
 Eindhoven University of Technology

MASTER

Learning to improve evolutionary computation for a Warehouse Design and Control Problem

Coppens, Remco H.M.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/a88a37a4-a4c8-4101-b4bb-3c5d5f74d257

Learning to improve evolutionary computation for

a Warehouse Design and Control Problem

Remco Coppens (1446215)

Department of Industrial Engineering and Innovation Sciences
Information System Group

Supervisors:
Dr. Y. (Yingqian) Zhang - TU/e
Dr. Ir. L. (Laurens) Bliek - TU/e

Ir. B. (Berend) Steenhuisen - Nobleo Manufacturing

In partial fulfillment of the requirements for the degree Master of science in Operations
Management and Logistics

Eindhoven, March 2022

Abstract

Simultaneous optimization of warehouse layout design and control policies leads to super-
ior results as opposed to independently optimizing its constituent sub-problems. The prob-
lem of simultaneous optimization is referred to as the Warehouse Design and Control Prob-
lem (WDCP). The proposed solution methods consists of a Multi Objective Evolutionary
Algorithm (MOEA) with Adaptive Operator Selection (AOS), implemented through Deep
Reinforcement Learning (DRL). The MOEA, more specifically the Non-dominated Sorting
Genetic Algorithm III (NSGA-III), conducts a guided search through the space of available
solutions. Through incremental improvements it will eventually converge to an approxima-
tion of the so-called Pareto frontier, which is a set containing all optimal solutions. Despite
the high performance of NSGA-III, the downside of the algorithm is the high computational
cost incurred. Especially for highly dimensional optimization problem with expensive eval-
uation of solutions, as is the WDCP central to this research, the problem quickly becomes
intractable. The effect of expensive evaluations can be mitigated by minimizing the num-
ber of evaluations needed. This can be achieved by implementing AOS in balancing the
exploration-exploitation dilemma. This dilemma concerns the trade-off between using known
well-performing solutions to propose new solutions, i.e. exploitation, and looking into entirely
new and unknown solutions, i.e. exploration. Too much exploitation and the algorithm will
converge to local optima, where too much exploration will result in an unstable model that
will converge either very slowly or never at all. Besides the benefit of dynamically setting
the hyperparameters dictating this dilemma, implementing AOS also prevents the need to
optimize the hyperparameters of the used algorithm beforehand. Hyperparameter optimiza-
tion is an expensive process, especially for the type of problems this thesis focuses on. DRL
shows a suitable method for AOS, due to it being a framework for sequential decision making.
Implementing DRL as the AOS within NSGA-III increased performance significantly, both in
terms of convergence speed and solution quality.

ii

Executive summary

This summary will suffice as a brief overview of the executed research project. It will describe
the research problem, the research approach, the proposed solution methods, the results, con-
clusions and recommendations.

Research problem
In collaboration with Nobleo Manufacturing, hereinafter referred to as Nobleo, research is
conducted into the Warehouse Design and Control Problem (WDCP). The WDCP concerns
simultaneous optimization of warehouse layout design and the underlying control policies.
More specifically, the research focuses on a collective solution to the warehouse layout design
problem and both the resource and product allocation problems. Throughout literature, and
often in practice, these problems are optimized independently. Often leading to sub-optimal
results when collectively implemented.

The environment in which this research intends to solve this problem concerns the ware-
house of a large plastic manufacturer, which is a client of Nobleo. Their current operations
suffer from inefficient storage utilization, resulting in the inability to store all of their products.
Through introduction of a new type of storage, Nobleo was requested to redesign the ware-
house. Using advanced simulation techniques Nobleo was able to replicate the current ware-
house and propose a new and improved warehouse layout design. However, the process of
creating this design was cumbersome, as it was done through trial and error with no guarantee
of finding the optimal configuration. Nobleo desires a model that enables finding an optimal
configuration using a low computational budget.

The performance of a configuration can be described using three objective values. The
main objective concerns the tardiness of outbound trucks, which summarizes the performance
of internal logistics. Also the incurred resource cost is measured, enabling the model to reach
optimal performance while minimizing the cost incurred. Finally the number of unplaceable
products is measured, focusing on the initial problem of the client of Nobleo.

Research approach
This thesis aims to create an intelligent model for solving the WDCP. The model should
be generally applicable, for current and future warehouse-related optimization problems ex-
ecuted by Nobleo. Besides solution quality also convergence speed plays a considerable role
in development of this model. As simulations often are relatively slow, testing a large amount
of configurations becomes intractable fairly quickly. The WDCP consists of a collection of
underlying sub-problems, which often have solutions using Evolutionary Algorithms. To min-
imize the computation time of the optimization model, a process called Adaptive Operator

iii

Selection (AOS) will be applied. Literature shows a salient method to implement AOS is Deep
Reinforcement Learning (DRL). These findings led to the following main research question,
which is central to this master thesis:

How can a Multi-objective Evolutionary Algorithm and Deep Reinforcement Learning be
combined to simultaneously optimize warehouse layout design and control policies using a

low computational budget ?

This research question contains two algorithmic definitions, namely Multi-objective Evol-
utionary Algorithm (MOEA) and Deep Reinforcement Learning (DRL). The MOEA concerns
a branch of so-called Pareto dominated optimization methods, based upon the phenomenon
of evolution as found in nature. Through incrementally improving a set of solutions, this
algorithm converges towards an approximation of the set of globally optimal solutions, i.e.
the actual Pareto front, which is unknown. This approximated set of solutions is presented to
the decision maker, in this case Nobleo, who eventually decides which solutions are preferred
for further evaluation and/or implementation. Although powerful, a MOEA is often charac-
terized as a computationally expensive algorithm due to its need to evaluate a considerable
amount of potential solutions. To alleviate this cost DRL will be implemented. DRL is able
to learn to adapt the behavior of the MOEA in such a way that it will need less evaluations to
get to a good approximation of the Pareto front. Through implementing DRL into a MOEA
an increase in convergence speed can be attained, without decreasing the quality of the found
set of solutions.

Solution methods
As previously discussed the solution method consists of two parts, an optimization algorithm
and a way to minimize the computational budget. All experimentation and solution design
testing is conducted on a Python replication of the actual simulation of Nobleo. The reasons
to replicate the simulation are two-fold, namely to reduce computation time and to increase
robustness of the simulation through enabling the model to handle extreme cases. The rep-
licated simulation model only contains necessary computations, uses smart lookup tables and
allows for parallel computation. Evaluation of a warehouse configuration consists of 40 hours
in simulation time, for which the computation time is decreased from 30 minutes to on average
4 seconds. However, this decrease in computation time comes at the cost of interpretability.

The implemented MOEA concerns the Non-dominated Sorting Genetic Algorithm III
(NSGA-III). This algorithm starts by initializing a given number of configurations to be
tested, a so-called population of individuals. Based on the evaluation and composition of the
current population the algorithm proposes a new population, called the offspring. The off-
spring is created through applying two operators, namely crossover and mutation. Crossover
uses two individuals of the current population, called parents, to create two new individuals.
By combining the composition of both parents it is intended to create offspring that is superior
in performance. The process of crossover is repeated on different parent combinations until
a set of offspring is created equal in size to the current population. Thereafter the offspring
is taken through mutation. With a given probability, mutation changes the values of these
individuals (sub-)randomly. Finally both the population and offspring are taken through a
selection operator, which results in the best performing individuals comprising the new pop-

iv

ulation and removal of less-performing individuals.

To perform well, the NSGA-III needs to strike a fair balance between exploration and
exploitation. Exploitation concerns utilization of the currently well-performing individuals
and is often assigned to the crossover operator. Exploration, on the other hand, involves
introducing completely new parts of an individual. The intended purpose of this is to minim-
ize the probability of converging to sub-optimal solutions and thus missing potential optimal
solutions in the process. This behavior is mostly related to the mutation operator. Too much
emphasis on exploitation and the algorithm will converge to local optima, where too much
emphasis on exploration will lead to prolonged time needed to converge or never converging at
all. Using NSGA-III the exploration-exploitation trade-off is approached through hyperpara-
meter optimization, executed before actually running the algorithm. However this approach
has two main disadvantages, for one it requires a time-consuming process of finding optimal
parameters which are not generalizable. Secondly, during the actual optimization process the
parameters dictating the exploration-exploitation trade-off are not adjusted. By applying Ad-
aptive Operator Selection (AOS) these parameters are adjusted throughout the generational
optimization process, showing superior results throughout literature. Besides, AOS in itself
can be generalizable if the algorithm used is designed to not take problem specific information
into account.

The solution method used to implement AOS in the NSGA-III concerns Deep Reinforce-
ment Learning (DRL). As a sequential decision making framework, DRL is able to adjust the
operator settings based on the current progress of optimization. The DRL algorithm used
concerns Deep Q-networks, which is beneficial due to its sample efficiency and robustness
attained through implementation of experience replay and a frozen target network respect-
ively. To remain generalizable, the state representation only contains information describing
the generational progress, population performance and the performance of the approximated
Pareto front. The action space concerns the values for the mutation operator. These values
concern the the mutation distribution parameter, describing the magnitude of change incurred
by mutation, and the independent mutation probability, which implies the probability of a
single value to be mutated. For the reward used to train the agent different functions are
tested.

All Python code written and used throughout this research can be found on Github, using
the following link: https://github.com/RemcoCoppens/Master Thesis Code.

Results
The first three experiments are focused on the optimization model, being the NSGA-III. The
first experiment shows the performance of the NSGA-III to be superior to its predecessor, the
NSGA-II, and the Speed-constrained Multi-objective Particle Swarm Optimization (SMPSO)
algorithm. The second experiment concerned Bayesian hyperparameter optimization, res-
ulting in hyperparameter settings that increased performance for both the crossover and
mutation operators. Besides these hyperparameter values, this method also returned prom-
ising regions for these hyperparameters, together with their feature importances. The feature
importances showed the value set for the crossover parameter to be of little to no effect on the
performance. This is, most probably, due to the non-convexity of the WDCP. On the other
hand, the mutation parameters showed high importance, emphasizing a predisposition of the

v

NSGA-III on the WDCP towards exploration. Finally a sensitivity analysis of the optimized
NSGA-III showed the algorithm to be robust in extreme scenarios, maintaining its ability to
converge to an approximation of the Pareto front.

The final two experiments revolved around Adaptive Operator Selection (AOS) using
Deep Reinforcement Learning (DRL). Experiment four concerned testing different reward
functions for learning an agent and eventually learning a DQN agent using the best per-
forming function. These experiments and learning are all executed on a benchmark problem
named DTLZ2. The reason for this concerns computation time, as a lot of evaluations are
needed to be executed for an agent to learn a well-performing behavioral policy. The best
performing reward function concerns an episodic reward, calculated by an overall sum of all
hypervolume indicator values obtained. This metric measures the area under the curve for
the hypervolume indicator, which takes both convergence speed and solution quality into ac-
count. After completing a successful learning trajectory, the behavioral policy of the agent
is analyzed. Showing a surprising predisposition to fairly radical exploration. Which again
shows the tendency of the NSGA-III algorithm to explore.

Eventually the agent is taken out of the train environment and placed on the actual prob-
lem central to this research. On the WDCP the agent induced NSGA-III showed superior
performance compared to the optimized NSGA-III, both on solution quality and convergence
speed. The maximum value found for the hypervolume indicator was 0.92 for the agent and
0.89 for the optimized NSGA-III. With regards to convergence speed, the area under the
curve increased from 174 for the optimized NSGA-III to 181 for the agent induced NSGA-III.
Additionally, the learned policy is also tested against a NSGA-III implementation guided by
a randomly initialized DRL agent. The performance of the learned agent is superior to the
random agent, indicating the value of the learned policy.

Again the behavior of the agent is analyzed, showing a different behavioral pattern over
consecutive generations as opposed to the DTLZ2 benchmark. This difference indicates the
inability to replace the DRL agent with a simplistic set of rules and thus shows the need
for sequential decision making. Thereafter the sensitivity analysis is replicated. In three of
the four experiments executed the learned agent significantly outperformed the optimized
NSGA-III. For one of the experiments the performance of the agent induced NSGA-III and
the optimized NSGA-III was identical. A possible explanation for this can be the fact that the
optimized NSGA-III already attained the prospected maximum performance possible. These
analyses show the agent induced NSGA-III to be robust, as it is able to maintain increased
performance despite facing extreme scenarios.

Conclusion and recommendations
Conclusively, by combining NSGA-III with a Deep Q-Networks (DQN) agent simultaneous
optimization of warehouse layout design and control policies becomes possible using a de-
creased computational budget. The NSGA-III guided by the learned agent shows superior
performance compared to the optimized NSGA-III. This superiority is not only seen in the
speed of convergence, but it also enables the algorithm to find a better performing approx-
imation of the actual Pareto optimal set. Comparing the behavior of the agent on different
problems indicates the inability to replace the agent with a simplistic set of rules. Emphasiz-
ing the superiority of DRL over other AOS methods for this purpose. Besides this increased

vi

performance, the entire proposed framework shows to be generalizable as well. This can be
seen in the framework retaining its performance when it was taken from its training environ-
ment to the actual WDCP environment.

Future researchers, and potentially practitioners, is recommended to extend the research
on different aspects. First, additional research into model volatility is required for optimal
implementation. To ensure convergence, still a lot of evaluations are needed, partly due to
the volatility in performance over several runs. Potential benefits with regards to volatility
can be attained through optimization of the performance of the framework to be executed
on either the optimization algorithm or the DRL agent or both. An example of potential
improvements of the optimization algorithm include investigation into different population
sizes. Secondly, additional research into model biases is required. The results showed a small
inclination towards the second objective value, potentially as a result to the set upper and
lower bounds. Mitigating the effect, or even getting rid of, the upper and lower bounds would
lower the bias of the framework and thus improve results. Finally additional research into
the found Pareto solutions is recommended for practitioners. This research showed a purely
academical approach, focusing on model quality while disregarding the actual meaning of the
solutions. Before implementation of the framework it is perceived valuable to look into the
proposed solutions and potentially adjust the hyperparameters of the model to shift it to
focus on what is desired.

vii

Preface

This report is written as the partial fulfillment of the requirements to obtain the degree Master
of Science in Operations Management and Logistics at Eindhoven University of Technology.
It describes my research conducted over the past seven months on simultaneous optimization
of warehouse layout design and control policies. Execution of the research is done in collab-
oration with Nobleo Manufacturing.

Through writing this I would like to express my deepest appreciation towards the people
that guided and supported me throughout this master thesis project. In particular, I want to
thank Yingqian Zhang. Despite it being an extraordinary period to be enrolled in a master
study, due to the pandemic, I knew I could reach out to you and receive guidance if needed.
Besides guidance, you let me free to shape my studies in the direction I desired them to go
in, which I am deeply grateful for. I would also like to thank Laurens Bliek for the concise
guidance and help with finding relevant literature. In addition I would like to thank Berend
Steenhuisen, my company supervisor. Besides being very enjoyable to work with, our weekly
meetings ensured that our vision about the direction of this research stayed aligned and the
operational knowledge you shared helped me to solve all issues faced throughout the research.

I want to give a special thank you to Robbert Reijnen, which personally felt like an
additional supervisor from time to time. Despite his own busy schedule he always made time
to take my call and discuss potential solutions to my problems. Finally, I want to show
my appreciation to my close friends, family and girlfriend for helping me through this often
lonely process of working from home. Time spend with you allowed me to charge my personal
battery, which enabled me to stay motivated and maintain a high level of performance when
needed.

Remco Coppens
Eindhoven, March 2022

viii

Contents

Contents ix

List of Figures x

List of Tables 1

1 Introduction 2
1.1 Problem context . 2
1.2 Research questions . 5

1.2.1 Outline . 6
1.2.2 Contributions . 6

2 Problem formulation 8
2.1 Operational algorithms . 8
2.2 Decision variables . 9
2.3 Problem definition . 10

3 Literature review 12
3.1 Warehouse design and control problem . 12

3.1.1 Warehouse layout design problem . 13
3.1.2 Resource allocation problem . 13
3.1.3 Product allocation problem . 13
3.1.4 Simultaneous Optimization . 14

3.2 Bio-inspired metaheuristics . 14
3.2.1 Multi-objective optimization . 15
3.2.2 Pareto dominated algorithms . 17
3.2.3 Adaptive Operator Selection . 18

3.3 Reinforcement learning . 20
3.3.1 Deep learning . 21
3.3.2 Deep reinforcement learning . 21
3.3.3 Applications in bio-inspired metaheuristics 22
3.3.4 Deep Q-Network algorithms . 22

3.4 Conclusion and position in literature . 23
3.4.1 Novel solution method to the warehouse design and control problem . 23
3.4.2 Application of Deep Q-Networks in NSGA-III 24

ix

4 Solution methods 25
4.1 Simulation environment . 25

4.1.1 Python replication . 25
4.1.2 System configuration encoding . 27
4.1.3 Objective values . 27

4.2 Optimization algorithm . 29
4.2.1 Crossover . 29
4.2.2 Mutation . 32
4.2.3 Reference-based Selection . 32

4.3 Deep Reinforcement Learning agent . 34
4.3.1 State representation . 35
4.3.2 Action space . 36
4.3.3 Reward function . 37
4.3.4 Neural architecture . 37

4.4 Solution framework . 39

5 Experimental setup 41
5.1 Experiment 1: Benchmark performance NSGA-III 42
5.2 Experiment 2: Optimization of Hyperparameter 43
5.3 Experiment 3: Sensitivity analysis . 44
5.4 Experiment 4: Learning DRL agent on DTLZ2 problem 45
5.5 Experiment 5: Evaluating agent performance on the Warehouse Design and

Control Problem . 46

6 Results 48
6.1 Experiment 1: Benchmark performance NSGA-III 48
6.2 Experiment 2: Hyperparameter optimization 50
6.3 Experiment 3: Sensitivity Analysis . 51

6.3.1 Increased amount and size of trucks 52
6.3.2 Inconsistent arrival of trucks . 53
6.3.3 Increased product portfolio . 54

6.4 Experiment 4: Deep Reinforcement Learning on test problem 56
6.4.1 Testing reward functions . 56
6.4.2 Performance comparison . 57
6.4.3 Policy evaluation . 58

6.5 Experiment 5: Evaluating agent performance on actual problem 61
6.5.1 The learned agent on the Warehouse Design and Control Problem . . 61
6.5.2 Policy evaluation on the Warehouse Design and Control Problem . . . 63
6.5.3 Sensitivity of the learned agent . 65

7 Conclusions and recommendations 69
7.1 Conclusion . 69
7.2 Limitations and recommendations . 71

Bibliography 73

A Product flow in warehouse operations 79

x

B Discrete Event Simulation 81
B.1 Event 1: Inbound truck arrival . 83
B.2 Event 2: Deload truck complete . 84
B.3 Event 3: Quality check done . 85
B.4 Event 4: Product to storage complete . 86
B.5 Event 5: Outbound order arrival . 87
B.6 Event 6: Outbound truck arrival . 88
B.7 Event 7: Product to consolidation . 89
B.8 Event 8: Load truck complete . 90

xi

List of Figures

1.1 Block storage . 3
1.2 B2B storage . 3
1.3 Shuttle storage . 3
1.4 Subdivision Research Questions . 6

3.1 Decision and objective space (adjusted, original retrieved from: Deb (2014)) . 15
3.2 Methods multi-objective trade-off (retrieved from: Cui et al. (2017)) 16
3.3 Example hypervolume indicator (retrieved from: Guerreiro et al. (2020)) . . . 18
3.4 General procedure adaptive operator selection in evolutionary algorithm (re-

trieved from: Tian et al. (2022)) . 19
3.5 Reinforcement learning framework (retrieved from: Sutton and Barto (2018)) 20
3.6 Feed forward neural network (retrieved from: Sutton and Barto (2018)) . . . 21

4.1 Flowchart of Discrete Event Simulation (DES) functionality 26
4.2 Encoding format of a warehouse configuration 27
4.3 General process Genetic Algorithm (GA) . 29
4.4 NSGA-II: Crowding distance selection . 33
4.5 NSGA-III: Reference-based selection . 33
4.6 Neural architecture Dueling DQN agent . 39
4.7 Solution framework . 40

6.1 Benchmark NSGA-III against NSGA-II and SMPSO on the WDCP 49
6.2 NSGA-III hyperparameter optimization - Contour plot 50
6.3 NSGA-III hyperparameter optimization - Feature importance 51
6.4 Increased amount and size of trucks - Hypervolume indicator 52
6.5 Increased amount and size of trucks - Average Pareto set performance 53
6.6 Inconsistent truck arrivals - Hypervolume indicator 53
6.7 Inconsistent truck arrivals - Average Pareto set performance 54
6.8 Increased product portfolio - Hypervolume indicator 55
6.9 Increased product portfolio - Average Pareto set performance 55
6.10 Performance benchmark DRL agent on DTLZ2 58
6.11 Policy visualization for the DTLZ2 benchmark problem over consecutive gen-

erations . 59
6.12 Visualization of state representation values for the DTLZ2 over consecutive

generations . 60
6.13 Decision Tree showing high level explanation of behavioral policy 61
6.14 Performance benchmark DRL agent on the WDCP 62

xii

6.15 Close up of the first 50 generations of DRL agent performance on the WDCP 63
6.16 Policy visualization for the WDCP over consecutive generations) 64
6.17 Visualization of state representation values over consecutive generations . . . 64
6.18 Increased amount and size of trucks - Hypervolume indicator 65
6.19 Increased amount and size of trucks - Average Pareto set performance 66
6.20 Inconsistent truck arrivals - Hypervolume indicator 66
6.21 Inconsistent truck arrivals - Average Pareto set performance 67
6.22 Increased product portfolio - Hypervolume indicator 68
6.23 Increased product portfolio - Average Pareto set performance 68

A.1 Visualization of the process flow . 80

B.1 Flowchart DES- High level basis model . 82
B.2 Flowchart DES - Inbound truck arrival event 83
B.3 Flowchart DES - Deload (inbound) truck complete event 84
B.4 Flowchart DES - Quality check complete event 85
B.5 Flowchart DES - Product to storage complete event 86
B.6 Flowchart DES - Outbound order arrival event 87
B.7 Flowchart DES - Outbound truck arrival event 88
B.8 Flowchart DES - Product to consolidation complete event 89
B.9 Flowchart DES - Load (outbound) truck complete event 90

xiii

List of Tables

1.1 Advantages and disadvantages of different storage functional areas 3
1.2 Capabilities of different resource types . 4

2.1 Formal definition of the decision variables . 10

4.1 Potential action space Deep Reinforcement Learning (DRL) agent 36
4.2 Potential reward functions Deep Reinforcement Learning (DRL) agent 38

5.1 Interrelations experimental setup . 41
5.2 Hyperparameter settings experiment 1 . 43
5.3 Optuna hyperparameter ranges . 43
5.4 Hyperparameter settings DRL Agent . 46

6.1 Performance different reward functions . 56
6.2 Categorization action space DRL agent . 60

1

Chapter 1

Introduction

This paper will elaborate on the research conducted at Nobleo Manufacturing, hereinafter re-
ferred to as Nobleo. Nobleo was founded in Eindhoven in 2012 with the purpose of delivering
specialized service on industrialization issues. Demand for their service rose quickly, mainly
in the Automotive and High Tech Systems sectors. As a consultancy company, Nobleo focuses
on industrialization and manufacturing processes. By helping to produce smarter, faster and
better, the clients of Nobleo become and stay competitive in their market(s). By continuously
delivering upon promised results, their clientele grew nationally and internationally [Nobleo
(2021)].

All employees of Nobleo are member of one or more competence teams. A competence
team is guided by a program lead, who is responsible for competence development within their
team. Collaboration between these competence teams enables Nobleo to support companies
in every phase of their industrialization transition. The thesis will be executed from within
the Manufacturing Intelligence competence team, supervised by program lead B. Steenhuisen.

1.1 Problem context

The thesis project concerns the storage of plastic in a warehouse of a large chemical manufac-
turer. The warehouse has 24 truck docks for which there are 28 consolidation areas available.
Through these areas loading and unloading of trucks occurs. In these areas all products
are collected, after which inbound products are moved to storage locations in the warehouse
and outbound products are moved to an outbound truck for transportation. Daily in- and
outbound at the warehouse consists of on average 95 trucks. With 24 docks available, the
28 consolidation areas need to be turned-over 3-4 times a day. Currently insufficient storage
space is available to store all of the incoming products in the warehouse. The main reason for
this is inefficient storage utilization. Nobleo is asked to redesign the warehouse to increase
storage space utilization and overall efficiency of warehouse operations.

The warehouse has three different types of storage, namely block, back-to-back (B2B)
and shuttle storage. A visualization of these types of storage can be found in Figure 1.1, 1.2
and 1.3. In the current situation mostly block storage is used. This storage is characterized
by having a lane only contain a single type of product, which can be stacked on top and in
front of one another. For high volume products this method is most space efficient, as no

2

Figure 1.1: Block storage Figure 1.2: B2B storage Figure 1.3: Shuttle storage

driving lanes have to be present in between the products. The complete opposite is B2B
storage. In B2B storage a driving lane is present between every product, where racks allow
for placement of different products on top of one another. The benefit of this method is that
it ensures availability of storage locations, as it does not reserve storage spaces for identical
products as block storage does. However, due to the need for driving lanes between every
product, the downside is the loss of efficiency in storage space utilization. The third storage
type, shuttle storage, combines both efficient storage space utilization with storage space
availability. Using a mole, i.e. a small Automated Guided Vehicle (AGV), products can be
placed in front of one another on the same level of a metallic shuttle frame. Leaving the
possibility of storing different types of products on top of each other. Although promising,
implementing shuttle storage involves incurring high investment and operating costs. The
advantages and disadvantages of the three types of storage are summarized in Table 1.1.

