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Abstract

Symmetry in integer programming formulations is a well-studied topic and several methods
have been developed to handle symmetries. The main approach is to cut off symmetric so-
lutions, in order to reduce the number of feasible solutions. During the branch-and-bound
process, subproblems at the nodes of the branch-and-bound tree may exhibit symmetries
that are different from the symmetries at the root node. These so-called sub-symmetries are
more difficult to handle, as symmetry-handling constraints need to keep track of when the
sub-symmetries become active. Existing methods add symmetry-breaking inequalities to the
model, using additional binary variables to encode activation. We propose a new method that
dynamically activates sub-symmetry-handling constraints using an activation handler exten-
sion to the SCIP integer programming solver. This allows the modeller to directly implement
routines that check for active sub-symmetries. It eliminates the need to encode this in inequal-
ities and variables in the root problem. We show that this approach is flexible, by showing ap-
plications in the graph coloring problem, unit commitment problem, and the two-dimensional
knapsack problem. Furthermore, our experimental results show that it is competitive with the
existing sub-symmetry handling methods.
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Chapter 1

Introduction

Symmetries occur frequently in integer programming problems, for example when model-
ing many classical combinatorial optimization problems. Even for relatively small problem
instance sizes, large symmetry groups can make the integer program hard to solve with tra-
ditional methods. Consider the graph coloring problem as an example. We are given a graph
and we want to assign a color to each vertex, such that adjacent vertices are not assigned the
same color. We want to find a coloring of the graph that uses a minimum number of colors.
The colors are represented by the integers {1, . . . , K}, where K is some sufficiently large upper
bound on the chromatic number of the graph. The naming of the colors is irrelevant in a solu-
tion to the problem. Indeed, any solution can be turned into an equivalent solution where the
colors are re-labeled. This symmetry, that arises from permutations of colors, makes the set
of feasible solutions unnecessarily large. For problems that can be modeled as an integer pro-
gram, symmetries in the problem can therefore have a negative impact on the solving process.
To remedy this, we want to exclude symmetric solutions to reduce the size of the feasible set.

The symmetry in the problem partitions the set of feasible solutions into sets of equivalent
solutions. The main idea to break the symmetry is to select a representative solution for every
set of equivalent solutions, and subsequently to restrict the feasible set to contain only rep-
resentative solutions. There exist various methods for handling such symmetries in integer
programming, which we will briefly discuss in Chapter 2.

Problems may also exhibit symmetries that only occur in some subsets of solutions. We again
look at the graph coloring problem for an example. Take a subset of the vertices R and two
colors c1 and c2. Suppose that we have a solution where all the neighboring vertices of R
are colored with neither c1 nor c2. Then, we can permute the colors c1 and c2 within the
vertex subset R. These permutations within R are only possible in solutions where indeed
this condition on the neighbors of R is satisfied, and thus this symmetry is not present in all
solutions. Symmetries that only occur for some solution subsets are called sub-symmetries [3].

Handling sub-symmetries can reduce the size of the feasible solution space even further, and
thus this can have a positive impact on IP solving times. To handle sub-symmetries, it is nec-
essary to detect during the solving process when sub-symmetries become active, i.e., when
the subproblem during the solving process only yields solutions in which the sub-symmetry
occurs. The existing method for sub-symmetry handling is introduced by Bendotti, Fouilhoux
and Rottner [4] achieves detection of active sub-symmetries by introducing a new binary vari-
able in the formulation that indicates activation. The handling of sub-symmetry is based on
explicit sub-symmetry-breaking inequalities in the IP formulation. The sub-symmetry-breaking
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inequalities are appropriately ‘turned on’ or ‘off’ by the binary variable.

In this thesis, we propose a new method for handling sub-symmetries in integer programming.
Instead of adding new inequalities to the IP formulation, we instead decouple sub-symmetry
handling from the formulation itself. Instead, we allow users to extend the IP solver with
an activation handler: a dedicated routine that detects when a sub-symmetry becomes active.
The activation handler can then be linked to high-level constraints in the solver that break the
sub-symmetry.

Our new method is flexible in the kinds of symmetries it can detect and handle. To demonstrate
this, we apply our method to handle geometric sub-symmetries in two-dimensional packing
problems, for which no previous methods exist in integer programming.

The structure of this thesis is as follows. We first discuss necessary preliminaries and related
work in Chapter 2. Then, we introduce our method in the framework for sub-symmetry han-
dling in Chapter 3. In Chapters 4 and 5 we apply our new method to the graph coloring prob-
lem and the unit commitment problem, respectively. With experiments on benchmark and gen-
erated instances, we directly compare our method to the inequalities-method. In Chapter 6 we
apply our method to geometric symmetries and sub-symmetries in the two-dimensional knap-
sack problem. We describe how geometric symmetries and sub-symmetries can be handled,
and apply our activation handler method to benchmark instances. In Chapter 7 we conclude
the results in this thesis and provide ideas for further research.
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Chapter 2

Preliminaries and related work

2.1 Symmetry in integer linear programming

We start with a brief introduction to symmetry in integer programming. We refer the reader
to standard material on permutation groups, such as the book by Rotman [40] and the book
chapter on symmetry in integer programming by Margot [32] for a more in-depth overview. For
more background on integer linear programming, we refer to the book by Conforti, Cornuéjols
and Zambelli [11].

For a positive integer n, let [n] = {1, . . . , n} denote the set of positive integers up to and
including n. Let Symn denote the set of all permutations of the ground set [n]. We represent
a permutation π ∈ Symn as a bijective function π: [n] → [n]. For a vector x of length n
and π ∈ Symn, we slightly abuse notation to let y = π(x) denote the vector obtained by
permuting the entries of x according to π, i.e.,

y = (xπ−1(1), . . . , xπ−1(n)). (2.1)

Letπ2◦π1 denote composition of permutations, i.e., (π2◦π1)(x) = π2(π1(x)). Note that Symn
forms a group under composition, with the identity permutation id, that maps every number
to itself, as the unit element.

Let c ∈ Rn be a vector of length n, b ∈ Rm a vector of length m, and A ∈ Rm×n a matrix of
size m×n. Let x ∈ {0, 1}n be a vector of length n of binary decision variables. We then consider
the integer linear program (IP) of the form

minimize c⊤x (2.2)

subject to Ax ≤ b, (2.3)

x ∈ {0,1}n. (2.4)

We also refer to integer linear programs as integer (linear) programming models or models. It
can be the case that there are also variables in the formulation that are not constrained to be
binary or integer, in which case we call the program a mixed-integer linear program (MIP). Bi-
nary variables are used in many problems that contain symmetry and therefore many symmetry-
handling methods are focussed on handling binary variables, and we therefore also consider
symmetry handling on binary variables. We define

X = {x ∈ {0,1}n | Ax ≤ b} (2.5)
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to denote the set of all feasible solutions of the IP, which we will also call the feasible set of
the IP. A feasible solution x̂ ∈ X is optimal when c⊤ x̂ ≤ c⊤x for all x ∈ X . A symmetry of
the integer linear program is defined as a permutation π ∈ Symn such that for any feasible
solution x ∈ X , the vector π(x) is also a feasible solution with the same cost. The set of all
such permutations forms a subgroup of Symn

G = {π ∈ Symn | ∀x∈X : π(x) ∈ X and c⊤x = c⊤π(x)} (2.6)

which we call the symmetry group of the IP. The orbit of a given x ∈ {0,1}n under G is

orbG(x) = {π(x) | π ∈ G}. (2.7)

In other words, two vectors x , y ∈ {0, 1}n are in the same orbit if there exists a permutation
in G sending one to the other. Define

O := {orbG(x) | x ∈ X } (2.8)

as the set of all orbits of the feasible solutions X under G. Note that O partitions X .

The symmetry group G for a given integer linear program is defined in terms of its feasible set.
Computing and therefore handling the full symmetry group G is NP-hard [32]. Instead of con-
sidering the full symmetry group G, in practice only some subgroup GLP of formulation symme-
tries is considered that leave the description Ax ≤ b and the objective function c invariant [32].
A permutation π ∈ Symn of the variables is a formulation symmetry of the IP when π(c) = c
and there exists a permutation σ ∈ Symm of the rows of A such that Aσ(i),π( j) = Ai j for
all i ∈ [m], j ∈ [n] and σ(b) = b, i.e., the rows of A are permuted by σ and the columns
by π.

Computing (generators of) the formulation symmetry group can be done by finding graph au-
tomorphisms, see Salvagnin [41] for a construction of this graph. The complexity of the graph
automorphism problem is currently still unknown. However, several software implementa-
tions such as nauty [33] and bliss [21] exist that are able to find graph automorphisms
efficiently in practice. Alternatively, symmetries in the integer linear program can be specified
explicitly by the modeler of the problem. The modeler might use structure in the problem to
derive additional symmetry that cannot be detected automatically in the formulation. In the
remainder, we will mostly consider formulation symmetries in the integer linear programs.

2.2 Solving integer programs

Before discussing the methods that exist to handle symmetry in integer programming, we
need to introduce some concepts used in solving integer programs. We will only give a brief
introduction, and refer to the book by Conforti, Cornuéjols and Zambelli [11] for a more in-
depth overview.

A naive way of solving the program (2.2)–(2.4) is to enumerate all vectors x ∈ {0, 1}n and
to pick an optimal solution. This would not be a feasible approach when the number of vari-
ables is large. Luckily, algorithms exist that in practice have been proven effective for solving
integer programs in practice. For the program (2.2)–(2.4) we can define its natural linear
programming (LP) relaxation as

min{c⊤x : Ax ≤ b, 0≤ x ≤ 1} (2.9)

where we drop the constraint that the variables in x must be integral. The LP relaxation can
be solved in polynomial time using the ellipsoid method by Khachiyan [24] or interior-point
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method by Karmarkar [23]. However, the older simplex method by Dantzig [12] is most often
used as it is faster in practice, even though it does not run in polynomial time asymptotically,
according to the currently known pivot rules.

Notice that the value of an optimal solution to the LP relaxation is an upper bound for the
optimal solution of the IP. If an optimal solution of the LP relaxation happens to be integral,
then it is also a solution of the IP. This observation forms the basis of the branch-and-bound
(B&B) method for solving integer programs [11]. We start by computing an optimal solution x∗

of the LP relaxation. If the solution happens to be integral, then we are done. If not, select a
variable x∗i in the solution of the LP relaxation that has a fractional value f . We then branch on
this variable, by creating two new IP subproblems. In one branch, we set x i = 0, while in the
other we branch on x i = 1, and we recursively continue solving the subproblems recursively.
This forms an enumeration tree, to which we also refer to as the branch-and-bound tree. In every
node of the B&B tree, the corresponding subproblem is thus defined by sets of variable fixings.
Next to branching, we can also use the solution objective value to bound the optimal solution
of the IP. This allows us to prune or cut off nodes when the solution of the LP-relaxation is
below the current best solution.

The branch-and-bound method described here forms the basis, but various choices in, e.g.,
on which variable to branch, are open. Modern solvers implement a number of heuristics and
other solving steps to make the solving process faster. One of these steps is symmetry handling,
which we will be discussing next.

2.3 Symmetry handling methods

The general idea of handling symmetry in integer linear programs is to choose a representa-
tive of each orbit of feasible solutions, and to restrict the solution space to these representa-
tives [32]. A common choice of the representative is to choose the lexicographically maximal
solution in each orbit. A vector y ∈ Zn is lexicographically greater than z ∈ Zn, denoted
by y ≻ z, if there exists an i ∈ [n] such that yi > zi and y j = z j for all j < i. We write y ⪰ z
when the vector y is lexicographically greater than or equal to z. Then, a solution x ∈ X is
lexicographically maximal in its orbit under G when x ⪰ π(x) for all π ∈ G. A method can be
fully or partially symmetry-breaking when the solution space is exactly or partially restricted
to the set of representatives, respectively.

Orbital fixing One of the methods that handles symmetries is orbital fixing, introduced by
Margot [31], which is based on variable fixings. Let a be a given node of the branch-and-
bound tree, and let F a

0 and F a
1 denote the sets of variables that are fixed at 0 and 1 at node a,

respectively. Variables may be in F a
0 or F a

1 due to, e.g., branching on the variable in ancestor
nodes. Then it might be possible to set further variables to 0, or to even cut off the current
node to handle symmetry.

First, we need to introduce the concept of a stabilizer from basic group theory. For a subgroup
G of Symn, the stabilizer of a set S ⊆ [n] for the symmetry group G is defined as

stabG(S) = {π ∈ G : π(S) = S}, (2.10)

that is, all the permutations in G that leave S invariant. Note that stabG(S) is a subgroup of G.
The orbital fixing rule is then as follows. For every orbit O of stabG(F a

1 ):

• If O ∩ F a
0 ̸= ;, then all variables in O can be fixed to 0.
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• If O ∩ F a
1 ̸= ;, then all variables in O can be fixed to 1.

In other words, if some variables in the orbit are fixed to 0 or 1, then the other variables in the
orbit can be fixed to 0 or 1 as well, respectively.

This method for symmetry handling is purely based on propagation, i.e., further reducing
bounds or fixing of variables. Other approaches may be to add symmetry breaking inequalities
to the formulation.

Orbitopes We will also consider IP formulations where the variables can be organized in a
matrix x = (x i, j)i∈[n], j∈[m], where the symmetry arises from permutations of the columns of x .
That is, we consider Symn as the subgroup of the symmetry group of the IP, where the permu-
tations act on the columns of x . We define a solution matrix x to be lexicographically maximal
in its orbit when its columns are lexicographically non-increasing. As for vectors of variables,
we can break symmetry by choosing lexicographically maximal matrices as the representative
solutions. The convex hull of binary matrices with lexicographically non-increasing columns
is called the full orbitope, as introduced by Kaibel and Pfetsch [22]. Several methods exist for
restricting the solution to the full orbitope, such as a propagation-based approach by Bendotti,
Fouilhoux and Rottner [3], and separation of inequalities that describe the orbitope, by Hojny
and Pfetsch [17].

For more details on symmetry handling methods, we refer to the overview by Margot [32] and
a computational survey by Pfetsch and Rehn [38].

2.4 Sub-symmetries in integer linear programming

Consider a subset Q ⊂ X of solutions of the formulation (2.2)–(2.4), and consider the sub-
problem

min{c(x) | x ∈Q}

with symmetry group GQ. In general, the group GQ is different from G. In particular, it may be
the case there exist symmetries in subproblems that are not present in G. To see this, consider
the following example from Bendotti, Fouilhoux and Rottner [3]. Suppose we have an integer
program with solution set X = {x1, x2, y} ⊆ {0,1}3 with

x1 = (1, 0,1), x2 = (1,1, 0), y = (0, 1,0).

Also suppose that the solutions x1 and x2 have the same objective value, i.e., c(x1) = c(x2).
Define a solution subset Q ⊂ X of solutions that have exactly two 1-entries, thus Q = {x1, x2}.
Consider now the permutation π132 ∈ Sym3, defined by the mappings 1 7→ 1, 2 7→ 3, 3 7→ 2,
i.e., when the permutation is applied to a vector x , it swaps the second and third entry of x .
Notice that π132(x1) = x2 and vice versa. Thus, π132 is in the sub-symmetry group GQ, but
not in the symmetry group G, since we have π132(y) = (0, 0,1) ̸∈ X .

