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Nomenclature

agPCE Adaptive generalized polynomial chaos expansion
AV Aortic valve
DA Data assimilation
ECMO Extracorporeal membrane oxygenation
EKF Extended Kalman filter
hTEE hemodynamic Transesophageal echocardiography
HR Heart rate
KF Kalman filter
LA Left atrium
LV Left ventricle
LVEF Left ventricular ejection fraction
MLE Maximum likelihood estimation
MV Mitral valve
RMSE Root-mean-square error
ROUKF Reduced-order unscented kalman filter
RA Right atrium
RV Right ventricle
SVD Singular value decomposition
PDF Probability densitity function
PL Profile likelihood
PA Pulmonary artery
PV Pulmonary valve
TEE Transesophageal echocardiography
TV Tricuspidal valve
Tr Trace
UKF Unscented Kalman filter
UT Unscented transform
VA-ECMO Veno-arterial Extracorporeal membrane oxygenation
VC Venous compartment
VCI Vena cava inferior
VV-ECMO Veno-venous Extracorporeal membrane oxygenation
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Abstract

Introduction: Veno-arterial extra corporeal membrane oxygenation (VA-ECMO) is a complex salvage
technique used to provide cardiac and respiratory support to critically ill patients. However, the mortality
rates of patients undergoing VA-ECMO remains high and it is therefore desirable to establish a stand-
ardized protocol that could assist in determining when to initiate weaning and optimizing the weaning
process itself. Consequently, a method is sought that can accurately predict in real-time if the heart is
capable of independently providing the required perfusion, ideally based on minimal to non-invasive meas-
urements. Method: An algorithm has been developed in the current study based on the reduced-order
Unscented Kalman filter (ROUKF), which is capable of estimating a cardiac functionality parameter; left
ventricular contractility. The proposed ROUKF-based algorithm uses a 0D lumped element model of the
left ventricle to obtain simulations of the behavior of the cardiovascular system, which are subsequently
merged with left ventricle pressure measurements. The measurements used in the current study originate
from three types of data: synthetic, in vitro or in vivo. The output of the algorithm was evaluated by
using a sensitivity and identifiability analysis, while a stability analysis was used to assess the stability of
the mathematical model. Results and discussion: First of all, the proposed ROUKF-based algorithm
was applicable to all three types of data. When applied to synthetic data, the algorithm was able to
converge to the true parameter in real-time, while being independent of initial parameter conditions and
being robust for fluctuating parameter conditions. Furthermore, the measurement was only sensitive to
changes in the parameter during the contraction phase, with the parameter being identifiable from the
measurement until a reasonable level of noise. Lastly, the used mathematical model was considered to be
stable for a physiologically feasible range of the parameter. However, the results of the algorithm applica-
tion to the in vitro data showed that when the model discrepancy increases, the accuracy of the parameter
estimation reduces. Therefore, future research needs to be conducted to evaluate the performance of the
algorithm when the complexity of the mathematical model increases or additional measurements are
provided, with the holy grail being an algorithm that only uses non-invasive measurements to provide an
accurate and real-time estimate. Conclusion: The proposed ROUKF-based algorithm was capable of
providing a patient-specific estimation of the left ventricular contractility in real-time based on the left
ventricular pressure data. Therefore, the proposed algorithm is considered to be promising for the devel-
opment of a standardized weaning protocol, but needs further optimization to be applicable in clinical
practice.

Keywords: parameter estimation, real-time, ROUKF, VA-ECMO, weaning.
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CHAPTER 1. INTRODUCTION

1. Introduction

1.1 Extra corporeal membrane oxygenation

Extracorporeal membrane oxygenation (ECMO) is a complex salvage technique used to provide cardiac
and/or respiratory support to seriously ill patients in which maximal conventional medical treatment is
considered to be inadequate [23]. This ECMO technique can be deployed in two distinct configurations:
the veno-venous ECMO (VV-ECMO) and the veno-arterial ECMO (VA-ECMO) [47]. The VV-ECMO
configuration is used to supply respiratory support and can therefore be considered as an alternative to
classical mechanical ventilation [9]. In contrast, the VA-ECMO configuration is used to provide cardiac
support, as well as to simultaneously supply both cardiac and respiratory support. [23, 47]. This VA-
ECMO configuration can be utilized to establish a cardiopulmonary bypass, which can be useful when
applying cardiac surgery [38]. Secondly, this configuration can also be used to allow cardiopulmonary
recovery in order to gain time until certain therapeutic alternatives can be executed [56].

Generally, the main indication for deploying VA-ECMO in clinical practice remains cardiogenic shock
[38, 47]. Cardiogenic shock is a patient state in which a low cardiac output results in hypoperfusion
and hypoxia of critical organs. The most frequent cause of cardiogenic shock is an acute myocardial
infarction combined with left ventricular dysfunction, but it could also result from myocarditis, acute
decompensated heart failure, drug intoxication, hypothermia or arrhythmia [74, 38]. In cardiogenic
shock patients, VA-ECMO provides cardiopulmonary support as a bridge to either myocardial recovery,
implementation of a mechanical circulatory support device or a heart transplant [34].

The VA-ECMO circuit finds its origin in draining deoxygenated blood from the venous circulation and
re-infusing oxygenated blood to the arterial circulation, both through a cannula [23]. When comparing
different VA-ECMO circuits, a distinction can be made between the location of cannula insertion, which
can be either peripheral or central [38]. Both of these cannulation approaches are depicted in Figure 1.1,
in which also the different components of the ECMO circuit are illustrated.

Figure 1.1: Illustration of the three cannulation approaches used in VA-ECMO, with the components
of the VA-ECMO circuit being depicted as well. Adapted from: ‘Venoarterial Extracorporeal Membrane
Oxygenation in Cardiogenic Shock’ by M. E. Keebler et al, 2018, Heart Failure, 6, 503–516 [34].
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1.1. EXTRA CORPOREAL MEMBRANE OXYGENATION CHAPTER 1. INTRODUCTION

The central configuration of VA-ECMO needs to be established surgically, involving blood drainage from
a cannula inserted in the right atrium and re-infusing it through a cannula in the ascending aorta. In
the classic peripheral configuration of VA-ECMO, blood is drained from a cannula located in the femoral
vein and returned through a cannula in the femoral artery. [38]. Lastly, in the alternative peripheral
configuration of VA-ECMO, blood is drained from a cannula inserted in the interval jugular vein and
re-infused through a cannula in the axillary artery [34]. In both configurations, deoxygenated blood is
drained from the venous circulation and drawn into a pump by a negative pressure. Next, the pump exerts
a positive pressure to the blood and propels it to the oxygenator, where the blood is oxygenated and
decarboxylated. This oxygenation and decarboxylation is achieved by flushing the blood over bundles of
hollow fibers, which are fueled by an air/oxygen blender, allowing the gas exchange to occur. Eventually,
the oxygenated and decarboxylated blood leaves the oxygenator under an appropriate positive pressure,
driving it back to the arterial circulation [9].

The combination of the underlying disease and the duration of the VA-ECMO puts already critically
ill patients at risk for developing serious complications. These complications can have different origins
which can roughly be classified in the following categories: bleeding and coagulation, vascular problems,
lower extremity ischemia, neurological disorders, systemic inflammation or severe infection, hemodynamic
complications, cannulation complications and device failure [35]. Statistically, both the complication rates
and the mortality rates of VA-ECMO remain high [35, 48, 56]. According to the study of Papadopoulous
et al. (2015), the hospital survival rate after ECMO remains only between 20% to 40% [56]. Another
study, Maruscalco et al. (2021), reported a similar survival rate of around 35 % [48]. However, these
mentioned survival rates differ from the number of patients that are decoupled successfully from VA-
ECMO, with decoupling referred to as weaning in clinical practice [48, 70]. According to the study of
Maruscalco et al. (2021), 54% of the patients were weaned successfully from VA-ECMO and 35% of
these successfully weaned patients died before discharge from the hospital [48]. In the study of Tohme
et al. (2021) a successful weaning was reported in 31% to 76% of the patients , whereas 20% to 65%
of the patients died before hospital discharge [70]. A possible explanation for the death of patients
after successful weaning may be found in inadequate myocardial recovery, end-organ failure, neurological
damage or other comorbidities [43, 57].

Weaning protocols for VA-ECMO differ substantially between centers of expertise. Given the previously
mentioned relatively high mortality of patients undergoing VA-ECMO, it is considered important to
establish a standardized protocol which helps to identify when to initiate weaning and, in addition, to
optimize the weaning process itself [43]. Basically, weaning can be initiated when the heart is capable
of providing the required perfusion independently. In the current clinical practice, a Transesophageal
Echocardiography (TEE) is performed to identify when weaning can be initiated safely [57, 66]. Based
on this TEE technique, the left ventricular ejection fraction (LVEF) can be evaluated, which is used as the
main threshold parameter to determine when to initiate weaning [66]. However, this LVEF is considered to
be a moderate parameter to verify if the heart is capable of providing the required perfusion independently,
because it is based on cardiac volumes rather than cardiac functionality parameters. Moreover, another
limitation of this TEE technique is that it can only present a single measurement in a certain time interval
[2].

The hemodynamic TEE (hTEE) is an improved miniature version of the conventional TEE, which is
capable of evaluating contractility and filling of both right ventricle (RV) and left ventricle (LV) at the
bedside of the patient in real-time. The ability to assess certain cardiac functionality parameters in
real-time implies that this technique could be used as a guide throughout the weaning process, which
is promising for the development of a standardized weaning protocol [15]. However, the evaluation of
contractility by using echocardiography is considered to be unreliable due to VA-ECMO-induced hemo-
dynamic circumstances [57]. Another downside is that the administration of intravenous sedation to the
patient is required throughout the total weaning attempt to ensure the toleration of the transesopha-
geal probe [1]. Furthermore, successful weaning requires an adequate myocardial recovery and end-organ
function, while echocardiographic monitoring appears to be unreliable for evaluation of this ventricular
recovery. Therefore, hTEE is considered to be incapable of determining whether VA-ECMO can be
weaned successfully or not [43].

Real-time estimation of cardiac model parameters - S.C. Snijders (2022) 2



1.2. DATA ASSIMILATION CHAPTER 1. INTRODUCTION

Hence, there is a need for a method that can assess myocardial recovery in order to improve the timing
of weaning initiation and consequently the success of weaning. This method must be able to predict
whether the heart is capable of providing the required perfusion independently. Based on this capability,
the method can be considered as a promising tool to determine the initiation of weaning, while it can also
provide valuable information during the weaning process. Furthermore, this desired method should ideally
be minimally invasive to non-invasive and accurate, applicable in real-time, to act as a guide throughout
the weaning process. In case of fulfilling all mentioned properties, the method can be regarded as valuable
for the development of a standardized weaning protocol, which can improve the weaning from VA-ECMO
and consequently reduce the mortality rate of VA-ECMO.

1.2 Data assimilation

When a patient is connected to VA-ECMO, several signals like the ECMO flow are mean arterial pressure
(MAP), are constantly monitored [16]. These available signals provide continuous information about the
circulatory state of the patient, with information about the myocardial state of the patient hidden inside
these signals. A mathematical model can be used to describe the myocardial state of a patient. However,
a mathematical model is not sequentially adapted to actual patient-specific information and is therefore
considered to be unsuitable to describe the myocardial state of a certain patient. A method called
data assimilation (DA) could provide a solution, as it is based on merging sparse and possibly noisy
measurements with the simulation of a mathematical model to obtain an optimal combination of these
two aspects [3]. Given the intended application, the mathematical simulation should be a physics-based
model that describes the behavior of relevant parts of the cardiovascular system. In this particular model,
the circulatory system is considerably simplified with a fixed pulmonary pressure representing the preload
and a transmission line of three-element Windkessel models representing the afterload of the left ventricle
[49]. This mathematical model of the cardiovascular system is able to describe the hemodynamics of the
LV, which will be combined with measurements to obtain unknown parameters through DA.

There are three different types of DA methods: variational, sequential and hybrid. All these DA methods
seek for an optimal solution based on different principles. The variational form is derived from variational
calculus and is based on numerically minimizing a cost function that represents the observational error,
usually the difference between the model and the measurements [3]. Alternatively, the sequential form
aims to minimize the variance of the model prediction of every time step by solving a direct algebraic
function, while updating this prediction based on the between the real-time measurement and the predic-
tion itself. [3, 6, 59]. Lastly, the hybrid form refers to a variational- and a sequential DA method being
intertwined. In this form, these two DA methods run simultaneously and exchange information about
uncertainties of the model-based estimates of states or parameters concerning the given system [5, 59].

The sequential DA is capable of estimating a system state or parameter when a measurement becomes
available, which is considered appropriate for the real-time execution of the desired method [60]. In
addition to its real-time capabilities, the sequential method is considered favorable because it also provides
information about the probability distribution of the solution, which is crucial in clinical decision making.
One of the most often used sequential DA methods is the Kalman filter, which provides a recursive solution
based on discrete linear data [4, 33]. However, the evolution of real-life systems is typically governed by
a set of non-linear equations, which significantly restrict the validity of the linear oriented Kalman filter
[46]. This is also likely to apply to the intended application, which results in deficiency of the classical
Kalman filter approach.

Several extensions for the Kalman filter that can deal with these non-linearities are available, one of
them is the unscented Kalman filter (UKF) [46, 77]. However, a Kalman filter with non-linear extensions
is known for its computational expensiveness when applied to problems with large amounts of data.
An effective approach to circumvent this computational problem is to apply the suggested UKF only to
estimate the unknown model parameters. Nevertheless, information about the states of the system should
also be included in the used DA approach, because they contain valuable insights about the system at
hand. Ideally, these system states should be addressed with a less computationally intensive DA method
to be a potential solution to the computational problem [17]. The idea of combining two DA methods,
one for parameter estimation and one for state estimation, into a hybrid DA approach to estimate states
and parameters simultaneously is known as joint state-parameter estimation [52]. By combining a state
estimator and the UKF through the joint state-parameter estimation approach, an reduced-oreder version
of the UKF can be derived. This version is called the reduced-order unscented Kalman filter (ROUKF)
and will be used in the current study to perform patient-specific parameter estimation [51].

Real-time estimation of cardiac model parameters - S.C. Snijders (2022) 3
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1.3 Aim and outline

The aim of the current study is to provide a proof of principle for using the ROUKF method to establish a
virtual patient-specific representation of an unknown cardiac functionality parameter of the cardiovascular
system. This virtual patient-specific representation is called a digital shadow, a digital object with a
unidirectional data flow between real-world object and the digital object. In such an digital shadow,
a change in the state of the real-world object will result in a change in the state of the digital object,
which is not true vice versa [37]. In the current study, this digital shadow needs to be capable of
estimating the cardiac functionality parameter accurately, in real-time, and based on minimal to non-
invasive data to be considered as the ideal tool for weaning. To perform this parameter estimation in
real-time, the computational expensiveness of the used algorithm needs to be minimized. In addition,
minimizing the number of different measurement types is favorable because it will minimize both the
potential invasiveness and the number of actions required by the clinician. After the development of a
digital shadow capable of achieving the elaborated objectives, it will be used to evaluate: synthetic, in
vitro and in vivo data. The performance of the digital shadow will be quantified by performing three
distinct analyses. First of all, a sensitivity analysis will be conducted to identify the sensitivity of the
measurement to changes in the parameter of interest. Secondly, an identifiability analysis will be carried
out to evaluate the possibility of identifying a unique parameter value from the available measurements.
Lastly, a stability analysis will be executed to quantify the sensitivity of the system to its initial states.
Ultimately, the goal of the current study is to develop a digital shadow based on ROUKF which is
capable of estimating patient-specific cardiac functionality parameters in real-time with an acceptable
confidence interval, using a minimal number of different measurement types to serve as the ideal guide
during weaning.

The outline of the current study will be as follows. First, in Chapter 2 the Kalman filter theory will
be elaborated, starting with the basic KF, then the UKF and eventually the ROUKF. In Chapter 3
the mathematical model of the cardiovascular system and gathering of measurements from synthetic, in
vitro and in vivo data will be discussed. Subsequently, in Chapter 4 the data processing will be detailed,
followed by the elaboration of data and model analysis in Chapter 5, which includes the sensitivity,
identifiability analysis and stability analysis. The interactions among the topics in the chapters related
to the method part of the current study, Chapter 2 through Chapter 5, are shown in Figure 1.2. Lastly,
in Chapter 6 the results of the previously mentioned chapters will be illustrated, which will be discussed
in Chapter 7 to eventually draw conclusions in Chapter 8.

Figure 1.2: Overview of the interaction between the subjects discussed in the Chapter 2 till Chapter
4, in which the subjects of Chapter 2 are depicted in green, Chapter 3 in red, Chapter 4 in yellow and
Chapter 5 in blue.
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CHAPTER 2. DATA ASSIMILATION

2. Data assimilation

This chapter will be devoted to a comprehensive theoretical exposition of the Kalman filter theory [33].
The first section of the chapter discusses the Kalman filter (KF), which is a sequential DA method that
provides a recursive solution based on merging measurements and model predictions [6]. The unscented
Kalman filter (UKF) is a non-linear extension to the conventional KF, which is elaborated in the second
section of this chapter. In the third and final section of this chapter the reduced-order unscented Kalman
filter (ROUKF) is detailed, which is a computationally more efficient version of the UKF.