Advantages Disadvantages

Block storage High storage space utilization. Low storage space availability.
Back-to-back storage High storage space availability. Low storage space utilization.
Shuttle storage High storage space utilization and availability. High investment/operating cost.

Table 1.1: Advantages and disadvantages of different storage functional areas

Besides storage type, also storage locations also differ in their storage dimensions. These
dimensions vary in width and height. For block, back-to-back (B2B) and shuttle storage
there are two, nine and eight different width-height combinations respectively. Products can
be placed in storage locations equal or larger in size than the product dimensions. However,
placing smaller products in larger storage areas results in inefficiency of storage space utiliz-
ation. Decreasing the dimensions of storage locations will enable more products to be stored,
but limits the number of available storage locations for larger products.

Internal transportation of products is currently executed using three different types of
resources, namely: forklifts, reach trucks, and moles. Only forklifts are able to handle loading
and unloading of out- and inbound trucks respectively. Transportation of products towards
or from block storage can be executed by forklifts as well as reach trucks. However, transport-
ation towards and from B2B and shuttle storage can only be executed by reach trucks. For
shuttle storage a reach truck needs to have a mole at its disposal. Due to the high purchase
cost of a mole, the number of moles available is limited and a specific mole is assigned to a
single Reach Truck. The capabilities of different resources is summarized in Table 1.2.

3

(De)loading
trucks

Transportation
to/from
Block storage

Transportation
to/from
Back-to-back storage

Transportation
to/from
Shuttle storage

Forklift X X
Reach truck X X
Reach truck + Mole X X X

Table 1.2: Capabilities of different resource types

Currently internal logistic of the warehouse is dictated by two algorithms, namely the
Product Placement Algorithm (PPA) and the Truck Docking Algorithm (TDA). The PPA
consists of a set of rules based upon a set of values. Through these rules it decides for every
product if it should be stored in either block storage, back-to-back storage or shuttle storage.
Placement in either one of these storage types is based on figures like historic outbound quant-
ities, current inventory and the number of pallets that can be placed on top of one another.
The TDA, on the other hand, decides for incoming trucks to which dock they get assigned.
This algorithm concerns a so-called greedy algorithm. This concerns minimization of total
travel distance, which for inbound trucks implies the travel distance to place all products in
the warehouse and for outbound trucks to retrieve all products from the warehouse. The PPA
en TDA dictate the internal logistics of the warehouse considered in this research. To further
elaborate upon the internal processes, a flowchart visualizing the internal logistics is shown
in Appendix A. This flowchart follows the process from a product perspective, showing all
processes between product arrival through an inbound truck and product departure in an
outbound truck.

However, the process has two important factors to note. Firstly, in most cases the out-
bound truck demand is known two hours before arrival of the actual truck. This enables
internal logistics to start retrieval of the ordered products in the assigned consolidation area.
An exception to this rule is made for rush orders which happen sporadically. For these trucks
the demand is not known in advance and is revealed upon truck arrival. Secondly, not all re-
quests for products concerns full-pallet orders. Occasionally a truck order contains a less-than
full pallet quantity. When this happens a full pallet is picked and broken into a requested
and remaining quantity. The requested quantity is transported to the consolidation area and
the remaining quantity, called a broken pallet, is returned to inventory. Broken pallets are
always stored in Back-to-Back storage, regardless of the PPA.

This research intends to create a procedure of simultaneously optimizing upon warehouse
layout design and the underlying control policy. The decision variables of the optimization
problem concern:

• The order of the rules comprising the PPA.

• The parametric values within the rules of the PPA.

• The amount of resources per resource type.

• The dimensions of the storage locations, i.e. the width in block storage and the width
and height of the shelves in Back-to-Back and Shuttle storage.

4

Adaptation of these decision variables is supposed to lead to well-performing warehouse
configuration. The performance of a warehouse configuration will be evaluated based on three
metrics, making it multi-objective optimization. These three metrics will be discussed more
thoroughly in section 4.1.3, but they concern:

• The tardiness of outbound trucks

• The resource cost

• The number of unplaceable products

An accelerated replication of the detailed simulation used within Nobleo will be the basis
upon which an iterative optimization algorithm will be developed. Due to the high dimen-
sionality and expensive computation of simulation results, the number of needed evaluations
need to be kept to a minimum. To achieve this, the optimization algorithm must include
some form of intelligent determination of potential solutions to be evaluated. It is desired
to converge to a set of optimal warehouse configurations while minimizing the number of
performance evaluations needed.

1.2 Research questions

The research problem is, throughout literature. described as the Warehouse Design and
Control Problem (WDCP). The WDCP consists of a collection of underlying sub-problems,
which often have solutions using Evolutionary Algorithms. To minimize the computation
time of the optimization model, a process called Adaptive Operator Selection (AOS) will be
applied. Literature shows a salient method to implement AOS concerns Deep Reinforcement
Learning. These findings led to the following main research questions, which is central to this
master thesis:

How can a Multi-objective Evolutionary Algorithm and Deep Reinforcement Learning be
combined to simultaneously optimize warehouse layout design and control policies using a

low computational budget ?

The main research question is subdivided into eight sub-questions, which together will
result in an answer to the main question. These sub-questions are:

1. How does Nobleo currently find the optimal process configuration?

2. What are the current best practices to solving the Warehouse Design and Control Prob-
lem?

3. What are the state-of-art multi-objective bio-inspired metaheuristic algorithms, and
what are their advantages and disadvantages?

4. How can a metaheuristic be applied to the Warehouse Design and Control Problem?

5. What are existing methods for Adaptive Operator Selection, and what are their advant-
ages and disadvantages?

6. How can Deep Reinforcement Learning be applied as the Adaptive Operator Selection
method?

5

7. What is the performance of the proposed optimization model?

8. How can the proposed model be made generic to enable application to different multi-
objective optimization problems?

These questions can be categorized over different parts of the research. Question 2, 3 and
5 all concern questions regarding literature. Question 1 focuses on the current process, where
Question 4 and 6 focus on the development of a framework to improve the current process.
Finally, question 7 and 8 focus on the obtained results and implementation of the proposed
solution framework. This division is visualized in Figure 1.4.

Q2: Warehouse
Design and Control

Problem.
Q3: Metaheuristics.

Q5: Adaptive
Operator Selection

methods.

Q7: Performance
proposed model.

Literature Study

Method

Q4: Metaheuristics
for Warehouse Design
and Control problems.

Q6: Deep
Reinforcement

Learning

Results Implementation

Q8: Model
generalizability.

Q1: Current process.

Problem

Figure 1.4: Subdivision Research Questions

1.2.1 Outline

The rest of this document is structured as follows. Chapter 3 will discuss a literature review.
This review summarizes previous work and highlights potential solution methods to be used.
Execution of this review intends to answer sub-questions 2, 3 an 5. The gathered knowledge
from this review will aid the development of the proposed solution method, which is discussed
in chapter 4. The design of the solution methods will answer sub-questions 4 and 6.

The eventual implementation of the solution method will be taken through a series of
experiments, explained in chapter 5. These experiments revolve around performance compar-
isons, performance optimization and extensive analysis of the inner workings of the methods.
The results of these experiments will be shown and discussed in chapter 6, which will answer
sub-question 7 and 8. The obtained results and answers will be summarized in chapter 7,
resulting in an answer to the main research question.

1.2.2 Contributions

This research increases both the knowledge and applicability of a solution method for simul-
taneous optimization of warehouse layout design and control policies. Through doing this, it
provides insight into the following subjects:

1. This study concerns simultaneous optimization of warehouse layout design, resource
allocation and product allocation. The amount and types of problems comprising this
optimization problem, known as the Warehouse Design and Control Problem (WDCP),

6

is not found throughout literature. The closest related paper only solves the product
allocation problem and the functional area size determination problem.

2. The proposed solution method allows for optimization of the set sub-problems without
imposing any predefined preference on the objective values. Implying the method to
be multi-objective in a way that it returns a set of Pareto-dominated solutions, instead
of returning a single value using an apriori method as seen in literature. This set is
presented to the decision maker, in this case Nobleo, who can choose which solutions to
pursue.

3. The proposed solution method shows a novel implementation of combining the NSGA-
III algorithm with Deep Q-Networks (DQN). Applying DQN as Adaptive Operator
Selection (AOS) for the mutation operators of the NSGA-III, convergence performance
with regard to both speed and quality is increased.

4. The proposed solution method is generic. All calculations exclude problem specific
information, enabling it to be applied to a wide range of optimization problems. The
method will be able to solve all problems that allow for a solution to be encoded in a
single vector of values. Extending this research this could imply different compositions
of the WDCP, consisting of any number of sub-problems. Because of this, it shows
increased utility for practitioners.

5. The developed optimization framework is made compatible with the simulation software
used within Nobleo. Besides, the framework is made to be fully operated through an
Excel sheet. Within this Excel sheet the employees of Nobleo can change fundamental
features of the optimization framework. These features concern the amount and type
of decision variables, the amount and type of objective values, fundamental NSGA-
III hyperparameters and enabling/disabling the learned Deep Reinforcement Learning
agent.

To the knowledge of the author, through these contributions this research distinguishes
itself from other research found in literature. It also intends to incentivize researchers to
extend investigation into the simultaneous optimization of different warehousing principles.

7

Chapter 2

Problem formulation

This chapter will more thoroughly discuss theWarehouse Design and Control Problem (WDCP)
central to this research. First the algorithms dictating internal logistics are described, which
concern the Product Placement Algorithm (PPA) and the Truck Docking Algorithm (TDA).
Following this, the decision variables will be discussed and defined mathematically. These
mathematical notations will be used to create a formal definition of the problem.

2.1 Operational algorithms

As mentioned in the problem context, discussed in section 1.1, internal logistics is dictated
by two algorithms. The first algorithm concerns the Product Placement Algorithm (PPA),
which determines in which of the three storage types a given product will be stored. Psuedo-
code, describing the PPA, can be found in Algorithm 1. The PPA consists of four rules, of
which three actual rules and one fallback option in line 7, 9, 11 and 13 of the psuedo code
respectively. These rules are handled in the order in which they are presented. Decisions
made using these rules depend on five parameter values (α, β, γ, δ, υ). The order of the four
rules and the five parameter values are decision variables. The PPA is currently already used
within the simulation of Nobleo, in which the parameter values take the following values:
α = 360, β = 12, γ = 3, δ = 1.93, υ = 2. Also the order in which the rules are shown is the
current rule order used within the simulation of Nobleo.

Algorithm 1: Product Placement Algorithm (PPA)

INPUT:
p← product to be placed;

OUTPUT:
S : The storage type in which the product will be placed

1 if pY early Outbound Shipments < α and pInventory < β then
2 Place product in Back-to-Back storage

3 else if pStack Level 1 ≥ γ then
4 Place product in Block storage

5 else if pPallet Height > δ and pStack Level 2 ≥ υ then
6 Place product in Block storage

7 else
8 Place product in Shuttle storage

8

Next to the PPA another algorithm is used within the internal logistics, namely the Truck
Docking Algorithm (TDA). As discussed in section 1.1, the TDA concerns a greedy algorithm.
This implies that a truck is docked in a way that minimizes the travel distance within the
warehouse. For inbound trucks this is based on the products that are within the truck and
their prospected storage locations, where for outbound trucks this is based on the requested
products and their current locations in the warehouse. Pseudo-code describing the TDA can
be found in Algorithm 2. The TDA does not contain any adjustable parameters, and is thus
solemnly used to decide where to dock trucks in the simulation. The first part of the TDA
(line 1 to 7) calculates the distance of all products in the truck or requested by the truck [ok]
to all available docks. Thereafter, in the second part (line 8 to 16), the docks are sorted based
on their total distance to travel. Looping through the docks, starting with the one resulting
in the shortest travel distance, the first available dock with a consolidation lane available is
used to dock the truck.

Algorithm 2: Truck Docking Algorithm (TDA)

INPUT:
ok ← list of items within or requested by the truck;
D ← the total amount of docks;

OUTPUT:
-

1 dist dict← {};
2 for dock ← 0 to D do
3 total dist← 0;
4 for item← 0 to ok do
5 total dist← total dist+ 2 ∗ get dist (dock, item)

end
6 dist dict [dock]← total dist;

end

7 sorted dist dict← sort(dist dict)
8 i← 0;
9 while i < D do

10 if sorted dist dict [d] = unoccupied and consolidation (lane) = available then
11 Assign truck to dock
12 Reserve consolidation area
13 End Algorithm

14 else
15 i← i+ 1;

end

2.2 Decision variables

Briefly mentioned in section 1.1, there are four categories of decision variables. The first two
categories concern the rule order and the parameter values comprising the PPA [Algorithm 1].
As there are three rules and a fallback option, the decision variables concern a list of four
ordinal values (O). Having four ordinal values allows for the fallback option to be shifted
towards a higher position, eliminating all rules that follow this option. The parameter values,

9

on the other hand, consist of four integer values (α, β, γ, υ) and one categorical value (δ).

The third category of decision variables concerns the amount of resources per resource
type. There are three types of resources, namely forklifts (Z1), reach trucks (Z2) and reach
trucks + mol (Z3), i.e. a small Automated Guided Vehicle (AGV). The amount of resources
per resource type can formally be described as Zi, for i = {1, 2, 3}.

The fourth category of decision variables concerns the dimensions of the storage locations.
These dimensions concern combination of values taken from two sets containing different
widths (W) and heights (H). The definition of this decision variable is split up over the five
different halls (X), which comprise the entire warehouse. Every hall contains different types
of storage, where some halls only contain one type of storage while other halls can contain a
combination of multiple storage types. The decision variables concern a list of percentages,
describing per hall and storage type the amount of storage space being allocated to a given
dimension. A formal definition of this decision variable is trivial, but an abstract represent-
ation of the integer amount of storage locations per storage dimension can be described as
dxw,h∀x ∈ X , ∀w ∈ W,∀h ∈ H. The decision variables described are summarized in Table 2.1.

Notation Meaning Datatype Values

O Ordering of PPA rules Ordinal [1, 2, 3, 4]

α
(PPA) Bound on amount of
Yearly Outbound Shipments

Integer
LB = 100
UB = 500

β (PPA) Bound on Inventory Integer
LB = 2
UB = 20

γ (PPA) Bound on Stack Level 1 Integer
LB = 1
UB = 6

δ (PPA) Bound on Pallet Height Categorical [1.13, 1.66, 1.93, 2.30]

υ (PPA) Bound on Stack Level 2 Integer
LB = 1
UB = 6

Z Number of resources per type Integer
LB = 1
UB = 20

W Different storage dimension widths Categorical [1.20, 1.40, 1.60]

H Different storage dimension heights Categorical [1.13, 1.66, 1.93, 2.30]

X Different halls comprising the
warehouse

Categorical [1, 2, 3, 4, 5]

Table 2.1: Formal definition of the decision variables

2.3 Problem definition

Based on the background information of the problem introduced in section 1.1, a formal prob-
lem definition can be defined. Consider a time horizon T = {t1, t2, ..., tT } in which a set of
inbound trucks (Kinb) and outbound trucks (Koutb) will arrive. During this time horizon a
given number of resources per resource type is available. One of the objective values for op-
timization concerns the resource cost, which is denoted as

∑
i=1,2,3 ci ·Ri, where “c” concerns

an aggregate of both investment and operating costs of resources.

Upon arrival of an inbound truck (Kinb), the TDA discussed in Algorithm 2 decides to
which dock the truck is assigned based on all of the products its carrying (ok). After docking,

10

all products are transported to the storage locations in the warehouse using the available
resources (Zi∀i ∈ [1, 2, 3]). The decision to which storage type a given product is transpor-
ted is decided by the PPA (Algorithm 1). The dynamics of this algorithm depends on the
decision variables concerning the rule order (O) and the values (α, β, γ, δ, υ). The decision
in which storage type (S) a given product (p) will be stored can be formally described as:
S = PPA(p). After deciding in which storage type (S) the product (p) will be stored, the
availability of storage locations with suitable dimensions has to be checked. The number of
storage locations of different dimensions depends on dxw,h∀xX ,∀w ∈ W, ∀h ∈ H. As products
can only be stored in storage areas equal or larger in either one or both of the dimensions,
the possible storage locations of a given storage type for a given product can be defined as
dS,xp ∀w ∈

[
pw, ...,WS] , ∀h ∈

[
ph, ...,HS] ,∀x ∈

[
1, ...,X S]. To allow determination of the

number of unplaceable products, being one of the objective values for optimization, an indic-
ator value (uSp) needs to be created. This variable gets value 1 if dS,xp = 0∀x ∈ X and 0 other-

wise. The number of unplaceable product can then be formally defined as
∑

k∈Kinb

∑
p∈ok u

S
p ,

where S is fixed as decided by the PPA.

Upon arrival of an outbound truck (Koutb), the TDA (Algorithm 2) is used to decide to
which dock the truck should be assigned. All products requested by the truck (ok) need to
be retrieved from the warehouse, transported using the available resources (Zi∀i ∈ [1, 2, 3]).
To evaluate the third and final objective value, tardiness of outbound trucks, the difference
in truck arrival time (ak) and its departure time (dk) is needed. However, the departure time
value dependents on the dynamics of the warehouse, which is stochastic. The truck handling
time (yk) is then formally expressed as: yk = dk − ak. To calculate the tardiness of outbound
trucks the truck handling time is multiplied with a constant (fk). The value of this constant is
determined based on an outbound truck performance classification metric supplied by Nobleo.
It results in the constant (fk) having a value of 0 if yk ≤ 30, 0.5 if 30 < yk ≤ 120 and 1.0 if
120 < yk. The objective value, tardiness of outbound trucks, can then formally be described
as
∑

k∈Koutb
fk · yk.

To summarize, the objective values of the optimization problem is to minimize the re-
source cost

∑
i=1,2,3 ci · Ri, minimize the number of unplaceable products

∑
k∈Kinb

∑
p∈ok u

S
p

and to minimize the tardiness of outbound trucks
∑

k∈Koutb
fk · yk. The decision variables

that can be adjusted during optimization are summarized in Table 2.1.

The above mentioned formal definitions show a simplification of the actual process, for
which construction of such definitions is intractable. The definitions are solemnly used to in-
crease problem understanding and will not be used throughout the remainder of this research.

11

Chapter 3

Literature review

The research to be conducted will be based upon a review of current-day literature. The
reason this review is executed is two-fold. On one hand it will elaborate on the subject
discussed and potential solution methods used. On the other hand, it is used to show the
position of this research in literature. These subjects will be addressed throughout this review
and will be discussed in the following sections.

3.1 Warehouse design and control problem

The problem discussed in chapter 1 can be described as a Warehouse Design and Control
Problem (WDCP). The WDCP concerns simultaneous optimization of the warehouse lay-
out design and the control policies, which dictate internal logistics. Following the paper of
Rouwenhorst et al. (2000), the problem can be subdivided into three decision levels, namely:
Strategic, Tactical and Operational. The strategic decisions concern long term decisions with
a horizon of about five years, focusing on design of process flow and selection of (technical)
systems. Tactical decisions concerns a shorter horizon of around two years. These decisions
include the dimensions of the storage system(s), the lay-out design, the selection of equipment
and the structural design of organizational policies. Finally the operational decisions focus on
a short term of around one year, mainly focusing on fine-tuning of the designed organizational
policies.

Decisions on different levels are interrelated hierarchically. Meaning that a decision on a
higher decision level puts constraints and additional requirements on decisions on lower levels
[Rouwenhorst et al. (2000)]. Besides the hierarchical relation, also various problems at the
strategic level appear to be highly interrelated as well. To a lesser extent this holds for the
tactical level, whereas decisions made at the operational level often can be considered inde-
pendently [Rouwenhorst et al. (2000)]. A solution taking multiple decision levels into account
would be able to utilize these (hierarchical) interrelations. Research into this field could lead
to general design procedures and global optimization models [De Koster et al. (2007)].

Current-day literature shows little depth of academic research into the Warehouse Design
and Control Problem (WDCP). For this reason the review of literature is conducted on the
three sub-problems which constitute the collective problem of this research. These prob-
lems concern the warehouse layout design problem, resource allocation problem, and the

12

product allocation problem. The layout design and resource allocation problem both concern
tactical decisions, whereas the product allocation problem concerns a decision on an opera-
tional level. Simultaneous optimization will enable utilization of the interrelations between
the layout design and resource allocation problem and the hierarchical interrelation to the
product allocation problem, as discussed in Rouwenhorst et al. (2000). Allowing for improved
optimization results as opposed to optimizing all individual problems separately. Seprate op-
timizations would results in a number of independent local optima, which combined will lead
to a sub-optimal overall solution.

3.1.1 Warehouse layout design problem

Solutions to the warehouse lay-out design problem show both exact and heuristic approaches.
Earlier works by Rosenblatt and Roll (1984, 1988) and later work by Roodbergen and Vis
(2006) show exact methods, where the former constructs a procedure of consecutive mathem-
atical equations and the later solves a nonlinear programming problem. The focus of these
studies is mainly on the relationship between the warehouse design and the total warehouse
construction and/or material handling costs. The cost function used to measure the utility of
the warehouse assumes that the warehouse is a continuum, which is an unrealistic assumption
when looking at real-world applications. Work by Pandit and Palekar (1993) does not make
this assumption and optimizes on warehouse response time using an iterative search proced-
ure. Dropping this assumption makes exact methods intractable, in particular when problem
size increases. Because of this, heuristic methods have to be applied in real-world problems,
despite these solution methods having a significantly higher computation time compared to
its exact counterparts.

3.1.2 Resource allocation problem

The solution methods used to solve the Resource Allocation Problem (RAP) consist of exact
methods, heuristics and several metaheuristics. A lot of exact methods focus on an imple-
mentation of the Hungarian method [Younas et al. (2011); Xian-Ying (2012)], a combinatorial
optimization algorithm especially designed for assignment problems. Despite the attained
time efficiency of polynomial time [Kuhn (1955)], these methods do not extend further than
single-objective, binary assignment problems having a static amount of resources and tasks
with a predefined duration. The same is true for (Integer) Linear Programming [Daskalaki
et al. (2004); Azimi et al. (2013)] and the Branch & Bound algorithm [Bretthauer and Shetty
(1995); Miralles et al. (2008); Vila and Pereira (2014)]. The use of heuristic methods shows to
be able to handle more complex problems [Bennour et al. (2005)], extending to multi-objective
RAP. Compared to several metaheuristics, a heuristic shows lower computational cost but is
unable to outperform the metaheuristics on solution quality upon convergence. For real-world
implementations only metaheuristics show to be able to cope with the incommensurability
of multiple objectives, although showing high computational cost [Mutlu et al. (2013); Fan
et al. (2013); Thepphakorn et al. (2014); Odeniyi et al. (2015)].

3.1.3 Product allocation problem

The final solution methods analyzed are used to solve the Product Allocation Problem (PAP).
The exact methods for the PAP are able to include necessary complexity to attain a realistic
optimization process [Heragu et al. (2005); Guerriero et al. (2013)]. These methods consists

13

of an often simplistic objective function, subject to an extensive and detailed amount of
constraints. The set of equations results in fast optimization for smaller instances, but quickly
gets intractable as the size of the problem increases. Looking at real-world cases the PAP is
often a high dimensional problem, which is shown to be more efficiently solved using a meta
heuristic [Heragu et al. (2005); Sammons Jr et al. (2008); Li et al. (2009); Guerriero et al.
(2013)].

3.1.4 Simultaneous Optimization

The papers by Heragu et al. (2005) and Roodbergen et al. (2015) are the only paper found
looking into joint decision making, solving the product allocation problem (PAP) and ware-
house layout related problems simultaneously. The environment used in the paper by Heragu
et al. (2005) transformed stochastic variables into deterministic variables by imposing certain
assumptions. Through a combination of a mathematical model and a heuristic, both the
handling and storage cost were minimized. The different (meta)heuristics tested concern the
Branch-and-Bound (B&B) algorithm, a custom-made heuristic and the Simulated Annealing
(SA) algorithm, of which the latter is a (bio-inspired) metaheuristic. It is found that the
B&B algorithm suffers from memory problems, where the SA method shows superior results
for large problem instances. The paper by Roodbergen et al. (2015) concerns single objective
optimization, focusing on average travel distance per order. Through defining problem spe-
cific mathematical rules, optimal settings are obtained through a proposed heuristic method.

For the case at Nobleo the three sub-problems comprising the WDCP are all high dimen-
sional and need to be optimized simultaneously. Adding additional complexity due to internal
and hierarchical dependencies between the problems. Concluding from the solution methods
to the separate problems and the increased complexity of simultaneous optimization, a me-
taheuristic would be well suited. For this research bio-inspired metaheuristics will be further
elaborated. The main reason for this being the large application domain of these methods
found throughout literature. The disadvantage of using (bio-inspired) metaheuristics is high
computational cost. In practice there is often a desire to test different optimization processes,
allowing for different ranges of optimization. As this is the case, the high computation time
should be mitigated as much as possible.