We call the permutations in GQ sub-symmetries of the problem [3]. Note that every node of
the branch-and-bound tree corresponds to a subproblem, and therefore it can be beneficial
to handle the sub-symmetries if they appear frequently during the solving process. It can be
expensive however to compute GQ for every subproblem, but we can leverage sub-symmetry
deduced from the problem structure for particular solution subsets Q. In general, we consider
predefined solution subsets S= {Qs ⊂ X | s ∈ [q]} for some positive q, that exhibit predefined
sub-symmetries. During the branch-and-bound process, a node in the B&B tree corresponds
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to a subproblem that may belong to one or more solution subsets Qs. We then say that the
sub-symmetries in GQs

become active, following the terminology in [3].

To handle the sub-symmetries of all Qs simultaneously, the general idea remains the same:
we want to disregard solutions such that for each orbit at least one representative remains.
For a solution subset Qs, let σs

k for k ∈ [os] denote the orbits defined by GQs
. Furthermore,

let O = {σs
k | s ∈ [q], k ∈ [os]} denote the family of all orbits of the considered solution

subsets Qs. Notice now that O does not partition the solutions of the solution subsets, as the
orbits of different solution subsets may overlap. As a consequence, we need to be more careful
in choosing the representative solution r(σ) for each orbit σ ∈ O, as for a given orbit σ the
set σ \ {r(σ)} may contain a representative of another orbit σ′ ∈O.

To formalize this, Bendotti, Fouilhoux and Rottner [3] introduce generalized orbits, which in-
tuitively group intersecting orbits of O together. To this end, they define

G(x) =
⋃

Qs∋x
GQs

(2.11)

as the set of permutations π such that π(x) is a symmetric solution to x . The authors then
define a relation on the solutions in X . A solution x ′ ∈ X is said to be in relation with x when
there exist r ∈ N and permutations π1, . . . ,πr such that

πi ∈ G(πi−1 ◦ · · · ◦π1(x)) for all k ∈ [r] and x ′ = πr ◦πr−1 ◦ · · · ◦π1(x). (2.12)

That is, a solution x ′ is in relation with x if there is a sequence of permutations such that each
application of a permutation yields a symmetric solution in one of the groups GQs

, where the
final application yields x ′. The generalized orbitO of a solution x with respect to {Qs | s ∈ [q]} is
the set of all solutions x ′ that are in relation with x . Notice that the relation is an equivalence
relation, and therefore the generalized orbits partition the solutions X . Also notice that for a
generalized orbit O, there exist orbits σ1 . . . ,σp ∈O such that

O=
⋃

i∈[p]
σi , (2.13)

which follows almost directly from the definition. A set of representatives {r(σ) | σ ∈ O}
of each orbit is called orbit-compatible when for every generalized orbit O =

⋃

i∈[p]σi there
exists j such that r(σ j) = r(σk) for all k ∈ [p] where r(σ j) ∈ σk. Such a r(σ j) is called a
generalized representative of O (notice that a generalized orbit may have multiple generalized
representatives). In other words, generalized representatives must be the representative solu-
tion of every orbit it is contained in. This exactly captures our condition for carefully choosing
representatives for handling multiple sub-symmetries simultaneously; when we remove all
solutions in
⋃

σ∈O(σ \ {r(σ)}), there remains at least one solution in every generalized orbit.

In the remainder, we consider specific solution subsets Q such that we can characterize for
which representatives orbit-compatibility is achieved. For a solution matrix x ∈Q, let x(R, C)
denote the submatrix of x obtained by restricting to rows R ⊆ [m] and columns C ⊆ [n].
The symmetry group GQ is the sub-symmetric group with respect to (R, C) if it contains all
the permutations of the columns of x(R, C). If GQ is the sub-symmetric group, then Q is
called sub-symmetric with respect to (R, C). Now, let S be a set of solution subsets such that
every Qs ∈ S is sub-symmetric with respect to (Rs, Cs). For every orbit σi

s of GQs
, choose the

representative x i
s ∈ σ

i
s such that the submatrix x i

s(Rs, CS) is lexicographically maximal in its
orbit, i.e., its columns are lexicographically non-increasing. In [3], the authors show the these
representatives are orbit-compatible, as formulated in the following lemma.

Lemma 2.1. The set of lexicographically maximal representatives x i
s is orbit-compatible.
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2.5 Sub-symmetry-breaking inequalities

One way of handling sub-symmetries as described above is by adding inequalities to the model
that cut off non-representative solutions, such as the method of Bendotti, Fouilhoux and Rot-
tner [4], which makes use of the result in Lemma 2.1.

Let S = {Qs | s ∈ [q]} be a set of solution subsets such that each Qs is sub-symmetric with
respect to (Rs, Cs), with Rs = {rs

1, . . . , rs
|Rs|
} and Cs = {cs

1, . . . , cs
|Cs|
} where rs

1 < · · · < rs
|Rs|

and
cs
1 < · · ·< cs

|Cs|
. For every solution subset Qs, we introduce an integer variable zs such that zs =

0 if and only if x ∈Qs. Let c j , c j−1 ∈ Cs be two consecutive columns in the submatrix x(Rs, Cs).
Then, the partial-sub-symmetry breaking inequality is defined as follows.

xr1,c j
≤ zs + xr1,c j−1

where r1 =min Rs. (2.14)

Notice that when zs ≥ 1, the inequality is trivially satisfied, which means we do not attempt
to break the sub-symmetry whenever x ̸∈ Qs. These inequalities combined, for all pairs of
consecutive columns, ensure that the first row of the submatrix x(Rs, Cs) is lexicographically
non-increasing whenever zs = 0. This only partially breaks the symmetry, as Inequality (2.14)
only considers the first row. Indeed, when xr1,c j

= xr1,c j−1
, subsequent rows need to be consid-

ered until a tie-break row is found. The main idea is to construct a set S̃ from S with additional
tie-break subsets for which Inequality (2.14) breaks the symmetry on rows where the previous
rows have equal entries.

The set S̃ can be defined as

S̃= {Q̃s(i, j) | s ∈ [q], i ∈ {1, . . . , | Rs}, j ∈ {2, . . . , | Cs}} (2.15)

where

Q̃s(i, j) = {x ∈Qs | xr,cs
j−1
= xr,cs

j
for all r ∈ {rs

1, . . . , rs
i−1}}. (2.16)

Note that for a solution x ∈ Q̃s(i, j) columns cs
j−1 and cs

j are equal for the rows rs
1 up to rs

i−1.

Also note that Q̃s(1, j) = Qs, for all j ∈ {2, . . . , | Cs}. We refer to Bendotti, Fouilhoux and
Rottner [4] for the proof that using S̃ is full-symmetry breaking of the solution subsets S.
The key observation is that tie-break subset Q̃s(i, j) corresponds to the sub-symmetry where
the columns of the submatrix ({rs

i , . . . , rs
|Rs|
}, {cs

j−1, cs
j}) can be permuted. When x ∈ Q̃s(i, j),

Inequality (2.14) then indeed breaks the tie to ensure full lexicographical ordering of the
columns of x .

Lastly, we note that the number of inequalities that need to be added to the model can be
large depending on the chosen S. Also note that each (tie-break) solution subset requires an
additional integer variable zs. However, sometimes zs can be expressed as a linear function
in x , in which case it is not necessary to add the variable zs explicitly, as instead the linear
expression can be used directly. Otherwise, the variable zs can be expressed using additional
inequalities and/or integer variables.
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Chapter 3

Dynamic activation of sub-symmetries

In this chapter, we introduce a new approach on handling sub-symmetries in integer linear
programming. The general idea is to de-couple detection of when sub-symmetries become
active from the IP formulation. Instead, we provide a way for the problem modeller to use
custom routines to determine active sub-symmetries. We will call these routines activation
handlers. An activation handler is coupled with a high-level symmetry-breaking constraint,
where the activation handler acts as a guard for the constraint. Whenever a sub-symmetry
becomes active, the activation handler activates the symmetry-breaking constraint.

As a general outline, we distinguish three steps in sub-symmetry handling methods.

1. Identification of sub-symmetries present in the IP formulation.

2. Detection during the solving process of when sub-symmetries become active.

3. Breaking active sub-symmetries by activating symmetry-breaking constraints.

Throughout this work, we assume that sub-symmetries for the given problem are identified
beforehand. That is, we assume that a set of solution subsets S = {Qs ⊆ X | s ∈ [q]} is given,
with known symmetries that do not exist in the root problem. Here, X denotes the feasible
region of the root problem.

Note that it is possible to detect formulation symmetries in the root problem automatically, as
described in Section 2.1, by finding automorphisms in a graph representing the structure of the
formulation. Extending this to detecting sub-symmetries would be a non-trivial task, however.
It is not feasible to compute the symmetry group of every subproblem, as this would require
enumerating all the subproblems, which would take as much time as solving the root problem
in its entirety. A possible remedy would be to find additional symmetries that occur after only
a few variables have been fixed. This can for example be done with finding almost symmetries
in the graph representing the problem formulation, as described by Knueven, Ostrowski and
Pokutta [25]. However, only a limited number of sub-symmetry subsets can be identified with
this approach, as a small number of allowed variable fixings is inherently limiting. Therefore,
identifying these sub-symmetries would generally require knowledge of the structure of the
modeled problem. We further focus on detecting when the identified sub-symmetries become
active and breaking active sub-symmetries.

As already described in Section 2.5, the existing method to handle sub-symmetries is using
sub-symmetry-breaking inequalities. In our outline, detecting active sub-symmetries is done
by introducing additional binary z-variables in the formulation that indicate activation. Then,
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breaking active sub-symmetries is done with explicit inequalities in the formulation, which are
turned off and on with the z-variables.

One of the downsides of this approach is that many inequalities are necessary to fully break
the symmetry. In addition, sub-symmetry-breaking inequalities for all the identified solution
subsets must be added to the root problem, even though they are still ‘turned off’ as the sub-
symmetries are not yet active. Lastly, since the detection and breaking of sub-symmetry is
directly encoded in the IP formulation, it requires some effort of the modeler to translate the
identified sub-symmetries to explicit linear expressions in the model. We instead now propose
a more lightweight method where this translation is not necessary.

3.1 Detecting sub-symmetries with an activation handler

In our method, we provide an extension to the integer programming solver that allows the user
to write a custom routine that detects when a sub-symmetry becomes active. The activation
handler is called at a node of the branch-and-bound tree, and has access to the current state
of the solver. The activation handler returns a YES or NO result, indicating when the sub-
symmetry becomes active.

The specific implementation of activation handlers depends on the sub-symmetries that exist
in the problem. We refer to Chapters 4, 5 and 6 for more details on the activation handlers
used in our applications.

3.2 Activating sub-symmetry breaking constraints

The activation handler is used to activate or de-activate constraints that break the sub-sym-
metry. Because the activation handler is defined separate from the sub-symmetry breaking
constraint itself, the activation handler can be used with any kind of constraint in the solver.
We modify constraints such that they can be linked to an activation handler. When linked, the
solver first checks the activation handler at every node if the constraint should be handled.
Optionally, when the constraint activates, the activation handler may provide additional data
to the constraint that describes the activated sub-symmetry. We will see an example of this in
the application to the unit commitment problem in Chapter 5.

3.3 Interfacing with SCIP

The SCIP framework is a highly modularized software system with a small core, surrounded by
a number of plugins that extend the core functionality [1]. In the current framework, many de-
fault plugins are defined that together form the full functionality of the MIP solver. Plugins are
separated into plugin types. An important plugin type are the constraint handlers, that define
classes of constraints that the solver can handle. For example, there exists linear constraints,
handling linear inequalities, but also specialized constraints such as orbitope constraints that
can be used for breaking symmetries.

We introduce the activation handler as a new plugin type in SCIP. Specific activation handlers
can then be created as a new plugin in the framework. This allows each activation handler to
maintain its own internal data structure, and the user has full control of how the activation
handler behaves. When creating a new activation handler, it is required to implement a func-
tion that is the entry point of the activation handler. When called, the current status of the
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solving process is available to the activation handler. It then produces a YES or NO result, to
indicate whether it activates.

We furthermore extend the constraint handlers such that they can be linked to an activation
handler. When linked, the constraint handler calls the entry point of the activation handler
and depending on the result the constraint is handled or ignored.

In the following chapters, we will look at three applications where we use our method to
handle sub-symmetries. We will define specific activation handlers for the sub-symmetries in
these problems and compare the results with the existing inequalities method.
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Chapter 4

Application to graph coloring problem

We consider the graph coloring problem (GCP) as an example to illustrate how the framework
of Chapter 3 can be applied to handle sub-symmetries. Graph coloring has previously been
used to evaluate the sub-symmetry-breaking approach using inequalities in [4]. We replicate
the experimental setting as much as possible for our approach to symmetry handling, in order
to directly compare the two methods.

Consider an undirected graph G = (V, E) with vertex set V = [n] and edge set E ⊆
�V

2

�

.
A function c : V → [K] is called a vertex coloring of G if for any pair {i, j} ∈ E holds that
c(i) ̸= c( j). For a given vertex i ∈ V , we call c(i) the color of i. The minimum number of
colors in any vertex coloring of G is called the chromatic number of G, denoted by χ(G).

The graph coloring problem for a given graph G asks us to find a vertex coloring that uses a
minimum number of colors. The problem is well-known to be NP-hard [15], and has been
studied extensively in the literature, see e.g. Malaguti and Toth for an overview [30].

Let the integer K be a given upper bound on χ(G). Define x = (x i,k)i∈V, k∈[K] as a matrix of
variables, with rows indexed by the vertices V and columns by the colors [K]. The variable x i,k
indicates that vertex i ∈ V is assigned color k ∈ [K]. Define furthermore the variables yk for
every k ∈ [K], indicating that color k is used to color at least one vertex. Then the classical IP
formulation for this problem is as follows [10].

minimize
K
∑

k=1

yk (4.1)

subject to x i,k + x j,k ≤ yk ∀{i, j}∈E , ∀k∈[K], (4.2)
K
∑

k=1

x i,k = 1 ∀i∈V , (4.3)

x i,k ∈ {0,1} ∀i∈V , ∀k∈[K], (4.4)

yk ∈ {0,1} ∀k∈[K]. (4.5)

Constraint (4.2) ensures that adjacent vertices cannot both be assigned color k when this color
is used, while Constraint (4.3) ensures that every vertex is assigned exactly one color. Note
that in any optimal solution for this IP, the variable yk is zero if and only if color k is not used,
since we are minimizing the sum of all yk. Note that an optimal solution to the integer program
is fully determined by x , as from x we can uniquely determine variables yk corresponding to
an optimal solution. We denote the set of all feasible solutions x as XGCP.
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Figure 4.1: Example graph G = (V, E) on 7 vertices, with vertices colored with the colors
1 (white), 2 (black), and 3 (gray). Figures (a) and (b) show equivalent colorings, where the
colors 1 and 2 are permuted between the two figures. The corresponding matrix x has lexico-
graphically ordered columns, and hence is the representative solution in its orbit. Solution (a)
is cut-off by symmetry handling.

