fall in this category are twofold. Firstly, they aim at autonomously choosing
the light settings that maximize comfort and user performance in tasks carried out.
Secondly, they aim to provide advanced interaction and control possibilities to users
in their vicinity. Note that this may not be easy in today’s typical living and working
places. It is especially challenging in multi-user environments where there are conflict-
ing preferences of users, e.g. in an open office space. In this type of smart lighting
applications challenges lie with i) expressing user preferences and feedback through
simple user interaction, ii) modeling and dealing with variations and inconsistencies
in user preferences, iii) identifying application context and interpreting it, iv) resolv-
ing conflicts between concurrent activities and users, and v) representing lighting
scenarios, i.e. ‘how to actuate’. Interactivity requires high performance in terms of
response times, e.g. average and mean time between pushing a button switch and a
set of lights turning on, average and maximum response times within such a set, and
smoothness of dimming. At a higher level, solutions need to consider user satisfaction
(difficult to measure), productivity and the balance between automation and user
interaction, i.e., too much automation and too much interaction are both undesirable.

3.) Smart lighting as information medium: In this type of smart lighting application [5.5]
visible and invisible (infrared) light coding and modulation are employed to use the
lighting infrastructure for communicating information. Such communication may be
for exchanging information among components that can observe each other’s light
emissions (via direct line of sight or via reflection from a surface), or for delivering
useful information directly to users. The former approach is especially useful for taking
some load from the wireless radio communication traffic, and for increasing physical

119SMART LIGHTING CASE STUDY

5

topology awareness in the system. Depending on the installation, nodes that can com-
municate would know that they either have a line of sight, or they lie nearby, e.g. on a
flat ceiling.

There are a multitude of applications that employ smart lighting to directly inform
a user. For example, a user may need subtle and personalized information reflected
to the surfaces in their surroundings, such as the daily agenda of an office employee
reflected on the wall across from his desk. It is possible to arrange a personalized
light pattern such that only the employee would know what the patterns mean, and
hence can read the agenda, whereas visitors see it as a decoration aspect. Another
example is light being used as a communication medium for information to be shared
by inhabitants of an environment. For example, a wall-wash lighting fixture that can
change colors dynamically can be used as a meeting timer [5.6]. Lighting can be used
for indoor navigation purposes as well, e.g. to show the exit direction in case of an
emergency evacuation [5.7]. Coded light is also started to be used for indoor position-
ing of people and artifacts [5.8]. This technology requires a camera (e.g., of a smart
phone) to decode the information in light.

4.) Smart lighting supporting well-being: The level of light illuminance affects heart rate
and its variability [5.9] [5.10]. Light also influences (perception of) safety [5.11], mood
[5.12] and the circadian rhythm [5.13]. While exposure to daylight is of utmost impor-
tance for physiological reasons [5.14], a lot of people stay indoors during daytime ei-
ther at home or for work. It is well known that blue light has the biggest impact on the
human circadian system, as the human brain has evolved to become alert (wake up)
when we are exposed to blue light. The problem is, artificial light sources are known
to emit a high intensity of blue light. Today people are already exposed to a lot of blue
light by looking at computer screens and smart phones for many hours. On top of this,
common behaviors like keeping lights on when they are not needed cause circadian
rhythm shifts and sleeping difficulties as melatonin (sleeping hormone) production is
suppressed, causing a person to feel weak during daytime. As proven in [5.15], blue
light leads to melatonin suppression, even when a person is asleep, and his eyes are
closed. This knowledge can be used to shift the sleep cycles of patients that suffer from
certain sleeping disorders back to normal [5.16].

5.) Smart lighting influencing human behavior: Studies show that it is possible to influ-
ence human behavior using light. For example, light can be used to create atmospheric
settings that regulate the speed at which people eat in a restaurant and a carefully
chosen setting can decrease the number of calories taken in and increase their overall
customer satisfaction of the food [5.17]. Light can affect social situations as well. In

120 CHAPTER 5

Table 5.1. Smart lighting applications related work.
Article Year Objective Communication

Interoperability
Semantic
Interoperability

Use Cases

Higuera et
al [5.20]

2015 Smart lighting system
for offices

ISO/IEC/IEEE 21451
standards and ZigBee
Light Link are used.

--- Smart lighting
contributing to
an office use case
scenario.

Kim et al.
[5.21]

2016 Smart lighting
system for displaying
messages

Bluetooth beacon
communication
is used with DALI
dimming. controller.

Display system
through LED. lighting.

Prasetio et
al. [5.22]

2016 Smart lighting system
for occupancy-based
scenarios

Communication over
internet using Wi-Fi.

Semantic Sensor
Network (SSN), IoT-
Lite, and Semantic
Actuator Network
(SAN) ontologies used
for semantics sharing.

Smart lighting
contributed to a user
presence detection
scenario.

Liu et al
[5.23]

2016 Smart LED lighting
system

Ethernet RJ45
communication
with DALI dimming
technology.

--- Smart lighting
contributing to
an office use case
scenario.

Lwin et al.
[5.24]

2017 Design of a LED
dimmer integrated
with a light sensor to
contribute to energy
saving in a smart
indoor lighting system

Zigbee based on
IEEE 802.15.4 used
on the sensor nodes
to transmit data
periodically.

Detecting user’s
presence and
activities to actuate
LED luminaries
accordingly.

Viani et al.
[5.25]

2017 Smart lighting in
energy-efficient
museums

Zigbee
communication
module used on
sensor nodes,
whereas Wi-Fi
used to control LED
luminaries.

Smart lighting
contributing to a
smart museum
scenario

Barve et al.
[5.26]

2017 Smart lighting for
smart cities

GSM based
communication is
used between the
street lighting poles
and a server, with
DALI interface for
dimming

Smart street lighting
control based on
daylight, occupancy,
time and web
interface commands.

Khatavkar
et al. [5.27]

2017 Smart street lighting Zigbee module
integrated to sensing
and controlling units
for communication.

Controlling street
lighting based on
daylight at several
intervals and
occupancy

121SMART LIGHTING CASE STUDY

5

Table 5.1. Continued
Article Year Objective Communication

Interoperability
Semantic
Interoperability

Use Cases

Kumar et al.
[5.28]

2017 Smart lighting system
for a building

Zigbee
communication
module for
controlling lighting
fixtures.

Control of lighting in a
building

Mathews et
al. [5.29]

2018 An Open Architecture
for Intelligent Solid-
State Lighting Systems
(OpenAIS) using IoT
technologies

Any communication
technologies
compatible with
IoT devices such as
6LOWPAN, Wi-Fi, IEEE
802.15.4, Ethernet,
IPv6

--- Control of lighting in
an office building

Sikder et al.
[5.30]

2018 Designing a smart
indoor and outdoor
lighting system for
energy saving

IEEE 802.15.4-based
IoT communication
protocols such as
ZigBee, 6LoWPAN,
and JenNET-
IP are used for
communication
interoperability

Smart lighting
contributing to save
energy in multiple
indoor scenarios
(e.g., in home or
offices) and outdoor
scenarios (e.g., street
lighting)

Amarillo et
al. [5.31]

2020 Smart lighting
application
for academic
environments

IoT devices used Wi-Fi
as a communication
protocol

Control of lighting
in a classroom
implementation
scenario

Soheilian
et al.
[5.32]

2021 Smart lighting
application for energy
saving and user well-
being

Three setups of
communication
protocols are used as
follows: Wi-Fi, WiFi
combined with Zigbee
using a gateway, and
bluetooth combined
with DALI

Smart lighting
contributing to
energy saving and
user well-being
in the residential
environment

Gowda et
al. [5.33]

2021 Smart lighting system
for smart cities

Wi-Fi and Zigbee
based communication
with DALI interface
for dimming

--- Smart lighting
contributing to
energy saving in
street lighting
environments

Putri et al.
[5.34]

2022 Smart lighting system
for a meeting room

Bluetooth
communication

Smart lighting
environment for
user comfort in the
co-working space’s
meeting room

122 CHAPTER 5

[5.18], they use dynamic outdoor lighting to diffuse escalating behavior of people on
the street during nighttime.

6.) Smart lighting considering aesthetics: Lighting is widely used to improve atmospheres.
Sometimes it is easier to perceive an effect from a distance. Decorative adaptive dy-
namic lighting is an example of this. Interestingly, the atmospheric effect of dynamic
lighting is large on the people that are observers in the surrounding and not so large
for the people whose locality is being illuminated [5.19]. Another example application
is to use smart outdoor lighting against light pollution. By dimming down the street
lighting where it is not needed, light pollution in cities can be reduced, allowing a
better view of the sky and the stars at night.

We explained the above categories of smart lighting applications seen in smart spaces.
These applications are broadly considered in two categories, indoor and outdoor smart
spaces. In this thesis, we focus on indoor lighting applications such as homes and offices
in a smart space. We propose a smart lighting model based on the semantic interop-
erability architecture in this chapter. We now enlist existing implementations of smart
lighting applications in Table 5.1, where the objectives, communication interoperability,
and semantic interoperability of the applications are introduced together with use cases.

As listed in Table 5.1, Agung et al. [5.22] proposed a semantic-based model using SSN
and SAN ontologies. However, the model includes only LSNs (sensors and actuators with
low resources). Our proposed semantic interoperability architecture covers both LSNs and
HSNs. For HSNs, we used TCP/IP for communication interoperability. We integrated a gate-
way approach for LSNs using the communication technology Zigbee over IEEE 802.15.4 to
accommodate low-capacity sensors and actuators in a smart space. On top of these com-
munication technologies for HSNs and LSNs, we use SSAP for semantic interoperability in
the proposed architecture that enables smart nodes to share knowledge using semantics.
A GSN on behalf of LSNs solves the complexity of translating knowledge into semantics for
smart spaces. Other lighting applications listed in Table 5.1 are application-specific and do
not use the semantic approach for interoperability. In Section 5.2, we propose a semantic-
based smart lighting model using the proposed semantic interoperability architecture.
The semantic-based smart lighting model or the smart lighting model, as discussed in the
next section, facilitates the sharing of lighting semantics among iOs to achieve specific
objectives in controlling illumination in indoor smart spaces. We will delve into the smart
lighting model in detail in Section 5.2.

123SMART LIGHTING CASE STUDY

5

5.2 Smart Lighting Model

Smart lighting applications execute with the help of collaborating iOs in a smart space.
We consider those collaborating iOs in an application that are responsible for parameters
such as user requirements (in terms of preferred illumination in activity spaces), illumina-
tion readings by light sensors, and brightness values of luminaries installed in the physical
environments of smart spaces. Lighting applications aim to satisfy users to meet their
requirements of preferred illumination in activity spaces or subspaces with the help of
a suitable smart lighting model that can be deployed in a smart space. Therefore, we
propose a novel smart lighting model, where the objective is to provide adaptive ser-
vices for user satisfaction by automatically dimming and turning on/off the lights when
required. We aim to achieve this objective by implementing the smart lighting model
using the proposed semantic interoperability architecture in a smart space. We discuss
two main assumptions that are considered for the proposed smart lighting model. First,
several types of light sources are available in the market such as incandescent, fluores-
cent, LED luminaries. Therefore, we present our assumptions of light sources in Section
5.2.1. Second, we consider indoor spaces such as buildings, homes, and offices for the
smart lighting model. The model needs a proper mechanism to place light sensors and
luminaries in indoor spaces. Therefore, we discuss the placement of light sensors and
luminaries in indoor environments in Section 5.2.2. Finally, we discuss the illumination
control algorithm in Section 5.2.3.

5.2.1 Light sources
The simplest form of smart indoor lighting is an automatic on/off control based on oc-
cupancy detection in a room. We discussed this example in Section 4.3.1. More complex
forms of smart lighting systems [5.35]- [5.37] try to automatically adjust light levels ac-
cording to the user activity performed. However, the solutions in [5.35]- [5.37] are initially
optimized for traditional incandescent and fluorescent luminaries, which do not provide
enough controllability. Note that it is difficult to dim fluorescent lamps and to control color
and intensity simultaneously with incandescent lights, since increasing intensity raises the
heat and shifts the color spectrum. Unlike incandescent lamps, which need to convert
electricity into thermal energy first, LED illumination is achieved through LED luminance
(a semiconductor crystal that can directly produce visible light in a desired wavelength
range). Therefore, we use the LED luminaries as the light sources in our proposed smart
light model. The LED luminaries comprise the following properties:

· LED luminaries can maintain lumen efficacy and light color in a larger sink while en-
abling digital control. LED luminaries at low temperatures around 2700-3000K give
“warm” colors such as yellow and orange whereas at a higher temperature around

124 CHAPTER 5

5000 K or more they give “cool” colors such as blue and green. Moreover, we can
adjust the brightness of LED luminaires, either increasing or decreasing it.

· LED luminaries save energy, provide an extra-long lifetime, and help the environment
by not emitting harmful gases [5.38], [3.39]. Most of the LED luminary manufacturers
claim that the LED lifetime is around 50,000 hours. This is approximately 50 times
longer than a typical incandescent luminary, 20-25 times longer than a typical halogen,
and 8-10 times longer than a typical Compact Fluorescent Lamp (CFL).

· LED luminaries are highly energy efficient as compared to incandescent and fluores-
cent luminaries. For example, an 8 or 9-watt LED luminary emits as much light as a
60-watt incandescent luminary and a 14-watt fluorescent.

· LED luminaries concentrate the light into a small area using a focusing/rod lens in front
of the LEDs.

· LED luminaries can reduce glare by using a micro-prismatic technology. It can develop
special diffusers with this technology that disperse light from individual LEDs to give
homogeneous light with optimum contrast by avoiding any direct or reflected glare.

5.2.2 Placement of light sensors and luminaries in indoor spaces
The illumination generated on a surface by an LED luminary is the superposition of the
luminance generated by LEDs. Each LED in an LED luminary emits a directed beam of
light with a width of 20-30 degrees. Therefore, several LED luminaries can provide local-
ized illumination effects in an indoor space with low light leakage and glare. Illumination
distribution of a group of LEDs is studied in [5.40]. In our lighting model, the area of
illumination generated by luminance from one LED luminary is focused on a single activity
subspace and the overflow onto the other activity subspaces is negligible. The activity
subspace is a physical portion of the total physical area of a smart space where a user
performs some activity such as reading a book or watching TV.

Producing a large amount of illumination on a surface requires several LEDs together.
Therefore, an LED luminary normally consists of arrays of LEDs producing local illumina-
tion at target points from a distance. Thanks to the small size of LEDs, we can design LED
luminaries of arbitrary size and shape (square, circle, rectangle, etc.). In an LED luminary,
each LED has a certain radiation pattern and produces illumination on a target surface.
The overall illumination distribution on the target surface depends on the distance. In
[5.41], an analysis was performed on different shapes of LED luminaries (e.g. triangular,
circular, square hexagonal, or rectangular). The analysis results show that a uniform il-
lumination rendering can be achieved by a hexagonal LED array and can be approximated
by a square-shaped LED array. We consider square-shaped LED array luminaries for il-
luminating square grid cells since a room in the model is divided into square grid cells.

125SMART LIGHTING CASE STUDY

5

The illumination of a single LED appears in the shape of a circle. However, given many
LEDs together, the illumination of a square LED array approximates a square shape. Here
we assume that the center-to-center distance between two neighboring LEDs in an LED
luminary (d) is less than 1 cm, which is true for most LED luminaries available in the mar-
ket. An LED emits a direct spotlight with an angle of light (θ) between 20 and 30 degrees
as shown in Fig. 5. 1(a), where h is the distance between LED and illumination area, and r
is the radius of illumination area, calculated by (5.1).

P 108

area, and r is the radius of illumination area, calculated by (5.1).

 𝑟𝑟𝑟𝑟 = ℎ × tan(𝜃𝜃𝜃𝜃

2
) (5.1)

We place LSUs and AUs in a room such that one LSU and one AU are placed in each square grid cell as
shown in Fig. 5.2., i.e., for ∀𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀,∀𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁 , 𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 has (LSUmn, AUmn).

P109-110

𝐸𝐸𝐸𝐸 =
𝐼𝐼𝐼𝐼

𝜋𝜋𝜋𝜋(ℎ× tan 𝜃𝜃𝜃𝜃2)2
 (5.3)

𝛿𝛿𝛿𝛿 = 2 �ℎ× tan
𝜃𝜃𝜃𝜃
2
� + (𝜔𝜔𝜔𝜔 − 1) × 𝑑𝑑𝑑𝑑 (5.4)

Note:
•

 𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
 (5.5)

P110

The average illumination caused by only the LED luminaries on all 𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is given by 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
= ∑ ∑ 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
+ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 (5.6)

∴ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
− ∑ ∑ 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
 (5.7)

P112

The static mapping between the square grid cells and the placement of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s according to Fig. 5.2 is such
that: ∀𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀,∀𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁 , (𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) are

P113
The user preferences for the individual square grid cell are 𝜌𝜌𝜌𝜌𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜌𝜌𝜌𝜌ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑔𝑔𝑔𝑔ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in
applications 𝙰𝙰𝙰𝙰𝑙𝑙𝑙𝑙 and 𝙰𝙰𝙰𝙰ℎ, respectively. They are defined in the range of minimum and maximum
illumination values, such that, 𝜌𝜌𝜌𝜌𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = [𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒] and 𝜌𝜌𝜌𝜌ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
 � 𝑒𝑒𝑒𝑒ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑒𝑒ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒� .

 (5.1).

Figure 5.1. Illumination area of (a) single LED and (b) array of LEDs.

When the LED luminary is a square shaped array of LEDs, the illumination area is as seen
in Fig. 5.1(b), where δ denotes side-length of the illumination area, calculated by (5.2).

 δ = 2r + (ω - 1) × d (5.2)

where ω (≥2) is the number of columns and rows in an LED matrix. We consider plac-
ing light sensors and luminaries in an indoor space in the smart lighting model. For this
purpose, an indoor space is divided into several square grid cells (gmn), where 1≤m≤M
and 1≤n≤N, resulting in a total of M×N square grid cells. We consider a light sensing unit
(LSU) to measure illumination in an activity space and an actuating unit (AU) to actuate
LED luminaries with certain brightness values. We place LSUs and AUs in a room such
that one LSU and one AU are placed in each square grid cell as shown in Fig. 5.2., i.e.,
for

P 108

area, and r is the radius of illumination area, calculated by (5.1).

 𝑟𝑟𝑟𝑟 = ℎ × tan(𝜃𝜃𝜃𝜃

2
) (5.1)

We place LSUs and AUs in a room such that one LSU and one AU are placed in each square grid cell as
shown in Fig. 5.2., i.e., for ∀𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀,∀𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁 , 𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 has (LSUmn, AUmn).

P109-110

𝐸𝐸𝐸𝐸 =
𝐼𝐼𝐼𝐼

𝜋𝜋𝜋𝜋(ℎ× tan 𝜃𝜃𝜃𝜃2)2
 (5.3)

𝛿𝛿𝛿𝛿 = 2 �ℎ× tan
𝜃𝜃𝜃𝜃
2
� + (𝜔𝜔𝜔𝜔 − 1) × 𝑑𝑑𝑑𝑑 (5.4)

Note:
•

 𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
 (5.5)

P110

The average illumination caused by only the LED luminaries on all 𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is given by 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
= ∑ ∑ 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
+ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 (5.6)

∴ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
− ∑ ∑ 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
 (5.7)

P112

The static mapping between the square grid cells and the placement of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s according to Fig. 5.2 is such
that: ∀𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀,∀𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁 , (𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) are

P113
The user preferences for the individual square grid cell are 𝜌𝜌𝜌𝜌𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜌𝜌𝜌𝜌ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑔𝑔𝑔𝑔ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in
applications 𝙰𝙰𝙰𝙰𝑙𝑙𝑙𝑙 and 𝙰𝙰𝙰𝙰ℎ, respectively. They are defined in the range of minimum and maximum
illumination values, such that, 𝜌𝜌𝜌𝜌𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = [𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒] and 𝜌𝜌𝜌𝜌ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
 � 𝑒𝑒𝑒𝑒ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑒𝑒ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒� .

, gmn has (LSUmn, AUmn). In our realization, we observe slightly more
illumination at the corner of all square grid cells as compared to the center of the grid
cells because of the overlapping illumination from the neighboring square grid cells. The
increased illumination at the corners will possibly be less than 10 lux, therefore, we con-

126 CHAPTER 5

sider it negligible. The illumination measured at the center of each grid by the light sensor
is the actual illumination in each square grid cell.

(c)
Figure 5.2. LED luminary and sensor placement.

5.2.3 Illumination control algorithm
We propose and explain the Illumination Control Algorithm (ICA) for indoor spaces (e.g.
home [5.42], office [5.43]). Regardless of the infrastructure of a smart space, we first
explain the calculation of actuation commands in the algorithm. Later we map ICA to
the proposed semantic interoperability architecture in Section 5.3. The ICA calculates the
actuation commands for AUs based on the readings of LSUs and user preferences in all
square grid cells. The actuation of LED luminaries depends on the relationship between
the illumination at a given activity subspace and the corresponding luminous intensity of
luminaries. The activity subspace is one or a group of square grid cells where the user per-
forms an activity. A luminary can maintain illumination at a square grid cell of an activity
subspace by autonomously adjusting light output in the 0% to 100% brightness range. An
analysis of the relationship between illumination and luminous intensity has been given
in [5.44].

127SMART LIGHTING CASE STUDY

5

In order to calculate the illumination (E) at a particular point using the inverse square
law, the luminous intensity, I (lumens), by the luminaries and the distance between
sensing nodes (LSUs) to the luminaries, h (meters), need to be known [5.45]. A LSU
reads the illumination E in units of lux, i.e., lumens per square meter. We can measure
the illumination E over a square grid cell, where the intensity I is distributed over a
circle with the radius r. The basic relationship in this case can be formulated as:

P 108

area, and r is the radius of illumination area, calculated by (5.1).

 𝑟𝑟𝑟𝑟 = ℎ × tan(𝜃𝜃𝜃𝜃

2
) (5.1)

We place LSUs and AUs in a room such that one LSU and one AU are placed in each square grid cell as
shown in Fig. 5.2., i.e., for ∀𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀,∀𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁 , 𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 has (LSUmn, AUmn).

P109-110

𝐸𝐸𝐸𝐸 =
𝐼𝐼𝐼𝐼

𝜋𝜋𝜋𝜋(ℎ× tan 𝜃𝜃𝜃𝜃2)2
 (5.3)

𝛿𝛿𝛿𝛿 = 2 �ℎ× tan
𝜃𝜃𝜃𝜃
2
� + (𝜔𝜔𝜔𝜔 − 1) × 𝑑𝑑𝑑𝑑 (5.4)

Note:
•

 𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
 (5.5)

P110

The average illumination caused by only the LED luminaries on all 𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is given by 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
= ∑ ∑ 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
+ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 (5.6)

∴ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
− ∑ ∑ 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
 (5.7)

P112

The static mapping between the square grid cells and the placement of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s according to Fig. 5.2 is such
that: ∀𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀,∀𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁 , (𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) are

P113
The user preferences for the individual square grid cell are 𝜌𝜌𝜌𝜌𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜌𝜌𝜌𝜌ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑔𝑔𝑔𝑔ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in
applications 𝙰𝙰𝙰𝙰𝑙𝑙𝑙𝑙 and 𝙰𝙰𝙰𝙰ℎ, respectively. They are defined in the range of minimum and maximum
illumination values, such that, 𝜌𝜌𝜌𝜌𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = [𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒] and 𝜌𝜌𝜌𝜌ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
 � 𝑒𝑒𝑒𝑒ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑒𝑒ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒� .

 (5.3)

In this thesis, we focus on the side length of a square grid cell which is equal to the side
length of illumination area δ given in (5.2). Therefore, the side length of a square grid
cell is given by (5.4) as follows:

P 108

area, and r is the radius of illumination area, calculated by (5.1).

 𝑟𝑟𝑟𝑟 = ℎ × tan(𝜃𝜃𝜃𝜃

2
) (5.1)

We place LSUs and AUs in a room such that one LSU and one AU are placed in each square grid cell as
shown in Fig. 5.2., i.e., for ∀𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀,∀𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁 , 𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 has (LSUmn, AUmn).

P109-110

𝐸𝐸𝐸𝐸 =
𝐼𝐼𝐼𝐼

𝜋𝜋𝜋𝜋(ℎ× tan 𝜃𝜃𝜃𝜃2)2
 (5.3)

𝛿𝛿𝛿𝛿 = 2 �ℎ× tan
𝜃𝜃𝜃𝜃
2
� + (𝜔𝜔𝜔𝜔 − 1) × 𝑑𝑑𝑑𝑑 (5.4)

Note:
•

 𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
 (5.5)

P110

The average illumination caused by only the LED luminaries on all 𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is given by 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
= ∑ ∑ 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
+ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 (5.6)

∴ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
− ∑ ∑ 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
 (5.7)

P112

The static mapping between the square grid cells and the placement of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s according to Fig. 5.2 is such
that: ∀𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀,∀𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁 , (𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) are

P113
The user preferences for the individual square grid cell are 𝜌𝜌𝜌𝜌𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜌𝜌𝜌𝜌ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑔𝑔𝑔𝑔ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in
applications 𝙰𝙰𝙰𝙰𝑙𝑙𝑙𝑙 and 𝙰𝙰𝙰𝙰ℎ, respectively. They are defined in the range of minimum and maximum
illumination values, such that, 𝜌𝜌𝜌𝜌𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = [𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒] and 𝜌𝜌𝜌𝜌ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
 � 𝑒𝑒𝑒𝑒ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑒𝑒ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒� .

 (5.4)

Note:
· LSU’s readings are considered without considering reflection, absorption, or loss.

These are the actual illumination readings of the activity subspace (the square grid
cells or cells) illumination even in case of reflection and absorption.

· The activity subspace may cover one or more square grid cells, depending on the
activity of a user.

At any time, the average readings from square grid cells by LSUmn give the average il-
lumination without any barriers or occlusions, denoted by Et.

P 108

area, and r is the radius of illumination area, calculated by (5.1).

 𝑟𝑟𝑟𝑟 = ℎ × tan(𝜃𝜃𝜃𝜃

2
) (5.1)

We place LSUs and AUs in a room such that one LSU and one AU are placed in each square grid cell as
shown in Fig. 5.2., i.e., for ∀𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀,∀𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁 , 𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 has (LSUmn, AUmn).

P109-110

𝐸𝐸𝐸𝐸 =
𝐼𝐼𝐼𝐼

𝜋𝜋𝜋𝜋(ℎ× tan 𝜃𝜃𝜃𝜃2)2
 (5.3)

𝛿𝛿𝛿𝛿 = 2 �ℎ× tan
𝜃𝜃𝜃𝜃
2
� + (𝜔𝜔𝜔𝜔 − 1) × 𝑑𝑑𝑑𝑑 (5.4)

Note:
•

 𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
 (5.5)

P110

The average illumination caused by only the LED luminaries on all 𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is given by 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
= ∑ ∑ 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
+ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 (5.6)

∴ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
− ∑ ∑ 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
 (5.7)

P112

The static mapping between the square grid cells and the placement of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s according to Fig. 5.2 is such
that: ∀𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀,∀𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁 , (𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) are

P113
The user preferences for the individual square grid cell are 𝜌𝜌𝜌𝜌𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜌𝜌𝜌𝜌ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑔𝑔𝑔𝑔ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in
applications 𝙰𝙰𝙰𝙰𝑙𝑙𝑙𝑙 and 𝙰𝙰𝙰𝙰ℎ, respectively. They are defined in the range of minimum and maximum
illumination values, such that, 𝜌𝜌𝜌𝜌𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = [𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒] and 𝜌𝜌𝜌𝜌ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
 � 𝑒𝑒𝑒𝑒ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑒𝑒ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒� .

 (5.5)

Note:
· External light sources (e.g., daylight) affect the LSU’s readings, having an influence on

the way LED luminaries are to be dimmed.
· LSU in a square grid cell does not necessarily need to be placed exactly at the center.

This is because the grid cell is approximately uniformly illuminated. We conducted a
series of experiments by taking LSU’s readings at various locations within the square
grid cell to observe changes in illumination. In the end, we discovered that there were
changes of less than 5% in illumination when we moved the LSU towards the corners.

The average illumination caused by only the LED luminaries on all gmn is given by olling 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, where 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is contro .
The light output from one LED luminary in gmn is denoted by Imn. In addition, external light
sources (e.g., daylight) in all gmn also contribute to the average illumination by Eext. There-
fore, Et is given by (5.6).

128 CHAPTER 5

P 108

area, and r is the radius of illumination area, calculated by (5.1).

 𝑟𝑟𝑟𝑟 = ℎ × tan(𝜃𝜃𝜃𝜃

2
) (5.1)

We place LSUs and AUs in a room such that one LSU and one AU are placed in each square grid cell as
shown in Fig. 5.2., i.e., for ∀𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀,∀𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁 , 𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 has (LSUmn, AUmn).

P109-110

𝐸𝐸𝐸𝐸 =
𝐼𝐼𝐼𝐼

𝜋𝜋𝜋𝜋(ℎ× tan 𝜃𝜃𝜃𝜃2)2
 (5.3)

𝛿𝛿𝛿𝛿 = 2 �ℎ× tan
𝜃𝜃𝜃𝜃
2
� + (𝜔𝜔𝜔𝜔 − 1) × 𝑑𝑑𝑑𝑑 (5.4)

Note:
•

 𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
 (5.5)

P110

The average illumination caused by only the LED luminaries on all 𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is given by 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
= ∑ ∑ 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
+ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 (5.6)

∴ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
− ∑ ∑ 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
 (5.7)

P112

The static mapping between the square grid cells and the placement of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s according to Fig. 5.2 is such
that: ∀𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀,∀𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁 , (𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) are

P113
The user preferences for the individual square grid cell are 𝜌𝜌𝜌𝜌𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜌𝜌𝜌𝜌ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑔𝑔𝑔𝑔ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in
applications 𝙰𝙰𝙰𝙰𝑙𝑙𝑙𝑙 and 𝙰𝙰𝙰𝙰ℎ, respectively. They are defined in the range of minimum and maximum
illumination values, such that, 𝜌𝜌𝜌𝜌𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = [𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒] and 𝜌𝜌𝜌𝜌ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
 � 𝑒𝑒𝑒𝑒ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑒𝑒ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒� .

 (5.6)

P 108

area, and r is the radius of illumination area, calculated by (5.1).

 𝑟𝑟𝑟𝑟 = ℎ × tan(𝜃𝜃𝜃𝜃

2
) (5.1)

We place LSUs and AUs in a room such that one LSU and one AU are placed in each square grid cell as
shown in Fig. 5.2., i.e., for ∀𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀,∀𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁 , 𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 has (LSUmn, AUmn).

P109-110

𝐸𝐸𝐸𝐸 =
𝐼𝐼𝐼𝐼

𝜋𝜋𝜋𝜋(ℎ× tan 𝜃𝜃𝜃𝜃2)2
 (5.3)

𝛿𝛿𝛿𝛿 = 2 �ℎ× tan
𝜃𝜃𝜃𝜃
2
� + (𝜔𝜔𝜔𝜔 − 1) × 𝑑𝑑𝑑𝑑 (5.4)

Note:
•

 𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
 (5.5)

P110

The average illumination caused by only the LED luminaries on all 𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is given by 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
= ∑ ∑ 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
+ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 (5.6)

∴ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
− ∑ ∑ 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
 (5.7)

P112

The static mapping between the square grid cells and the placement of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s according to Fig. 5.2 is such
that: ∀𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀,∀𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁 , (𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) are

P113
The user preferences for the individual square grid cell are 𝜌𝜌𝜌𝜌𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜌𝜌𝜌𝜌ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑔𝑔𝑔𝑔ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in
applications 𝙰𝙰𝙰𝙰𝑙𝑙𝑙𝑙 and 𝙰𝙰𝙰𝙰ℎ, respectively. They are defined in the range of minimum and maximum
illumination values, such that, 𝜌𝜌𝜌𝜌𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = [𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒] and 𝜌𝜌𝜌𝜌ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
 � 𝑒𝑒𝑒𝑒ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑒𝑒ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒� .

 (5.7)

The values of Eext cannot be controlled by the proposed model, but it can be changed
manually or externally. For example, more daylight contribution is expected when the
user opens curtains of the room. Therefore, the ICA in the proposed model can adjust
Et only by controlling olling 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, where 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is contro , where olling 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, where 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is contro is controlled by the light output of an individual
luminary Imn. We can control the light output Imn by adjusting the brightness percentage
of the LED luminary Bmn, where the brightness percentage Bmn is operated by AUmn. Here
0% and 100% correspond to the luminary being turned ‘off’ and being fully ‘on’, respec-
tively. In the ICA, we regulate the brightness percentage Bmn to adjust the light output Imn
and corresponding illumination Emn based on a user preference of illumination in every
individual square grid cell. We define the user preference in a range between minimum
and maximum desired illumination in each square grid cell due to the fluctuating nature
of illumination. Note that fluctuation may occur due to many reasons, for example, when
a user opens or closes the door or because of switching the TV on or off. Therefore, we
define the preference ρmn for gmn such that: ρmn = [Emn|min ,Emn|max], where, Emn|min and Emn|max
denote the minimum and the maximum desired illumination in a square grid cell gmn.

To meet the desired illumination range of preferences ρmn, we propose the following
procedure of the ICA as shown in Table 5.2. We calculate the actuation commands in the
form of target brightness levels Bmn for AUmn. Let the smallest unit of increment and decre-
ment of brightness percentage of a luminary at one update be ∆B in gmn. We discriminate
between the following two states (St1, St2) in Table 5.2.

Table 5.2. Procedure of the Illumination Control Algorithm (ICA).
No. States

1 St1: For gmn: if (Emn < Emn|min and 0 ≤ Bmn ≤ 100 - ∆B)

2 then Bmn ← Bmn + ∆B

3 hence Imn is increased.

4 St2: For gmn: if (Emn > Emn|max and ∆B ≤ Bmn ≤ 100)

5 then Bmn ← Bmn - ∆B

6 hence Imn is decreased.

The procedure in Table 5.2 will operate on Bmn to decrease or increase until Emn meets
the preferred range of illumination [Emn|min ,Emn|max]. By this procedure, the illumination in
each square grid cell is controlled independently by the corresponding LED luminary in
the same square grid cell. If an activity is distributed over a group of square grid cells in an

129SMART LIGHTING CASE STUDY

5

activity subspace, the corresponding sets of LED luminaries work together to provide the
required illumination in the activity subspace, i.e., each provides the required illumination
in their corresponding grid cells.

It is important to note that for a seamless transition between different light settings, ∆B
must be chosen appropriately. If ∆B is too large, users may notice rapid changes in light
intensity, potentially leading to discomfort. Conversely, if ∆B is small enough, users may
experience comfort due to the smooth transitions between different light settings. Ad-
ditionally, the procedure in Table 5.2 depends on specific frequencies, including ∆B. These
frequencies also have an impact on stability. LSUs provide illumination readings to the ICA
with a certain sensing frequency, and ∆B calculated by the ICA is further communicated to
AUs with a certain actuating frequency. The choice of both sensing and actuating frequen-
cies significantly affects the operation of the ICA. In Chapter 7, we will also delve into the
impact of choosing these frequencies together with ∆B in the smart lighting model.

5.3 Mapping of ICA to the Proposed Architecture

In this section, we describe the mapping of the ICA to the proposed semantic interoper-
ability architecture. For this purpose, we make groups of similar capacity nodes in a smart
space into two smart applications. This means a group of LSNs in one application and a
group of HSNs in another application. In general, the deployment of LSNs and HSNs de-
pends on the requirements of the smart space infrastructure. We choose to group them
within individual applications for the sake of convenience and with a specific purpose as
follows. First, we can easily group them within their network connected to a central node:
LSNs communicate to a GSN and HSNs communicate to an SBSN. Second, we want to
conduct separate experiments in depth on the deployment of LSNs in a smart space since
one of the challenges mentioned in RQ2B is the integration of LSNs in smart spaces. Note,
we can also deploy mixed nodes of LSNs and HSNs in a smart space, and this depends on
the smart space developer’s choices.

Consider a smart space for smart lighting (SSSL) with two applications:

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. These
applications

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 are running on their respective smart space infrastructures of
LSNs and HSNs. The purpose of considering two applications here is to demonstrate the
capabilities of LSN integration through a gateway node and HSN communication directly
to an SBSN in a smart space. This capacity is associated with the deployment of the ICA in
both types of applications. Later, we will delve into how the ICA is implemented in both
applications.

130 CHAPTER 5

The activity spaces of applications

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 are divided into square grid cells of equal
sizes, denoted by gl,mn and gh,mn respectively. We consider the same number of square grid
cells for both applications for convenience only, but it may differ based on the physical
areas in both applications in real scenarios.

In the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

, we deploy two types of LSNs (one is a light sensor node nl_s,mn and
another is a LED luminary with actuator nl_a,mn) with two associated iOs (smn and amn,
respectively) in every single square grid cell. All LSNs are connected to a GSN (ngw_SL)
that hosts a GWiO (gwSL) through a low power communication protocol, i.e., Zigbee. The
interaction states of smn and amn are the illumination value (el,mn), i.e., Emn = el,mn and the
brightness percentage (bl,mn), i.e., Bmn = bl,mn , respectively.

Similarly in the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

, we deploy two HSNs (one is a light sensor node nh_p,mn
and another is a LED luminary with actuator nh_c,mn) with two associated iOs (pmn and
cmn, respectively) in every single square grid cell. All HSNs are connected to an SBSN (nSL)
deployed with an SBiO (sbSL) and an MiO (moSL). They communicate over TCP/IP and share
semantics using SSAP. The interaction states of pmn and cmn are the illumination value
(eh,mn), i.e., Emn = eh,mn and the brightness percentage (bh,mn), i.e., Bmn = bh,mn , respectively.

The static mapping between the square grid cells and the placement of iOs according to
Fig. 5.2 is such that:

P 108

area, and r is the radius of illumination area, calculated by (5.1).

 𝑟𝑟𝑟𝑟 = ℎ × tan(𝜃𝜃𝜃𝜃

2
) (5.1)

We place LSUs and AUs in a room such that one LSU and one AU are placed in each square grid cell as
shown in Fig. 5.2., i.e., for ∀𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀,∀𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁 , 𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 has (LSUmn, AUmn).

P109-110

𝐸𝐸𝐸𝐸 =
𝐼𝐼𝐼𝐼

𝜋𝜋𝜋𝜋(ℎ× tan 𝜃𝜃𝜃𝜃2)2
 (5.3)

𝛿𝛿𝛿𝛿 = 2 �ℎ× tan
𝜃𝜃𝜃𝜃
2
� + (𝜔𝜔𝜔𝜔 − 1) × 𝑑𝑑𝑑𝑑 (5.4)

Note:
•

 𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
 (5.5)

P110

The average illumination caused by only the LED luminaries on all 𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is given by 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
= ∑ ∑ 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
+ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 (5.6)

∴ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
− ∑ ∑ 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
 (5.7)

P112

The static mapping between the square grid cells and the placement of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s according to Fig. 5.2 is such
that: ∀𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀,∀𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁 , (𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) are

P113
The user preferences for the individual square grid cell are 𝜌𝜌𝜌𝜌𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜌𝜌𝜌𝜌ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑔𝑔𝑔𝑔ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in
applications 𝙰𝙰𝙰𝙰𝑙𝑙𝑙𝑙 and 𝙰𝙰𝙰𝙰ℎ, respectively. They are defined in the range of minimum and maximum
illumination values, such that, 𝜌𝜌𝜌𝜌𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = [𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒] and 𝜌𝜌𝜌𝜌ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
 � 𝑒𝑒𝑒𝑒ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑒𝑒ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒� .

, (smn , amn) are placed in gl,mn and (pmn, cmn) are placed
in gh,mn. The smart nodes ngw_SL and nSL can be placed independently anywhere in the smart
space SSSL, provided that the placement depends on the reachability of connections from
LSNs to ngw_SL and HSNs to nSL.

The basic application ontology graph of SSSL (O_graphSL) is shown in Fig 5.3. The graph
O_graphSL is deployed on sbSL through moSL. The deployment view of SSSLwith both ap-
plications and the mapping of the smart lighting model to the semantic interoperability
architecture is shown in Fig. 5.4. With respect to the smart lighting model, LSUmn maps to
smn in the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and pmn in the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. AUmn maps to amn in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and cmn in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. The ICA executes at gwSL in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

whereas at every individual cmn in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

.

The user preferences for the individual square grid cell are ρl,mn for gl,mn and ρh,mn for
gh,mn in applications

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

, respectively. They are defined in the range of minimum
and maximum illumination values, such that, ρl,mn =

P 108

area, and r is the radius of illumination area, calculated by (5.1).

 𝑟𝑟𝑟𝑟 = ℎ × tan(𝜃𝜃𝜃𝜃

2
) (5.1)

We place LSUs and AUs in a room such that one LSU and one AU are placed in each square grid cell as
shown in Fig. 5.2., i.e., for ∀𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀,∀𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁 , 𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 has (LSUmn, AUmn).

P109-110

𝐸𝐸𝐸𝐸 =
𝐼𝐼𝐼𝐼

𝜋𝜋𝜋𝜋(ℎ× tan 𝜃𝜃𝜃𝜃2)2
 (5.3)

𝛿𝛿𝛿𝛿 = 2 �ℎ× tan
𝜃𝜃𝜃𝜃
2
� + (𝜔𝜔𝜔𝜔 − 1) × 𝑑𝑑𝑑𝑑 (5.4)

Note:
•

 𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
 (5.5)

P110

The average illumination caused by only the LED luminaries on all 𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is given by 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
= ∑ ∑ 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
+ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 (5.6)

∴ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
− ∑ ∑ 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
 (5.7)

P112

The static mapping between the square grid cells and the placement of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s according to Fig. 5.2 is such
that: ∀𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀,∀𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁 , (𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) are

P113
The user preferences for the individual square grid cell are 𝜌𝜌𝜌𝜌𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜌𝜌𝜌𝜌ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑔𝑔𝑔𝑔ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in
applications 𝙰𝙰𝙰𝙰𝑙𝑙𝑙𝑙 and 𝙰𝙰𝙰𝙰ℎ, respectively. They are defined in the range of minimum and maximum
illumination values, such that, 𝜌𝜌𝜌𝜌𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = [𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒] and 𝜌𝜌𝜌𝜌ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
 � 𝑒𝑒𝑒𝑒ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑒𝑒ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒� .

 and ρh,mn =

P 108

area, and r is the radius of illumination area, calculated by (5.1).

 𝑟𝑟𝑟𝑟 = ℎ × tan(𝜃𝜃𝜃𝜃

2
) (5.1)

We place LSUs and AUs in a room such that one LSU and one AU are placed in each square grid cell as
shown in Fig. 5.2., i.e., for ∀𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀,∀𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁 , 𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 has (LSUmn, AUmn).

P109-110

𝐸𝐸𝐸𝐸 =
𝐼𝐼𝐼𝐼

𝜋𝜋𝜋𝜋(ℎ× tan 𝜃𝜃𝜃𝜃2)2
 (5.3)

𝛿𝛿𝛿𝛿 = 2 �ℎ× tan
𝜃𝜃𝜃𝜃
2
� + (𝜔𝜔𝜔𝜔 − 1) × 𝑑𝑑𝑑𝑑 (5.4)

Note:
•

 𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
 (5.5)

P110

The average illumination caused by only the LED luminaries on all 𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is given by 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
= ∑ ∑ 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
+ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 (5.6)

∴ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 = ∑ ∑ 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
− ∑ ∑ 𝐸𝐸𝐸𝐸�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑁𝑁
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀×𝑁𝑁𝑁𝑁
 (5.7)

P112

The static mapping between the square grid cells and the placement of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s according to Fig. 5.2 is such
that: ∀𝑚𝑚𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀,∀𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁 , (𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) are

P113
The user preferences for the individual square grid cell are 𝜌𝜌𝜌𝜌𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜌𝜌𝜌𝜌ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑔𝑔𝑔𝑔ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in
applications 𝙰𝙰𝙰𝙰𝑙𝑙𝑙𝑙 and 𝙰𝙰𝙰𝙰ℎ, respectively. They are defined in the range of minimum and maximum
illumination values, such that, 𝜌𝜌𝜌𝜌𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = [𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒] and 𝜌𝜌𝜌𝜌ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
 � 𝑒𝑒𝑒𝑒ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑒𝑒ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒� .

. We defined the range of user preferences with minimum and
maximum illumination values because natural light and other external light sources (for
example, light from objects like the TV in the room) typically varies around 10 lux. We aim
to avoid unnecessary triggering of actuators to adjust luminaries in case of slight changes
in illumination that are imperceptible to the human eye. These preferences are stored

131SMART LIGHTING CASE STUDY

5

at sbSL and integrated in the ontology graph (O_graphSL). We can store user preferences
at sbSL in two ways. First, we can store these preferences at sbSL through moSL , where
this will add user preferences in the application ontology graph at the initial stage of
implementation. These are more static updates of user preferences and do not change
during execution of the smart space. Second, we can update dynamic changes in user
preferences through a specific PiO. For example, a user’s smartphone (installed with a
PiO) can update preferences based on user activities. This specific PiO for user prefer-
ences first joins the smart space SSSL and then gets knowledge of the application ontology
structure by making queries at sbSL to update user preferences. It will update user prefer-
ences whenever needed by the user using the UPDATE transaction. Therefore, the user
can update preferences at sbSL using the smartphone after joining the smart space SSSL .

Figure 5.3. The basic application ontology graph of SSSL (O_graphSL).

We discuss the adaptation of LED luminaires based on user preferences in individual
smart applications using semantic interactions in the following subsections, i.e., for the
application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 in Section 5.3.1 and for the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 in Section 5.3.2.

132 CHAPTER 5

Fi
gu

re
 5

.4
. D

ep
lo

ym
en

t v
ie

w
 o

f t
he

 sm
ar

t s
pa

ce
 S

S S
L w

ith
 th

e
m

ap
pi

ng
 o

f t
he

 sm
ar

t l
ig

hti
ng

 m
od

el
.

133SMART LIGHTING CASE STUDY

5

5.3.1. Adaptation of LED luminaries based on user preferences in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ
 Let us consider the following scenario to explain the adaptation of LED luminaries based

on user preferences in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 .

Scenario:

A change of illumination in gl,mn triggers an illumination reading event, resulting in the associated action of
adjusting the luminary settings to maintain compliance with the user preferences.

Given: User preferences of minimum illumination (el,mn|min) and maximum illumination
(el,mn|max) for a particular square grid cell gl,mn, i.e., ρl,mn = [el,mn|min , el,mn|max].

Objective: LED luminaries to adapt according to user preferences.

The sequence diagram of the scenario is shown in Fig 5.5. In Step 1, gwSL joins at sbSL
and subscribes to get updates on user preferences, i.e., ρl,mn. In reply, gwSL receives the
JOIN and SUBSCRIBE confirmations. Therefore, gwSL receives user preferences and will get
further updates on user preferences from sbSL .

Figure 5.5. Execution of the scenario example in the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

.

134 CHAPTER 5

In Step 2, smn generates events of illumination el,mn and updates to gwSL using the transac-
tion Tlsn, i.e., el,mn = El,mn. Based on the user preferences [el,mn|min ,el,mn|max] and the illumina-
tion el,mn , gwSL calculates the brightness level bl,mn according to the ICA, i.e., bl,mn = Bl,mn
and updates to amn using the transaction Tlsn. Finally, the LED luminary attached to amn is
readjusted to the brightness level bl,mn.

In Step 3, smn updates the next event of illumination el,mn at gwSL when the illumination
changes in g_(l,mn). Therefore, gwSL calculates the new brightness bl,mn based on the new
illumination el,mn and the user preferences. The LED luminary again adjusts the brightness
level bl,mn. Similarly, if the user preference also changes by the user, for example, the new
illumination range [el,mn|min ,el,mn|max] and updates at sbSL. Further, gwSL receives the update
of the user preference automatically because of the subscription established at sbSL. Then,
gwSL calculates the new brightness level bl,mn as in Step 2 and updates to amn. Therefore,
the luminary adapts the brightness level generated because of the new user preferences.
The process of calculating new brightness level commands will continue as we get new
events of illumination or new user preferences at gwSL.

Finally, LED luminaries can adapt the brightness levels calculated by gwSL according to
the user preferences in the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. In this example scenario, we explained the
mechanism of working with LSNs in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and further semantic interactions between GSN
and SBSN. This discussion explained semantic interoperability within the counterpart of
the semantic interoperability architecture.

5.3.2. Adaptation of LED luminaries based on user preferences in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

We consider a similar scenario to the one explained in Section 5.3.1 in order to explain the
adaptation of LED luminaries based on user preferences in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

.

Scenario Example:

A change of illumination in gh,mn triggers an illumination reading event, resulting in the associated action of
adjusting the luminary settings to maintain compliance with the user preferences.

Given: User preferences of minimum illumination (eh,mn|min) and maximum illumination
(eh,mn|max) for a particular square grid cell gh,mn , i.e., ρh,mn = [eh,mn|min , eh,mn|max].

Objective: LED luminaries to adapt according to user preferences.

The sequence diagram of the scenario execution in SSH is given in Fig 5.6. In Step 1, pmn and
cmn join at sbSL. In Step 2, pmn generates the event of illumination eh,mn and updates at sbSL
using the transaction Tu, i.e., eh,mn = Eh,mn. In Step 3, cmn subscribes at sbSL to get updates of
both events eh,mn and user preferences ρh,mn using the transaction Ts.

135SMART LIGHTING CASE STUDY

5

Figure 5.6. Execution of the scenario example in the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

.

In Step 4, based on the user preferences [eh,mn|min , eh,mn|max] and the illumination eh,mn , cmn
calculates the brightness level bh,mn according to the ICA, i.e., bh,mn = Bh,mn and updates
the luminary output accordingly. Finally, the LED luminary attached to cmn adjusts the
brightness level bh,mn. Thus, the LED luminaries adapt the brightness percentages accord-
ing to the user preferences. Similar to the previous section in Section 5.3.1, the process of
calculating new brightness level commands will continue until we get the next events of
illumination in gh,mn or new user preferences from sbH at cmn as shown in Step 5.

136 CHAPTER 5

Finally, LED luminaries can adapt the brightness percentages based on user preferences in
the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. In this example scenario, we explained the mechanism of working with
HSNs in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and semantic interactions between HSNs and SBSN. This discussion explained
semantic interoperability within the semantic interoperability architecture.

In real life, users and their preferences may change over time and a user may have differ-
ent preferences for different activities performed in an activity subspace. Based on the
user preferences for a given activity, the illumination in the activity subspace can be ad-
justed dynamically by changing the LED brightness levels using the smart lighting model.
Different preferences of multiple users can cause conflicts in controlling the luminaries in
the model. Generally, user preferences can be formulated in two ways. Firstly, consider
the preferences from multiple users are taken into account in different activity subspaces
within the smart space. In this situation, conflicts can be easily avoided by controlling
the luminaries in those square grid cells that are specifically assigned to each user. This
way ensures that the activity subspaces do not conflict with each other. Secondly, prefer-
ences from multiple users in a shared activity subspace can lead to conflicts. To address
these conflicts, we propose a resolution method that prioritizes the highest-ranking user
preference. To illustrate this conflict resolution method, we consider two users and their
preferences within the same activity subspace.

· Case 1: Different user preferences for the same activity: In this case, the selection
of user preferences in the smart lighting model is directly influenced by choosing a
preference with the higher range of illumination values. This is because the activities
are the same for both users.

· Case 2: Different user preferences for different activities: In this case, the choice of
user preferences in the smart lighting model depends on both preferences and activi-
ties. Therefore, the activity with higher priority will take precedence over the one with
lower priority. For instance, in a smart home within the same activity subspace, the ac-
tivity of reading a newspaper will take precedence over watching TV. The priority levels
of user activities can be defined based on general human perception. For example, it
is understood that watching TV has a lower priority level than reading a newspaper in
terms of lighting within the same activity subspace.

5.4 Smart Lighting Use Cases

We consider two smart lighting use cases: Use Case 1 (UC-1): Context-adaptive smart light-
ing and Use Case 2 (UC-2): Power-managed smart lighting. UC-1 implements the smart
lighting model for LSNs and semantic interoperability with an SBSN in a smart space. UC-2
implements the smart lighting model using the semantic interoperability architecture that

137SMART LIGHTING CASE STUDY

5

includes both LSNs and HSNs, where the nodes can share semantics over different applica-
tions in a smart space.

5.4.1 UC-1: Context-adaptive smart lighting
The existence of sufficient light is crucial for any task one may want to carry out. Human
beings feel comfortable with different levels of illumination for different tasks or activities.
For example, while low light levels are good for watching a movie, videoconferencing on
a computer requires vivid lighting. This is because most webcams would not be able to
capture good quality videos in low light conditions. Therefore, there is a growing demand
towards smart lighting systems that can dynamically meet user requirements for different
activities and in different places. In the context-adaptive smart lighting, the objective is
to control illumination in activity subspaces based on user activities and preferences. To
achieve this, we consider the following two user activities: reading a book that is laying on
a table and Watching TV.

Hence, the key challenge lies in implementing this use case using the semantic interop-
erability architecture, incorporating LSNs and the smart lighting model. Ultimately, the
luminaries must adjust light intensity according to various user preferences. The imple-
mentation of UC-1 is elaborated in Chapter 7.

5.4.2 UC-2: Power-managed smart lighting
Electric power usage constitutes an important source of financial outflow for building
spaces. Therefore, electricity providers offer various schemes for billing. One scheme is
that a building gets a quota of electric power that it can use. This way, electricity provid-
ers can cost-effectively plan their power generation. However, if a building uses more
power than its assigned quota, a significantly higher electricity price is charged, leading
to excessive power bills. Hence, the quota of electric power overflows must be avoided.
The power usage in a building may vary based on the types of activities happening in the
building at different times of the day. Let us take the simple example of office space with a
single coffee machine that is used 12 hours per day to make 200 cups of coffee per week.
In this typical setting, according to [5.46], a single coffee machine would consume around
200 kWh per annum (kWh/a) for actual use (spikes of power use while making coffee),
147 kWh/a for heating water when idle, and 18 kWh/a in stand-by mode. Note that more
than half of the power consumed comes in the form of bursts (i.e., when someone presses
the button to make coffee), while a rather smaller portion is consumed continuously and
constantly due to idle operation. Therefore, in a huge office building with many of these
machines, coffee break times together with other stuff could cause power consumption
peaks, leading to power quota violations, if not handled properly. Thus, it is important to
keep power usage just tightly below a given quota taking all power consumption varia-
tions into account. One approach to solve this problem is to purchase more power than

138 CHAPTER 5

the building would need on average, creating a power quota margin for times of excessive
electricity usage, which is suboptimal.

In UC-2, the power-managed smart lighting addresses this issue by implementing a prior-
ity mechanism to regulate luminaries in the rooms of a residential building. We focus
specifically on the power usage of luminaries within the building in this use case. The
priority mechanism ensures controlled power usage by luminaries, thereby adhering to
a predetermined power usage quota for the entire building. In this approach, we divide
rooms of the building into two categories: i) high-priority rooms (HPR) that are allowed to
use power according to whatever demand there is at that time, and ii) low-priority rooms
(LPR) that are obliged to use the power that is leftover from the quota after the consump-
tion of high-priority rooms. If the maximum HPR power consumption by itself cannot
exceed the available power quota of the building; then quota overflows can be prevented
in all cases, while maximizing power utilization by allocating the remaining power budget
to LPRs. To achieve this approach, we need to solve the following issues:

1) Firstly, individual rooms (either LPR or HPR) may contain smart nodes from various sup-
pliers, possibly forming collaborative networks among themselves. To manage power
for the entire building, collaboration of smart nodes in all rooms is necessary. This is
difficult since smart nodes from different suppliers may operate over different system
architectures due to lack of standardization. Ideally, a collaborative network that is
installed using smart nodes of a given supplier should be easily extendable by products
of another supplier. Hence, interoperability among different smart nodes becomes a
key challenge. We can solve this challenge by the proposed semantic interoperability
architecture.

2) Secondly, LPR should only include services that are low-priority by nature, since the
functionality of LPR services depend on the availability of power budget remaining
after power allocation to HPRs. Some examples of such low-priority services are low-
priority lighting (e.g., lighting in a parking lot), and non-functional (e.g., decorative,
artistic) lighting. Hence the key challenge is to control the luminaires in the building,
where HPR gets priority to use the power quota assigned to the building, then LPR
uses the remaining power quota. We can solve this challenge by the smart lighting
model.

The challenge is to maintain the power quota of a residential building by controlling
luminaries using the smart lighting model and exchanging semantics using the semantic
interoperability architecture. We explain the implementation of UC-2 in Chapter 7.

139SMART LIGHTING CASE STUDY

5

5.5 Conclusions

This chapter introduced a novel smart lighting model that is usable together with the
proposed semantic interoperability architecture, allowing for efficient deployment of the
illumination control algorithm on both low and high-capacity smart nodes. This proposed
architecture facilitates the mapping of the model with shared semantics within a smart
space. Additionally, the model offers a solution for maintaining illumination in indoor
spaces based on user preferences and activities. Moreover, the conflict resolution method
in the smart lighting model can avoid conflicts of preferences by multiple users. Finally, we
have drawn two use cases of smart lighting applications for experimenting in Chapter 7.

140

141SMART SPACE LIFE CYCLES

6

Chapter 6
Smart Space Life Cycles

In Chapter 5, we proposed and mapped the smart lighting model to the semantic interop-
erability architecture, presenting two use cases (UC-1 and UC-2) to illustrate the practical
implementation of smart spaces. To lay the basis for the subsequent implementation
detailed in Chapter 7, we shift our focus to the perspective of smart space developers in
this chapter. Here, we delve into the life cycles of smart spaces, providing essential insights
that serve as a foundational understanding before delving into the practical aspects in the
later chapters. The primary focus of this chapter is on the life cycle steps of a smart space,
facilitated by the proposed semantic interoperability architecture. Through this explora-
tion, our objective is to evaluate the utility of the semantic interoperability architecture
within the development process and for the developers involved. This investigation of
smart space life cycles is aimed at assessing the practical implications and benefits that
the proposed architecture brings to the overall development and implementation of smart
spaces.