3.2 Bio-inspired metaheuristics

Real-world optimization problems are often challenging to solve, and many applications have
to deal with NP-hard problems [Fister Jr et al. (2013)]. One way to solve these problems is
through so-called Bio-inspired metaheuristics. Metaheuristics concern problem-independent
techniques, of which Bio-inspired metaheuristics concern a category of models inspired by
biological phenomena as seen in nature. The functionality of such heuristics resides on two
different spaces, a decision space and an objective space. The decision space contains the
values that describe a solution to be tested. The objective space contains the performance
values that these solutions can attain.

To work on both of these spaces a metaheuristics consists of two parts, namely the op-
timization algorithm and an evaluation function. Upon initialization the algorithm proposes
a set amount of randomly initialized solutions in the decision space, a so-called population

14

of individuals. The population will be taken through the evaluation function, resulting in a
performance evaluation for all individuals in objective space. Based upon the composition
and performance of the individuals comprising the current population the optimization al-
gorithm will propose a new population, called the offspring. The offspring is proposed in
decision space again, which completes a cycle between the two spaces. One cycle is called a
generation, which is repeated until a predefined termination criterion is reached. Examples
of termination criteria are execution of a desired amount of generations, no improvements for
a predefined set of generations or a desired performances attained by the population. This
process, together with both spaces, is visualized in Figure 3.1.

𝑥

𝑥

𝑥

𝑓

𝑓

𝑼𝑩𝟏

𝑳𝑩𝟏

𝑳𝑩𝟑

𝑼𝑩𝟑

𝑳𝑩𝟐

𝑼𝑩𝟐

𝑋

Decision space Objective space

𝑬𝒗𝒂𝒍𝒖𝒂𝒕𝒆 𝑿𝟏

𝑍

𝑍

𝑍
𝑍

𝑍

𝑋

𝑷𝒓𝒐𝒑𝒐𝒔𝒆_𝑵𝒆𝒘 𝒁𝟏,⋯ , 𝒁𝒏

Figure 3.1: Decision and objective space (adjusted, original retrieved from: Deb (2014))

A key issue when solving optimization problems with complex fitness landscapes is to
keep an appropriate balance between exploration and exploitation [LaTorre et al. (2020)].
Exploration concerns remaining or extending the diversity of the population. This is neces-
sary to minimize the risk of converging to local optima and thus not discovering a potential
global optimal solution. Exploitation, on the other hand, concerns searching close to the
well-performing individuals found so far. Through combining the composition of two of these
individuals, called parents, it is aspired to create new individuals that outperform their parents
from which they originated. Too much emphasis on exploration and the algorithm becomes
unstable and will never converge, while too much emphasis on exploitation will result in the
algorithm converging to sub-optimal, local optima.

3.2.1 Multi-objective optimization

Multi-Objective Optimization (MOO) can be described as the process of optimizing system-
atically and simultaneously a collection of, often conflicting, objective functions [Marler and
Arora (2004)]. Based on their way of handling the trade-off between the different objective
values the MOO methods can be subdivided in four categories [Cui et al. (2017)], as visualized
in Figure 3.2.

15

Multi-objective trade-off optimization methods

New
dominance

methods

Pareto
dominated
methods

Interactive
methods

Apriori
methods

W
eighted sum

m

ethod

constraints
m

ethod

O
bjective

program
m

ing
m

ethod

D
ictionary

ordering
m

ethod

Analytic
hierarchy
m

ethod

N
orm

al
boundary

intersection

N
orm

alized
norm

al
constraint

N
N

IA …
.

M
O

EA/D

m
ethod

Fuzzy
dom

inance
m

ethod

Partial
dom

inance
m

ethod

ε-D
om

inance
m

ethod

Intelligent
optim

ization
algorithm

s …

Figure 3.2: Methods multi-objective trade-off (retrieved from: Cui et al. (2017))

• Apriori Methods rely on predefined settings transforming the multiple objective func-
tions into a single value. These settings concern weights for the Weighted Sum Method,
constraints for the ε-Constraint Method or desired objective values for the Objective
Programming Method. Setting these values requires a thorough understanding of the
process, which is not fully present at Nobleo as it concerns a process of their client.
Besides, these methods are often applied in fairly specific processes, for example in
Ethylene cracking furnaces [Xia et al. (2013); Geng et al. (2012)] and hybrid energy
systems [Ju et al. (2016)]. As the thesis project concerns a widespread, non-linear, non-
convex optimization problem and the project is guided by a consultancy firm instead of
the actual company, these specific values are difficult to attain. For this reason Apriori
methods will not be used for this research.

• Interactive methods incorporate the preferences of the decision makers for each ob-
jective during the optimization process [Cui et al. (2017)]. These methods find optimal
solutions through implementation of a so called Achievement Scalarization Function
(ASF), based on the preferences of the decision maker. The intuitive methods tackle
the multi-objective optimization problem from a geometrically intuitive viewpoint. The
interactive methods also require extensive knowledge of the process. As with the Apriori
methods, the position of this research is too far away from the process to facilitate this.
For this reason it is decided to not use the interactive methods to trade-off the multiple
objective values.

• Pareto dominated methods were introduced by Schaffer (1985), proposing an al-
gorithm called the Non-dominated Sorting Genetic Algorithm (NSGA). These algorithms
are able to solve non-convex optimization problems without coupling objectives, which
implied maintaining individual features for all objectives [Cui et al. (2017)]. This char-
acteristic sets it apart from the apriori and interactive methods. Although showing
superior performance in convergence, diversity, robustness and flexibility, the computa-
tion process is often time-consuming and relatively low-efficient [Shukla and Deb (2007);
Lu et al. (2012)]. Due to the high performance and the ability to solve non-convex optim-
ization problems, it is decided to further investigate the applicability of these methods
regarding the thesis project.

16

• New dominance methods are the newest algorithms, designed to solve the conver-
gence and distribution problems of an optimization algorithm simultaneously [Cui et al.
(2017)]. The proposed ε-dominance [Deb et al. (2002)] and later extended Pareto-
adaptive ε-dominance [Hernández-Dı́az et al. (2007)] mechanisms are both based on
the idea of hyper grids related through the different optimization spaces. The perform-
ance of both of these methods show promising, except they experience drawbacks if the
number of feasible objective vectors is small [Horoba and Neumann (2008)]. The New
Dominance methods will, despite their performance, not be used in this thesis project.
Due to the high level of mathematical complexity, these methods lack explainability
and applicability towards the process at Nobleo.

3.2.2 Pareto dominated algorithms

Due their ability to solve non-convex optimization problems without coupling objectives,
Pareto dominated algorithms are perceived valuable methods regarding the WDCP central
to this research. As a result of maintaining individual features for all objectives, comparing
individual solutions becomes arbitrary. For this reason the Pareto dominated algorithms use
a so-called Pareto optimal set, which concerns an approximation of the set of globally optimal
solutions. Optimality in this sense is decided through the concept of domination. A solution
(x1) dominates another solution (x2) if and only if:

• x1 is no worse than x2 for all objectives.

• x1 is strictly better than x2 in at least one objective.

The list of solutions that are non-dominated form the Pareto optimal set, often called the
Pareto front, which can be seen as the set of optimal solutions found by the algorithm.

Evaluation of the performance of such algorithms is essentially an evaluation of the prop-
erties of this set. The set obtained through the algorithm is an approximation of the actual
Pareto front, as this set of solutions is unknown due to the unknown nature of the objective
space, visualized in Figure 3.1. Besides an evaluation of this approximated set, also the com-
putational resources needed to generate this set will be taken into account [Si et al. (2019)].
The evaluation of performance focuses on the objective space, rather than the decision space,
as the intended purpose of multi-objective optimization algorithms is to observe the balance
between conflicting objectives. Metrics used throughout literature concern the size, diversity
and the convergence rate of the Pareto-optimal set, the proximity to the true or reference
Pareto front and the quality of the single best solution [Si et al. (2019)]. The first three
metrics show to be most robust, where the last two require educated guesses and domain
knowledge.

The hypervolume indicator is first introduced by Zitzler and Künzli (2004). It concerns
one of the most used quality indicators to asses the performance of a Pareto front found
using a multi-objective optimization algorithm [Guerreiro et al. (2020)]. The hypervolume
indicator concerns the region dominated by the Pareto set which is bounded above by a given
reference point (r), as visualized in Figure 3.3. The percentage of the area that is dominated
summarizes the performance of the found Pareto front. This concerns both the size and the
diversity of the Pareto optimal set, as an increase in either one of these values would increase

17

the dominated area. By tracking the hypervolume indicator over consecutive generations, the
convergence rate of the Pareto optimal set can be analyzed as well.

Figure 3.3: Example hypervolume indicator (retrieved from: Guerreiro et al. (2020))

The actual calculation of the hypervolume indicator can be defined as shown in Equation
3.1 [Zitzler and Künzli (2004)]. Within this equation HV (f ref , X) implies the hypervolume
indicator value, representing the size of the space that is dominated by the solution comprising
the Pareto frontier. f ref ∈ R refers to the reference point chosen, and Λ(.) refers to the
Lebesgue measure. This measure is defined by first defining the Lebesgue outer measure,
which is defined as the infimum of all values on the interval comprised by the values in the
Pareto frontier. The values obtained through calculation of this infimum, show the dominated
area and thus the hypervolume indicator value.

HV (f ref , X) = Λ

(⋃
Xn∈X

[
f1(Xn), f

ref
1

]
× ...×

[
fm(Xn), f

ref
m

])
(3.1)

For multi-objective optimization, literature shows two methods to be most widely used.
These methods concern the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [Deb
et al. (2000)] and the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm
[Moore and Chapman (1999)]. Numerous comparative analyses between (variations of) these
algorithms are conducted, stating dissimilar results. The papers by Hlal et al. (2019); Monsef
et al. (2019) show NSGA-II to be more robust than MOPSO, although MOPSO being faster
to achieve convergence. This convergence speed is again noted by Huang et al. (2012), which
found both algorithms able to find a good approximation of the Pareto front. But MOPSO
showing to be superior in rate of convergence. However other papers show the opposite to
be true. The paper by Jain et al. (2018) shows MOPSO to be superior, where NSGA-II
shows poor optimal solutions. Variations of the PSO-based algoritms show even better per-
formance. The Optimized MOPSO (OMOPSO) algorithm outperforms NSGA-II on different
ZDT benchmark functions [Parsopoulos and Vrahatis (2008)]. Also the Speed-constrained
Multi-objective PSO (SMPSO) [Nebro et al. (2009)] shows to be the most salient technique
in terms of quality of the approximation to the Pareto front found, and it also shows fast
convergence towards this front. Mainly due to the complexity of the fitness landscape of the
WDCP central to this research, it is decided to use the more robust NSGA methods for this
research. More specifically the NSGA-III [Deb and Jain (2013)] will be further investigated,

18

which performance will be benchmarked against its predecessor NSGA-II and the SMPSO
algorithm.

3.2.3 Adaptive Operator Selection

The above mentioned algorithms originally all abide to a predefined set of operators and their
parametric values. According to the “no free lunch” theorem, no operator exists that outper-
forms all other operators on all optimization problems [Wolpert and Macready (1997)]. Every
specific multi-objective optimization process requires a carefully selected set of operators and
their hyperparameters, which can be attained through empirical comparison [Lindauer et al.
(2015)]. However, for many real-word problems such a trial-and-error approach is compu-
tationally expensive and thus impractical [He et al. (2019)]. Through implementation of
Adaptive Operator Selection (AOS), the best operator can be determined during optimiza-
tion. This prevents the high computational burden of optimizing the parametric values of
these operators beforehand.

Existing methods for AOS often relate to methods solving multi-armed bandit problems
[Auer et al. (2002)]. These problems relate to the slot machines in casinos, where the ob-
jective is to maximize the obtained reward playing over several arms without knowing the
probability distributions of these rewards. For operator selection both a credit assignment
strategy, rewarding an operator according to the fitness improvement attained, and a selection
strategy, selecting the next operator, should be designed [Tian et al. (2022)]. This process is
visualized in Figure 3.4 below.

Start and
initialize

optimization

Mating
selection

Offspring
generation

Environmental
selection

Terminate
optimization

Credit
assignment

Candidate
operators

Operator
selection

Fitness
improvement

Reward

Selected
operator

Next generation

Figure 3.4: General procedure adaptive operator selection in evolutionary algorithm (retrieved from:
Tian et al. (2022))

The original idea for operator selection applied to single-objective optimization [Davis
(1991)]. The most common approach of credit assignment concerned the improvement of
objective value brought by the created newly proposed offspring solutions [Lin et al. (2016)].
For multi-objective optimization the improvement of objective value is arbitrary, as the pro-
cess often concerns optimization of conflicting objectives. Earlier credit assignment strategies
for multi objective optimization problems rewarded an operator if the generated offspring
solution dominates its parents [Huang et al. (2007)] or dominates other solutions from the
previous generation [McClymont and Keedwell (2011)]. More recent work shows the hyper-
volume indicator of the whole population as the assigned reward [Huang et al. (2021)].

19

A problem arising with the implementation, as visualized in Figure 3.4, is that the oper-
ators are directly selected according to their recent rewards [Tian et al. (2022)]. Resulting
in operators with higher rewards being selected more frequently, creating a positive feedback
loop which further improves the reward for these operators. A solution to this bias came with
the implementation of the Upper Confidence Bound (UCB) algorithm [Li et al. (2013)], which
enables to strike a fair balance between exploration and exploitation in the multi-arm bandit
problem. Still these methods are affected by the limited number of trials and the operator
selection strategy choosing upon historical rewards. Selecting operators which performed well
in previous generations might be ineffective in future generations. The paper of Tian et al.
(2022) proposed the implementation of Deep Reinforcement Learning (DRL) to successfully
alleviate these problems. Implementing DRL as a method for AOS makes it aware of the
current state of optimization, allowing for different behavior to emerge based on the optimiz-
ation progress achieved until the moment of selection. This alleviates both the bias in both
the credit assignment and operator selection parts of AOS, as visualized in Figure 3.4.

3.3 Reinforcement learning

Reinforcement learning (RL) is a computational approach to automatic goal-directed learning
and decision making [Sutton and Barto (2018)]. The emphasis of RL is on learning by an agent
from direct interactions with its environment, which distinguishes it from other computational
approaches. Learning occurs through trial-and-error, in which a RL agent interacts with its
environment, observes the consequences of its actions and alters its own behavior in response
to rewards received. This learning paradigm has its roots in behavioral psychology and is one
of the main foundations of RL [Sutton and Barto (2018)]. The RL framework is visualized
in Figure 3.5. Through multiple episodes of taking actions and receiving rewards, the agent
is able to build an explicit map of the environment. Using this map, the RL agent is able to
find an optimal policy through greedy execution of the best action in all states.

Figure 3.5: Reinforcement learning framework (retrieved from: Sutton and Barto (2018))

Reinforcement Learning can be described as a Markov Decision Process (MDP), which
consists of:

1. A set of states S;

2. A set of actions A;

3. Transition dynamics T (st+1|st, at)

20

4. An immediate reward function R(st, at, st+1)

5. A discount factor γ ∈ [0, 1]

The goal of an agent is to learn an optimal policy π∗, i.e. control strategy. This policy
should maximize the expected return, i.e. cumulative, discounted reward. Mathematically
formulated this can be summarized as:

π∗ = arg maxπ E [
T−1∑
t=0

γtrt+1 | π] (3.2)

A key concept underlying RL within the MDP framework is the Markov Property, which
implies that the future is conditionally independent of the past given the present state [Arulku-
maran et al. (2017)]. This property is held by the majority of RL algorithms, although
requiring states to be fully observable which is somewhat unrealistic.

3.3.1 Deep learning

Deep Learning uses Artificial Neural Networks (ANNs), which in itself are bio-inspired al-
gorithms inspired by the functioning of the (human) brain [Fan et al. (2020)]. Figure 3.6
shows a basic type of ANN called a fully-connected, feed forward neural network. Such net-
works, as all ANNs, consists of an input and output layer with one or more hidden layers
in between. Each link between nodes of consecutive layers have an associated real-valued
weight, which roughly corresponds to the efficacy of a synaptic connection in a real brain
[Sutton and Barto (2018)]. Through iteratively feeding input-output combinations to the
ANN, the mapping from input to output is learned by modification of these synaptic weights
[Guresen and Kayakutlu (2011)]. After training, the network can be given new input values
which it will transform into output values, resulting in the prediction of the trained network.

Figure 3.6: Feed forward neural network (retrieved from: Sutton and Barto (2018))

3.3.2 Deep reinforcement learning

Reinforcement learning (RL) concerns a framework for sequential decision making. Through
learning the values of taking certain actions when in a given states, an agent is able to nav-
igate its environment maximizing the expected future returns. Despite its success in the
past, the original RL approaches lacked scalability and were inherently limited to fairly low-
dimensional problems [Arulkumaran et al. (2017)]. This due to RL algorithms sharing the
same complexity issues as other algorithms, namely: memory-, computational- and sample

21

complexity [Strehl et al. (2006)]. The tools to overcoming these problems developed through
the implementation of deep learning, relying on powerful function approximation and repres-
entation learning properties of (deep) neural networks [Arulkumaran et al. (2017)]. The use
of deep learning within RL algorithms defines the field of Deep Reinforcement Learning.

Within Deep Reinforcement Learning (DRL) the policy becomes a function that implicitly
maps between state features and actions, as opposed to keeping an explicit map in the form
of a lookup table [Sharma et al. (2019)]. This implicit mapping concerns a value approx-
imation, instead of an exact value calculation. The key issue Deep Learning solves is that
of generalization [Sutton and Barto (2018)]. As Neural Networks are able to handle unseen
data, an approximation of the complete state space using only a limited subset of interactions
can be created. DRL accelerated interest in Reinforcement Learning, as it enabled to handle
high-dimensional state and action spaces that were previously intractable.

3.3.3 Applications in bio-inspired metaheuristics

As the field of Deep Reinforcement Learning (DRL) is relatively new, the amount of papers
written on the implementation of DRL in Bio-inspired metaheuristics is limited. Most of
the implementations found focus on adaptive selection of mutation strategies within Differ-
ential Evolution (DE) models. The paper of Sharma et al. (2019) proposes an agent based
on Double Deep Q-Networks (DQN) [Van Hasselt et al. (2016)] to learn the selection of the
optimal mutation strategy. The state representation used focuses on the locations and distri-
bution of separate individuals in the solution space. Also three different reward functions are
tested, of which the one focusing on improving upon the global best solution shows superior
performance. The paper of Tan and Li (2021) also focuses on DE and shows an implement-
ation of DQN. Instead of focusing the state representation on separate individuals, as in the
paper of Sharma et al. (2019), the state representation focuses on the complexity of the fitness
landscape.

Another approach of DRL in DE is described in the paper of Sun et al. (2021). They
implemented a Policy Gradient method, which enables online learning of the agent. The
agent is trained to propose optimal values for mutation, selection and crossover. These values
are proposed through the use of a recurrent neural network, a variant of the Neural Net-
work which includes memory and is thus able to learn temporal correlations. The variation
of the recurrent neural network used is called Long Short-Term Memory [Hochreiter and
Schmidhuber (1997)]. The experimental results show that through continuous training of the
Long Short-Term Memory, a performance is attained that is competitive with current state-
of-the art algorithms. Although reaching the desired performance, the need for computational
resources make larger problems rather difficult to solve.

Where most papers focus on Differential Evolution, only one paper is found to focus on
another bio-inspired algorithm. The paper of Durgut and Aydin (2021) focuses on the Ar-
tificial Bee Colony (ABC) Optimization algorithm. The authors found the current operator
selections schemes to be independent of state, which is a problem which can be solved through
the implementation of Reinforcement Learning (RL). By creating a reinforced-clustering al-
gorithm, the optimal operator can be selected regarding the position and distribution of
individual bees. The possible operators to be selected consist of the current state-of-art selec-

22

tion schemes [DaCosta et al. (2008)], namely: Probability Matching (PM), Adaptive Pursuit
(AP) and Upper Confidence Bound (UCB). It is shown that the proposed algorithm out-
performs the state-of-art algorithms on the Uncapacitated Facility Location (UFL) problem
benchmark.

3.3.4 Deep Q-Network algorithms

Based upon discussed previous work, the algorithm to be used in this research concerns the
offline, model-free Deep Q-Network (DQN) algorithm [Mnih et al. (2015)]. Being an offline
algorithm implies the agent not learning immediately upon interactions but learning from an
archive of previous interactions. Two main features characterizing a DQN agent are a frozen
target network and experience replay. A frozen target network consists of the agent having
two neural networks, one policy network used for action selection and one value network
used to approximate state values. To prevent inconsistency in the policy being followed, the
policy network is kept constant while the value network is updated during training. After a
set number of iterations the learned weights of the value network are copied onto the policy
network, adapting the behavioral policy of the agent. Using a frozen target network makes
training more stable by preventing short-term oscillations from a moving target [Mnih et al.
(2013)]. Experience replay implies that all state (st), action (at), reward (rt) and next state
(st+1) pairs are stored. Upon training this experience data is (randomly) sampled and used to
train the value network, which makes DQN a so-called off-policy method. Using experience
replay improves sample efficiency and tackles auto-correlations between consecutive agent
interactions that would otherwise create a bias in its behavior [Mnih et al. (2013)].

3.4 Conclusion and position in literature

The executed literature review will, besides answering sub-question 2, 3 and 5, also form the
basis for designing a solution method. In conclusion, the optimization algorithm used will
consist of the NSGA-III. The main reason for this is the inherent robustness of the algorithm.
Due to the non-convexity of the WDCP central to this research, this is perceived a desirable
characteristic. To combat the high computational cost of the NSGA-III algorithm, AOS will
be implemented. The implementation of AOS will be done using DRL, as this shows to be
the most salient method to mitigate the effect of the limited number of trials and of choosing
upon historical reward. The implementation of DRL will be done using the DQN algorithm.
DQN shows beneficial due to its sample efficiency and robustness. These characteristics are
attained through the use of experience replay and a frozen target network respectively.

Successful implementation of the proposed method, and thus execution of this research,
will contribute to literature on the following levels:

3.4.1 Novel solution method to the warehouse design and control problem

As discussed in section 3.1, current-day literature does not show extensive research into the
Warehouse Design and Control problem. Only two papers are found concerning simultaneous
optimization of warehouse layout design and control policies. Both these papers [Heragu et al.
(2005); Roodbergen et al. (2015)] focus on warehouse layout design and product allocation.
Where the paper by Heragu et al. (2005) uses single objective Simulated Annealing (SA),

23

transforming the multiple objectives into a single objective through a cost function. The
paper by Roodbergen et al. (2015) only concerns a single objective, namely the average travel
distance per order, which is optimized using a proposed heuristic method.

This research extends this optimization process by including resource allocation. In com-
parison to the example of Heragu et al. (2005), optimization will be executed maintaining
separate values for the multiple objective values. This is a novel approach shifting the way
to trade-off multiple objectives from an apriori method, characterized by calculating a single
objective through a predefined cost function, to a Pareto dominated method. The benefit of
optimizing the objective values separately is that the importance of different objectives does
not have to be predefined. this enables the decision maker to decide upon this after run-
ning the optimization algorithm, which circumvents potential biases of the algorithm. Also
it makes it possible to construct a fully generalizable model. Allowing it to be applied to
different optimization problems without requiring to define problem specific settings.

3.4.2 Application of Deep Q-Networks in NSGA-III

Despite the relative novelty of DRL, literature shows several examples of DRL implemented
as AOS to guide meta heuristics. Most of these methods apply DQN to Differential Evolution
(DE) [Sharma et al. (2019); Tan and Li (2021); Sun et al. (2021)].

This research extends the literature of AOS using DRL, by the novel implementation of
DQN within NSGA-III [Deb and Jain (2013)]. This implementation allows for AOS while
maintaining separate objective values, making it compatible with multi-objective optimiza-
tion. Through adaptively setting the parametric values of the operators of the NSGA-III,
it is aspired to improve the convergence properties of the optimization model. Besides its
novelty, the improved convergence properties are mandatory to solve the WDCP central to
this research.

24

Chapter 4

Solution methods

This chapter will elaborate upon the proposed solution methods used. These methods were
applied to attain the overall goal of simultaneously optimizing upon layout design and control
policies for the warehouse of the plastic manufacturer. First the environment will be discussed,
which consists of a Discrete Event Simulation (DES) which is a created, accelerated replication
of the simulation used internally by Nobleo. On top of this simulation an optimization model
is created. A detailed functional explanation of the model of choice, the Non-dominated
Sorted Genetic Algorithm III (NSGA-III), will be discussed. To increase the performance of
the NSGA-III, Deep Reinforcement Learning (DRL) will be applied. The final section will
explain the used DRL algorithm, for which a detailed discussion is presented regarding the
implementation used.

4.1 Simulation environment

As discussed in section 1.1, the problem context, the simulation model used by Nobleo faces
high computational cost. A single evaluation of a warehouse configuration with a duration of
40 hours takes around 30 minutes, lending the optimization problem infeasible. The reason
for this high computation time mainly has to do with the simulation software Enterprise
Dynamics (ED) used and the amount of detail used in the simulation. ED concerns software
to run semi discrete event time simulations, being discrete event in their calculations but
running continuous time on top of this to enable visualizations. The ED software puts great
emphasis in comprehensibility through these detailed visualizations of the executed process.
Besides, the ED software does not allow for multiple simulation runs to be executed in parallel.