4.1 Symmetry in the graph coloring problem

In any solution of the graph coloring problem, it is possible to obtain an equivalent solution by
permuting color indices, see also Figure 4.1 for an example. In the IP formulation (4.1)–(4.5),
colors correspond to the columns of the matrix x , and therefore this symmetry corresponds to
permutations of columns of x . In other words, the symmetry group of the IP contains the sym-
metric group acting on the columns of x . This global symmetry can be handled by restricting
the columns of x to be lexicographically non-increasing. There are multiple approaches to add
these constraints to the model, but following the construction of [4], we add column inequali-
ties. These symmetry-breaking inequalities have been introduced for the GCP by Méndez-Díaz
and Zabala [34, 35] and has later been generalized by Kaibel and Pfetsch [22]. In our setting
this translates to the inequalities

min{i,K}
∑

k′=k

x i,k′ ≤
i−1
∑

i′=k−1

x i′,k−1 ∀i∈V , ∀2≤k≤min{i,K}. (4.6)

These are a polynomial number of additional inequalities and they fully break the symmetry of
the color permutations. These inequalities are usually not explicitly added to the formulation,
but instead are separated in the linear-time separation algorithm described in [22]. Since the
separation can be done in linear time, it will be faster than adding the inequalities explicitly
beforehand.

The formulation (4.1)–(4.5) also exhibits sub-symmetries, with the following observation from
Bendotti, Fouilhoux and Rottner [4]. Consider two colors c1 and c2 and a subset of the ver-
tices R ⊆ V such that the neighbors of R, denoted by N(R), are colored with neither c1 nor c2.
Then, the colors c1 and c2 can be permuted within the set of vertices R, see also Figure 4.2 for
an example. More formally, consider the solution subset

QR
c1,c2
= {x ∈ XGCP | x i,c1

= x i,c2
= 0 ∀i∈N(R)}. (4.7)

Then this solution subset is sub-symmetric with respect to (R, {c1, c2}), i.e., the symmetry group
of the subproblem corresponding to QR

c1,c2
contains the permutations acting on the columns
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Figure 4.2: Example graph with a zero-neighbor-sub-symmetry, with R = {v6, v7}, c1 =
1 (white), and c2 = 2 (black). We have that N(R) = {v4, v5} and these vertices are colored
with neither c1 nor c2. Hence, the colors c1 and c2 can be permuted inside R.

of the submatrix x(R, {c1, c2}). These sub-symmetries are referred to as zero-neighbor-sub-
symmetries. Note that there are an exponential number of sub-symmetric solution subsets, as
there are exponentially many subsets of the vertices V . Handling all sub-symmetries might
therefore be infeasible, as the added overhead might negatively impact the solving time. Thus
in practice we have to make a choice in what solution subsets to consider.

For the sake of comparison, we choose to follow the approach in [4], and therefore we con-
struct the subsets R by first choosing two distinct vertices s1, s2 ∈ V and selecting R to be the
vertices non-adjacent to s1 and s2, i.e.,

R= V \ (N(s1)∪ N(s2)∪ {s1, s2}). (4.8)

Then, we consider the following solution subset

Qs1,s2,R
c1,c2

= {x ∈ XGCP | xs1,c1
= 1, xs2,c2

= 1, x i,c1
= x i,c2

= 0 ∀i∈N(R)}. (4.9)

Thus, in the subsets we consider we will furthermore constrain s1 and s2 to be colored by c1
and c2, respectively. Define

SGCP = {Qs1,s2,R
c1,c2

| s1, s2 ∈ V , s1 < s2, c1, c2 ∈ [K], c1 < c2} (4.10)

as the set of all solution subsets that contain zero-neighbor-sub-symmetries that we consider.
Note that the size of SGCP is in the order of O(n2K2).

4.2 Sub-symmetry-breaking inequalities

We now briefly summarize how sub-symmetry-breaking inequalities are used to break the sub-
symmetries in SGCP. Details of the full derivation are omitted, as our goal is only to compare
the resulting inequalities with our novel activation handler approach. We refer to Section 2.3
of [4] for a more detailed derivation.

Let Qs1,s2,R
c1,c2

∈ SGCP be a solution subset. Then, the associated z-variable can be expressed as

z = (1− xs1,c1
) + (1− xs2,c2

) +
∑

r∈N(R)\N(s1)

xr,c1
+
∑

r∈N(R)\N(s2)

xr,c2
, (4.11)

as a direct consequence of the definition of the solution subset in Equation (4.9). Note that
we do not need to check whether vertices in N(s1) and N(s2) are colored with c1 and c2,
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respectively, since this is already enforced by constraint (4.2). Therefore, we can omit these
vertices from the summations over N(R).

The variable z is used to break the symmetry on the first row of the submatrix x(R, {c1, c2}).
For ease of notation, name the vertices of R = {v1, . . . , v|R|}, with v1 < · · · < v|R|. Since graph
coloring is a partitioning problem, we know that at most one of xv1,c1

and xv1,c2
can be 1.

Hence, we can break the symmetry on the first row by enforcing that xv1,c2
= 0 whenever the

sub-symmetry is active. This yields the partial-sub-symmetry-breaking inequality

xv1,c2
≤ z. (4.12)

In order fully break the symmetry, we need to extend SGCP with additional tie-break sets

Q̃s1,s2,R
c1,c2

(r) =Qs1,s2,R
c1,c2

∩ {x | x i,c1
= x i,c2

∀i∈v1,...,vr−1
}, (4.13)

for every r ∈ {2, . . . , |R|}. The corresponding variable z̃r can then be expressed as

z̃r = z +
r−1
∑

i=1

xvi ,c1
. (4.14)

The variable z̃r is then used in the sub-symmetry-breaking inequality

xvr ,c2
≤ z̃r . (4.15)

Observe that the variables z and z̃r have a direct linear expression in the variables x . Hence,
it is not necessary to add z and z̃r as explicit binary variables to the formulation. Instead, we
can substitute every occurrence of z and z̃r in the sub-symmetry-breaking inequalities with the
expressions (4.11) and (4.14).

The sub-symmetry inequalities are based on the column inequalities in (4.6) that are used for
global symmetry-breaking. In fact, by choosing R = V and by omitting s1 and s2, the original
column inequalities can be derived from the sub-symmetry breaking inequalities, as described
in [4].

4.3 Handling sub-symmetry using an activation handler

We now describe how we can apply our framework for handling sub-symmetries from Chap-
ter 3.

Consider a solution subset Qs1,s2,R
c1,c2

∈ SGCP, and suppose that during the solving process we are
at a node a in the branch-and-bound tree. Let F a

0 and F a
1 denote the set of variables fixed to 0

and 1 at node a, respectively. Furthermore let Qa ⊆ XGCP be the solution subset corresponding
to the subproblem at a. The sub-symmetry is active at a when Qa ⊆ Qs1,s2,R

c1,c2
. Since Qs1,s2,R

c1,c2
is

fully determined by variable fixings: the sub-symmetry is active at a if and only if

xs1,c1
, xs2,c2

∈ F a
1 and x i,c1

, x i,c2
∈ F a

0 ∀i∈N(R) (4.16)

holds (see also the definition of Qs1,s2,R
c1,c2

in Equation (4.9)).

When the sub-symmetry becomes active, it can be handled by enforcing the columns of the
submatrix x(R, {c1, c2}) to be lexicographically ordered. With a slight abuse of notation, denote
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the columns of this submatrix by xR,c1
and xR,c2

. Since the submatrix has only two columns,
the symmetry-breaking constraint can be stated as

xR,c1
⪰ xR,c2

. (4.17)

The constraint (4.17) is also known as an orbisack constraint, which can be separated in linear
time using methods based on what is described by Loos [29], and Hojny and Pfetsch [17].
Separation and propagation routines are implemented in the SCIP solver, and are available as
an orbisack constraint handler plugin [16].

The implementation of the activation handler in SCIP is then as follows. The variable fixings F a
0

and F a
1 are inspected at node a, sending a YES or NO response indicating whether the sub-

symmetry is active. The activation handler is linked to the orbisack constraint that handles
the symmetry, such that the orbisack constraint is only handled on a YES response of the
activation handler. See Algorithm 1 the pseudocode of the implementation of the variable
fixings activation handler.

Algorithm 1 Variable fixings activation handler procedure that inspects variable fixings at
node a, and checks whether the given variables in sets F0 and F1 are all fixed to 0 and 1,
respectively.

procedure VARFIXINGSISACTIVE(a, F0, F1) ▷ F0,F1 are sets of variables.
for all x i, j ∈ F0 do

if x i, j ̸∈ F a
0 then

return NO

for all x i, j ∈ F1 do
if x i, j ̸∈ F a

1 then
return NO

return YES

To handle the zero-neighbor-sub-symmetry at node a, the corresponding call to the activation
handler is VARFIXINGSISACTIVE(a,F0,F1), with sets of variables

F0 = {x i,c1
| i ∈ N(R) \N(s1)} ∪ {x i,c2

| i ∈ N(R) \N(s2)}, F1 = {xs1,c1
, xs2,c2

}. (4.18)

With precomputed sets F0 and F1, the activation handler runs in time linear in the size of
these sets, as the checking whether x ∈ F a

0 and x ∈ F a
1 can be done in constant time in SCIP.

4.4 Implementation details

The IP formulation is constructed in Python 3.10 using the PySCIPOpt interface that exposes
the SCIP API in Python. See also Appendix A. The activation handler is implemented in SCIP
as a new plugin, and can be added to the model with the PySCIPOpt interface. The activation
handler for a sub-symmetry defined by R, s1 and s2, the variable fixings activation handler is
constructed by providing a lists of references to variables that must be fixed to zero or one, as
described in Section 4.3. The activation handler is then linked to an orbisack constraint in SCIP
that breaks the symmetry. Note that we instantiate separate activation handlers and orbisack
constraints for every sub-symmetry.

The formulation is verified by testing the instance input readers and by checking the generated
model for small test instances with expected output.

18



4.5 Experiments on benchmark instances

In order to directly compare our method to the existing inequality-based approach, we replicate
the experimental setting from [4] as much as possible.

Experiments are performed on DIMACS graph coloring benchmark instances [42] with upper
bound K on the chromatic number computed using the DSatur algorithm [7]. Instances of
which results are reported in [4] are included in our instances set. The instances are parti-
tioned into classes, based on the solving time of the best-known algorithm. Class NP-s contains
instances solvable in less than a minute. The classes NP-m, NP-h, and NP-? contain instances
solvable in less than an hour, a day, and in an unknown amount of time, respectively.

In order to compare symmetry-breaking techniques, we compare the following models for
every problem instance:

F Formulation (4.1)–(4.5) with global-symmetry-breaking column inequalities (4.6),
with default SCIP parameters.

F-S0 Formulation (4.1)–(4.5) with global-symmetry-breaking column inequalities (4.6),
with SCIP internal symmetry handling turned off.

F-Ineq Formulation (4.1)–(4.5) with global-symmetry-breaking column inequalities (4.6)
and sub-symmetry-breaking inequalities from Section 4.2.

F-Act Formulation (4.1)–(4.5) with global-symmetry-breaking column inequalities (4.6)
and sub-symmetry breaking using orbisack constraints with the activation handler
from Section 4.3.

4.5.1 Choices of parameters

For the models F-Ineq and F-Act, we make further choices on what solution subsets from SGCP
to consider, as a trade-off between computational overhead of the added inequalities and the
overall performance gain. The choices are in line with the recommendations from [4].

Pairs of colors For a triple (s1, s2, R), the set of solution subsets SGCP contains solution subsets
for every pair of colors c1 < c2. Instead of considering all pairs of colors, we only consider pairs
of consecutive colors c j and c j+1, for j ∈ {1, . . . , K − 1}, to reduce computational overhead.
Except for instances where

• |V | ≥ 900 and K ≤ 10,

• |E|< 300, or

• K < 100 and |V |/K < 10,

we indeed consider all pairs of colors as this is acceptable from the size of the graph, and might
possibly lead to more sub-symmetry breaking. The choice of color pairs applies to both F-Ineq
and F-Act.

Number of variables in z For F-Ineq, the number of variables that are necessary to express z
are limited to

• 30, if |E|/|V |> 100,

• 20, if |E|/|V |> 10 and |V |< 200,
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• 20, if |V |< 200 and |E|< 1000 and K > 5, or

• 10, otherwise.

If the expression for z exceeds this limit, the corresponding sub-symmetry is not handled.

Limit on tie-break sets For F-Ineq, the number of tie-break sets added for every solution
subset in SGCP is limited to

• 1, if |V |< 100,

• 2, if |N | ≤ 900, or

• 3, otherwise.

Note that this may results in only partially breaking the sub-symmetries in F-Ineq.

Number of variable fixings in activation handler The number of variable fixings necessary
to check in the activation handler is limited to 50. If the required number of variable fixings
exceeds this limit, the corresponding sub-symmetry is not handled.

Total number of sub-symmetries For F-Act, the total number of sub-symmetries is limited
to 100 000. For F-Ineq, the total number of sub-symmetry inequalities that we add to the model
is limited to 50 000 when K < 100, and no limit when K ≥ 100. When the limit is reached, the
further sub-symmetries or sub-symmetry inequalities are not added to the model and remain
untreated.

Time limit For all models, instances are solved to optimality with a time limit of 7200 sec-
onds (2 hours). The time limit excludes construction time of the model and the time spent
finding the solution subsets that exhibit sub-symmetry. The time limit for model construction
and finding sub-symmetries is 14 400 seconds (4 hours).

4.5.2 Results

All experiments are run with the development version of SCIP 7.0.3 with the SoPlex LP-
solver [14], on a single core of an Intel Xeon Platinum 8260 CPU, running at 2.4 GHz, with
10.7 GB of RAM.

The results are reported in Table 4.1, 4.2, 4.3, and 4.4, and include the following data.
|V | Number of vertices.

|E| Number of edges.

K Upper bound on the chromatic number, as computed by DSatur.

SSBC Number of sub-symmetry-breaking constraints added in the model. For F-
Ineq this is the number of added inequalities. For F-Act this is the number
of orbitope constraints.

Init (sec) The time spent to generate sub-symmetry breaking inequalities and initial-
ize the SCIP model, in seconds.

Nodes Number of nodes in the B&B tree.

Solving (sec) Time spent solving the model, in seconds. When the time limit is reached
when the model is not solved to optimality, the solving time is equal to 7200.
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Table 4.1: GCP experiments on NP-s instances.