2.1 Kalman filter

The Kalman filter is able to estimate the states of a linear dynamic system by merging a mathematical
model with time-discrete measurements. This sequential DA method basically consists of two iterative
steps, namely, the prediction step based on the mathematical model and the analysis step based on
the available measurement. This sequential method is considered to be very efficient because, once
a measurement is available, the prediction can be updated easily in case it does not agree with the
measurement [5]. The eventual goal of the KF is to minimize the variance of the estimate of every time
step by solving an algebraic function [59].

The considered linear dynamic system with additive noise is governed by a set of linear stochastic differ-
ential equations, that after time discretisation can be written as:

˜
xk+1 = Mk+1

˜
xk +

˜
uk,

˜
x ∈ Rns , k = 0, 1, 2...., τ, (2.1)

with measurable output:

˜
yk = Hk

˜
xk +

˜
vk,

˜
y ∈ Rnz , k = 0, 1, 2...., τ. (2.2)

In the first phrase of the dynamic system description
˜
xk denotes the state column vector of discrete time

step k, with a maximum of τ , which contains a total of ns states (
˜
x ∈ Rns). In addition, the behavior of

˜
xk+1 is governed by the state transition matrix Mk+1 and the process noise vector

˜
uk in this first phrase.

In the second mathematical expression
˜
yk represents a vector of nz measurements (

˜
y ∈ Rnz ), Hk the

measurement matrix and
˜
vk the measurement noise vector. In the current dynamic system (Equations 2.1

and 2.2), the matrices Mk+1 and Hk are both considered to be linear. In this system, it is assumed that
both error vectors (

˜
uk and

˜
vk) are uncorrelated and contain white noise with a probability distribution

that is presumed to be Gaussian:

˜
uk ∼ N (0,Qk) and

˜
vk ∼ N (0,Rk). (2.3)

In this expression, matrix Qk denotes the model error covariance and matrix Rk the measurement error
covariance. The model error covariance Qk is considered to be difficult to determine because it accounts
for the model’s deficiencies in representing underlying physical mechanisms as well as the cumulative
effects of parameter errors. In contrast, the measurement error covariance Rk can be determined empir-
ically by estimating the trueness and precision of the used measurement equipment [69].

2.1.1 Assimilation scheme

The sequential assimilation scheme of the KF consists of two distinct steps; the prediction step and
analysis step. Starting with the prediction step, where the estimate of the current time step

˜
x̂k will

be used to estimate the state vector at the next time step
˜
x̂k+1 by using a mathematical model. The

resulting estimate of the prediction step is called the a priori estimate
˜
x̂pk+1, which can mathematically

be denoted as:

˜
x̂pk+1 = Mk+1

˜
x̂k, (2.4)

Real-time estimation of cardiac model parameters - S.C. Snijders (2022) 5



2.1. KALMAN FILTER CHAPTER 2. DATA ASSIMILATION

with the a priori covariance Pp
k+1 and associated model error covariance Qk = E[

˜
uk

˜
uTk ]:

Pp
k+1 = Mk+1Pk+1M

T
k+1 +Qk. (2.5)

In the subsequent step of the Kalman filter, which is the analysis step, the a priori estimate will be
improved by using the available measurement. This analysis step will result in the a posteriori estimate

˜
x̂ak+1, which is defined as:

˜
x̂ak+1 =

˜
x̂pk+1 +Kk+1(

˜
yk+1 −

˜
ẑk+1). (2.6)

In this analysis step, the a priori estimate
˜
x̂pk+1 is thus improved by the discrepancy between the available

measurement
˜
yk+1 and the measurement prediction

˜
ẑk+1 in order to obtain the a posteriori estimate

˜
x̂ak+1.

The measurement prediction
˜
ẑk+1 follows from mapping the a priori estimate

˜
x̂pk+1 to the measurement

space by using matrix Hk+1, which can formally be stated as:
˜
ẑk+1 = Hk+1

˜
x̂pk+1. The discrepancy

(
˜
yk+1 −

˜
ẑk+1) will be weighted by using the Kalman gain Kk+1, which will be chosen with the objective

to minimize the a posteriori error covariance Pa
k+1. Note that in the current study, the a priori elements

resulting from the prediction step will be denoted with (·)p while the a posteriori elements resulting
from the analysis step will be indicated with (·)a. Lastly, an illustrative representation of the elaborated
sequential assimilation scheme of the Kalman filter is given in Figure 2.1.

Figure 2.1: A sketch of the sequential assimilation scheme of the Kalman filter in the measurement
space of measurements

˜
yk, where matrix Hk is omitted for simplicity. In this sketch, the prediction

(a priori) estimate
˜
x̂pk and analysis (a posteriori) estimate

˜
x̂ak can be found in the middle of the two

ellipses, which depict the corresponding prediction Pp
k and analysis Pa

k covariance. The a priori estimate

˜
x̂pk will be affected by the model error covariance Qk, while the measurements

˜
yk will be influenced by

the measurement error covariance Rk. Adapted from: ‘A review of innovation-based methods to jointly
estimate model and observation error covariance matrices in ensemble data assimilation’ by P. Tandeo et
al, 2020, Monthly weather review, 148, 3973-3994 [69].
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In the remaining part of the current section, the optimal Kalman gain Kk+1 to fulfill the objective of
minimizing the a posteriori error covariance Pa

k+1 will be mathematically derived. First, the errors of
the a priori estimate (prediction step) and a posteriori estimate (analysis step) can be defined as the
difference between the estimate and the unknown true state

˜
xtk. Based on these two errors, the expected

values E[·] of the a priori and a posteriori covariance (Pp
k and Pa

k) can be determined. Mathematically,
these two error-based statements can be formulated as:

˜
epk =

˜
x̂pk − ˜

xtk, Pp
k = cov(

˜
epk) = E[

˜
epk˜
epk
T ] = E[(

˜
x̂pk − ˜

xtk)(
˜
x̂pk − ˜

xtk)
T ], (2.7)

˜
eak =

˜
x̂ak −

˜
xtk, Pa

k = cov(
˜
eak) = E[

˜
eak
˜
eak
T ] = E[(

˜
x̂ak −

˜
xtk)(

˜
x̂ak −

˜
xtk)

T ]. (2.8)

The derivation of optimal Kalman gain Kk starts with rewriting the expression of the a posteriori estim-
ation error

˜
eak (Equation 2.8) by substituting: 1) the expression of the a posteriori estimate

˜
x̂ak (Equation

2.6), 2) the measurement estimation
˜
ẑk = Hk

˜
x̂pk and 3) the measurement expression (Equation 2.2). This

results in:

˜
eak =

˜
x̂ak −

˜
xtk,

=
˜
x̂pk +Kk(

˜
yk −

˜
ẑk)−

˜
xtk,

=
˜
x̂pk +Kk(

˜
yk −Hk

˜
x̂pk)− ˜

xtk,

= Kk(
˜
yk −Hk

˜
x̂pk) + (

˜
x̂pk − ˜

xtk),

= Kk(Hk
˜
xtk +

˜
vk −Hk

˜
x̂pk) + (

˜
x̂pk − ˜

xtk),

= Kk(−Hk(
˜
x̂pk − ˜

xtk) +
˜
vk) + (

˜
x̂pk − ˜

xtk). (2.9)

Next, the above derived expression of a posteriori estimation error
˜
eak (Equation 2.9) will be substituted

into the expression of a posteriori covariance Pa
k (Equation 2.8). Subsequently, the number of terms

will be reduced by substituting the a priori estimation error
˜
epk (Equation 2.7). Lastly, after rewriting

the resulting equation, the a priori covariance Pp
k (Equation 2.7) and the measurement error covariance

Rk = E[
˜
vk
˜
vTk ] will be used to obtain an alternative expression of the a posteriori covariance Pa

k. These
mathematical operations lead to:

Pa
k = E[

˜
eak
˜
eak
T ],

= E[(Kk(−Hk(
˜
x̂pk − ˜

xtk) +
˜
vk) + (

˜
x̂pk − ˜

xtk))(Kk(−Hk(
˜
x̂pk − ˜

xtk) +
˜
vk) + (

˜
x̂pk − ˜

xtk))
T ],

= E[(Kk(−Hk
˜
epk +˜

vk) +
˜
epk)(Kk(−Hk

˜
epk +˜

vk) +
˜
epk)

T ],

= E[(Kk(
˜
vk −Hk

˜
epk) +˜

epk)(Kk(
˜
vk −Hk

˜
epk) +˜

epk)
T ],

= E[(Kk
˜
vk −KkHk

˜
epk +˜

epk)(Kk
˜
vk −KkHk

˜
epk) +˜

epk)
T ],

= E[
˜
epk˜
epk
T − (KkHk

˜
epk)(KkHk

˜
epk)

T + (Kk
˜
vk)(Kk

˜
vk)

T ],

= E[
˜
epk˜
epk
T ]− (KkHk)E[

˜
epk˜
epk
T ](KkHk) +KkE[

˜
vk
˜
vTk ]K

T
k ,

= Pp
k − (KkHk)P

p
k(KkHk)

T +KkRkK
T
k ,

= (I−KkHk)P
p
k(I−KkHk)

T +KkRkK
T
k . (2.10)

This expression of the a posteriori covariance Pa
k can subsequently be used to calculate the Kalman gain

Kk. However, this Kalman gain Kk is not necessarily the most optimal one, and therefore an expression
to compute the optimal Kalman gain Kk will be derived below. In retrospect, the goal of the Kalman
filter is to minimize the variance of the a posteriori estimate

˜
x̂ak+1. The variances of all the states included

in this estimate will be located on the diagonal of the a posteriori covariance Pa
k, which implies that the

minimal sum of these variances can be obtained by minimizing the trace (Tr) of the matrix. Therefore,
the optimal Kalman gain Kk can be determined by taking the derivative of the trace of matrix Pa

k

with respect to Kk and setting it equal to zero. To determine the derivative of the trace, the following
differential matrix expressions are considered useful:

∂

∂A
Tr(AB) = BT ,

∂

∂A
Tr(ABT ) = B,

∂

∂A
Tr(ACAT ) = 2AC. (2.11)
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In these matrix expressions, it is assumed that A and B are both square matrices and C is a symmetric
matrix. Before determining the derivative of the trace of the a posteriori covariance Pa

k, Equation 2.10
will be expanded first:

Pa
k = Pp

k −KkHkP
p
k −Pp

kK
T
kH

T
k +Kk(HkP

p
kH

T
k +Rk)K

T
k . (2.12)

Subsequently, the trace of Equation 2.12 will be differentiated with respect to the Kalman gain Kk to
acquire the most optimal gain. The differentiation of the trace can be denoted as:

∂

∂Kk
Tr(Pa

k) = −2(HkP
p
k)
T + 2Kk(HkKkH

T
k +Rk). (2.13)

When Equation 2.13 is set to zero and then solved algebraically, the expression to compute the optimal
Kalman gain Kk can finally be obtained:

Kk = Pp
kH

T
k (HkP

p
kH

T
k +Rk)

−1. (2.14)

This expression of the optimal Kalman gainKk (Equation 2.14) can be evaluated mathematically through
observing the limits of this expression:

lim
Rk→0

Kk = H−1
k and lim

Ppk→0
Kk = O. (2.15)

When evaluating the above stated results combined with the expression of the a posteriori covariance
Pa
k (Equation 2.8), it can be observed that when the measurement error covariance Rk approaches zero,

the Kalman gain Kk will weigh the influence of the innovation (
˜
yk+1 −

˜
ẑk+1) more heavily. Conversely,

when the a priori covariance Pp
k approaches zero, the Kalman gain Kk will weigh the influence of

the innovation almost negligibly. These mathematical observations intuitively agree with the expected
behavior of a properly functioning sequential DA.

The expression of the optimal Kalman gain Kk (Equation 2.14) can be simplified by introducing two
additional covariance matrices, the innovation covariance Pz

k and the cross covariance Ppz
k . These two

covariance matrices can be defined as:

Pz
k = HkP

p
kH

T
k +Rk and Ppz

k = Pp
kH

T
k . (2.16)

When using these two expressions (Equation 2.16) to simplify the formula of the optimal Kalman gain
Kk (Equation 2.14), the following equation for the Kalman gain Kk can be obtained:

Kk = Ppz
k (Pz

k)
−1. (2.17)

Lastly, the derived expression of the a posteriori covariance Pa
k (Equation 2.12) will be rewritten by

substituting the expression of the Kalman gain Kk (Equation 2.17). Furthermore, the expression of the
cross covariance Ppz

k (Equation 2.16) will be used to obtain an alternative expression for the a posteriori
covariance Pa

k, resulting in:

Pa
k = (I−KkHk)P

p
k,

= Pp
k −Ppz

k (Pz
k)

−1(Ppz
k )T ,

= Pp
k −Kk(P

z
k)

−1KT
k . (2.18)

This eventual derived equation of the a posteriori covariance Pa
k (Equation 2.18) will be used in the

current study.

Real-time estimation of cardiac model parameters - S.C. Snijders (2022) 8
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2.1.2 Kalman filter algorithm

The derivation of the optimal Kalman gain and the definition of all elements of the conventional KF are
provided in the previous subsection, while in this subsection the different implementation steps of the KF
algorithm will be outlined in chronological order. The KF consists of two recursive sections, the prediction
step and the analysis step, with the initialization being carried out before the first iteration of these
recursive steps. In this initialization, the a posteriori estimate

˜
x̂ak and the a posteriori covariance Pa

k will
be obtained by conducting an initial guess. Subsequently, the two steps of the algorithm will be performed
recursively, starting with the prediction step (resulting in a priori estimate

˜
x̂pk and covariance Pp

k),
followed by the analysis step (resulting in a posteriori estimate

˜
x̂ak and covariance Pa

k). The initialization
and the two recursive steps of the KF algorithm will be detailed below.

Initialization

Initial guess of: Pa
0 , Q0, R0 and

˜
x̂a0 .

Prediction

Predict the a priori estimate:

˜
x̂pk+1 = Mk+1

˜
xak.

Predict the a priori covariance:

Pp
k+1 = Mk+1P

a
kM

T
k+1 +Qk+1.

Analysis

Map prediction to measurement space:

˜
ẑk+1 = Hk+1

˜
x̂pk+1.

Determine the innovation- and the cross covariance:

Pz
k+1 = Hk+1P

p
k+1H

T
k+1 +Rk+1,

Ppz
k+1 = Pp

k+1H
T
k+1.

Calculate the Kalman gain:

Kk+1 = Ppz
k+1(P

z
k+1)

−1.

Determine the a posteriori estimate of the mean:

˜
x̂ak+1 =

˜
x̂pk+1 +Kk+1(

˜
yk+1 −

˜
ẑk+1).

Determine the a posteriori covariance:

Pa
k+1 = Pp

k+1(I−Kk+1Hk+1).

Real-time estimation of cardiac model parameters - S.C. Snijders (2022) 9
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2.2 Unscented Kalman filter

The conventional KF, discussed in the previous section of this chapter, has limited utility in the real world
because it is only applicable to linear time-invariant systems. However, there are several extensions
available that are suitable for the conventional KF to deal with non-linear systems. For example the
extended Kalman filter (EKF), which generalizes the conventional KF approach by linearizing the non-
linear functions of a given system using Taylor’s theorem [4, 46]. Another available extension that is
suitable for the conventional KF is the unscented Kalman filter (UKF), which is capable of handling non-
linearities even better than the previously mentioned EKF [77]. In addition, the UKF outperforms the
EKF because the UKF can make an estimation of the mean and covariance of the states and measurements
with second-order accuracy, while the EKF can only achieve first-order accuracy [31, 73]. To describe
the UKF in detail, the following non-linear time-invariant system is considered:

˜
xk+1 =

˜
f(
˜
xk) +

˜
wk (2.19)

˜
yk =

˜
h(
˜
xk) +

˜
vk (2.20)

The non-linear time-invariant behaviour of this system can be described by the non-linear transition
function

˜
f(
˜
xk). Furthermore, the measurements of this system will be selected and extracted by using

the measurement function
˜
h(
˜
xk).

2.2.1 Unscented transform

First of all, it is important to note that UKF retains the structure of the conventional Kalman filter,
meaning that it contains a prediction step and an analysis step. These two recursive steps result in the
a priori and the a posteriori estimate and corresponding covariance, respectively [50]. In addition to
the similarity in structure, the UKF consists of additional components to accommodate non-linearities,
such as unscented transform (UT). This UT is a mathematically driven technique that can be used to
propagate the mean and covariance to the next time step by using a non-linear function [46]. The idea of
this UT technique originates from the study of Julier et al. (1997), in which it is intuitively stated that
it should be easier to approximate a probability distribution than to approximate a non-linear function
[31]. In this UT approach, a set of sample points, called sigma-points, are obtained from a posteriori
distribution of the current time step (Υ(

˜
x̂ak, P

a
k)), which can contain any form and is denoted by Υ.

The sigma-points are chosen such that the mean and covariance of the sigma-points correspond to the
mean and covariance of that particular a posteriori distribution Υ. Subsequently, the non-linear function,
which is the transition function

˜
f(
˜
xk) in the current study, is used to propagate each of these sigma-

points to the next time step. By calculating the mean and covariance of these propagated sigma-points,
the a priori estimate

˜
x̂pk+1 and the corresponding covariance Pp

k+1 are obtained [31, 32, 46]. Figure 2.2
below illustrates the propagation of sigma-points from the current to the next time step following the
UT approach.