Some researchers are actively working to find solutions for the development of smart
spaces, and a recent example is the ‘Matter’ project (formerly known as Connected Home
over IP or CHIP)14. This collaborative initiative involves Amazon, Apple, Google, Samsung
Smart Things, and the Zigbee Alliance, with the goal of simplifying the development of
smart home products and enhancing compatibility among consumer devices. While Mat-
ter focuses on achieving interoperability between smart home devices and IoT platforms
from different providers, it is primarily centered around the ‘smart home’ and does not
emphasize semantic interoperability. In this thesis, we employed the SSAP protocol to
achieve semantic interoperability among smart nodes from different providers. The SSAP
protocol streamlines node connectivity by facilitating semantic interactions within a smart
space. However, relying solely on the SSAP protocol is insufficient for designing a compre-
hensive smart space. Recognizing this, Chapter 3 introduced the semantic interoperability
architecture, ensuring seamless collaboration among all smart nodes within smart spaces.
This proposed architecture allows smart space developers to concentrate on creating a
user-friendly application experience, freeing them from the burden of developing and
maintaining proprietary protocols. Thus, from the perspective of smart space developers,
we delve into the detailed design of smart spaces through the life cycle processes out-
lined in this chapter. For instance, a standard life cycle of a software system comprises six

14 https://csa-iot.org/all-solutions/matter/

142 CHAPTER 6

distinct stages: analysis, design, implementation, testing, deployment, and maintenance.
Examining the life cycle perspective of a system provides valuable insights into the tasks
associated with each stage, the stakeholders accountable for and impacted by these tasks,
and the challenges that may arise. In our investigation of life cycle requirements within
smart space architectures, we follow the approach outlined in [6.1].

In this thesis, our focus centers on a case study involving the implementation of smart
lighting applications within smart spaces utilizing the proposed architecture. Conse-
quently, we introduce the smart space life cycle, explaining the details of designing a
smart space while incorporating the deployment of the smart lighting model. The smart
space life cycle comprises three integral components: the smart node life cycle, the smart
service life cycle, and the smart application life cycle. These components form a holistic
view that we will delve into in subsequent sections, providing an in-depth exploration of
each life cycle to offer a comprehensive understanding of their interplay in the context of
smart space implementation.

6.1 Smart Node Life Cycle

The life cycle of a smart node shown in Fig 6.1 can vary depending on the specific context
and application. Determining the purpose of smart nodes is foundational to building a
smart space that is cohesive, efficient, and capable of meeting its intended objectives.
Therefore, first, we need to determine the purposes of smart nodes in a smart space. This
involves identifying the specific functions and roles they serve within the smart space.
Here are some important points to help determine the purposes of smart nodes:

· Define overall objectives and identify use cases: We begin by defining the overall
objectives or goals of the smart space, clarifying what it aims to accomplish and the
issues it seeks to address. Additionally, we identify various use cases or scenarios
within the smart space that involve nodes. These may include applications such as
environmental monitoring, smart home systems, energy management, or healthcare
monitoring. Each use case may necessitate specific functionalities or capabilities from
the smart nodes.

· Analyze system requirements: We conduct an analysis of the system requirements for
the smart space to ascertain the essential functions and capabilities of the nodes. This
encompasses factors like data collection, processing, communication, actuation, and
integration with other nodes.

· Consider interoperability: We evaluate the interoperability requirements within the
smart space, discerning how the nodes will communicate and cooperate with each

143SMART SPACE LIFE CYCLES

6

other, as well as with external systems. We also identify any particular protocols or
standards that must be supported by the smart nodes.

· Scalability and flexibility: We take into account the scalability and flexibility require-
ments of the smart space, assessing whether the nodes should have the capacity to
adapt to evolving needs, accommodate future expansions, or support various configu-
rations and deployments.

· Stakeholder input: We collect input from stakeholders, which includes end-users,
domain experts, smart space developers, and other pertinent parties. Their insights
and perspectives are invaluable in identifying the specific needs, functionalities, or
roles that the smart nodes should fulfil.

In this thesis, we delve into various smart lighting use cases for experimental analysis. To
comprehensively explore these use cases, we identify light sensor and actuator nodes as

Figure 6.1. Smart node life cycle.

144 CHAPTER 6

integral components of smart nodes within smart spaces. These nodes play a pivotal role
in the implementation of lighting applications, allowing for the seamless integration of
smart lighting systems. By focusing on these smart nodes, we aim to gain valuable insights
into the practical applications and performance of smart lighting solutions. Additionally,
our investigation extends beyond theoretical considerations to practical implementations,
providing a holistic understanding of the role of light sensor and actuator nodes in en-
hancing the efficiency and adaptability of smart spaces.

6.1.1 Design and development of smart nodes
This step involves designing and developing the hardware and software components of
the smart node. Once the purpose is determined, the design and development phase
includes defining the functionality, communication protocols, and power requirements.

· Functionality: Smart nodes have various functionalities that enable them to collect,
process, and transmit data, interact with other nodes, and contribute to the smart
space. Here are some common functionalities of smart nodes:
o Data sensing and collection: Smart nodes are equipped with sensors capable of

detecting various types of data, such as temperature, humidity, motion, light,
sound, and more. They gather data from their surroundings and convert it into
digital signals for further processing.

o Data processing: Smart nodes often have built-in microcontrollers or processors
that can process the data collected from sensors. This processing may involve
data filtering, aggregation, analysis, and even running simple algorithms to derive
insights.

o Actuation: In addition to sensing and processing data, some smart nodes have the
ability to actuate and control other devices or systems based on the processed data
or received commands. For example, a smart thermostat can control the heating or
cooling system in a building.

In Chapter 2, we classified smart nodes into three different categories: C0, C1, and C2,
based on their memory and processing power. These categories are further divided into
two types of nodes within the semantic interoperability architecture: LSNs (C0 and C1) and
HSNs (C2). HSNs host either PiOs or CiOs, while LSNs host either SiOs or AiOs. The smart
nodes, both HSNs and LSNs, possess the capability to either produce or consume informa-
tion within a smart space through sensing and actuating functionalities, respectively. To
facilitate this, we configure software components by installing either PiO or CiO or both
on smart nodes. Each node is associated with an intended service that corresponds to a
specific PiO or CiO. For example, a light information service associated with a light sen-
sor node generates light information using the installed PiO. More detail on services is
discussed in Section 6.2.

145SMART SPACE LIFE CYCLES

6

· Communication protocols: The choice of communication protocol depends on factors
such as the application requirements, range, power consumption, and the size of the
smart space. Smart nodes are designed to communicate with other nodes or a central
node within the smart space. They can use various communication protocols such as
IP, Bluetooth and Zigbee to share data. For instance, we choose IP for HSNs and Zigbee
for LSNs for experiments in Chapter 7.

· Power requirements: The power requirements of smart nodes in smart spaces can
vary significantly depending on several factors, including the node’s functionality,
communication technology, operating environment, and power management tech-
niques. Generally, smart nodes are designed to be energy-efficient to prolong battery
life in wireless devices and reduce overall power consumption in wired systems. For
instance, we use battery operated LSNs and external power supply for HSNs (explained
later in this section in detail).

6.1.2 Installation and commissioning of smart nodes
Proper installation and commissioning ensure that the smart nodes function correctly
and are integrated into the smart space. Here are some important points to consider for
achieving successful installation and commissioning:

· Assigning unique identifiers: Assigning unique identifiers to smart nodes is a critical
step in the manufacturing and deployment process. These unique identifiers help
distinguish each smart node from others. Each smart node is assigned a unique se-
rial number during the manufacturing process. This number can be a combination of
letters or numbers. Serial numbers are usually printed, or stored electronically on the
node. The smart space developer uses these numbers for reference. The unique ID is
provided to each smart node by the developer itself. In smart spaces, developers use
the taxonomy of nodes that is suitable for ontology development. The taxonomy of
smart nodes for ontology development was explained in Chapter 4.

· Setting up network connections: Setting up network connections for smart nodes is
needed for establishing communication between the nodes and the SBSN in smart
spaces. The process can vary based on the communication protocols and network
infrastructure involved. Generally for smart spaces, we look for the following points:
o Network connection: In this thesis, an IP connection to HSNs is essential for par-

ticipation in smart spaces, as it is required for SSAP. Additionally, a suitable com-
munication protocol for LSNs is needed to connect with the gateway node.

o Gateway integration: If the smart nodes communicate through a special gateway
node, ensure that the nodes (LSNs) are properly integrated with the gateway node
to facilitate communication with other nodes in the smart space. The gateway

146 CHAPTER 6

node must have an IP connection to participate in the smart space on behalf of all
other nodes (LSNs) connected to it.

· Connectivity to the smart space: When the network connection is active for smart
nodes, it enables them to access smart space services, receive updates, and interact
with other smart nodes or users with the help of the SBSN. For instance, all smart
nodes are connected to the SBSN of the smart space through a joining process involv-
ing basic operations, as explained in Chapter 4 and depicted in Fig 4.7. The smart
nodes can access the SBSN via the joining process using two methods. First, they can
utilize the Avahi mDNS15 service to discover the SBSN. Second, smart nodes can use
the static IP address of the SBSN to join the smart space. Ultimately, the nodes within
the smart space assume the role of either producers or consumers of information.

· Configuring security settings: When configuring security for nodes, it is important
to consider several aspects to protect the integrity, confidentiality, and availability
of the smart space environment. Some important key points for configuring security
for smart nodes involve authentication, access control, encryption and more. In this
thesis, security patches are installed on smart nodes when SSAP is installed on them.
SSAP provides a secure communication channel with the necessary security settings
over TCP/IP.

6.1.3 Operation of smart nodes
The operation of smart nodes refers to the functioning and behavior of individual nodes
within a smart space. These smart nodes are equipped with sensors or actuators, proces-
sors, and communication capabilities. Once a smart node is deployed, a smart service
is put into operation. For instance, a sensor starts collecting data, processing data, and
delivering the associated service to it. The smart service is explained in detail in Section
6.2.

6.1.4 Updates on smart nodes
Updating software on smart nodes is a critical process to ensure the devices have the
latest features, improvements, bug fixes, and security patches. This may involve writing
new code, modifying existing code, or integrating third-party libraries. This applies to both
LSNs and HSNs, when there is a need to update functionalities or services on the nodes.

Updates are also driven by other factors, such as battery and energy efficiency. As the
number of smart nodes increases, energy efficiency has become a significant concern.
Generally, manufacturers have been focusing on optimizing power consumption to extend

15 avahi - mDNS/DNS-SD

147SMART SPACE LIFE CYCLES

6

the operational life of battery-powered devices. For instance, this primarily applies to
battery-operated LSNs.

6.1.5 Decommissioning
Decommissioning smart nodes refers to the process of retiring or removing these nodes
from operation within a smart space. This process is essential when smart nodes are no
longer needed, when demands of the application requirements to remove or replace,
or when they reach the end of their useful life and become obsolete in the smart space.
Smart nodes can exit the smart space through the installed iO by using the LEAVE transac-
tion. In cases where they fail to execute the LEAVE transaction, physical removal becomes
necessary. Some common reasons for failure include end-of-life scenarios, technical is-
sues, and system upgrades.

6.1.6 Example of the smart node cycle used in UC-1 and UC-2
In both UC-1 and UC-2, the hardware units of LSNs are designed at the TU/e IRIS lab by
configuring various embedded devices together. Figure 6.2 illustrates the configuration of
an SN, which consists of a Body Sensor Network (BSN) node and a Phidget precision light
sensor. The Phidget sensor is connected to an Analog to Digital Converter (ADC) channel
of the BSN node. The BSN node runs TinyOS, and its hardware specifications are listed in
Table 6.1. The Phidget sensor can detect fluctuations in light levels at higher frequencies
than the human eye. Its specifications are also listed in Table 6.1.

Figure 6.2. LSN: wireless sensor node SN.

148 CHAPTER 6

Table 6.1. Hardware specification of the configured LSN: wireless sensor node.
Unit Module Parameter and specification

BSN
Processor
(TI MSP430F1611)

Flash memory: 48 KB
RAM: 10KB
On-chip ADC resolution: 12 bits
ADC channels: 8 channels
DAC channels: 2 channels

Radio Transceiver
(TI CC2420)

Wireless communication standard: IEEE 802.15.4 (2.4 GHz)
250 kbps data rate
Indoor range: 50 m
Outdoor range: 125m

EEPROM (AT 45DB321) Flash memory: 4 MB
SRAM buffers: 512/528 bytes
Program/ Erase cycle: 100,000 cycles

Phidget Phidget light sensor board
(connected to the ADC
channel of the BSN node)

Voltage input: (0-5 V)
Response Time Max: 20 milliseconds
Measurement Error Max: +-5%
Light level min: 1 lux
Light level max: 1000 lux (equivalent to TV studio lighting)

A LED luminary (referred to AN) is designed by combining a Phidget actuator with multiple
LEDs attached to it. To assemble these hardware components into a single unit, we utilize
a suitable case (a readily available plastic body cover in the market) for each LED luminary,
as depicted in Fig 6.3. The Phidget actuator allows independent control of up to 64 LEDs.
Each LED can have its current limit set individually, and its brightness can be adjusted
from 0 to 100% within the set limit using current control. Standard LEDs typically have
forward voltages below 2.75 Volts and can be easily used with the Phidget actuator by
soldering them to a connector wire and inserting the wire into any board output. The
default forward voltage is 2.75V, and the maximum current defaults to 20mA. The Phidget
actuator board is controlled via USB, and its specifications are listed in Table 6.2.

Figure 6.3. LSN: LED luminary (combination of an actuator and LEDs).

149SMART SPACE LIFE CYCLES

6

Table 6.2 The hardware specification of the configured LED luminary for the experiment purpose.
Phidget actuator board Description

Controlled by USB

Number of LED outputs 64

Recommended wire size (Power Terminal) 12 to 26 AWG

Supply voltage Min/Max 6/12 V DC

LED current limit Max 80mA

HSNs were designed by NXP for research purposes. Figure 6.4(a) and Figure 6.4(b) illustrate
two types of HSNs: the LED luminary and the sensor node, respectively. The specifications
of these HSNs are listed in Table 6.3.

Figure 6.4 (a) HSN: LED luminary and (b) HSN: Sensor node.

Table 6.3 The hardware and software specification of HSNs (LED luminary and sensor node).
HSN Features Description

LED luminary Luminary Function Turn ‘on’ and ‘off’ and its brightness
controlled

Power source AC220V

Power conversion LED 220V

Connection Zigbee and Internet

Maximum light Output per luminary 525 (maximum 175 lumens per LED)

Maximum power used per luminary 4500 milliwatts

CPU Arm cortex M0

Operating system µCLinux

Sensor Node Sensor Type Motion sensor

Power source AC220V

Connection Zigbee and Internet

CPU Arm cortex M0

Operating system µCLinux

The installation and commissioning of these designed smart nodes are carried out as fol-
lows: we assign a unique ID to each smart node using the ontology concept discussed in
Chapter 4. For instance, when defining any smart node in the ontology, a URL is specified
for that node. Additionally, we set up an IP connection for all HSNs and Zigbee for all LSNs.

150 CHAPTER 6

HSNs become operational within a smart space when they join the SBSN using the JOIN
transaction and initiate semantic exchanges. LSNs become operational within a smart
space when they join to a gateway node (GSN) using Zigbee. The GSN further connects
to the SBSN using the JOIN transaction. HSNs and GSN can exchange semantics through
various transactions (REMOVE, UPDATE, SUBSCRIBE, and UNSUBSCRIBE) at the SBSN using
the SSAP protocol, as detailed in Section 4.2.2. Smart nodes can be updated as needed to
modify application logic. For this purpose, the developer responsible for the smart space
identifies the update requirements necessary for the application logic. This involves a
thorough understanding of the desired changes, whether it is bug fixes, the addition of
new features, or additional functionalities. Once the update requirements are clear, the
developer proceeds to programmatically update the smart nodes. This process ensures
that the application’s logic is in sync with the latest specifications and functionality of the
smart nodes. After the update is completed, the installation and commissioning process
will be repeated, and finally, the smart nodes become operational in the smart space
again. The ability to update smart nodes dynamically allows for the adaptability needed
in evolving smart spaces. Finally, decommissioning becomes necessary when smart nodes
are no longer required in the smart space or encounter issues such as end-of-life scenarios
or technical problems that cannot be repaired. As discussed in Section 6.1.5, smart nodes
can exit the smart space by utilizing the LEAVE transaction through the installed iO. How-
ever, instances may arise where the execution of the LEAVE transaction fails, necessitating
physical removal.

We employ these designed smart nodes for conducting experiments on the use cases
UC-1 and UC-2, as discussed in Chapter 7. According to our definition of a smart space,
the hardware unit used for node nh is either a producer or consumer HSN, as shown in
Fig 6.4(a) and Fig 6.4(b). The hardware units for nodes nS and nA are either producer or
consumer LSNs, as depicted in Fig 6.2 and Fig 6.3, respectively. Additionally, every smart
space includes an SBSN node and, if any LSNs are present, a GSN node. All SNs com-
municate with the gateway node GSN using the Zigbee over IEEE 802.15.4 protocol, while
all ANs utilize USB for communication. The GSN is an HSN node and can establish com-
munication with the central repository node SBSN through SSAP over TCP/IP. The SBSN
node is a powerful node that comprises a repository, which can be either a laptop or a
smartphone. Lastly, all HSNs also communicate with the SBSN via SSAP over TCP/IP.

6.2 Smart Service Life Cycle

Smart service is a foundational concept within the realm of smart spaces, denoting a set
of functionalities provided by an iO. It is designed to perform specific tasks or operations
that can be accessed and utilized by other iOs. For instance, a smart service influences

151SMART SPACE LIFE CYCLES

6

data collected from sensors, processes it through iOs, and produces light-related informa-
tion in a smart space. A smart service can also initiate actuation processes on a specific iO
based on the consumed light information in a smart space. Smart services play a crucial
role in transforming physical spaces into smart spaces. For example, smart lighting systems
adjust brightness based on occupancy, natural light, and user preferences, optimizing
energy consumption and enhancing user comfort.

The smart service life cycle shown in Fig 6.5 refers to the different stages that a smart
service goes through from its design to its termination. This life cycle involves various
processes and activities that ensure the effective development, deployment, and manage-
ment of smart services within a smart space. The typical stages in the smart service life
cycle include: Design, Deployment and Integration, Operation, Updates and Termination.

Figure 6.5. Smart service life cycle.

6.2.1 Design
The design of a smart service is a collaborative effort that involves designers, engineers,
domain experts, and end-users. It is an iterative and evolving process that requires con-
tinuous refinement to meet the dynamic needs of the smart space and its users. The
design process is vital as it lays the foundation for how the smart service will operate,
interact with users and other smart nodes, and achieve its intended goals. Here are the
key steps in the design of a smart service:
· Clearly defining the objectives of the smart service and understanding the specific

needs and requirements of the target users or stakeholders are essential steps. This
process helps in establishing the scope and goals of the service

152 CHAPTER 6

· Designers need to adopt a user-centric approach, focusing on the needs, preferences,
and behavior of the users who will interact with the smart service. User research and
feedback play a crucial role in shaping the service design.

Next, we conceptualize the smart service idea to ensure that the intended goals are met.
We consider the functionalities that a smart node can provide as a service. For instance,
a smart node (namely light lamp) can have the functionalities of being on or off. These
functionalities of the light lamp contribute to a service that we can call a ‘light service’.
Similarly, another smart node (namely presence sensor) can have the functionality of
measuring the presence of a user. This functionality of the presence sensor is known as
the ‘presence status service’. Finally, the design of these services relies on the functional-
ities and application logics of smart nodes. This process is facilitated with the assistance
of iOs, enabling the transformation of interaction states into RDF triples. The formation of
RDF triples was explained in Chapter 4.

6.2.2 Deployment and integration
Once smart services are designed, we deploy them on smart nodes within a smart space.
We register these smart services at the SBSN to integrate them into the smart space. After
registration, these services become available for use within the smart space. For instance,
the light and presence status services are deployed on smart nodes and then registered
by them at the SBSN for further use by other nodes in the smart space.

6.2.3 Operation
Once the smart service is operational, it provides the intended functionalities. The opera-
tion of smart services in smart spaces refers to the active functioning and execution of
interconnected services within a smart space. For instance, once the smart services are
registered at the SBSN of the smart space, they become available for use by other smart
nodes. These smart nodes can subscribe to these services to execute specific scenarios to
interconnect the services. Let us consider an example scenario where the behavior of a
light lamp is influenced by a presence sensor. The light lamp will subscribe to the presence
status service, and based on the result, it will either turn on or off accordingly. As a result,
both the light service and the presence status service will become operational within the
smart space.

6.2.4 Updates
Smart services may undergo updates to add new features or functionalities. This stage
involves updating the software firmware of smart nodes or making changes to the service.
For instance, if we want to add a new functionality to the light lamp, allowing it to be
operated with adjustable brightness levels, we can update the light service to include the
brightness level along with the ‘on’ function.

153SMART SPACE LIFE CYCLES

6

6.2.5 Termination
At the end of its life cycle or when no longer relevant, a smart service may be retired or
replaced. Proper decommissioning and data handling are crucial during this phase. For
instance, the smart node itself can deregister by removing the registered service at the
SBSN using the REMOVE Transaction.

6.2.6 Example of the smart service cycle used in UC-1 and UC-2
All light sensor nodes have the service to measure illumination at a specific point of their
placement, as specified in Table 6.1 in Section 6.1.6. Additionally, all actuator nodes have
the service to turn on with adjustable brightness levels and turn off, as specified in Table
6.2 in Section 6.1.6. For example, the actuator of the lamp has a smart service that defines
a state as either on or off. This state needs to be expressed by a PiO in RDF triple format,
i.e., (“Lamp”, “hasState”, “ON”) when the lamp is on and (“Lamp”, “hasState”, “OFF”)
when the lamp is off. For deployment and integration, the PiO will register its service
with the smart space using the INSERT transaction. Once registered, this service becomes
available for other PiOs in the smart space. The service becomes operational when the
lamp receives instructions from the smart space to either turn on or off. Additionally, the
service can be updated to include new features, such as operating at a specified bright-
ness level on the lamp. This new feature state must be expressed by the lamp in RDF
triple format, i.e., (“Lamp”, “hasState”, “Brightness_level”), when the lamp is operating at
a certain brightness level. Finally, the service is terminated when it is no longer registered
in the smart space, achieved by removing the specific triples associated with the service
using the REMOVE transaction.

In conclusion, the iOs create services for nodes based on the available features or func-
tionalities of those nodes and express these features or functionalities in RDF triples.
Following the creation of these RDF triples, the services must be registered at the SBSN by
the iOs for subsequent use by other iOs. Finally, a smart application executes or intercon-
nects these services in a smart space to run scenarios.

6.3 Smart Application Life Cycle

The smart application life cycle refers to the stages that a smart application goes through
from its design to its deployment, operation, and eventual retirement. We defined smart
application as a set of application scenarios. Throughout this life cycle, we delve into the
process from the initial design and deployment to the eventual termination of application
scenarios. The overview of the smart application life cycle is illustrated in Fig 6.6.

154 CHAPTER 7

Figure 6.6. Smart application life cycle.

6.3.1 Design and development
The life cycle begins with the conceptualization and design of the smart application.
During this stage, the objectives, requirements, and functionalities of the application are
defined. The smart application is designed to address specific use cases and provide smart
solutions within a smart space. In this stage, the actual development of the smart applica-
tion takes place. Software developers, engineers, and domain experts work together to
write the necessary code, create algorithms, for application logic.

6.3.2 Deployment
The smart application is deployed and integrated into the smart space. This involves
installing the application logic on smart nodes to contribute to specific application sce-
narios, connecting them to the central entity or gateway, and ensuring smooth interaction
with other smart services and nodes. To achieve this, we first deploy smart nodes in the
physical space according to the requirements of the smart space and then deploy applica-
tion logic to these smart nodes. Finally, we establish the necessary subscriptions of smart
services required by nodes at the SBSN of the smart space.

6.3.3 Operation
Once deployed, the smart application becomes operational, delivering its intended
services and functionalities. It undergoes execution through various application sce-
narios, during which smart nodes receive subscription results of the subscription made

155IMPLEMENTATIONS AND EVALUATIONS

7

at the SBSN. The interconnection of smart services through subscriptions facilitates the
execution of these application scenarios seamlessly, ensuring that the smart application
responds dynamically to the changing conditions within the smart space. Additionally, at
any time, iOs can receive queries for information updates, further enhancing the flexibility
and responsiveness of the smart application to changing requirements.

6.3.4 Updates
Smart applications may require updates to add new application logic based on newly
added features and functionalities. For this purpose, we can update scenarios of the
smart application by adding or modifying application-specific logic in the communicating
smart nodes, where the communicating smart nodes are the nodes that participate in that
particular scenario.

6.3.5 Termination
Eventually, a smart application may reach the end of its life cycle due to changing require-
ments, technological advancements, or obsolescence. In such cases, the application may
be retired, replaced by a newer version, or replaced by a different application that better
meets the current needs of the smart space. The straightforward way to remove any ap-
plication scenario is to unsubscribe the smart nodes involved in that particular scenario.

6.3.6 Example of the smart application cycle used in UC-1 and UC-2
In the design and development step, we design application-specific scenarios by pro-
gramming a dedicated application logic. This logic enables sharing information between
different nodes, such as a luminary and a user’s presence node in a room, through the
SBSN. In the given example, the application logic is designed to determine whether the
luminary should be turned on or off based on the user’s presence status. Additionally, we
develop an application ontology, building upon the basic concepts discussed in Section
5.3, as illustrated in Fig 5.3. In the deployment step, we position the sensor and actuator
smart nodes within an indoor space. These nodes are paired in each square grid cell to
facilitate the publishing and subscribing of information in the smart space. It is important
to recall that when deploying the ICA algorithm, we install it on the gateway node in the
LSN network within the smart space, and on every consumer node in the HSN network.
We establish the necessary subscriptions required to run any scenario in the smart space.
For example, if the luminary turns on or off based on the user’s presence in the room,
then the iO of the luminary smart node needs to subscribe to the user’s presence status
at the SBSN. The application scenario becomes operational when smart nodes initiate the
sharing of information at the SBSN, thereby executing its intended objective: controlling
the luminary based on the user’s presence. In the update step, the application logic can
be further updated to adjust the brightness level of the luminary along with turning it on
based on user activity. This update can be implemented by making changes to the applica-

156 CHAPTER 7

tion logic. Finally, we can terminate the application scenario by removing the established
subscriptions for it. For instance, the subscription can be removed by the luminary smart
node from the SBSN when removing this particular scenario.

The smart application life cycle is a continuous and iterative process. As technology
advances and smart space requirements evolve, new scenarios of the applications are
designed, developed, and integrated, while existing applications are maintained, updated,
and retired as necessary. This dynamic life cycle ensures that smart applications stay rel-
evant and continue to contribute to the efficiency and smartness of smart spaces.

6.4 Conclusions

In addressing the perspective of smart space developers, we have explained the life cycles
inherent in smart spaces. These life cycles are divided into three key components: the
smart node life cycle, the smart service life cycle, and the smart application life cycle.
Each component is precisely explained, detailing the steps involved from the initial de-
sign phase through to termination. Building upon this foundation, Chapter 7 serves as
the subsequent chapter, where we use these comprehensive life cycles to illustrate the
implementation of two specific use cases, UC-1 and UC-2, introduced in Chapter 5. This
approach allows for a seamless transition from understanding the theoretical aspects of
smart space life cycles to their practical application in real-world scenarios.

157IMPLEMENTATIONS AND EVALUATIONS

7

Chapter 7
Implementations and Evaluations

In the previous chapter, we delved into the life cycles of smart spaces from the perspective
of smart space developers. Building on this understanding, we utilize the smart space life
cycle in the development and implementation of two use cases: context-adaptive smart
lighting and power-managed smart lighting. This chapter takes a deep dive into the real-
world implementation and evaluation of these use cases, presenting the results of our
experiments. Additionally, we explore the properties of smart spaces by examining various
example scenarios. A critical analysis and measurement of the delay performance metric
between events and actions in these scenarios is conducted. In the final sections, we draw
conclusions based on the outcomes of the experimental results and discussion about the
potential and effectiveness of the proposed semantic interoperability architecture.

Firstly, let us discuss how the implementations and evaluations were conducted in this
chapter. In Chapter 3, we introduced the semantic interoperability architecture, followed
by a further elaboration on semantic interoperability in Chapter 4. Then, in Chapter 5, we
proposed the smart lighting model and mapped it into the semantic interoperability archi-
tecture. Furthermore, Chapter 6 focused on the smart space life cycle, specifically involv-
ing smart lighting applications. Therefore, throughout these chapters, we have proposed
two concepts: the semantic interoperability architecture and the smart lighting model
built with it. For the implementation of these concepts, we consider the smart space
SSSL (as depicted in Fig. 5.4 in Chapter 5), where both UC-1 and UC-2 are implemented
by following the life cycles. These two concepts are implemented and evaluated in the
following manner:

· In UC-1 (context-adaptive smart lighting), our focus is on LSNs in smart spaces. Hence,
we select the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 in the smart space SSSL to implement UC-1, as explained
in Section 5.3.1. We provide a detailed analysis of the novel smart lighting model,
including experimental results and an assessment of the model’s stability.

· In UC-2 (power-managed smart lighting), our focus is on sharing semantics across ap-
plications, which includes both LSNs and HSNs in smart spaces. Thus, we employ the
smart space SSSL, incorporating both applications

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 , to implement UC-2. The
mechanisms for this implementation are explained in Section 5.3.1 and Section 5.3.2.
Here, we present the semantic interactions across multiple applications in a smart

158 CHAPTER 7

space. Additionally, we discuss the properties of the smart space and evaluate its per-
formance based on the implementations in Section 7.3 and Section 7.4 respectively.

This illustration of the smart space encompasses the proposed concepts of smart spaces,
the semantic interoperability architecture, and the smart lighting model. Finally, in UC-
1, we present a demonstration of the smart lighting model in a smart space consisting
of LSNs following the smart space life cycles. In UC-2, we present a demonstration of a
comprehensive smart space that includes both LSNs and HSNs following the life cycles.