Instance |V | |E| K Model SSBC Init (sec) Nodes Solving (sec)

DSJC125.1 125 736 5 F 0 1.04 2 10.31
F-S0 0 1.04 2 10.1
F-Ineq 0 3.88 2 9.76
F-Act 3832 3.88 2 10.5

1-Insertions_4 67 232 5 F 0 1.40 931343 7200
F-S0 0 0.72 1020 469 5132.06
F-Ineq 370 2.39 680 419 1030.16
F-Act 5490 5.67 10 086 58.79

queen9_9 81 2112 10 F 0 4.97 73050 7200
F-S0 0 5.96 79 915 7200
F-Ineq 0 46.02 410 013 7200
F-Act 0 6.27 75 988 7200

r125.1c 125 7501 46 F 0 56.29 1 7200
F-S0 0 56.67 1 7200
F-Ineq 50000 55.14 1 7200
F-Act 0 56.18 1 7200

school1 385 19 095 14 F 0 60.49 1 7200
F-S0 0 68.62 1 7200
F-Ineq 2106 1377.1 1 7200
F-Act 2275 273.13 1 7200

Of the 26 instances in total, only 7 instances were solved to optimality within the time limit.
The majority of the instances prove too difficult for our model and cannot be used for a com-
parison of the sub-symmetry handling methods.

A surprising result is that our replication of the sub-symmetry-breaking inequalities model
does not show the same performance improvements as reported in [4]. In the generation
of the models, there might be a difference in our implementation and the implementation
used for the original paper. The order of variables and constraints can have an impact on,
e.g., branching decisions and other heuristics, leading to different results. In addition, we
were not able to fully replicate their experimental setup of the original paper, as for some
models a different number of sub-symmetry-breaking inequalities are generated. Moreover, in
the original paper the experiments were performed using the CPLEX 12.8 commercial solver,
which might differ significantly from the solving process in SCIP. In order to check whether
the difference between CPLEX and SCIP is significant, we have also tested F, F-S0 and F-Ineq
on CPLEX 12.8. Although there is a difference in results, also on CPLEX the F-Ineq model does
not show a clear performance improvement over F and F-S0. The results for every instance can
be found in Appendix B. This shows that the sub-symmetry-breaking inequalities approach is
very much dependent on the choices for the parameters in Section 4.5.1, and that our efforts
in replicating the exact setup is not sufficient for reaching the same performance gains.

For the instances that are solved to optimality, we see that in 6 out of the 7 times the acti-
vation handler method is the most efficient. Especially for the 1-Insertions_4, 2-Insertions_4,
and 4-Insertions_3 instances, the solving time is significantly shorter. On other instances, the
performance of the other models is rather similar. Overall, the results show that sub-symmetry
breaking with the activation handler method can significantly improve the solving process.
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Table 4.2: GCP experiments on NP-m instances.

Instance |V | |E| K Model SSBC Init (sec) Nodes Solving (sec)

5-FullIns_3 154 792 8 F 0 2.10 7611 144.78
F-S0 0 2.10 7611 152.6
F-Ineq 7350 8.67 8249 241.39
F-Act 5040 6.49 9808 333.68

2-FullIns_4 212 1621 6 F 0 2.90 2671 276.56
F-S0 0 2.90 2671 275.15
F-Ineq 20 11.87 3597 264.85
F-Act 5195 10.58 2391 245.67

wap05a 905 43081 51 F 0 557.77 1 7200
F-S0 0 557.48 1 7200
F-Ineq 0 14 400
F-Act 0 1131.77 1 7200

4-Insertions_3 79 156 4 F 0 0.31 26970 44.76
F-S0 0 0.33 26 970 44.88
F-Ineq 2250 1.71 22 542 51.17
F-Act 2280 1.27 4594 11.04

school1_nsh 352 14612 21 F 0 50.42 1 7200
F-S0 0 50.34 1 7200
F-Ineq 1400 1402.1 1 7200
F-Act 1340 109.53 1 7200

ash608GPIA 1216 7844 8 F 0 92.52 1 7200
F-S0 0 92.65 1 7200
F-Ineq 3528 680.26 1 7200
F-Act 67732 919.80 1 7200

le450_15a 450 8168 19 F 0 45.16 1 7200
F-S0 0 45.14 1 7200
F-Ineq 0 1091.72 1 7200
F-Act 1980 113.98 1 7200

myciel6 95 755 7 F 0 1.00 1 219363 7200
F-S0 0 1.04 1180 294 7200
F-Ineq 5130 10.39 650 925 7200
F-Act 6978 4.64 956 060 7200

It is also clear that the success varies greatly with the instance. This can also be explained by
the fact that selecting the solution subsets for sub-symmetry handling has been quite arbitrary.
There are too many solution subsets to consider all sub-symmetries during solving. For some
instances, we may have been unlucky in the selection of the subsets.
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Table 4.3: GCP experiments on NP-h instances.

Instance |V | |E| K Model SSBC Init (sec) Nodes Solving (sec)

DSJC125.5 125 3891 24 F 0 12.06 1 7200
F-S0 0 13.16 1 7200
F-Ineq 0 1467.84 1 7200
F-Act 0 13.73 1 7200

DSJC125.9 125 6961 57 F 0 45.43 1 7200
F-S0 0 45.60 1 7200
F-Ineq 50 000 86.65 1 7200
F-Act 0 46.24 1 7200

DSJC250.9 250 27897 100 F 0 317.15 1 7200
F-S0 0 339.92 1 7200
F-Ineq 0 2292.82 1 7200
F-Act 0 327.00 1 7200

DSJR500.5 500 58862 134 F 0 1948.55 7200
F-S0 0 1063.48 1 7200
F-Ineq 0 14 400
F-Act 0 1641.44 1 7200

flat300_28_0 300 21695 48 F 0 291.28 1 7200
F-S0 0 237.51 1 7200
F-Ineq 0 14 400
F-Act 0 185.85 1 7200

r250.5 250 14849 72 F 0 148.09 1 7200
F-S0 0 143.80 1 7200
F-Ineq 50 000 5149.98 1 7200
F-Act 0 284.68 1 7200
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Table 4.4: GCP experiments on NP-? instances.

Instance |V | |E| K Model SSBC Init (sec) Nodes Solving (sec)

r125.5 125 3838 36 F 0 18.09 1 7200
F-S0 0 18.42 1 7200
F-Ineq 50000 182.06 1 7200
F-Act 0 19.94 1 7200

3-FullIns_4 405 3524 7 F 0 10.66 2590 7200
F-S0 0 10.84 2601 7200
F-Ineq 0 58.29 1953 7200
F-Act 9984 53.25 4636 7200

1-FullIns_5 282 3247 6 F 0 5.73 18666 7200
F-S0 0 5.78 34 281 7200
F-Ineq 0 38.51 43 478 2947.65
F-Act 200 13.82 39 189 2840.47

2-Insertions_4 149 541 5 F 0 1.41 161276 7200
F-S0 0 1.05 850 298 7200
F-Ineq 352 4.48 2011 601 7200
F-Act 5040 8.14 760 127.13

myciel7 191 2360 8 F 0 4.06 107866 7200
F-S0 0 4.05 108 199 7200
F-Ineq 18228 74.78 23 528 7200
F-Act 11564 20.72 74 910 7200

flat300_20_0 300 21 375 38 F 0 162.15 1 7200
F-S0 0 227.80 1 7200
F-Ineq 0 14 400
F-Act 0 155.49 1 7200

flat300_26_0 300 21 633 39 F 0 112.59 1 7200
F-S0 0 113.03 1 7200
F-Ineq 0 14 400
F-Act 0 154.27 1 7200
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Chapter 5

Application to unit commitment
problem

We now apply our framework to the unit commitment problem, in which production units
have to satisfy total production demand over a time period, where the goal is to minimize to-
tal cost that arise from active production units. This problem and its variants are for example
used to model energy production by power plants. We will consider the variant where ev-
ery production unit has a minimum uptime and downtime, called the Min-up/min-down Unit
Commitment Problem (MUCP).

Suppose we are given a time horizon T = {1, . . . , T} and non-negative demands Dt that need to
be satisfied at every time t ∈ T . Furthermore assume we are given a set U of production units,
where each unit j ∈ U has a minimum production capacity P j

min and a maximum production

capacity P j
max. Let |U | = n. Production units can be either up or down at every time t ∈ T .

When a unit j is up, its production is between P j
min and P j

max and it must remain up for at
least L j time steps. Similarly, when a unit j is down, it must remain down for at least ℓ j time
steps. Without loss of generality, we assume L j ≤ T and ℓ j ≤ T . We furthermore have for every
unit j a start-up cost c j

0, a fixed cost c j
f for every time step the unit is up, and a production

cost c j
p proportional to its production. The goal is to find a production schedule satisfying

the production demand at every time step and the min-up and min-down constraints, while
minimizing the total cost.

It has been shown that the MUCP is strongly NP-hard for general T and n [2]. MUCP remains
NP-hard even in special cases of unit-cost, where c j

0 = c j
p = 0 and c j

f = 1 for all j ∈ U , and

unit-power, where P j
min = P j

max = P for all j ∈ U [2]. Furthermore, the problem can be solved
in polynomial time for fixed n, showing that the number of production units has a large impact
on the complexity of the problem [2].

We can express the MUCP as an integer linear program as follows [5, 37, 39]. For every
production unit j ∈ U and time step t ∈ T , we consider the following variables. Let the
variable x t, j ∈ {0, 1} indicate whether unit j is up at time t, ut, j ∈ {0,1} whether unit j starts
up at time t, and pt, j ∈ R+ the production of unit j at time t. We will also refer to these
variables as the matrices x = (x t, j)t∈T , j∈U , u = (ut, j)t∈T , j∈U and p = (pt, j)t∈T , j∈U . We then
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get the following formulation.

minimize
∑

j∈U

∑

t∈T

�

c j
f x t, j + c j

ppt, j + c j
0ut, j

�

(5.1)

subject to
t
∑

t ′=t−L j+1

ut ′, j ≤ x t, j ∀ j∈U , ∀t∈{L j ,...,T}, (5.2)

t
∑

t ′=t−ℓ j+1

ut ′, j ≤ 1− x t−ℓ j , j ∀ j∈U , ∀t∈{ℓ j ,...,T}, (5.3)

∑

j∈U
pt, j ≥ Dt ∀t∈T , (5.4)

pt, j ≥ P j
min x t, j ∀ j∈U , ∀t∈T , (5.5)

pt, j ≤ P j
max x t, j ∀ j∈U , ∀t∈T , (5.6)

ut, j ≤ x t, j − x t−1, j ∀ j∈U , ∀t∈{2,...,T}, (5.7)

x t, j ∈ {0, 1} ∀ j∈U , ∀t∈T , (5.8)

ut, j ∈ {0, 1} ∀ j∈U , ∀t∈T . (5.9)

The constraints (5.2) and (5.3) ensure the minimum uptime and downtime, respectively. Con-
straints (5.5) and (5.6) enforce that the production is between the capacity bounds when
the unit is up, while also ensuring that the production is zero when the unit is down. The
constraint (5.4) ensures that the demand is satisfied at every time step, while the constraint
in (5.7) defines when a unit is starting up. We define XMUCP as the set of all feasible matrix
solutions x .

5.1 Symmetry in the unit commitment problem

Symmetries are present globally in the MUCP when production units have identical properties,
i.e., units where the properties (Pmin, Pmax, L,ℓ, c0, c f , cp) are equal. To make this more explicit,
we partition the production units into H types, where a type h ∈ {1, . . . , H} consists of nh
identical units that we denote by Uh = { jh1 , . . . , jhnh

}. For a type h, we slightly abuse notation

to denote its properties as (Ph
min, Ph

max, Lh,ℓh, ch
0 , ch

f , ch
p). We can then also partition the matrix

variable x into H matrices xh = (x t, j)t∈T , j∈Uh
for every type of production unit, and similarly

for matrices u and p. The production units within each type are identical, and we can hence
permute their production schedules. This corresponds to permuting the columns of xh, uh

and ph, provided that the same permutation is applied to all three matrices.

In order to break the symmetry arising from permutations of units of the same type, note
that the variables uh are fully determined by xh, hence breaking the symmetry on xh will also
break the symmetry on uh. One possible way of breaking the symmetry is to restrict xh to the
full orbitope for binary matrices of size T × nh, i.e., by imposing that the columns of xh are
lexicographically non-increasing.

The MUCP also exhibits sub-symmetries, as described by Bendotti, Fouilhoux and Rottner [4].
They call a production unit j ∈ U ready to start up at some time t ∈ T if the unit has been
down continuously for at least the minimum downtime ℓ j . In other words, when x t ′, j = 0 for
all t ′ = t−ℓ j , . . . , t−1 and t ≥ ℓ j+1. Now, suppose there are at least two units j1, . . . , jk ∈ Uh

of type h that are all ready to start up at some time t. Then, their production schedules
can be permuted from time t onwards, regardless of their schedule up to time t. This thus
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1 1 1 0 0
2 0 1 0 0
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t − 2 0 0 0 1
t − 1 0 0 0 0
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...

T

ℓh = 2

(a)

xh =

















































1 0 1 0 0
2 1 1 0 0
...

t − 2 1 1 1 0
t − 1 1 1 1 1

t
...

T

Lh = 2

(b)

Figure 5.1: Example of sub-symmetry in MUCP. (a) At time t, three identical units of type h
have been down for at least ℓh = 2 time steps, hence their schedules starting from t can be
permuted (highlighted in gray). (b) At time t, three identical units of type h have been up for
at least Lh = 2 time steps, hence their schedules starting from t can be permuted. Note that
in both cases, the schedules need not be equal at any time before t − 2.

defines a sub-symmetry where the columns of the submatrix x({t, . . . , T}, { j1, . . . , jk}) can be
permuted. Analogously, one can identify sub-symmetries for two units ready to shut down at
some time t ∈ T . These sub-symmetries are referred to as the start-up and shut-down sub-
symmetries, respectively. See also Figure 5.1 for an example.

5.2 Sub-symmetry-breaking inequalities

We now describe the method of Bendotti, Fouilhoux and Rottner of handling the start-up and
shut-down sub-symmetries using inequalities [4]. For the details of the derivation, we refer to
the original paper.

Let h ∈ [H] be a type of identical units Uh = { jh1 , . . . , jhnh
}. As described in Section 5.1, we

can define sub-symmetries for at least two units that are ready to start up or shut down at
some time t. As a limitation of using inequalities, permutations between more than two units
cannot be handled with a single inequality. Instead, solutions are defined for consecutive pairs
of units jhk , jhk+1. Thus, consider for every k = 1, . . . , nh − 1 the solution subsets

Q̌t
k,h = {x ∈ XMUCP | x t ′, j = 0 for all t ′ = t − ℓh, . . . , t − 1, j = jhk , jhk+1}

for all t ≥ ℓh + 1,
(5.10)

Q̂t
k,h = {x ∈ XMUCP | x t ′, j = 1 for all t ′ = t − Lh, . . . , t − 1, j = jhk , jhk+1}

for all t ≥ Lh + 1,
(5.11)

where sub-symmetries of Q̌t
k,h and Q̂t

k,h are the start-up and shut-down sub-symmetries, re-
spectively. These sub-symmetries correspond to permutations of the two columns of the sub-
matrix x({t, . . . , T}, { jhk , jhk+1}). It can be shown that no additional tie-break sets are necessary,
and

SMUCP = {Q̂t
k,h | t ∈ T , h ∈ [H], k ∈ {1, . . . , nh − 1}, t ≥ Lh + 1}

∪ {Q̌t
k,h | t ∈ T , h ∈ [H], k ∈ {1, . . . , nh − 1}, t ≥ ℓh + 1}

(5.12)

satisfies the condition to be full-sub-symmetry breaking.
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The variables ž t
k,h and ẑ t

k,h, indicating whether x ∈ Q̌t
k,h and x ∈ Q̂t

k,h, respectively, can then be
expressed directly as

ž t
k,h =

t−1
∑

t ′=t−ℓh
x t ′, j +

t−1
∑

t ′=t−ℓh
x t ′, j′ for t ≥ ℓh + 1, (5.13)

ẑ t
k,h =

t−1
∑

t ′=t−Lh

�

1− x t ′, j

�

+
t−1
∑

t ′=t−Lh

�

1− x t ′, j′
�

for t ≥ Lh + 1, (5.14)

where j = jhk and j′ = jhk+1, for notational convenience. This leads to sub-symmetry-breaking
inequalities

x t, j′ ≤ ž t
k,h + x t, j if t ≥ ℓh + 1, (5.15)

x t, j′ ≤ ẑ t
k,h + x t, j if t ≥ Lh + 1. (5.16)

Note that since the z-variables have a linear expression in x , we need not to add the z-variables
to the model explicitly; we can simply replace every occurrence by the linear expression in the
sub-symmetry-breaking inequalities.