In order to calculate these sigma-points, a few constants (α, β, and ν) need to be determined first. The
distribution of a certain number of sigma-points around the mean is governed by the constant α, which
can be calculated by:

α =
1

ns + 1
. (2.21)

In this equation, the number of states in the considered non-linear system (Equation 2.19 and 2.20) is
denoted by ns. Furthermore, the constant β is a non-negative constant that relies on prior knowledge of
the distribution of the estimate. In case of a Gaussian distribution, a value of 2 is considered to be optimal
for β according to van der Merwe et al. (2001) [73]. Lastly, the constant ν fulfils an important position
in the calculation of the weights of the sigma-points, which will be detailed later on. The constant ν can
be determined by:

ν = ns(α
2 − 1). (2.22)
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Figure 2.2: Here, the unscented transform (UT) is visualized considering a 2D state space. The a
posteriori estimate

˜
x̂ak and covariance Pa

k are converted into 5 sigma-points, calculation of this amount
will be elaborated later on, to describe the distribution of the current time step (k). These sigma-points
are then propagated to the next time step (k+1) by using the non-linear transition function

˜
f(
˜
xk). Based

on these propagated sigma-points, the a priori estimate
˜
x̂pk+1 and covariance Pp

k+1 of the next time step
can be determined.

After determining all previously mentioned constants, the calculation of the sigma-points can be carried
out. According to the currently discussed UKF approach, the number of sigma-points required to describe
the distribution of a certain state is equal to 2ns + 1. Eventually, this will result in a sigma-points
matrix χk with dimensions ns × 2ns + 1. The very first sigma-point of every state (

˜
χk,i=1), where i

indexes the column in the sigma-point matrix χk, represents the mean of that particular state. As a
result, it can be stated that the first sigma-point of every state is equal to the a posteriori estimate
of the current time step

˜
x̂ak. Subsequently, the remaining sigma-point are distributed around the mean

of that particular state to describe the rest of the distribution. These remaining sigma-points can be
calculated by adding or subtracting the factor (

√
(ns + ν)Pa

k)(i−1) to/from the a posteriori estimate
˜
x̂ak

[30, 31, 73]. This factor (
√
(ns + ν)Pa

k)(i−1) represents the (i− 1)-th column of the matrix square root of
the manipulated a posteriori covariance matrix (ns+ν)P

a
k [31]. This matrix square root of the covariance

matrix ((
√
(ns + ν)Pa

k)(i−1)) can be calculated by using the Cholesky decomposition in combination with
the singular value decomposition (SVD), which are both detailed and substantiated in the study of Ma
et al. (2010) [46]. The calculation of the sigma-points can be summarized as follows:

˜
χk,i =

˜
x̂ak, i = 1, (2.23)

˜
χk,i =

˜
x̂ak + (

√
(ns + ν)Pa

k)(i−1), i = 2, ..., ns + 1, (2.24)

˜
χk,i =

˜
x̂ak − (

√
(ns + ν)Pa

k)((i−1)−ns), i = ns + 2, ..., 2ns + 1. (2.25)

The result of these sigma-point calculations are all column vectors, which will collectively form the sigma-
point matrix χk. Eventually, all these sigma-points of matrix χk will be propagated to the next time step
by using a non-linear transition function

˜
f(
˜
xk) according to the UT approach [30]. In order to determine

the a priori estimate and a priori covariance based on the propagated sigma-points, they have to be
weighted accordingly:

ωm1 =
ν

ns + ν
, (2.26)

ωc1 =
ν

ns + ν
+ (1− α2 + β), (2.27)

ωmi = ωci =
ν

2(ns + ν)
, i = 2, ...., 2ns + 1. (2.28)
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2.2.2 Unscented Kalman filter algorithm

The UKF algorithm can roughly be divided into three distinct recursive sections; the sigma-point de-
termination, the prediction step and the analysis step. Before executing these recursive sections, the
initialization needs to be completed first. The following elements remain constant throughout the itera-
tions of the algorithm and will therefore be calculated in the initialization phase; α, β, ν and all weights
(ωm1 , ωc1, ω

m
i and ωci ). The equations and values of the former four components are elaborated in the

previous subsection, while the weights can be calculated by using Equation 2.26 - 2.28. The a posteriori
estimate

˜
x̂ak and the a posteriori covariance Pa

k will be initially guessed in order to be able to execute the
first iteration of the UKF algorithm.

The UT, which was discussed in the previous subsection, is used in the UKF algorithm to handle non-
linearities that occur in the transition function

˜
f(
˜
xk) and/or the measurement function

˜
h(
˜
xk). The

possible non-linearities in these functions are addressed by making use of sigma-points according to the
UT approach. Therefore, the determination of the sigma-point is considered to be the first step of the
UKF algorithm. As mentioned before, the general structure of the UKF algorithm is fairly comparable to
the conventional KF algorithm. Therefore, the second step of the algorithm is the prediction step, where
the mathematical model is used to provide a prediction, which results in an a priori estimate

˜
x̂pk and an

a priori covariance Pp
k. The third and last step is the analysis step, in which the available measurement

is used to accomplish an a posteriori estimate
˜
x̂ak and an a posteriori covariance Pa

k. In this last step,
the Kalman gain Kk will be used to weigh the influence of innovation (

˜
yk+1−

˜
ẑk+1) with the objective of

minimizing the a posteriori covariance Pa
k. The initialization and three recursive steps will be presented

on the next page in chronological order.

Real-time estimation of cardiac model parameters - S.C. Snijders (2022) 12
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Initialization

Determine: α, β, ν, ωm1 , ωc1, ω
m
i and ωci .

Initialize: Pa
0 , Q0, R0 and

˜
x̂a0 .

Sigma-points determination

Determine the sigma-points of the current time step:

˜
χk,i =

˜
x̂ak, i = 1,

˜
χk,i =

˜
x̂ak + (

√
(ns + ν)Pa

k)(i−1), i = 2, ..., ns + 1,

˜
χk,i =

˜
x̂ak − (

√
(ns + ν)Pa

k)((i−1)−ns), i = ns + 2, ..., 2ns + 1.

Prediction

Propagate the sigma-points to the prediction space by using the transition function
˜
f :

˜
χpk,i =

˜
f(
˜
χk,i), i = 1, ..., 2ns + 1.

Determine the a priori estimate:

˜
x̂pk+1 =

2ns+1∑
i=1

ωmi
˜
χpk,i.

Determine the a priori covariance:

Pp
k =

2ns+1∑
i=1

ωci (
˜
χpk,i − ˜

x̂pk+1)(
˜
χpk,i − ˜

x̂pk+1)
T +Qk.

Analysis

Propagate the sigma-points to the measurement space by using the measurement function
˜
h:

˜
χzk,i =

˜
h(
˜
χpk,i), i = 1, ..., 2ns + 1.

Determine the estimate in the measurement space:

˜
ẑk+1 =

2ns+1∑
i=1

ωmi
˜
χzk,i.

Determine the covariance in the measurement space:

Pz
k+1 =

2ns+1∑
i=1

ωci (
˜
χzk,i −

˜
ẑk+1)(

˜
χzk,i −

˜
ẑk+1)

T +Rk.

Calculate the cross covariance:

Ppz
k+1 =

2ns+1∑
i=1

ωci (
˜
χpk,i − ˜

ẑk+1)(
˜
χzk,i −

˜
ẑk+1)

T .

Calculate the Kalman gain:

Kk+1 = Ppz
k+1(P

z
k+1)

−1.

Determine the a posteriori estimate:

˜
x̂ak+1 =

˜
x̂pk+1 +Kk+1(

˜
yk+1 −

˜
ẑk+1).

Determine the a posteriori covariance:

Pa
k+1 = Pp

k+1 −Kk+1P
z
k+1K

T
k+1.
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2.3 Reduced-order unscented Kalman filter

The previously discussed UKF is an extension for the conventional KF, which can deal with non-linear
systems [73]. However, a Kalman filter with non-linear extension, like this UKF, is known for its compu-
tational expensiveness when applied to problems with a considerably large amount of data. Therefore,
a computationally more efficient method is desired, which is the reduced-order unscented Kalman filter
(ROUKF) [17]. Before diving into the fundamentals and reasoning behind this ROUKF method, let us
first describe the general form of the non-linear system to which the method will be applied. In the con-
sidered non-linear system, the states and parameters will be gathered into one collective state-parameter
space, which is called the augmented state vector. Formally, this augmented state vector can be denoted
by:

˜
xaug =

[
˜
x

˜
θ

]
. (2.29)

where
˜
x represents the state vector and

˜
θ the parameter vector. The size of

˜
x is determined by the number

of states (ns) and the size of
˜
θ by the number of parameters (np). As a result, the size of the augmented

state vector is equal to n = ns+np. The evolution of the augmented state vector will be governed by the
transition function

˜
f(
˜
xaug,k), which describes the behavior of the considered time-invariant non-linear

system. In this particular system, the measurements will be selected and extracted by using measurement
function

˜
h(
˜
xk). Therefore, the considered time-invariant non-linear system can be given as:

˜
xaug,k+1 =

˜
f(
˜
xaug,k) +

˜
wk, (2.30)

˜
yk =

˜
h(
˜
xk) +

˜
vk. (2.31)

The basis of the reduction of computational expenses in the ROUKF method can be attributed to using
two distinct DA methods into a collective method that is known as a hybrid DA approach. Explicitly,
the estimation of the states

˜
x and parameters

˜
θ of the augmented state vector

˜
xaug,k will be both be

addressed with distinct DA methods. In the ROUKF method, these two DA methods are intertwined
and will be executed simultaneously following the joint state-parameter estimation approach [51]. The
mathematical proof of this joint state-parameter estimation approach is supplied in the study of Moireau
et al. (2008) [52].

To accomplish the desired computational benefit, the state estimation is addressed with a simple and
computationally cheap DA method, while the parameter estimation is conducted with an accurate and
computationally more expensive DA method [17]. The parameter estimation will be executed by using the
UKF, which is able to estimate the main and covariance of the parameters with second-order accuracy [73].
A DA method that is considered to be suitable for state estimation is the Luenberger observer, because it
is a computationally inexpensive and stable method [17, 42, 51]. Consequently, the Luenberger observer
will be responsible for the state estimation and the UKF for the parameter estimation, which will be
executed collectively following the joint state-parameter approach to eventually result in a hybrid DA
method called ROUKF [17, 51]. Conceptually, the ROUKF method can be given as:

˜
xaug =

[
˜
x

˜
θ

]
−→
−→

Luenberger observer
unscented Kalman filter

}
reduced-order unscented Kalman filter.

The Luenberger observer is considered to be computationally inexpensive and stable because it is based
on a forward nudging approach [51]. Nudging is a relatively simple method which adjusts the solution
of the model towards the available measurements, without depending on an optimal criterion. This
adjustment is accomplished by introducing a feedback term that captures the discrepancy between the
model and measurement [3].
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2.3.1 Assimilation scheme

In the ROUKF method, the state estimation is thus performed by the Luenberger observer, while the
parameter estimation is executed by the UKF. The Luenberger observer also fulfils another important
role in addition to the state estimation, which is the allocation of the estimation error to the parameter
space. In essence, this is equivalent to confining the model uncertainty to the parameter space [17]. As a
result, the rank of the a posteriori covariance matrix Pa

k+1 will be equal to the number of parameters np.
This rank reduction forms the foundation for the computational efficient reduced-order filtering, because
it allows a rank decomposition of Pa

k+1. Based on the rank decomposition, the matrix Pa
k+1 can be

denoted in its factorized form [51]:

Pa
k+1 = Lk+1U

−1
k+1L

T
k+1. (2.32)

The a posteriori covariance matrix Pa
k+1 is a square matrix with dimensions n × n, containing the

covariance between each pair of elements of the augmented state vector
˜
xaug,k. The two matrices that

resulted from the rank decomposition contain smaller dimensions, namely, the Luenberger matrix Lk+1

n×np and the uncertainty matrix Uk+1 np×np. The usefulness of this rank decomposition lies in the fact
that manipulations and calculations can be performed on matrices with smaller dimensions (Lk+1 and
Uk+1), instead of on the conventional covariance matrix (Pa

k+1). Consequently, the calculations involving
the covariance matrix become computationally tractable without influencing the eventual dimensions of
the a posteriori covariance matrix Pa

k+1 [51].

The mathematical proof of the factorized form of the a posteriori covariance matrix Pa
k+1 will be derived

below, starting with some definitions. First, two different forms of the Luenberger matrix are introduced,
of which one is located in the prediction space (Lk+1) and the second in the measurement space (Bk+1).
The Luenberger matrix in the prediction space Lk+1 depends on the sigma-points located in the prediction
space χpk+1, whereas the Luenberger matrix in the measurement space Bk+1 depends on the sigma-points
in the measurement space χzk+1. The definitions of these Luenberger matrices are given by [51]:

Lk+1 =
˜
f(χk+1)DεS

T

= χpk+1DεS
T , (2.33)

Bk+1 =
˜
h(χpk+1)DεS

T

= χzk+1DεS
T . (2.34)

Both expressions of the Luenberger matrix contain an equal constant part, which consists of a diagonal
matrixDε and a simplex sigma-point matrix S (see Section 2.3.2). The diagonal matrixDε has dimensions
np + 1 × np + 1 and contains the scalar value of the weight ε = 1

np+1 on all elements of the diagonal.

Second, the uncertainty matrix Uk+1 is defined as [51]:

Uk+1 = Pε +Bk+1
TR−1

k+1Bk+1, (2.35)

in which, Pε is the constant part of the covariance matrix with dimensions np×np and is being expressed
by [51]:

Pε = SDεS
T. (2.36)

Finally, a few expressions of different covariance matrices are given [51]:

Pp
k = LkP

−1
ε LTk , (2.37)

Pz
k = BkP

−1
ε BT

k +Rk, (2.38)

Ppz
k = LkP

−1
ε BT

k . (2.39)

Here, Pp
k denotes the a priori covariance matrix, Pz

k the innovation covariance matrix and Ppz
k the

cross-covariance matrix. Note that for the ease of reading, time step k is used instead of time step k+1.
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Now that some key matrices have been introduced, the mathematical proof regarding the factorized form
of the a posteriori covariance matrix Pa

k can be supplied. Starting with the expression of the a posteriori
covariance Pa

k of the conventional Kalman filter (Equation 2.18) and substituting the equation of the
optimal Kalman gain Kk (Equation 2.17):

Pa
k = Pp

k −KkP
z
kK

T
k ,

= Pp
k −Ppz

k (Pz
k)

−1Pz
k(P

pz
k (Pz

k)
−1)T ,

= Pp
k −Ppz

k (Pz
k)

−1(Ppz
k )T . (2.40)

Next, the previously stated expressions of the a priori covariance Pp
k (Equation 2.37), the innovation

covariance Pz
k (Equation 2.38) and the cross-covariance Ppz

k (Equation 2.39) are substituted, which
results in:

Pa
k = LkP

−1
ε LTk − LkP

−1
ε BT

k (BkP
−1
ε BT

k +Rk)
−1(LkP

−1
ε BT

k )
T ,

= LkP
−1
ε LTk − LkP

−1
ε BT

k (BkP
−1
ε BT

k +Rk)
−1LTkP

−1
ε Bk,

= LkP
−1
ε LTk − LkP

−1
ε BT

k (BkP
−1
ε BT

k +Rk)
−1P−1

ε BkL
T
k ,

= Lk(P
−1
ε −P−1

ε BT
k (BkP

−1
ε BT

k +Rk)
−1P−1

ε Bk)L
T
k . (2.41)

Subsequently, this last expression will be simplified by using the Woodbury formula, which in general
terms reads [18]:

(A+BCD)−1 = A−1 −A−1B(DA−1B+C−1)−1DA−1. (2.42)

In this equation, matrix A and matrix C are both square invertible matrices with a dimension of nA×nA
and nC × nC , respectively. Further, matrix B and matrix D have dimensions nA × nC and nC × nA,
respectively. According to the derivation that is currently being detailed, the matrices referred in Equation
2.41 can be substituted by; A = Pε, B = BT

k , C = R−1
k and D = Bk. This Woodbury formula will be

used to rewrite Equation 2.41. Subsequently, the expression of the uncertainty matrix Uk+1 (Equation
2.35) will be used to simplify the resulting expression. Formally, this can be given as:

Pa
k = Lk(Pε +BT

kR
−1
k Bk)

−1LTk ,

= Lk(Pε +BkR
−1
k BT

k )
−1LTk ,

= Lk(Uk)
−1LTk ,

= LkU
−1
k LTk . (2.43)

As a result, it is proven that the factorized form of the a posteriori covariance Pa
k is mathematically

valid.