7.1 UC-1 Implementation and Evaluations

In UC-1, we defined the objective to achieve automatic light intensity adjustment by
controlling illumination in activity subspaces based on user activities and preferences.
Following the life cycle of smart nodes, we use LSNs: the light sensor node depicted in
Fig 6.2 and the LED luminary shown in Fig. 6.3. The application logic defines the response
and behavior of LED luminaries according to the light sensor’s illumination reading and
the user preferences. We consider following three application scenarios for the execution
of the use case:

· SC_1: Reading activity under uniform lighting: This scenario assumes that all square
grid cells have uniform lighting throughout the space.

· SC_2: Reading activity under non-uniform lighting: In this scenario, the square grid
cells closer to the user have more lighting compared to the other grid cells.

· SC_3: Watching TV under uniform lighting: This scenario involves uniform lighting
across all square grid cells specifically for watching TV.

A reading table of the user and TV are placed right in front of the chair and opposite the
user, respectively. According to the smart lighting model, the activity subspace (table
surface) is divided into 4 equal square grid cells represented by gl,11, gl,12, gl,21 and gl,22,
where M=2 and N=2. Every square grid cell is installed with one light sensor and one LED
luminary.

The deployment view of the smart space SSSL (from Fig 5.4) based on the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

for UC-1 is shown in Fig. 7.1.

Given is: t the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 consisting of a set of scenarios (SC_1, SC_2 and SC_3) based
on the following user preferences consisting of the minimum and maximum illumination
values in the square grid cells, i.e., ρl,mn = [el,mn|min ,el,mn|max]. The difference between the
minimum and maximum values is 50 lux, and this selection of the range difference is

159IMPLEMENTATIONS AND EVALUATIONS

7

Fi
gu

re
 7

.1
. E

xt
ra

ct
ed

 d
ep

lo
ym

en
t v

ie
w

 fr
om

 th
e

sm
ar

t s
pa

ce
 S

S S
L b

as
ed

 o
n

th
e

ap
pl

ic
ati

on

D
ef

in
iti

on
 (

Sm
ar

t
A

pp
lic

at
io

n)
:

A
 s

m
ar

t
(s

pa
ce

)
ap

pl
ic

at
io

n
(

 𝙰𝙰𝙰𝙰

)
is

 a
 s

et
 o

f
sc

en
ar

io
s

re
al

iz
ed

 b
y

co
m

m
un

ic
at

in
g
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

s
th

at
 to

ge
th

er
 a

im
 to

 s
er

ve
 a

nd
 in

te
ra

ct
 w

ith
 a

pp
lic

at
io

n
us

er
s

an
d

th
e

el
ec

tro
ni

cs
 th

es
e

us
er

s c
ar

ry
.

 𝙰𝙰𝙰𝙰 𝑐𝑐𝑐𝑐

 𝙰𝙰𝙰𝙰
𝑏𝑏𝑏𝑏

 𝙰𝙰𝙰𝙰
𝑎𝑎𝑎𝑎

 𝙰𝙰𝙰𝙰

 𝙰𝙰𝙰𝙰

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 𝙰𝙰𝙰𝙰
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 𝙰𝙰𝙰𝙰 𝑠𝑠𝑠𝑠

 𝙰𝙰𝙰𝙰
ℎ

.

160 CHAPTER 7

random for these example scenarios. As discussed in Chapter 5, a small difference may
lead to changes in illumination when there are slight variations in light intensity caused by
external light or factors related to installed luminaries.
· In SC_1: ρl,mn = {250 lux,300 lux} for all 1 ≤ m ≤ 2 and 1 ≤ n ≤ 2
· In SC_2: ρl,21 = ρl,22 = {200 lux,250 lux}; ρl,11 = ρl,12 = {250 lux,300 lux}
· In SC_3: ρl,mn = {150 lux,200 lux} for all 1 ≤ m ≤ 2 and 1 ≤ n ≤ 2

The UC-1 prototype was constructed on the sixth floor of the Meta Forum building at the
Technical University of Eindhoven in The Netherlands. We have deployed four light sensor
nodes (nl_s,11 , nl_s,12 , nl_s,21 , nl_s,22) with corresponding SiOs (s11 , s12 , s21 , s22), as well as four
luminaries with 36 LEDs in each device (nl_a,11 , nl_a,12 , nl_a,21 , nl_a,22) with AiOs (a11 , a12 , a21 ,
a22). These nodes are placed in alignment with the centers of square grid cells, as shown in
Fig. 7.2. The interaction state of each light sensor node by smn represents the illumination
value es,mn, while the interaction state of each luminary amn represents the brightness level
ba,mn. These iOs are connected to the gateway iO, gwSL, which is deployed on the gateway
node ngw_SL. Furthermore, gwSL is connected to sbSL, which is deployed on the node nSL.

Figure 7.2. Placement of SNs and ANs; bird’s eye view of the table surface.

In UC-1, we fixed all SNs on a reading table, while the ANs were positioned above the
surface of the reading table on the ceiling, as shown in Fig. 7.2. In a real home lighting
environment, the SNs can be integrated into furniture or relevant objects to ensure ac-

161IMPLEMENTATIONS AND EVALUATIONS

7

curate measurement of illumination at the desired locations. The light sensors measure
illumination within the human perceptible light level range of 1-1000 lux. They can gener-
ate periodic or event-based illumination values at specific points and update these values
to gwSL using Zigbee over IEEE 802.15.4. In our implementation, the frequency of updates
is set at 30 updates per second.

Each individual luminary can perform actions to adjust the brightness level from 0% (off)
to 100% (fully ON). The luminaries achieve brightness control by utilizing Pulse Width
Modulation (PWM), which regulates the current delivered to each LED. It is important
to note that all ANs require an external power supply of 6~12V, and they are connected
to the gateway node ngw_SL via a USB connector. Therefore, communication between the
gateway node ngw_SL and the individual luminaries ANs occurs through USB serial com-
munication. Finally, the gateway node ngw_SL communicates with the node nSL using the
SSAP protocol over TCP/IP.

With reference to the smart lighting model, the illumination in individual square grid cells
of an activity space is controlled separately. It is important to note that external light
sources, such as sunlight, can also influence the sensor’s readings. We conducted three
sets of experiments for each scenario, considering three different conditions (κ1 , κ2 , and
κ3.
· In κ1 , only the installed luminaries are available, and there are no other sources of

light. Note, the illumination from external sources (Eext) has small variation, ranging
from 0 to 10 lux, while there is no change by luminaries.

· In κ2 and κ3 , Eext ranges from 100 to 150 lux and 250 to 300 lux, respectively.

The execution of scenarios SC_1, SC_2 and SC_3 is shown in Fig. 7.3. The JOIN process
remains the same as what was explained in Section 5.3.1, and we will not repeat it here.
In Step 1, the scenario SC_1 for the reading activity under uniform lighting is updated to
gwSL. In our implementation, a user updates the activity scenarios manually at sbSL, e.g.,
using a smartphone or any other producer node in a smart space. For example, a PiO is
deployed on the smartphone, which updates user activities at sbSL, and gwSL subscribes
to the user activities at sbSL. As a result, gwSL receives any updates of user activities. We
explain the subscription process in Fig. 7.3, where the user updates the following triple
for watching TV: (“Scenario”, “hasState”, “WatchingTV”) and gwSL subscribes for this type
of information using the triple: (“Scenario”, “hasState”, “?”).

smn updates the illumination value event el,mn at gwSL with a frequency of 30 updates per
second, and the latest update of el,mn is used in the calculation of actuation commands bl,mn
at gwSL. We conduct three sets of experiments with conditions κ1 , κ2 , and κ3 , where all
bl,mn are calculated by gwSL according to the ICA in the smart lighting model. In the experi-

162 CHAPTER 7

ments, we set ∆B to 1 percent and the conditions κ1 , κ2 and κ3 are executed sequentially.
gwSL sends the computed actuation command of brightness level bl,mn to al,mn to activate
the luminaries. As a result, the luminaries adapt according to the user preferences based
on the scenario SC1.

Similarly, the scenarios SC2 and SC3 are updated to gwSL. Based on the most recent update
of the illumination value event el,mn and the conditions (κ1 , κ2 , and κ3), gwSL recalculates
the actuation commands bl,mn for both scenarios. Consequently, the luminaries are ad-
justed according to the user preferences in scenarios SC2 and SC3.

Figure 7.3. Execution of scenarios in UC-1.

The actuation commands calculated by gwSL for scenarios SC_1, SC_2 and SC_3 in UC-1
based on the smart lighting model shown in Table 7.1.

· SC1 results (reading under uniform light): The luminaries’ brightness levels (by all
amn, adjusted automatically based on the actuation commands received by gwSL. This
ensures consistent illumination in the activity subspace within the desired range of
250~300 lux. Figure 7.4(a) shows the activity subspace illumination, while Fig 7.4(b)
displays the corresponding luminary brightness levels. The instant peaks outside the
user preferences are caused by the transitions from κ1 to κ2 , and from κ2 to κ3. For
instance, in Fig. 7.4(a), the peaks above 300 lux are caused by the abrupt excess of light
from external light sources. These peaks are promptly compensated by appropriately
dimming the LED luminaries.

· SC2 results (reading under non-uniform light): When the illumination value due to
external light sources exceeds a certain threshold eext > el,mn|max , gwSL commands the

163IMPLEMENTATIONS AND EVALUATIONS

7

luminary in the corresponding square grid cell gl,mn to 0%, as observed in κ3 for gl,21
and gl,22 as shown in Fig. 7.4(d). It is important to note that the external illumination
is not uniform across all grid cells. For example, in contrast to other grid cells, the
illumination value el,12 of grid cell gl,12 becomes equal to the maximum illumination
value el,12|max (300 lux) when the brightness level bl,12 reaches 13%, corresponding to
34 lux. This implies that, in κ3, the external illumination in square grid cell gl,12 is ap-
proximately 266 lux. Furthermore, the brightness level result for bl,11 is same in κ1 of
the scenarios SC1 and SC2 due to the identical preference requirement. Similarly, the
brightness level result for bl,12 is closer due to similar conditions.

· SC3 results (watching TV): In κ3, the external light source exceeds the maximum illumi-
nation value el,mn|max for all square grid cells, resulting in the luminaries being turned
off as shown in Fig. 7.4(f).

The experimental results demonstrate that the desired illumination for individual square
grid cells can be achieved and maintained, as shown in Fig. 7.4 (a), (c), and (e), as long as
the illumination from external light sources does not exceed the maximum illumination
preferred by the user. In cases where the external light exceeds the desired level, the user
can manually reduce it, for example, by closing curtains. The smart lighting model effec-
tively operates by providing appropriate brightness levels to all luminaries (amn), enabling
them to dynamically adjust the illumination in the activity subspace. This ensures that
the illumination remains within the user-specified range. LSNs effectively communicate
information in the use case through gwSL. Consequently, the context-adaptive smart
lighting system successfully executes using the semantic interoperability architecture in
conjunction with the smart lighting model.

Table 7.1. Actuation commands bl,mn (in %) calculated by gwSL .
bl,11 bl,12 bl,21 bl,22

SC_1 100 94 95 90 κ1

59 68 71 53 κ2

0 18 7 0 κ3

SC_2 100 98 83 71 κ1

61 70 41 34 κ2

0 13 0 0 κ3

SC_3 61 59 62 55 κ1

14 13 25 21 κ2

0 0 0 0 κ3

164 CHAPTER 7

We analyze the stability of the smart lighting model based on the aforementioned ex-
perimental results. In the model, stability is defined as the proper functioning of LED lu-
minaries in the system, where the system converges to a state without changing external
conditions, resulting in no more brightness level adjustments. In contrast, the instability
of the model is flickering of lighting. Flickering of lighting refers to the rapid and repeated
changes in light intensity, causing a visible pulsating or flashing effect. This can occur when
there is a consecutive rapid change between states. Choosing a small ∆B can prevent
flickering in situations with rapid changes in light intensity. Therefore, we selected ∆B to

Figure 7.4. Change of illumination and brightness level over time based on the user activities: (a) il-
lumination in SC1 , (b) brightness level in SC1 , (c) illumination in SC2 , (d) brightness level in SC2 , (e)
illumination in SC3 and (f) brightness level in SC3.

165IMPLEMENTATIONS AND EVALUATIONS

7

be 1. Another important factor is coordinating the sensing and actuating frequencies in
conjunction with the selection of ∆B.

Let us consider the following sensing and actuating frequencies within the smart lighting
model.

All smn report the measured illumination el,mn at their physical location to the gwSL with
sensing frequency fs.

The gwSL updates the actuation setting bl,mn at all amn with actuating frequency of fa .

As mentioned in Table 5.2, the model has two possible states, namely St1 and St2, which
can result in either an increase of +(∆B) percent or a decrease of -(∆B) percent in the
luminary brightness level. To discuss stability in the model, we will investigate the follow-
ing three possible cases: (1) (fs = fa), (2) (fs > fa), and (3) (fs < fa).

Case 1-(fs = fa): This means that updates from all smn at the gwSL are followed by updates on
all amn. As long as the changes in brightness level ∆B are small enough to prevent jumping
between St1 to St2, flickering is avoided. Therefore, user preferences ρl,mn must be defined
in such a way that the difference between the maximum and minimum illumination values
(el,mn|max - el,mn|min) is greater than the illumination produced by a ∆B percentage change in
light output.

Case 2- fs > fa : In this case, the updates from all smn at the gwSL occur more frequently
than the light adjustment updates to all amn. Consequently, amn will receive the latest
calculated bl,mn from the gwSL. If the illumination produced because of the latest calculated
bl,mn is not large enough, meaning it is not greater than the difference between the desired
illumination range (|el,mn|max - el,mn|min |), then it will work smoothly without any flickering.
Otherwise, there is a possibility of flickering depending on bl,mn. For instance, let us define
the number of updates by smn on the gwSL per amn update as x, where x = fs /fa . During each
of the x updates on the gwSL, the target brightness level of bl,mn either changes by ±∆B
percent or remains constant.

Let x1 and x2 represent the number of updates on the gwSL in between two consecutive
actuation commands, for the situations el,mn < el,mn|min , and el,mn > el,mn|max , respectively,
such that x = (x1 + x2). Therefore, the updates in luminary brightness in this case are given
by equation (7.1).

P141

Therefore, the updates in luminary brightness in this case are given by equation (7.1).

𝑏𝑏𝑏𝑏𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑏𝑏𝑏𝑏𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + (∆𝐵𝐵𝐵𝐵 × 𝑥𝑥𝑥𝑥1) − (∆𝐵𝐵𝐵𝐵 × 𝑥𝑥𝑥𝑥2) = 𝑏𝑏𝑏𝑏𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + ∆𝐵𝐵𝐵𝐵(𝑥𝑥𝑥𝑥1 − 𝑥𝑥𝑥𝑥2) (7.1)

P152

Finally, all luminaries in LPR adjust their light outputs based on the remaining quota in both ES-1
and ES-2. Therefore, we measure the delay between the event and action in ES-1 given by ∆𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸−1

:

∆𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸−1 = 𝑡𝑡𝑡𝑡1𝑎𝑎𝑎𝑎 + 𝑡𝑡𝑡𝑡1𝑏𝑏𝑏𝑏 + 𝑡𝑡𝑡𝑡1𝑐𝑐𝑐𝑐 + 𝑡𝑡𝑡𝑡1𝑑𝑑𝑑𝑑 + 𝑡𝑡𝑡𝑡1𝑒𝑒𝑒𝑒 + 𝑡𝑡𝑡𝑡1𝑓𝑓𝑓𝑓 + 𝑡𝑡𝑡𝑡1𝑔𝑔𝑔𝑔 (6.2)

In ES-2, we measure the delay between the event and action in ES-2 given by ∆𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸−2 :

∆𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸−2 = 𝑡𝑡𝑡𝑡2𝑎𝑎𝑎𝑎 + 𝑡𝑡𝑡𝑡2𝑏𝑏𝑏𝑏 (6.3)

 (7.1)

166 CHAPTER 7

In this case, flickering is possible when the brightness level update ∆B(x1 - x2) causes a
transition between situations el,mn < el,mn|min , and el,mn > el,mn|max . The worst case scenario
occurs when {x1,x2} = {x,0}, resulting in a percentage change in brightness level of +∆Bx.
Similarly, when {x1,x2} = {0,x} causing the changes -∆Bx. The necessary and sufficient con-
dition to guarantee LED stability (no flickering) at all times is that the |el,mn|max - el,mn|min |
difference must be greater than the amount of illumination generated by ±∆Bx percent of
LED luminary brightness.

Case 3- fs < fa: In this case, the updates for light adjustment on all amn are more frequent
than the updates for all smn by the gwSL. As a result, the LED brightness values are unneces-
sarily adjusted multiple times based on the smn readings, leading to increased messaging
overhead between the gwSL and amn.

Finally, according to the frequency coordination cases, the convergence time of the smart
lighting model depends on the desired illumination level, the updating LED luminary
frequency (i.e. fa), and the factor (i.e.±∆B). The convergence time is calculated based on
the number of increments or decrements to meet the desired level of illumination, i.e., (fa
× number of ±∆B). When (fs ≠ fa), we either risk flickering or unnecessary communication
for multiple LED luminary adjustments based on the smn readings. Therefore, choosing the
ideal cases of (fs = fa) for both use cases is recommended.

In some use case scenarios, the sensing frequencies can be event based (i.e. trigger-
adaptive rather than periodic-adaptive), where all smn send information to the gwSL only
when there is a state transition in readings. Upon receiving a state transition, the gwSL will
start calculating bmn to increment or decrement the LED luminary brightness in the cor-
responding square grid cells until a new state transition occurs. However, this approach
reduces network traffic and allows for an increased number of smn associated with a single
gwSL , but it is highly dependent on specific scenarios. The choice between trigger-adaptive
and periodic-adaptive is determined by the use case scenario, presenting a decision that
needs careful consideration. In our analysis, we opted for the periodic-adaptive approach.
This choice was motivated by our desire to examine the behavior of luminaries in a sys-
tematic manner. Utilizing periodic-adaptive allowed us to monitor changes in luminaries
sequentially, providing valuable insights into their dynamics.

7.2 UC-2 Implementation and Experimental Results

The power-managed smart lighting use case assumes that different types of rooms (HPRs
and LPRs) in a building aim to consume power according to assigned quotas. HPRs have
priority in power allocation, meaning LPRs can only use the remaining power budget after

167IMPLEMENTATIONS AND EVALUATIONS

7

subtracting the consumption in HPRs. To facilitate this, we employ the proposed smart
space SSSL with the mapping of the smart lighting model, which requires establishing se-
mantic interoperability within and between two rooms: one LPR and one HPR that contain
smart nodes from various suppliers.

The application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 in the smart space SSSL belongs to LPR, while the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 belongs
to HPR. The choices of LPR for

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and HPR for

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 are based on their respective priorities
and node capacities. Furthermore, we consider an equal number of smart node types in
both applications, with M=2 and N=2, satisfying the conditions 1 ≤ m ≤ 2 && 1 ≤ n ≤ 2.
As per the insights from the smart space SSSL, the physical setup and deployment view of
the use case UC-2 are shown in Fig 7.5 and Fig 7.6, respectively, where the specifications
of the nodes are presented in Table 7.2.

Figure 7.5. Physical setup of the UC-2.

We recall the following nodes and iOs in the smart space SSSL for the use case UC-2 as
follows:
· The application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 is equipped with four SNs of light sensors, denoted as nl_s,mn, four
ANs of LED luminaries, denoted as nl_a,mn, along with the gateway node ngw_SL that is
connected to all SNs and ANs in the smart space SSSL. Similarly, the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 is
equipped with four HSNs of light sensors, denoted as nh_p,mn and four HSNs of LED
luminaries, denoted as nh_cp,mn in the smart space SSSL. It is important to note that the

168 CHAPTER 7

Fi
gu

re
 7

.6
. D

ep
lo

ym
en

t v
ie

w
 o

f S
S S

L f
or

 U
C-

2,
 w

he
re

 th
e

co
m

m
un

ic
ati

on
 1

 is
 S

SA
P

ov
er

 T
CP

/I
P,

 c
om

m
un

ic
ati

on
 2

 is
 Z

ig
be

e
ov

er
 IE

EE
 8

02
.1

5.
4

an
d

co
m

m
un

i-
ca

tio
n

3
is

U
SB

 se
ria

l c
om

m
un

ic
ati

on
.

169IMPLEMENTATIONS AND EVALUATIONS

7

only difference between the smart space SSSL in Fig. 5.4 and the current setup is the
inclusion of the node nh_cp,mn instead of nh_c,mn, as we need to measure power consump-
tion by individual luminaries in HPR.

· The nodes ngw_SL, nh_p,mn and nh_cp,mn are also connected to the node nSL, where the node
nSL has two iOs: sbSL and moSL.

· The node ngw_SL is deployed with gwSL, while smn and amn are deployed on nl_s,mn and
nl_a,mn nodes, respectively. smn generates events of the illumination es,mn and amn ex-
ecutes actions of the brightness level ba,mn in LPR.

· The nodes nh_p,mn and nh_cp,mn are equipped with pmn and cmn, respectively. pmn generates
events of the illumination value ep,mn and cmn executes actions of the brightness level
bc,mn in HPR. In addition to cmn on the node nh_cp,mn, we deployed another PiO (ppw,mn) to
calculate the power consumption by the individual luminary in HPR. The interaction
state of ppw,mn is denoted by POWh,mn.

Table 7.2. Nodes with associated iOs and their communication technologies in the smart space SSSL

for UC-2.
Nodes iOs Communication

nl_s,mn smn Zigbee over IEEE 802.15.4

nl_a,mn amn USB serial communication

nh_p,mn pmn SSAP over TCP/IP

nh_cp,mn cmn and ppw,mn SSAP over TCP/IP

nSL sbSL and moSL SSAP over TCP/IP

ngw_SL gwSL Zigbee over IEEE 802.15.4,
USB serial communication,
and SSAP over TCP/IP

In addition to the application ontology graph O_graphSL, we add ppw,mn and its interaction
state POWh,mn with the help of moSL as shown in Fig. 7.7(a). In addition, we also added the
triple of the total power consumption in HPR (Total_pow_HPR) value and having the state
POWh (the power consumption due to lighting in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

) as shown in Fig. 7.7(b).

170 CHAPTER 7

 (a) (b)

Figure 7.7. The added RDF triples to the application ontology graph O_graphSL (Fig 5.3) in SSSL for
UC-2.

The applications

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 can independently execute the smart lighting model, similar to
UC-1, where

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 implement the model according to Section 5.3.1 and Section 5.3.2,
respectively. For UC-2, we do not repeat our explanation of the implementation steps of
the smart lighting model, such as the placement of sensors and actuators in square grid
cells and the calculation of actuation commands based on user preferences and activi-
ties. In this section, we focus on a priority mechanism to manage power using semantic
interoperability between two applications

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 in the smart space SSSL. The priority
mechanism aims to regulate power consumption and manage the power quota based on
power usage in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

, while also maintaining the desired illumination in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. We will show
the priority mechanism through the following two scenarios: SC_A and SC_B. (Note: the
UC-2 prototype was also constructed on the sixth floor of the Meta Forum building at the
Technical University of Eindhoven in The Netherlands.)

Scenarios:

SC_A: When the power quota is large enough to support all activities in both applications

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 , the
sensor readings in these rooms are used to set and maintain the illumination based on user preferences for the
current activity.
SC_B: When the power quota is not sufficient to support both applications

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 simultaneously,
the priority mechanism dims the light sources in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. Therefore, gwSL needs to calculate actuation commands
based on the remaining power budget for

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 after the power quota is utilized by

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 . This ensures that the
power consumption in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 remains just below the remaining power budget, denoted as Ql. Therefore, the
joint execution of both applications never exceeds the total power quota for the building, denoted as Q, if the
external light source is under control.

Note that the actuation commands are calculated at gwSL in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 while the individual c_mn
in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 calculates the actuation commands for light sources in HPR. According to the smart
lighting model, if the measured illumination differs from the desired illumination, the light
outputs of the luminaries in each application are automatically adjusted until the desired
illumination is achieved.

171IMPLEMENTATIONS AND EVALUATIONS

7

We assumed the power consumption due to lighting in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 is POWh < Q. Therefore, there
is always some leftover power budget Ql for illuminating the LPR.

 Ql = Q - POWh (6.1)

Let POWlowreq denote the power required for the illumination of a specific user activity in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. The requested power can be provided to rooms within the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 only if Ql

≥ POWlowreq. Otherwise, the smart lighting model in these rooms must limit their power
usage to the remaining power quota, Ql.

We explain the execution of scenarios SC_A and SC_B in Fig. 7.8. An individual ppw,mn
updates the power consumption POWh,mn at sbSL. We need to calculate the total power
consumption POWh in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. For this purpose, we establish a subscription by moSL to receive
the power consumption updates from ppw,mn at sbSL to receive the updates of POWh,mn and
calculates the total power consumption value POWh in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. Finally, moSL updates the total
power consumption value POWh at sbSL.

Further, gwSL subscribes at sbSL to receive the power consumption in the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

.
Subsequently, gwSL automatically receives the value POWh as a response to the established
subscription. It then calculates the remaining quota for

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

, denoted as Ql = Q - POWh.
The smart lighting model in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 takes Ql into consideration and computes the actuation
commands for amn accordingly. Finally, the luminaries in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 adjust their settings based on
the remaining quota.

Both scenarios SC_A and SC_B follow the aforementioned interaction steps. The only
distinction lies in the derived value of Ql in each scenario. In SC_A, the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

executes the smart lighting model based on the desired illumination specified by the user,
as the remaining quota Ql is sufficient, Ql ≥ POWlowreq . However, in SC_B, the quota is
insufficient to fulfill the requirements in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

, i.e., Ql ≤ POWlowreq , prompting gwSL to enforce
the utilization of only Ql. Moreover, it is possible to regulate power in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 in a way that the
illumination in the activity subspace does not directly diminish. Initially, the model will
reduce the brightness of the luminaries in those square grid cells of

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 that are located
outside the activity subspace but still within the same room. In practice, most user activi-
ties are confined to a specific area within a room. Therefore, a user’s activity may span
multiple square grid cells depending on the size of each grid cell, and the luminaries in
these grid cells are automatically adjusted. For instance, a reading activity may be per-
formed in a designated reading table area, which encompasses multiple square grid cells
in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. Consequently, the following steps can be executed in case Ql ≤ POWlowreq:

172 CHAPTER 7

Fi
gu

re
 7

.8
. E

xe
cu

tio
n

st
ep

s o
f t

he
 p

rio
rit

y
m

ec
ha

ni
sm

 in
 U

C-
2.

173IMPLEMENTATIONS AND EVALUATIONS

7

· Step 1: Dim the brightness levels of luminaries until the power consumption in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 is
lower or equal to Ql in all square grid cells of the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 that are outside the
activity subspace.

· Step 2: If the brightness levels of luminaries in the first step is equal to 0% and the
remaining power quota is still less than the required power (Ql ≤ POWlowreq), dim the
brightness levels of luminaries in the activity square grid cells till the power consump-
tion in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 is less than the remaining budget Ql or equal to 0.

In our implementation, the quota Q is set to 12 watts, which is slightly higher than the
maximum total power that can be consumed by LED luminaries in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. This quota is imple-
mented to govern the regulation of luminaries in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

, allowing the power consumption to
be in the range from 0 to Q.

In the evaluation of application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

, we conducted four distinct tests with moSL responsible
for calculating power consumptions POWh, resulting in values of (8437, 2476, 5632, 9200)
milliwatts. Subsequently, moSL updated the total power consumption POWh in HPR at sbSL,
and sbSL relayed this information to gwSL. Following this communication, gwSL determined
the remaining power quota Ql, with values (3563, 9524, 6368, 2800) milliwatts. The
corresponding values of POWh and Ql are depicted in Fig. 7.9. The lighting requirements
for both room types are easily satisfied in Tests 1 and 4. This implies that the power
required in the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

is less than the leftover quota, i.e., SC_A:POWlowreq < Ql .
Conversely, in Tests 2 and 3, the power required in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 is higher than its leftover quota, i.e.,
SC_B:POWlowreq > Ql, resulting in the luminaries in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 being constrained to use less power
than required to fulfill user preferences. The comparison of required and regulated power
in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 is presented in Fig. 7.10. The important point to note here is that

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 sacrifices to
adjust the brightness level of luminaries to meet user preferences in Test 2 and 3.

174 CHAPTER 7

Figure 7.9. Power consumptions in the applications

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 over four tests.

Figure 7.10. Comparison of required and regulated power in the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

.

The priority mechanism successfully upheld the designated power quota for the use case.
We observed that in certain instances, the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 compromised its power require-
ments in order to remain within the limit of Q. This observation indicates that we can
maintain the assigned power quota in the smart space. Overall, the power-managed smart
lighting use case effectively controlled the total power consumption across various test
sets, adhering to the power quota regime. The implementation of the proposed semantic
interoperability architecture facilitated information exchange between applications in LPR
and HPR. The use of different types of smart nodes in the use case demonstrated the
compatibility and effectiveness of the proposed solution in achieving semantic interop-
erability. Furthermore, the gateway node enabled the operation on low-capacity nodes
once it received information from the semantic broker in the smart space.