4.1.1 Python replication

To alleviate the problem of high computational cost, the ED simulation is replicated in Py-
thon. This replication shows different to the ED simulation in the following ways:

• Simulating discrete time
The first major distinction between the ED simulation and the Python replication con-
cerns the perception of time. The Python replication simulates in so called discrete time,
using the technique called Discrete Event Simulation (DES). As opposed to continuous
time simulation, a DES only simulates occurrences, i.e. events. The main functionality

25

of a DES lies in the so-called Future Event Set (FES), which is a chronologically sorted
list of events. Upon initialization the first event(s) are added to the FES, after which the
first event with the earliest execution time is taken and executed. Execution consists of
handling the event accordingly, after which a follow-up event is added if required. This
process is schematically visualized in Figure 4.1.

Start

simulation

τ >=

Simulation

time

Set τ =

event.time

Create first

event(s) and

add to FES

Take first

event from

FES

End

simulation

No

Yes

Handle event

Create

follow-up

event

Take next

event from

FES

Figure 4.1: Flowchart of Discrete Event Simulation (DES) functionality

• Pruning of excessive details
The level of detail in the ED simulation of Nobleo is high, as it is desired by their client
to gain insights into all facets of the process. For the optimization model this level of
details shows to be excessive and can be eliminated, as only the objective values have
to be correctly extracted. Also the implementation of different tasks in the simulation
can be aggregated. For example, loading a truck with 20 pallets can be dissected in 20
separate tasks. But these tasks have to be executed consecutively by the same resource,
which allows for it to be seen as one large tasks which can be executed all in once.
Doing this results in loading the truck to be a single operation, which is preferable in
the DES implementation.

• Implementing lookup instead of full-sweeps
Analysis of the ED simulation of Nobleo showed that a significant amount of compu-
tation time is used for execution of full-sweeps across the warehouse. These sweeps
occur every time a product is requested from or to be placed in the warehouse. Dur-
ing these sweeps every location in the warehouse is reviewed upon their storage type,
width, height and availability. In the Python replicated simulation these characteristics
of storage locations are summarized in lookup tables. This enables simple lookup to get
to a list of storage locations that fit the needed description, which is thereafter looped.
As this process happens a lot, the difference in implementation has a significant effect
on simulation time.

• Allowing parallel evaluation
Besides the aforementioned adjustments, another benefit of using Python is that it en-
ables for running multiple simulation runs in parallel. Paralellization allows the program
to run multiple simulation simultaneously, bringing down the average simulation time
even further. This process is implemented using the Multiprocessing module, which is
a Python standard library.

26

• Increased robustness simulation model
Next to improvements upon computation time, also an increased robustness needed to
be attained. As the simulation model will be used within an optimization model, it
has to be entirely capable of dealing with extreme cases. The main difference from the
ED simulation concerns the inability to dock a truck upon arrival. The ED simulation
cannot handle this, leading to an error terminating the process. The Python replication
uses a prioritized truck queue, which allows to handle these scenarios. If a truck arrives
either there is no truck dock available, no consolidation area available or both. Trucks
in need for only a dock need to be handled first, thereafter dock and consolidation area
and finally the trucks only in need of a consolidation area. This has to do with the
potential risk for tardiness and internal space occupation.

Both the ED simulation and the created Python replication are stochastic. The stochasti-
city can be found in the arrival of trucks. Also the content of inbound trucks or the requested
products by outbound trucks is stochastic. To validate the performance of the replicated
simulation against the ED simulation, similar random seeds are tested on both models. The
results only showed minor differences, which are considered insignificant and are thus neg-
lected. The ED simulation takes around 20-30 minutes to evaluate a single configuration.
The Python replicated simulation takes for a similar evaluation on average 2-3 seconds, if
multiple simulations are computed in parallel over 10 cores. An extensive explanation of the
functionality of the Python replicated simulation model can be found in Appendix B.

4.1.2 System configuration encoding

As discussed in section 1.1, the decision variables concern:

• (O) The order of the rules comprising the PPA.

• (V) The parametric values within the rules of the PPA.

• (R) The amount of resources per type.

• (D) The dimensions of the storage locations.

To allow for evaluation of different configurations of these variables, these values are encoded
into a single list of values. This list describes the values of these parameters and thus dictates
the internal logistics of the simulated warehouse. The encoding of a single configuration for
the Warehouse Design and Control Problem (WDCP) central to this research consists of 96
values and is structured as follows:

𝟏 𝟐 𝟑 𝟒 𝟏 𝟐 𝟑 𝟒 𝟓 𝟏 𝟐 𝟑 𝟏 𝟐 𝟑 … 𝟖𝟐 𝟖𝟑 𝟖𝟒

Figure 4.2: Encoding format of a warehouse configuration

4.1.3 Objective values

The objective values describe what is desired to be achieved by the optimization model. These
values need to describe the overall functionality of a certain system and should be set to the
Key Performance Indicators used within the company under review. Three objective values
are considered to evaluate the performance of a warehouse configuration, namely:

27

• tardiness of outbound trucks
The main objective value concerns the outbound truck performance, classifying all out-
bound trucks (T) in three categories. Category one concerns the so-called “Perfect
trucks”, which have at most 30 minutes between their arrival (at) and departure (dt)
times. Truck departures between 30 and 120 minutes after their arrival are considered
“OK”, where later trucks are considered “Too late”. The following formula shows the
calculation of the performance, adding a penalty constant (pt) to lower the severity of
“OK” trucks and emphasizing the need to minimize “Too late” trucks:

Obj1 =

Koutb∑
k=0

fk · (dk −ak) fk =

0.0 if (dk − ak) ≤ 30min.

0.5 if 30min. < (dk − ak) ≤ 120min.

1.0 if (dk − ak) > 120min.

(4.1)

The reason it is decided to not minimize the total handling time of all trucks is to
prevent the algorithm from minimizing the handling time of trucks that are considered
“Perfect”. This decision can be seen as some form of objective value clipping, where a
truck handling time below 30 minutes is considered perfect and in no need for improve-
ment. The handling times between 30 and 120 minutes are also considered “OK”, but
minimization is still desired to prevent it to be on the edge of becoming a “Too late”
truck.

• Resource cost
The second objective concerns the resource cost and is calculated multiplying the cost
of a resource (ci) times the number of resources used (ri) per resource type (Z). The
resource cost is an aggregate of investment and estimated operating costs, which allows
for a fair evaluation of the cost made in a given configuration. The calculation of the
resource cost is mathematically formulated below:

Obj2 =
∑
z∈Z

cz · rz = c1 · r1 + c2 · r2 + c3 · r3 (4.2)

• Unplaceable products
The final objective value is set to prevent the simulation of removing a lot of products.
An unplaceable product concerns a product of a given height and width that cannot
be placed in the storage type retrieved from the Product Placement Algorithm (PPA).
Unplaceable implies that not only the product cannot be placed in storage locations
equal to the product dimensions. It also implies unavailability of all scale up locations,
which concern storage location either larger in height, width or both.

The tardiness of trucks was already a metric used within Nobleo, where the other two
are constructed for this research. Resources are currently monitored by Nobleo, however the
resource cost concerns a cost function. This enables to include a difference in severity of
adding either a forklift or a reach truck. The unplaceable products objective is added after
thorough evaluation of the simulation dynamics and the obtained results on different extreme
scenarios. These results showed unrealistically optimistic performance, which later showed to
be a result of sending a lot of products in the implemented fall-back which concerns a sink.

28

4.2 Optimization algorithm

Based upon literature, the optimization model to be used concerns the Non-dominated Sort-
ing Genetic Algorithm III (NSGA-III) [Deb and Jain (2013)]. The main reason being its
robustness, which is desired as the problem central to this research shows to be of high com-
plexity due to the non-linearity and non-convexity. The NSGA-III concerns the optimization
algorithm, where the replicated simulation will be used as the evaluation function. A poten-
tial solution, called an individual, is composed of 96 values and is encoded as discussed in
section 4.1.2. The NSGA-III follows the general process of a Genetic Algorithm (GA), which
is visualized in Figure 4.3.

Start optimization

Initialize and

evaluate first

population

Termination

criterion

reached?

Create offspring

through crossover

Mutate individual(s)Evaluate offspringSelect population

End optimization

Yes

Select parents
No

Figure 4.3: General process Genetic Algorithm (GA)

The optimization process is started by randomly initializing a set of individuals, called
a population. The individuals comprising the population are taken through the simulation
environment to evaluate their performance. Based on the performance and composition of
the evaluated individuals, the NSGA-III will propose a new population called the offspring.
This process is repeated until the set number of generations is reached. Upon which the
algorithm will terminate and return the found set of optimal solutions. The NSGA-III is
formally described in the pseudo code in Algorithm 3.

4.2.1 Crossover

The process of crossover uses two (well-performing) individuals of the population, called par-
ents. These two parents are combined to create two new individuals, called childs. Through
combining these parents, the algorithm intends to use the well-performing parts of both in-
dividuals to create a set of childs, called offspring, that outperforms the parents it originated
from. As this process utilizes gathered knowledge about evaluated individuals, it mainly fo-
cuses on the exploitation part of the exploration-exploitation trade-off. Crossover is repeated
on different combinations of parents until the offspring population is of identical size as the
original population.

The NSGA-III applies crossover using Simulated Binary Crossover (SBX), as seen in line 8
of the psuedo-code in Algorithm 3. Motivated by the success of binary-coded GAs in discrete
search spaces, Deb et al. (1995) developed a real-coded crossover operator which is the Simu-
lated Binary Crossover (SBX). Concluded from a number of real valued tests, the performance
shows equal or superior than binary-coded GAs using single-point crossover. SBX is found

29

Algorithm 3: Non-dominated Sorting Genetic Algorithm III (NSGA-III) [Deb and
Jain (2013)]

INPUT:
H ← set of structured reference points
Generations← number of generations to execute
⇀

LB ← lower bounds of all values
⇀

UB ← upper bounds of all values
N ← the desired number of individuals comprising a population
G ← the desired number of generations to execute

OUTPUT:
F1 final pareto frontier found

1 P0 ← randomly initialized population of individuals;
2 for g ← 0 to G do
3 Qg ← ∅;
4 Parent Combinations← ∅;

5 for i← 0 to N by 2 do
6 Parent Combinations

⋃
(Pg; i, Pg; i+1)

end

7 for each (parent1, parent2) in Parent Combinations do
8 (child1, child2)← Simulated Binary Crossover(parent1, parent2);
9 Qg ← Qg

⋃
Polynomial Mutation(child1);

10 Qg ← Qg

⋃
Polynomial Mutation(child2);

end

11 Rg ← Pg

⋃
Qg

12 (F1, F2, ...)← Non Dominated Sort(Rg);
13 Pg+1 ← Reference Based Selection((F1, F2, ...));

end

particularly useful in problems having multiple optimal solutions with a narrow global basin
and in problems where the lower and upper bounds of the global optimum are not known
apriori [Deb et al. (1995)].

Pseudo code for the SBX algorithm is shown in Algorithm 4. The SBX loops over all
values comprising an individual and applies crossover with 50% probability. When crossover
is applied two values, β and α, are calculated. Based on a new random value, these α and
β values are recalculated into a βq factor. The βq factor concerns a value between 0 and 1,
which is thereafter used to decide the difference between the value seen in the parents and the
value to be used in the child. As this difference partly depends on the maximal and minimal
value, as seen in line 13 and 19 in Algorithm 4, dissimilar parents will automatically result
in higher dissimilarity in children than more similar parents. This behavior is desired, as it
automatically adapts from exploration to exploitation as a population often starts dissimilar
and gets more similar over time. Apart from this automatic balance, the crossover distribu-
tion parameter (ηSBX) can be used to determine the degree of difference between the parents
and the offspring. A high value will create offspring resembling their parents, where a low
value will create offspring that is more distinct.

30

Algorithm 4: Simulated Binary Crossover (SBX) [Deb et al. (1995)]

INPUT:
⇀

Y ← first individual; i.e. vector as shown in Figure 4.2
⇀

Z ← second individual; i.e. vector as shown in Figure 4.2
⇀

LB ← lower bounds of values comprising an individual;
⇀

UB ← upper bounds of values comprising an individual;
ηSBX ← crossover distribution parameter value;

OUTPUT:
⇀

V first child, i.e. vector as shown in Figure 4.2
⇀

W second child, i.e. vector as shown in Figure 4.2

1

⇀

V ←
⇀

Y ;

2

⇀

W ←
⇀

Z ;

3 for i← 0 to length individual do
4 rand1 ← random[0, 1];

5 if rand1 ≤ 0.5 then
6 Xmin ← min(Yi, Zi); Xmax ← max(Yi, Zi);
7 rand2 ← random[0, 1];

8 β ← 1 +
(
2 · Xmin−LBi

Xmax−Xmin

)
; α← 2− β−(ηSBX+1);

9 if rand2 ≤ 1/α then

10 βq ← (rand2 · α)1/(ηSBX+1) ;

11 else

12 βq ←
(

1
2−rand2·α

)1/(ηSBX+1)

;

13 c1 ← 0.5 · (Xmin +Xmax − βq · (Xmax −Xmin)) ;

14 β ← 1 +
(
2 · UBi−Xmax

Xmax−Xmin

)
; α← 2− β−(ηSBX+1);

15 if rand2 ≤ 1/α then

16 βq ← (rand2 · α)1/(ηSBX+1) ;

17 else

18 βq ←
(

1
2−rand2·α

)1/(ηSBX+1)

;

19 c2 ← 0.5 · (Xmin +Xmax + βq · (Xmax −Xmin)) ;

20 rand3 ← random[0, 1];
21 if rand3 ≤ 0.5 then
22 Vi ← c2, Wi ← c1;

23 else
24 Vi ← c1, Wi ← c2;

end

31

4.2.2 Mutation

After crossover all created offspring individuals will be exposed to mutation. Where crossover
focuses on exploiting well-performing individuals, mutation intends to diversify the popula-
tion and thus induces exploration. Mutation is applied by looping over all values comprising
an individual, as explained in section 4.1.2, which will be adjusted given a certain probability
(pm). The way these values are adjusted depends on the mutation algorithm used. For the
NSGA-III Polynomial Mutation [Deb et al. (1995)] is applied, as seen in line 9 and 10 of the
pseudo-code shown in Algorithm 3.

More specifically, the highly disruptive Polynomial mutation [Hamdan (2010)] is used,
which allows for larger jumps around the search space. Polynomial Mutation (PLM) loops
over all values comprising an individual. With the independent mutation probability (pm) a
value is mutated, which implies changing the value sub-randomly. If mutation will be applied,
two β values are calculated. Both values sum to one, where β1 depicts the fraction of space
between the value of the individual and the Lower Bound (LB) and β2 towards the Upper
Bound (UB). Thereafter another random value is sampled, which decides in which direction
the value will be changed. If this random value is lower or equal to 0.5 the mutated value will
be sampled from the β1 range, implying the range between the current value and the Lower
Bound (LB). If the random value is higher than 0.5, the opposite is true and the value will
be sampled from the range between the current value and the Upper Bound (UB). As with
the SBX algorithm in Algorithm 4, the mutation distribution parameter (ηPLM) dictates the
magnitude of difference between the current value and the sampled value. Psuedo-code for
the PLM algorithm is shown in Algorithm 5.

4.2.3 Reference-based Selection

After the creation and mutation of offspring, the created individuals are evaluated using the
replicated simulation model. After evaluation there are both an evaluated parent population
and an evaluated offspring population. Both populations are equal in size, resulting in a set
of individuals twice the size of the original population (N). Selection concerns the process of
reducing this pool of individuals to the predetermined population size (N).

As opposed to its predecessor, the NSGA-II, NSGA-III maintains diversity among its solu-
tions through the use of an external guidance mechanism [Seada and Deb (2015)]. NSGA-III
uses so-called Reference-based Selection (RBS), as shown in line 13 of Algorithm 3. This
mechanism consists of a predefined, uniformly distributed set of reference directions (Zr).
Each individual is attempted to adhere to one of these reference directions in a process called
niching [Seada and Deb (2015)]. The improvement upon NSGA-II lies in the assurance of a
globally diversified population. The crowding distance of NSGA-II only ensures diversity on
the found set of individuals, where NSGA-III through reference directions looks at the entire
search space. To emphasize the difference, both diversification mechanisms are visualized in
Figure 4.4 and 4.5. The black dots symbolize selected individuals, whereas the white dots
concern discarded individuals. As can be seen, NSGA-II selects different individuals than
NSGA-III, resulting in a lower global diversity of the population.

32

Algorithm 5: Polynomial Mutation (PLM) [Liagkouras and Metaxiotis (2013)]

INPUT:
⇀

X ← individual; i.e. vector as shown in Figure 4.2
⇀

LB ← lower bounds of values comprising an individual;
⇀

UB ← upper bounds of values comprising an individual;
pm ← independent mutation probability (indpb);
ηPLM ← mutation distribution parameter value;

OUTPUT:
⇀

Z mutated individual, i.e. vector as shown in Figure 4.2

1

⇀

Z ←
⇀

X;
2 for i← 0 to length individual do
3 rand← random[0, 1];

4 if rand ≤ pm then

5 δ1 ← Xi−LBi
UBi−LBi

, δ2 ← UBi−Xi
UBi−LBi

;

6 r ← random[0, 1];

7 if r ≤ 0.5 then

8 δq ←
[
2r + (1− 2r) (1− δ1)

ηPLM+1] 1
ηPLM+1 − 1;

9 else

10 δq ← 1−
[
2 (1− r) + 2 (r − 0.5) (1− δ2)

ηPLM+1] 1
ηPLM+1 ;

11 Zi ← Xi + δq (UBi − LBi) ;
12 Zi ← min (max (Zi, LBi) , UBi) ;

end

1
2

3
4

5

6

Reference
point

Normalized
hyperplane

ଶ

ଵ

1
2

3
4

5

6

ଶ

ଵ

Select individuals
in the largest areas Select individuals

closest to reference
lineReference

line

Figure 4.4: NSGA-II: Crowding distance se-
lection

1
2

3
4

5

6

Reference
point

Normalized
hyperplane

ଶ

ଵ

1
2

3
4

5

6

ଶ

ଵ

Select individuals
in the largest areas Select individuals

closest to reference
lineReference

line

Figure 4.5: NSGA-III: Reference-based selec-
tion

To further explain the functionality of the Reference-Based Selection (RBS) operator of
the NSGA-III, pseudo-code is shown in Algorithm 6. What can be seen is that the creation of
a new population starts with the non-dominated solutions (F1), thereafter the once-dominated
(F2) and so on. This happens until the next tier of dominated solutions does not entirely
fit inside the population no more. The remaining space in the population is filled using a
process called Niching, in which all individuals are associated to a reference direction. Based
upon the niche count of every reference direction (ρj), additional individuals are selected to
be added to the next population (Pg+1).

33

Algorithm 6: Reference-Based-Selection (RBS) [Mkaouer et al. (2015)]

INPUT:
(F1, F2, ...)← list of different tiers of Pareto fronts;
N ← the desired number of individuals comprising a population;
Zr ← set of reference directions

OUTPUT:
Pg+1 Next (selected) population of individuals

1 St ← ∅;
2 i← 1;

3 do
4 St ← St

⋃
Fi; i← i+ 1;

while |St| ≤ N
5 Fl ← Fi;

6 if |St = N then
7 Pg+1 ← St;

8 else

9 Pg+1 ←
⋃l−1

j=1 Fj ;

10 K ← N − |Pt+1|;
11 [π(s), d(s)]← Associate(St,Zr);
12 ρj∈Zr ← 0;
13 for s ∈ St/Fl do
14 if π(s) = j then
15 ρj∈Zr ← ρj∈Zr + 1

end

16 Pg+1 ← Niching (K, ρj∈Zr , π(s), d(s),Zr, Fl, Pg+1) ;

4.3 Deep Reinforcement Learning agent

To mitigate the expensive computation cost of using the NSGA-III algorithm, Adaptive Op-
erator Selection (AOS) will be applied. As a sequential decision making framework, Deep
Reinforcement Learning (DRL) shows well-suited for this task [Tian et al. (2022)]. The se-
quential decision making needed in the implementation of DRL in AOS concerns the setting
the operator values dynamically. Loosely based on the “No free lunch” theorem [Wolpert and
Macready (1997)], no specific operator outperforms all other operators on all optimization
problems, no set of operators shows the be superior to all other in all stages of optimization.
Based on previous interactions, consisting of a state, action, reward and next state, a DRL
agent can learn to make sequential decisions to optimize the reward obtained. After learning,
an agent will be able to look at the current state of optimization and choose the most bene-
ficial set of operators for the desired outcome.

Compared to other methods of implementing AOS, DRL is able to alleviate the problems
that arise due to the limited number of trials and the operator selection strategy choosing upon
historical rewards. These problems result in the expectation that operators that performed
well in the past generations will perform well in future generations, which does not have
to be the case in NSGA-III. The use of DRL impedes this problem, as it allows for different

34

behavior to emerge based on the optimization progress achieved until the moment of selection.

The implementation of DRL will be done using the offline, model-free Deep Q-Networks
(DQN). DQN, being a DRL algorithm, intends to learn predicting the values of being in a
certain state. If it is able to get a correct understanding of these values, the agent will learn to
understand its environment. This understanding lets the DQN agent in every state select the
action leading to the next state with the highest value. Taking these most “profitable” actions
will result in the creation of a so-called optimal behavioral policy, which tells the agent to take
which action in which state. As evaluation time is the main concern of this research, training
needs to happen using as little evaluations as possible. In this case, DQN has some beneficial
characteristics. These characteristics concern sample efficiency and robustness, which are at-
tained through implementation of experience replay and a frozen target network respectively.
Experience replay concerns a buffer of interactions, frequently sampled to train the weights
of the underlying neural network. The frozen target network, on the other hand, implies
the agent using two neural networks. One network is used to dictate the behavior of the
agent, where the other is used to predict the value of being in a certain state. The weights
of the value network are repeatedly updated, using samples taken from the experience replay
buffer. Only periodically, the learned weights will be copied onto the behavioral network,
which dictates the behavior of the agent. This way the behavior of the agent remains stable,
preventing it to fall into a positive feedback loop chasing an actions returning a desired return.

The variation of the DQN used is called the Dueling DQN. The additional characteristic
concerns a so-called Advantage function [Sewak (2019)]. This function returns an advantage
value for all possible actions the agent can take, when in a certain state. These advantage
values tell how much better it would be to take action ak in state s over all other possible
actions a ∈ A in state s. The advantage values together with the state values are used to
calculate the Q-value(s), using the following equation:

Q(s; a; θ, α, β) = V (s; θ, β) + (A(s, a; θ, α)− 1

|A|
∑
a′

A(s, a′; θ, α))

The main benefit of using the advantage function besides the state values is to generalize
learning across actions without imposing any change to the underlying reinforcement learning
algorithm [Wang et al. (2016)]. Dueling DQN is beneficial if there could be cases where two
actions have identical value, which is likely to happen given the environmental design the
agent is deployed in.

4.3.1 State representation

The state representation concerns a description of the current state the agent is in. This
representation will be taken through the behavioral network of the DQN agent, which will
return an action to be executed. The design of this state representation should abide to
two factors. First, it should sufficiently describe the environment to enable the agent to
learn a policy that maximized the obtained rewards. Secondly, all variables comprising the
representation need to be made generic, as the purpose of the proposed solution method is to
be generalizable. The constructed representation focuses on three parts, namely:

35

1. The progress of the evolutionary process

2. The performance and spread of the individuals comprising the population

3. The performance and size of the found Pareto optimal set

First the evolutionary progress is measured using two variables, the current generation
(G) and the stagnation counter (S). The current generations (G) gives the agent insight into
how much time remains to optimize, where the stagnation counter (S) shows the agent how
many generations it did not produce any improvement. The stagnation counter is clipped,
meaning that a maximal value is set. The stagnation counter value cannot exceed 10, which
is a boundary that is only reached in extreme cases concluded from empirical evaluations.
Through clipping a certain range of values is enforced, ensuring that the value shown to the
DQN agent remains its value by preventing it from becoming too large.

The population performance and spread is summarized in three values. The first value
takes the average of all normalized objective values (Omean), giving the agent some indication
of the overall performance of the population. The second value concerns the average of all
normalized minimal values per objective value (Omin), focusing on the best obtained values
found so far. Where the third and final value describes the average normalized standard
deviations (σ) of all objectives. The reason the values are aggregated into a single value is to
allow for generalization. By using aggregates the agent can be applied to any optimization
problem, independent of the number of objective values considered.

The last part of the state representation describes the performance of the current approx-
imation of the Pareto front. This performance is summarized in two metric, the hypervolume
indicator (H) and the size of the Pareto set (PS). The hypervolume indicator (H) is the most
used set-quality indicators for the assessment of multi-objective optimizers where the actual
Pareto front is unknown [Guerreiro et al. (2020)]. Calculation of this metric uses Equation
3.1, discussed in section 3.2.2. The Pareto size (PS) is included to show the agent to what
extend the maximum size of the front is reached. If the pareto size has not reached its max-
imum, there is a possibility to extend the Pareto optimal set without the need to discard
another solution.