The inequalities (5.15) and (5.16) can be strengthened to the following inequalities.

ut, j′ ≤



x t−ℓh, j +
t−1
∑

t ′=t−ℓh+1

ut ′, j



+ x t, j if t ≥ ℓh + 1, (5.17)

wt, j ≤



1− x t−Lh, j′ +
t−1
∑

t ′=t−Lh+1

wt ′, j′



+ 1− x t, j′ if t ≥ Lh + 1, (5.18)

where wt, j = x t−1, j − x t, j + ut, j denotes whether unit j shuts down at time t. We refer to [4]
for the derivation of the strengthened inequalities.

5.3 Handling sub-symmetry using an activation handler

We now describe how we can apply the activation handler framework to handle start-up and
shut-down sub-symmetries. For the MUCP, we adopt a more general approach in detecting all
active sub-symmetries at once. This is different from the approach for the GCP in Section 4.3,
where we registered separate activation handlers for every individual solution subset. In this
case, our activation handler does not only give a YES or NO answer, but instead returns all the
submatrices in x containing active sub-symmetries.

Let a be a node of the branch-and-bound tree, and let F a
0 and F a

1 denote the sets of variables
of that are fixed to 0 or 1 at node a, respectively. Let Qa ⊆ XMUCP denote the feasible solution
set of the subproblem at node a. We are looking for production units that according to the
variable fixings at node a are ready to start up or ready to shut down. For ease of presentation,
we assume that all production units U are identical. In the more general case where we have
multiple types of production units, we can simply apply our method to the unit types separately.

We start by defining for every t ∈ {ℓ+ 1, . . . , T},

Ša
t = { j ∈ U | x t ′, j ∈ F a

0 for all t ′ ∈ {t − ℓ, . . . , t − 1}}. (5.19)
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That is, Ša
t are the production units that are fixed to be ready to start up at node a. In

other words, for a unit j ∈ Ša
t , we have that this unit is ready to start up at time t in ev-

ery solution of Qa. For every subset Ša
t for which |Sa

t | ≥ 2, the corresponding start-up sub-
symmetry—where the schedules of units Sa

t can be permuted from time t can be permuted—
becomes active. Hence, the symmetry correspond to column permutations of the subma-
trix x({t, . . . , T}, Ša

t ). In order to break the symmetry, we activate an orbitope constraint at
node a that restricts the columns of x({t, . . . , T}, Ša

t ) to be lexicographically non-increasing. In
SCIP, this is done with the orbitope constraint handler implementing routines for propagation,
described by Bendotti, Fouilhoux and Rottner [3], and separation, described by Hojny and
Pfetsch [17].

We can do the same for the shut-down sub-symmetries. In that case, define production-unit
sets for every t ∈ {L + 1, . . . , T},

Ŝa
t = { j ∈ U | x t ′, j ∈ F a

1 for all t ′ ∈ {t − L, . . . , t − 1}}, (5.20)

as the production units that are fixed at node a to be ready to shut down at time t. Analogously
to the above, every subset Ŝa

t with |Ŝa
t | ≥ 2 corresponds to a shut-down symmetry, which we

break by activating an orbitope constraint for the submatrix x({t, . . . , T}, Ŝa
t ) at node a.

It remains to describe how to find all active sub-symmetries at node a efficiently. As illustrated
in Figure 5.1, sub-symmetries are defined by towers of zeros or ones in the matrix x . By iterat-
ing over the time horizon, it is possible to find these towers in O(nT ) time. We use a dynamic
programming approach, where the main idea is to fill two tables up(t, j) and down(t, j) that
indicate the current uptime and downtime for a unit j at time t, according to the variable
fixings at a. The table entries satisfy the following recursive expressions

up(t, j) =

¨

up(t − 1, j) + 1 if t > 1 and x t−1, j ∈ F a
1 ,

0 otherwise,
(5.21)

down(t, j) =

¨

down(t − 1, j) + 1 if t > 1 and x t−1, j ∈ F a
0 ,

0 otherwise.
(5.22)

We can fill this table by increasingly iterating over the time horizon and in any order over the
production units. When we have completely filled a table row for some time t, we can check
if there are multiple units that have an uptime of at least L or a downtime of at least ℓ. If
that is the case, we report the that the sub-symmetry in the submatrix with rows and column
indices ({t, . . . , T}, Ša

t ) or ({t, . . . , T}, Ŝa
t ) has become active.

The activated submatrices are passed to the orbitope constraint handler in SCIP, which we have
slightly modified to support propagation of the suborbitopes defined by the submatrices. Sepa-
ration for suborbitopes is not implemented. For completeness, pseudocode for this suborbitope
activation handler algorithm is given in Algorithm 2.

With this approach, we only need to add a single activation handler to the model in SCIP, linked
to a single orbitope constraint. The orbitope constraint is able to handle propagation of the
suborbitope constraints for the submatrices reported by the activation handler. This allows for
smaller overhead for sub-symmetry handling than the approach for the GCP, where multiple
activation handlers were added for separate orbisack constraints.
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Algorithm 2 Activation handler procedure that determines whether MUCP start-up or shut-
down sub-symmetries occur at node a. A set of submatrix indices I is returned indicating that
the production schedules in these sub-matrices can be permuted.

procedure SUBORBITOPEISACTIVE(a, x , T , U , L, ℓ)
I ← {(T ,U)} ▷ Global symmetry on the whole matrix x is always active
up j ← 0 ∀ j∈U
down j ← 0 ∀ j∈U

for all t ∈ T do
Š = { j ∈ U | down j ≥ ℓ}
if |Š| ≥ 2 then ▷ Multiple units are down for at least the minimum downtime at t

I ← I ∪ {({t, . . . , T}, Š)}

Ŝ = { j ∈ U | up j ≥ L}
if |Ŝ| ≥ 2 then ▷ Multiple units are up for at least the minimum uptime at t

I ← I ∪ {({t, . . . , T}, Ŝ)}

for all j ∈ U do
if x t, j ∈ F a

0 then ▷ Update the current downtime for unit j
down j ← down j + 1

else
down j ← 0

if x t, j ∈ F a
1 then ▷ Update the current uptime for unit j

up j ← up j + 1
else

up j ← 0

return I
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5.4 Implementation details

The IP formulation is constructed in Python 3.10 using the PySCIPOpt interface that exposes
the SCIP API in Python. See also Appendix A. The activation handler is implemented in SCIP
as a new plugin, and can be added to the model with the PySCIPOpt interface. For every
type h ∈ [H] of production units for which |Uh| ≥ 2, we add a single activation handler to
the model. Upon creation, the activation handler is supplied with the matrix xh of variables,
the minimum uptime Lh, and the minimum downtime ℓh. The activation handler not only
produces a YES or NO result to indicate whether a sub-symmetry is active, but also provided a
(linked) list of submatrices of xh where the sub-symmetry is active.

The activation handler is linked to an orbitope constraint in SCIP that breaks the symmetry.
The orbitope constraint is modified such that it can handle suborbitope constraints for the
submatrices returned by the activation handler.

The formulation is verified by testing the instance input readers and by checking the generated
model for small test instances with expected output.

5.5 Experiments on generated instances

We compare the sub-symmetry handling methods using experiments on generated instances
of the MUCP. We are thankful to the authors of [4] for sharing their instances, allowing for a
direct comparison of both methods using the SCIP solver.

The following models are tested for every problem instance:

F Formulation (5.1)–(5.9) with default SCIP parameters.

F-S0 Formulation (5.1)–(5.9) with SCIP internal symmetry handling turned off.

F-Ineq Formulation (5.1)–(5.9) with sub-symmetry-breaking inequalities (5.17)–(5.18).

F-Act Formulation (5.1)–(5.9) sub-symmetry breaking using the (sub)orbitope constraint
with the activation handler from Section 5.3.

5.5.1 Choices of parameters

Instances were generated for n ∈ {20,30, 60} and T ∈ {48,96}. Patterns for the production de-
mand and production units are derived from the dataset in [8]. To make sure the instances ex-
hibit symmetries, parameters for units are randomly generated and duplicated d times, with d
randomly selected in the closed interval [1, n/ f ]. The parameter f ∈ {2,3, 4} is the symmetry
factor, where a lower symmetry factor indicates larger groups of identical production units in
expectation. Symmetry factor f = 4 is only considered for instances with n = 60. For every
triple (n, T, f ), 20 instances are generated. The results in Section 5.5.2 show the average over
these 20 instances.

For all models, instances are solved to optimality with a time limit of 3600 seconds (1 hour).
The time limit excludes construction time of the model and the time spent finding the solution
subsets that exhibit sub-symmetry. Model construction time is negligible compared to the
model solving time, however.
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Table 5.1: MUCP experiments on instances with 20 production units.

n T f Model Opt Avg opt nodes Avg opt time (sec)

20 48 2 F 20 2506 12.99
F-S0 20 5423 32.72
F-Ineq 20 1606 38.98
F-Act 20 7 6.38

3 F 20 133 6.05
F-S0 20 260 5.89
F-Ineq 20 3 9.19
F-Act 20 43 5.79

20 96 2 F 19 28 792 177.61
F-S0 15 11509 57.42
F-Ineq 20 808 107.79
F-Act 20 1513 51.92

3 F 18 1066 23.64
F-S0 17 15478 64.23
F-Ineq 19 1535 52.59
F-Act 19 1141 37.65

5.5.2 Results

All experiments are run with the development version of SCIP 7.0.3 with the SoPlex LP-
solver [14], on a single core of an Intel Xeon Platinum 8260 CPU, running at 2.4 GHz, with
10.7 GB of RAM.

The results are reported in Table 4.1, 5.1, 5.2, and 5.3, and include the following data.
n Number of production units.

T Size of time horizon.

f Symmetry factor.

Opt Number of generated instances solved to optimality.

Avg opt nodes Average number of nodes in the B&B tree of the instances solved to
optimality.

Avg opt time (sec) Average spent solving the model, in seconds, of the instances solved
to optimality.

Small instances of the MUCP with 20 production units can be solved quite efficiently by all
models. For both F-Ineq and F-Act however, the average number of nodes in the branch-and-
bound tree is generally smaller for the instances solved to optimality. In addition, both sub-
symmetry-breaking methods solve more instances to optimality compared to the methods F
and F-S0. F-Act is furthermore faster in solving time of almost all the small instances. The
same trend is visible for the instances with 30 units, where the activation handler method
now also solves more instances to optimality than the sub-symmetry-breaking method with
inequalities. This is especially visible for the instances with (n, T, f ) = (3, 96,2), where not
only significantly more instances are solved to optimality, but the activation handler method
also shows a large reduction in nodes of the B&B-tree and solving time.
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Table 5.2: MUCP experiments on instances with 30 production units.

n T f Model Opt Avg opt nodes Avg opt time (sec)

30 48 2 F 20 2342 31.24
F-S0 19 51327 194.91
F-Ineq 20 416 60.75
F-Act 20 152 12.64

3 F 19 40 081 142.06
F-S0 13 6628 30.92
F-Ineq 20 484 57.94
F-Act 20 1795 36.05

30 96 2 F 17 2185 88.52
F-S0 13 16246 236.22
F-Ineq 16 2979 684.54
F-Act 19 528 87.06

3 F 13 13 291 175.51
F-S0 10 9445 128.38
F-Ineq 19 2009 553.61
F-Act 20 2397 199.92

For the larger instances with 60 units, the activation handler method clearly shows that it is
more efficient than the other methods. Overall, many more instances can be solved to op-
timality, except for one instance with (n, T, f ) = (60,48, 3), for which only F-Ineq is able to
solve it within the time limit. For high-symmetry instances with f = 2, the activation han-
dler method solves significantly more instances to optimality, compared to the inequalities
method. When increasing the symmetry factor, this difference between F-Act and F-Ineq be-
comes smaller. The activation handler furthermore shows a significant improvement on the
solving time, compared to the inequalities method. A possible explanation for this is that many
sub-symmetry-breaking inequalities may be responsible for more overhead, having a negative
impact on the solving time.
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Table 5.3: MUCP experiments on instances with 60 production units.

n T f Model Opt Avg opt nodes Avg opt time (sec)

60 48 2 F 16 2416 189.69
F-S0 12 134170 473.38
F-Ineq 13 7025 714.69
F-Act 20 2419 226.05

3 F 19 9015 171.83
F-S0 11 64166 261.57
F-Ineq 19 3312 251.97
F-Act 18 6104 107.67

4 F 17 3087 75.28
F-S0 9 24237 140.79
F-Ineq 19 1360 329.80
F-Act 20 587 67.15

60 96 2 F 10 13 210 495.17
F-S0 7 165289 451.40
F-Ineq 7 4433 1586.34
F-Act 16 1524 393.22

3 F 4 9411 187.87
F-S0 4 20450 173.11
F-Ineq 9 6308 1685.11
F-Act 16 2685 377.77

4 F 4 45 752 461.75
F-S0 2 1583 125.85
F-Ineq 19 5706 1264.64
F-Act 18 2536 428.07
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Chapter 6

Application to geometric symmetries
in two-dimensional packing problems

Consider a packing problem, where the goal is to pack objects in one or more containers where
the objects are not allowed to overlap. Packing problems also exhibit permutation symmetries,
for instance equivalent objects or containers that are interchangeable; these symmetries can
for example be handled with orbisack or orbitope constraints. However, geometric symmetries
arising from the shape of the container cannot be handled by these methods. In this section,
we introduce a new symmetry handling constraint for such geometric symmetries and extend
this to geometric sub-symmetries as well.

We describe our methods for two-dimensional orthogonal packing problems, where we are
given rectangular containers and rectangle objects that need to be packed inside the containers.
Several variants of rectangle packing exist, which differ in the considered objective function,
whether all objects need to be packed, or the number and shapes of available containers. The
first typology for two-dimensional packing and cutting problems was given by Dyckhoff [13]
in 1990, which was further extended by Lodi, Martello and Vigo [27]. The surveys of Lodi,
Marthello and Monaci [26] and Lodi, Martello and Vigo [28] give an overview of various
approximation, heuristic, or exact approaches for several variants of two-dimensional packing.
Iori, de Lima, Martello, Miyazawa and Monaci [19] provide a more recent review of exact
algorithms for two-dimensional packing problems.