Another essential element of the ROUKF approach is the a posteriori estimate
˜
x̂ak, which will be math-

ematically derived below. This derivation starts with the expression of the a posteriori estimate of the
conventional Kalman filter (Equation 2.6), in which the expression of the Kalman gain Kk (Equation
2.17) will be substituted. Next, the mathematical definitions of the innovation covariance Pz

k (Equation
2.38) and cross covariance Ppz

k (Equation 2.39) will be used to rewrite the equation, leading to:

˜
x̂ak =

˜
x̂pk +Kk(

˜
yk −

˜
ẑk),

=
˜
x̂pk +Ppz

k (Pz
k)

−1(
˜
yk −

˜
ẑk),

=
˜
x̂pk + LkP

−1
ε BT

k (BkP
−1
ε BT

k +Rk)
−1(

˜
yk −

˜
ẑk). (2.44)
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Subsequently, the second term in this expression will be multiplied with the identity matrix I, followed
by a substitution of: 1) I = U−1

k Uk and 2) the expression of the uncertainty matrix Uk (Equation
2.35). Lastly, the resulting expression will be rewritten by taking P−1

ε and BT
k inside the first pair of

parentheses. Explicitly, this can be given as follows:

˜
x̂ak =

˜
x̂pk + LkP

−1
ε BT

k (BkP
−1
ε BT

k +Rk)
−1(

˜
yk −

˜
ẑk),

=
˜
x̂pk + Lk I P

−1
ε BT

k (BkP
−1
ε BT

k +Rk)
−1(

˜
yk −

˜
ẑk),

=
˜
x̂pk + LkU

−1
k UkP

−1
ε BT

k (BkP
−1
ε BT

k +Rk)
−1(

˜
yk −

˜
ẑk),

=
˜
x̂pk + LkU

−1
k (Pε +Bk

TR−1
k Bk)P

−1
ε BT

k (BkP
−1
ε BT

k +Rk)
−1(

˜
yk −

˜
ẑk),

=
˜
x̂pk + LkU

−1
k (PεP

−1
ε +Bk

TR−1
k BkP

−1
ε )BT

k (BkP
−1
ε BT

k +Rk)
−1(

˜
yk −

˜
ẑk),

=
˜
x̂pk + LkU

−1
k (I+Bk

TR−1
k BkP

−1
ε )BT

k (BkP
−1
ε BT

k +Rk)
−1(

˜
yk −

˜
ẑk),

=
˜
x̂pk + LkU

−1
k (BT

k +Bk
TR−1

k BkP
−1
ε BT

k )(BkP
−1
ε BT

k +Rk)
−1(

˜
yk −

˜
ẑk). (2.45)

Finally, the Luenberger matrix located in the measurement space BT
k and the inverse of the measurement

noise R−1
k are both drawn outside the parentheses, which can be given as:

˜
x̂ak =

˜
x̂pk + LkU

−1
k (BT

k +Bk
TR−1

k BkP
−1
ε BT

k )(BkP
−1
ε BT

k +Rk)
−1(

˜
yk −

˜
ẑk),

=
˜
x̂pk + LkU

−1
k BT

k (I+R−1
k BkP

−1
ε BT

k )(BkP
−1
ε BT

k +Rk)
−1(

˜
yk −

˜
ẑk),

=
˜
x̂pk + LkU

−1
k BT

kR
−1
k (Rk +BkP

−1
ε BT

k )(BkP
−1
ε BT

k +Rk)
−1(

˜
yk −

˜
ẑk),

=
˜
x̂pk + LkU

−1
k BT

kR
−1
k (BkP

−1
ε BT

k +Rk)(BkP
−1
ε BT

k +Rk)
−1(

˜
yk −

˜
ẑk),

=
˜
x̂pk + LkU

−1
k BT

kR
−1
k (

˜
yk −

˜
ẑk). (2.46)

After deriving both the a posteriori covariance Pa
k (Equation 2.43) and the a posteriori estimate

˜
x̂ak

(Equation 2.46), still one key component of the ROUKF algorithm is left uncovered.

This key component is the allocation of the estimation error to the parameter space, which can be realized
choosing appropriate initial conditions. Specifically, the state positions of the initial Luenberger matrix
Lx0 will be equaled to a zero matrix O, while the parameter positions of the initial Luenberger matrix
Lθ0 will be equaled to the identity matrix I. When equaling the initial uncertainty matrix U0 to the
identity matrix I and applying Equation 2.32, this results in the initial a posteriori covariance matrix
Pa

0 packed with zeros, while containing a value of one on the diagonal of the parameter positions. As
a result, the estimation error is concentrated to the parameter space, which proves the validity of the
previous mentioned notion matrix Pa

0 is reduced rank [6, 17]. Formally, the initialization can be given as
follows:

Lx0 = O, Lθ0 = I, U0 = I. (2.47)

Conclusively, it can be stated that the application of the initial Luenberger observer matrix L0 does confine
the estimation error to the parameter space, which results in the rank reduction of the initial a posteriori
covariance matrix Pa

0 . Consequently, a rank decomposition can be applied to the a posteriori covariance
matrix Pa

0 which results in its factorized form, containing matrices with smaller dimensions (Lk and
Uk). This decline in size will eventually result in the desired reduction of computational expensiveness,
especially in larger dimensional systems where ns >> np.
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2.3.2 Simplex sigma-points

The use of sigma-points to describe the distribution of a certain state or parameter, as well as the use of
the non-linear transition function

˜
f(
˜
xk) to propagate these points to the next time step is equivalent for

both the UKF and the ROUKF. However, some significant differences can be identified when comparing
the ROUKF to the UKF: first, the approach to deterministically selection sigma-points is different, and
second, the number of sigma-points is different. The ROUKF method makes use of the simplex approach
to determine the sigma-points, which is based on using the smallest possible number of sigma-points
necessary to truthfully represent a given distribution. Furthermore, the a posteriori covariance matrix
Pa
k is considered to be reduced rank in the ROUKF approach, which allows rank decomposition of Pa

k

into its factorized form. Because the dimensions of the matrices in this factorized form are much smaller
compared to the conventional covariance matrix, which also results in a reduction of the number of sigma-
points. Consequently, only np + 1 sigma-points are required to represent the distribution of a certain
state or parameter in the ROUKF approach [51]. In the earlier discussed UKF, 2n+ 1 sigma-points are
used to represent the distribution of the certain states or parameters, which is significantly larger than
the np + 1 sigma-points used in the ROUKF approach.

Figure 2.3: An intuitive example
of a regular tetrahedron, which holds
for np=3.

The currently discussed simplex sigma-point approach is an intuit-
ive way to decrease the computational expensiveness even further,
as the expensiveness was previously limited by the factorization
of the covariance matrix. In this approach, a simplex sigma-point
matrix S is used in which all sigma-points are located on a regular
polyhedron with radius

√
np. A regular polyhedron is a polyhed-

ron which is composed of a few identical polygonal faces. These
faces have equal lengths and equal angles between them, whereas
the number of faces determine the name of the polyhedron [39].
Eventually, this simplex sigma-point matrix S is used to com-
pose the sigma-point matrix χk, which is used to propagate the
mean and covariance. This sigma-point matrix χk has dimensions
n × np + 1, because np + 1 sigma-points are used to describe the
distribution of every state or parameter of the augmented state
vector. The simplex sigma-point matrix S can be determined as
follows:

S1 =

[
− 1√

2ε

1√
2ε

]
(2.48)

Sd =


0

Sd−1
...
0

1√
εd(d+ 1)

. . .
1√

εd(d+ 1)

−d√
εd(d+ 1)

 , 2 ≤ d ≤ np. (2.49)

In this expression, the weight that is used in this simplex sigma-points matrix is denoted by ε (see Section
2.3.1), which is equal for all sigma-points. The reason for this equality is that every simplex sigma-point
is located on the regular polyhedron and therefore has an equal distance to the center, which is the mean.
Since the simplex sigma-points are located on the regular polyhedron, the mean of every column vector of
the sigma-point matrix is equal to zero because all simplex sigma-points are centered around the mean.
Lastly, the considered simplex sigma-point matrix has an identity covariance matrix, which implies that
the matrix is completely unconstrained and the individual components of the matrix are uncorrelated
[51]. Concerning the current research, only one unknown parameter will be approximated, which results
in a weight of ε = 1

2 with a simplex sigma-point matrix of S1 =
[
−1 1

]
.
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2.3.3 Reduced-order unscented Kalman filter algorithm

In the first three subsections of this ROUKF section, the main principles behind the ROUKF algorithm
were elaborated. Based on the main principles discussed in these subsections, the total structure of
the ROUKF algorithm can finally be defined. The ROUKF algorithm can roughly be divided into four
sections: 1) initialization, 2) sigma-point determination, 3) prediction and 4) analysis.

Initialization

In the initialization phase, a few elements will be initialized as well as a few elements will be determined
that remain constant throughout the recursive steps of the algorithm. The elements that remain constant
are the following: the simplex sigma-point matrix S, the weight ε, the diagonal matrix D, the constant
part of the covariance matrix Pε and the measurement error covariance R. The definitions of S, ε,
D and Pε are already given in the previous subsections. The measurement error covariance R has
dimensions nz × nz, where nz represents the number of states in the measurement space. For simplicity,
the measurement error covariance R is assumed to be known and time-independent. Therefore, the
measurement error covariance R is arbitrarily set to 100 ∗ I in the current study. Furthermore, the
a posteriori estimate

˜
x̂a0 will be guessed, while the Luenberger matrix in the prediction space L0 and

the uncertainty matrix U0 will both be initialized such that the estimation error is concentrated to the
parameters space (Equation 2.47). The discrete time steps in this algorithm are denoted by k, where
k = 1 represents the first time step and k = 0 the initialization phase.

Sigma-point determination

After the initialization phase is completed, the sigma-points determination can be conducted. In this
sigma-point determination, the Cholesky matrix is denoted by Ck, which will be determined based on
performing the Cholesky decompostion. The sigma-points of the current time step can be determined by
using the following equations, where the i-th column vector of the sigma-point matrix χk is denoted by

˜
χk,i:

Ck =
√
U−1
k (2.50)

˜
χk,i =

˜
x̂ak + LkC

T
k Si, 1 ≤ i ≤ np + 1. (2.51)

Prediction

After the sigma-points are determined, the prediction phase of the algorithm can be executed. In this
phase, the sigma-points of the current time step χk will be propagated to the prediction space of the
next time step by using the non-linear transition function

˜
f . This propagation will eventually result in a

sigma-point matrix in the prediction space χpk+1, with the i-th column vector of this sigma-point matrix
being denoted by

˜
χpk+1,i:

˜
χpk+1,i =

˜
f(
˜
χk,i), 1 ≤ i ≤ np + 1. (2.52)

The a priori estimate of the next time step
˜
x̂pk+1, can be determined from the sigma-points located in

the prediction space χpk+1. Explicitly, the a priori estimate
˜
x̂pk+1 can be calculated as follows:

˜
x̂pk+1 =

p+1∑
i=1

ε
˜
χpk+1,i. (2.53)

The last step of the prediction phase is the calculation of the Luenberger matrix in the prediction space
L, which is calculated by:

Lk+1 = χpk+1DεS
T . (2.54)
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Analysis

The final phase of the ROUKF algorithm is the analysis phase. In this phase the a priori estimate
˜
x̂pk+1

will be updated by utilizing the measurements
˜
yk+1, which eventually results in a posteriori estimate

˜
x̂ak+1. First, the sigma-points located in the prediction space χpk+1 will be propagated to the measurement
space by utilizing the measurement function

˜
h. This will result in a sigma-point matrix located in the

measurement space χzk+1, where the i-th column vector of the sigma-point matrix is denoted by
˜
χzk+1,i:

˜
χzk+1,i =

˜
h(
˜
χpk+1,i), 1 ≤ i ≤ np + 1. (2.55)

Then, the estimate in the measurement space (
˜
ẑk+1) will be calculated conventionally by taking the sum

of the weighted sigma-points, as follows:

˜
ẑk+1 =

p+1∑
i=1

ε
˜
χzk+1,i. (2.56)

Next, the Luenberger matrix in the measurement space B can be determined based on the sigma-points
in the measurement space χzk+1, which can be calculated by:

Bk+1 = χzk+1DεS
T . (2.57)

Subsequently, the uncertainty matrix Uk+1 can be determined by:

Uk+1 = Pε +BT
k+1R

−1
k+1Bk+1. (2.58)

The former to last step in the algorithm is the calculation of the a posteriori covariance matrix Pa
k+1,

which can be given as:
Pa
k+1 = Lk+1U

−1
k+1L

T
k+1. (2.59)

Lastly, the a posteriori estimate
˜
x̂ak+1 is calculated. In this step the a priori estimate

˜
x̂pk+1 will be updated

by a weighted difference between the actual measurement
˜
yk+1 and the estimate of the measurement space

˜
ẑk+1, which is basically the innovation factor. The weight of this innovation factor is based on various
matrices, which can be seen in the following expression:

˜
x̂ak+1 =

˜
x̂pk+1 + Lk+1U

−1
k+1Bk+1R

−1
k+1(

˜
yk+1 −

˜
ẑk+1). (2.60)

After completion of the last step of the algorithm, the subsequent discrete time step will be initiated
k = k + 1. In this subsequent timestep, the algorithm will start from the prediction phase, since the
initialization phase is only executed in the first iteration.

Real-time estimation of cardiac model parameters - S.C. Snijders (2022) 20



CHAPTER 3. MODEL AND MEASUREMENTS

3. Model and measurements

3.1 Mathematical model

In the current study, a mathematical model, which originates from the study of Meiburg et al. (2020),
will be used to describe the behavior of the cardiovascular system [49]. The mathematical model, which
is depicted in Figure 3.1 below, is a 0D lumped element model of the LV. In this model, the behavior of
the LV is described by the single-fibre heart model, as proposed in the study of Bovendeerd et al. (2006)
[8]. Furthermore, the vascular behavior is described by a transmission line of three-element Windkessel
models, representing the arterial network.

Figure 3.1: Representation of the 0D lumped element model of the left ventricle, which describes the
behavior of the cardiovascular system. In this model the preload is described as a fixed pulmonary
pressure, while the afterload is modeled as a transmission line of three-element Windkessel models. This
lumped element model originates for the study of Meiburg et al. (2020) [49].

In the single-fibre heart model, the LV is approximated as an incompressible thick-walled sphere consisting
of multiple thin spherical shells, with muscle fibres oriented in circumferential direction. It is assumed
that the stretches and stresses in each spherical shell are equal, leading to a homogeneous distribution
of these two quantities throughout the ventricular wall. As a result of this homogeneous distribution,
global properties (volume and pressure) can be related to local properties of a myocardial fibre (stress
and strain). Therefore, the pressure inside the LV (pLV ) can be related to the fibre stress in direction of
the fibre itself (σf ) and radial direction (σr) in association with the ratio between LV wall volume (Vw)
and LV cavity volume (VLV ), which implies that:

pLV =
1

3
(σf − 2σr)ln(1 +

Vw
VLV

). (3.1)

The stress in the direction of the fibre (σf ) is a combination of an active as well as a passive component,
whereas the stress in radial direction (σr) is only dependent on a passive component. Formally, this can
be stated as follows:

σf = σf,a + σf,p and σr = σr,p. (3.2)

Before describing these passive and active components, the fibre stretch (λf ) will be determined first. The
fibre stretch (λf ) is dependent on the following volume parameters; the wall volume (Vw), the ventricular
cavity volume (VLV ) and the unloaded cavity volume (VLV,0), as given by:

λf =

(
VLV + 1

3Vw

VLV,0 +
1
3Vw

) 1
3

. (3.3)

The myocardial tissue is assumed to be incompressible, leading to the following relation between the fibre
stretch (λf ) and the radial stretch (λr):

λr = λ−2
f . (3.4)
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Furthermore, it is generally assumed that the passive compressive stiffness is negligible. Therefore, the
following equation can be used to describe passive stress:

σi,p =

{
0, λi < 1,

σi,0e
(ci(−λi−1)−1), λi ≥ 1.

(3.5)

The subscript i denotes that all elements of this equation can be regarded to either the fibre or radial
direction. This separation is considered necessary because both orientations do contain different material
parameters (σi,0 and ci) due to anisotropy. Furthermore, the active component can be calculated as
follows:

σf,a = cLV σa,ref lrel(ls)tact(ta)vs,rel(vs). (3.6)

The above stated active stress component (σa) is dependent on the left ventricular contractility (cLV ),
the stress of the reference state (σa,ref ), the relative sarcomere length (lrel(ls)), the shape of the fibre
activation curve (tact(ta)) and the relative shortening velocity of the sarcomere (vs,rel(vs)). The last three
mentioned dependencies are represented by the mathematical representations below:

lrel(ls) =

 0, ls < ls,0,
ls − ls,0

ls,ref − ls,0
, ls ≥ ls,0,

(3.7)

tact(ta) =

 1−
cosh(tsharp

(
2ta
tmax

− 1

)
− 1)

cosh(tsharp)− 1
, 0 ≤ ta ≤ tmax,

0, tmax < ta < 1,

(3.8)

vs,rel(vs) =
1− vs

vs,0

1 + sv
vs
vs,0

. (3.9)

In the first equation, the sarcomere lengths of the unloaded state (ls,0), the reference state (ls,ref ) and
the actual sarcomere length (ls) enable determination of the relative sarcomere length (lrel(ls)). Next,
the activation curve (tact(ta)) is dependent on timing parameters: the time since activation (ta), the
relative contraction duration (tmax) and the shape of the activation curve (tsharp). The above stated
equation of the activation curve differs from the study of Bovendeerd et al. (2006) [8], to render a more
physiologically representative approximation of the LV pressure signal shape, as given by Guyton and
Hall (2006) [27]. Lastly, the calculation of the relative shortening velocity of the sarcomere (vs,rel(vs)) is
governed by the shortening velocity of the sarcomere (vs) and the shortening velocity of the sarcomere in
unloaded state (vs,0). In this last equation, the exact shape of the stress-velocity relation is determined
by sv. Eventually, the behavior of the LV pressure can be described based on the discussed equations.