4.3.2 Action space

The action space of the agent concerns the decisions it is able to make. With regards to the
NSGA-III, three values are considered to be included in this space. These values are summar-
ized in Table 4.1 below, also showing the current values used in the initial implementation of
the NSGA-III [Deb and Jain (2013)] and describing the effect of high and low values.

The values described in Table 4.1 are solemnly considered. Actual construction of the
action space relies on additional information gained from the process of Bayesian hyperpara-
meter optimization, discussed later in section 5.2. This information will create insight into
feature importance and promising parametric ranges. The importance of the features will
decide on inclusion or exclusion of certain variables in the action space. The actual action
space will be made discrete, having their values uniformly taken from the parametric ranges
gathered from the hyperparameter optimization. The main reason the action space is made

36

ηSBX ηPLM indpbPLM

Operator Crossover Mutation Mutation

Description
Crossover
distribution parameter

Mutation
distribution parameter

(Independent)
mutation probability

NSGA-III value 30 20 0.01

Effect of high value
Produce children
resembling their parents

Produce mutation
resembling its origin

Higher chance for
values to be mutated

Effect of low value
Produce children
dissimilar to their parents

Produce mutation
dissimilar to its origin

Lower chance for
values to be mutated

Table 4.1: Potential action space Deep Reinforcement Learning (DRL) agent

discrete is that small changes in the considered values do not impact behavior significantly. By
setting discrete value pairs the selection of different action can be made significantly different,
which is desirable for the implementation of the DQN agent.

4.3.3 Reward function

The intended purpose of implementing DRL as AOS in the NSGA-III is to improve its conver-
gence properties with regard to speed while maintaining solution quality. The implementation
of the DQN agent is not immediately on the problem, instead its environment consists of the
optimization algorithm, more specifically NSGA-III. For this reason the objective of the agent
is different than the actual objectives of the Warehouse Design and Control Problem (WDCP)
central to this research. The actual objectives of the WDCP concern the optimization object-
ive values, discussed in section 4.1.3, whereas the DRL objective concerns fast convergence to
an Pareto front while maintaining the quality of the found set of solutions. For this reason,
choosing a reward function shows to be nontrivial. According to the paper by Karafotias et al.
(2015), scale sensitivity is of high importance when constructing a reward function for this
purpose. Within the NSGA-III, this implies the relative difference in attainable improvement
comparing the first generations to the final generations.

The reward functions tested are partly based upon the ones proposed in Karafotias et al.
(2015). Extending this list with a reward function focused on the number of dominations
[Huang et al. (2007)] and an episodic reward, calculated by the sum of all hypervolume in-
dicator values (calculated using Equation 3.1) over an entire optimization run [Huang et al.
(2021)]. In total five reward functions are tested, which are briefly introduced in Table 4.2.
The mathematical formulations use G to represent the desired number of generations to ex-
ecute until termination of the NSGA-III.

Three of the five proposed reward functions show to be scale insensitive, which concerns
reward function A, D and E. It is expected that one of these three functions will perform
best. However, the scale sensitive rewards B and C are included for testing, as the paper by
Karafotias et al. (2015) does not preclude these reward functions from having any potential
to perform well.

4.3.4 Neural architecture

As previously mentioned, DRL is implemented through the Dueling DQN algorithm. The dif-
ference compared to the regular DQN algorithm is the additional advantage function, which

37

01. Binary improvement of hypervolume indicator

Type Intermediate reward
Description A value of 1 if the hypervolume increases, 0 otherwise
Source Retrieved from: [Karafotias et al. (2015)]

Mathematical
formulation

Rewardgen =

{
1 if HVgen > HVgen−1

0 otherwise
∀ gen ∈ [1, ...,G]

02. Real-valued improvement of hypervolume indicator

Type Intermediate reward

Description
Returning the difference in hypervolume indicator
compared to the previous generation

Source Retrieved from: [Karafotias et al. (2015)]
Mathematical
formulation

Rewardgen = HVgen −HVgen−1 ∀ gen ∈ [1, ...,G]

03. Raw hypervolume indicator

Type Intermediate reward
Description Returning the obtained value for the hypervolume indicator
Source Retrieved from: [Karafotias et al. (2015)]
Mathematical
formulation

Rewardgen = HVgen ∀ gen ∈ [1, ...,G]

04. Number of child-parent dominations

Type Intermediate reward
Description Returns the amount of parents dominated by their childs
Source Retrieved from: [Huang et al. (2007)]

Mathematical
formulation

Rewardgen =
∑Offspring

c=1 Dc,p1 +Dc,p2 Dc,p =

{
1 if c ≺ p

0 otherwise
∀gen ∈ [1, ...,G]

05. Sum of hypervolume indicator over entire generational process

Type Episodic reward

Description
Rewards all actions with the sum of all
hypervolume indicator values obtained

Source Inspired by: [Huang et al. (2021)]
Mathematical
formulation

Rewardgen =
∑[1,...,G]

g=0 HVg ∀ gen ∈ [1, ...,G]

Table 4.2: Potential reward functions Deep Reinforcement Learning (DRL) agent

benefits the performance by improving the algorithmic stability during training. The Dueling
DQN agent uses two neural networks, namely the value network and the target network. The
value network is used to predict the value of being in a given state and the target network
is considered to be the behavioral policy, dictating the actions taken by the agent. Train-
ing of the neural network is done on the value network, for which the weights are updated
using batched samples of the replay buffer of past interactions. During training, the target
network is kept constant. By only periodically replacing the target network weights with the
value network weights, after every so-called replacement period, stability during training is at-
tained. As the agent acts upon its target network, it remains a steady course of action for the
time duration of one target network replacement period. This prevents the agent to immedi-
ately following previously obtained high rewards and thus falling into a positive feedback loop.

Both the value and target network have an identical architecture, as the weights of the
former are periodically copied onto the latter. The architecture consists of two feed-forward,
fully-connected layers. After these layers the network is split into a state value layer and
advantage layer. These layers are taken through an aggregation layer, which results in a

38

prediction of the state-action values (Q-values). The split in state values and advantage
values is created to simplify action selection. For action selection only the advantage values
are needed, as they indicate how good a certain action is compared to all other possible
actions. Simply choosing the action with the highest advantage value will result in the optimal
action selected with regards to the current behavioral policy of the DQN agent. The neural
architecture is visualized in Figure 4.6.

D
ense Layer 1

D
ense Layer 2

D
ense Layer 3.V

D
ense Layer 3.A

𝑽 𝒔

𝑨 𝒔, 𝒂𝟏

𝑨 𝒔, 𝒂𝟐

𝑨 𝒔, 𝒂𝒏

Aggregation

Q
𝒔, 𝒂𝟏

Q
𝒔, 𝒂𝟐

Q
𝒔, 𝒂𝒏

Input (State Representation)

Figure 4.6: Neural architecture Dueling DQN agent

Displayed in Figure 4.6 the separation in state values and advantage values can be seen
in the third hidden layer. The state value consists of a single value, as it predict the value
of being in state s. The advantage layer, on the other hand, consists of as many values as
there are actions to be selected. These values represent their relative utility, implying that
for example advantage value A(s, a1) depicts how beneficial it is to select action a1 in state s
compared to all other actions a2...an. The aggregation layer combines the value of the state
and the advantage values into Q values, also called state-action values. For example, the
Q-value Q(s, a1) describes the value of being in state s, then taking action a1 and thereafter
following the current behavioral policy of the agent.

4.4 Solution framework

The above mentioned solution methods are combined into a solution framework, which shows
the relations between these methods. A visual representation of this framework can be found
in Figure 4.7.

As can be seen in Figure 4.7, the framework consists of three main parts after initial-
ization. The Discrete Event Simulation (DES) is used to evaluate the first population of
randomly initialized individuals. The evaluated individuals are outputted towards the select
parents step of the NSGA-III, which starts the actual optimization algorithm. The parents
are used to generate a set of offspring individuals, which are then again taken through the
DES for evaluation. The performances of the offspring population are thereafter, together

39

Start optimization

Generate initial
population

Initial population
of individuals

Transform
individual to
warehouse

configuration

Simulate warehouse
configuration

Retrieve objective
values from

simulation results

Next
individual

Warehouse
configuration

Simulation
results

Generate warehouse
environment

Warehouse
environment

Select parents

Offspring
generation

Reference-based
selection

Evaluated
initial population

Evaluated
offspring population

Parent
combinations

Offspring
population

Optimization
progress

Create state
representation

Action selection

New
population

Transform action
into operator

settings

State
representation

Selected
action

Operator
settings

Hyper-
parameter
settings

End optimization

Pareto
frontier

Figure 4.7: Solution framework

with the initial population, taken through the reference-based selection operator. The selec-
tion operator reduces the number of individuals again to the initial population size, creating
a new population. After creation of this population, the optimization performance is send
to the DRL agent. The agent creates a state representation and selects an action based in
the interpretation of its environment. The selected action concerns operator settings for the
offspring generation process. This process repeats until the termination criterion is reached,
after which the final Pareto frontier is returned and the optimization process is ended.

40

Chapter 5

Experimental setup

To test the proposed solution methods, five consecutive experiments will be executed. The
order in which these experiments are executed lends itself to utilize results obtained from
previous experiments into the following experiments. These interrelations, together with a
small summary of the experiments, is described in Table 5.1.

Uses results of experiment

Exp. Description
Algorithmic
focus

Reason for execution 1a 2a 2b 3a 4a 4b 4c

1
Benchmark
NSGA-III

Optimization
algorithm

1a. Analyze NSGA-III
performance against
NSGA-II and SMPSO.
2a. Optimize the
performance of NSGA-III

X

2
Hyperparameter
optimization

Optimization
algorithm

2b. Focus action space
DRL agent on important
parameters and ranges.

X

3
Sensitivity
analysis

Optimization
algorithm

3a. Analyze robustness
of the optimized
NSGA-III algorithm.

X X

4a. Analyze performance
of different reward
functions.

X

4b. Evaluate learning
capability of DRL agent.

X X

4
Learning DRL
agent on
DTLZ2 problem

Deep
Reinforcement
Learning

4c. Evaluate learned
policy of DRL agent.

X X

5a. Benchmark DRL
agent against optimized
NSGA-III.

X X X X X

5

Evaluation of
DRL on
Warehouse Design
and Control
Problem

Deep
Reinforcement
Learning

5b. Analyze robustness
of DRL agent against
optimized NSGA-III.

X X X X X X

Table 5.1: Interrelations experimental setup

The first three experiments all focus on the optimization model. First the decision to
work with the NSGA-III is validated, by benchmarking its performance compared to the
NSGA-II and the SMPSO algorithm. Then experiment 2 optimizes the hyperparameters of

41

the NSGA-III, after which the robustness of the optimized algorithm is tested in experiment 3.

The final two experiments focus on Deep Reinforcement Learning (DRL). First experiment
4 tests the different reward functions and analyzes the learning capability of the proposed
implementation on the DTLZ2 benchmark problem. Thereafter the learned model will be
placed on the problem central to this research, namely the Warehouse Design and Control
problem. Besides benchmarking the performance against the optimized NSGA-III from ex-
periment 2, also the robustness of the implementation is tested. By replicating the sensitivity
analysis executed in experiment 3 the ability of the agent to maintain its performance in
extreme scenarios is tested against the peformance of the optimized NSGA-III.

All Python code written and used can be found on Github, using the following link:
https://github.com/RemcoCoppens/Master Thesis Code.

5.1 Experiment 1: Benchmark performance NSGA-III

First the performance of the Non-dominated Sorted Genetic Algorithm III (NSGA-III) is
compared to the state-of-art algorithms mentioned alongside NSGA-III in literature. These
algorithms concern its predecessor NSGA-II and Speed-constrained Multi-objective Particle
Swarm Optimization (SMPSO), which concerns a swarm intelligence algorithm. Literature
shows inconclusive about which algorithm performs best, which falls in line with the ”No free
lunch” theorem [Wolpert and Macready (1997)]. This theorem roughly states that there ex-
ists no operator/algorithm that outperforms all other algorithms on all optimization problems.

These three algorithms will be run on the Python replication of the simulation model, as
discussed in section 4.1.1. To compare performances the hypervolume indicator, calculated
according to Equation 3.1, will be used. As explained in section 3.2.2, this metric summarizes
the performance of the entire Pareto optimal set. The higher this metric, the more space is
dominated by the front, the better the set of solutions. Tracking this value over consecutive
episodes will enable evaluation of the Pareto front in terms of size, diversity and convergence
rate.

Evaluation of all three algorithms will be done over five independent optimization runs,
showing both the average performance and the standard deviation over these runs. The reason
five independent runs are used has to do with the computational cost of executing a single
optimization trajectory. Five runs are perceived minimally sufficient to draw conclusions on
this stochastic process. Due to the memory overhead needed to run SMPSO, the population
size used for optimization cannot consist of more than 20 individuals. Besides, due to the
high high computation cost it is not possible to optimize the hyperparameters of all three
algorithms. For this reason, to enable fair evaluation, all algorithm specific hyperparameters
are left to the values mentioned in their original papers. All optimization runs consist of 200
generations, using 20 individuals this accumulates to 4000 warehouse configurations taking
around 4.5 hours to be evaluated. Empirical analysis showed that 200 generations is sufficient
to converge to some form of an approximation of the actual Pareto front. The hyperparameter
settings of this experiment are summarized in Table 5.2.

42

SMPSO NSGA-II NSGA-III

Number of generations 2000 2000 2000
Population size 20 20 20

Crossover probability N/A 0.9 1.0
Crossover η N/A 20 30

Mutation probability N/A 1.0 1.0
Mutation η N/A 20 20
Mutation indpb N/A 0.01 0.01

Intertia weight 1 N/A N/A
Local archive size 3 N/A N/A

Table 5.2: Hyperparameter settings experiment 1

5.2 Experiment 2: Optimization of Hyperparameter

After proving superiority of the NSGA-III using the benchmark in experiment 1, its hyper-
parameter settings will be optimized. For optimization of the hyperparameters the framework
of Optuna [Akiba et al. (2019)] will be utilized. The Optuna framework uses Bayesian Op-
timization, which builds a probability model of the objective function(s) and uses it to select
the most promising hyperparameters to evaluate next. This is beneficial as the next hyper-
parameters are chosen based on previously obtained results, which sets it apart from classical
methods like grid and random search.

The objective value used to evaluate different hyperparameter settings is focuses on the
convergence performance of the algorithm, taking both convergence speed and solution quality
into account. The designed metric consists of the overall sum of hypervolume indicator [Equa-
tion 3.1] attained at every generation. This way both fast convergence and higher quality
solutions lead to the performance value being higher. To mitigate the effect of high compu-
tation time on the possible amount of algorithmic evaluations, it is decided to not run the
entire 200 generations. Dependent on the NSGA-III performance of experiment 1 the number
of generations is set to a minimum number, still allowing it to converge properly in most cases.

The Optuna algorithm got three values which it could adjust, namely the distribution
parameter of both the crossover (ηSBX) and mutation (ηPLM) operator and the independent
mutation probability (indpbPLM). The allowed ranges for these parameters are summarized
in Table 5.3. These ranges are set to allow for a wide enough range to optimize, without
loosing the value of the underlying operator. To remain valid parameter settings for the dis-
tribution parameters (η), the upper bounds are set through empirically investigating different
settings of the operators in an isolated setting on single valued individuals.

Hyperparameter Type Lower bound Upper bound

Crossover distribution parameter (ηSBX) Int 0 100

Mutation distribution parameter (ηPLM) Int 0 100

Independent Mutation Probability (indpbPLM) Float 0.0 1.0

Table 5.3: Optuna hyperparameter ranges

43

Besides optimal hyperparameter settings for the NSGA-III operators, also the hyperpara-
meter objective space will be extensively studied. Information regarding promising hyper-
parameter regions and the importance of features will guide the design of the action space for
the Deep Reinforcement Learning agent.

5.3 Experiment 3: Sensitivity analysis

After hyperparameter optimization, the optimized model will be tested against different scen-
arios. These scenarios are designed to test the robustness of the optimization algorithm, show-
ing the extend to which the algorithm remains its performance despite increased complexity
of the underlying problem. Three scenarios are tested, which all focus on a potential increase
in complexity for either one or more of the objective values used throughout this research.

1. Increased amount and size of trucks arriving
Increasing the amount of truck arrivals and their size will imply increasing the overall
workload for internal logistics. The arrival of these trucks is uniformly distributed over
different time slots over a day, showing no concentration of excessive workload on a
specific part of the day. This increase will occur on both inbound and outbound trucks,
as an equilibrium is needed to keep the warehouse inventory stable. This analysis
focuses on overall workload, having an effect on all aspects of the optimization problem.
These aspects concern the Product Placement Algorithm, the number of resources and
the layout design of the warehouse. An expected result of this increased workload is
congestion around the docks and consolidation areas, due to the increased loading and
deloading time. It is expected that all objective values will increase, with the most
significant effect on tardiness of outbound trucks.

2. Inconsistency in truck arrivals
As opposed to an overall increase of pressure on internal logistics, this analysis looks
into an irregular distribution of the daily workload. The overall workload will not be
adapted and will stay identical to the original implementation. The distribution of this
workload will, however, be concentrated on the first half of the day. Creating a scenario
in which 3/4 of the trucks arrive in the first half of the day and the remaining 1/4
arrives in the second half, as opposed to the uniform distribution of workload in the
original scenario. The complexity of irregular workload will result in presumably high
resource cost, despite a high level of resources staying idle in the second half of the day.
The model will have to decide to either place too much resources or too little resources,
with no possibility to strike a balance between the two. It is expected that this trade-
off will increase volatility of the performance of the algorithm. This scenario increases
the complexity of the underlying Resource Allocation Problem (RAP), looking into the
sensitivity towards the second objective value Resource cost.

3. Increased product portfolio
The final analysis looks into increasing the difficulty of the underlying Product Alloca-
tion Problem (PAP) by increasing the diversity of the product portfolio. The number
of possible products is doubled, increasing the product portfolio size from 1981 to 3962
distinct products. By duplicating the occurrence probability of these product, the di-
versity of products both within inbound trucks and requested by outbound trucks is

44

doubled. The increased complexity of this scenario focuses on the sensitivity towards
the third and final objective, namely the amount of unplaceable products.

5.4 Experiment 4: Learning DRL agent on DTLZ2 problem

Despite the performance gain obtained through replication of the simulation in Python, still
the simulation model is too slow to learn a DRL agent in a considerable amount of time. Ad-
ditionally, different agent configuration with regard to reward functions and hyperparameter
settings need to be tested, which asks for a faster alternative. For this reason an agent will
be trained on another problem, which is more simple and faster to evaluate individuals. This
problem concerns the problem suite designed by Deb, Thiele, Laumanns and Zitzler, named
DTLZ2. DTLZ2 is a mathematical, multi-objective optimization problem. The reason this
problem is chosen is that it allows for adaptation of the number of objectives and decision
variables. Minimizing the difference between the DTLZ2 problem and the Warehouse Design
and Control Problem central to this research.

As can be seen in Table 5.1, the reasons to execute this experiment is three fold. First
the proposed reward functions, described in Table 4.2, are tested. To evaluate the learning
capabilities of differently configured agents, the volatility of the learning trajectory needs to
be taken into account. For this reason all reward functions are tested over five independent
runs, showing their average score and standard deviation. The performance score of an agent
is calculated using a discounted sum over the performance of the generational processes. The
performance of a single process is identically calculated as in hyperparameter optimization,
namely by the sum of all hypervolume indicator values [Equation 3.1] obtained during all
generations of the optimization process. A mathematical formulation of this performance
score can be described as follows:

Performance agent =

Episodes∑
e=0

γe ·
Generations∑

g=0

HVg,e (5.1)

By discounting these values over all training episodes, both the needed training time and
the quality of the learned policy are evaluated. During reward function evaluation the agent
is allowed to learn for 2000 episodes, in which every episode represents an entire run of the
optimization algorithm for 200 generations. The hyperparameter settings for this analysis are
described in Table 5.4.

The other two reasons for execution of this experiment concern evaluation of the learning
capabilities of the agent and an analysis of the learned optimal policy. First a new agent is
trained using the best performing reward function, showing the highest performance score
calculated using Equation 5.1. For the learning trajectory the number of episodes is doubled,
from 2000 to 4000 episodes of entire optimization processes of 200 generations. The intended
purpose of this is to increase the change of the agent converging to its optimal policy. The
increased number of episodes also decreases the epsilon decay factor to 0.99825, extending the
period in which the agent explores the environment using random actions. The performance
of the trained agent on the DTLZ2 training environment is compared to a randomly initialized

45

Hyperparameter Value

NN layer size 1 32
NN layer size 2 64
Number of episodes 2000
Learning rate 1e-4
Gamma 0.99
Batch size 32
Epsilon start 1.0
Epsilon decay Exponential
Epsilon decay factor 0.9975
Epsilon end 0.1
Replacement period 20000 (Every 100 optimization runs)

Table 5.4: Hyperparameter settings DRL Agent

agent and the optimized NSGA-III algorithm without Adaptive Operator Selection (AOS).

Finally, the learned optimal policy is analyzed. This analysis is conducted on a data
set gathered by running 500 independent optimization trajectories, in which the agent acts
greedily upon its learned policy. First the fraction of actions selected in different generations
will be analyzed, to gain insight into policy differences in consecutive stages of the evolutionary
process. To further understand the decisions made by the agent a decision tree will be fitted
using the gathered data. A decision tree is able to visualize a high-level overview of the
decisions made by the agent, indicating values determining the selection of certain actions.

5.5 Experiment 5: Evaluating agent performance on theWare-
house Design and Control Problem

The fifth and final experiment concerns the application of the Deep Reinforcement Learn-
ing (DRL) agent on the actual Warehouse Design and Control Problem (WDCP). The DRL
agent is not applied on the problem directly but instead on the optimization algorithm, more
specifically the NSGA-III. As the NSGA-III handles the optimization problem as a black
box, it is expected that the agent can simply be copied from one problem to the next. The
main difference between the DTLZ2 benchmark problem and the WDCP is the complexity of
the objective space. DTLZ2 concerns a relatively simple, convex objective space, where the
WDCP has a complex, non-convex objective space.

First the performance of the agent will be tested on the WDCP central to this research.
This test will compare its performance with both a random agent and the optimized NSGA-
III algorithm, obtained in experiment 2. The random agent is included to validate that the
performance difference can be assigned to the learning policy, and it not being a byproduct of
random Adaptive Operator Selection (AOS). To include variability, all model performances
show and average and their standard deviation over five independent optimization runs.

Finally the robustness of the agent is tested, for which the sensitivity analyses of ex-
periment 3 are repeated. By comparing the performance of the agent and the optimized

46

NSGA-III algorithm, potential differences in model robustness can be measured. For this
analysis no random agent will be included. The main reason for this is time, as running these
optimization trajectories has a high computational cost. As variability is present, every model
performance is an aggregate over five independent runs, showing the average values and their
standard deviations.

47

Chapter 6

Results

This chapter will elaborate on the results obtained from execution of the experiments dis-
cussed in chapter 5. The results are discussed in the order of execution of the experiments,
where in most cases the results of the previous experiments are used into the consecutive
experiments. First the NSGA-III is benchmarked against the NSGA-II and the SMPSO al-
gorithm in section 6.1, after which its hyperparameters are optimized in section 6.2. The
optimized NSGA-III model is taken through several sensitivity analyses in section 6.3. After
which Deep Reinforcement Learning is trained in section 6.4 and evaluated on the problem
of this thesis in section 6.5.

6.1 Experiment 1: Benchmark performance NSGA-III

First the validity of the decision to work with the NSGA-III is tested, benchmarking its
performance against other well performing multi-objective optimization models discussed in
section 3.2.2. These models concern its predecessor, the NSGA-II, and the Speed-constrained
Multi-objective Particle Swarm Optimization (SMPSO) algorithm.

As a result of the high computation time of a single optimization run, the evaluation is
restricted to use solemnly the original hyperparameter settings as mentioned in their original
papers [Deb and Jain (2013); Deb et al. (2000); Nebro et al. (2009)]. This computation time
restriction also makes a thorough evaluation of the variability of these algorithms impractic-
able. Still these models are evaluated using five independent optimization runs, sharing an
identical random seed for the underlying warehouse simulation. Execution of multiple optim-
ization runs allows for some indication regarding the variability of the optimization models,
visualized using error bars, shown in the plotted performances in Figure 6.1. The thick line
represents the average performance over all five independent runs, where the areas display
the volatility between the runs.

Looking at the model performances in Figure 6.1 it can be seen that both the NSGA-II
and the SMPSO algorithm have a fairly slow optimization trajectory. For the NSGA-II, the
main reason for this slow optimization is its loss of population diversity. This loss happens
around generation 27 and is most probably an effect of the small population size used. After
this loss of diversity the algorithm is unable to improve its performance any further. Cros-
sover does not yield severe enough difference in their offspring to include enough new genetic

48

0 25 50 75 100 125 150 175 200

Generation

0.65

0.70

0.75

0.80

0.85

0.90

0.95

H
yp

er
vo

lu
m
e
In
d
ic
a
to
r

Hypervolume indicator over consecutive generations

NSGA-III

NSGA-II

SMPSO

Figure 6.1: Benchmark NSGA-III against NSGA-II and SMPSO on the WDCP

material to break out of this converged population.

