

Terahertz Technology and Hype

A THz Killer application?

A dormant hope

- THz technology,

"should have a novel, innovative use with a business case strong enough to bring it into the industrial mainstream"

Suggestions / proof-of-concepts

- Medicine
- Food & agriculture

Suggestions / proof-of-concepts

- Medicine
- Food & agriculture

Lab demonstrations

- THz communication
- Art inspection

Suggestions / proof-of-concepts

- Medicine
- Food & agriculture

Lab demonstrations

- THz communication
- Art inspection

Field demonstrators / prototypes

- Semiconductor fault detection
- Thickness measurements
 - Coatings, sheets, etc.

Terahertz-based early phase products

Coating sensor for the automotive industry

... a 2010 editorial quote in Nature Photonics

Why THz?

Feature	Unique benefit
Low photon energy	Not sufficient to make chemical changes
Sensitivity to water	Polar water is extremely absorptive, causing sensing benefits and challenges
Time-domain data aquisition	Phase and amplitude information: sensing thickness and spectral features
Spectral fingerprints	Characteristic resonances: characterizing materials

Why no THz?

Feature
Expensive (> 100k)
Unique benefit can often be circumvented with a different technology
Immature technological status
Bulky form factor

Why are there so few mature applications?

Medicine

Medical know-how is required, water is omnipresent, regulations

Agriculture

 Most studies are performed on not-realistic problem statements, sensing moisture remains academic

Communication

 Lacking problem description and goal of THz communication, as well as small/cheap devices

Food industries

Mainly ideas exist that are compatible with small/cheap devices

Non-destructive testing

- Thickness determination most mature, price is an issue

- Dealing with water
- Lack of domain know-how
- Small/cheap devices required
- Signal processing
- TRL gap (3-5) development lacks

A THz Killer application?

A dormant hope

- THz technology,

"should have a novel, innovative use with a business case strong enough to bring it into the industrial mainstream"

How to bring THz mainstream

- Combine state-of-the-art sensors & be cheaper
- Outperform the state-of-the-art
- Novel application with an innovative use

Car paint shop

Why THz?

Feature

Low photon energy

Only technology that can measure wet paint

Sensitive to water

Time-domain aquisition

Form factor and price are no issue

Car paint shop

- Only on few cars
- Error on curved surfaces
- No multilayer distinction
- No wet paint

Development of a THz-based paint analyzer (TRL 1-4)

- Stage 1: Light-matter interaction
- Stage 2: Industrially/societally relevant parameters
- Stage 3: Signal processing to obtain parameters with desired accuracy

Light-matter interaction

Industrially / societally relevant parameters

 Difficult to understand from outside the industry

> What the academic researcher wants What the paint shop manager wants What the paint shop technician wants What the customer wants What actually needs to be done

- Even inside information may scatter a lot
- Doing field work is essential

Model-based signal processing

Measurement design

- Reflection setup
- In ambient air
- In presence of humidity

Analysis model

$$E(\omega) = E_0 T_1 T_2 e^{i\left(\frac{n\omega}{c}\right)d} \times \dots$$
$$\left(1 + R_2^2 e^{2i\left(\frac{n\omega}{c}\right)d} + \dots\right)$$

Fresnel equations

- For multilayer system
- Include dispersion of $n(\omega)$

Fitting procedure

 $E_r^{model}(\omega)$ matched to $E_r^{exp}(\omega)$

- Least-square algorithm
- Obtains unique set of $n(\omega)$ and d

THz radiation probing drying coatings . . . universally for all automotive coatings

 $d, \epsilon(\omega)$

TU/e

Validation test procedure and benchmark techniques

Microscope thickness

- Cutting paint sample (laser or mechanical)
- Embedding in epoxy
- Drying epoxy and polishing surface

THz thickness

- measurements with paint analyzer
- using predetermined optical properties

Benchmark thickness

- Fischer, Elcometer, Defelsko

Overall performance of a THz paint analyzer

Outlook

Determination of leaf wetness for plant illness prediction

Hybrid analysis: physical models reinforcing data-based signal processing

Summary

The road to THz applications with societal relevance

- Novel application with an innovative use
- Have domain know-how
- Deal with inherent obstacles (like costs, form factor, etc.)
- For sensing: signal processing makes the difference