175IMPLEMENTATIONS AND EVALUATIONS

7

7.3 Discussion on Smart Space Properties

In this section, we review the primary properties of a smart space, namely adaptation,
communication interoperability, and semantic interoperability, in the context of the
experiments conducted in Section 7.2. Additionally, we discuss the potential benefits of
secondary properties such as openness, extendibility, and self-management. To illustrate
these concepts, we specifically analyze UC-2, which provides a comprehensive depiction
of the semantic interoperability architecture involving both LSNs and HSNs. In contrast,
UC-1 primarily emphasizes the gateway approach for LSNs.

7.3.1 Discussion on primary properties of smart spaces
In this section, we delve into the potentials of primary properties: adaptation, communi-
cation interoperability, and semantic interoperability, within the context of smart spaces.

Adaptation: The luminaries in scenarios SC_A and SC_B adapted to fulfill the defined
objective of maintaining the power quota in the smart space SSSL. The behaviors of iOs
in both rooms were adjusted according to the specific requirements of each scenario.
Changes in lighting conditions in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 consequently affected both applications,

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

.
This indicates that state changes in the iOs of

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 influenced the behavior of iOs in both

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ
 and

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

. As a result, the predetermined quotas for both rooms were effectively managed
and controlled. Additionally, any new test set that consumes power can be easily adapted,
reflecting the adaptability demonstrated in the four conducted tests.

Communication Interoperability: In scenarios SC_A and SC_B, HSNs established connec-
tions using TCP/IP, while LSNs connected to the gateway node using Zigbee over IEEE
802.15.4. The gateway node, in turn, was connected to the smart space using TCP/IP. As a
result, all nodes in the smart space were able to communicate directly with each other or
through the gateway node.

Semantic Interoperability: In scenarios SC_A and SC_B, meaningful information (seman-
tics) was exchanged with the help of ontologies irrespective of the hardware and software
specifications of the nodes. We employed heterogeneous nodes from different vendors
and communication technologies in the use case, and semantic interoperability using
semantic interactions through SSAP allowed them to share information in a meaningful
way. Furthermore, the gateway node resolved the complexity of translating information
from LSNs into semantics.

7.3.2 Discussion of secondary properties of smart spaces
In this section, we delve into the potentials of secondary properties: openness, extend-
ibility, and self-management, within the context of smart spaces.

176 CHAPTER 7

Openness: The incorporation of new nodes mandates adherence to a set of protocols,
message formats, and syntax that align with the semantic interoperability architecture.
In

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 , the inclusion of a new node is dependent upon its compatibility with both
communication interoperability and semantic interoperability. As an illustration, within

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

, the integration of a new node (LSN) necessitates a communication technology that
aligns with Zigbee over IEEE 802.15.4 for establishing seamless communication with gwSL

. This ensures a harmonious integration of new nodes into the existing setup while main-
taining effective communication standards. This means that the new node can be added to
the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 once it meets the necessary communication technology requirements.
Therefore, adding nodes to the smart space SSSL is independent of other installed nodes
in the applications. Similarly, in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

, a new node (HSN) needs to support the underlying
communication technology, TCP/IP and the SSAP protocol.

The joining and leaving processes for the new node are independent and follow the same
procedures as those explained in the smart node life cycle. Once the new node joins, it
can subscribe to available services in the smart space. If it is a sensing node, it can update
sensor information at the semantic broker (SBSN), which other nodes (e.g., actuators) in
the smart space can access after subscribing.

Extendibility: Extendibility can be discussed by considering the addition of a new applica-
tion in the smart space SSSL . For instance, we can integrate a temperature measurement
application into the smart space SSSL . To accomplish this, a node capable of measuring
temperature in each room of both LPR and HPR needs to be added. Similar to the open-
ness property, the node must support the required communication technology and be
able to utilize the SSAP protocol. In LPR, temperature information is initially updated at
gwSL and then transmitted to sbSL . In HPR, temperature information is directly updated at
sbSL . Furthermore, users can easily access temperature updates through a CiO installed
on their smartphones, either via queries or subscriptions. Therefore, new applications
can seamlessly integrate into the smart space SSSL alongside existing applications in the
power-managed smart lighting system. Additionally, new applications have the capability
to utilize nodes from the current application through subscriptions at the semantic broker
(SBSN). For instance, a new application can utilize the installed light sensors for various
purposes by subscribing to the broker. Finally, the system offers a decoupled programming
interface integrated with application development. Combined with the openness prop-
erty, this enables the smooth insertion of new nodes and applications into a smart space.

Self-management: We can manage the services of a failed node by transferring them to
other nodes or newly joined nodes in the smart space SSSL . For instance, if a node in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ
 stops working due to network failure or decommissioning, gwSL can transfer the services

provided by the failed node to a new node that takes its place. It is assumed that the new

177IMPLEMENTATIONS AND EVALUATIONS

7

node has the required communication technology, such as IEEE.802.15.4, to communicate
with gwSL . Similarly, in

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 , if a node fails, the services of the failed node are transferred
to a newly joined node that replaces it at sbSL . The newly joined node must support the
necessary communication technology, such as TCP/IP, and the SSAP protocol. In both ap-
plications

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

, the new nodes will adhere to the smart node and service life cycles
to become integrated and execute services within the smart space. As a result, the smart
lighting models in both

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 will be managed by integrating the newly joined nodes.

We have discussed the contributions of primary smart space properties and the potential
benefits of secondary properties within the use case. Through this discussion, we have
highlighted the dynamic development of smart applications within a smart space. As a
result, we can establish semantic interoperability, providing flexibility and compatibility
across smart nodes, irrespective of their hardware and software specifications.

7.4 Performance Evaluation

The semantic interoperability architecture provides a solution for adaptations in smart
spaces, as explained in Section 7.3. The adaptive behaviors of iOs refer to the decisions
made by iOs based on received interaction state inputs, resulting in changes to interaction
states that trigger new behaviors in other iOs. For instance, in both use cases UC-1 and
UC-2, the interaction state of a sensor iO triggers an action that changes the interaction
state of an actuator iO. The cumulative adaptive behaviors of iOs ultimately contribute to
the adaptive behavior of an application, exemplifying semantic interoperability in smart
spaces. Therefore, the overall performance of an application depends on the cumulative
adaptive behaviors of iOs. As discussed in Section 3.2 regarding the adaptation property, if
one iO takes a long time to adapt, it may hinder the timely adaptation of other iOs within
an application, leading to inadequate execution of cumulative behaviors. Thus, minimiz-
ing delay measurements between events generated by iOs and corresponding actions at
other iOs is crucial for optimal performance in a smart space. In this section, we evaluate
application performance based on delay measurements between events and associated
actions. To analyze performance based on delay measurements in UC-2, we consider
following two example scenarios (ES-1 and ES-2) that illustrate the complete process of
sensing (event) at one iO and actuating (action) at another iO. The delay between an
event generated by an iO and the associated action at another iO or iOs is represented by
∆t. The events and actions of iOs in ES-1 and ES-2 are as follows:

In ES-1: Preserve quota in the smart space SSSL when the illumination changes in HPR.
Event: When the illumination changes in HPR, the event of changed illumination is gener-
ated by pmn, which updates the information at sbSL. As a result, the interaction states of

178 CHAPTER 7

luminaries in HPR also change based on the smart lighting model. Consequently, ppw,mn
individually updates the power consumption POWh,mn at sbSL.
Action: In LPR, amn adjusts the brightness level according to the actuation commands
provided by gwSL.
Note: In this example scenario, the event is generated in one room (i.e., HPR) while the
associated action is executed in another room (i.e., LPR).

In ES-2: Preserve quota of the smart space SSSL when the illumination changes in LPR.
Event: When the illumination changes in LPR, smn generates an event of the changed il-
lumination and further updates it at gwSL.
Action: In LPR, amn adjusts the brightness level according to the actuation commands by
gwSL.
Note: In this example scenario, both the event and action occur in the same room (LPR).

We consider the following links between iOs to measure delay, where the time taken
between iOs in the scenarios ES-1 and ES-2 are depicted in Fig. 7.11

ES-1:
i) pmn generates the event of changed illumination HPR and updates at sbSL, where the

time taken from pmn to sbSL, is denoted by t1a.
ii) Since cmn is subscribed to receive events of illumination in HPR, sbSL notifies the

changed illumination to cmn, where the time taken from sbSL to cmn, is denoted by t1b.
iii) ppw,mn is installed on the same node of cmn and updates the power consumption by the

luminary at sbSL, is denoted by t1c.
iv) Since moSL is subscribed to receive the power consumption of the individual luminar-

ies in HPR, sbSL notifies the power consumption by the luminary to moSL, is denoted by
t1d.

v) moSL calculates the total power consumption in HPR and updates it at sbSL , is denoted
by t1e.

vi) Since gwSL is subscribed to receive the information of the total power consumption in
HPR, sbSL notifies the total power consumption to gwSL , is denoted by t1f.

vii) gwSL calculates the actuation commands and updates amn, where the action takes
place to adjust the brightness of the luminary in LPR, is denoted by t1g.

ES-2:
viii) smn generates the event of changed illumination in LPR and updates gwSL, is denoted

by t2a.
ix) gwSL calculates the actuation commands and updates amn, where the action takes

place to adjust the brightness of the luminary in LPR, is denoted by t2b.

179IMPLEMENTATIONS AND EVALUATIONS

7

Figure 7.11. Delay calculation links between iOs for ES-1 and ES-2.

Finally, all luminaries in LPR adjust their light outputs based on the remaining quota in
both ES-1 and ES-2. Therefore, we measure the delay between the event and action in
ES-1 given by ∆tES-1 :

P141

Therefore, the updates in luminary brightness in this case are given by equation (7.1).

𝑏𝑏𝑏𝑏𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑏𝑏𝑏𝑏𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + (∆𝐵𝐵𝐵𝐵 × 𝑥𝑥𝑥𝑥1) − (∆𝐵𝐵𝐵𝐵 × 𝑥𝑥𝑥𝑥2) = 𝑏𝑏𝑏𝑏𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + ∆𝐵𝐵𝐵𝐵(𝑥𝑥𝑥𝑥1 − 𝑥𝑥𝑥𝑥2) (7.1)

P152

Finally, all luminaries in LPR adjust their light outputs based on the remaining quota in both ES-1
and ES-2. Therefore, we measure the delay between the event and action in ES-1 given by ∆𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸−1

:

∆𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸−1 = 𝑡𝑡𝑡𝑡1𝑎𝑎𝑎𝑎 + 𝑡𝑡𝑡𝑡1𝑏𝑏𝑏𝑏 + 𝑡𝑡𝑡𝑡1𝑐𝑐𝑐𝑐 + 𝑡𝑡𝑡𝑡1𝑑𝑑𝑑𝑑 + 𝑡𝑡𝑡𝑡1𝑒𝑒𝑒𝑒 + 𝑡𝑡𝑡𝑡1𝑓𝑓𝑓𝑓 + 𝑡𝑡𝑡𝑡1𝑔𝑔𝑔𝑔 (6.2)

In ES-2, we measure the delay between the event and action in ES-2 given by ∆𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸−2 :

∆𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸−2 = 𝑡𝑡𝑡𝑡2𝑎𝑎𝑎𝑎 + 𝑡𝑡𝑡𝑡2𝑏𝑏𝑏𝑏 (6.3)

 (6.2)

In ES-2, we measure the delay between the event and action in ES-2 given by ∆tES-2:

P141

Therefore, the updates in luminary brightness in this case are given by equation (7.1).

𝑏𝑏𝑏𝑏𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑏𝑏𝑏𝑏𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + (∆𝐵𝐵𝐵𝐵 × 𝑥𝑥𝑥𝑥1) − (∆𝐵𝐵𝐵𝐵 × 𝑥𝑥𝑥𝑥2) = 𝑏𝑏𝑏𝑏𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + ∆𝐵𝐵𝐵𝐵(𝑥𝑥𝑥𝑥1 − 𝑥𝑥𝑥𝑥2) (7.1)

P152

Finally, all luminaries in LPR adjust their light outputs based on the remaining quota in both ES-1
and ES-2. Therefore, we measure the delay between the event and action in ES-1 given by ∆𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸−1

:

∆𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸−1 = 𝑡𝑡𝑡𝑡1𝑎𝑎𝑎𝑎 + 𝑡𝑡𝑡𝑡1𝑏𝑏𝑏𝑏 + 𝑡𝑡𝑡𝑡1𝑐𝑐𝑐𝑐 + 𝑡𝑡𝑡𝑡1𝑑𝑑𝑑𝑑 + 𝑡𝑡𝑡𝑡1𝑒𝑒𝑒𝑒 + 𝑡𝑡𝑡𝑡1𝑓𝑓𝑓𝑓 + 𝑡𝑡𝑡𝑡1𝑔𝑔𝑔𝑔 (6.2)

In ES-2, we measure the delay between the event and action in ES-2 given by ∆𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸−2 :

∆𝑡𝑡𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸−2 = 𝑡𝑡𝑡𝑡2𝑎𝑎𝑎𝑎 + 𝑡𝑡𝑡𝑡2𝑏𝑏𝑏𝑏 (6.3)

 (6.3)

The results of delay measurements between the events and associated actions in ES-1
and ES-2 are presented in Table 7.3. Based on the measurements, the maximum delays
for ∆tES-1 and ∆tES-2 are 326.42 and 52.05 milliseconds, respectively. The average delay
measurements between the event and action relationships are 219.25 and 32.65 millisec-
onds for both example scenarios ES-1 and ES-2, respectively. These delay measurements
indicate that there is a relatively large and varying delay between iOs of HSNs, but it falls
within acceptable limits. This level of delay is perfectly acceptable because the scenario
itself is not an interactive scenario that involves human users. Furthermore, it is a very
complex scenario including many components that are participating and communicating
among themselves. Most interactive scenarios are meant to be simpler, e.g., consider a
scenario where entering a room results in lights turning on. On the other hand, the delay
measurements for communication between iOs of LSNs through the GSN exhibit a small
variance, which can be attributed to the ease of accessing the radio channel. It is impor-
tant to note that these measurements were obtained with the SN located at a one hop
distance from the GSN and without employing duty cycling for the radio channel. With a

180 CHAPTER 7

more extensive wireless network configuration and the implementation of duty-cycled
radios, the delay characteristics would become more complex.

Table 7.3. Delay measurements (in milliseconds) for ES-1 and ES-2.
∆t ∆tES-1 ∆tES-2

Average 219.25 32.65

Standard Deviation 33.98 11.15

Minimum 158.83 13.28

Maximum 326.42 55.05

Therefore, the delay measurements in the use case are deemed sufficient since they fulfill
the objective of controlling quotas in both rooms in both scenarios. This indicates that the
adaptive behaviors of iOs are adequately executed within a defined timeframe to seam-
lessly handle the collective behaviors of iOs in the application. As a result, the semantic
interoperability architecture successfully meets the performance metric requirement.
The smart lighting applications prove to be feasible within the framework of the semantic
interoperability architecture.

7.5 Conclusions

In this chapter, we implemented two use cases of smart lighting applications using our
proposed approaches. We analyzed the feasibility of the proposed smart lighting model
through the implementations. Furthermore, the experiments conducted in the proposed
system demonstrated that semantic interoperability enabled the integration of lighting
products from different smart node suppliers. The utilization of iOs with an ontology
approach enhanced semantic interoperability, enabling the seamless sharing of informa-
tion in a smart space with diverse hardware and software specifications. Moreover, the
example scenarios showcased the compatibility of primary and secondary smart space
properties. Additionally, we conducted an experiment to measure the delays between
events and actions performed by iOs as a performance metric. The analysis concluded
that the semantic interoperability architecture is a suitable choice for the lighting applica-
tion scenarios under consideration.

The scenarios presented in this chapter provide generalization across a wide range of
smart space implementations found in the literature. The semantic interoperability ar-
chitecture emerged as a competitive solution for the domain of lighting applications and
holds the potential to be advantageous for other smart space domains.

181CONCLUSION

8

Chapter 8
Conclusion

In the preceding chapters, we delved into the theoretical and practical aspects of semantic
interoperability in smart spaces. In this final chapter, we conclude this thesis by provid-
ing a comprehensive summary of our contributions and answers to research questions
in Section 8.1. Additionally, we offer insights into potential future research directions in
Section 8.2.

8.1 Contributions and Answers to Research Questions

Smart spaces have a wide range of applications in sectors such as homes, offices, and
transportation, aiming to assist human beings with their daily activities and enhance their
overall experience. However, efficiently integrating the diverse smart nodes within these
spaces to collaborate and achieve specific goals poses a significant challenge. In Chapter
1, we delved into this challenge by introducing the concept of a smart space in a formal
manner. One particular issue that arises in smart spaces is the need for consistent infor-
mation understanding, also known as semantic interoperability, among different smart
nodes. Despite various proposals and implementations of smart spaces in the literature,
they often tend to be showcase-specific or application-specific, lacking a generic smart
space architectural design based on semantic interoperability. To address this gap, we
formulated three research questions (RQ1, RQ2, and RQ3) in Chapter 1, aimed at tackling
this challenge. In conclusion, this thesis summarizes our contributions to these research
questions and provides insights into potential solutions.

RQ1: What are the concepts, properties, and architectural design alternatives of smart spaces?
RQ1A: What are the fundamental concepts, building blocks and properties of a smart space?
RQ1B: How can we compare potential smart space architectural design alternatives?
RQ1C: What is an appropriate architectural solution for realizing these concepts? Which smart space
properties are the most essential for this architectural solution?

In Chapter 2, we provided a formal definition of smart space concepts and architectural
designs. Additionally, we delved into the detailed discussion of related architectural com-
ponents, encompassing both hardware and software aspects. Building upon a compre-
hensive literature review, we proceeded to summarize and propose the discriminating
properties that are essential for a smart space in Chapter 3.

182 CHAPTER 8

In response to RQ1A, we presented an in-depth exploration of the fundamental concepts
of hardware and software within a smart space. We introduced the notion of an informa-
tion object as a software unit and a smart node as a hardware unit. Furthermore, we
elucidated the behaviors exhibited by information objects and smart space applications.
To ensure a clear understanding, we provided a distinct classification of smart nodes,
outlining the various types of information objects and their respective functions within
a smart space.

To address RQ1B, we conducted a comprehensive comparative analysis of the architectural
designs proposed in the literature. Furthermore, we presented an example that illustrates
how to choose a suitable smart space architectural design based on a multiple-objective
optimization. Our findings revealed that the selection of a smart space architecture de-
pends on the specific requirements of the application, considering performance metrics
that are context-dependent.

Additionally, we compared the identified architectural designs to state-of-the-art smart
space designs, focusing on the availability of general smart space components. As a result,
we concluded that decentralized smart spaces and high-capacity smart nodes are pre-
dominantly utilized in these architectural designs. Some examples of these smart spaces
include Apple Home, Google Home, and Philips HUE. These solutions utilize more propri-
etary protocols with limited openness, except for development kits. There is no specific
software cooperation protocol, and there are no explicit roles for semantic brokers and
ontologies. However, we were in search of a software solution that can offer semantic
interoperability. Thus, in this thesis, we have proposed the semantic interoperability
architecture and discussed it in the context of the next sub-research question RQ1C. The
researchers may also explore advanced data behavior that incorporates machine learning
concepts within smart spaces in the future. We will discuss machine learning aspects in
the future works in Section 8.2.

To address RQ1C, we introduced the semantic interoperability architecture as a solution.
Additionally, we proposed five essential properties for smart spaces, namely adapta-
tion, communication interoperability, semantic interoperability, openness, extendibility,
and self-management. Based on our comparative analysis of smart space designs, we
identified three primary properties—adaptation, communication interoperability, and
semantic interoperability—as crucial, while the remaining properties are considered to be
dependent on the specific requirements of the application. Furthermore, we delved into
the logical structure of information objects within the proposed semantic interoperability
architecture, providing a detailed explanation of the processes and dependencies among
these information objects.

183CONCLUSION

8

RQ2: How can we establish semantic interoperability of heterogeneous embedded devices (nodes) in smart
spaces?

RQ2A: What are the processes and dependencies for semantic interactions among components that will
enable semantic interoperability?
RQ2B: What are the additional mechanisms and components needed for semantic interoperability in
smart spaces? How can we achieve semantic interoperability with resource-poor (low-capacity) devices
in a smart space?
RQ2C: How can we achieve semantic interoperability with multiple applications in a smart space?

In Chapter 4, we focused on establishing communication interoperability using standard
network protocols, while highlighting the challenges associated with achieving semantic
interoperability. To address this challenge, we elucidated the mechanism for establishing
semantic interoperability among smart nodes within the proposed semantic interoper-
ability architecture.

To address RQ2A, we presented the procedure of converting contexts into semantics
within the proposed architecture. In this process, the RDF format was utilized to represent
semantics, and relationships were governed by ontologies in smart spaces. Additionally,
semantic reasoning was employed at the semantic broker to apply RDF matching opera-
tions and inference rules, facilitating the outcomes of semantic interactions. Within the
proposed semantic interoperability architecture, SSAP transactions were utilized for
semantic interactions among information objects in a smart space. These interactions
included operations: JOIN, LEAVE, INSERT, UPDATE, QUERY, REMOVE, SUBSCRIBE, and
UNSUBSCRIBE. Furthermore, we elucidated the mechanism of semantic interactions
between information objects through several example scenarios in a smart space.

To address RQ2B, we proposed a gateway approach for integrating low-capacity devices
into a smart space. The gateway node assumes the responsibility of performing computa-
tions and knowledge representations on behalf of low-capacity nodes, such as sensors
and actuators. We illustrated the gateway approach through example scenarios in a
smart space, showcasing the interaction mechanisms and explaining the interoperability
between low and high-capacity nodes facilitated by the gateway node.

To address RQ2C, we proposed the integration concept of multiple applications in a smart
space. To achieve this, we proposed a mechanism for semantic interactions between
information objects from different applications. This mechanism is integrated into the
semantic interoperability architecture, enabling information objects to effectively collabo-
rate and share information across multiple applications within a smart space.

184 CHAPTER 8

RQ3: How can our proposed solutions be applied in real systems?
RQ3A: How can we map the concepts and properties of smart spaces in real systems (including an
illustration of how to measure the performance of a smart space architecture)?
RQ3B: What are the smart space life cycles?
RQ3C: How can semantic interoperability be established in real systems?

In Chapter 5, we focused on smart lighting applications and provided an overview of
related work within the context of smart spaces. To address RQ3A, a model is required to
map the concepts and properties of smart spaces onto smart lighting applications. Con-
sequently, we introduced a novel smart lighting model designed for controlling lighting
applications in indoor spaces. This model facilitates the regulation of illumination based
on user preferences and activities. We integrated the smart lighting model into the pro-
posed semantic interoperability architecture, enabling the sharing of lighting information
across multiple networks within a smart space. Additionally, we explored two use cases:
context-adaptive smart lighting and power-managed smart lighting.

To address RQ3B, and RQ3C in Chapters 6 and 7, we designed and explained the life cycles
of smart spaces, which encompass the smart node life cycle, smart service life cycle, and
smart application life cycle. These life cycles were demonstrated using the smart light-
ing model and the semantic interoperability architecture. Through implementation, we
achieved semantic interoperability among smart nodes from different manufacturers
and technologies. The behaviors of information objects were adapted through semantic
interactions, enabling successful integration. The results of our implementations were
discussed, highlighting the smart space properties observed during the conducted ex-
periments. To support our analysis, we selected example scenarios that demonstrated
the appropriate behaviors of information objects in lighting applications. Additionally, we
evaluated the smart space by using measuring delays in transmission links as the per-
formance metric. The events and associated actions of information objects were found
to be crucial factors in ensuring their adequate behaviors within smart spaces. Through
our analysis, we determined that the selected lighting use cases demonstrated robust
adaptability, affirming the effectiveness of the semantic interoperability architecture for
smart lighting applications.

In this thesis, we have presented smart space concepts, properties, and architectures,
along with their semantic interoperability implementations. The semantic interoperability
architecture offered a publish-subscribe system, wherein publishers produce information,
and subscribers express interest in specific types of information. This architecture’s key
feature is the decoupling of publishers and subscribers, eliminating the need for informa-
tion objects to be aware of one another. The shared information undergoes translation
into semantics comprehensible by all information objects, facilitated by the smart space
access protocol through the semantic broker. Furthermore, this architecture incorporates

185CONCLUSION

8

a gateway solution tailored for low-capacity devices, ensuring a seamless connection be-
tween the gateway and the broker. As a result, the semantic interoperability architecture
fosters smooth collaboration across a spectrum of communication and hardware tech-
nologies. This holds true whether for a single application or multiple applications with a
shared objective.

A well-designed smart space, with semantic interoperability and smart space properties
at its core, has the potential to deliver highly effective solutions for application implemen-
tations. Our research findings have played a pivotal role in seamlessly integrating these
properties into the semantic interoperability architecture.

8.2 Options for Future Works

Recent research has started addressing the integration of machine learning techniques
in smart spaces. Several studies [7.1-7.3] discuss the concept of incorporating machine
learning models into smart spaces, such as the application of a machine learning model
for smart home activities in different environmental settings [7.4]. However, while re-
search has demonstrated the capability of analyzing big data in various applications,
there has been less emphasis on machine learning techniques for semantics in smart
spaces. The state-of-the-art describes the concepts of semantic relations with machine
learning approaches but lacks a formalized approach for smart spaces. Therefore, we
propose future work in this direction, aiming to enhance the semantic interoperability
architecture’s predictive capabilities by integrating semantic learning alongside semantic
reasoning at the semantic broker. Semantic learning refers to applying machine learn-
ing algorithms to the semantics stored in a smart space, generating knowledge to guide
application behaviors. For instance, in a power-managed smart lighting system, we can
record peak hours of power consumption in high-priority rooms and notify low-priority
rooms based on semantic learning analysis. As a result, the low-priority rooms may re-
schedule activities during off-peak hours in high-priority rooms, allowing them to utilize
sufficient power to control luminaries and optimize the remaining power quota. However,
there are two immediate challenges for deploying semantic learning within the existing
semantic broker of the semantic interoperability architecture. Firstly, generating accurate
knowledge at the semantic broker requires a sufficient amount of data. Insufficient data
can lead to inaccuracies in predictions or classifications. Secondly, the computational cost
of executing the machine learning algorithm at the semantic broker should be optimized
to ensure efficient processing within a reasonable timeframe. Lengthy processing times
are not preferable in many use cases, especially for the adoption of timely behaviors by
information objects, such as smart lighting applications.

186 CHAPTER 8

Next, the subscriptions to information at the semantic brokers play a crucial role in
evaluating the performance of a smart space. These subscriptions involve implement-
ing persistent queries, allowing semantic brokers to receive regular notifications about
updates to the subscribed information. However, this passive query module exhibits
lower performance in large-scale smart spaces. To address this limitation, [7.5] has begun
analyzing the integration of multiple semantic brokers in parallel smart spaces by intro-
ducing an active subscription approach. The active subscription approach enables runtime
changes to subscriptions, offering a more dynamic and efficient solution. This approach
is currently being tested in a large-scale IoT environment, facilitating interactions among
numerous sensors and users. Preliminary results indicate that the active subscription
approach significantly improves the efficiency of notification delivery and overall perfor-
mance. Although the research has provided preliminary results, further experimentation
in various parallel smart spaces is needed. This direction presents an avenue for future
work, exploring the potential benefits of the active subscription approach across different
scenarios.

Next, the tradeoff between performance and scalability within the context of the proposed
semantic interoperability architecture for smart spaces is an aspect that we have yet to
investigate. This investigation will be part of our future work. The objective is to com-
prehend the factors influencing system performance as the number of nodes connected
to a semantic broker increases, and to identify methods for optimizing performance in
large-scale smart space installations, such as smart cities.

Finally, in the implementation conducted in this thesis, we have not addressed factors
such as security and privacy. We recommend further research to develop a secure and
private platform for smart spaces in the future.

187SOFIA SMART HOME PILOT CASE STUDY

A

Appendix A: SOFIA Smart Home Pilot Case Study

The concept of smart spaces is significantly evolving to enhance daily life improvements.
One notable example is presented in [A.1], where a magic room is proposed for children
with neurodevelopmental disorders. This room incorporates various physical objects, such
as soap bubbles, aromas, ambient sound, visual projections, lights, and toys, which are
controlled and interacted with through a sensory system. Over a period of four months,
experiments were conducted at two magic rooms in Milan and Rome, Italy, involving
eight caregivers and nineteen children with severe neurodevelopmental disorders. The
analysis and observations revealed that the learning improvement in these children was
much faster compared to traditional classroom settings. Although the results are still
preliminary, these experiments serve as noticeable real-world examples of smart space
development for the betterment of our society.

Similarly, in this appendix, we describe a real scenario of smart homes called the “Smart
Home Pilot”16 for the advancement of smart space development. The smart home pilot was
a collaborative effort involving TU/e (Eindhoven University of Technology) and companies
such as Philips, NXP, and Conante. It was based on the SOFIA project and resulted in a joint
demonstrator showcased and evaluated at the Experience Lab in the High-Tech Campus
in Eindhoven, The Netherlands. In this appendix, our focus primarily lies on providing
an abstract description of the implementation and emphasizing the contribution made
by TU/e. The objective of the smart home pilot demo was to demonstrate information
sharing across applications in a smart space, utilizing smart nodes with specific hardware
and software specifications. Furthermore, we highlight the feasibility of the proposed
semantic interoperability architecture for implementation.