SMPSO, on the other hand, keeps a steady pace of incremental improvement. Due to its
inherent design of gradually moving through the search space, the SMPSO algorithm is less
prone to loss of population diversity. The slow improvement of SMPSO can have multiple
explanations, of which local archive size is most probably affecting the algorithm the most.
The local archive holds the best found solutions for all individual particles and is set to hold
a maximum of three Pareto-optimal solutions. Holding less solutions, these archives contain
less well-defined local Pareto fronts. Decreasing the accuracy of local attraction, being one
of the forces deciding the direction and velocity of a particle flying through the decision space.

Conclusively it is clear that NSGA-III outperforms both the NSGA-II and the SMPSO
algorithm. The highest hypervolume indicator attained by NSGA-III is 0.92, which is signi-
ficantly higher than the 0.80 and 0.84 obtained by the NSGA-II and the SMPSO algorithm.
This difference shows that the NSGA-III is able to obtain a better solution quality. On the
other hand, looking at convergence speed, the NSGA-III is also able to outperform both other
algorithms. The convergence speed is calculated looking at the area under the curve, which
shows a significant difference. The total area under the curve is calculated by taking the
sum over all obtained hypervolume indicator values. This metric accumulates to 180 for the
NSGA-III, 161 for the NSGA-II and 163 for the SMPSO algorithm. Besides performance,
both the NSGA-II and NSGA-III show faster computation than the SMPSO algorithm. All
computation of a single generation for NSGA-II and NSGA-III take around 56 and 55 seconds
respectively, as opposed to the 64 seconds for the SMPSO algorithm. The difference in com-

49

putation time lies in the different algorithmic design, in which SMPSO needs a lot more
computations to get from one population to the next. These finding validates the decision to
use NSGA-III as the algorithm of choice for further execution of this research project.

6.2 Experiment 2: Hyperparameter optimization

After the decision to use NSGA-III as the algorithm of choice for this research project, its
hyperparameters need to be tuned. Using the Python library Optuna [Akiba et al. (2019)],
Bayesian optimization is applied on the previously discussed parameters and value ranges.
The main purpose of hyperparameter optimization is to gain convergence speed, which only
requests insight into the beginning of the optimization process. For this reason, concluding
from the performance of the NSGA-III shown in Figure 6.1, it is perceived sufficient to only
run 50 generations per hyperparameter settings. In total 30 trials consisting of 50 genera-
tions using 20 individuals are executed, surmounting to a total computation time of around
33 hours. These trials are summarized in a contour plot, visualized in Figure 6.2.

37

36

35

34

33

32

31

30

Contour Plot

et
a

(P
LM

)
et

a
(S

BX
)

in
dp

b
(P

LM
)

eta (PLM) eta (SBX) indpb (PLM)
0 20 40 60 80 100 0 20 40 60 80 1000 20 40 60 80 100

100
80
60
40
20

0

100
80
60
40
20

0

100
80
60
40
20

0

Objective
Value

Figure 6.2: NSGA-III hyperparameter optimization - Contour plot

The contour plot shows all combinations of the three hyperparameters, namely the distri-
bution parameter for crossover (eta (SBX)) and mutation (eta (PLM)) and the independ-
ent mutation probability (indpb (PLM)). The black dots represent trials, proposed by the
Bayesian optimization algorithm and thereafter evalauted for their performance. The lighter
areas show higher objective values, indicating higher quality and/or speed of generational
convergence.

The performance of different values for the independent mutation probability (indpb) show
a clear range of values, between 0(%) and 20(%), returning higher objective values. The dis-
tribution parameter for mutation (eta (PLM)) and crossover (eta (SBX)), however, show a
less well-defined range of optimal values. The plot showing both these distribution paramet-
ers indicates that the mutation has a more significant effect on performance, where crossover
shows a more uniform distribution of values returning near-equal performance. This uniform
spread of values might indicate a lower feature importance, as opposed to the other values

50

which clearly show different results for different values. Further evaluation of this feature im-
portance is executed by extracting the observed importance of all parameters by the Bayesian
optimization algorithm, which are visualized in Figure 6.3.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Importance for the objective value

indpb (PLM)

eta (PLM)

eta (SBX)

0.79

0.39

0.02

Hyperparameter importance

Figure 6.3: NSGA-III hyperparameter optimization - Feature importance

Concluding from Figure 6.3 it can clearly be seen that the hypothesis concerning the
crossover distribution parameter being of less importance than the other parameters is valid.
A potential reason for this might be due to the non-convexity of the WDCP problem. As
the local neighborhood of well-performing individuals does not guarantee good performance,
exploitation becomes less beneficial. For this reason it is decided to remove the crossover
operator from the action space in the implementation of Deep Reinforcement Learning (DRL).
Leaving the agent to only adjust the mutation operator. The allowed ranges are deduced from
the contour plot, resulting in the independent probability to be varied between 0.0 and 0.2 and
the distribution parameter on the full range between 0 and 100. The crossover distribution
parameter (eta (SBX)) is excluded from the action space of the DRL agent and is set to
34, which is the optimal value found by Optuna. This value is remarkably close to the value
found in the original implementation of NSGA-III, being 30 [Deb and Jain (2013)].

6.3 Experiment 3: Sensitivity Analysis

Using the optimized hyperparameter settings obtained in the previous experiment, a sens-
itivity analysis is executed to test the robustness of the optimized NSGA-III. This analysis
consists of three sub-analyses, all focusing on putting tension specifically on one of the three
objective values. Increasing the amount and size of truck arrivals puts tension on truck tardi-
ness [section 6.3.1], inconsistent truck arrivals on resource cost [section 6.3.2] and finally an
increased product portfolio on the number of unplaceable products [section 6.3.3].

51

All performances are shown in two plots, one showing the hypervolume indicator over
consecutive generations and one showing the average Pareto front performance on all three
objective values separately. These values are obtained from five independent optimization
runs, showing both the average and standard devation for the hypervolume indicator plots.
For the average Pareto front performance only the average performance is shown, as inclusion
of standard deviations would obscure the understandability of the plots.

6.3.1 Increased amount and size of trucks

Increasing both the size and amount of incoming trucks increases the complexity for the
model to balance between less resources while maintaining a low outbound truck tardiness.
The decision to remove a single resource from the available fleet, independent of resource
type, will result in a more severe reaction on the tardiness of outbound trucks. This effect
can clearly be seen in the hypervolume indicator, visualized in Figure 6.4.

0 25 50 75 100 125 150 175 200

Generation

0.55

0.60

0.65

0.70

0.75

H
y
p
er
v
o
lu
m
e
In
d
ic
a
to
r

Optimization performance experiment 1: Increased amount and size of trucks

Figure 6.4: Increased amount and size of trucks - Hypervolume indicator

The model still shows the ability to converge to a set of Pareto-optimal solutions, al-
beit on a relatively low hypervolume indicator. The reason for this can be explained by the
way this metric is calculated. More specifically with the normalization applied to enable
calculation of the hypervolume indicator. The objective values are (Min-Max) normalized to-
wards their hypothesized best attainable values, ensuring the value to fall within the allowed
ranges through value clipping. Due to the previously discussed increased effect of decreasing
resources, values near the optimal truck tardiness will become dominated quickly. This will
remove them from the Pareto set, excluding them from the hypervolume indicator calculation.
This effect can also be seen in the average population performance, as visualized in Figure 6.5.

The plot showing the average tardiness of outbound trucks shows an increase in the value
over consecutive generations. This clearly indicates the effect of domination of solutions
performing fairly well on this metric. Explaining the relatively poor performance of the
hypervolume indicator in Figure 6.4.

52

0 100 200

Generation

2000

2500

3000

3500

4000

O
u
tb

o
u
n
d
tr
u
ck

p
er
fo
rm

a
n
ce

Average tardiness of outbound trucks

0 100 200

Generation

0.8

1.0

1.2

1.4

1.6

T
o
ta
l
re
so
u
rc
e
co

st

×106
Average resource cost

0 100 200

Generation

200

400

600

800

N
u
m
b
er

o
f
u
n
p
la
ce
a
b
le

p
ro
d
u
ct
s

Average unplaceable products

Optimization performance experiment 1: Increased amount and size of trucks

Figure 6.5: Increased amount and size of trucks - Average Pareto set performance

6.3.2 Inconsistent arrival of trucks

Removing the consistency with which trucks arrive will complicate the Resource Allocation
Problem (RAP), discussed in section 3.1.2. The RAP being a part of the Warehouse Design
and Control Problem (WDCP) central to this research. In the tested scenario 3/4 of the
amount of trucks arrive in the first half of the day, where the remaining 1/4 of trucks arrive
in the second half. Doing this remains the overall workload of a single day, setting this ana-
lysis apart from the first scenario tested. The performance of this scenario is visualized in
Figure 6.6.

0 25 50 75 100 125 150 175 200

Generation

0.65

0.70

0.75

0.80

0.85

H
y
p
er
v
o
lu
m
e
In
d
ic
a
to
r

Optimization performance experiment 2: Inconsistent arrival of trucks

Figure 6.6: Inconsistent truck arrivals - Hypervolume indicator

Looking at the hypervolume indicator over consecutive generations in Figure 6.6, it can
be seen that the algorithm is able to converge to a decent approximation of the actual Pareto
frontier. Interesting to note is that the variability between the five distinct optimization runs
shows to increase over consecutive generations. A possible explanation for this may be the
different ways the algorithm can handle the trade-off between resource cost and their idle
time. Higher amounts of resources will allow for better performance during higher workload,

53

but will result in resource cost incremented for resources staying idle. The opposite is also
true, lower amounts of resources will lower the resource cost and idle time, but will result in
poorer performance during higher workload.

0 100 200

Generation

800

1000

1200

1400

O
u
tb

o
u
n
d
tr
u
ck

p
er
fo
rm

a
n
ce

Average tardiness of outbound trucks

0 100 200

Generation

0.8

1.0

1.2

1.4

1.6

T
o
ta
l
re
so
u
rc
e
co

st

×106
Average resource cost

0 100 200

Generation

400

600

800

1000

1200

N
u
m
b
er

o
f
u
n
p
la
ce
a
b
le

p
ro
d
u
ct
s

Average unplaceable products

Optimization performance experiment 2: Inconsistent arrival of trucks

Figure 6.7: Inconsistent truck arrivals - Average Pareto set performance

This effect can also be seen in the average population performance, visualized in Figure 6.6.
The average tardiness of outbound trucks shows a high volatility, all within a relatively high
range of values. The spikes in this graph indicate the domination of well-performing indi-
viduals on this metric, which are removed from the population. An increased population size,
instead of the currently used size of 20, might mitigate this effect. Increasing the population
size will increase the allowed size of the Pareto-optimal set, leaving room for a wider variety
of non-dominated solutions after the selection operator of the NSGA-III. However, increasing
the population size will significantly increase computation time. As almost all computation
time is dedicated to the evaluations of individuals it is decided to not increase the size of the
population.

6.3.3 Increased product portfolio

The final analysis looks into the effect of doubling the product portfolio. Increasing product
diversity complicates the Product Allocation Problem (PAP), discussed in section 3.1.3. The
PAP is also part of the problems underlying the WDCP central to this research. The creation
of in- and outbound truck orders is based on a set of probabilities, defining for all individual
products the chance of belonging to a given truck order. The probability assignment over
these products is replicated, recomputing the probabilities to again represent a fair set of
probabilities. This ensures that the diversity of products is doubled, following identical dis-
tributions as the original set of products. The convergence performance of the NSGA-III
algorithm in this scenario is shown in Figure 6.8.

The hypervolume indicator over consecutive generations, shown in Figure 6.8, indicates
that the performance is relatively unaffected by the environmental adjustment. It does, how-
ever, show high volatility until the 75 generation. A possible explanation for this could be
found in the procedure of selecting product based on a set of probability distributions. Res-
ulting in some simulation runs showing a higher amount of different products as opposed to
order consisting of a lot of similar products. To further evaluate the sensitivity of the model

54

0 25 50 75 100 125 150 175 200

Generation

0.70

0.75

0.80

0.85

0.90

H
y
p
er
v
o
lu
m
e
In
d
ic
a
to
r

Optimization performance experiment 3: Increased product portfolio

Figure 6.8: Increased product portfolio - Hypervolume indicator

towards this environmental adjustment, also the average population performances are plotted
in Figure 6.9.

0 100 200

Generation

300

400

500

600

700

800

900

O
u
tb

o
u
n
d
tr
u
ck

p
er
fo
rm

a
n
ce

Average tardiness of outbound trucks

0 100 200

Generation

0.6

0.8

1.0

1.2

1.4

1.6

T
o
ta
l
re
so
u
rc
e
co

st

×106
Average resource cost

0 100 200

Generation

200

300

400

500

600

700

800

N
u
m
b
er

o
f
u
n
p
la
ce
a
b
le

p
ro
d
u
ct
s

Average unplaceable products

Optimization performance experiment 3: Increased product portfolio

Figure 6.9: Increased product portfolio - Average Pareto set performance

Increasing the size of the product portfolio was expected to have a significant effect on
unplaceable products. This expectation shows to be false, as indicated by the stable min-
imization of this metric throughout the population over consecutive generations, as seen in
Figure 6.9. The performance attained, despite the larger product portfolio, might indicate
the strength of the Product Placement Algorithm, as described in algorithm 1. The increased
variety of different products results in the inventory of individual products to be lower. As
the rule for placement in back-to-back storage includes the current inventory being lower
than a set value, the probability of placement in back-to-back increases. This is beneficial in
this scenario, as back-to-back storage places all products in their own storage location. The
model remaining its performance is a clear indication that the design of the PPA is robust,
withstanding even extreme conditions.

55

The increasing trajectory of the average truck tardiness is also remarkable, as this scenario
was not expected to have any effect on this metric. Quite possibly this might be due to
products being stored more spread around the warehouse, increasing the difficulty of correctly
docking a truck through the Truck Docking Algorithm (TDA), as explained in algorithm 2.
This will increase the needed travel time to retrieve products from storage to the consolidation
area, which will affect the tardiness of outbound trucks.

6.4 Experiment 4: Deep Reinforcement Learning on test prob-
lem

Due to the time complexity of evaluating a single warehouse configuration, the Deep Rein-
forcement Learning agent will not be learned on the Warehouse Design and Control Problem
(WDCP) central to this research. The learning problem concerns the DTLZ2 benchmark, as
implemented in the Pymoo Python package, which concerns a multi-objective optimization
problem. DTLZ2 allows for adaptation of the amount of decision variables and objective
values, which enables increasing the similarity compared to the WDCP. Doing this minimize
the differences in problem structure to impede the agent from learning a successful policy for
the WDCP.

6.4.1 Testing reward functions

As mentioned in section 4.3.3, the selection of a reward function is nontrivial. Mainly as
the objective of the DRL agent is different than the objective of the optimization model
on the WDCP. For this reason five different reward functions are tested, all using similar
hyperparameter settings as discussed in section 5.4. The performance is evaluated using the
formula:

Performance agent =

Episodes∑
e=0

γe ∗
Generations∑

g=0

HVg,e (6.1)

For each reward function five independent learning trajectories are run, of which the averages
and standard deviations are shown in Table 6.1. The discount factor (γ) used is set to 0.99.

Reward
index

Reward name Reward type
Mean

performance
Standard deviation

performance
01. Binary HV Intermediate 12.537 18.26
02. Continuous HV Intermediate 12.469 54.24
03. Raw HV Intermediate 12.556 24.53
04. Number of child-parent dominations Intermediate 12.560 67.11
05. Sum of HV over all generations Episodic 12.584 49.63

Table 6.1: Performance different reward functions

Concluding from Table 6.1 the episodic reward shows the best average performance. The
differences are marginal, which might be an effect of the decaying epsilon value throughout
training. Due to discounting of the obtained hypervolume indicator, there is a larger emphasis
on earlier episodes. These earlier episodes are also affected by a higher number of random
actions, due to the exponentially decaying epsilon. As this is identical for all trajectories

56

independent of reward function used, and all evaluations are run five independent times, the
comparison is still perceived valid.

Regarding standard deviation there are significant differences between the different reward
functions. Binary hypervolume indicator shows the lowest standard deviation, as it concerns
a metric measured over the entire population. The opposite is true for the number of child
parent dominations. Calculation of this metric concerns all offspring individuals separately,
allowing for greater difference between different generations and thus resulting in the highest
standard deviation. The standard deviation of the episodic reward, however, also shows
relatively high. A possible explanation might be that episodic reward requires more episodes
to distinguish good from bad actions. As all actions within an episode are given an identical
reward, some bad actions will be praised and some good actions will be punished. By running
more episodes this effect will decrease, as probabilistically good actions are more apparent
in episodes obtaining a high reward and bad actions more apparent in low reward episodes.
Extending the learning time from 2000 to 4000 episodes will most probably result in a lower
standard deviation and thus a clear preference for the episodic reward. For this reason the
actual DRL agent will be learned with an episodic reward function, mathematically formulated
in Equation 6.2.

Rewardgen =
Generations∑

g=0

HVg ∀ gen ∈ Generations (6.2)

6.4.2 Performance comparison

Concluding from the comparison of reward functions, the episodic sum of hypervolume indic-
ators shows superior performance. To gain insight in the actual performance of the agent, it
is compared against a random policy and the optimized NSGA-III without AOS. The average
performances of these different models are visualized in Figure 6.10 below. It is decided to
show only the first half of the 200 generations executed. These generations emphasize the
difference in convergence speed and quality, as later generations show a fairly linear line to
convergence.

Concluding from Figure 6.10 the learned agent outperforms both other models, indicating
that the agent is able to successfully learn a policy. The difference between the optimized
NSGA-III and the agent induced NSGA-III is significant, showing the added value of AOS.
However, the difference between the trained and random agent is of a smaller magnitude,
showing the average performance of the former to perform on the upside of the error bars
of the latter. A possible explanation can be that this is the effect of working with a small
population and the inherent design of the NSGA-III algorithm. Under the expectation that
the random agent will decide uniformly which action to take, 50% of its actions show an
inclination towards more radical mutation. This unguided probability for mutation might help
the algorithm the make significant leaps through the objective space, which could explain the
good performance of the random agent. Still, the guided actions of the trained agent show
superior convergence speed. Taking contextual information into account allows the agent
to decide on severity of mutation more effectively. The benefit of the learned agent over the

57

0 20 40 60 80 100

Generation

0.0

0.2

0.4

0.6

0.8

H
y
p
er
v
o
lu
m
e
In
d
ic
a
to
r

Hypervolume indicator over consecutive generations

Agent

No Agent

Random Agent

Figure 6.10: Performance benchmark DRL agent on DTLZ2

random agent concerns convergence speed, in which the former needs less evaluations to reach
a well-performing Pareto front than the latter.

6.4.3 Policy evaluation

To both gain insight into the behavioral policy of the agent and to validate the radical muta-
tion hypothesis for the performance of the random agent, a policy evaluation is executed. The
evaluation consists of monitoring the behavior of the agent over 500 independent optimiza-
tion runs, deciding upon the parametric values of the mutation operator based on the learned
policy. The values allowed for the mutation operator are taken from the ranges retrieved
from the Bayesian hyperparameter optimization, as discussed in section 6.2. During these
runs the agent is only used to request actions, meaning that no adjustments are made to the
underlying weights of the neural network. By taking the fractions of the amount of times a
single action is chosen in a given generation, insight is gained into the behavioral policy of
the agent over time. A visualization of these fractions over consecutive generation is shown
in Figure 6.11.

Interesting to see is that the behavioral policy of the learned agent shows a higher prefer-
ence towards explorative behavior in later generations. This finding contradicts the intuitive
sense that the agent first diverges and then converges. An explanation can be found in
the structural design of the NSGA-III algorithm. As the DRL induced algorithm starts to
converge around generation 50 it gets more difficult to create offspring which dominates its
parents. Especially in the neighborhood of the solution comprising the Pareto optimal set.
Explorative behavior is beneficial in this scenario, as it allows to explore new regions of the

58

0 25 50 75 100 125 150 175 200

Generation

0.0

0.2

0.4

0.6

0.8

1.0

A
ct
io
n
se
le
ct
io
n
fr
ac
ti
on

Policy evaluation over consecutive generations

eta: 10, indpb: 0.01

eta: 10, indpb: 0.05

eta: 10, indpb: 0.10

eta: 10, indpb: 0.15

eta: 10, indpb: 0.20

eta: 50, indpb: 0.01

eta: 50, indpb: 0.05

eta: 50, indpb: 0.10

eta: 50, indpb: 0.15

eta: 50, indpb: 0.20

eta: 100, indpb: 0.01

eta: 100, indpb: 0.05

eta: 100, indpb: 0.10

eta: 100, indpb: 0.15

eta: 100, indpb: 0.20

Figure 6.11: Policy visualization for the DTLZ2 benchmark problem over consecutive generations

objective space. Through the selection operator of the NSGA-III, less performing individuals
will be eliminated. This prevents the algorithm from losing its performance, and thus mitig-
ates the downside of more severe exploration. The dynamics of the selection operator of the
NSGA-III might also explain the performance of the random agent, as it has a 50% chance
of choosing for behavior inclined to more radical mutation. To gain more insight into the
behavior of the agent, the average state representation values of the interactions underlying
Figure 6.11 are plotted in Figure 6.12.

Apparent is the spike in the stagnation counter during the first 20 generations. This
spike is directly related to the region inclined to high exploitation, as seen in Figure 6.11. A
possible explanation for this spike can be due to normalization for the hypervolume indicator
calculation. During normalization the values are clipped, implying values above an upper
bound or below a lower bound are set to the upper and lower bound values respectively. For
the DTLZ2 benchmark these values are set relatively strict, resulting in often setting values
to the upper bound. If this happens for all objective values this results in a hypervolume
indicator value of 0, which can also be seen in the hypervolume indicator trajectory shown in
Figure 6.10. During the generations it takes the algorithm to minimize the values below the
upper bound no improvements are made, resulting in an increased stagnation counter.

Further evaluation of the behavioral policy can be conducted through fitting a decision
tree on the set of interactions. The data set used concerns five million interactions of the
learned agent with the DTLZ2 environment. To allow for interpretability of the tree, the
action space of the agent is categorized in either exploration or exploitation. This categoriz-
ation is summarized in Table 6.2.

Before training the decision tree on the data set, preprocessing is applied. In this process

59

0 25 50 75 100 125 150 175 200

Generation

0.0

0.2

0.4

0.6

0.8

1.0

A
ve
ra
ge

n
or
m
al
iz
ed

va
lu
e

Average state representation over consecutive generations

Stagnation counter

Avg. objective values population

Avg. objective values Pareto front

St. dev. population

Hypervolume indicator

Pareto front size

Figure 6.12: Visualization of state representation values for the DTLZ2 over consecutive generations

Exploit Explore

eta (PLM) indpb (PLM) eta (PLM) indpb (PLM)

10 0.01 50 0.10

10 0.05 50 0.15

10 0.10 50 0.20

10 0.15 100 0.05

10 0.20 100 0.10

50 0.01 100 0.15

50 0.05 100 0.20

100 0.01

Table 6.2: Categorization action space DRL agent

the data set is balanced and normalized, which steps are configured in a data pipeline to
prevent data leakage and thus enable fair evaluation of the performance. The performance is
measured through 10-fold, stratified cross-validation and is evaluated for trees varying from
a depth of 2 to a depth of 10. Eventually, it is decided to work with a tree of depth 4, as
to maintain a sense of interpretability. This tree attained a result of 65% accuracy and is
visualized in Figure 6.13.

Analyzing this tree it can be seen that most predictions follow the light blue trajectory,
resulting in exploratory behavior. Interesting to see is that a low hypervolume indicator
often leads to exploitation, whereas a higher current performance leads to exploration. This
finding shows again to be counter intuitive, as you expect a desire to exploit well performing
individuals and explore when the current population is not performing well. Concluding from
the decision tree the agent does not pay much attention towards the current generation, which
is only present on the far left of both second-level sub trees. The hypervolume indicator and
Pareto size are, however, most often used. This difference in perceived importance can be

60

5.6%
[0.79, 0.21]
Exploitation

0.0%
[0.0, 1.0]

Exploration

0.2%
[0.62, 0.38]
Exploitation

0.8%
[0.75, 0.25]
Exploitation

0.5%
[0.78, 0.22]
Exploitation

0.1%
[0.5, 0.5]

Exploitation

0.3%
[0.48, 0.52]
Exploration

0.1%
[0.65, 0.35]
Exploitation

2.5%
[0.41, 0.59]
Exploration

4.8%
[0.47, 0.53]
Exploration

67.2%
[0.47, 0.53]
Exploration

17.4%
[0.49, 0.51]
Exploration

0.0%
[0.45, 0.55]
Exploration

0.0%
[0.0, 1.0]

Exploration

0.0%
[0.37, 0.63]
Exploration

0.3%
[0.68, 0.32]
Exploitation

Generation <= 0.09
5.6%

[0.79, 0.21]
Exploitation

Pareto size <= 0.96
1.1%

[0.73, 0.27]
Exploitation

Stagnation <= 0.15
0.6%

[0.74, 0.26]
Exploitation

Pareto size <= 0.72
0.4%

[0.53, 0.47]
Exploitation

Generation <= 0.9
7.3%

[0.45, 0.55]
Exploration

HV indicator <= 0.97
84.6%

[0.48, 0.52]
Exploration

Obj. pareto <= 0.04
0.0%

[0.16, 0.84]
Exploration

HV indicator <= 0.02
0.4%

[0.65, 0.35]
Exploitation

HV indicator <= 0.0
6.7%

[0.78, 0.22]
Exploitation

Pareto size <= 0.69
1.0%

[0.67, 0.33]
Exploitation

Std. population <= 0.14
91.9%

[0.47, 0.53]
Exploration

Pareto size <= 0.89
0.4%

[0.61, 0.39]
Exploitation

Obj. pareto <= 0.16
7.7%

[0.76, 0.24]
Exploitation

Obj. population <= 0.7
92.3%

[0.47, 0.53]
Exploration

HV indicator <= 0.02
100.0%

[0.5, 0.5]
Exploitation

Figure 6.13: Decision Tree showing high level explanation of behavioral policy

explained by the correlation between the former and the latter. As, in almost all instances,
later generations have a higher hypervolume indicator and larger Pareto size.