In the remainder of this chapter, we consider the two-dimensional knapsack problem (2D-KP),
where each of the given rectangles to be packed has a profit. The goal is to find a packing
of rectangles in a given container that maximizes the profit. We choose the knapsack variant
as in this problem we are not only looking for a feasible packing, but indeed an optimal one
in terms of profit. We anticipate that symmetry handling has a greater effect on these type of
problems. In problems where the goal is to find, e.g., only a feasible packing of all rectangles,
the solving process finishes much sooner and cutting off symmetric solutions might have less
of an impact.

An instance of the two-dimensional knapsack problem specifies a rectangular container in
which rectangles need to be packed. The container has integer width W and height H. Further-
more, we are given a set of rectangles R with integer widths wi , heights hi , and non-negative
profits pi ∈ R+ for every i ∈ R. Rectangles may be selected to be packed in the container,
where they must be placed at integer coordinates, may not overlap with other rectangles, and
may not cross the container boundaries. Furthermore, rectangles are placed axis-aligned in
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the container and rotations are not allowed. An optimal solution to the problem maximizes
the sum of profits of the rectangles packed in the container. Several integer programming
formulations for this problem exist. We use an absolute placement approach, where we model
the location of a rectangle in the container with (integer) variables for the x and y-coordinate
of the bottom-left reference point of the rectangle.

The formulation is based on the formulations by Onodera, Taniguchi and Tamaru [36], and
Chen, Lee and Shen [9], adapted for the knapsack variant of the problem. Let si ∈ {0, 1}
denote whether rectangle i ∈ R is selected to be packed. The variables x i , yi ∈ Z denote the
location of the bottom-left corner of rectangle i ∈R in the container, when it is selected to be
placed. Furthermore, for distinct rectangles i, j ∈R, let ℓi j ∈ {0,1} denote whether rectangle i
is placed left of rectangle j in the container. Similarly, let bi j denote whether rectangle i is
placed below of rectangle j in the container. We then get the following formulation.

maximize
∑

i∈R
pisi (6.1)

subject to 0≤ x i ≤ (W −wi)si ∀i∈R (6.2)

0≤ yi ≤ (H − hi)si ∀i∈R (6.3)

ℓi j = 1 =⇒ x i +wi ≤ x j ∀i, j∈R, i ̸= j (6.4)

bi j = 1 =⇒ yi + hi ≤ y j ∀i, j∈R, i ̸= j (6.5)

ℓi j + ℓ ji + bi j + b ji + (1− si) + (1− s j)≥ 1 ∀{i, j}∈(R2 ) (6.6)

ℓi j + ℓ ji + bi j + b ji ≤ si ∀{i, j}∈(R2 ) (6.7)

ℓi j + ℓ ji + bi j + b ji ≤ s j ∀{i, j}∈(R2 ) (6.8)

x i , yi ∈ Z ∀i∈R (6.9)

si ∈ {0,1} ∀i∈R (6.10)

ℓi j , bi j ∈ {0,1} ∀i, j∈R, i ̸= j (6.11)

The constraints (6.2)–(6.3) ensure that the rectangle is placed within the bounds of the con-
tainer. Moreover, when a rectangle i is not selected, the constraints ensure that x i and yi are
set to zero, in order to prevent unnecessary branching on these variables for unpacked rectan-
gles. Constraints (6.4)–(6.6) ensure that two rectangles i and j do not overlap when they are
both selected. In particular, Constraint (6.6) ensures that if both rectangle i and j are selected
to be packed, then rectangle i is placed either to the left, right, top, or bottom of rectangle j.
The constraints (6.4) and (6.5) ensure that this is in fact enforced. We formulate these con-
straints as indicator constraints. When a solver does not support indicator constraints, we can
alternatively formulate them completely linear as big-M constraints:

x i +wi ≤ x j +M(1− ℓi j), (6.12)

yi + hi ≤ y j +M ′(1− bi j), (6.13)

where M and M ′ are sufficiently large constants, for example, one can define M :=W+maxi wi
and M ′ := H +maxi hi .

For any pair of rectangles i and j, constraints (6.7) and (6.8) ensure that the overlap con-
straints are turned off when i or j is not selected. We define X2D-KP as the set of all feasible
solutions (s, x , y).
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(0,0)

(W,H)

Figure 6.1: Example two-dimensional packing (partial) solution, with two rectangles placed
inside the container. The two symmetry axes of the container are indicated with dashed lines.
In its orbit, this solution has three equivalent solutions, displayed on the right. These solutions
can be obtained by reflecting in the horizontal and/or vertical symmetry axes of the container.

6.1 Symmetries in two-dimensional packing problems

The two-dimensional knapsack problem exhibits multiple types of symmetries. Rectangles with
identical width, height and profit can be permuted in any solution. In addition, symmetries
in this problem also arise from geometric symmetries of the container. Because rectangles
are placed axis-aligned within the container, any solution can be reflected horizontally and/or
vertically to obtain an equivalent solution. See also Figure 6.1 for an example. Note that this
type of symmetries does not correspond to permutations of variables in the formulation (6.1)–
(6.11). However, the approach to breaking the symmetry stays the same: we want to restrict
the solution space to a smaller representative set, such that each orbit has at least one solution
in the representative set. To choose representative solutions, we propose a method based on
which parts of the container are covered with rectangles in a given solution.

6.2 Handling symmetry using covering vectors

We first partition the area of the container into unit-sized cells, which are represented by the
coordinates of the bottom-left corner of the cell,

C = {(i, j) | i ∈ {0, . . . , W − 1}, j ∈ {0, . . . , H − 1}}.

Let a be a node of the B&B-tree, where Qa ⊆ X2D-KP denotes the set of feasible solutions of the
subproblem at node a. We can use the variable fixings at node a to determine whether cells
are covered. For example, let i ∈ R be a rectangle of width 1 and height 1, and suppose that
the variables si , x i and yi are fixed to 1, 2 and 3 at node a, respectively, then this rectangle
covers the cell (2, 3) in every solution in Qa. We call a rectangle i fixed at node a when the
variables si , x i , and yi are fixed at some value at a.

Since we will compare the 4 symmetric orientations of the container, we only need to consider
the cells at the bottom-left of the container in any given orientation. That is, we only consider
the cells {(i, j) ∈ C | i ≤ ⌈W/2⌉, j ≤ ⌈H/2⌉}. Then, based on the variable fixings at node a,
we can define a partially-filled covering vector ca with entries indexed by the cells, according
to bottom-to-top, left-to-right ordering. The covering vector entries are either 1, 0, or empty
(denoted by ∗) depending on the variable fixings at a. The entry for a cell is

• 1, if there is a fixed rectangle at a that covers the cell,

• 0, if the cell cannot be covered in any solution in Qa,
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Figure 6.2: Partial solutions of the 2D-KP, where the unplaced rectangle is free to be placed
anywhere in the container. (a) The unplaced rectangle fits anywhere, thus the associated
covering vector does not have any zeros as entries. (b) The unplaced rectangle cannot cover
cells 1 and 2 at any placement, hence the associated covering vector has zero entries for cells 1
and 2.

• ∗ (empty), if the cell is covered by a rectangle in some solutions in Qa.

Note that if an entry is empty, it might still become 1 or 0 at a node in the subtree of a.

We illustrate this with an example. Suppose at the current node in the B&B-tree we have two
fixed rectangles and one rectangle that is still free to be placed anywhere in the container; see
Figure 6.2a. The order of the bottom-left cells of the container is indicated in the figure. The
unplaced rectangle fits anywhere in the container and hence can still cover any cell. Therefore,
the covering vector becomes

c⊤ =
�

∗ ∗ ∗ ∗ 1 1 ∗ ∗ 1 1 ∗ ∗
�

. (6.14)

In Figure 6.2b the situation is similar, except that the unplaced rectangle cannot be placed to
cover cells 1 and 2. Therefore, the associated covering vector becomes

c⊤ =
�

0 0 ∗ ∗ 1 1 ∗ ∗ 1 1 ∗ ∗
�

. (6.15)

Note that solutions at the leaves of the B&B-tree have a covering vector where every entry
is 0 or 1. We can use the covering vector to define representative solutions for the geometric
symmetry in the container. Every solution is in an orbit of (at most) 4 other solutions, each
with a corresponding covering vector. To break the geometric symmetry, we choose as rep-
resentatives the solutions that have a lexicographically maximal covering vector among the
other covering vectors in the orbit. Note that this is similar to symmetry-breaking in the GCP
and MUCP, although here the covering vector is not explicitly part of the IP formulation.

At a given node a in the branch-and-bound tree, we already want to check whether this sub-
problem only yields solutions that are not lexicographically in its orbit, such that we can cut
off this node and its subtree from the solution process. We can do this in the following manner.
We first construct the covering vector ca corresponding to the partial solution at a. Then, we
compare ca to the three other covering vectors, obtained from the partial solutions that are
symmetric to the partial solution at a. We call these ca

H, ca
V, and ca

HV, belonging to the partial
solutions obtained from reflection in the horizontal axis, vertical axis, and both axes of the
container, respectively. Node a is cut off when ca cannot be made lexicographically maximal
among {ca, ca

H, ca
V, ca

HV}, for any replacement of empty (∗) entries with 0 or 1. We can cut off
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(0,0)

(W,H)

Figure 6.3: This particular placement of four rectangles in the container defines a (rectangular)
subregion, indicated by its horizontal and vertical symmetry axes.

the node in this case, as this ensures that every solution in the subtree of a has a covering
vector that is not lexicographically maximal in its orbit.

For an example, consider again the partial solution displayed in Figure 6.2a. The covering
vectors of this partial solution is given in Equation (6.14). The covering vectors of its symmetric
counterparts are

c⊤H =
�

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
�

, (6.16)

c⊤V =
�

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
�

, (6.17)

c⊤HV =
�

1 1 ∗ ∗ 1 1 ∗ ∗ ∗ ∗ ∗ ∗
�

. (6.18)

Notice that the covering vector c from Equation (6.14) can still be made lexicographically
maximal within {c, cH, cV, cHV}, by setting the first two empty entries to 1. Hence, if this partial
solution appears at a node, we cannot produce a cutoff by geometric symmetry. If however
the situation is as displayed in Figure 6.2b, we would be able to cut off the node. Indeed, the
corresponding covering vector, in Equation (6.15) starts with a 0-entry, while cHV starts with
a 1-entry.

6.3 Geometric sub-symmetries

The problem also features sub-symmetries when smaller subregions are formed by the place-
ment of rectangles. We define a subregion C ⊆ C as a subset of the container cells satisfying:

• the cells in C form a single connected area within the container (the boundary is con-
nected), and

• the boundary of C overlaps everywhere with edges of rectangles outside of C , or con-
tainer edges.

Note that a subregion need not be completely empty, and that the container itself is also a
subregion.

In the remainder, we only consider rectangular subregions that form inside the container. The
methods we describe for handling sub-symmetries in rectangular subregions can be extended
for subregions with different shapes, but it will be convenient to describe it for rectangular re-
gions as the shape is the same as the container itself. See Figure 6.3 for an example rectangular
subregion formed by the placement of rectangles in a partial solution.

Because a subregion is bounded by outside rectangles or container edges, observe that if a
rectangle is placed inside of a subregion, then it must be fully contained in the subregion.
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Figure 6.4: An example where simultaneously handling nested subregions can lead to conflict-
ing cutoff decisions. In this example, there is no combination of orientations of the container
and the subregion for which both covering vectors are lexicographically maximal in their or-
bits.

Hence, the subregion defines a smaller container region, and hence we can handle symmetries
in the subregion in the same way as for the large container. We can again define a (partially-
filled) covering vector for the subregion, and check whether the covering vector can be made
lexicographically maximal among the symmetric orientations of the subregion.

We have to be careful when handling symmetries in multiple subregions simultaneously. When
cutting off a node based on geometric sub-symmetry, we must make sure we do not cut off
all representative solutions for a different subregion. When subregions are disjoint, it is easy
to see that handling both sub-symmetries does not yield any conflicting decisions. However,
subregions are in general overlapping. For example, the container itself will always overlap
with other subregions.

Figure 6.4 displays a situation where handling the container and a nested subregion simultane-
ously leads to conflicting node-cutoff decisions. Suppose that there are no rectangles unplaced
in the solution in Figure 6.4. Note that the covering vector of the subregion is lexicographi-
cally maximal, but the covering vector of the container is not. In fact, there does not exist an
orientation of both the container and the subregion for which both covering vectors are lexi-
cographically maximal. But this would mean that we cut off this solution in every orientation
and we are left with no representative solution.

To remedy this, we define criteria that are sufficient for selecting simultaneously active sub-
regions at every node such that no conflicting cutoff decisions are made. We first need the
following definition.

Definition 6.1 (Fully symmetric). Let C be a subregion in a solution at a given node a in the
branch-and-bound tree with covering vector ca, with respect to the subregion C. We call C fully
symmetric at node a when the covering vectors ca, ca

H, ca
V and ca

HV are all equal.

Furthermore, we call a subregion admissible at a when the node should not be cut off based
on the symmetries in the subregion (i.e., the subregion covering vector can be made lexico-
graphically maximal in its orbit). Note that a fully-symmetric subregion is admissible.

Assume that we have a subregion activation oracle that determines a set of active subregions for
every node of the branch-and-bound tree.

Lemma 6.1. For a given node a of the branch-and-bound tree, we denote by Ka all the subregions
present at a, and by K∗a ⊆ Ka the set of active subregions at a, as determined by the oracle. The
following properties of the oracle are sufficient to make conflict-free cutoff decisions:

(i) For every node a, the active subregions K∗a are pairwise disjoint.
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(ii) For a node a that is not the root node, let K̄∗a denote the subregions that are active in
the ancestor nodes of a. Let b be the direct parent node of a. Then every newly active
subregion C ∈ K∗a \ K∗b is either fully contained in some C ′ ∈ K∗b, or disjoint from K̄∗a .

(iii) For a given node a with parent b, every newly active subregion C ∈ K∗a \K
∗
b is fully symmetric

at a and every other subregion C ∈ K∗a ∩ K∗b is admissible at a.

Proof. Let S be an optimal solution for a given instance of the two-dimensional knapsack prob-
lem. Let T denote the branch-and-bound tree for this instance where a subregion activation
oracle satisfying (i)–(iii) selects active subregions. We will show that there exists a solution S′

that is equivalent to S (w.r.t. symmetries in subregions) that is found in a leaf of T , showing
the lemma. Note that we assume no other symmetries are handled in T , to avoid possible
conflicts with other symmetry-handling techniques.

Consider the following procedure for finding S′. Let r1 = r be the root of the tree T and
let S1 = S. Starting at i = 1, define Ti as the subtree of T rooted at ri and truncated up
to the nodes a where K∗a = K∗ri

, i.e., only the nodes where the oracle selects the same active
subregions as for the subtree root node ri . Define orbK∗ri

(Si) as the set of solutions that can be

obtained from Si by applying symmetry in the subregions K∗ri
. Let ai be a leaf node of Ti for

which the covering vector is compatible with some S′i ∈ orbK∗ri
(Si). If ai is a leaf node in T ,

stop and let S′ = S′i , showing the lemma. Otherwise, let ri+1 be a child node of ai in T for
which the covering vector is compatible with S′i , and repeat.