The following scenario is considered for the smart home pilot:

Scenario

Mark and Dries enter their home. The smart lighting system detects their presence, switches the lights on,
and notifies the smart space about their presence. Subsequently, the decorative wall-wash lights receive a
notification from the smart space and illuminate. Mark and Dries decide to synchronize the music with visual
effects on a lighting device. After querying the smart space, they discover that the lighting device can achieve
this effect. They establish a connection between the music player and the lighting device using the interaction
tile. The light begins to synchronize with the music on the lighting device. To draw attention to the lighting
device, the decorative wall-wash lights in the room automatically dim. Simultaneously, the light pattern is also
replicated on the remote lighting device, allowing Mark’s sister Sofia to experience the same visual effects in
her own house at a different location.
At a different location, after a while, Sofia becomes curious and wants to listen to the music that Mark and Dries
are enjoying. She uses the spotlight navigation device to establish a connection from the bonding device to the
stereo. As she starts using the spotlight navigator, the lights in the room dim to enhance the visibility of the
spotlight. Once the connection is established, the lights return to their original brightness.

16 SOFIA project pilot - YouTube

188 APPENDIX A

Note that, in this scenario, media content is shared among multiple devices within a
smart home environment. Specifically, music is distributed between a mobile device,
a stereo speaker set, and a lighting device that enhances the atmosphere with colored
lighting. These music experiences, encompassing both light and sound elements, can also
be shared remotely among friends residing in separate homes through their respective
lighting devices. Additionally, other lighting sources, such as smart functional and wall
wash lights, are responsive to user presence and the use of other lighting sources within
the smart homes.

The smart home pilot demo consists of a single smart space, which is divided into two
applications deployed across separate homes using multiple smart nodes. Semantic
interoperability has been established between these smart home applications, enabling
the exchange of information at a semantic level. The system architecture of the smart
home pilot implementation is depicted in Fig A.1. To connect the two homes, two wireless
routers were placed in different rooms, representing smart home A and smart home B,
and bridged using an Ethernet network cable. One router was configured to operate as a
Dynamic Host Configuration Protocol (DHCP) server, while the other served as a network
bridge.

All HSNs utilized in the smart home pilot communicate with a common SBSN (nsh), with
the nodes defined in Table A.1. As a result, we have a single smart space comprising two
smart applications: smart home A and smart home B. For this pilot demo, our focus was

Figure A.1. System architecture of the smart home pilot.

189SOFIA SMART HOME PILOT CASE STUDY

A

exclusively on HSNs. In smart home A, we considered the following HSNs connected to
the router: nh1 , nh2 , nh3 , nh4 , and nh5 . Similarly, in smart home B, we had the following
HSNs connected to the router: nh6 , nh7 , and nh8 . Given that the communication protocol in
this scenario is SSAP over the internet, all network components of the smart nodes were
connected to the network using IEEE 802.11g wireless technology.

Table A.1. Description of all smart nodes used in the smart home pilot demo.
Node Description iOs

nsh The SBSN node is used to share and store semantics for the smart space in the smart
home pilot.

sbsh

nh1 The sound-light transformer smart node operates on the music and transforms it into
various light display settings in Smart Home A. This smart node serves as both a producer
and consumer of iOs.

ph1 , ch1

nh2 The music player smart node is responsible for playing music in Smart Home A. It
functions as both a producer and consumer of iOs.

ph2 , ch2

nh3 The connector smart node enables the exploration and manipulation of semantic
connections between different devices in Smart Home A. It serves as both a producer and
consumer of iOs.

ph3 , ch3

nh4 The presence smart node detects the presence of a user within the activity area of the
room in Smart Home A and updates this presence information at the SBSN. It functions
solely as a producer iO.

ph4

nh5 The lamp smart node is connected to four LED lamps, also known as decorative wall-wash
lights, which are used to illuminate colored lights on the wall in Smart Home A. This smart
node functions solely as a consumer iO.

ch5

nh6 The remote music player smart node is an additional music player used for playing music
in Smart Home B. This smart node serves as both a producer and consumer of iOs.

ph6, ch6

nh7 The spotlight navigator smart node is a navigation device that establishes connections
between two devices in Smart Home B by navigating commands. This smart node
functions solely as a producer iO.

ph7

nh8 The functional light smart node refers to the lamp located in Smart Home B. This smart
node functions solely as a consumer iO.

ch8

All iOs in the smart home pilot demo are connected to sbsh using the JOIN transaction.
Additionally, the smart space of the smart home pilot (sbsh) comprises the following col-
lections of smart nodes and iOs.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in the smart home pilot demo are connected to 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ using the JOIN transaction. Additionally,
the smart space of the smart home pilot (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ) comprises the following collections of smart nodes and
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠ℎ .𝑁𝑁𝑁𝑁 = {𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠ℎ ,𝑛𝑛𝑛𝑛ℎ1,𝑛𝑛𝑛𝑛ℎ2 ,𝑛𝑛𝑛𝑛ℎ3,𝑛𝑛𝑛𝑛ℎ4,𝑛𝑛𝑛𝑛ℎ5,𝑛𝑛𝑛𝑛ℎ6 ,𝑛𝑛𝑛𝑛ℎ7,𝑛𝑛𝑛𝑛ℎ8} (A.1)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠ℎ . 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = {𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ ,𝑝𝑝𝑝𝑝ℎ1, 𝑐𝑐𝑐𝑐ℎ1,𝑝𝑝𝑝𝑝ℎ2, 𝑐𝑐𝑐𝑐ℎ2,𝑝𝑝𝑝𝑝ℎ3, 𝑐𝑐𝑐𝑐ℎ3,𝑝𝑝𝑝𝑝ℎ4, 𝑐𝑐𝑐𝑐ℎ5,𝑝𝑝𝑝𝑝ℎ6, 𝑐𝑐𝑐𝑐ℎ6,𝑝𝑝𝑝𝑝ℎ7, 𝑐𝑐𝑐𝑐ℎ8} (A.2)

The specifications of the hardware and software capabilities of nodes in the smart home pilot are shown
in Table A.2.

 (A.1)

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s in the smart home pilot demo are connected to 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ using the JOIN transaction. Additionally,
the smart space of the smart home pilot (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ) comprises the following collections of smart nodes and
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠ℎ .𝑁𝑁𝑁𝑁 = {𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠ℎ ,𝑛𝑛𝑛𝑛ℎ1,𝑛𝑛𝑛𝑛ℎ2 ,𝑛𝑛𝑛𝑛ℎ3,𝑛𝑛𝑛𝑛ℎ4,𝑛𝑛𝑛𝑛ℎ5,𝑛𝑛𝑛𝑛ℎ6 ,𝑛𝑛𝑛𝑛ℎ7,𝑛𝑛𝑛𝑛ℎ8} (A.1)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠ℎ . 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = {𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ ,𝑝𝑝𝑝𝑝ℎ1, 𝑐𝑐𝑐𝑐ℎ1,𝑝𝑝𝑝𝑝ℎ2, 𝑐𝑐𝑐𝑐ℎ2,𝑝𝑝𝑝𝑝ℎ3, 𝑐𝑐𝑐𝑐ℎ3,𝑝𝑝𝑝𝑝ℎ4, 𝑐𝑐𝑐𝑐ℎ5,𝑝𝑝𝑝𝑝ℎ6, 𝑐𝑐𝑐𝑐ℎ6,𝑝𝑝𝑝𝑝ℎ7, 𝑐𝑐𝑐𝑐ℎ8} (A.2)

The specifications of the hardware and software capabilities of nodes in the smart home pilot are shown
in Table A.2.

 (A.2)

The specifications of the hardware and software capabilities of nodes in the smart home
pilot are shown in Table A.2.

190 APPENDIX A

Table A.2. Specification of the hardware and software capabilities of nodes in the smart home pilot.
Node CPU Operating System Programming Language

nsh Core 2 Duo 2.8GHz Ubuntu Linux Java

nh1 Core 2 Duo 2.2GHz Ubuntu Linux Java

nh2 ARM Cortex-A8 Maemo 5 Python

nh3 Core 2 Duo 2.6GHz Mac OS X Python

nh4 Pentium M Ubuntu Linux Python

nh5 Pentium M Ubuntu Linux Python

nh6 ARM Cortex-A8 Maemo 5 Python

nh7 OMAP 3530 Ubuntu Linux Prolog, C++

nh8 Arm cortex M0 µCLinux C

We contributed to design and integrated the wall-wash lights (smart node nh5) in the pilot
demo. The smart node nh5 is connected with four lamps and shown in Fig. A.2 with the
description of its components. The functioning of lamps is based on the information of
user presence received at ch5 (consumer of the node nh5) from ph4 (producer of the node
nh4) and the information of music from ph1 (producer of the node nh1) via sbsh The semantic
interactions among ph1, ph4, ch5, the lamps and sbsh are shown in Fig A.3. ph4 determines
the presence of users (Mark and Dries) in an activity area of a room and updates the
presence at sbsh. ch5 is subscribed for the presence of a user and gets an update when the
presence is updated by ph4 at sbsh. There are two interaction states to be updated by ph4
on sbsh: ‘AWAY’ and ‘PRESENT’. According to these interaction states, the lamps turn ‘on’
or ‘off’. For example, when the ‘PRESENT’ state is updated by ph4 at sbsh then ch5 turns ‘on’
all lamps while ‘off’ when the ‘AWAY’ state is updated. The ch5 is also subscribed for the
states of ph1. When music starts rendering ch5 turns to ‘DIM’ the lamps.

We contributed to the design and integration of the wall-wash lights (smart node nh5) in
the pilot demo. Smart node nh5 is connected to four lamps, as shown in Fig. A.2, along with
a description of its components. The functioning of the lamps is based on information
received from various sources. Specifically, consumer ch5 receives information about user
presence from producer ph4, and information about music from producer ph1 via sbsh.

Semantic interactions among ph1, ph4, ch5, the lamps, and sbsh are illustrated in Fig A.3. The
producer ph4 determines the presence of users (Mark and Dries) in the activity area of a
room and updates this information at sbsh. Consumer ch5 is subscribed to receive presence
updates from ph4 at sbsh. There are two interaction states that can be updated by ph4 on
sbsh: ‘AWAY’ and ‘PRESENT’. Based on these interaction states, the lamps either turn ‘on’
or ‘off’. For instance, when the 'PRESENT' state is updated by ph4 at sbsh, ch5 turns on all
lamps, while it turns them off when the ‘AWAY’ state is updated.

191SOFIA SMART HOME PILOT CASE STUDY

A

Consumer ch5 is also subscribed to receive updates from producer ph1. When the music
starts playing, ch5 adjusts the lamps to a ‘dim’ setting.

Figure A.2. The smart node nh5 with lamp designs and used for wall wash lighting.

Figure A.3. Sequence of commands from the ch5 to Lamps in smart home A.

The smart node nh3 (connector smart node) is shown in Fig. A.4 and is used to explore
and manipulate semantic connections between different nodes in the smart home A. It
is a handheld device that identifies nodes, by scanning RFID tags that are located on the
nodes themselves. The users can explore the connection possibilities that are visualized
with lights on top of the connector node holding the connector on top of the tag. After
holding the node in the RFID field for a moment, the node-ID is locked and the other node
to be connected can be selected in a similar fashion.

The connector smart node (nh3) is depicted in Fig. A.4 and serves the purpose of exploring
and manipulating semantic connections between different nodes in Smart Home A. It is

192 APPENDIX A

a handheld device equipped with RFID scanning capabilities, allowing it to identify nodes
by scanning RFID tags affixed to them. Users can utilize the connector node to explore
the available connection options, which are visualized through lights located on top of
the connector node. By placing the connector node on top of a tag, the user can lock the
node-ID and subsequently select another node for connection using a similar approach.

Figure A.4. Connector for the smart node nh3 . 11. This node is developed by Gerrit Niezen and Bram
J.J. van der Vlist from the industrial design department at TU/e [A.2].

Consumer ch1, which is deployed to node nh1, accepts a music stream as input and gener-
ates a stream of RGB values by analyzing the music stream. To transmit the stream of RGB
values, a separate TCP/IP connection is used. Therefore, it is important for the lighting
node to determine whether the source node is capable of communication via TCP/IP. The
sequence of queries from consumers ch1 and ch3 to sbsh is depicted in Fig A.5.

Figure A.5. A sequence diagram of queries by ch1 and ch3.

193SOFIA SMART HOME PILOT CASE STUDY

A

During the smart home pilot study, we conducted 86 measurements using the smart node
nh1, which occurred each time an event was received. Additionally, we conducted 961
measurements using the smart node nh3, which occurred each time a user scanned a tag.
As for the smart node nh2, we measured the time between inserting a new event and
receiving an update from sbsh indicating that the specific event had occurred.

For instance, consumer ch2, connected to node nh2, subscribes to the PlayEvent type, as
shown in Fig A.6. When the node is notified of a PlayEvent by sbsh, producer ph2 gener-
ates a new PlayEvent. Consumer ch2 then queries sbsh to confirm the notification of the
PlayEvent, particularly for the event it generated itself.

Figure A.6. A sequence diagram of query and subscription by ch2.

Smart node nh7, which acts as the spotlight navigator, is identified based on its physical
location, relying on a natural mapping approach. The projection of the spotlight naviga-
tion, performed by producer ph7 (associated with node nh7), for connecting lighting and
music nodes is illustrated in Fig A.7. Connections between nodes are established simply
by drawing lines, and an erasing gesture with ph7, pointed at an existing connection, can
break the connection. This operation is achieved by continuously measuring the orienta-
tion, and optionally the position, of the node.

194 APPENDIX A

Figure A.7. Projection of the spotlight navigation for connecting lighting and music nodes.

Simultaneously, ph7 shares information with consumer ch8 (connected to node nh8) to
adjust the illumination in Smart Home B. Consumer ch8 possesses the ability to adjust
the illumination within Smart Home B and is also integrated with a presence sensor to
detect the presence of a user in the smart home. When ph7 is active in connecting, erasing,
or breaking connections between nodes, ch8 dims down to enhance the visibility of the
projected spotlight.

In the smart home pilot, sbsh is utilized with the reasoning support of OWL2. Reasoning on
the information contained within sbsh is performed using OWL2. The OWL engine iterates
until no new triples are constructed, which we refer to as one reasoning cycle. Before
each new reasoning cycle, the existing inferences from the previous cycle are cleared.
Semantics are inferred, using matching operations, when new semantics are inserted by
nodes connected to a semantic store.

The detailed analysis is presented in [A.3]. For ch1, the majority of queries completed
within 100ms, with very few queries taking longer than 500ms to complete. In contrast,
subscriptions were completed in an average of 860ms for ch2. This is due to the addition
of the new PlayEvent and the performance of inferencing on the triple store before the
subscribe notification is generated.

In terms of communication from ph4 to sbsh, it involves an update request and the cor-
responding confirmation response. The measurements for subscriptions in our setup are
also noticeably slower. While sbsh measurements took only 140ms, ch2 measurements
averaged around 860ms. This delay is primarily attributed to the additional time required

195SOFIA SMART HOME PILOT CASE STUDY

A

for reasoning, which typically takes about 275ms on average. Other contributing factors
include the number of nodes used, the number of semantic triples exchanged, and the
network environment.Our analysis has demonstrated that delay measurements can have
a significant impact on the stability of collaborative services provided by the smart space.
Additionally, we have derived a statistical upper bound on the worst-case delay perfor-
mance for the specific experimental setup. One important finding from our analysis is
that transmission delays between high-capacity nodes and the semantic broker can have
a dominant influence on the delay measurements.

Finally, this appendix has presented the implementation and feasibility of semantic in-
teroperability for the smart home pilot. The integration of smart nodes from different
manufacturers, with their varied technologies, was made possible through semantic
interoperability. This has contributed to the successful implementation of smart spaces,
where nodes can seamlessly collaborate and operate together.

PUBLICATIONS BY AUTHOR196

Publications by Author

The author has contributed the following publications within the scope of Ph.D. research:

Journals
1. Sachin Bhardwaj, Keon Myung Lee, Jee-Hyong Lee, “An adaptive framework for applying

machine learning in smart spaces”, SAC 19, Proceedings of the 34th ACM/SIGAPP Symposium
on Applied Computing, pp.1263-1270, April 2019.

2. Sachin Bhardwaj, Tanir Ozcelebi, Johan J. Lukkien, Kyung M. Lee, “Smart Space Concepts,
Properties and Architectures”, IEEE Access, Vol. 6, 70088-70112, Nov 2018.

3. Sachin Bhardwaj, Tanir Ozcelebi, Johan J. Lukkien, Kyung M. Lee, “Semantic Interoperability
Architecture for Smart Spaces”, International Journal of Fuzzy Logic and Intelligent Systems,
Vol. 18, Issue 1, pp. 50-57, 2018.

4. Sachin Bhardwaj, Tanir Ozcelebi, Ozgur Ozunlu, Johan J. Lukkien, “Increasing Reliability and
Availability in Smart Spaces: A Novel Architecture for Resource and Service Management”,
IEEE Transactions on Consumer Electronics, (TCE), Vol.58, Issue 3, August, 2012.

5. Sachin Bhardwaj, Tanir Ozcelebi, Cagri Uysal and Johan Lukkien, “Resource and Service
Management Architecture of a Low Capacity Network for Smart Spaces”, IEEE Transactions
on Consumer Electronics (TCE), Vol.58, Issue 2, May, 2012.

6. Sachin Bhardwaj, Tanir Ozcelebi, Richard Verhoeven, Johan J. Lukkien, “Smart Indoor Solid
State Lighting Based on a Novel Illumination Model and Implementation”, IEEE Transactions
on Consumer Electronics (TCE), Vol.57, Issue 4, November, 2011.

7. Sachin Bhardwaj, Aly A. Syed, Tanir Ozcelebi, Johan J. Lukkien, “Power-managed Smart
Lighting Using a Semantic Interoperability Architecture”, IEEE Transactions on Consumer
Electronics, Vol.57, Issue 2, 2011.

Conferences/Workshops
8. Prince U.C Songwa, Aaqib Saeed, Sachin Bhardwaj, Thijs W. Kruisselbrink and Tanir Ozcelebi.

‘LumNet: Learning to Estimate Vertical Visual Field Luminance for Adaptive Lighting Control.’
In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
2021.

9. Sachin Bhardwaj, Keon Myung Lee, Jee-Hyong Lee, “An adaptive framework for applying
machine learning in smart spaces”, SAC 19, Proceedings of the 34th ACM/SIGAPP Symposium
on Applied Computing, pp.1263-1270, New York, USA, April 2019.

10. Sachin Bhardwaj, Keon Myung Lee, “A Smart Space Design using Deep Learning Approaches”,
Proceedings of the Korean Content Society ICCC, pp. 39-40, South Korea, December, 2018.

11. Gerrit Niezen, Bram J.J. van der Vlist, Sachin Bhardwaj and Tanir Ozcelebi, “Performance
Evaluation of a Semantic Smart Space Deployment”, IEEE International Conference on Perva-
sive Computing and Communications Workshops, Lugano, Switzerland, 2012, pp. 835-841.

12. Sachin Bhardwaj, Tanir Ozcelebi, Cagri Uysal, Johan Lukkien, “Resource and Service Manage-
ment Architecture of a Low Capacity Network for Smart Spaces”, IEEE ICCE 2012.

13. Sachin Bhardwaj, Tanir Ozcelebi, Ozgur Ozunlu, Johan Lukkien, “Increasing Reliability and
Availability in Smart Spaces: A Novel Architecture for Resource and Service Management”,
IEEE ICCE 2012.

PUBLICATIONS BY AUTHOR 197

14. Sachin Bhardwaj, Tanir Ozcelebi, Richard Verhoeven, Johan Lukkien, “Delay Performance in
a Semantic Interoperability Architecture” IEEE/IPSJ International Symposium on Applications
and the Internet, Munich, Bavaria, 2011, pp. 280-285.

15. Sachin Bhardwaj, Aly A. Syed, Tanir Ozcelebi, J.J. Lukkien, “Power-managed Smart Lighting
Using a Semantic Interoperability Architecture”, IEEE International Conference on Consumer
Electronics (ICCE), Las Vegas, USA, January 2011.

16. Sachin Bhardwaj, Tanir Ozcelebi and Johan Lukkien, “Failure Detection and Recovery in a
Semantic Interoperability Architecture” ICT.Open. Veldhoven, The Netherlands, Nov., 2011.

17. Aly A. Syed, Sachin Bhardwaj, Tanir Ozcelebi and Johan Lukkien, “Smart LED Lighting for
Power Management in a Building”, Artemis Technology Conference, Bologna, Italy, Septem-
ber, 2011.

18. Sachin Bhardwaj, Tanir Ozcelebi, Johan Lukkien and Richard Verhoeven, “Semantic Interop-
erability in a Heterogeneous Smart Lighting System” The IEEE symposium on Computers and
Communications, Riccione, Italy, 2010, pp. 1035-1040.

19. Sachin Bhardwaj, Tanir Ozcelebi and Johan Lukkien, “Smart Lighting Using LED Luminaries”,
8th IEEE International Conference on Pervasive Computing and Communications Workshops
(PERCOM Workshops), Mannheim, 2010, pp. 654-659.

Posters
20. Sachin Bhardwaj, Tanir Ozcelebi and Johan Lukkien, “Failure detection and recovery in a

semantic interoperability architecture”, ICT.Open, November, 2011.
21. Aly A. Syed, Sachin Bhardwaj, Tanir Ozcelebi, Johan Lukkien, “Smart LED Lighting for Power

Management in a Building”, Artemis Technology Conference, Bologna, Italy, September,
2011.

The author has also contributed to the following publications that go beyond the scope
of this thesis:
22. Sachin Bhardwaj, Kwan Il Kim, and Keon Myung Lee, “Smart Space Architecture Using a

Semantic Learning Approach”, The 6th International Conference on Big Data Applications
and Services (BIGDAS), August 19-22, 2018.

23. Sachin Bhardwaj and Keon Myung Lee, “Smart Healthcare Monitoring Model for Elderly Care
using a Semantic Approach”, International Conference on Innovation Convergence Technol-
ogy (ICICT), 2018.

24. Mangal Sain, Sachin Bhardwaj, Hoon Jae Lee and Wan-Young Chung, “Architecture of
Personal Healthcare Information System in Ubiquitous Healthcare”, In Communication and
Networking, Vol. 56, Springer, December 2009.

25. Sachin Bhardwaj, Dae-Seok Lee, S.C. Mukhopadhyay and Wan-Young Chung “Ubiquitous
Healthcare Data Analysis and Monitoring Using Multiple Wireless Sensors for Elderly Person”
Sensor and Transducer Journal, Vol. 90, Special Issue, pp. 87-99, April 2008.

26. Sachin Bhardwaj, Dae-Seok lee and Wan Young Chung, “Ubiquitous Computing Environment
for Healthcare of Elderly Person at Home/Hospital”, The Journal of Computer Science and
Information Technology, 0973-4872, Vol.5, No.1, Jan-Jun 2007.

27. Sachin Bhardwaj, Dae-Seok Lee and Wan-Young Chung, “A Combined QRS-complex and P-
wave Detection in ECG Signal for Ubiquitous Healthcare System”, International Journal of
KIMICS, Vol.5, No.2, June 2007.

PUBLICATIONS BY AUTHOR198

28. Sachin Bhardwaj, Dae-Seok Lee and Wan-Young Chung, “An ECG Monitoring and Analysis
Method for Ubiquitous Healthcare System in WSN”, International Journal of KIMICS, Vol. 5,
No.1, March 2007.

29. Dae-Seok Lee, Sachin Bhardwaj and Wan-Young Chung, “Evaluation of functional sensor
node for Ubiquitous Healthcare System” The Second International Symposium on Medical
Information and Communication Technology, Dec. 11-13, Oulu, Finland, 2007.

30. Sachin Bhardwaj, Dae-Seok Lee, S.C. Mukhopadhyay and Wan-Young Chung, “A Fusion Data
Monitoring of Multiple Wireless Sensors for Ubiquitous Healthcare System”, 2nd Interna-
tional Conference on Sensing Technology, Nov.26-28, Palmerston North, New Zealand, 2007

31. Dae-Seok Lee, Sachin Bhardwaj and Wan-Young Chung “A New Concept of Healthcare Param-
eter Analysis on Sensor Node for Ubiquitous Healthcare System” International Conference of
Convergence Information Technology, IEEE proceeding, pp.1775-1780, Dec 21-23, Gyeongju,
South Korea, 2007.

32. Dae-Seok Lee, Sachin Bhardwaj, Esko Alasaarela and Wan-Young Chung “An ECG Analysis on
Sensor Node for Reducing Traffic Overload in U-Healthcare with Wireless Sensor Network”
IEEE Sensors 2007, pp. 256-259, Oct. 28-31, Atlanta, Georgia, USA, 2007.

33. Sachin Bhardwaj, Dae-Seok Lee and Wan-Young Chung “An Advance ECG Signal Processing
For Ubiquitous Healthcare System”, International Conference on Control, Automation and
Systems, IEEE proceeding, pp. 2433-2436, Oct. 17-20, Seoul, South Korea, 2007.

34. Wan-Young Chung, Sachin Bhardwaj, Amit Purwar, Dae-Seok Lee and Risto Myllylae “A Fu-
sion Health Monitoring and Analysis with ECG and Accelerometer Sensors for Elderly Person
at Home” 29th Annual International Conference of the IEEE EMBS (Engineering in Medicine
and Biology Society), pp.3818-3821, Aug. 23-26, Lyon, France, 2007.

35. Dae-Seok Lee, Sachin Bhardwaj, Wan-Young Chung “U-Healthcare System Using Wireless
Sensor Network to Detect QRS Complex”, Processing of KISPS Summer Conference 2007,
pp.156-159, 2007.6.23, Ulsan, South Korea.

36. Sachin Bhardwaj, Dae-Seok Lee, Wan-Young Chung “A ECG Analysis with Activity Monitoring
for Healthcare of Elderly Person”, Proceeding of KIMICS Conference, 2007.06.01-02,Jinchu,
South Korea.

37. Dae-Seok Lee, Sachin Bhardwaj, Wan-Young Chung “A Study of Wireless Sensor Node to
Detect QRS- Complex with Restrictive Resource” Proceeding of The Korea Society of Medical
and Biological Engineering, pp.258-260, 2006.11.03-04, Wonju, South Korea.

38. Amit Purwar, Sachin Bhardwaj, Kwang-Sik Shin, Wan-Young Chung “Activity Monitoring Using
Triaxial Accelerometer and Wireless Sensor Node” Proceeding of The KISPS autumn confer-
ence, pp.281-284, 2006.11.17-18, Daegu, South Korea.

39. Sachin Bhardwaj, Dae-Seok Lee, Wan-Young Chung “A Monitoring and Analysis Method of
ECG Signal in Wireless Sensor Network” Proceedings of KIMICS Conference, pp491-494,
2006.10.27-28, Kwangju, South Korea.

40. Dae-Seok Lee, Sachin Bhardwaj, Wan-Young Chung “WSN Based ECG and Body Temperature
Monitoring System” In proceeding of The Korean Institute of Signal Processing and Systems,
pp.113-116, 2006.06.16-17, Suncheon, South Korea.

41. Dae-Seok Lee, Sachin Bhardwaj, Wan-Young Chung “WSN Real-Time Vital Signal Monitoring
System with Patient Diagnosis and Dangerous Alarm Function” Proceeding of The Institute of
Control, Automation, and System Engineering, pp.122-126,2006.06.01-03, KINTEX, Kyungi-
do, South Korea.

PUBLICATIONS BY AUTHOR 199

42. Sachin Bhardwaj, Dae-Seok Lee, Wan-Young Chung “A Wireless ECG Monitoring System for
Application in Life Emergency Event Detection and Analysis” Proceedings of KIMICS Confer-
ence, pp.421-425, 2006.07.27-28, Busan, South Korea.

43. Sachin Bhardwaj, Dae-Seok Lee, Sung-Ju Oh, Wan-Young Chung “Wireless Sensor Module for
Remote Room Environment Monitoring at Home” Proceeding of The Combined Conference
of The Institute of Electronic Engineers of Korean, Korean Institute of Communication Society
and The Institute of Control, Automation and System Engineering, pp.187-193, 2005.12.3,
Busan, South Korea.

44. Sachin Bhardwaj, Gaurav Walia, Risto Myllylae, Wan Young Chung “Query Based ECG Moni-
toring and Analyzing System via Wireless Sensor Network” 2nd International Conference on
Wireless Communication and Sensor Networks, pp.146-153, Dec 17-19, India, 2006.

45. Dae-Seok Lee, Sachin Bhardwaj, Risto Myllylae, Wan Young Chung” A Wireless ECG Moni-
toring System for Continuous Event Detection and Analysis” 11th International Meeting on
Chemical Sensors, July 16-19, Brescia, Italy, 2006.

LIST OF FIGURES200

List of Figures

Figure 1.1. Ubiquitous healthcare system.
Figure 1.2. Research methodology.
Figure 1.3. Contributions in the thesis.
Figure 2.1. The graph illustrates the iOs (iOA, iOB and iOC) deployed on nodes nA, nB and nC.
The solid arrows represent the edges in

lamp to dim/on/off. The joint behaviors of the light sensor and the lamp cause the actions and reactions
by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s. For example, an action can be observed at the light sensor (starts observing illumination reading)
and the reaction can be modifying the state of the light lamp (dim/on/off) in return. Note, such an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is
a producer or consumer of digital information, has a (dynamic) state and can communicate with other
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s.

All 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s are deployed on smart nodes.