6.5 Experiment 5: Evaluating agent performance on actual
problem

The final experiment concerns an application of the learned agent on the actual Warehouse
Design and Control Problem (WDCP) central to this research. First the agent will be bench-
marked against a random agent and the optimized NSGA-III algorithm without the use of
AOS. Thereafter the evaluation is extended by executing an identical sensitivity analysis as in
experiment 3. Replicating the sensitivity analysis is intended to show the ability of the agent
to remain its performance, despite facing more challenging environmental features. All eval-
uations shown are aggregates over five independent optimization runs, showing the obtained
average performance and the corresponding standard deviations.

6.5.1 The learned agent on the Warehouse Design and Control Problem

To evaluate the performance gained through implementation of Deep Reinforcement Learning
(DRL), a comparison is made between the learned agent, a random action selecting agent and
the optimized NSGA-III described described as no agent. The performance evaluation looks
at both speed and quality of convergence, which are visualized in the hypervolume indicator
over consecutive generations. The attained performances and their standard deviations over
five independent runs for all three NSGA-III implementations are plotted in Figure 6.14.

Concluding from Figure 6.14, it can be seen that the learned agent outperforms both
the random agent and the optimized NSGA-III (described as “No Agent”). With regards to
solution quality, the learned agent attained a maximum hypervolume indicator of 0.92, which

61

0 25 50 75 100 125 150 175 200

Generation

0.65

0.70

0.75

0.80

0.85

0.90
H
y
p
er
v
o
lu
m
e
In
d
ic
a
to
r

Hypervolume indicator over consecutive generations

Agent

No Agent

Random Agent

Figure 6.14: Performance benchmark DRL agent on the WDCP

is higher than the 0.91 and 0.89 achieved by the random agent and the optimized NSGA-III
respectively. The fact that the random agent outperforms the optimized NSGA-III indicates
the value of Adaptive Operator Selection (AOS). Implementing AOS increases the likelihood
of breaking out of a converged Pareto optimal set, as there is a dynamic trade-off between
exploration and exploitation. The hypervolume indicator value all three implementation of
NSGA-III converge to is suspected to be the best attainable Pareto optimal set. Upon reach-
ing this Pareto optimal set only fluctuations through domination can occur, which allows for
all three lines to cross multiple times. This behavior can, in particular, be seen between the
random and learned agent, starting around generation 100. Due to their ability to mutate
more radically, they reach the suspected optimal hypervolume indicator value more rapidly,
resulting in earlier fluctuations around one another.

Looking at the convergence speed of the algorithms, also the learned agent outperforms
both the random agent and the optimized NSGA-III. The area under the curve, calculating
by taking the overall sum of attained hypervolume indicator values, shows to be significantly
higher for the agent. This metric results in a value of 181 as opposed to 177 and 174 for the
random agent and optimized NSGA-III respectively. Besides faster convergence, implement-
ation of an agent lowered the needed computation time of a single generation as well. The
optimized NSGA-III takes around 55 seconds to execute all computation of a single configur-
ation, whereas the agent induced algorithms take 47 seconds. This decrease in computation
time can be dedicated to the removal of computations needed for Polynomial Mutation (PLM)
[Algorithm 5], which are replaced with the DQN agent.

Aside from the improvement, also the standard deviation between the individual runs is
decreased comparing the learned agent to both the random agent and optimized NSGA-III.
Implying a better performing and more stable learning trajectory. This improvement is em-

62

phasized when looking at only the first 50 generations, as visualized in Figure 6.15.

0 10 20 30 40 50

Generation

0.65

0.70

0.75

0.80

0.85

0.90

H
y
p
er
v
o
lu
m
e
In
d
ic
a
to
r

Hypervolume indicator over consecutive generations

Agent

No Agent

Random Agent

Figure 6.15: Close up of the first 50 generations of DRL agent performance on the WDCP

Reviewing Figure 6.15 it can clearly be seen that the agent suffers from lower volatility
and attains a higher level of performance in a shorter window of time. These findings show
the benefit of implementing a learned agent using Deep Reinforcement Learning as Adaptive
Operator Selection within the NSGA-III for the WDCP central to this research.

6.5.2 Policy evaluation on the Warehouse Design and Control Problem

By comparing the behavior of the learned agent between the DTLZ2 benchmark and the
WDCP environment, the utility of DRL instead of a simple heuristic can be proven. If the
behavior of the agent shows similar for both problems, it could indicate that a simple set
of rules would be sufficient to dynamically set the mutation operator settings. However if
the behavior differs significantly, it shows the added value of the DRL agent in the need for
sequential decision making. The behavior of the agent is visualized in Figure 6.16.

Concluding from Figure 6.16, it can be seen that the behavior significantly differs from
the behavior on the DTLZ2 benchmark as shown in Figure 6.11. Identically to the DTLZ2
benchmark, the agent starts with behavior inclined towards exploitation. After reaching
convergence to the highest hypervolume indicator the agent increases the severity of mutation.
Eventually leading to radical mutation towards the final 50 generations. The inclination
towards severe mutation in this period is larger than seen on the DTLZ2 benchmark. To
gain insight into the reason for this difference in behavior, the average state representations
are analyzed. Using the gathered experiences underlying the visualizations of the behavior of
the agent, the average values for all parts of the state representation are calculated. These
average values are plotted in Figure 6.17, excluding the generation number, as this value
follows an identical trajectory for all problems and optimization runs.

63

0 25 50 75 100 125 150 175 200

Generation

0.0

0.2

0.4

0.6

0.8

1.0

A
ct
io
n
se
le
ct
io
n
fr
ac
ti
on

Policy evaluation over consecutive generations

eta: 10, indpb: 0.01

eta: 10, indpb: 0.05

eta: 10, indpb: 0.10

eta: 10, indpb: 0.15

eta: 10, indpb: 0.20

eta: 50, indpb: 0.01

eta: 50, indpb: 0.05

eta: 50, indpb: 0.10

eta: 50, indpb: 0.15

eta: 50, indpb: 0.20

eta: 100, indpb: 0.01

eta: 100, indpb: 0.05

eta: 100, indpb: 0.10

eta: 100, indpb: 0.15

eta: 100, indpb: 0.20

Figure 6.16: Policy visualization for the WDCP over consecutive generations)

0 25 50 75 100 125 150 175 200

Generation

0.0

0.2

0.4

0.6

0.8

1.0

A
ve
ra
ge

n
or
m
al
iz
ed

va
lu
e

Average state representation over consecutive generations

DTLZ2 Stagnation counter

WDCP Stagnation counter

DTLZ2 Avg. objective values population

WDCP Avg. objective values population

DTLZ2 Avg. objective values Pareto front

WDCP Avg. objective values Pareto front

DTLZ2 St. dev. population

WDCP St. dev. population

DTLZ2 Hypervolume indicator

WDCP Hypervolume indicator

DTLZ2 Pareto front size

WDCP Pareto front size

Figure 6.17: Visualization of state representation values over consecutive generations

64

Concluding from Figure 6.17, it can be seen that some values differ significantly over
consecutive generations. Besides the spike in the stagnation counter, most apparent are the
differences in the average objective values and standard deviation of the population and the
hypervolume indicator. It is difficult to assign the effect to these values to the differences in
behavior, although it is expected that these values combined have the largest contribution to
the change in the behavior of the agent.

6.5.3 Sensitivity of the learned agent

To fully evaluate the performance of the learned agent an identical sensitivity analysis will
be conducted as in Experiment 3, for which the results are shown in section 6.3. The results
will show a comparison between the learned agent and the previously obtained results of the
optimized NSGA-III without AOS. Visually indicating differences in performance between
the two models.

First the amount and size of trucks is increased, leading to a higher overall workload and
higher pressure on internal logistics. What can be seen in Figure 6.18 and 6.19 is that the
performance of the agent stays above the performance of the optimized NSGA-III model,
before converging to a nearly identical performance around generation 200. The highest solu-
tion quality is attained by the learned agent, with a hypervolume indicator value of 0.79 as
opposed to 0.77 by the optimized NSGA-III. Also with regards to convergence speed, the
performance of the agent is superior with an attained area under the hypervolume indicator
curve surmounting to 154 compared to 150 for the optimized NSGA-III. Besides increased
performance also the variability between the five independent runs is lowered throughout the
process, eventually showing identical volatility around the final generations. Looking at the
average Pareto performance, visualized in Figure 6.19, it can be seen that the agent handles
the trade-off between truck tardiness differently. Showing decreased truck tardiness, albeit at
an increase resource cost towards generation 200.

0 25 50 75 100 125 150 175 200

Generation

0.55

0.60

0.65

0.70

0.75

0.80

H
y
p
er
v
o
lu
m
e
In
d
ic
a
to
r

Optimization performance experiment 1: Increased amount and size of trucks

No Agent

Agent

Figure 6.18: Increased amount and size of trucks - Hypervolume indicator

The second analysis concerns dropping the consistency of truck arrivals. This scenario

65

0 100 200
Generation

2000

2500

3000

3500

4000

O
u
tb

o
u
n
d
tr
u
ck

p
er
fo
rm

a
n
ce

Average tardiness of outbound trucks

0 100 200
Generation

0.8

1.0

1.2

1.4

1.6

1.8

T
o
ta
l
re
so
u
rc
e
co

st

×106
Average resource cost

0 100 200
Generation

200

400

600

800

1000

N
u
m
b
er

o
f
u
n
p
la
ce
a
b
le

p
ro
d
u
ct
s

Average unplaceable products

Optimization performance experiment 1: Increased amount and size of trucks

No Agent

Agent

Figure 6.19: Increased amount and size of trucks - Average Pareto set performance

shifts 3/4 of the trucks to the first half of the day and the remaining 1/4 to the second half.
Increasing the difficulty of the underlying Resource Allocation Problem (RAP). Comparing
the results shown in Figure 6.20 and 6.21, no clear difference in performance can be noted.
Both in terms of solution quality and convergence speed the learned agent and the optimized
NSGA-III attain nearly identical results of 0.86 and 170 respectively. The same can be said
for the average Pareto performance, which shows some differences but converges to a nearly
identical score for all objectives after 200 generations. The reason for this might be due to
the maximum attainable hypervolume indicator value, which is expected to be achieved by
both algorithms. The standard deviation in the first half of the optimization trajectory is
decreased however, showing some utility of applying the DQN agent in this scenario.

0 25 50 75 100 125 150 175 200

Generation

0.60

0.65

0.70

0.75

0.80

0.85

0.90

H
y
p
er
v
o
lu
m
e
In
d
ic
a
to
r

Optimization performance experiment 2: Inconsistency in truck arrivals

No Agent

Agent

Figure 6.20: Inconsistent truck arrivals - Hypervolume indicator

The final experiment concerns an increase in product diversity. By doubling the product
portfolio, from 1981 different products to 3962, the difficulty of the underlying Product Al-

66

0 100 200
Generation

700

800

900

1000

1100

1200

1300

1400

1500
O
u
tb

o
u
n
d
tr
u
ck

p
er
fo
rm

a
n
ce

Average tardiness of outbound trucks

0 100 200
Generation

0.8

1.0

1.2

1.4

1.6

T
o
ta
l
re
so
u
rc
e
co

st

×106
Average resource cost

0 100 200
Generation

400

600

800

1000

1200

N
u
m
b
er

o
f
u
n
p
la
ce
a
b
le

p
ro
d
u
ct
s

Average unplaceable products

Optimization performance experiment 2: Inconsistency in truck arrivals

No Agent

Agent

Figure 6.21: Inconsistent truck arrivals - Average Pareto set performance

location Problem (PAP) is increased. Previous analysis of the optimized NSGA-III did not
show that much effect, besides a high level of volatility in the first 75 generations. Looking at
the hypervolume indicator, shown in Figure 6.22, it can clearly be seen that both the average
performance is increased and the volatility in the first 75 generations is decreased. Looking at
the solution quality the learned agent, with a maximum hypervolume indicator value of 0.92,
shows significant superiority towards the optimized NSGA-III which only attained a value of
0.90. Besides, also the convergence speed is increased with the area under the curve for the
learned agent surmounting to 182 as opposed to the 175 attained by the optimized NSGA-
III. However, looking at Figure 6.23, the average Pareto performance shows some interesting
behavior. It can be seen that the agent finds and maintains a Pareto set with lower values for
resource cost, resulting in a significantly higher average tardiness of outbound trucks. As the
hypervolume indicator still remains above the optimized NSGA-III algorithm, it is expected
that the lower resource cost is more beneficial to the dominated area than a lower average
tardiness of outbound trucks. Which might be an indication of a bias introduced in setting
the upper and lower bounds of these objectives. The result of this bias is that the algorithm
will prefer a certain improvement over another.

67

0 25 50 75 100 125 150 175 200

Generation

0.65

0.70

0.75

0.80

0.85

0.90

H
y
p
er
v
o
lu
m
e
In
d
ic
a
to
r

Optimization performance experiment 3: Increased product portfolio

No Agent

Agent

Figure 6.22: Increased product portfolio - Hypervolume indicator

0 100 200
Generation

400

600

800

1000

1200

1400

O
u
tb

o
u
n
d
tr
u
ck

p
er
fo
rm

a
n
ce

Average tardiness of outbound trucks

0 100 200
Generation

0.6

0.8

1.0

1.2

1.4

1.6

T
o
ta
l
re
so
u
rc
e
co

st

×106
Average resource cost

0 100 200
Generation

200

300

400

500

600

700

800

N
u
m
b
er

o
f
u
n
p
la
ce
a
b
le

p
ro
d
u
ct
s

Average unplaceable products

Optimization performance experiment 3: Increased product portfolio

No Agent

Agent

Figure 6.23: Increased product portfolio - Average Pareto set performance

68

Chapter 7

Conclusions and recommendations

This research project concerns a study focused on simultaneous optimization of warehouse
layout design and control policies, using a low computational budget. Throughout literature
this problem is referred to as the Warehouse Design and Control Problem (WDCP), which
concerns collective optimization of a set of smaller warehouse-related problems. For this re-
search the collection of sub-problems consists of the Warehouse layout design problem, the
Resource Allocation Problem (RAP) and the Product Allocation Problem (PAP). A literature
review is executed to investigate different approaches to the WDCP, showing little research
on the subject. However, for the sub-problems a lot of approaches were found, which led to
a design for the solution method used.

The research is commissioned by the consultancy company Nobleo Manufacturing, relating
to a client of theirs. Complexity arises as both the solution quality and convergence speed are
considered. Implying that computation time needs to be kept to a minimum, while remaining
the quality of the found set of solutions. As Nobleo Manufacturing desired to apply the created
framework to different warehouses it also needs to be generalizable, limiting the possibilities
of framework designs. In this chapter the conclusion, and subsequently the recommendations,
are formulated.

7.1 Conclusion

Throughout this research all evaluations are executed not on the actual (ED) simulation
within Nobleo Manufacturing, but on a replication of this simulation in Python. This replic-
ation runs in discrete time, only contains necessary computations, uses smart lookup tables,
runs in parallel and is more robust against extreme scenarios. Evaluation of a warehouse con-
figuration consists of 40 hours in simulation time, for which the computation time is decreased
from 30 minutes to on average 2-3 seconds. Making execution of this research tractable, which
was not possible on the original ED simulation model.

The solution method used consists of two parts, namely an optimization algorithm and
a Deep Reinforcement Learning (DRL) agent. The optimization algorithm used concerns
the Non-dominated Sorting Genetic Algorithm III (NSGA-III). NSGA-III outperforms both
its predecessor NSGA-II and the SMPSO algorithm on the Warehouse Design and Control
Problem (WDCP) central to this research, as shown in experiment 1 for which the results can

69

be found in section 6.1. The hyperparameters of the NSGA-III are optimized towards a high
computation speed and solution quality. Both of these convergence properties are taken into
account by maximization of the total sum of attained hypervolume indicator values, repres-
enting the area under the curve of this value. Thereafter the optimized NSGA-III is shown
to be robust against extreme scenarios. The algorithm is able to maintain its optimization
performance, converging to a Pareto front despite being faced with challenging circumstances.
The optimized hyperparameter settings resulted in some increase in convergence speed, but
this method is not generalizable. The parameters are tailored to this specific problem, having
no guarantee to be optimal on different problems. Interestingly, the hyperparameter optim-
ization of the NSGA-III showed little importance for adapting the crossover parameter. This
effect can be explained by the non-convexity of the objective space. As the local neighbor-
hood of well-performing individuals does not necessarily have to lead to better performance,
exploitation becomes less beneficial. For this reason the DRL agent will only focus on the
mutation operators, as these are perceived important by the hyperparameter feature import-
ance analysis.

The desired generic increase in convergence speed can be attained using Deep Reinforce-
ment Learning (DRL). DRL is applied in the Adaptive Operator Selection (AOS) of the
NSGA-III. What this means is that a DRL agent will be trained to dynamically set the
hyperparameter values of the operators within the NSGA-III based on the current state of
optimization. The algorithm used concerns the Deep Q-Networks (DQN) algorithm. DQN
is known to be sample efficient and stable, due to the use of experience replay and a frozen
target network respectively. The used design of the agent consists of a state representation of
seven values, focusing on generational progress, population performance and the performance
of the approximated Pareto front. The action space consist of the parametric values of the
Polynomial Mutation (PLM) operator used within the NSGA-III. During training an episodic
reward is used, which consists of the total sum of hypervolume indicator values. This metric
is identical to the metric used in hyperparameter optimization, as it takes both convergence
speed and solution quality into account.

Comparing the performance of the learned agent induced NSGA-III model with the op-
timized NSGA-III model, it can be concluded that the model shows equal or improved per-
formance on all tests. Showing an increase in performance on 3/4 of the tested scenarios.
The scenario in which no improvement is made reached identical performance. The most
probable reason for the agent not improving in this scenario is that the performance attained
by the optimized NSGA-III is already the maximum attainable performance. Interestingly
the obtained improvements reach further than the initial purpose of speeding up convergence.
Implementation of DRL also improved, in most cases, the solution quality of the found Pareto
front. Due to the dynamic trade-off between exploration and exploitation the algorithm is
able to escape from local optima, increasing the chance of reaching points belonging to the set
of globally optimal solutions. The need to use DRL for AOS is emphasized through evaluation
of the behavior of the DQN agent. The difference in behavioral patterns over consecutive gen-
erations between the two problems, being the DTLZ2 benchmark and the WDCP, indicates
the inability to replace DRL with a set of simplistic rules. As a static set of rules will not
suffice, sequential decision making is needed.

Throughout the design of the solution methods close attention is paid to the generalizab-

70

ility of the framework. Both the optimization algorithm as the Adaptive Operator Selection
(AOS) using DRL are entirely generalizable. The optimization algorithm, the NSGA-III, does
not use problem specific information. Instead it works with the problem as a black box, only
used to retrieve the performance of proposed configurations. This characteristic enables it to
be used for different problems, in which it should be able to return a good approximation of
the actual Pareto front. The used design of the DRL agent also allows for it to be generaliz-
able, as it only uses generic information about the optimization process. To allow extension
of the number of objective values beyond the three objective values used in this research,
the performance metrics of the population are implemented as aggregates. More specifically,
all objective values are normalized using Min-Max normalization on a given upper and lower
bound. Thereafter the average is taken over all these normalized objective values. This res-
ults in a value between 0 and 1, summarizing the average performance of the population. As
we take the average over all normalized objectives, the DRL agent is able to calculate these
values without imposing any constraint on the allowed number of objective values used.

7.2 Limitations and recommendations

The executed research showed a method to solve the Warehouse Design and Control Problem
(WDCP). Using an evolutionary algorithm a solution to the WDCP is successfully developed,
showing improved performance on the algorithm by implementing Deep Reinforcement Learn-
ing (DRL) as AOS for the NSGA-III. Although successful, this research is not complete. Due
to the limited time frame for the master thesis, some aspects and challenges are excluded
from this research. Future researchers and practitioners are therefore advised to:

1. Increase research into volatility
Due to the remaining high computation time it was intractable to do sufficient meas-
urements to show statistical significance in the results. Some indication of volatility is
included by using five independent runs for all results shown, which is expected to be
sufficient to prevent faulty statements. However, to be more secure about the actual
performance and prove statistical significance, this aspect of the research should be
executed more thoroughly.

2. Optimize model performance
The proposed solution method performs well, although the development was approached
to create a proof of concept. Extension of hyperparameter optimization for the unaf-
fected parameters within the NSGA-III algorithm and the parametric values guiding
the Double DQN agent, could result in improved performance. Some optimization is
done, for the NSGA-III algorithm using Optuna and for the Double DQN agent on
the DTLZ2 benchmark, however there is still room for improvement in testing different
algorithmic combinations or underlying hyperparameter settings.

3. Investigate different population sizes
Throughout this research a population size of 20 individuals is maintained. Initially
this figure was set in the benchmarking of the NSGA-III against the NSGA-II and
SMPSO algorithm, due to the computational overhead. It is concluded that increasing
the population size will increase computation time significantly. However, no further
investigation is executed in the optimal trade-off between computation time and per-
formance as a result of the size of the population. As discussed in section 6.3.1, the

71

population size of 20 might be lowering the robustness of the algorithm. Increasing the
size will allow for a larger number of individuals comprising the Pareto front, which
presumably will also result in less volatility in the performance evaluation using the
hypervolume indicator.

4. Analyze model biases
The results of the third sensitivity analysis using the learned agent, showed some un-
expected behavior. As discussed, this potentially might indicate a bias introduced in
setting the upper and lower bound of the objective values. Future work might look into
improving these values or even getting rid of these values altogether. Doing this would
improve the robustness of the model as the found potential bias would be removed.

5. Improve understanding of Pareto solutions
Throughout this research the quality of proposed warehouse configurations is not con-
sidered. The reason for this is that the purpose of multi-objective optimization is to
return a set of optimal solutions. Thereafter it is the task of the decision maker to choose
which solution is desired. Before implementation of the model, it is advised to also in-
clude analysis of the returned solutions. Enabling adjustment of model parameters if
the selection of results does not satisfy the end user.

72

Bibliography

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next-
generation hyperparameter optimization framework. In Proceedings of the 25rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. 43, 50

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017). Deep re-
inforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38. 20,
21

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2):235–256. 19

Azimi, M., Beheshti, R., Imanzadeh, M., and Nazari, Z. (2013). Optimal allocation of human
resources by using linear programming in the beverage company. Universal Journal of
Management and Social Sciences, 3(5):48–54. 13

Bennour, M., Crestani, D., Crespo, O., and Prunet, F. (2005). Computer-aided decision for
human task allocation with mono-and multi-performance evaluation. International Journal
of Production Research, 43(21):4559–4588. 13

Bretthauer, K. M. and Shetty, B. (1995). The nonlinear resource allocation problem. Opera-
tions research, 43(4):670–683. 13

Cui, Y., Geng, Z., Zhu, Q., and Han, Y. (2017). Multi-objective optimization methods and
application in energy saving. Energy, 125:681–704. 15, 16

DaCosta, L., Fialho, A., Schoenauer, M., and Sebag, M. (2008). Adaptive operator selection
with dynamic multi-armed bandits. In Proceedings of the 10th annual conference on Genetic
and evolutionary computation, pages 913–920.

Daskalaki, S., Birbas, T., and Housos, E. (2004). An integer programming formulation for a
case study in university timetabling. European journal of operational research, 153(1):117–
135.

Davis, L. (1991). Handbook of genetic algorithms.

De Koster, R., Le-Duc, T., and Roodbergen, K. J. (2007). Design and control of warehouse
order picking: A literature review. European journal of operational research, 182(2):481–
501.

Deb, K. (2014). Multi-objective optimization. In Search methodologies, pages 403–449.
Springer.

73

Deb, K., Agrawal, R. B., et al. (1995). Simulated binary crossover for continuous search
space. Complex systems, 9(2):115–148.

Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2000). A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: Nsga-ii. In International conference
on parallel problem solving from nature, pages 849–858. Springer.

Deb, K. and Jain, H. (2013). An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: solving problems with box
constraints. IEEE transactions on evolutionary computation, 18(4):577–601.

Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. (2002). Scalable multi-objective optim-
ization test problems. In Proceedings of the 2002 Congress on Evolutionary Computation.
CEC’02 (Cat. No. 02TH8600), volume 1, pages 825–830. IEEE.

Durgut, R. and Aydin, M. E. (2021). Reinforcement learning-based adaptive operator selec-
tion. In International Conference on Optimization and Learning, pages 29–41. Springer.

Fan, K., You, W., and Li, Y. (2013). An effective modified binary particle swarm optimiza-
tion (mbpso) algorithm for multi-objective resource allocation problem (morap). Applied
Mathematics and Computation, 221:257–267.