We will now show that this procedure always identifies S′. First note that S′ is obtained from
symmetry operations on the subregions present in S. That is, from reflecting the placed rect-
angles in the symmetry axes of the subregions. Also note that the procedure must terminate,
as T contains finitely many nodes. Hence it remains to show that ai , ri and Si indeed exist
and are well-defined for every iteration of the procedure.

For i = 1, note that K∗r1
is either empty or only contains the container region. This makes

the set orbK∗r1
(S1) well-defined, as these subregions are indeed present in the solution S1 = S.

For the existence of a1, consider extending T1 to T ′1 by expanding the remaining subproblem
nodes where in every node of T ′1 the active subregions remain exactly K∗r1

. Clearly, as the
active subregions are distinct, some solution S′1 ∈ orbK∗r1

(S1) must be found in T ′1 . But then

there must exist a leaf of T1 for which the covering vector is compatible with S′1. If a1 is not
a leaf in T , then the direct child nodes of a1 have active subregions that are different from
the active subregions at a1, by construction. By property (iii), the newly active subregions are
fully symmetric, and hence a child r2 of a1 with a compatible covering vector exists. Especially
note that r2 is not pruned in T , as the subregions K∗r2

are all admissible at r2 by property (iii).

For i > 1, first note that the subregions K∗ri
exist in the solution Si , ensured by the selection of ri

in the (i−1)-th iteration of the procedure, making orbK∗ri
(Si) well-defined. Extend Ti to T ′i by

expanding the remaining subproblem nodes where in every node of T ′i the active subregions
remain exactly K∗ri

. Suppose there is no leaf ai of Ti for which the covering vector is compatible
with some S′i ∈ orbK∗ri

(Si). Then there must be a newly active subregion C in K∗ri
for which

the covering vector is not compatible with any of orbK∗ri
(Si). Property (ii) and (iii) ensure that

if an optimal solution R can be found in T ′i , then any equivalent solution R′ obtained from R
using symmetries of C can also be found in T ′i . Note that (by the previous iteration of the
procedure) Si can be found in T ′i , reaching a contradiction.
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With this result, we have established sufficient conditions for which conflict-free sub-symmetry
handling is possible. In the next section, we will describe how we detect subregions at a node
in the B&B-tree, and how we activate these subregions satisfying the properties of Lemma 6.1.

6.4 Detecting and activating subregions

In general, we cannot handle symmetries in all the subregions present at a. We therefore
consider the set K∗a ⊆ Ka of active subregions at a that satisfy the conditions of Lemma 6.1.

We will describe a method to find empty, rectangular subregions in the partial solution at every
node a. Note that empty subregions are fully symmetric, and therefore can be used as newly
added subregions at a node.

Thus, let the integer container width W and height H be given, as well as a set of rectangles R
that are fixed in the partial solution. Every rectangle r ∈ R has a width wr , height hr and
location of the bottom-left vertex (xr , yr) inside of the container. All parameters are integer,
and we furthermore assume that the rectangles are placed such that they are not overlapping.

We determine the empty rectangular subregions using a sweep line algorithm. The sweep line
algorithm approach is a common method for design geometric algorithms, see for example [6]
for more information and common applications. The idea is to imagine a vertical line that
swept across the container from left to right. During the sweep, we maintain a data structure,
called the status, that stores which intervals on the sweep line are not covered by a rectangle
in R. In addition, we keep track of whether an interval in the status represents an empty
rectangular subregion up to the sweep line. The status only changes when the sweep line
meets the left or right boundary of a rectangle. Therefore, it is not necessary to re-compute
the status at every coordinate change, we can restrict ourselves to a set of events, sorted in the
event queue Q, that we construct from the problem input. In case of a right edge of a rectangle,
a new interval may be formed, an existing interval may be extended, or two intervals may be
joined. For a left edge, intervals may fully close (forming a subregion), shrink, or split. When
intervals are extended or shrunk, the subregion it represents may no longer be rectangular.
When intervals are split or joined, the subregion it represents is no longer empty.

Before we discuss the events and status in detail, we first define

X = {xr | r ∈R} ∪ {xr +wr | r ∈R}

as the set of x-coordinates where a left or a right edge of a rectangle is located. We then
identify the following events for the sweep line procedure:

• For every rectangle r ∈R a rectangle left event at the point (xr , yr).

• For every rectangle r ∈R a rectangle right event at the point (xr +wr , yr).

• For every x ∈ X , a container top event at the point (x , H).

The events are placed in a queue Q, sorted lexicographically on the following:

1. The x-coordinate of the point where the event occurs.

2. The type of event: rectangle right before rectangle left before container top

3. The y-coordinate of the point where the event occurs.

The status data structure maintains a sorted collection of (disjoint) intervals that denote the
parts of the sweep line that do not intersect with a rectangle. For an interval I = (a, b) in
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the status, we also maintain the x-coordinate x I
1 at which the interval was created, and the

x-coordinate x I
2 at which the interval is currently closing. When the interval fully closes, it

defines an empty rectangular subregion characterized by its bottom-left and top-right vertices
at (x I

1, a) and (x I
2, b), respectively. In addition, in the status we maintain a subset S of intervals

that represent an empty rectangular subregion up to the sweep line.

After constructing the event queue, we initialize the status with the single interval (0, H) at
starting x-coordinate 0, indicating that the full height of the container is not covered by a
rectangle. We then perform the sweep line procedure as follows. While Q is not empty, extract
the first event from Q and handle the event with the following case distinction:

• The event is a rectangle left event for the rectangle r ∈R.

Let (yr , yr +hr) be the left edge of the rectangle. We process every interval I = (a, b) in
the status that intersects with the left edge. Then either (see also Figure 6.5):

– The left edge completely covers I . We remove I from the status and output the
subregion ((x I

1, a), (xr , b)) if I ∈ S.

– a = yr and b > yr + hr . The interval is starting to close. We update the left
boundary of the interval I to yr + hr and set x I

2 = xr .

– In any other case, the interval I is not properly closed. We shrink or split accordingly
to exclude the range of the left edge from I , and we remove the resulting intervals
from S.

• The event is a rectangle right event for the rectangle r ∈R. Let (yr , yr +hr) be the right
edge of the rectangle. Then either (see also Figure 6.6):

– The rectangle edge does not share an endpoint with any of the intervals in the
status. We then add the interval I = (yr , yr + hr) to the status, add I to S, and
set x I

1 = xr , x I
2 =∞.

– The rectangle edge shares only its lower endpoint with an interval I = (a, b) in the
status, for which x I

1 = xr . We update I to be the interval (a, yr + hr).

– The rectangle edge shares only its lower endpoint with an interval I = (a, b) in the
status, for which x I

1 < xr . We update I to be the interval (a, yr +hr) and remove I
from S.

– The rectangle edge shares its upper endpoint with an interval I in the status. We
update I to be the interval (a, yr +hr) and possibly merge it with other intervals in
the status when they now intersect, and remove I from S.

• The event is a container top event at x-coordinate x .

Remove all intervals I from S that are only partially closed, i.e., x I
2 = x .

When the queue becomes empty, the remaining intervals in the status will properly close at the
right boundary of the container. Hence, for any remaining interval I = (a, b) in S, we output
the subregion ((x I

1, a), (W, b)).

With the above algorithm, we can thus find empty rectangular subregions in a node a of the
B&B tree. The activation handler activates newly found subregions in a greedy fashion. Let b
be the parent node of a, with active subregions K∗b. Note that the newly discovered subregions
are either fully contained or disjoint from the subregions in K∗b, because the new subregions
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Figure 6.5: Cases for a rectangle left event. The status is displayed before and after the event
is handled. A dashed interval I indicates that the interval does not represent an empty rect-
angular subregion (I ̸∈ S). In case (a), a subregion is outputted if the interval is in S.
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Figure 6.6: Cases for a rectangle right event. The status is displayed before and after the
event is handled. A dashed interval I indicates that the interval does not represent an empty
rectangular subregion (I ̸∈ S).
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are empty. All new subregions are activated at node a, while subregions K∗b are de-activated
when necessary, i.e., to ensure that the set of active subregions at a is pairwise disjoint.

The activation handler is linked to the geometric-symmetry-breaking constraint that is de-
scribed in Section 6.2. The activation handles provides the constraint handler with the active
subregions, and the constraint handler applies the geometric-symmetry-breaking method to
all the active subregions.

6.5 Implementation details

The empty rectangular subregion detection algorithm is implemented as follows within SCIP.
The status data structure maintains the intervals in a binary search tree, such that it is efficient
to find intervals that contain a given x coordinate. The event queue is implemented as a
priority queue, provided in the SCIP framework. For every node in the branch-and-bound tree,
the active subregions are cached in a hashmap data structure, of which an implementation is
available in the SCIP framework. Since nodes in the B&B tree may not be expanded in-order
due to heuristic node selection in the solver, we need to store active subregions for every node.

The IP formulation is constructed in Python 3.10 using the PySCIPOpt interface that exposes
the SCIP API in Python. See also Appendix A. We add a single activation handler to the model.
Upon creation, the activation handler is supplied with the variables s, x , y , and arrays con-
taining the widths and heights of the rectangles in the problem instance.

The formulation is verified by testing the instance input readers and by checking the generated
model for small test instances with expected output. Furthermore, the activation handler
routine for detecting subregions is verified for small instances and edge-cases to see whether
all empty rectangular subregions are detected.

6.6 Experiments on benchmark instances

We compare the global and sub-symmetry-handling methods using experiments on benchmark
instances from 2DPackLib [20, 19].

We solve every instance with the following models:

F Formulation (6.1)–(6.11), with orbitope constraints for rectangles with identical
properties, and with default SCIP parameters.

F-Glob Formulation (6.1)–(6.11), with orbitope constraints for rectangles with identical
properties, and geometric symmetry constraint for the container only.

F-Act Formulation (6.1)–(6.11), with orbitope constraints for rectangles with identical
properties, and greedy subregion activation handler for geometric sub-symmetries.

Note that we do not include a comparison with a model with SCIP internal symmetry han-
dling turned off, as internal symmetry handling does not detect the geometric symmetries in
the problem. Also note that we do not compare with a sub-symmetry-breaking inequalities
approach, as encoding symmetry handling with a covering vector in inequalities would not
be feasible. In addition, it is not obvious how one could encode the compatibility of active
subregions with this approach.
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6.6.1 Choices of parameters

The 2DPackLib library provides many benchmark instances for various two-dimensional pack-
ing problems. For our experiments, we used the instances listed as originally proposed for the
two-dimensional knapsack problem. We only include instances with at most 40 rectangles,
as the other instances are too large to be solved by our absolute placement approach. These
instances also have a large container size, which makes these instances too large to be solved
by this method. This results in a benchmark set of 155 instances.

For all models, instances are solved to optimality with a time limit of 7200 seconds (2 hours).
The time limit excludes construction time of the model.

6.6.2 Results

All experiments are run with the development version of SCIP 7.0.3 with the SoPlex LP-
solver [14], on a single core of an Intel Xeon Platinum 8260 CPU, running at 2.4 GHz, with
10.7 GB of RAM.

The results are reported in Table 6.1, 6.2, 6.3, and 6.4, and include the following data.
W Width of the container.

H Height of the container.

|R| Number of rectangles.

Nodes Number of nodes in the B&B tree.

Cutoffs Number of nodes cut off by the geometric constraint handler.

Solving (sec) Time spent solving the model, in seconds. When the time limit is reached
when the model is not solved to optimality, the solving time is equal to 7200.

We exclude from the tables the 4 instances for which all models reach the time limit and where
the geometric symmetry constraint does not lead to any cutoffs, or where every model solves
the instance at the root node. Of the 44 reported instances, there are 17 instances that cannot
be solved to optimality by any of the tested models within the time limit.

For the small instances with less than 20 rectangles, almost all instances can be solved quite
efficiently. Because of the relatively short solving times and relatively small number of nodes
in the B&B-tree, not many nodes are cut off by the geometric symmetry constraint. For the
NGCUT8 instance, the global symmetry and sub-symmetry-breaking models show an improve-
ment in solving time compared to the basic formulation. Note that for this instance F-Glob
produces more cutoffs and also performs slightly better in solving time than F-Act. This shows
that a greedy strategy for selecting subregions is not always optimal, as it might not lead to
more symmetry breaking. In addition, the added overhead of finding subregions might have
a negative impact on the total solving time.

For the larger instances with 20 up to 30 rectangles, there are more instances that reach the
time limit for all models. Although for some of these instances, a number of cutoffs is produced
by the geometric symmetry constraint, leading to more explored nodes within the time limit.
The NGCUT3 instance is the only instance that shows an improvement in solving time, but
only for handling geometric symmetries in the container. With the sub-symmetry activation
handler, the geometric symmetry constraint does produce more cutoffs, but this also leads to
more nodes in the B&B-tree and an increase in solving time.

The instances in our test set with 40 rectangles are similar. Neither the global symmetry
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Table 6.1: 2D-KP experiments on instances with less than 20 rectangles.

Instance W H |R| Model Nodes Cutoffs Solving (sec)

NGCUT1 10 10 10 F 29 0.31
F-Glob 30 4 0.31
F-Act 29 0 0.31

GCUT01 250 250 10 F 21 0.52
F-Glob 26 1 0.48
F-Act 21 0 0.52

GCUT05 500 500 10 F 70 0.45
F-Glob 61 0 0.45
F-Act 61 0 0.46

GCUT09 1000 1000 10 F 889 2.43
F-Glob 1472 0 3.11
F-Act 1472 0 3.1

NGCUT8 20 20 13 F 91 826 127.06
F-Glob 72 969 195 94.48
F-Act 82 663 119 97.94

NGCUT10 30 30 13 F 153 0.66
F-Glob 153 0 0.66
F-Act 153 0 0.66

NGCUT5 15 10 14 F 2682 5.69
F-Glob 1277 0 4.17
F-Act 1277 0 4.15

NGCUT6 15 10 15 F 7801 22.96
F-Glob 9192 5 26.02
F-Act 7568 2 21.1

NGCUT11 30 30 15 F 2776 8.46
F-Glob 3638 2 11.21
F-Act 3504 0 11.73

CGCUT1 15 10 16 F 3951 063 7200
F-Glob 3858 597 19 431 7200
F-Act 4151 982 6079 7200

NGCUT2 10 10 17 F 3042 9.37
F-Glob 2839 86 9.51
F-Act 3670 56 11.12

NGCUT9 20 20 18 F 3212 13.71
F-Glob 2643 2 11.72
F-Act 2626 3 11.79
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Table 6.2: 2D-KP experiments on instances with 20 up to 30 rectangles.