The complex vascular hemodynamics will be simplified by modelling the circulation by a transmission
line of three-element Windkessel models, which consists of a resistor (R), a capacitor (C) and an inductor
(L). The pressure difference across the resistor (∆pR), the pressure drop across the inductor (∆pL) and
the pressure drop across the capacitor (∆pC) can be formulated by describing the mentioned elements of
the Windkessel model in relation to the flow (q) or volume (V ), which can be given as follows:

∆pR = Rq, (3.10)

∆pL = L
dq

dt
, (3.11)

∆pC =
V

C
. (3.12)
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Furthermore, the currently discussed mathematical model contains two valves; the mitral and the aortic
valve. Both of these valves are described as a non-linear Bernoulli resistor, which results in a pressure
drop across the valve (∆pv). This pressure drop can be described as:

∆pv =

{
Bfq|q|, q < 0,
Bbq|q|, q ≥ 0.

(3.13)

In this equation, Bf |q| denotes the resistance that will be experienced by the forward flow, whereas
Bb|q| represents the resistance experienced by the backward flow. After describing the LV behavior and
determining the behavior of the remaining model components, the total set of equations that describe
the behavior of the cardiovascular system can be determined. This set of equations can be determined
using the element relations described in Equation 3.10 to 3.12 and Kirhhoff’s current and voltage law.
Explicitly, the mathematical model can be given as:

fpLV = pLV (t)− pLV (t+ 1), (3.14)

fpao = pao(t)−
Vc1
Cart

− qav(t)Rprox −
Lart
dt

qav(t), (3.15)

fVLV = VLV (t)− VLV (t− 1)− qmv(t)dt+ qav(t)dt, (3.16)

fqmv = qmv(t)
Bmv + Lmv

dt
− qmv(t− 1)

Lmv
dt

− ppul + pLV (t), (3.17)

fqav = Bavqav(t)|qav(t)|+Rproxqav(t) +
Lart
dt

qav(t)−
Lart
dt

qav(t− 1)− pLV +
Vc1
Cart

, (3.18)

fVc1 = Vc1(t)− Vc1(t− 1)− qav(t)dt+ qc1(t)dt, (3.19)

fqc1−c2
= qc1−c2(t)

Rprox + Lart
dt

− qc1−c2(t− 1)
Lart
dt

− Vc1(t)− Vc2(t)

Cart
, (3.20)

fVc2 = Vc1(t)− Vc1(t− 1)− qc1−c2(t)dt+ qper(t)dt, (3.21)

fqper = qper(t)−
Vc2(t)

CartRdist
− pper
Rdist

. (3.22)

The above stated mathematical expressions are constructed in such a way that they all represent the
residual error of a certain state. This residual error needs to be minimized as much as possible to be
considered as an accurate description of the next time step. Therefore, this set of equations is being
solved by using the Newton-Raphson method, an algorithm that attempts to iteratively improve the
approximation of the roots of a given set of functions. This method starts with an initial estimate of the
roots and improves the estimate based on the tangent of the set of functions [25]. The tangent can be
represented by the Jacobian matrix (Jf (

˜
x)) when considering the current set of functions, which result

in the following iterative approximation of the root based on the Newton-Raphson method:

˜
xk+1 =

˜
xk − J−1

f (
˜
xk)

˜
f(
˜
xk). (3.23)

The iterative approximation of the root is accepted if the absolute sum of the minimization function
solutions is lower than a certain predefined threshold. Furthermore, the majority of model input para-
meters will be adopted from the study of Meiburg et al. (2020) [49]. One alteration that is applied to
the model input parameters is the lowering of the aortic valve resistance Bav to 10−4 [mmHg s2 / mL2].
This alteration is conducted because the mathematical model of Meiburg et al. (2020) was originally
used to describe stenotic aortic valves, whereas in the current study the aortic valve is assumed to be
non-stenotic. Furthermore, the left ventricular contractility (cLV ) will become variable because this is
the parameter that will be approximated in the current study.
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3.2 Measurements

Recapitulating, a data assimilation approach is used in the current study to combine the information of
model-based predictions with available measurements. Specifically, the objective of data assimilation is
to sequentially improve the model-based predictions by making use of the available measurements [3].
The DA method used in the current study is ROUKF, which is described in Section 2.3, whereas the
model-based predictions are accomplished by executing the mathematical model described in Section 3.1.
The measured quantity used in the proposed ROUKF-based algorithm is the left ventricular pressure
pLV , which can be obtained through using various methods. In the current study, three types of data
are considered: 1) synthetic data generated by the mathematical model, 2) in vitro data generated by a
material twin and 3) in vivo data measured in patients. In the current section, all these three types of
data will be elaborated separately in the given order.

3.2.1 Synthetic data

The use of synthetic data enables the simulation of multiple patient scenarios without the need of actually
measuring them. The synthetic data are generated by executing the mathematical model that was
described in the previous section (Section 3.1), which omits model discrepancy because the behavior of
measurements is exactly described by the used mathematical model. As a result, the generated synthetic
data are considered to be ideal to evaluate the capabilities of the proposed ROUKF-based algorithm,
since the parameter of interest θ is exactly known. In the current study, the parameter of interest θ is
the left ventricular contractility cLV , which will be varied in the simulated patient scenarios. The range
of simulated cLV values used in the current study is determined based on the theoretical background
with clincial experience. The mathematical model of Meiburg et al. (2020), which has been described in
Section 3.1, utilizes the single fibre heart model of Bovendeerd et al. (2006) to describe the behaviour
of the LV. In the study of Bovendeerd et al. (2006) is stated that the cLV is a scaling factor for the
active stresse in the myocardial fibre that can vary between 0 and 1 [8]. However, this model parameter
appears to be higher as 1 according to clinical data. Concretely, the left ventricular contractility cLV will
be varied between 0.4 to 1.4 in the current study.

A summary of all scenarios that will be simulated in the current study are given in Tabel 3.1. In the first
six simulations, different initialization values of the cLV will be simulated to investigate if the proposed
ROUKF-based algorithm can deal with different values of cLV . The following three simulations will be
executed with an equally initialized cLV of 0.8, whereas noise will be added to these simulations following a
logarithmic increment. Based on this noise addition, it can be investigated if the proposed ROUKF-based
algorithm can deal with noisy measurements. The added noise will be Gaussian distributed with a mean of

Test CLV [-] Noise [%] Time [s]
1 0.4 - 10
2 0.6 - 10
3 0.8 - 10
4 1.0 - 10
5 1.2 - 10
6 1.4 - 10
7 0.8 10 10
8 0.8 20 10
9 0.8 50 10
10 0.6, 0.8, 1.0 - 30
11 0.6, 0.8, 1.0 20 30
12 1.4, 0.4, 1.2 20 30

Table 3.1: Simulations of various scenarios to
generate the synthetic data that will be used
to evaluate the capabilities of the proposed
ROUKF-based algorithm.

zero and a simulation-specific standard deviation. More
specifically, the standard deviation of the noise is defined
as a percentage of the maximum measured pLV , whereas
different percentages are chosen for all three simulations.
All simulations mentioned until now will be executed for
a time span of 10 seconds, whereas the final two simula-
tions, which will be specified next, will be executed for
a time span of 30 seconds. These final two simulations
contain multiple cLV values, with a new cLV being initi-
ated every 10 seconds. These final three simulations are
conducted to evaluate if the proposed ROUKF-based al-
gorithm is capable of following changes in cLV over time,
which determines the robustness of the algorithm.
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3.2.2 In vitro data

In the current study, the in vitro data is generated by using a material twin, which is a device that is
capable of mimicking the behavior of the human cardiovascular system. More specifically, this material
twin mimics the cardiac function, coupled to the systemic and pulmonary circulation, including various
auto-regulation mechanisms. These auto-regulation mechanisms will be discussed in the current section
and can be switched on or off independently, making the material twin an appropriate device for the
evaluation of model discrepancy. The difference between the reality and the mathematical model is
known as model discrepancy, which can be used to evaluate the effect on the algorithm’s ability to
estimate the true parameter when such a discrepancy arises. Model discrepancy is considered as an
important component of the uncertainty in the model output, where ignoring model discrepancy can lead
to a biased and over-confident parameter estimation [10]. Consequently, the in vitro data will be generated
using different configurations of the material twin, which will be used to evaluate the influence of model
discrepancy. However, the in vitro data produced by the material twin are considered less perfect then
the synthetic data, because it originates from a real-world physical object. The current section will be
divided into two parts, the first part of which is dedicated to the elaboration of the different components
of the material twin, and the second to the different configurations of the twin.

Material twin system

The material twin can be decomposed into two fundamental parts, namely a mechanical system combined
with a real-time controllable system. The mechanical system consists of different mechanical components
that together replicate the behavior of systemic and pulmonary circulation. In this material twin, the
behavior of these two circulations is described by three-element Windkessel models, with the different
elements of this Windkessel models being represented by mechanical components. The capacitor of the
Windkessel model is represented by a container filled with both fluid and air, with the compliance being
determined by the amount of pressure required to compress the air in the container and consequently
allow an increased volume of fluid. The resistor of the Windkessel model is represented by the dimensions
of the outflow aperture, whereby the resistance is controlled by obstructing or opening this aperture.
Lastly, the inductor of the Windkessel model is a non-regulatable component in the material twin, where
the inductance being dependent on the density of the fluid in combination with the dimensions of the
connecting tube that facilitates the inflow into the three-element Windkessel model.

The second fundamental part of this material twin is the real-time controllable system. This controllable
system consists of four linear actuators, which enable the movement of certain components. Two of these
linear actuators are connected to piston pumps that represent the left and right ventricle, a third linear
actuator controls the systemic peripheral resistance and a fourth linear actuator is connected to a piston
pump which controls the fluid volume in the circulation. All of these linear actuators are driven by various
mathematical models, which collaboratively enable the real-time control of the material twin. The two
actuators that enable the pump function of both ventricles are controlled by the single fibre heart model,
which originates from the study of Bovendeerd et al. (2006) [8]. The actuator that regulates the systemic
peripheral resistance is driven by a mathematical model that describes the acute cardiovascular response,
which was proposed in the study of Ursino and Magosso (2000) [72]. The actuator that controls the
fluid volume in the circulation is driven by a mathematical model that describes the fluid exchange in
the cardiovascular system, which originates from the study of Rosalina et al. (2019) [64]. Furthermore,
this material twin contains a sophisticated auto-regulatory mechanism that regulates the blood pressure,
which is controlled by a mathematical model that was proposed in the study of van Loo (2020) [41].
This auto-regulatory mechanism affects different aspects of the material twin; the systemic peripheral
resistance (Rpsys), the heart rate (HR) and the left ventricular contractility (cLV ), whereas it can manually
be adjusted which of these aspects are auto-regulated.

All mechanical and real-time controllable components are assembled to ultimately form a material twin
capable of mimicking the behavior of the human cardiovascular system. A schematic representation of how
all these components are connected to each other is given in Figure 3.2, while a real-world representation
of the material twin is given in Figure 3.3. In both of these figures, the link between the material twin
components and the human cardiovascular system is indicated to clarify their correspondence. Starting
with the left ventricle (LV), where the linear actuator drives the piston of the pump that propels the fluid
through the aortic valve (AV) into the aorta. Subsequently, the fluid arrives at a three-element Windkessel
model that represents the systemic circulation, which consists of a systemic resistance (Rsys) and a
systemic compliance (Csys). Furthermore, the outflow of this systemic three-element Windkessel model
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is regulated by the systemic peripheral resistance (Rpsys), which is controlled by a linear actuator. Then,
the fluid flows from this systemic Windkessel model through the vena cava inferior (VCI) into a reservoir
that represents the right atrium (RA), which in turn is connected to two different compartments. Firstly,
to the venous compartment (VC) that acts as a reservoir for the total fluid volume, which is connected to
a large piston pump that controls the total volume of fluid in the entire circulation (Vblood). Secondly, to
the right ventricular (RV) compartment, where the fluid that enters this compartment is passed through
the tricuspidal valve (TV). The fluid in the right ventricular compartment is then propelled forward by
the piston pump through the pulmonary valve (PV) into the pulmonary artery (PA) and towards a three-
element Windkessel model that represents the pulmonary circulation. This Windkessel model consists of a
pulmonary resistance (Rpul) and a pulmonary compliance (Cpul), combined with a pulmonary peripheral
resistance (Rppul) that controls the outflow of this Windkessel model. After leaving the pulmonary three-
element Windkessel model, the fluid is guided to a reservoir that represents the left atrium (LA). Lastly,
the fluid flows back into the left ventricle (LV) through the mitral valve (MV), which completes the
material twin layout.

Figure 3.2: Schematic representation of the material twin, with the correspondence between components
and the human cardiovascular system being explained in the text above. In this schematic representation,
the motorized components are indicated with a red M.

Figure 3.3: Real-world representation of the material twin, with the correspondence between compon-
ents and the human cardiovascular system being explained in the text above.
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Material twin configurations

However, this material twin is designed to mimic a far more complicated cardiovascular behavior than
the one described by the mathematical model of the current study. To obtain a fair starting point of
the evaluation of the proposed ROUKF-based algorithm, the material twin will be extensively simplified.
Specifically, the fluid-filled reservoir that represents the right atrium (RA) will be dismissed and the linear
actuators that control the right ventricular (RV), total fluid volume (Vblood) and systemic peripheral
resistance (Rpsys) will be deactivated. The result of these simplifications is a material twin that matches
the cardiovascular behavior described by the mathematical model used the current study (Section 3.1),
which is called Configuration 1. This configuration will be used to simulate a variety of cLV scenarios,
ranging from 0.4 to 1.4, in steps of 0.2. All these cLV scenarios will be simulated for a duration of
30 seconds. Subsequently, this simplistic configuration (Configuration 1) will be made more complex
by switching on auto-regulation mechanisms. Since the mathematical model will not be altered, the
increased complexity of the material twin will result in an increase in model discrepancy.

In Configuration 2, the material twin will become a bit more complicated by allowing the auto-regulation
of the systemic peripheral resistance (Rpsys). This second configuration will be simulated for the same
variety of cLV scenarios as Configuration 1. Subsequently, in Configuration 3, the auto-regulation of both
the systemic peripheral resistance (Rpsys) and the heart rate (HR) will be enabled, which will also be
simulated for the same variety of cLV scenarios as Configuration 1. This complexity build-up is then
continued to create additional configurations which contain an increasing model discrepancy. Concretely,
these additional configurations are obtained by adding the auto-regulation of blood volume (Vblood), the
auto-regulation of cLV and lastly adding the pulmonary circulation. The application of this complexity
build-up will eventually result in material twin Configuration 1 to 6, which are summarized in Table 3.2
below.

Material twin configurations:
1 2 3 4 5 6

Simulated cLV 0.4 −→ 1.4 0.4 −→ 1.4 0.4 −→ 1.4 0.4 −→ 1.4 0.4 −→ 1.4 0.4 −→ 1.4
Auto-regulation Rpsys × ✓ ✓ ✓ ✓ ✓
Auto-regulation HR × × ✓ ✓ ✓ ✓
Auto-regulation Vblood × × × ✓ ✓ ✓
Auto-regulation cLV × × × × ✓ ✓
Pulmonary circulation × × × × × ✓

Table 3.2: Summary of the different configurations of the material twin that will be used to evaluate
the following cLV values; 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4 (0.4 −→ 1.4), for a duration of 30 seconds. The
different configurations are ordered by degree of sophistication, starting with a simplistic Configuration
1 and ending with a complex Configuration 6.

3.2.3 In vivo data

The in vivo data used in the current study originates from the study of Johnson et al. (2018) [29]. In that
particular study, it was aimed to describe the pressure loss (∆p) vs. flow (q) relationships in patients with
a stenotic aortic valve. In that study, invasive measurements were performed before and after application
of a transcatheter aortic valve implementation (TAVI). One of the quantities that was measured in that
study is the left ventricular pressure pLV , which was measured by using a catheter with a pressure wire
and placing it in the left ventricle. The inserted pressure wire was calibrated using a recording system
(Quantien analyzer, St. Jude Medical), whereas this system was also used to capture the pressure signal.
While performing these pressure measurements, a step-wise intravenous administration of dobutamine
was conducted [29]. Dobutamine is a pharmaceutical positive inotropic agent which leads to an increase
of cardiac output due to an increase in stroke volume, which is caused by the enhancement of the left
ventricular contractility cLV [65].
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The measured pLV data of the study of Johnson et al. (2018) will be used as an input for the proposed
ROUKF-based algorithm, allowing the validation of the proposed algorithm on in vivo data. It is sus-
pected that the proposed algorithm will estimate an increase in left ventricular contractility cLV over
time due to the step-wise dobutamine administration. Furthermore, the maximum pressure gradient of
the left ventricle (LV dp

dt max
) will be determined for every cardiac cycle. Subsequently, the mean of these

maximum pressure gradients will be determined for every moving time window (see Section 4.2). As
a result, the LV dp

dt max
will be determined on the same interval as the cLV , which allows comparison

of these two parameters to determine whether they provide the same cardiovascular information. This
comparison will be conducted based on visual trend evaluation.
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4. Data processing

This chapter will be dedicated to the data processing that will be applied to sequentially estimated
statistics, which are obtained by using the ROUKF algorithm (Section 2.3). The first part of this chapter
will be devoted to the description of the probabilistic nature of these sequentially estimated statistics,
which will be quantified by making use of a probability density function (PDF). In the second part of this
chapter, the length of the analysed time interval, the re-initialization of certain elements and the moving
average of the cardiac cycle time will be described in detail.