Definition (Smart node): A smart node, also known as a smart embedded device, is a dedicated
computational hardware component that hosts information objects. For a smart node 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
denotes the set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s running on 𝑛𝑛𝑛𝑛. As smart spaces are the focus of this thesis, we will use the
term node to refer to smart nodes in the rest of this chapter and in further chapters.

We consider that the (smart) nodes in an environment are placed in a limited physical area, called an
𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which is connected to the virtual world of information provided by its nodes.

Definition (𝑬𝑬𝑬𝑬_𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺): An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is an infrastructure of nodes and network connections
between them in a given physical environment. An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℰ is modeled by a graph given by

ℰ = (ℰ.𝑁𝑁𝑁𝑁, ℰ.𝐶𝐶𝐶𝐶)
where

1. ℰ.𝑁𝑁𝑁𝑁 denotes the set of nodes, where nodes further contain a set of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s, ℰ.𝐶𝐶𝐶𝐶 denotes the set

of connections (edges) between the nodes. Note that ℰ.𝐶𝐶𝐶𝐶 may denote a set of individual
physical links or a fully connected network based on some network layer abstraction. In
the latter case, ℰ.𝐶𝐶𝐶𝐶 would include multi-hop end-to-end network layer connections between
nodes and be a fully connected graph.

2. An element e of ℰ.𝐶𝐶𝐶𝐶 is denoted by a pair (𝑆𝑆𝑆𝑆. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆. 𝑡𝑡𝑡𝑡) with e.s(ource) and e.t(arget) chosen
in ℰ.𝑁𝑁𝑁𝑁.

An 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 may evolve over time because of new nodes that join and existing nodes that fail or leave,
e.g. due to mobility. Fig 2.1 illustrates an example 𝐸𝐸𝐸𝐸_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with three nodes 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 with
associated 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶, respectively. The edges between 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶, and 𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 and
𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 are given by 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, respectively and are detailed as follows:

 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴,𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵)
 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = (𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 . 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵,𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶)
 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = (𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑠𝑠𝑠𝑠, 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴. 𝑡𝑡𝑡𝑡) = (𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 ,𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴)

For two 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s to communicate they either need to be on the same node or their nodes should be able to
exchange messages over a network. In the graph representation this corresponds to having a solid edge
between the nodes. For example, an 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 on 𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 can send messages to another 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵 on 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵 only when
 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = (𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴, 𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵) is an element of ℰ.𝐶𝐶𝐶𝐶.

 and their directions while the dotted arrow
represents a process level connection between the iOs of nA and nB .
Figure 2.2. An example of a smart behavior via interactions between iOs.
Figure 2.3. A diagram depicting the logical structure of relations between iOs in a smart
space.
Figure 2.4. iO’s deployment possibilities on nodes. The arrows in the figure indicate a
two-way message exchange.
Figure 2.5. Architectural design (deployment view) of a centralized smart space.
Figure 2.6. Architectural design of a decentralized smart space.
Figure 2.7. Cloud services for smart spaces.
Figure 2.8. Architectural design of a distributed smart space.
Figure 3.1. Bird’s eye view of a smart lighting infrastructure of a meeting room in an office
building. There is a table in the center of the room, and five seats are placed around it.
Near the seat of the meeting chair, there is an RFID reader to identify the session chair.
The users carry RFID tags. Two light sources are on the ceiling. A calibrated presence
sensor on the ceiling detects room occupancy, and a user interaction node can be used
by the meeting chair to control the lights manually. All sensors, light sources and the user
interaction node communicate over a network.
Figure 3.2. Physical configurations of (a) SS1 and (b) SS2. In (a), the circle shows the smart
space nodes in a high capacity network (e.g., an IP network). In (b), the circle indicates a
low capacity network behind a gateway, or it may indicate an IP sub-network behind an
edge router.
Figure 3.3. Physical deployments of iOs in (a) SS1 and (b) SS2.
Figure 3.4. Contexts (L1, L2, PS, f, Push, SP) and behaviors in Smart Space Infrastructures
(a) SS1 and (b) SS2.
Figure 3.5. An adaptive lighting example to explain the classification of adaptation in iOs.
Figure 3.6. Semantic interoperability architectural design.
Figure 3.7. Processes and dependencies among iOs in the semantic interoperability archi-
tecture.
Figure 4.1. Blackboard architecture style.
Figure 4.2. Interactions of iOs with the SBiO and MiO.
Figure 4.3. A graph of RDF triples with example.
Figure 4.4. An example of the sensor ontology graph in the smart space ontology.
Figure 4.5. An ontology graph for a smart space.

LIST OF FIGURES 201

Figure 4.6. Deployment view of application ontologies in a smart space.
Figure 4.7. The basic operations of all transactions by iOs at the SBiO.
Figure 4.8. The basic application ontology graph at sbx.
Figure 4.9. The basic application ontology graph of Fig. 4.8 added with RDF triples.
Figure 4.10. The basic application ontology graph with removed RDF triples.
Figure 4.11. The ontology graph of Fig 4.9 with updated RDF triples.
Figure 4.12. he format of sematic interactions between an iO and the SBiO
Figure 4.13. The ontology graph O_graphsl inserted by mosl at sbsl.
Figure 4.14. Deployment view of the smart space SSsl.
Figure 4.15. Execution of the smart application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 .
Figure 4.16. An abstract format of transactions that contain the transaction type with a
message for LSNs.
Figure 4.17. The ontology graph O_graphsr inserted by mosr at sbsr.
Figure 4.18. Deployment view of the smart space SSsr.
Figure 4.19. Execution of the smart application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

, where (a) explains Objective A and
(b) explains Objective B.
Figure 4.20. The ontology graph O_graphu inserted by mou at sbu .
Figure 4.21. Deployment view of the smart space SSu .
Figure 4.22. Semantic interactions among iOs of two applications in the smart space SSu .
Figure 5.1. Illumination area of (a) single LED and (b) array of LEDs.
Figure 5.2. LED luminary and sensor placement.
Figure 5.3. The basic application ontology graph of SSSL (O_graphSL).
Figure 5.4. Deployment view of the smart space SSSL with the mapping of the smart light-
ing model.
Figure 5.5. Execution of the scenario example in the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

.
Figure 5.6. Execution of the scenario example in the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

.
Figure 6.1. Smart node life cycle.
Figure 6.2. LSN: wireless sensor node SN.
Figure 6.3. LSN: LED luminary (combination of an actuator and LEDs).
Figure 6.4. (a) HSN: LED luminary and (b) HSN: Sensor node.
Figure 6.5. Smart service life cycle.
Figure 6.6. Smart application life cycle.
Figure 7.1. Extracted deployment view from the smart space SSSL based on the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

.
Figure 7.2. Placement of SNs and ANs; bird’s eye view of the table surface.
Figure 7.3. Execution of scenarios in UC-1.
Figure 7.4. Change of illumination and brightness level over time based on the user
activities: (a) illumination in SC1 , (b) brightness level in SC1 , (c) illumination in SC2 , (d)
brightness level in SC2 , (e) illumination in SC3 and (f) brightness level in SC3.
Figure 7.5. Physical setup of the UC-2.

LIST OF FIGURES202

Figure 7.6. Deployment view of SSSL for UC-2, where the communication 1 is SSAP over
TCP/IP, communication 2 is Zigbee over IEEE 802.15.4 and communication 3 is USB serial
communication.
Figure 7.7. The added RDF triples to the application ontology graph O_graphSL (Fig 5.3) in
SSSL for UC-2.
Figure 7.8. Execution steps of the priority mechanism in UC-2.
Figure 7.9. Power consumptions in the applications

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 and

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 over four tests.
Figure 7.10. Comparison of required and regulated power in the application

Definition (Smart Application): A smart (space) application (𝙰𝙰𝙰𝙰) is a set of scenarios
realized by communicating 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖s that together aim to serve and interact with application users
and the electronics these users carry.

𝙰𝙰𝙰𝙰𝑐𝑐𝑐𝑐 𝙰𝙰𝙰𝙰𝑏𝑏𝑏𝑏 𝙰𝙰𝙰𝙰𝑎𝑎𝑎𝑎 𝙰𝙰𝙰𝙰 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝙰𝙰𝙰𝙰𝑠𝑠𝑠𝑠 𝙰𝙰𝙰𝙰ℎ

 .
Figure 7.11. Delay calculation links between iOs for ES-1 and ES-2.
Figure A.1. System architecture of the smart home pilot.
Figure A.2. The smart node nh5 with lamp designs and used for wall wash lighting.
Figure A.3. Sequence of commands from the ch5 to Lamps in smart home A.
Figure A.4. Connector for the smart node nh3 . 11. This node is developed by Gerrit Niezen
and Bram J.J. van der Vlist from the industrial design department at TU/e [A.2].
Figure A.5. A sequence diagram of queries by ch1 and ch3.
Figure A.6. A sequence diagram of query and subscription by ch2.
Figure A.7. Projection of the spotlight navigation for connecting lighting and music nodes.

203LIST OF TABLES

List of Tables

Table 1.1. Smart space application examples and scenario’s descriptions.
Table 2.1. Types of iOs shown in Fig. 2.3.
Table 2.2. Types of smart nodes.
Table 2.3. Comparison of architectural designs of smart spaces based on iOs deployment
on smart nodes.
Table 2.4. Smart nodes considered in various smart space designs.
Table 3.1. User preferences (Set-points) in the example with η = 3.
Table 3.2. Properties of smart space solutions in the literature.
Table 3.3. Communication interoperability related work.
Table 4.1. Semantic Reasoners.
Table 5.1. Smart lighting applications related work.
Table 5.2. Procedure of the Illumination Control Algorithm (ICA).
Table 6.1. Hardware specification of the configured LSN: wireless sensor node.
Table 6.2. The hardware specification of the configured LED luminary for the experiment
purpose.
Table 6.3. The hardware and software specification of HSNs (LED luminary and sensor
node).
Table 7.1. Actuation commands bl,mn (in %) calculated by gwSL .
Table 7.2. Nodes with associated iOs and their communication technologies in the smart
space SSSL for UC-2.
Table 7.3. Delay measurements (in milliseconds) for ES-1 and ES-2.
Table A.1. Description of all smart nodes used in the smart home pilot demo.
Table A.2. Specification of the hardware and software capabilities of nodes in the smart
home pilot.

ACRONYMS204

Acronyms

AC Alternating Current
ADC Analog to Digital Converter
AN Actuator node
ARP Address Resolution Protocol
BP Blood Pressure
BSN Body Sensor Network
CoAP Constrained Application Protocol
CHIP Connected Home over IP
CPU Central Processing Unit
CSN Central Smart Node
DaaS Data as a Service
DHCP Dynamic Host Configuration Protocol
DLNA Digital Living Network Alliance
DNS Domain Name System
ECG Electrocardiogram
IEEE Institute of Electrical and Electronics Engineers
EEPROM Electrically Erasable Programmable Read-Only Memory
EMG Electromyography
ES-1 Example Scenario 1
ES-2 Example Scenario 2
FTP File Transfer Protocol
GPS Global Positioning System
GSM Global System for Mobile Communications
GSN Gateway Smart Node
HPR High-priority Rooms
HSN High-capacity Smart Node
HTTP HyperText Transfer Protocol
HVAC Heating, Ventilation, and Air Conditioning
IaaS Infrastructure as a Service
ICA Illumination Control Algorithm
IEC International Electrotechnical Commission
IoT Internet of Things
IOP Interoperability Platform
IP Internet Protocol
ISO International Organization for Standardization
KB Kilo Byte
KiB Kibi Byte
KP Knowledge Processor

ACRONYMS 205

LED Light Emitting Diode
LPR Low-priority Rooms
LSN Low-capacity Smart Node
MAVHome Managing Adaptive, Versatile Home
MAC Medium Access Control
MOP Multi-objective Optimization Problem
MSN Manager Smart Node
M3 Multi-vendor, Multi-device, Multi-domain
OSI Open Systems Interconnection
OWL Ontology Web Language
PaaS Platform as a Service
PDA Personal Digital Assistant
PERSIST Personal Self-Improving Smart Spaces
PPP Point-to-Point Protocol
PSN Passive Smart Node
PSS Personal Smart Space
PWM Pulse Width Modulation
PXSN Proxy Smart Node
REST Representational State Transfer
RDF Resource Description Framework
RDF-S RDF Schema
RFID Radio Frequency Identification
RGB Red, Green, Blue
RQ Research Question
SAN Semantic Actuator Network
SaaS Software as a Service
SBSN Semantic Broker Smart Node
SensorML Sensor Model Language
SIB Semantic Information Broker
SMTP Simple Mail Transfer Protocol
SN Sensor node
SOFIA Smart Objects For Intelligent Applications
SOAP Simple Object Access Protocol
SPIN SPARQL Inferencing Notation
SSAP Smart Space Access Protocol
SS Smart Space
SSN Semantic Sensor Network
SWE Sensor Web Enablement
TCP Transport Control Protocol
TU/e Eindhoven University of Technology

ACRONYMS206

UC-1 Use Case 1
UC-2 Use Case 2
UDP User Datagram Protocol
UPS User Profile Server
UPnP Universal Plug and Play
USB Universal Serial Bus
VPN Virtual Private Network
WQL Wilbur Query Language
W3C World Wide Web Consortium
XML Extensible Markup Language
6LoWPAN IPv6 over Low power Wireless Personal Area Networks

BIBLIOGRAPHY 207

Bibliography

[1.1] M. Mühlhäuser and I. Gurevych, “Introduction to ubiquitous computing”, In Ubiquitous and
pervasive computing: Concepts, methodologies, tools, and applications, IGI Global, pp. 1 –
19, 2007.

[1.2] D. A. Patterson, “IRAM: a microprocessor for the post-PC era”, International Symposium on
VLSI Technology, Systems, and Applications, pp. 30 – 41, 1999.

[1.3] D. Saha, A. Mukherjee, “Pervasive Computing: A Paradigm for the 21st Century”, IEEE Com-
puter, March, pp.25 – 31, 2003.

[1.4] E. Aarts, “Ambient Intelligence: a multimedia perspective”, IEEE MultiMedia, Vol.11 (1), pp.12
– 19, 2004.

[1.5] R. Want, T. Pering, G. Borriello, K.I. Farkas, “Disappearing hardware (ubiquitous computing)”,
IEEE Pervasive Computing, Vol. 1(1), pp 36 – 47, 2002.

[1.6] K. N. Biyani, S. S. Kulkarni, “Mixed-Mode Adaptation in Distributed Systems: A Case Study,
International Workshop on Software Engineering for Adaptive and Self-Managing Systems”,
pp. 14, 20 – 26 may, 2007.

[1.7] H. Ishii, “Tangible bits: designing the boundary between people, bits, and atoms, International
Symposium on Mixed and Augmented Reality”, pp. 199, September 30 – October 1, Darm-
stadt, Germany, 2002.

[1.8] T. El Kiki, E. Lawrence, “E. Government as a Mobile Enterprise: Real-time, Ubiquitous Govern-
ment”, Third International Conference on Information Technology: New Generations, pp.
320 – 327, 2006.

[1.9] S. Poslad “Ubiquitous Computing Smart Devices, Smart Environments and Smart Interaction”,
Wiley, ISBN 978-0-470-03560-3, 2009.

[1.10] M. Weiser, “The world is not a desktop”, Magazine interactions, Volume 1 Issue 1, pp. 7 – 8,
ACM, Jan. 1994.

[1.11] M. Mühlhäuser and I. Gurevych, “Chapter 1.1 Introduction to Ubiquitous Computing”, Hand-
book of Research: Ubiquitous Computing Technology for Real Time Enterprises” edited by
Max Mühlhäuser and Iryna Gurevych, , IGI Global, www.igi-pub.com, 2007.

[1.12] S. Bhardwaj, D. S. Lee, S.C. Mukhopadhyay and W. Y. Chung “Ubiquitous Healthcare Data
Analysis and Monitoring Using Multiple Wireless Sensors for Elderly Person”, Sensors and
Transducer Journal, Vol. 90, Special Issue, ISSN: 1726-5479, pp. 87 – 99, April 2008.

[1.13] H. Liu, H. Ning, Q. Mu, Y. Zheng, J. Zeng, L. T. Yang, R. Huang, and J. Ma, “A review of the smart
world”, Future Generation Computer Systems, pp. 678 – 691, Vol. 96, 2019.

[1.14] J. C. Augusto, V. Callaghan, D. Cook, A. Kameas, and I Satoh, Ichiro. “Intelligent Environments:
a manifesto”, Human-centric Computing and Information Sciences, Vol. 3, pp. 1 – 18, 2013.

[1.15] A. R. Yuliantoputri, W. Muhamad and S. Suhardi, “Smart Classroom Services System Design
Based on Services Computing System”, 2019 International Conference on ICT for Smart Soci-
ety (ICISS), Bandung, Indonesia, pp. 1 – 6, 2019.

[1.16] P. Mtshali and F. Khubisa, “A Smart Home Appliance Control System for Physically Disabled
People”, 2019 Conference on Information Communications Technology and Society (ICTAS),
Durban, South Africa, pp. 1 – 5, 2019.

[1.17] T. Dahoumane, M. Haddadi and Z. Amokrane, “Web Services and GSM based Smart Home
Control System”, 2018 International Conference on Applied Smart Systems (ICASS), Medea,
Algeria, pp. 1 – 4, 2018.

[1.18] S. Sharma, A. Sharma, T. Goel, R. Deoli and S. Mohan, “Smart Home Gardening Management
System: A Cloud-Based Internet-of-Things (IoT) Application in VANET”, 2020 11th Interna-

BIBLIOGRAPHY208

tional Conference on Computing, Communication and Networking Technologies (ICCCNT),
Kharagpur, India, pp. 1 – 5, 2020.

[1.19] B. G. Mohammed and D. S. Hasan, “Smart Healthcare Monitoring System Using IoT”, Interna-
tional Journal of Interactive Mobile Technologies, (iJIM), 17(01), pp. 141 – 152, 2023.

[1.20] C. Li and S. Xu, “Interaction Design for Smart Healthcare System Considering Older Adults’
Healthy and Wellbeing Lifestyles”, 2020 IEEE 2nd Eurasia Conference on Biomedical Engi-
neering, Healthcare and Sustainability (ECBIOS), Tainan, Taiwan, pp. 151 – 153, 2020.

[1.21] W. Antoun, A. Abdo, S. Al-Yaman, A. Kassem, M. Hamad and C. El-Moucary, “Smart Medi-
cine Dispenser (SMD)”, 2018 IEEE 4th Middle East Conference on Biomedical Engineering
(MECBME), Tunis, Tunisia, pp. 20 – 23, 2018.

[1.22] O. Ayan and B. Turkay, “IoT-Based Energy Efficiency in Smart Homes by Smart Lighting Solu-
tions”, 2020 21st International Symposium on Electrical Apparatus & Technologies (SIELA),
Bourgas, Bulgaria, pp. 1 – 5, 2020.

[1.23] G. S. Ramachandran, R. Radhakrishnan and B. Krishnamachari, “Towards a Decentralized Data
Marketplace for Smart Cities”, 2018 IEEE International Smart Cities Conference (ISC2), Kansas
City, MO, USA, pp. 1 – 8, 2018.

[1.24] M. Karaduman and H. Eren, “Smart driving in smart city”, 2017 5th International Istanbul
Smart Grid and Cities Congress and Fair (ICSG), Istanbul, Turkey, pp. 115 – 119, 2017.

[1.25] S. Antonov, “Smart Solution for Fire Safety in a Large Garage”, 2019 International Conference
on Creative Business for Smart and Sustainable Growth (CREBUS), Sandanski, Bulgaria, pp.
1 – 4, 2019.

[1.26] N. Ouerhani, N. Pazos, M. Aeberli and M. Muller, “IoT-based dynamic street light control for
smart cities use cases”, 2016 International Symposium on Networks, Computers and Com-
munications (ISNCC), Yasmine Hammamet, Tunisia, pp. 1 – 5, 2016.

[1.27] S. S. Arumugam et al., “IOT Enabled Smart Logistics Using Smart Contracts”, 2018 8th Interna-
tional Conference on Logistics, Informatics and Service Sciences (LISS), Toronto, ON, Canada,
pp. 1 – 6, 2018.

[1.28] M. Botticelli, A. Monteriù, A. Zanela and S. Romano, “Smart Homes and Assisted Living as
an Additional Service Offered to the Users”, 2019 IEEE 9th International Conference on Con-
sumer Electronics (ICCE-Berlin), Berlin, Germany, pp. 42 – 45, 2019.

[1.29] I. A. Gufron, O. Fathurohman, M. Roifah, M. Wildan, P. Supendi and E. A. Z. Hamidi, “Proto-
type Design of Smart Office at Institut Agama Islam Bunga Bangsa Cirebon (IAI-BBC) Base on
LoRa”, 2020 6th International Conference on Wireless and Telematics (ICWT), Yogyakarta,
Indonesia, pp. 1 – 6, 2020.

[1.30] IEEE Computer Society, IEEE Std 802.15.4-2006: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs),
323 pages, Sept. 2006.

[1.31] V. D. K. Mai and Y. Kim, “Using DLNA cloud for sharing multimedia contents beyond home
networks”, 16th International Conference on Advanced Communication Technology, Py-
eongchang, pp. 54 – 57, 2014.

[1.32] P. Kafka, “Spotify relies on the big labels for most of its music. It thinks that will change”.
[online] Recode. Available at: https://www.recode.net/2018/4/3/17191390/spotify-plan-
big-music-labels-platform-marketplace-ipo [Accessed 27 Oct. 2023].

[1.33] “Google Cloud for media and entertainment” [online], https://cloud.google.com/solutions/
media-entertainment/. [Accessed 27 Oct. 2023].

BIBLIOGRAPHY 209

[1.34] J. Kiljander, A. D’ Elia, F. Morandi, P. Hyttinen, J. T. Mattila, A. Ylisaukko-oja, J. Soininen, and
T. S. Cinotti, “Semantic Interoperability Architecture for Pervasive Computing and Internet of
Things”, IEEE Access, vol. 2, pp. 856 – 873, 2014.

[1.35] J. Fernández, G. Pimpollo, and R. Otaolea, “Smart Objects for Intelligent Applications – ADK”,
IEEE Symposium on Visual Languages and Human-Centric Computing, Leganes, Spain, pp.267
– 268, 21-25 Sept. 2010.

[2.1] S. B. Baker, W. Xiang and I. Atkinson, “Internet of Things for Smart Healthcare: Technologies,
Challenges, and Opportunities”, in IEEE Access, vol. 5, pp. 26521 – 26544, 2017.

[2.2] H. Jiang, C. Cai, X. Ma, Y. Yang and J. Liu, “Smart Home Based on WiFi Sensing: A Survey”, in IEEE
Access, vol. 6, pp. 13317 – 13325, 2018.

[2.3] L. Qiu, Q. Lei and Z. Zhang, “Advanced Sentiment Classification of Tibetan Microblogs on Smart
Campuses Based on Multi-Feature Fusion”, in IEEE Access, vol. 6, pp. 17896 – 17904, 2018.

[2.4] E. Mathews; S. S. Guclu, Q. Liu, T. Ozcelebi, and J.J. Lukkien, “The Internet of Lights: An Open
Reference Architecture and Implementation for Intelligent Solid State Lighting Systems”,
Energies 10(8), 1187, pp. 1 – 27, 2017.

[2.5] K. Scott and R. Benlamri, “Context-Aware Services for Smart Learning Spaces”, IEEE Transac-
tions on Learning Technologies, vol. 3, no. 3, pp. 214 – 227, 2010.

[2.6] N. D. Rodriguez, “A Framework for Context-Aware Applications for Smart Spaces”, IEEE/IPSJ
International Symposium on Applications and the Internet, Munich, Bavaria, pp. 218 – 221,
2011.

[2.7] T. Ozcelebi, J. J. Lukkien, R. Bosman, and O. Uzun, “Discovery, monitoring and management in
smart spaces composed of low capacity nodes”, IEEE Transactions on Consumer Electronics
(TCE), Vol. 56, no. 2, pp. 570 – 578, May 2010.

[2.8] S. Bhardwaj, T. Ozcelebi, J. Lukkien and C. Uysal, “Resource and service management architec-
ture of a low capacity network for smart spaces”, IEEE Transactions on Consumer Electronics,
vol. 58, no. 2, pp. 389–396, May 2012.

[2.9] Z. Shelby, B. Frank and D. Sturek, “Constrained Application Protocol (CoAP) (CoRE Working
Group)”, http://www.ietf.org/ id/draft-ietf-core-coap-06.txt (07/07/2011), 2011.

[2.10] H. He, T. Watson, C. Maple, J. Mehnen and A. Tiwari, “A new semantic attribute deep learning
with a linguistic attribute hierarchy for spam detection”, International Joint Conference on
Neural Networks (IJCNN), Anchorage, AK, Alaska, pp. 3862 – 3869, 2017.

[2.11] P. Maillot, T. Raimbault, D. Genest and S. Loiseau, “Consistency Evaluation of RDF Data: How
Data and Updates are Relevant”, Tenth International Conference on Signal-Image Technology
and Internet-Based Systems, Marrakech, Morocco, pp. 187 – 193, 2014.

[2.12] K. A. Taipale, “The Trusted Systems Problem: Security Envelopes, Statistical Threat Analysis,
and the Presumption of Innocence,” Homeland Security - Trends and Controversies, IEEE
Intelligent Systems, Vol. 20 No. 5, pp. 80 – 83, Sept-Oct, 2005.

[2.13] R. M. Lee, M. J. Assante and T. Conway, “Analysis of the cyber-attack on the Ukrainian power
grid”, 2016.

[2.14] F. Alrimawi, L. Pasquale and B. Nuseibeh, “On the Automated Management of Security Inci-
dents in Smart Spaces”, in IEEE Access, vol. 7, pp. 111513 – 111527, 2019.

[2.15] K. K. Jung and Y. J. Kim, “Design of smart monitoring system based on bluetooth low energy”,
International Conference on Electronics, Information, and Communication (ICEIC), Honolulu,
HI, USA, pp. 1 – 3, 2018.

[2.16] D. M. Han and J. H. Lim, “Smart home energy management system using IEEE 802.15.4 and
ZigBee”, IEEE Transactions on Consumer Electronics, vol.56, issue 3, pp.1403 – 1410, August
2010.

BIBLIOGRAPHY210

[2.17] S. Bhardwaj, A. A. Syed, T. Ozcelebi and J. J. Lukkien, “Power-managed smart lighting using a
semantic interoperability architecture”, IEEE Transactions on Consumer Electronics, vol. 57,
no. 2, pp. 420 – 427, May 2011.

[2.18] E. Carlini, M. Coppola, P. Dazzi, M. Mordacchini and A. Passarella, “Self-Optimising Decen-
tralised Service Placement in Heterogeneous Cloud Federation”, IEEE 10th International
Conference on Self-Adaptive and Self-Organizing Systems (SASO), Augsburg, Germany, pp.
110 – 119, 2016.

[2.19] X. Wang and Y. Mu, “Addressing and Privacy Support for 6LoWPAN”, in IEEE Sensors Journal,
vol. 15, no. 9, pp. 5193 – 5201, Sept. 2015.

[2.20] F. Wu, C. Rüdiger, J. M. Redouté and M. R. Yuce, “WE-Safe: A wearable IoT sensor node for
safety applications via LoRa”, IEEE 4th World Forum on Internet of Things (WF-IoT), Singa-
pore, pp. 144 – 148, 2018.

[2.21] A. K. Dey, G. D. Abowd, and D. Salber, “A Context-Based Infrastructure for Smart Environ-
ments,” GVU Technical Report;GIT-GVU-99-39, Georgia Institute of Technology, http://hdl.
handle.net/ 1853/3406, 1999.

[2.22] E. Goh, D. Chieng, A. K. Mustapha, Y. C. Ngeow and H. K. Low, “A Context-Aware Architecture
for Smart Space Environment”, International Conference on Multimedia and Ubiquitous
Engineering (MUE’07), Seoul, South Korea, pp. 908 – 913, 2007.

[2.23] I. G. Roussaki, N. K. Kalatzis, K. J. Doolin, N. K. Taylor, G. P. Spadotto, N. D. Liampotis, and M. H.
Williams, “Self-improving personal smart spaces for pervasive service provision,” IOS Press,
E-book: Towards the Future Internet, pp. 193 – 203, 2010.

[2.24] T. Kawashima, M. Jianhua, H. Runhe, and B. O. Apduhan, “GUPSS: A Gateway-Based Ubiq-
uitous Platform for Smart spaces,” International Conference on Computational Science and
Engineering, Vancouver, BC, Canada, pp. 213 – 220, 2009.

[2.25] B. J. J. Vlist, G. Niezen, J. Hu and L. M. G. Feijs, “Semantic connections: Exploring and manipu-
lating connections in smart spaces”, The IEEE symposium on Computers and Communica-
tions, Riccione, Italy, pp. 1 – 4, 2010.

[2.26] Z. Song, A. A. Cárdenas and R. Masuoka, “Semantic Middleware for the Internet of Things,”
Proc IEEE Internet of Things (IOT), Tokyo, Japan, pp. 1 – 8, 2010.

[2.27] D. Pfisterer, K. Romer, D. Bimschas, O. Kleine, R. Mietz, C. Truong, H. Hasemann, A. Kröller,
M. Pagel, M. Hauswirth, M. Karnstedt, M. Leggieri, A. Passant and R. Richardson, “SPITFIRE:
toward a semantic web of things,” IEEE Communications Magazine, 49(11), pp. 40 – 48, 2011.