Instance W H |R| Model Nodes Cutoffs Solving (sec)

GCUT02 250 250 20 F 185 073 379.12
F-Glob 137 870 0 270.05
F-Act 137 870 0 267.79

GCUT06 500 500 20 F 19 408 41.1
F-Glob 17 799 0 41.15
F-Act 17 799 0 42.3

GCUT10 1000 1000 20 F 8662 18.28
F-Glob 9847 0 20.62
F-Act 9847 0 18.59

NGCUT3 10 10 21 F 33 646 127.01
F-Glob 19 245 416 90.55
F-Act 50 400 609 175.77

NGCUT12 30 30 22 F 60 570 182.8
F-Glob 61 421 1145 229.52
F-Act 66 564 1208 221.68

OF1 70 40 23 F 2033 687 7200
F-Glob 2275 828 5807 7200
F-Act 2077 645 2640 7200

OF2 70 40 24 F 1684 682 7200
F-Glob 1758 726 211 7200
F-Act 1480 654 174 7200

OKP2 100 100 30 F 1153 563 7200
F-Glob 1191 333 986 7200
F-Act 1230 733 838 7200

OKP3 100 100 30 F 1326 269 7200
F-Glob 1341 175 544 7200
F-Act 1335 507 66 7200

GCUT03 250 250 30 F 1361 251 7200
F-Glob 1666 992 15 7200
F-Act 1663 830 0 7200

GCUT07 500 500 30 F 963 350 3191.06
F-Glob 1286 249 2 4774.89
F-Act 1341 709 0 4825.99

GCUT11 1000 1000 30 F 1160 608 7200
F-Glob 1265 385 5 7200
F-Act 1416 771 0 7200
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Table 6.3: 2D-KP experiments on NGCUTFS1 instances with 40 rectangles.

Instance W H |R| Model Nodes Cutoffs Solving (sec)

NGCUTFS1-1 100 100 40 F 9933 118.25
F-Glob 12 503 1 126.66
F-Act 11 020 0 112.87

NGCUTFS1-2 100 100 40 F 650 424 7200
F-Glob 611 775 78 7200
F-Act 595 290 2 7200

NGCUTFS1-3 100 100 40 F 423 316 4119.12
F-Glob 411 893 245 3873.32
F-Act 609 040 341 7200

NGCUTFS1-4 100 100 40 F 223 752 1571.9
F-Glob 286 282 413 1834.68
F-Act 206 845 28 1431.4

NGCUTFS1-5 100 100 40 F 157 626 1208.29
F-Glob 70 378 15 644.04
F-Act 79 311 5 730.05

NGCUTFS1-6 100 100 40 F 135 400 1149.67
F-Glob 152 315 3 1511.28
F-Act 165 095 3 1612.16

NGCUTFS1-7 100 100 40 F 24 589 330.51
F-Glob 21 932 11 295.98
F-Act 40 291 0 476.09

NGCUTFS1-8 100 100 40 F 53 494 481.59
F-Glob 51 431 6 474.85
F-Act 68 282 6 664.51

NGCUTFS1-9 100 100 40 F 555 221 7200
F-Glob 700 884 145 7200
F-Act 628 762 38 7200

NGCUTFS1-10 100 100 40 F 213 792 1775.05
F-Glob 149 921 42 1293.97
F-Act 134 010 23 1133.33

49



Table 6.4: 2D-KP experiments on NGCUTFS2 instances with 40 rectangles.

Instance W H |R| Model Nodes Cutoffs Solving (sec)

NGCUTFS2-1 100 100 40 F 576 581 5653.68
F-Glob 771 155 144 7200
F-Act 323 487 7 2388.74

NGCUTFS2-2 100 100 40 F 576 192 7200
F-Glob 622 171 102 7200
F-Act 674 402 2 7200

NGCUTFS2-3 100 100 40 F 659 546 7200
F-Glob 669 965 1473 7200
F-Act 606 261 13 7200

NGCUTFS2-4 100 100 40 F 735 221 7200
F-Glob 654 895 2168 7200
F-Act 570 977 710 7200

NGCUTFS2-5 100 100 40 F 836 105 7200
F-Glob 567 698 838 7200
F-Act 646 141 11 7200

NGCUTFS2-6 100 100 40 F 659 227 7200
F-Glob 551 479 285 7200
F-Act 587 115 20 7200

NGCUTFS2-7 100 100 40 F 948 178 7200
F-Glob 863 214 2502 7200
F-Act 934 965 5534 7200

NGCUTFS2-8 100 100 40 F 224 112 1834.8
F-Glob 346 272 800 2380.48
F-Act 130 831 0 1023.59

NGCUTFS2-9 100 100 40 F 640 287 7200
F-Glob 771 390 941 7200
F-Act 729 805 117 7200

NGCUTFS2-10 100 100 40 F 790 319 7200
F-Glob 751 006 343 7200
F-Act 746 614 33 7200
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handling in the container nor the sub-symmetry handling in the subregions shows increased
performance on all instances. However, for the instances NGCUTFS1-5 and NGCUTFS1-10
both F-Glob and F-Act solve the instance faster and also shows a clear reduction in nodes in
the B&B-tree. For NGCUTFS2-1, only F-Act shows a performance improvement while F-Glob
could not solve the instance within the time limit. The number of node cutoffs is small for these
instances, hence it is likely that the internal heuristics in SCIP also partly explain the perfor-
mance gain in these instances. This becomes also clear from the results of the NGCUTFS2-8
instance, where F-Act solves the instance significantly faster, while there were no nodes cut off
due to geometric symmetries.

Our results also show that for some instances the overhead of sub-symmetry handling can have
a large negative impact on the total solving time. For example, the activation handler method
for NGCUTFS1-3 reaches the time limit, while F-Glob and F could be solved in significantly
less time. It shows that there is a trade-off between the added computational overhead of
symmetry handler compared to its benefit. Moreover, this trade-off largely depends on the
specific problem instance.

6.6.3 Conclusion and future improvements

Overall, the results show that for specific instances geometric symmetry and sub-symmetry
handling can have a positive impact on solving two-dimensional packing problems. However,
the performance gain is significantly less than what we achieved for the GCP and MUCP ex-
periments. In part, this can be explained by the fact that the geometric symmetries that we
consider have smaller orbits. For every solution, there are only at most three other equivalent
solutions, because of the two symmetry axes. Therefore, breaking the symmetry has less of an
impact in reducing the solution space.

In addition, the covering vector approach is only able to cut off nodes when it is certain the
covering vector is not lexicographically maximal in its orbit for all solutions in the subtree.
This for example means that if there exists a still unplaced rectangle of small size, then this
rectangle might possibly be placed at many locations in the container. This prevents zero-
entries from occurring in the covering vector, which also prevents the possibility of cutting off
the current node.

For geometric-sub-symmetry handling, a clear limitation of the approach is the compatibility
of the subregions. In particular this means that when during the solving process we switch to
handling sub-symmetries, the global symmetry in the container cannot be handled anymore.
This is in clear contrast with the suborbitopes constraints in, e.g., the MUCP problem, where
all sub-symmetries can be handled simultaneously. As can be seen in the experimental results,
activating new subregions greedily might not always be the optimal choice. This is also moti-
vated by the fact that subregions are empty at the time they are activated, meaning that first
rectangles need to be placed in the new subregions before cutting off the node is possible. This
might not always happen, e.g., when a subregion is too small for an unplaced rectangle to be
placed inside.

Finding subregions and handling geometric symmetries in these problems does introduce a
computational overhead. The gain in performance from cutting off nodes based on geometric
symmetries does not always outweigh the introduced overhead, as our experiments show.

For future improvements, different heuristics for activating newly discovered subregions can
be explored, instead of activating new subregions greedily. Additionally, a different method of
detecting subregions, including non-empty or non-rectangular subregions might improve the
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number of node cutoffs and speed up the solving process. However, this would also increase
subregion detection times, as there potentially exist many more of these subregions. Again,
there is a trade-off to be made here, and no approach would work perfectly on every instance.
Our experiments show that sub-symmetry breaking efforts for geometric symmetries might in
some cases be beneficial. Further exploring the possibilities of handling geometric symmetries
with activation handlers may lead to better solving times for other instances as well.
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Chapter 7

Conclusion and future work

We have presented a new method for handling sub-symmetries in integer programming. Our
method enables the modeler of the problem to extend the integer programming solver with
custom routines that are dedicated to detecting when sub-symmetries become active during
the solving process. Compared to the existing method for sub-symmetry handling, this does
not require encoding these sub-symmetries explicitly in the integer programming formulation.
Next to the fact that detecting sub-symmetries with custom routines is more straightforward
to implement for the user, there are a number of other advantages to this approach.

Firstly, handling sub-symmetry with explicit inequalities increase the size of the IP formula-
tion, already at the root of the branch-and-bound tree. The sub-symmetry-breaking inequal-
ities need to be added to the root problem, even though they are ‘switched off’ when the
corresponding sub-symmetry is not yet active. This introduces overhead for the solver, as the
inequalities also end up in LP relaxations, or might play a role in solving heuristics or branch-
ing decisions. Moreover, the additional inequalities may hide the problem structure from the
solver. This can have a negative impact on solving times, as the specific techniques leverag-
ing the problem structure might not be employed by the solver. With an activation handler,
the sub-symmetry breaking constraints are only handled in the model when they become ac-
tive. This makes the IP formulation more lightweight at nodes of the B&B-tree, shifting the
additional overhead to the activation handler routine itself.

We have compared the performance of our new method with the sub-symmetry-breaking in-
equalities method for the graph coloring problem and the min-up/min-down unit commitment
problem. The results show that our activation handler approach is competitive with the exist-
ing methods and can for specific instances show a significant performance gain in terms of total
solving time. Especially for the MUCP, the overhead of the activation handler is low, as only
a single activation handler is added to the model that detects all the active sub-symmetries at
once.

An additional benefit is that our approach is flexible. For sub-symmetry handling, we are not
restricted to use explicit inequalities for handling symmetry. Instead, the activation handler
can be linked to high-level constraints, such as the orbitope constraint in SCIP, for which both
specialized propagation and separation routines can be used to break the symmetry.

The flexibility is also demonstrated by applying our method to geometric sub-symmetry han-
dling in the two-dimensional knapsack problem. We have defined a new approach to han-
dle geometric symmetries in two-dimensional packing problems, both globally and for subre-
gions. The covering vectors that are used to handle symmetry are not explicitly encoded in the
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IP formulation, nor are the subregions that we possibly want to consider for sub-symmetry-
breaking. Therefore, explicit inequalities can consequently not be used for sub-symmetry han-
dling. Moreover, the restrictions on the activation of subregions to ensure conflict-free de-
cisions cannot be efficiently encoded in the formulation, as this would require many more
additional binary variables.

By introducing activation handlers as a separate plugin type in the SCIP solver, we have set
up a framework for users to define their own activation handlers that can be used for other
types of problems. In our applications, we made an effort to make the activation handlers
re-usable in a broader context. The variable-fixings activation handler that was used for the
GCP can be applied to any problem where sub-symmetries are defined by variable fixings only.
The suborbitope constraint handler that was used for the MUCP detects patterns in variable
fixings of a given matrix of variables, and activates symmetries in corresponding submatrices.
The pattern for the MUCP was defined by ‘towers’ of 0- or 1-fixings of variables, but different
patterns might be applicable for other types of problems. For future research, investigating
what kind of general patterns define sub-symmetries in other problems might lead to a more
general implementation of a suborbitope activation handler.

Additionally, a domain specific language might be beneficial for users to express to the solver
when sub-symmetries become active. Currently, the API of the activation handlers fulfills this
role, but in extending to more problems and types of sub-symmetries, a DSL can help the user
in leveraging sub-symmetry handling more easily.

Lastly, we note that by introducing activation handlers as a separate plugin type, it can also
be used outside of symmetry handling. We leave it to future research to explore where dy-
namically activating and de-activating parts of the solver during the solving process might be
beneficial. A potential application would be in mixed-integer non-linear programming, where
for example an activation handler can detect when a non-linear constraint becomes convex,
for which additional solving strategies may be activated.
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Appendix A

Links to implementation

The implementation of the activation handlers described in this thesis is done on a fork of SCIP,
available at https://gitlab.tue.nl/master-project-sten-wessel/scip.

The models used for the experiments and the experimental setup is done in Python. The reposi-
tory is available at https://gitlab.tue.nl/master-project-sten-wessel/experiments.
Between Python and SCIP, the PySCIPOpt library takes care of the communication. A fork of
the PySCIPOpt library that supports the activation handler is available at https://gitlab.
tue.nl/master-project-sten-wessel/pyscipopt.
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Appendix B

Graph coloring problem experiments
on CPLEX

This table shows the results of running the models F, F-S0 and F-Ineq on CPLEX 12.8 [18] for
the graph coloring problem, as described in Section 4.5.2.

Instance Model Nodes Solving (sec)

1-FullIns_5 F 97125 4325.08
F-S0 97 125 1350.5
F-Ineq 19 938 2011.43

1-Insertions_4 F 938345 811.77
F-S0 938 345 456.72
F-Ineq 606 896 928.59

2-FullIns_4 F 8455 245.6
F-S0 8455 85.27
F-Ineq 2158 272.61

2-Insertions_4 F 216705 7200
F-S0 268 197 7200
F-Ineq 273 544 7200

4-Insertions_3 F 795928 737.37
F-S0 795 928 207.02
F-Ineq 857 324 803.69

5-FullIns_3 F 9468 427.4
F-S0 9468 84.15
F-Ineq 8090 344.99

DSJC125.1 F 11 77.04
F-S0 11 43.07
F-Ineq 11 92.65

DSJC125.5 F 0 7200
F-S0 14 214 7200
F-Ineq 6 7200

DSJC125.9 F 0 7200
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Instance Model Nodes Solving (sec)

F-S0 0 7200
F-Ineq 0 7200

DSJC250.9 F 0 7200
F-S0 0 7200
F-Ineq 0 7200

DSJR500.5 F 0 7200
F-S0 0 7200
F-Ineq 0 7200

ash608GPIA F 0 7200
F-S0 0 7200
F-Ineq 0 7200

flat300_20_0 F 0 7200
F-S0 0 7200
F-Ineq 0 7200

flat300_26_0 F 0 7200
F-S0 0 7200
F-Ineq 0 7200

flat300_28_0 F 0 7200
F-S0 0 7200
F-Ineq 0 7200

le450_15a F 0 7200
F-S0 0 7200
F-Ineq 0 7200

myciel6 F 2 721057 7200
F-S0 3736 327 7200
F-Ineq 1106 806 7200

myciel7 F 214104 7200
F-S0 789 085 7200
F-Ineq 65 586 7200

queen9_9 F 1 564253 7200
F-S0 1464 225 7200
F-Ineq 1597 926 7200

r125.1c F 0 7200
F-S0 0 7200
F-Ineq 0 7200

r125.5 F 11555 7200
F-S0 14 173 7200
F-Ineq 0 7200

r250.5 F 0 7200
F-S0 0 7200
F-Ineq 0 7200

school1 F 0 7200
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Instance Model Nodes Solving (sec)

F-S0 0 7200
F-Ineq 3 7200

school1_nsh F 0 7200
F-S0 0 7200
F-Ineq 0 7200

wap05a F 0 7200
F-S0 0 7200
F-Ineq 0 7200
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