4.1 Probability density function

When there is complete and perfect knowledge of a certain system combined with the equations that
govern its evolution over time, perfect predictions of this certain system can be obtained. However, a
perfect prediction does not exist and therefore Bayes’ theorem aims to describe conditional probability,
in other words the probability that event A will occur, knowing that event B has occurred [4]. Suppose
that θ represents the parameter of interest and y the data or measurable quantity, then Bayes’ theorem
can be given as:

P (θ|y) = P (y|θ)P (θ)
P (y)

. (4.1)

Based on this theorem of Bayes, the a posteriori probability density function (PDF) of parameter θ given
data y, which is denoted as P (θ|y), can be determined. In this theorem, P (θ) represents the a priori
PDF that represents all the knowledge about parameter θ, P (y|θ) denotes the likelihood function of the
data y assuming parameter θ and P (y) represents the marginal distribution of y. Subsequently, Bayes’
theorem suggests to describe the parameter of interest in terms of a PDF, which takes into consideration
the stochastic nature of the system under consideration [12]. However, the DA methods arising form this
Bayesian theorem pursue a complete knowledge of the a posteriori PDF, which is impossible to determine
in the real world [4]. Moreover, it is known that when the considered system is high-dimensional, only
approximations of the a posteriori PDF can be obtained. In case of such a high-dimensional system,
it is commonly assumed that the a posteriori PDF is Gaussian distributed. Based on this assumption,
the PDF can be computed analytically based on sequentially estimated statistics, which can be obtained
using a Kalman filter-oriented approach [13]. Explicitly, the Gaussian a posteriori PDF can be computed
by using the following function:

P (ψi|θ̂k, σk) =
1√
2πσk

e
− 1

2 (
ψi−θ̂k
σk

)2
, with i = 1, 2, ....nbins. (4.2)

In this Gaussian distributed a posteriori PDF expression, the estimated parameter θ̂k and corresponding
standard deviation σk, both at a certain time step k, can be obtained from the statics estimated by the
ROUKF method. First of all, the estimated parameter θ̂k can directly be obtained from the a posteriori
estimate

˜
x̂ak+1 (Equation 2.60). Second, the variances belonging to this a posteriori estimate

˜
x̂ak+1 are

located on the diagonal of the a posteriori covariance Pa
k+1 (Equation 2.59). By taking the square root

of these variance, the standard deviation σk of the estimated parameter θ̂k can be obtained. Lastly,
the parameter value is denoted by ψi, which will be used to evaluate the estimated parameter θ̂k. The
parameter value ψi originates from a vector

˜
ψ with possible parameter values, which contains the same

number of parameter values as the number of bins (nbins) in the PDF. The number of bins in the PDF
is determined by two aspects; the bin width (b) and the interval of the PDF [δ−, δ+]. In the current
study, the bin width (b) will be calculated by using the Freedmann-Diaconis rule, which was originally
designed to minimise the discrepancy between the histogram and the density of the theoretical probability
distribution [24]. According to the Freedmann-Diaconis rule, the bin width (b) can be calculated by:

b = 2
Φ
˜
θ̂

3
√
Nk

. (4.3)
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Here, Nk denotes the number of time steps included in the a posteriori PDF and Φ
˜
θ̂ denotes the in-

terquantile range of the estimated parameter vector
˜
θ̂. This estimated parameter vector

˜
θ̂ contains all

estimates of the parameter of interest θ (θ̂k) from Nk time steps. As mentioned before, the second aspect
that affects the number of bins (nbins) in the PDF is the interval of the PDF [δ−, δ+], which can be
calculated by:

δ− = min(
˜
θ̂)− 3

∑Nk
k=1 σk
Nk

and δ+ = max(
˜
θ̂) + 3

∑Nk
k=1 σk
Nk

. (4.4)

These expressions represent the lower limit δ− and upper limit δ+ of the PDF interval, with min(
˜
θ̂) and

max(
˜
θ̂) indicating the minimum and maximum value of the estimated parameter vector

˜
θ̂, respectively.

Next, three times the mean of the standard deviation σk is subtracted from the minimal value and added
to the maximal value, resulting in boundaries of the PDF interval [δ−, δ+]. In essence, the width of this

PDF interval is determined by the min-max range of the estimated parameter vector
˜
θ̂ with a three times

the mean standard deviation σk to both sides of the range. The idea of adding three times the standard
deviation to both sides originates from a statistical point of view, where it is known that 99.7% of the
observed data can be found within three standard deviations from the mean. Conversely, three times the
standard deviation is added to the min-max range in the current study, which is too wide according to the
stated statistical rule. However, this wider PDF interval is chosen to incorporate the sometimes volatile
nature of the estimated parameter θ̂ in case the observed hemodynamic behavior of the cardiovascular
system changes rapidly.

After determining the number of bins (nbins) and the PDF interval [δ−, δ+], the vector of possible
parameter values

˜
ψ can be composed by distributing the number of bins evenly over the PDF interval

[δ−, δ+]. Every possible parameter value in this vector
˜
ψ will be evaluated with respect to the parameter

estimate θ̂k and standard deviation σk of a certain time step k by using Equation 4.2. After completing
this evaluation for every element in

˜
ψ, the cumulative product of all these evaluations finally represents

the PDF of a certain time step k, which can be denoted as P (
˜
ψ|θ̂k, σk). The eventual a posteriori PDF

will be constructed by summing all P (
˜
ψ|θ̂k, σk) of Nk time steps, whereas the contribution of every

time step will be weighted by using weights ωk (Equation 5.2). The weighted a posteriori PDF can be
determined by:

P (
˜
ψ|θ̂, σ) =

∑Nk
k=1 ωkP (

˜
ψ|θ̂k, σk)∑Nk

k=1 ωk
. (4.5)

However, to ensure a positive value of the parameter of interest θ, a logarithmic transformation will be
applied in the current study. This logarithmic transformation can be illustrated based on the parameter
value ψi, which can be represented logarithmically as: ϕi = ϕref2

ψi . In this transformation, the nor-
malization factor ϕref is used to obtain a dimensionless logarithmic parameter value. Consequently, the
applied logarithmic transformation will result in an altered distribution of the a posteriori PDF, which
can be defined as a log-normal distribution. Explicitly, the log-normal distributed PDF can be formulated
as:

P (ϕi|µk, sk) =
1

ϕi
√
2πsk

e
− 1

2 (
ln(ϕi)−µk

sk
)2
, with i = 1, 2, ....nbins. (4.6)

In this expression, the logarithmic transformed parameter value is denoted by ϕi, with the logarithmic
parameter estimate µk and corresponding logarithmic standard deviation sk. The logarithmic parameter
estimate µk and logarithmic standard deviation sk can be calculated by using:

µk = θ̂kln(2) + ln(θref ) and sk = σkln(2). (4.7)
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The total derivation of the log-normal distributed PDF (Equation A.8) and its associated components
(Equation 4.7) can be found in Appendix A. The log-normal distributed PDF of a certain time step k
will be constructed in the same fashion as the normal distributed PDF, by evaluating every element of
the logarithmic parameter vector

˜
ϕ with respect to logarithmic parameter estimate µk and logarithmic

standard deviation sk. The cumulative product of these evaluations will result in the log-normal dis-
tributed PDF of a certain time step k, which can be denoted as P (

˜
ϕ|µk, sk). The eventual log-normal

distributed a posteriori PDF can be obtained by performing this for Nk time steps and subsequently
weighting the result:

P (
˜
ϕ|µ, s) =

∑Nk
k=1 ωkP (

˜
ϕ|µk, sk)∑Nk

k=1 ωk
. (4.8)

The final parameter prediction of Nk time steps is represented as the mean µ of this a posteriori PDF
P (

˜
ϕ|µ, s), with the corresponding 95% confidence interval being calculated by subtracting/adding two

times the standard deviation s from/to the mean µ. The number of time steps Nk included in this
weighted log-normal distributed a posteriori PDF P (

˜
ϕ|µ, s) depends on the length of the analysed time

interval in combination with the duration of a single time step. The length of the analysed time interval
length will be detailed in the next subsection, whereas the duration of a single time step depends on the
used data.

Lastly, the root-mean-square error (RMSE) is a measure which will be used to quantify the discrepancy

between the estimated parameter value θ̂k of a certain time step k and the final parameter prediction µ.
This measure will be based on the same number of time steps Nk as included in the weighted log-normal
distribution and can be calculated by using the following equation:

RMSE =

√√√√ Nk∑
k=1

(µ− θ̂k)
2

Nk
. (4.9)

4.2 Moving time window

In the current study, a moving time window is used to provide a semi real-time update of the parameter
of interest θ. The length of this moving time window needs to be narrow enough to provide a semi
real-time update of parameter θ, whereas it needs to be wide enough to enable the ROUKF algorithm to
converge sufficiently. Therefore, the length of the moving time window is arbitrarily chosen at 10 seconds
for application intended in the current study, where the time interval of one moving time window can
be stated as: [tk, tk+Nk ]. However, at the first iteration of every moving time window, which is basically
at time step tk, certain elements of the ROUKF algorithm will re-initialized. This re-initialization is
conducted to ensure the convergence of the estimated parameter θ̂ over time. The re-initialization is
considered necessary for convergence because certain elements of the ROUKF algorithm do contain a
certain memory, which withholds the convergence of the parameter of interest θ in case of a constantly
changing environment in time. The two elements of the ROUKF algorithm (Section 2.3.3) that will
be re-initialized at the first iteration of every moving time window are the Luenberger matrix in the
prediction space Lk=Nk (Equation 2.54) and the uncertainty matrix Uk=Nk (Equation 2.58), explicitly:

Lθk=Nk = I, Lxk=Nk = O, Uk=Nk = I. (4.10)

All other elements of the ROUKF algorithm will be left untouched during this re-initialization. However,
not the entire time interval of the moving time window [tk, tk+Nk ] will be used to construct the log-normal
distributed a posteriori PDF due to inlet effects.
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The inlet effects are caused by the re-initialization of certain elements of the ROUKF algorithm and
contain no truthful information regarding the parameter of interest θ, as it takes a certain time for the
algorithm to converge. Therefore, the first 5 seconds of every moving time window will be dismissed from
the analysis due to inlet effects. Concretely, the analysed time interval of the moving time window can be
expressed as: [tk+Nstart = 5τ [s], tk+Nk = 10τ [s]], where τ indexes the number of the moving time window.
In this time interval expression, the number of time steps before the start of the analysed interval of the
τ -th moving time window is denoted by Nstart and the total number of time steps included in the τ -th
moving time window are indicated by Nk. Note that both variables, Nstart and Nk, are dependent on
the used data generation method because the duration of a single time step will vary between different
methods.

However, one input parameter of the mathematical model will also be redefined throughout the execution
of the proposed ROUKF-based algorithm and that is the duration of one cardiac cycle (T0). The duration
of the cardiac cycle is decisive for the relative increment of a single time step within the cardiac cycle,
which is considered to be essential for the synchronization between the mathematical model and the
patient. Therefore, the average duration of the cardiac cycle T0,av will be determined by using a moving
average. This moving average will use the information about the duration of the last 10 cardiac cycles
to determine the average duration of the cardiac cycle T0,av. When a new cardiac cycle is initiated, the
information about the duration of the previous cardiac cycle is added to the moving average, whereas
the information about the last cardiac cycle in the moving average is dismissed. As a result, the average
duration of the cardiac cycle T0,av, based on the last 10 cardiac cycles, will be used to determine the
relative time increment of a single time step at the initiation of the contraction phase. Moreover, the de-
termination of the initiation of the contraction phase is considered to be the other essential component for
the time synchronization between the mathematical model and the patient. However, the determination
of the contraction initiation is dependent on the used type of data.
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5. Data and model analysis

The data and model analysis that will be applied to either the sequentially estimated statistics of the
ROUKF method (Section 2.3) or the mathematical model (Section 3.1), will be elaborated in the current
chapter. More specific, the first two sections will be devoted to data analysis, whereas the last section
will be attributed to model analysis. The sensitivity analysis will be discussed in the first section of this
chapter, which will be used to evaluate the sensitivity of the measured states to changes in the parameter
of interest througout the heart cycle. In the second section of this chapter the identifiability analysis will
be detailed, which will be used to identify if the right type of data are collected regarding a certain model
structure. The third and final section of will be devoted to the stability analysis, which aims to quantify
the sensitivity of a non-linear system to its initial states.

5.1 Local sensitivity analysis

In the current study, the local sensitivity analysis will be used to identify the sensitivity of the measured
states to changes in the parameter of interest. When the measured states are not sensitive to changes in
the parameter of interest, it is considered to be unlikely that these states can be valuable for a truthful
estimation of the parameter of interest [55]. Therefore, the contribution of every time step to the eventual
a posteriori PDF will be weighted accordingly. Furthermore, this local sensitivity analysis can provide
insights in which parts of the cardiac cycle are most influential to estimate the parameter of interest by
using the measured states [49].

A local sensitivity method is based on evaluating the effect on the measured states when an infinitesimal
change is applied to one of the input parameters, while all other input parameters remain unchanged.
This infinitesimal change will be applied around a certain reference value of the input parameter in
question, thereby obtaining only local information of this input parameter [21]. The local sensitivity can
be calculated by the following equation:

Sloc,i,k =
1

zi,ref

∂hi,k
∂ψk

. (5.1)

Here, the local sensitivity (Sloc,i,k) represents the variations in the measured states hi,k with respect to
a infinite small change of parameter value ψ. The measured states follows from the observation vector
hi,k, where the i-th element of this vector indicates the current state of interest. This local sensitivity
Sloc,i,k will be calculated for each measurable state i and each time step k. Lastly, the local sensitivity
will be normalized by reference value zi,ref , which is the maximal measured value of state i of the current
moving time window. This normalization is performed to obtain a non-dimensional local sensitivity,
which is necessary to correctly compare the sensitivity of different measurement states regarding the
parameter of interest. The information provided by Sloc,i,k will be used to weight the contribution of
time step k to the a posteriori PDF. The weight can be calculated by:

wk =

√√√√ nz∑
i=1

(Sloc,i,k)2. (5.2)

A small (i.e. close to zero) value of the weight of the parameter estimate at time step k (wk) would indicate
that the measured states are not sensitive to the parameter at this time step. In other words, this would
mean that this time step (k) contains a negligible amount of information about the parameter of interest
[55]. However, this local sensitivity method includes only a small part of the input parameter space,
namely only very local information around a certain reference value. Thereby, the relation between the
input parameter and model output is often non-additive or non-linear in certain parts of the input space.
Consequently, the outcome of the local sensitivity analysis can be misleading when used to quantify the
uncertainty in the model output that is caused uncertain input parameters [21]. The global sensitivity
analysis is considered to be more appropriate to determine the relative contribution of uncertainty input
parameters and their interaction to the total amount of uncertainty [61]. A suitable method to conduct
the global sensitivity analysis is the adaptive generalized polynomial chaos expansion (agPCE), which is
cover in Appendix B.
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5.2 Identifiability analysis

Let us take a step back and imagine an ideal world in which the data and knowledge about a particular
cardiovascular system are so extensive that the mathematical model can be defined in such a way that
it always returns the correct answer. In such an ideal world, the uncertainty could either be reduced
or even nullified and biological variability could be quantified perfectly. However, in the real world, the
knowledge and data of a specific system are usually insufficient to conceptualize and simulate it flawlessly.
And even if the behavior of a certain system is understood to a significant degree, its complexity and
temporal variability can only be approximated [26]. Besides, it is a tough challenge to define the level
of model complexity that describes the complexity and variability of a system in such a way that an
accurate model output can be obtained. In general, the more accurate the model is able to describe
the reality, the more complex it becomes. Therefore, it can be stated that the definition of the model
structure affects the degree of discrepancy between the model output and the real world [21]. When an
appropriate model structure is selected to describe a particular cardiovascular system, more data will
result in a smaller uncertainty of model output. However, this convention is only valid when the right
type of data regarding this particular system are collected. The technique that can be used to investigate
if the right data are collected, given a certain model structure, is parameter identifiability analysis. This
identifiability analysis evaluates the possibility to identify a unique vector of parameter values from the
measured data, given a certain model structure [26].

Identifiability analysis is considered an inverse problem and refers to the possibility of determining the
input parameters from a given model output, which is the opposite of the earlier mentioned forward
problem [26]. However, there is a fundamental mathematical difference between the forward and the
inverse problem; forward problems are almost always well-posed, whereas inverse problems are often
ill-posed. Two of the well-posed properties, the existence and uniqueness of a solution, are collectively
known as the identifiability of a mathematical problem. Conversely, an ill-posed mathematical problem
allows an infinite number of possible solutions and can therefore be considered as non-identifiable [3].