[2.28] H. Abdullah, M. Rinne, S. Törmä and E. Nuutila “Efficient Matching of SPARQL Subscriptions
using Rete”, Proc 27th Annual ACM Symposium on Applied Computing, New York, NY, USA,
pp. 372 – 377, 2012.

[2.29] F. Morandi, L. Roffia, A. D’Elia, F. Vergari and T. S. Cinotti, “RedSib: A smart-M3 semantic infor-
mation broker implementation”, 12th Conference of Open Innovations Association (FRUCT),
Oulu, Finland, pp. 1 – 13, 2012.

[2.30] N. Díaz Rodríguez, J. Lilius, M. P. Cuéllar and M. Delgado Calvo-Flores, “An approach to im-
prove semantics in Smart Spaces using reactive fuzzy rules”, Joint IFSA World Congress and
NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, pp. 436 – 441, 2013.

[2.31] E. Ovaska and J. Kuusijärvi, “Piecemeal Development of Intelligent Applications for Smart
Spaces”, IEEE Access, vol. 2, pp. 199 – 214, 2014.

[2.32] J. Kiljander, A. Delia, F. Morandi, P. Hyttinen, J. T. Mattila, A. Ylisaukko-oja, J. Soininen, and T.
S. Cinotti, “Semantic Interoperability Architecture for Pervasive Computing and Internet of
Things”, IEEE Access, vol. 2, pp. 856 – 873, 2014.

BIBLIOGRAPHY 211

[2.33] J. Zeng, L. T. Yang, H. Ning and J. Ma, “A systematic methodology for augmenting quality of
experience in smart space design,” IEEE Wireless Communications, vol. 22, no. 4, pp. 81 – 87,
2015.

[2.34] S. A. Marchenkov, D. G. Korzun, A. I. Shabaev and A. V. Voronin, “On applicability of wire-
less routers to deployment of smart spaces in Internet of Things environments,” 9th IEEE
International Conference on Intelligent Data Acquisition and Advanced Computing Systems:
Technology and Applications (IDAACS), Bucharest, Romania, pp. 1000 – 1005, 2017.

[2.35] A. S. Vdovenko, D. G. Korzun and I. V. Galov, “Simulation performance evaluation of Smart-
M3 applications for Internet of Things environments,” 9th IEEE International Conference on
Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications
(IDAACS), Bucharest, Romania, pp. 994 – 999, 2017.

[2.36] A. S. Vdovenko, O. I. Bogoiavlenskaia and D. G. Korzun, “Study of active subscription control
parameters in large-scale smart spaces,” 2017 21st Conference of Open Innovations Associa-
tion (FRUCT), Helsinki, Finland, pp. 344 – 350, 2017.

[2.37] S. Ahmad, L. Hang, and D.H. Kim, “Design and Implementation of Cloud-Centric Configuration
Repository for DIY IoT Applications,” Sensors, 18, 474, 2018.

[2.38] J. Zeng, L. T. Yang, J. Ma and M. Guo, “HyperspaceFlow: A System-Level Design Methodology
for Smart Space,” IEEE Transactions on Emerging Topics in Computing, vol. 4, no. 4, pp. 568
– 583, Oct.-Dec. 2016.

[2.39] D. J. Cook, M. Youngblood, E.O. III Heierman, K. Gopalratnam, S. Rao, A. Litvin, and F. Khawaja,
“MavHome: An Agent-Based Smart Home”, Proceedings of the First IEEE International Con-
ference on Pervasive Computing and Communications, (PerCom 2003), Fort Worth, Texas,
USA, pp 521 – 524, 2003.

[2.40] Sukalikar, Shriya, S. Kumar, and N. Baliyan. “Analysing Cohesion and Coupling for Modular
Ontologies.” International Conference on Advances in Computing, Communications and
Informatics (ICACCI), New Delhi, India, pp. 2063-2066, 2014.

[2.41] W. Lumpkins, “Home automation: Insteon (X10 meets powerline)” IEEE Consumer Electronics
Magazine,” vol.4, pp.140 – 144, 2015.

[2.42] M. Neugebauer, J. Plonnigs, K. Kabitzsch, and P. Buchholz, “Automated modeling of LonWorks
building automation net-works,” Proceedings of IEEE International Workshop on Factory
Communication Systems, Vienna, Austria, Array, pp.113 – 118, 2004.

[2.43] T. Perumal, A. R. Ramli, C. Y. Leong, and S. Mansor, “Interoperability for Smart Home Environ-
ment Using Web Services”, International Journal of Smart Home , vol. 2, no. 4, October, 2008.

[2.44] R. Fielding, “Architectural Styles and the Design of Network-based Software Architectures,”
Ph.D. dissertation, University of California, Irvine, [Online]. Available: https://www.ics.uci.
edu/ ∼fielding/pubs/dissertation/top.htm, 2000.

[2.45] W. Villegas-Ch, X. Palacios-Pacheco, and S. Luján-Mora, “Application of a smart city model to
a traditional university campus with a big data architecture: A sustainable smart campus”,
Sustainability, 11, 2857, 2019.

[2.46] Z. D. Tekler, R. Low, B. Gunay, R. K. Andersen and L. Blessing, “A scalable Bluetooth Low
Energy approach to identify occupancy patterns and profiles in office spaces”, Building and
Environment, Vol. 171, 2020.

[2.47] Z. D. Tekler and A. Chong, “Occupancy prediction using deep learning approaches across
multiple space types: A minimum sensing strategy”, Build. Environ., 226, 109689, 2022.

[2.48] B. Alsamani, S. Chatterjee, A. Anjomshoae, and P. Ractham, “Smart Space Design–A Frame-
work and an IoT Prototype Implementation”, Sustainability, 15, 111, 2023.

BIBLIOGRAPHY212

[3.1] Y. Guozheng, W. Hongjie, D. Guoqing and L. Liangming, “Augmented Lagrange multiplier based
fuzzy evolutionary algorithm and application for constrained optimization,” Proceedings of
the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527), Shanghai,
China, pp. 1774 – 1778 vol.3, 2002.

[3.2] D. A. G. Vieira, R. L. S. Adriano, J. A. Vasconcelos and L. Krahenbuhl, “Treating constraints as
objectives in multiobjective optimization problems using niched Pareto genetic algorithm,” in
IEEE Transactions on Magnetics, vol. 40, no. 2, pp. 1188 – 1191, March 2004.

[3.3] I. Paweloszek and J. Korczak, “From data exploration to semantic model of customer,” 2017
Intelligent Systems Conference (IntelliSys), United Kingdom, pp. 382 – 388, 2017.

[3.4] P. Warren, J. Davies; D. Brown, “The Semantic Web – From Vision to Reality,” in ICT
Futures:Delivering Pervasive, Real-time and Secure Services , 1, Wiley Telecom, pp.268, 2007.

[3.5] Y. Wang, “Formal rules for concept and semantics manipulations in cognitive linguistics and
machine learning,” 2017 IEEE 16th International Conference on Cognitive Informatics &
Cognitive Computing (ICCI*CC), Oxford, pp. 43 – 50, 2017.

[3.6] A. L. Garrido, M. S. Pera and S. Ilarri, “SOLE-R: A Semantic and Linguistic Approach for Book
Recommendations,” 2014 IEEE 14th International Conference on Advanced Learning Tech-
nologies, Athens, pp. 524 – 528, 2014.

[3.7] O. Kovalenko, J. Euzenat, “Semantic Matching of Engineering Data Structures”, In: Biffl S., Sa-
bou M. (eds) Semantic Web Technologies for Intelligent Engineering Applications. Springer,
Cham, 2016.

[3.8] J. Nilsson and F. Sandin, “Semantic Interoperability in Industry 4.0: Survey of Recent Devel-
opments and Outlook,” 2018 IEEE 16th International Conference on Industrial Informatics
(INDIN), Porto, Portugal, pp. 127 – 132, 2018.

[3.9] O. Novo and M. D. Francesco. “Semantic Interoperability in the IoT: Extending the Web of
Things Architecture”. ACM Transaction of Internet Things 1, 1, Article 6, 25 pages, February,
2020.

[3.10] K. Kadowaki, T. Koita, K. Sato and H. Hayakawa, “Design and Implementation of Adaptive Jini
System to Support Undefined Services,” 6th Annual Communication Networks and Services
Research Conference (cnsr), Halifax, NS, 2008, pp. 577 – 583, 2008.

[3.11] R. Lea, S. Gibbs, A. Dara-Abrams and E. Eytchison, “Networking home entertainment devices
with HAVi,” in Computer, vol. 33, no. 9, pp. 35 – 43, Sep 2000.

[3.12] L. Yiqin, F. Fang and L. Wei, “Home Networking and Control Based on UPnP: An Implementa-
tion,” 2009 Second International Workshop on Computer Science and Engineering, Qingdao,
pp. 385 – 389, 2009.

[3.13] J. Cardoso, C. Pereira, A. Aguiar and R. Morla, “Benchmarking IoT middleware platforms,”
2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia
Networks (WoWMoM), Macau, pp. 1 – 7, China, 2017.

[3.14] M. Khan, S. Din, S. Jabbar, M. Gohar, H. Ghayvat, and S. C. Mukhopadhyay, “Context-aware
low power intelligent SmartHome based on the Internet of things,” Computers & Electrical
Engineering, vol. 52, pp. 208 – 222, 2016.

[3.15] B. R. Nugroho, “The architecture of an IoT-based healthcare monitoring system using smart
e-health gateways in home/hospital domain,” Buletin Inovasi ICT & Ilmu Komputer, vol. 2,
no. 1, 2015.

[3.16] S. Jabbar, M. Khan, B. Nathali Silva, and K. Han, “A REST-based industrial web of things’ frame-
work for smart warehousing,” The Journal of Supercomputing, 2016.

BIBLIOGRAPHY 213

[3.17] A. Agra, M. Christiansen, K. S. Ivarsøy, I. E. Solhaug, and A. Tomasgard, “Combined ship routing
and inventory management in the salmon farming industry,” Annals of Operations Research,
pp. 1 – 25, 2016.

[3.18] C. C. Grant, A. Jones, A. Hamins, and N. Bryner, “Realizing the vision of smart fire fighting,”
IEEE Potentials, vol. 34, no. 1, pp. 35 – 40, 2015.

[3.19] A. Paul, A. Ahmad, M. M. Rathore, and S. Jabbar, “Smartbuddy: defining human behaviors
using big data analytics in social internet of things,” IEEE Wireless Communications, vol. 23,
no. 5, pp. 68 – 74, 2016.

[3.20] R. Zhang, S. Newman, M. Ortolani and S. Silvestri, “A Network Tomography Approach for
Traffic Monitoring in Smart Cities,” in IEEE Transactions on Intelligent Transportation Systems,
2018.

[3.21] D. M. Llido Escriva, J. Torres-Sospedra and R. Berlanga-Llavori, “Smart Outdoor Light Desktop
Central Management System,” in IEEE Intelligent Transportation Systems Magazine, vol. 10,
no. 2, pp. 58 – 68, Summer 2018.

[3.22] X. Su, H. Zhang, J. Riekki, A. Keränen, J. K. Nurminen, L. Du, “Connecting IoT Sensors to
Knowledge-based Systems by Transforming SenML to RDF”, Procedia Computer Science,
Volume 32, pp. 215 – 222, 2014.

[3.23] J. J. Jung, “Semantic preprocessing for mining sensor streams from heterogeneous environ-
ments” Expert Systems with Applications, Volume 38, Issue 5, pp. 6107 – 6111, May 2011.

[3.24] A. Flora, C. Valentina, G. Andrea, M. Antonino, “A semantic enriched data model for sensor
network interoperability” Simulation Modelling Practice and Theory, Volume 19, Issue 8, pp.
1745 – 1757, September, 2011.

[3.25] X. Su; H. Zhang; J. Riekki; A. Keränen; J. K. Nurminen; L. Du, “Connecting IoT Sensors to
Knowledge-based Systems by Transforming SenML to RDF”, Procedia Computer Science,
Volume 32, pp. 215 – 222, 2014.

[3.26] S. Jabbar, F. Ullah, S. Khalid, Murad Khan, and Kijun Han, “Semantic Interoperability in
Heterogeneous IoT Infrastructure for Healthcare,” Wireless Communications and Mobile
Computing, vol. 2017, Article ID 9731806, 10 pages, 2017.

[3.27] C. Malewski, A. Bröring, P. Maué and K. Janowicz, “Semantic Matchmaking & Mediation for
Sensors on the Sensor Web,” in IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 7, no. 3, pp. 929 – 934, March 2014.

[3.28] H. Dibowski, J. Ploennigs and M. Wollschlaeger, “Semantic Device and System Modeling for
Automation Systems and Sensor Networks,” in IEEE Transactions on Industrial Informatics,
vol. 14, no. 4, pp. 1298 – 1311, April 2018.

[3.29] R. Edwards, L. Parker, D. Resseguie, “Robopedia: Leveraging Sensorpedia for web-enabled
robot control”. 183-188. 10.1109/PERCOMW.2010.5470670, 2010.

[3.30] K. A. Delin and E. Small “The Sensor Web: Advanced Technology for Situational Awareness”,
Wiley Handbook of Science and Technology for Homeland Security, John Wiley & Sons, 2009.

[3.31] S. Nath, J. Liu, and F. Zhao “SensorMap for Wide-Area Sensor Webs”, Computers, Vol 40, No.
7, pp 90 – 93, July 2007.

[3.32] S. Bhardwaj, T. Ozcelebi, O. Ozunlu, J. J. Lukkien, “Increasing Reliability and Availability in
Smart Spaces: A Novel Architecture for Resource and Service Management”, IEEE Transac-
tions on Consumer Electronics, (TCE), Vol.58, Issue 3, August, 2012.

[4.1] A. Tolk, ‘‘Composable mission spaces and M&S repositories— Applicability of open standards,’’
in Proc. Simulat. Interoperability Workshop, Washington, DC, USA, pp. 1 – 14, 2004.

BIBLIOGRAPHY214

[4.2] S. Pantsar-Syväniemi, A. Purhonen, E. Ovaska, J. Kuusijärvi, and A. Evesti, ‘‘Situation-based and
self-adaptive applications for the smart environment,’’ J. Ambient Intell. Smart Environment,
vol. 4, no. 6, pp. 491 – 516, 2012.

[4.3] Barbara Hayes-Roth, “A blackboard architecture for control”, Artificial Intelligence, vol. 26,
Issue 3, Pages 251 – 321, 1985.

[5.1] R. Brown, World On the Edge: How to Prevent Environmental and Economic Collapse (New
York: W.W. Norton & Company, 2010.

[5.2] S. H. A. Begemann, G. J. van den Beld, A. D.Tenner, “Daylight, artificial light and people in an
office environment”, overview of visual and biological responses. International Journal of
Industrial Ergonomics; 20: pp. 231 – 239, 1997.

[5.3] Y.A.W. de Kort, K.C.H.J. Smolders, “Effects of dynamic lighting on office workers: first results of
a field study with monthly alternating settings”, Lighting Research and Technology, 42(3), pp.
345 – 360, 2010.

[5.4] R. Meier, “The Light. Global User Study on Perceived Lighting Quality in Offices (2015)” http://
www. zumtobel.web-erhebung.de/english/, last accessed: October 2023.

[5.5] S. Lee, I. Shin and N. Lee, “Development of Intelligent Space Lighting System,” 2019 Interna-
tional Conference on Information and Communication Technology Convergence (ICTC), Jeju
Island, Korea (South), pp. 1030 – 1032, 2019.

[5.6] J. Kolo, U. Dauda, “Development of a Simple Programmable Control Timer”, Leonardo Journal
of Sciences, 2008.

[5.7] D. Hossain, H. Alam, A. A. Rafi, K. Rakib and U. Hany, “Development of Microcontroller based
Light Following Emergency Evacuation Chair,” 2019 1st International Conference on Advances
in Science, Engineering and Robotics Technology (ICASERT), Dhaka, Bangladesh, pp. 1 – 5,
2019.

[5.8] J. Gao, F. Yang and X. Ma, “Indoor positioning system based on visible light communication with
gray-coded identification,” 2017 13th International Wireless Communications and Mobile
Computing Conference (IWCMC), Valencia, pp. 899-903, 2017.

[5.9] K.C.H.J. Smolders, Y.A.W. de Kort, P.J.M. Cluitmans, “A higher illuminance induces alertness
even during office hours : findings on subjective measures, task performance and heart rate
measures”, Physiology & Behavior, 107(1), pp. 7 – 16, 2012.

[5.10] K. Kaida, M. Takahashi, T. Haratani, Y. Otsuka, K. Fukasawa, A. Nakata A, “Indoor exposure to
natural bright light prevents afternoon sleepiness”, Sleep, 29(4), pp. 462 – 469, 2006.

[5.11] J. Uttley, S. Fotios and C. Cheal, “Using lighting to make pavements safer for pedestrians”
Experiencing Light, 2014.

[5.12] K. Kaida, M. Takahashi, Y. Otsuka, “A short nap and natural bright light exposure improve
positive mood status”, Industrial Health; 45(2), pp. 301 – 308, 2007.

[5.13] T. Morita, H. Tokura, “The influence of different wavelengths of light on human biological
rhythms”, Applied Human Science, 17, pp. 91 – 96, 1998.

[5.14] G. Chinazzo, J. Wienold, M. Andersen, “Daylight affects human thermal perception”, Sci Rep
9, 13690, https://doi.org/10.1038/s41598-019-48963-y, 2019.

[5.15] M. Ruger, M. C. M. Gordijn, D. G. M. Beersma, B. de Vries, S. Daan S, “Time-of-day-dependent
effects of bright light exposure on human psychophysiology”, Comparison of daytime, night
time exposure. American Journal of Physiology – Regulatory, Integrative and Comparative
Physiology; 290(5), pp. 1413 – 420, 2006.

[5.16] F. A. Scheer, R. M. Buijs, “Light affects morning salivary cortisol in humans”, Journal of Clinical
Endocrinical Metabolism; 84(9), pp. 3395 – 3398, 1999.

BIBLIOGRAPHY 215

[5.17] B. Wansink, K. Van Ittersum, “Fast Food restaurant Lighting and Music can Reduce Calorie
Intake and Increase Satisfaction. Psychological Reports”, Human Resources & Marketing,
111(1), pp. 1 – 5, 2012.

[5.18] Y. de Kort, W. IJsselsteijn, A. Haans, D. Lakens, I. Kalinauskaite and A. Schietecat, “De-escalate:
Defusing escalating behaviour through the use of interactive light scenarios”, International
Conference on the Effects of Light on Wellbeing, Experiencing Light, 2014.

[5.19] J. Martínez-Patiño, J. M. Lozano-García, I. A. Hernández-Robles, P. Sánchez-Razo and F. F.
Macias-Aguilera, “Cost for Decorative Lighting in Homes, Case of Study: Seasonal Lighting,”
2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Com-
munication Technologies (CHILECON), Valparaiso, Chile, pp. 1 – 4, 2019.

[5.20] J. Higuera, W. Hertog, M. Perálvarez, J. Polo and J. Carreras, “Smart Lighting System ISO/IEC/
IEEE 21451 Compatible,” in IEEE Sensors Journal, vol. 15, no. 5, pp. 2595 – 2602, May 2015.

[5.21] S. Kim, W. Kang and H. Ku, “Networked smart LED lighting system and its application us-
ing Bluetooth beacon communication,” 2016 IEEE International Conference on Consumer
Electronics-Asia (ICCE-Asia), Seoul, pp. 1 – 4, 2016.

[5.22] A. Prasetio, S. R. Akbar and B. Priyambadha, “Implementation of semantic system in the
smart home lights device based on agent,” 2017 International Conference on Sustainable
Information Engineering and Technology (SIET), Malang, pp. 93 – 99, 2017.

[5.23] J. Liu, W. Zhang, X. Chu, Y. Liu “Fuzzy logic controller for energy savings in a smart LED light-
ing system considering lighting comfort and daylight” Energy and Buildings, Elsevier Science
Direct, vol. 127 pp. 95 – 104, 2016.

[5.24] T. M. Lwin, A. Kumar, N. Xavier and S. K. Panda, “A smart lighting system using wireless sensor
actuator network,” 2017 Intelligent Systems Conference (IntelliSys), United Kingdom, pp.
217 – 220, 2017.

[5.25] F. Viani, A. Polo, P. Garofalo, N. Anselmi, M. Salucci and E. Giarola, “Evolutionary Optimization
Applied to Wireless Smart Lighting in Energy-Efficient Museums,” IEEE Sensors Journal, vol.
17, no. 5, pp. 1213 – 1214, 2017.

[5.26] V. Barve, “Smart lighting for smart cities,” 2017 IEEE Region 10 Symposium (TENSYMP), Co-
chin, pp. 1 – 5, 2017.

[5.27] N. Khatavkar, A. A. Naik and B. Kadam, “Energy efficient street light controller for smart cities,”
2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS),
Vellore, pp. 1 – 6, 2017.

[5.28] A. Kumar, A. Kajale, P. Kar, A. Shareef and S. K. Panda, “Location-aware smart lighting system
for individual visual comfort in buildings,” 2017 IEEE 6th Global Conference on Consumer
Electronics (GCCE), Nagoya, pp. 1 – 2, 2017.

[5.29] E. Mathews, S. S. Guclu, Q. Liu, T. Ozcelebi, J. J. Lukkien, “ The Internet of Lights: An Open
Reference Architecture and Implementation for Intelligent Solid State Lighting Systems”
Energies, 10, 1187, 2017.

[5.30] A. K. Sikder, A. Acar, H. Aksu, A. S. Uluagac, K. Akkaya and M. Conti, “IoT-enabled smart lighting
systems for smart cities,” 2018 IEEE 8th Annual Computing and Communication Workshop
and Conference (CCWC), Las Vegas, NV, pp. 639 – 645, 2018.

[5.31] C. A. G. Amarillo, C. L. C. García, J. A. C. Muñoz, and M. A. M. Moreno, “Smart Lumini: A
Smart Lighting System for Academic Environments Using IOT-Based Open-Source Hardware,”
Revista Facultad de Ingeniería, vol. 29 (54), e11060, 2020.

[5.32] M. Soheilian, G. Fischl and M. Aries, “Smart Lighting Application for Energy Saving and User
Well-Being in the Residential Environment”, Sustainability, 13(11), May, 2021.

BIBLIOGRAPHY216

[5.33] D. Gowda, A. Annepu, Ramesha, P. Kumar, and P. Singh, “IoT Enabled Smart Lighting System
for Smart Cities”, Journal of Physics: Conference Series, 2021.

[5.34] A. K. Putri, A. Pramono, D. M. Yasmin, B. A. Safitri, Y. S. Zaharani and F. F. Zebua, “The Smart
Lighting System in the Coworking Space’s Meeting Room,” 2022 International Conference on
Informatics, Multimedia, Cyber and Information System (ICIMCIS), Jakarta, Indonesia, pp.
534 – 538, 2022.

[5.35] M. Miki, T. Hiroyasu and K. Imazato, “Proposal for an intelligent lighting system and verifica-
tion of control method effectiveness” IEEE Cybernetics and Intelligent Systems, vol.1, pp.520
– 525, Dec. 2004.

[5.36] Y.-J. Wen and A.M. Agogino, “Wireless networked lighting systems for optimizing energy sav-
ings and user satisfaction” in Proc. of IEEE Wireless Hive Networks Conf., Austin, Texas, USA,
, pp.1 – 7, Aug. 2008.

[5.37] M.-S. Pan, L.-W. Yeh, Y.-A. Chen, Y.-H. Lin and Y.-C. Tseng, “A WSN-based intelligent light control
system considering user activities and profiles,” IEEE Sensors Journal, vol. 8, issue 10, pp.
1710 – 1721, Oct. 2008.

[5.38] M. Richards and D. Carter, “Good lighting with less energy: Where next?”, Lighting Research
Technology, vol.41, 285 – 286, 2009.

[5.39] T. M. Goodman, “Measurement and specification of lighting: A look at the future,” Lighting
Research and Technology, vol.41, no.3, pp.229 – 243, 2009.

[5.40] H. Yang, J. W. M. Bergmans and T. C.W. Schenk, “Illumination sensing in LED lighting systems
based on frequency-division multiplexing” IEEE Tans. On Signal Processing, vol.57, no.11, pp
4269 – 4281, Nov. 2009.

[5.41] H. Yang, J. W.M. Bergmans, T.C.W. Schenk and J.M.G. Linnartz, “Uniform: illumination ren-
dering using an array of LEDs: A signal processing perspective”, IEEE Transactions on Signal
Processing, vol.57,no.3, pp.1044 – 1057, Mar., 2009.

[5.42] D. M. Han and J. H. Lim, “Smart home energy management system using IEEE 802.15.4 and
ZigBee”, IEEE Trans. on Consumer Electronics, vol.56, issue 3, pp.1403 – 1410, Aug. 2010.

[5.43] Y. J. Wen and A.M. Agogino, “Control of wireless-networked lighting in open-plan offices”,
Lighting Research and Technology, DOI:10.1177/1477153510382954, Nov. 2010.

[5.44] E. M. Guttsait, “Analysis of LED modules for local illumination,” Journal of Communications
Technology and Electronics, vol. 52, no. 12, pp. 1377 – 1395, 2007.

[5.45] A. Ryer, “Light measurement handbook.” Int. Lights Inc, pp.25, 1998.
[5.46] J. Nipkow and E. Bush, “Stand-by consumption of household appliances,” Swiss Agency for

Efficient Energy Use S.A.F.E. on behalf of the Swiss Federal Office of Energy SFOE, Berne 2003.
[6.1] L. F. Rahman, T. Ozcelebi, and J. J. Lukkien, “Understanding IoT Systems: A Life Cycle Approach”,

Procedia Computer Science, Volume 130, pp. 1057 – 1062, 2018.
[7.1] S. Belaidouni and M. Miraoui, “Machine Learning Technologies in Smart Spaces”, The Tenth

International Conference on Mobile Ubiquitous Computing, Systems, Services and Technolo-
gies”, UBICOMM, Venice, Italy, pp. 52 – 55, 2016.

[7.2] M. Babar and F. Arif, “Smart urban planning using big data analytics based internet of things”,
UbiComp’17, ACM International Joint Conference on Pervasive and Ubiquitous Computing
and International Symposium on Wearable Computers, pages 397 – 402, Hawaii, USA, Sep-
tember 11 - 15, 2017.

[7.3] S. H. Kaisler, W. Money and S. Cohen, “Smart Objects: An Active Big Data Approach”, 51st
Hawaii International Conference on System Sciences, pp. 809 – 818, USA, 2018.

[7.4] D. Cook, “Learning Setting-Generalized Activity Models for Smart Spaces,” in IEEE Intelligent
Systems, vol. 27, no. 1, pp. 32 – 38, Jan.-Feb. 2012.

BIBLIOGRAPHY 217

[7.5] A. S. Vdovenko, O. I. Bogoiavlenskaia and D. G. Korzun, “Study of active subscription control
parameters in large-scale smart spaces,” 2017 21st Conference of Open Innovations Associa-
tion (FRUCT), Helsinki, pp. 344 – 350, 2017.

[A.1] F. Garzotto and M. Gelsomini, “Magic Room: A Smart Space for Children with Neurodevelop-
mental Disorder,” in IEEE Pervasive Computing, vol. 17, no. 1, pp. 38 – 48, Jan.-Mar. 2018.

[A.2] B. J. J. van der Vlist, G. Niezen, J. Hu and L. M. G. Feijs, “Interaction primitives: Describing inter-
action capabilities of Smart Objects in ubiquitous computing environments,” IEEE Africon’11,
Victoria Falls, Zambia, pp. 1 – 6, 2011.

[A.3] G. Niezen, B. J.J. van der Vlist, S. Bhardwaj and T. Ozcelebi, “Performance Evaluation of a
Semantic Smart Space Deployment”, IEEE International Conference on Pervasive Computing
and Communications Workshops, Lugano, Switzerland, pp. 835 – 841, 2012.

CURRICULUM VITAE218

Curriculum Vitae

Sachin Bhardwaj, a native of Delhi, India, laid the foundation for his academic journey by
obtaining a bachelor’s degree in computer science and engineering from Dr. A.P.J. Abdul
Kalam Technical University (formerly Uttar Pradesh Technical University), Uttar Pradesh,
India in August 2004. Building on his educational background, Sachin pursued a master’s
degree in ubiquitous and network engineering at Dongseo University, South Korea,
completing the program in 2007. His master’s thesis delved into the topic of “A Fusion
of Ubiquitous Healthcare Monitoring Using ECG and Accelerometer Sensors for Elderly
Persons at Home.”

In 2009, Sachin embarked on a Ph.D. program within the Department of Mathematics
and Computer Science at Eindhoven University of Technology, The Netherlands, under
the guidance of Prof. dr. J.J. Lukkien and dr. T. Ozcelebi. The comprehensive Ph.D. journey
unfolded in two distinct phases. The initial phase, from April 2009 to March 2013, was
funded by the SOFIA project. The subsequent phase, spanning from March 2019 to August
2021, received support from the SCOTT and OPTILIGHT projects. The outcomes of his
extensive research efforts are presented in this dissertation.

Presently, Sachin contributes his expertise as a lecturer at Fontys University of Applied Sci-
ences, specifically at Fontys Hogeschool ICT in Eindhoven, The Netherlands. His academic
and research pursuits continue to enrich the field of computer science and technology.

	Lege pagina
	Lege pagina