Fan, X., Sayers, W., Zhang, S., Han, Z., Ren, L., and Chizari, H. (2020). Review and clas-
sification of bio-inspired algorithms and their applications. Journal of Bionic Engineering,
17:611–631.

Fister Jr, I., Yang, X.-S., Fister, I., Brest, J., and Fister, D. (2013). A brief review of
nature-inspired algorithms for optimization. arXiv preprint arXiv:1307.4186.

Geng, Z., Cui, Y., Xia, L., Zhu, Q., and Gu, X. (2012). Compromising adjustment solution of
primary reaction coefficients in ethylene cracking furnace modeling. Chemical engineering
science, 80:16–29.

Guerreiro, A. P., Fonseca, C. M., and Paquete, L. (2020). The hypervolume indicator: Prob-
lems and algorithms. arXiv preprint arXiv:2005.00515.

Guerriero, F., Musmanno, R., Pisacane, O., and Rende, F. (2013). A mathematical model for
the multi-levels product allocation problem in a warehouse with compatibility constraints.
Applied Mathematical Modelling, 37(6):4385–4398.

Guresen, E. and Kayakutlu, G. (2011). Definition of artificial neural networks with comparison
to other networks. Procedia Computer Science, 3:426–433.

Hamdan, M. (2010). On the disruption-level of polynomial mutation for evolutionary multi-
objective optimisation algorithms. Computing and Informatics, 29(5):783–800.

He, C., Tian, Y., Wang, H., and Jin, Y. (2019). A repository of real-world datasets for data-
driven evolutionary multiobjective optimization. Complex & Intelligent Systems, pages
1–9.

Heragu, S. S., Du, L., Mantel, R. J., and Schuur, P. C. (2005). Mathematical model for
warehouse design and product allocation. International Journal of Production Research,
43(2):327–338.

74

Hernández-Dı́az, A. G., Santana-Quintero, L. V., Coello, C. A. C., and Molina, J. (2007).
Pareto-adaptive -dominance. Evolutionary computation, 15(4):493–517.

Hlal, M. I., Ramachandaramurthya, V. K., Padmanaban, S., Kaboli, H. R., Pouryekta, A.,
Abdullah, T., and Ab Rashid, T. (2019). Nsga-ii and mopso based optimization for sizing
of hybrid pv/wind/battery energy storage system. Int. J. Power Electron. Drive Syst,
10(1):463–478.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

Horoba, C. and Neumann, F. (2008). Benefits and drawbacks for the use of epsilon-dominance
in evolutionary multi-objective optimization. In Proceedings of the 10th Annual Conference
on Genetic and Evolutionary Computation, GECCO ’08, page 641–648, New York, NY,
USA. Association for Computing Machinery.

Huang, C., Li, L., He, C., Cheng, R., and Yao, X. (2021). Operator-adapted evolutionary
large-scale multiobjective optimization for voltage transformer ratio error estimation. In
International Conference on Evolutionary Multi-Criterion Optimization, pages 672–683.
Springer.

Huang, V. L., Qin, A. K., Suganthan, P. N., and Tasgetiren, M. F. (2007). Multi-objective
optimization based on self-adaptive differential evolution algorithm. In 2007 IEEE Congress
on Evolutionary Computation, pages 3601–3608. IEEE.

Huang, X., Lei, X., and Jiang, Y. (2012). Comparison of three multi-objective optimization
algorithms for hydrological model. In International Symposium on Intelligence Computation
and Applications, pages 209–216. Springer.

Jain, A., Lalwani, S., and Lalwani, M. (2018). A comparative analysis of mopso, nsga-ii, spea2
and pesa2 for multi-objective optimal power flow. In 2018 2nd International Conference on
Power, Energy and Environment: Towards Smart Technology (ICEPE), pages 1–6. IEEE.

Ju, L., Tan, Z., Li, H., Tan, Q., Yu, X., and Song, X. (2016). Multi-objective operation
optimization and evaluation model for cchp and renewable energy based hybrid energy
system driven by distributed energy resources in china. Energy, 111:322–340.

Karafotias, G., Hoogendoorn, M., and Eiben, A. (2015). Evaluating reward definitions for
parameter control. In European Conference on the Applications of Evolutionary Computa-
tion, pages 667–680. Springer.

Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97.

LaTorre, A., Molina, D., Osaba, E., Del Ser, J., and Herrera, F. (2020). Fairness in bio-
inspired optimization research: A prescription of methodological guidelines for comparing
meta-heuristics. arXiv preprint arXiv:2004.09969.

Li, K., Fialho, A., Kwong, S., and Zhang, Q. (2013). Adaptive operator selection with bandits
for a multiobjective evolutionary algorithm based on decomposition. IEEE Transactions
on Evolutionary Computation, 18(1):114–130.

75

Li, Z., Low, M. Y. H., and Lim, R. Y. G. (2009). Optimal decision-making on product
allocation for crossdocking and warehousing operations. International Journal of Services
Operations and Informatics, 4(4):352–365.

Liagkouras, K. and Metaxiotis, K. (2013). An elitist polynomial mutation operator for im-
proved performance of moeas in computer networks. In 2013 22nd International Conference
on Computer Communication and Networks (ICCCN), pages 1–5. IEEE.

Lin, Q., Liu, Z., Yan, Q., Du, Z., Coello, C. A. C., Liang, Z., Wang, W., and Chen, J.
(2016). Adaptive composite operator selection and parameter control for multiobjective
evolutionary algorithm. Information Sciences, 339:332–352.

Lindauer, M., Hoos, H. H., Hutter, F., and Schaub, T. (2015). Autofolio: An automatically
configured algorithm selector. Journal of Artificial Intelligence Research, 53:745–778.

Lu, L., Anderson-Cook, C. M., and Robinson, T. J. (2012). A case study to demonstrate a
pareto frontier for selecting a best response surface design while simultaneously optimizing
multiple criteria. Applied Stochastic Models in Business and Industry, 28(3):206–221.

Marler, R. T. and Arora, J. S. (2004). Survey of multi-objective optimization methods for
engineering. Structural and multidisciplinary optimization, 26(6):369–395.

McClymont, K. and Keedwell, E. C. (2011). Markov chain hyper-heuristic (mchh) an online
selective hyper-heuristic for multi-objective continuous problems. In Proceedings of the 13th
annual conference on Genetic and evolutionary computation, pages 2003–2010.

Miralles, C., Garćıa-Sabater, J. P., Andrés, C., and Cardós, M. (2008). Branch and bound
procedures for solving the assembly line worker assignment and balancing problem: Applic-
ation to sheltered work centres for disabled. Discrete Applied Mathematics, 156(3):352–367.

Mkaouer, W., Kessentini, M., Shaout, A., Koligheu, P., Bechikh, S., Deb, K., and Ouni, A.
(2015). Many-objective software remodularization using nsga-iii. ACM Transactions on
Software Engineering and Methodology (TOSEM), 24(3):1–45.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and
Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through
deep reinforcement learning. nature, 518(7540):529–533.

Monsef, H., Naghashzadegan, M., Jamali, A., and Farmani, R. (2019). Comparison of evol-
utionary multi objective optimization algorithms in optimum design of water distribution
network. Ain Shams Engineering Journal, 10(1):103–111.

Moore, J. and Chapman, R. (1999). Application of particle swarm to multiobjective optim-
ization: Dept. Comput. Sci. Software Eng., Auburn Univ.

Mutlu, Ö., Polat, O., and Supciller, A. A. (2013). An iterative genetic algorithm for the
assembly line worker assignment and balancing problem of type-ii. Computers & Operations
Research, 40(1):418–426.

76

Nebro, A. J., Durillo, J. J., Garcia-Nieto, J., Coello, C. C., Luna, F., and Alba, E. (2009).
Smpso: A new pso-based metaheuristic for multi-objective optimization. In 2009 IEEE
Symposium on computational intelligence in multi-criteria decision-making (MCDM), pages
66–73. IEEE.

Nobleo (2021). Over nobleo manufacturing.

Odeniyi, O., Omidiora, E., Olabiyisi, S., and Aluko, J. (2015). Development of a modi-
fied simulated annealing to school timetabling problem. International Journal of Applied
Information Systems, 8(2):16–24.

Pandit, R. and Palekar, U. S. (1993). Response time considerations for optimal warehouse
layout design.

Parsopoulos, K. E. and Vrahatis, M. N. (2008). Multi-objective particles swarm optimiza-
tion approaches. In Multi-objective optimization in computational intelligence: Theory and
practice, pages 20–42. IGI global.

Roodbergen, K. J. and Vis, I. F. (2006). A model for warehouse layout. IIE transactions,
38(10):799–811.

Roodbergen, K. J., Vis, I. F., and Taylor Jr, G. D. (2015). Simultaneous determination
of warehouse layout and control policies. International Journal of Production Research,
53(11):3306–3326.

Rosenblatt, M. J. and Roll, Y. (1984). Warehouse design with storage policy considerations.
The International Journal of Production Research, 22(5):809–821.

Rosenblatt, M. J. and Roll, Y. (1988). Warehouse capacity in a stochastic environment. The
International Journal Of Production Research, 26(12):1847–1851.

Rouwenhorst, B., Reuter, B., Stockrahm, V., van Houtum, G.-J., Mantel, R., and Zijm, W. H.
(2000). Warehouse design and control: Framework and literature review. European journal
of operational research, 122(3):515–533.

Sammons Jr, N., Yuan, W., Eden, M., Aksoy, B., and Cullinan, H. (2008). Optimal biorefinery
product allocation by combining process and economic modeling. Chemical Engineering
Research and Design, 86(7):800–808.

Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic al-
gorithms. In Proceedings of the first international conference on genetic algorithms and
their applications, 1985. Lawrence Erlbaum Associates. Inc., Publishers.

Seada, H. and Deb, K. (2015). Effect of selection operator on nsga-iii in single, multi,
and many-objective optimization. In 2015 IEEE Congress on Evolutionary Computation
(CEC), pages 2915–2922. IEEE.

Sewak, M. (2019). Deep q network (dqn), double dqn, and dueling dqn. In Deep Reinforcement
Learning, pages 95–108. Springer.

Sharma, M., Komninos, A., López-Ibáñez, M., and Kazakov, D. (2019). Deep reinforcement
learning based parameter control in differential evolution. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 709–717.

77

Shukla, P. K. and Deb, K. (2007). On finding multiple pareto-optimal solutions using clas-
sical and evolutionary generating methods. European Journal of Operational Research,
181(3):1630–1652.

Si, B., Wang, J., Yao, X., Shi, X., Jin, X., and Zhou, X. (2019). Multi-objective optimiza-
tion design of a complex building based on an artificial neural network and performance
evaluation of algorithms. Advanced Engineering Informatics, 40:93–109.

Strehl, A. L., Li, L., Wiewiora, E., Langford, J., and Littman, M. L. (2006). Pac model-free
reinforcement learning. In Proceedings of the 23rd international conference on Machine
learning, pages 881–888.

Sun, J., Liu, X., Bäck, T., and Xu, Z. (2021). Learning adaptive differential evolution al-
gorithm from optimization experiences by policy gradient. IEEE Transactions on Evolu-
tionary Computation.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Tan, Z. and Li, K. (2021). Differential evolution with mixed mutation strategy based on deep
reinforcement learning. Applied Soft Computing, 111:107678.

Thepphakorn, T., Pongcharoen, P., and Hicks, C. (2014). An ant colony based timetabling
tool. International Journal of Production Economics, 149:131–144.

Tian, Y., Li, X., Ma, H., Zhang, X., Tan, K. C., and Jin, Y. (2022). Deep reinforcement
learning based adaptive operator selection for evolutionary multi-objective optimization.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30.

Vila, M. and Pereira, J. (2014). A branch-and-bound algorithm for assembly line worker
assignment and balancing problems. Computers & Operations Research, 44:105–114.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., and Freitas, N. (2016). Duel-
ing network architectures for deep reinforcement learning. In International conference on
machine learning, pages 1995–2003. PMLR.

Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for optimization. IEEE
transactions on evolutionary computation, 1(1):67–82.

Xia, L., Cui, Y., Gu, X., and Geng, Z. (2013). Kinetics modelling of ethylene cracking furnace
based on sqp-cpso algorithm. Transactions of the Institute of Measurement and Control,
35(4):531–539.

Xian-Ying, M. (2012). Application of assignment model in pe human resources allocation.
Energy Procedia, 16:1720–1723.

Younas, I., Kamrani, F., Schulte, C., and Ayani, R. (2011). Optimization of task assignment to
collaborating agents. In 2011 IEEE Symposium on Computational Intelligence in Scheduling
(SCIS), pages 17–24. IEEE.

Zitzler, E. and Künzli, S. (2004). Indicator-based selection in multiobjective search. In
International conference on parallel problem solving from nature, pages 832–842. Springer.

78

Appendix A

Product flow in warehouse
operations

This appendix further explains the internal process of the warehouse under consideration.
The overview shows the process from a product view, which implies that it shows the journey
of a single product in the warehouse from arrival within an inbound truck and departure in
an outbound truck.

First a truck containing a set of product arrives to the warehouse. The truck is docked,
after which the product is deloaded into the assigned consolidation area. Thereafter the
products are separately transported to a storage location in the warehouse, where it sits in
inventory until an order for the product arrives.

An order of an outbound truck arrives two hours before arrival of the actual truck. This
allows to prepare the requested product in the assigned consolidation area. If a broken pallet
is requested, i.e. less-than-pallet size, the pallet is broken in the consolidation area after which
the remaining part is taken back to inventory. If all products are present in the consolidation
area and the outbound truck has arrived, the truck is loaded. If all product are loaded onto
the truck it departs, which completes the process.

Based on the schematic overview of the process, different events are dissected. These
events are used as the basis for the Python replication of the simulation used by Nobleo.
The replication is made as a Discrete Event Simulation (DES), which only simulates events
instead of continuous time. The following, consecutive, events are dissected:

1. Inbound truck arrival

2. Deload truck complete

3. Quality check done

4. Product to storage complete

5. Outbound truck order arrival

6. Product to consolidation complete

7. Outbound truck arrival

8. Load truck complete

79

Assign truck
to dock

Deload truck

Execute
quality check

Consolidation
area

Store
products

Product
Placement
Algorithm

(PPA)

Inventory

Retrieve
products

Demand
for incomplete

pallet?
Break pallet

Transport
remaining

amount

Transport
desired
amount

Transport full
pallet amount

Consolidation
area

Load truck

Assign truck
to dock

Outbound
truck

departure

Inbound
truck

arrival

Outbound
truck

arrival

Demand
outbound

truck

Truck Docking
Algorithm

(TDA)

No

Yes

Figure A.1: Visualization of the process flow

80

Appendix B

Discrete Event Simulation

The discrete event simulation is constructed based on the events retrieved from the product
flow, described in Appendix A. As the complexity of the simulation does not allow for
a complete overview, it will be explained in two levels of detail. First a global overview of
the process is shown, after which certain relevant processes will be visualized in greater detail.

The first level of detail shows the flowchart of the main process, visualized in Figure B.1.
It shows the initialization and termination of the simulation process. During initialization all
truck arrival events, for both in- and outbound, are created and added to the FES. Every cycle
of the simulation functionality a single event is handled, which concerns the main functional-
ity of a Discrete Event Simulation (DES). The eight events shown, are the events described
in Appendix A. Every event is handled accordingly after which creation of a follow-up event
is executed if needed.

The second level of detail will further explain the process of handling different events. Per
event the handling of the event is further explained in more detailed flowcharts. Figure B.2
explains the process executed in simulation upon arrival of an inbound truck arrival. This
process creates a follow-up event, namely Deload truck complete, as visualized in Figure B.3.
After all pallets are taken from the truck it departs and the quality check is executed. Upon
completion of this check the first product to storage job is created, as can be seen in Fig-
ure B.4. The product to storage jobs are repeated until the entire content of the consolidation
area is placed within the warehouse, as shown in Figure B.5. These steps constitute the pro-
cess for inbound trucks.

For outbound trucks the process consists of the following steps. If the outbound truck
does not concern a rush order, the requested products will be known two hours in advance.
Upon receiving of this list of products, the process as visualized in Figure B.6 is started. If the
outbound truck does concern a rush order identical steps are executed, shown on the left side
of Figure B.7. This process creates the first product to consolidation job. Which is repeated
until all products are retrieved from inventory and placed in the assigned consolidation lane, as
shown in Figure B.8. Either if the truck has already arrived when the last product is received
or upon arrival of the truck all products are already in the assigned consolidation lane, as can
be seen on the right side of Figure B.7, a load truck job is created. Upon completion of this
job, the truck departs and the performance is measured, as shown in Figure B.9.

81

Start Simulation

τ >=
Simulation Time

Set τ = event.time

Create first event(s)
and add to FES

Take first event
from FES

Take next event
from FES

Set τ = event.time

End Simulation

Event type =
Inbound Truck

Arrival

Event type =
Deload Truck

Complete

Event type =
Quality Check

Done

Event type =
Product to Storage

Complete

Event type =
Outbound Order

Arrival

Event type =
Outbound Truck

Arrival

Event type =
Product to Cons.

Complete

Event type =
Load Truck
Complete

No

No

No

No

No

No

No

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Handle Inbound
Truck Arrival Event

Handle Deload
Truck Complete

Event

Handle Quality
Check Done Event

Handle Product to
Storage Complete

Event

Handle Outbound
Order Arrival Event

Handle Outbound
Truck Arrival Event

Handle Product to
Consolidation

Complete Event

Handle Load Truck
Complete Event

Figure B.1: Flowchart DES- High level basis model

82

B.1 Event 1: Inbound truck arrival

Dock and
Consolidation

available?

No

Yes

Greedily assign
truck to dock

Reserve
consolidation lane

and truck dock

Create deload truck
job

Forklift Available?

Yes

Calculate job
execution time

Add job to
JOBLIST

No

Add truck to truck
queue

Create Deload
Truck Complete
event and add to

FES

Truck Queue
(Priority: 2)

JOBLIST

Set forklift status to
busy/unavailable

Figure B.2: Flowchart DES - Inbound truck arrival event

83

B.2 Event 2: Deload truck complete

Truck waiting in
one of the truck

queues?

Document inbound
truck departure

Set dock status to
available

Handle truck arrival
Yes

Calculate quality
check execution

time

Create Quality
Check Complete
event and add to

FES

New job in
JOBLIST for

forklift?

No

Assign forklift to
job having the

earliest deadline

Yes

Calculate job
execution time

Create job
completion event
and add to FES

Set forklift status to
available

No

Figure B.3: Flowchart DES - Deload (inbound) truck complete event

84

B.3 Event 3: Quality check done

Create product to
storage job

Needed Resource
Available?

Yes

Calculate job
execution time

Add job to
JOBLIST

No

Create first Product
to Consolidation

Complete event and
add to FES

JOBLIST

Retrieve storage
type from Product

Placement
Algorithm (PPA)

Retrieve closest
available storage

location

Storage location
available?

Yes

No

Upscale storage
dimensions

Upscaling
possible?

Yes

Product to sink

Increment
unplaceable

products counter

No

Retrieve next
product from

consolidation area

Set resource status
to busy/unavailable

Figure B.4: Flowchart DES - Quality check complete event

85

B.4 Event 4: Product to storage complete

Create new product
to storage job

Needed resource
available?

Yes

Calculate job
execution time

Add job to
JOBLIST

No

JOBLIST

Yes

Set resource status
to busy/unavailable

Retrieve closest
available storage

location

Storage location
available?

Yes

No

Upscale storage
dimensions

Upscaling
possible?

Yes

Remove product (to
sink) and take

average distance to
storage

Increment
unplaceable

products counter

No

Place product in
designated storage

location

Remaining
products to be

stored?

No Truck waiting in
truck or cons.

queue?

Assign truck (order)
to consolidation

(lane)

Yes

No

Set consolidation
(lane) status to

available

New job in
JOBLIST for used

resource?
Assign resource to

job having the
earliest deadline

Yes

Calculate job
execution time

Create Product to
Storage job

completion event
and add to FES

Set resource status
to available

No

Retrieve storage
type from Product

Placement
Algorithm (PPA)

Number of
unplaceable

products

Figure B.5: Flowchart DES - Product to storage complete event

86

B.5 Event 5: Outbound order arrival

Consolidation area
available?

No

Yes

Greedily assign
truck (order) to

consolidation area

Add truck to
consolidation queue

Cons. Queue
(Priority: 3)

Reserve
consolidation lane

Create first product
to consolidation job

Needed resource
available?

Yes

Calculate job
execution time

Add job to
JOBLIST

No

Create first Product
to Consolidation

Complete event and
add to FES

JOBLIST

Set resource status
to busy/unavailable

Figure B.6: Flowchart DES - Outbound order arrival event

87

B.6 Event 6: Outbound truck arrival

Rush order?
NoYes

Dock and
consolidation

available?

No Add truck to truck
queue

Truck Queue
(Priority: 2)

Greedily assign
truck to dock

Reserve
consolidation lane

and truck dock

Yes

Create first product
to consolidation job

Needed resource
available?

Yes

Calculate job
execution time

Add job to
JOBLIST

No

Create first Product
to Consolidation

Complete event and
add to FES

JOBLIST

Dock available at
consolidation area

Add truck to dock
queue

No

Dock Queue
(Priority: 1)

Assign truck to first
available dock

Yes

All products
already in

consolidation?

Yes

Create load truck
job

Forklift
Available?

Yes

Calculate job
execution time

Add job to
JOBLIST

No

Create Load Truck
Complete event and

add to FES

JOBLIST

No

Reserve truck dock

Set forklift status to
busy/unavailable

Set forklift status to
busy/unavailable

Figure B.7: Flowchart DES - Outbound truck arrival event

88

B.7 Event 7: Product to consolidation

Create next product
to consolidation job

Needed resource
available?

Yes

Set resource status
to busy/unavailable

Add job to
JOBLIST

No

Calculate job
execution time

JOBLIST

Transfer product
from storage
location to

consolidation (lane)

Yes Remaining
products to be

stored?

No Outbound truck
already arrived?

No

Yes

Create load truck
job

Forklift
Available?

Yes

Calculate job
execution time

Add job to
JOBLIST

No

Create Load Truck
Complete event and

add to FES

JOBLIST

New job in
JOBLIST for used

resource?

Assign resource to
job having the

earliest deadline

Yes

Calculate job
execution time

Create Product to
Storage job

completion event
and add to FES

Set resource status
to available

No

Create first Product
to Consolidation

Complete event and
add to FES

Set forklift status to
busy/unavailable

Figure B.8: Flowchart DES - Product to consolidation complete event

89

B.8 Event 8: Load truck complete

Truck waiting in
one of the truck

queues?

Document outbound
truck departure

Set dock and
consolidation (lane)
status to available

Handle truck arrival
Yes

New job in
JOBLIST for

forklift?

No

Assign forklift to
job having the

earliest deadline

Yes

Calculate job
execution time

Create job
completion event
and add to FES

Set forklift status to
available

No

Outbound
truck

performance

Figure B.9: Flowchart DES - Load (outbound) truck complete event

90

	Contents
	List of Figures
	List of Tables
	Introduction
	Problem context
	Research questions
	Outline
	Contributions

	Problem formulation
	Operational algorithms
	Decision variables
	Problem definition

	Literature review
	Warehouse design and control problem
	Warehouse layout design problem
	Resource allocation problem
	Product allocation problem
	Simultaneous Optimization

	Bio-inspired metaheuristics
	Multi-objective optimization
	Pareto dominated algorithms
	Adaptive Operator Selection

	Reinforcement learning
	Deep learning
	Deep reinforcement learning
	Applications in bio-inspired metaheuristics
	Deep Q-Network algorithms

	Conclusion and position in literature
	Novel solution method to the warehouse design and control problem
	Application of Deep Q-Networks in NSGA-III

	Solution methods
	Simulation environment
	Python replication
	System configuration encoding
	Objective values

	Optimization algorithm
	Crossover
	Mutation
	Reference-based Selection

	Deep Reinforcement Learning agent
	State representation
	Action space
	Reward function
	Neural architecture

	Solution framework

	Experimental setup
	Experiment 1: Benchmark performance NSGA-III
	Experiment 2: Optimization of Hyperparameter
	Experiment 3: Sensitivity analysis
	Experiment 4: Learning DRL agent on DTLZ2 problem
	Experiment 5: Evaluating agent performance on the Warehouse Design and Control Problem

	Results
	Experiment 1: Benchmark performance NSGA-III
	Experiment 2: Hyperparameter optimization
	Experiment 3: Sensitivity Analysis
	Increased amount and size of trucks
	Inconsistent arrival of trucks
	Increased product portfolio

	Experiment 4: Deep Reinforcement Learning on test problem
	Testing reward functions
	Performance comparison
	Policy evaluation

	Experiment 5: Evaluating agent performance on actual problem
	The learned agent on the Warehouse Design and Control Problem
	Policy evaluation on the Warehouse Design and Control Problem
	Sensitivity of the learned agent

	Conclusions and recommendations
	Conclusion
	Limitations and recommendations

	Bibliography
	Product flow in warehouse operations
	Discrete Event Simulation
	Event 1: Inbound truck arrival
	Event 2: Deload truck complete
	Event 3: Quality check done
	Event 4: Product to storage complete
	Event 5: Outbound order arrival
	Event 6: Outbound truck arrival
	Event 7: Product to consolidation
	Event 8: Load truck complete