In the current research, the profile likelihood method will be used to exploit the identifiability analysis.
This profile likelihood method makes use of a cost function, which represents the agreement of measured
states with the output predicted by the model [75]. The cost function is represented as the weighted sum
of squared residuals, which is stated by the following equation:

J(θ) =

nz∑
i=1

1

Nc

1

Nk

Nk∑
k=1

(
zi,k − yi(tk|θ)

σ(ezi,k)

)2

. (5.3)

The J(θ) represents the cost function in which the agreement between the measured states (zi,k) and the
predicted model output (yi(tk|θ)) is expressed. In the term zi,k, the i denotes the measured state and k
denotes the time step. The yi(tk|θ) reflects the predicted model output of the measured state i at time
step k concerning the parameter of interest θ. The difference between zi,k and yi(tk|θ) is scaled with
the standard deviation of the measurement error σ(ezi,k) of measured state i at time step k. This scaled
difference is squared and averaged over the number of time steps (Nk), which is subsequently normalized
to the number of included cardiac cycles (Nc). This process is repeated for every measured state, where
the eventual cost function J(θ) will consist of information from all measured states (nz). Finally, the
parameter of interest θ can be estimated numerically by minimizing the cost function J(θ), as given by:

θ̂ = argmin[J(θ)]. (5.4)

The confidence interval [σ−
θ , σ

+
θ ] of this estimated parameter θ̂ will be determined based on the chosen

confidence level γ. In the current research, the confidence level γ is chosen at 0.95, which implies that
the true value of parameter θ will be located within interval [σ−

θ , σ
+
θ ] with a probability of γ. In the

paper of Raue et al. (2009) two distinct profile likelihood-oriented methods are suggested to determine
the confidence interval of the estimated parameter; the asymptotic method and the finite sample method.
The asymptotic method is dependent on the amount of analysed data, the measurement noise and the
linearity of the dependence between zi,k and θ [62]. The finite sample method does not contain these
dependencies and is therefore considered to be superior over the asymptotic method for determining the
confidence interval [53]. In this finite sample method, a threshold is applied to the cost function, with the
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intersection points of the cost function and the threshold representing the boundaries of the confidence
interval [62]. This method will be used in the current study and is given by the following mathematical
expression:

{(θ|J(θ)− J(θ̂)) < △γ} with △γ = χ2(γ, df = np). (5.5)

In this equation, the threshold (△γ) is determined by the defining the γ quantile of the χ2
df -distribution,

with the degrees of freedom (df) being equal to the number of parameters (np). To define the intersection
points between the cost function and the threshold, the actual shape of the cost function needs to be
approximated first. The currently discussed profile likelihood method will start the approximation at
the estimated parameter (θ̂) and subsequently trace a path through the parameter space. This path will
be computed by forcing the parameter of interest to change incrementally, while optimizing all other
parameters. This process will continue until the threshold is reached, in other words the confidence
interval for this particular parameter estimate θ̂ is determined. Concretely, the decision rule of the
currently discussed PL method can be based on the maximum likelihood estimation (MLE) combined
with the threshold of the confidence interval. The complete derivation of this decision rule is given in
Appendix C, which can finally be defined mathematically as follows:

−2log

(
L(θPL)

L(θopt)

)
≤ χ2

1−γ,1. (5.6)

Here, the maximum likelihood estimation (MLE) is used to find model parameters that result in a
probability density function that most likely reflects the measured data. These model parameter values
are found by maximizing the likelihood function L(θ) such that the measured data is most probable.
In the equation above, the L(θPL) represents the likelihood for the incrementally changing parameter
of interest θ, while optimizing the other parameters. However, note that in the current study only one
parameter (θ) is estimated, which results in the fact that L(θPL) only represents the likelihood for the
incrementally changing parameter θ. The L(θopt) term denotes the likelihood of the optimal parameter

(θ̂), which was already determined by minimizing the cost function. These two likelihood terms are the
result of two model circumstances (Model(θPL) and Model(θopt)) that can be transformed into each
other by imposing a specific linear constrain to the parameter [75].

Finally, the identifiability analysis can be conducted after the determining the estimated parameter θ̂
and the corresponding confidence interval [σ−

θ , σ
+
θ ]. The parameter of interest θ can be considered

as identifiable if the confidence interval of the estimated parameter is finite. However, if the confidence
interval of the estimated parameter is unbounded in either one direction or both directions, the parameter
of interest θ can be considered as non-identifiable. Two distinct types of non-identifiability can be
distinguished; structural- and practical non-identifiability, which are illustrated in Figure 5.1 below.

Figure 5.1: Three plots of J(θ) for a one-dimensional parameter space are depicted regarding three
different cases of identifiability. On the left a structural non-identifiable parameter, in the middle a
practical non-identifiable parameter and on the right an identifiable parameter. Adapted from: ‘Structural
and practical identifiability analysis of partially observed dynamical models by exploiting the profile
likelihood.’ by A. Raue et al, 2009, Bioinformatics, 25, 1923–1929 [62].
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Structural non-identifiability is illustrated on the left of Figure 5.1, which can be observed as an un-
bounded confidence interval in both directions. This structural non-identifiability is invariably related
to model structure and results in a non-uniqueness of the estimated parameter θ̂. The middle image of
Figure 5.1 depicts practical non-identifiability, which can be observed by the confidence interval being
unbounded in only one direction. This practical non-identifiability is mostly related to the absence of a
particular effect in the measured data or to observation errors. Lastly, the right illustration of Figure 5.1
shows an identifiable parameter in which the confidence interval is bounded in both directions [26, 62].

5.3 Stability analysis

The initial states of a cardiovascular system are never known exactly because the available measurements
and used data assimilation method are both subjected to a finite accuracy and precision. The implica-
tion of this finite precision can be evaluated by perturbing initial states, which generates an anomalous
trajectory in the system’s input space compared to a certain reference trajectory [71]. To evaluate and
predict the reaction of the system to perturbed initial states, the sensitivity of a system to its initial states
needs to be quantified. There are certain mathematical theories available that determine the degree of
instabilities in the given system, which can be used to quantify the sensitivity to its initial states [13]. The
evaluation of the stability of a system is crucial to the overall performance of the used data assimilation
method. Moreover, it is also essential for the convergence of the sequential estimates to the actual evolu-
tion of the considered physical system and thus ultimately for obtaining a truthful representation of the
system [14]. Using certain mathematical approaches, the stability of a system can be examined without
knowing the solutions of its differential equations for a given initial condition [54]. The mathematical
approach used to quantify the stability in the current study is based on the Lyapunov method.

5.3.1 First and second method of Lyapunov

Lyapunov’s method was described in 1890 by Aleksandr Mikhailovich Lyapunov and can be used to
evaluate the stability of a system that is governed by ordinary differential equations [45]. The original
Lyapunov method, in other words the first method of Lyapunov, is applicable to a system consisting of
linear time-invariant ordinary differential equations, given as:

˜
ẋ =

˜
f(
˜
x) = A

˜
x. (5.7)

Explicitly, a time-invariant dynamic system is a system that is not varying over time, which is also
known as an autonomous dynamic system [54]. The stability analysis of this linear autonomous system
(5.7) can be obtained by evaluating the eigenvalues λi of A. Following the first method of Lyapunov,
the equilibrium point

˜
x− is asymptotically stable if and only if all eigenvalues of A satisfy Re(λi) < 0.

Intuitively can be stated that asymptotic stability requires all eigenvalues of A to be located on the left-
half of the complex plane. If one or more eigenvalues of A are located on the right-half of the complex
plane (Re(λi) > 0), then the equilibrium point

˜
x− is unstable. Lastly, if at least one eigenvalue of A

lies on the imaginary axis (Re(λi) = 0), no conclusions concerning stability can be drawn. However,
this first method of Lyapunov is only applicable to linear autonomous systems, whereas in the real world
most systems are governed by non-linear differential equations. Other drawbacks of this first method are
that the stability approximation is only valid near the equilibrium point

˜
x− and that for some scenarios

(Re(λi) = 0) no conclusions can be drawn concerning stability [67].

The second method of Lyapunov is often referred to as the direct method of Lyapunov and can be used for
dynamic systems that consist of non-linear differential equations. This method generates a scalar energy-
like function V (

˜
x) from which conclusions can be drawn concerning the stability of the set of differential

equations without an explicit knowledge of corresponding solutions [54, 67]. This energy-like function
V (

˜
x) is a useful substitute for the true energy function of a given system, because it is very complicated

and sometimes even impossible to construct the true energy function for a complex dynamic system [54].
If such a function V (

˜
x) exists for the given system, then this function can be called a Lyapunov function.

The first two characteristics of the Lyapunov function V (
˜
x) originate from the property of being positive

definite (V (
˜
x) ≻ 0) in the region Ω. Positive definiteness of V (

˜
x) implies that V (

˜
x) = 0 at the equilibrium

point
˜
x−, while V (

˜
x) > 0 for all other values of

˜
x in Ω. Mathematically this can be stated as:
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V (
˜
x) = 0,

˜
x =

˜
x− = argmin(V (

˜
x)), (5.8)

V (
˜
x) > 0,

˜
x ∈ Ω,

˜
x ̸= x−. (5.9)

The third and fourth characteristics of the Lyapunov function V (
˜
x) are associated with the dynamics of

the Lyapunov function. These dynamics will be evaluated by taking the Lie derivative of V (
˜
x), which

is mathematically denoted as V̇ (
˜
x). If V̇ (

˜
x) is negative semi-definite (V̇ (

˜
x) ⪯ 0), it would indicate that

V̇ (
˜
x) ≤ 0 for all

˜
x in Ω, which can be formulated as:

V̇ (
˜
x) = ∇V (

˜
x)
˜
f(
˜
x) ≤ 0,

˜
x ∈ Ω. (5.10)

If V (
˜
x) is positive definite (V (

˜
x) ≻ 0) and V̇ (

˜
x) is negative semi-definite (V̇ (

˜
x) ⪯ 0), in other words

Equations 5.8 - 5.10 hold, the equilibrium point
˜
x− is locally stable. However, if V̇ (

˜
x) is strictly negative

definite (V̇ (
˜
x) ≺ 0), this would imply that V̇ (

˜
x) < 0 for all

˜
x in Ω, with exception of

˜
x−. Formally, this

can be denoted as follows:

V̇ (
˜
x) = ∇V (

˜
x)
˜
f(
˜
x) < 0,

˜
x ∈ Ω,

˜
x ̸=

˜
x−. (5.11)

When V (
˜
x) is positive definite (V (

˜
x) ≻ 0) in Ω and V̇ (

˜
x) is negative definite (V̇ (

˜
x) ≺ 0) in Ω, in

other words Equations 5.8 - 5.11 are valid, then the equilibrium point
˜
x− can be considered as locally

asymptotically stable. Now suppose that the region where both V (
˜
x) ≻ 0 and V̇ (

˜
x) ≺ 0 hold is equal

to the total input parameter space (Ω = Rn), then the Lyapunov function V (
˜
x) can be considered as

unbounded, which implies that V (
˜
x) → ∞ if ||

˜
x||2 → ∞. Summarize, the unboundness of V (

˜
x) can be

given as:

Ω = Rn, V (
˜
x) → ∞ if ||

˜
x||2 → ∞. (5.12)

If Equations 5.8 - 5.12 are all applicable to the considered dynamic system, then the equilibrium point
˜
x−

can be considered as globally asymptotically stable. In general, these asymptotic statistics are preliminary
determined by the ability of the considered system to control the expansion of the error in its initial
conditions. However, due to the fact that real-life systems will evolve over time, the mathematical
model used to describe the dynamics will be inadequate to represent the reality. Strictly speaking, the
discrepancy between reality and the mathematical model should be incorporated in the used DA method
by introducing additional errors throughout the forecast cycle [13]. For sake of simplicity, the additional
errors to reflect this discrepancy will not be introduced in the current study.

The main difficulty concerning the applicability of the second method of Lyapunov is the construction
of the Lyapunov function V (

˜
x), since there are no standardized methods available for constructing or

selecting a suitable Lyapunov function for a given system. However, there are several methods available to
generate a Lyapunov function for certain systems, although these methods are only applicable to a limited
number of systems and all have their own advantages and disadvantages [54]. Some of these methods
use an additional Lyapunov-based mathematical expression to assess stability, namely, the Lyapunov
equation. A detailed explanation and derivation of the Lyapunov equation will be supplied in the next
subsection.

5.3.2 Lyapunov equation

The Lyapunov equation differs from the earlier discussed Lyapunov function, but can be considered a
fundamental part of several Lyapunov-based methods for proving stability of a dynamic system. To
derive the Lyapunov equation, let us consider a linearized version of a non-linear autonomous system,
given as:

˜
ẋ =

˜
f(
˜
x) = A

˜
x+

˜
g(
˜
x). (5.13)
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In this non-linear autonomous system, the linear part is denoted by A
˜
x and the non-linear part by

˜
g(
˜
x)

with the equilibrium point
˜
x− at the origin (

˜
x = 0). To evaluate the stability of this system in region Ω,

the following quadratic Lyapunov function candidate is postulated:

V (x) =
˜
xTZ

˜
x. (5.14)

In this expression, matrix Z is symmetric and positive definite (Z ≻ 0). When evaluating the stability
criteria according to the second method of Lyapunov, it can be stated that the first two criteria (Equations
5.8 and 5.9) both hold due to the positive definiteness of the postulated quadratic Lyapunov function
V (

˜
x). To prove that the third and fourth criterion (Equations 5.10 and 5.11) also hold for the linearized

non-linear autonomous system (Equation 5.13), the Lie derivative V̇ (
˜
x) need to be evaluated. Starting

with the definition of the Lie derivative V̇ (
˜
x) (Equation 5.11) and subsequently substituting the definition

of the considered system (Equation 5.13) and the gradient of V (
˜
x) (∇V (

˜
x)), which results in:

V̇ (
˜
x) = ∇V (

˜
x)
˜
f(
˜
x),

= Z
˜
x(A

˜
x+

˜
g(
˜
x)),

=
˜
xTZTA

˜
x+A

˜
xZT

˜
xT + Z

˜
x
˜
g(
˜
x). (5.15)

When normalizing all the
˜
x-components in the above derived equation, with respect to the length of

˜
x (

||
˜
x||2), this results in:

V̇ (
˜
x) =

˜
ITZTA

˜
I +AT

˜
ITZ

˜
I + Z

˜
I ˜
g(
˜
x)

||
˜
x||2

,

=
˜
I(ZTA+ATZ)

˜
IT + Z

˜
I ˜
g(
˜
x)

||
˜
x||2

,

= ZTA+ATZ+ Z
˜
I ˜
g(
˜
x)

||
˜
x||2

. (5.16)

After normalization, the relative contribution of certain components in the expression can be evaluated
with respect to each other. When assessing the scenario of

˜
x → ∞, it can be stated that the last term

in the expression will approach zero. Therefore, it can be argued that the last term contributes less to
V̇ (

˜
x) compared to the first term. According to the earlier stated stability criteria, the derivative of the

Lyapunov function (V̇ (
˜
x)) needs to be negative in order to satisfy Equations 5.10 and 5.11. Because the

first term of Equation 5.16 has the largest relative contribution to V̇ (
˜
x), it can be stated that this term

has to be negative in order to satisfy Equations 5.10 and 5.11. Formally, this can be formulated as:

−W = ZTA+ATZ. (5.17)

Whereas, due to the fact that Z is a symmetric matrix:

−W = ZA+ATZ. (5.18)

This expression is known as the Lyapunov equation and can be used to evaluate the stability of a dynamic
system. The equilibrium state can be considered as locally asymptotically stable if there exists a symmetric
positive definite Z for a given symmetric positive definite W. However, it is important to note that this
stability requirement does not hold vice versa. Therefore, the first step in proving stability by using
the Lyapunov equation is choosing a symmetric positive definite W, then solve the Lyapunov equation
(Equation 5.18) for Z and eventually check if Z is positive definite. As mentioned before, this Lyapunov
equation is often used in various Lyapunov-based stability approaches, but this equation does not appear
in every approach.
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5.3.3 Krasovskii’s method

In the current study, the Krasovskii method will be used to determine the Lyapunov function V (
˜
x) and

subsequently evaluate the stability of the considered dynamic system. Specifically, Krasovskii’s method
can be used to prove the stability of a non-linear autonomous dynamic system of the following form:

˜
ẋ =

˜
f(
˜
x). (5.19)

Consequently, the Jacobian matrix of the the above defined dynamic system is denoted as:

Jf (
˜
x) =

∂
˜
f(
˜
x)

∂
˜
x

. (5.20)

Following Krasovskii’s method, the equilibrium point
˜
x− can be considered as locally asymptotically stable

in region Ω if F(
˜
x) is negative definite (F(

˜
x) ≺ 0) in region Ω. The definition of F(

˜
x), which is basically

Krasovskii’s equation, is given as:

F(
˜
x) = Jf (

˜
x) + Jf (

˜
x)T . (5.21)

In Krasovskii method, a simple Lyapunov function is proposed for the considered non-linear autonomous
system (Equation 5.19) of the following form;

V (
˜
x) =

˜
f(
˜
x)T

˜
f(
˜
x). (5.22)

To substantiate the proposed method of Krasovskii, let us first of all prove why F(
˜
x) ≺ 0 implies that

˜
f(
˜
x) ̸= 0 for any

˜
x ̸= 0. It can be argued that if square matrix F(

˜
x) is negative definite for any

˜
x ̸= 0,

then the Jacobian matrix Jf (
˜
x), of which F(

˜
x) is composed, will be invertible. The Jacobian matrix

Jf (
˜
x) is considered to be invertible because if Jf (

˜
x) and its transpose are both negative definite, then

the sum of these two (Equation 5.21) will be negative definite as well. Due to this negative definiteness of
Jf (

˜
x), it can be stated that matrix Jf (

˜
x) contains no eigenvalues that are equal to zero. Consequently, the

invertibility of matrix Jf (
˜
x) can be guaranteed due to its squared dimensions and its non-zero eigenvalues.

The invertibility of Jf (
˜
x) combined with the continuity of Jf (

˜
x) ensures that

˜
f(
˜
x) is uniquely invertible.

This implies that
˜
f(
˜
x) has only one equilibrium point

˜
x− in the region Ω, which guarantees that

˜
f(
˜
x) ̸= 0

for
˜
x ̸= 0. As a result, the Lyapunov function V (

˜
x) postulated by Krasovskii (Equation 5.22) is considered

to be positive definite, which means that Equations 5.8 and 5.9 both hold.

After proving that F(
˜
x) ≺ 0 implies V (

˜
x) ≻ 0, let us prove that F(

˜
x) ≺ 0 also implies V̇ (

˜
x) ≺ 0, which

explicitly means that Equations 5.8 - 5.11 hold if F(
˜
x) ≺ 0. First, the derivative of V (

˜
x) can be written

as:
V̇ (

˜
x) =

˜
f(
˜
x)T

˜
ḟ(
˜
x) +

˜
ḟ(
˜
x)T

˜
f(
˜
x). (5.23)

Then, the expression of
˜
ḟ(
˜
x) can be rewritten when using the definition of the dynamic system (Equation

5.19) and the expression of the Jacobian matrix Jf (
˜
x) (Equation 5.20), which will result in:

˜
ḟ(
˜
x) =

∂
˜
f(
˜
x)

∂
˜
x

∂
˜
x

∂t
= Jf (

˜
x)
˜
ẋ = Jf (

˜
x)
˜
f(
˜
x). (5.24)

The above derived expression of
˜
ḟ(
˜
x) (Equation 5.24) in combination with the Krasovskii’s equation

(Equation 5.21) can subsequently be used to reformulate Equation 5.23. This reformulation can be given
as:

V̇ (
˜
x) = (Jf (

˜
x)
˜
f(
˜
x))T

˜
ḟ(
˜
x) +

˜
ḟ(
˜
x)TJf (

˜
x)
˜
f(
˜
x),

= Jf (
˜
x)T

˜
f(
˜
x)T

˜
ḟ(
˜
x) +

˜
ḟ(
˜
x)TJf (

˜
x)
˜
f(
˜
x),

=
˜
f(
˜
x)T (Jf (

˜
x) + Jf (

˜
x))

˜
f(
˜
x),

=
˜
f(
˜
x)TF(

˜
x)
˜
f(
˜
x). (5.25)

Real-time estimation of cardiac model parameters - S.C. Snijders (2022) 39



5.3. STABILITY ANALYSIS CHAPTER 5. DATA AND MODEL ANALYSIS

According to the derived equation (Equation 5.25), it can be stated that the F(
˜
x) ≺ 0 will result in

V̇ (
˜
x) ≺ 0. Therefore, it can finally be concluded that Equations 5.8 - 5.11 hold if F(

˜
x) ≺ 0, which implies

that the equilibrium point
˜
x− can be considered as locally asymptotically stable. If additionally Equation

5.12 also hold for the considered dynamic system, then the equilibrium point
˜
x− can be considered as

globally asymptotically stable.

However, Krasovskii’s method is only applicable to a limited number of dynamic systems, because in many
real world cases the sum of the Jacobian matrices does not satisfy the criteria of negative definiteness [67].
If this is the case for the system assessed in the current study, alternatives should be sought to classify the
stability of the system. Besides, if the considered dynamic system contains high-order equations, it is hard
to evaluate the negative definiteness of F(

˜
x) for every possible value of x [67]. However, this difficulty

with high-order equation is unlikely to apply to the dynamic system considered in the current research
because the used mathematical model to describe the cardiovascular system, elaborated in Chapter 3,
contains only first-order differential equations. Consequently, Krasovskii’s method can be considered
appropriate to evaluate the stability of the mathematical model used in the current research.
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6. Results

In this chapter, the results regarding the application of the proposed ROUKF-based algorithm to different
types of measurement data will be presented. These different types of measurement data have been
detailed in Section 3.2, whereas the proposed ROUKF-based algorithm was covered in Section 2.3 and the
used mathematical model in Section 3.1. In the first section of this chapter, the results of the application
of the algorithm to the synthetic data will be discussed. Based on these results, various analysis methods
will be applied, more specific, the sensitivity, identifiability and stability analysis. Subsequently, in the
second section of this chapter, the results of applying the algorithm to the in vitro data will be elaborated.
Lastly, the results of the application of the algorithm to the in vivo data will be covered in the final section
of the current chapter.

6.1 Synthetic data

The synthetic data were generated based on the simulation of multiple test scenarios involving different
values of the left ventricular contractility (cLV ) and varying levels of measurement noise. Based on
these simulated test scenarios, which have been detailed in Section 3.2.1, the capabilities of the proposed
ROUKF-based algorithm were evaluated. Recapitulating, in tests 1 through 6 different values of cLV
were simulated to determine whether the algorithm can deal with different cLV values. Subsequently, in
tests 7 through 9, the simulated cLV value was kept constant, while different levels of measurement noise
were simulated to determine if the algorithm can handle noisy measurements. Lastly, in tests 10 through
12 the cLV value was varied over the simulated time span to evaluate the robustness of the algorithm.
When executing the proposed algorithm on all these mentioned test scenarios, the initialization values
of the a posteriori estimate

˜
x̂a0 are kept identical for all tests. The exact initialization values of the a

posteriori estimate
˜
x̂a0 are supplied in Appendix D, whereas it can be emphasised that the initialized cLV

value is equal to 0.8 for all tests.

The results of the application of the proposed ROUKF-based algorithm to the synthetic simulated test
scenarios 1 through 9 are presented in Table 6.1. Based on these results, it can be stated that tests
1 through 6 depict a narrow confidence interval (CI cLV ) combined with a low root-mean-square error
(RMSE) and a low difference of cLV (Diff cLV ). Specifically, the difference of cLV is calculated by
subtracting the true cLV from the estimated cLV , which consequently indicates whether the algorithm
under- or overestimates the cLV . Then, the results of tests 7 through 9 depict that the deviation of
the estimated cLV from the true cLV increases slightly when the noise level increases. In addition, the
magnitude of the cLV difference points in fluctuating direction because the behavior of the Gaussian
distributed noise is purely stochastic in the simulated test scenarios.

Test True cLV [-] Noise [%] Estimated cLV [-] CI cLV [-] RMSE Diff. cLV [-]
1 0.4 - 0.400 [0.390 , 0.410] 0 0
2 0.6 - 0.600 [0.594 , 0.606] 0 0
3 0.8 - 0.801 [0.795 , 0.807] 0 +0.001
4 1.0 - 1.001 [0.997 , 1.005] 0 +0.001
5 1.2 - 1.201 [1.197 , 1.205] 0 +0.001
6 1.4 - 1.401 [1.397 , 1.405] 0 +0.001
7 0.8 10 0.802 [0.796 , 0.808] 0.001 +0.002
8 0.8 20 0.798 [0.792 , 0.804] 0.001 -0.002
9 0.8 50 0.806 [0.796 , 0.816] 0.002 +0.006

Table 6.1: Results of the application of the proposed ROUKF-based algorithm to the synthetic data of
tests 1 through 9. All tests included in this table are simulated for a duration of 10 seconds. The added
noise is Gaussian distributed with a mean of zero and a test-specific standard deviation.

Figures 6.1 and 6.2 illustrate the performance of the proposed ROUKF-based algorithm concerning test
8, in which 20% noise was added to the synthetic measurement. In Figure 6.1, the measured pLV is
plotted against the a posteriori estimated pLV , where it can be observed that the a posteriori estimated
pLV is not significantly influenced by the noise-containing pLV measurement. The probability density
function of the a posteriori estimated cLV belonging to this particular test is presented in Figure 6.2, in
which a log-normal distributed PDF can be observed.
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Figure 6.1: Comparison of the measured pLV and
the a posteriori estimated pLV , both originating
from test 8.

Figure 6.2: Illustration of the probability density
function of the a posteriori estimated cLV of test
8.

The test scenarios 10 through 12 were all simulated for a time interval of 30 seconds, which is equal to
the duration of three moving windows, and therefore results in three cLV estimations for each test. At
the beginning of every moving window, certain elements of the proposed ROUKF-based algorithm are
re-initialized, as explained in Section 4.2. This re-initialization can result in a so-called inlet effects, which
can be regarded as a transient phenomenon with considerable fluctuations in the estimated cLV . In tests
10 and 11, the true cLV was varied incrementally between physiologically feasible ranges with a step size
of 0.2 every 10 seconds. Specifically, the distinction between these two tests is that in test 10 no noise
was added to the pLV measurement, whereas in test 11 20% noise was added to the pLV measurement.
Figures 6.3a and 6.3b depict the a posteriori estimated cLV of tests 10 and 11 over time, respectively.
Based on these figures, it can be observed that the inlet effects is more prominent when measurement
noise is present (test 11) compared to when measurement noise is absent (test 10). However, the presence
of the inlet effects does not influence the estimated cLV , due to the fact that only the last part of the
moving window is used for PDF calculation.

(a) (b)

Figure 6.3: Illustration of the a posteriori estimated cLV plotted against the true cLV concerning (a)
test 10 and (b) test 11 over time.

The results regarding the application of the proposed algorithm to the synthetic simulated test scenarios
10 through 12 are presented in Table 6.2. It can be stated that all three tests contain small values of
RMSE and minor cLV difference for each cLV -step. Tests 10 and 11, whose estimated cLV over time is
shown in Figures 6.3a and 6.3b, simulate an uncommon but more or less physiologically feasible scenario.
However, in test 12 a physiologically unrealistic scenario is simulated to evaluate whether the proposed
algorithm can handle extreme cLV changes. In all three tests, and even in the extreme scenario of test
12, the algorithm was able to converge to the true cLV and follow the simulated changes in cLV .
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Test True cLV [-] Noise [%] Estimated cLV [-] CI cLV [-] RMSE Diff. cLV [-]
10 0.6 - 0.601 [0.595 , 0.607] 0 +0.001

0.8 - 0.800 [0.794 , 0.806] 0 0
1.0 - 1.001 [0.997 , 1.005] 0 +0.001

11 0.6 20 0.602 [0.592 , 0.612] 0.002 +0.002
0.8 20 0.796 [0.790 , 0.802] 0.001 -0.004
1.0 20 1.002 [0.994 , 1.010] 0.002 +0.002

12 1.4 20 1.403 [1.399 , 1.407] 0.002 +0.003
0.4 20 0.398 [0.374 , 0.422] 0.004 -0.002
1.2 20 1.205 [1.199 , 1.211] 0.003 +0.005

Table 6.2: Results of the application of the proposed ROUKF-based algorithm to the synthetic data of
test 10 to 12. All tests included in this table are simulated for a duration of 30 seconds. The added noise
is Gaussian distributed with a mean of zero and a test-specific standard deviation.

6.1.1 Sensitivity analysis

Figure 6.4: Visual representation of the local sens-
itivity Sloc plotted against the measured pLV based
on the synthetic data of test 3.

The local sensitivity analysis is used to identify
the sensitivity of the measured states to changes
in the parameter of interest. Consequently, the
relative importance of the uncertain input para-
meter (pLV ) regarding the estimation of the para-
meter of interest (cLV ) within a heart cycle can
be quantified. In Figure 6.4, the synthetic pLV
data is plotted against the local sensitivity Sloc.
Based on these results, it can be stated that the
local sensitivity Sloc has exactly the same shape as
the measured pLV . Lastly, it can be observed that
local sensitivity Sloc decreases when the relative
time in the moving window increases.

6.1.2 Identifiability analysis

Figure 6.5: Illustration of the identifiability ana-
lysis based on the synthetic data of test 3.

The identifiability analysis is used to determine if
the right type of data is collected, given a cer-
tain system and model structure, to identify a
unique parameter value based on the measured
data. This analysis was conducted by using the
profile likelihood method, which is based on the
evaluation of a cost function that represents the
agreement between the measured pLV and the a
posteriori estimated pLV . In Figure 6.5, several
evaluations of the cost function are depicted by or-
ange dots, which are subsequently used to determ-
ine the actual shape of the cost function. Accord-
ing to the profile likelihood method, the optimal
cLV (cLV,opt) is located at the minimum of the
cost function. The boundaries of the CI belonging
to this cLV,opt are represented by the intersection
points of the cost function and threshold, with the
threshold being illustrated by the dotted line in
Figure 6.5.
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The results of the identifiability analysis are presented in Table 6.3. Based on these results, it can be said
that the CI is bounded in both directions for tests 1 through 8, while it is unbounded in one direction of
test 9. Moreover, the confidence interval obtained by using the PL method (Table 6.3) is slightly wider
compared to the confidence interval determined based on the PDF (Table 6.1) for tests 1 through 6 and
significantly wider for tests 7 through 9. Besides, it can be observed that the cLV,opt of the (Table 6.3)
also differs from the estimated cLV (Table 6.1) when comparing the synthetic simulated test scenarios.

Test True cLV [-] Noise [%] cLV,opt [-] CI cLV [-] Diff. cLV [-]
1 0.4 - 0.406 [0.370 , 0.442] +0.006
2 0.6 - 0.608 [0.567 , 0.649] +0.008
3 0.8 - 0.813 [0.769 , 0.857] +0.013
4 1.0 - 1.019 [0.973 , 1.066] +0.019
5 1.2 - 1.227 [1.185 , 1.275] +0.027
6 1.4 - 1.450 [1.417 , 1.485] +0.050
7 0.8 10 0.733 [0.405 , 1.321] -0.067
8 0.8 20 0.670 [0.280 , 2.130] -0.130
9 0.8 50 0.483 [0.113 , -] +0.317

Table 6.3: Results of the identifiability analysis conducted on the synthetic data originating from tests
1 through 9. The identifiability analysis is executed based on the profile likelihood method. The optimal
cLV according to this method is denoted by cLV,opt with the belonging confidence interval (CI cLV ).

6.1.3 Stability analysis

The stability analysis is used to quantify the sensitivity of the mathematical model to its initial states,
whereas, the stability of the model is also considered to be crucial for the convergence of the sequential
estimates of the proposed ROUKF-based algorithm. This analysis was conducted by using Krasovskii’s
method, which claims that the equilibrium point

˜
x− can be considered as locally asymptotically stable

if Krasovskii’s equation F(
˜
x) is negative definite (F(

˜
x) ≺ 0) in a certain region Ω of the parameter

space. To determine the region Ω in the parameter space where this holds, the negative definiteness of
Krasovskii’s equation F(

˜
x) was evaluated for a range of cLV values. The results of this evaluation are

illustrated in Table 6.4, in which the equilibrium point
˜
x− of the mathematical model is considered to be

stable if Krasovskii’s equation F(
˜
x) was negative definite and unstable if Krasovskii’s equation F(

˜
x) was

positive definite. Based on the results depicted in Table 6.4, it can be stated the equilibrium point
˜
x−

of the mathematical model can be considered as local asymptotically stable in the region Ω that ranges
from a cLV=0.1 to cLV=2.0.

cLV [-] 0 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.1 2.2
Stable? No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No

Table 6.4: Results of the stability analysis carried out based on Krasovskii’s method. In this table, a
stable system is considered as a negative definite F(x), while an unstable system is defined as a positive
definite F(x).

6.2 In vitro data

The in vitro data is generated based on the material twin, which is a device that is capable of mimicking
the behavior of the human cardiovascular system. When generating the in vitro data, this material twin
was used in different configurations of increasing complexity to evaluate the effect of model discrepancy on
the ability of the proposed ROUKF-based algorithm to estimate the true cLV . The different configurations
that were used in current study have been elaborated in Section 3.2.2, where for each configuration the
same variety of cLV values was being simulated. The exact results of the application of the proposed
algorithm to all configurations included in the current study are provided in Appendix F. A summarized
representation of these exact results is supplied per configuration in Figure 6.6, in which the true cLV value
is being plotted against the a posteriori estimated cLV with an error-bar that indicates the corresponding
confidence interval. In this summarized representation, the a posteriori estimated cLV and confidence
interval are calculated by averaging the statistics of three time windows.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Results of the application of the proposed ROUKF-based algorithm to the following material
twin configurations: (a) configuration 1, (b) configuration 2, (c) configuration 3, (d) configuration 4,
(e) configuration 5, (f) configuration 6. The a posteriori estimated cLV , visually expressed in the figures
above, is obtained by averaging the three estimates that belong to a specific simulated cLV value. The
same holds for the standard deviation, which is used to determine the confidence interval (CI) of the a
posteriori estimated cLV .
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When observing the results displayed in Figure 6.6, it can be stated that for Configurations 1 through
5 the proposed algorithm is overestimating for cLV values between 0.4 and 1, whereas the algorithm is
underestimating for cLV values of 1.2 and 1.4. Moreover, it can roughly be stated that the severity of
under- or overestimation increases when the complexity of the material twin configuration increases. The
only configuration that illustrates a different pattern compared to the other configurations is the most
advanced configuration, which is Configuration number 6. When examining the error-bars belonging to
the a posteriori estimates, it can be said that the CI is quite small. Finally, the size of the CI does not
correlate with the difference between the a posteriori estimated cLV and the true cLV .

6.3 In vivo data

In the current study, the proposed ROUKF-based algorithm was applied to the in vivo data originating
from patient-specific measurements performed in the study of Johnson et al. (2018) [29]. However,
the data set used in the current study does not exactly correspond to the data set used in the original
study. There are roughly two reasons that explain the absence of certain patient-specific analysis in
the current study. The first reason is the absence of pLV measurements in certain patients, the second
reason is a significant deviation of the pLV measurement compared to a normal physiological pLV curve.
This significantly deviated pLV measurement was considered as non-representative and was therefore not
included in the data set used in the current study.

The results of the application of the proposed ROUKF-based algorithm to the data set with patient-
specific measurements are supplied in Appendix G. In this appendix, two types of graphs are presented
for every patient-specific measurement. One of these types is depicted in Figure 6.7, in which the a
posteriori estimated cLV , the LV dp

dt max
and the step-wise Dobutamine administration are illustrated

over time. This type of graph is used to evaluate whether the proposed ROUKF-based algorithm is able
to reflect the suspected increase in cLV due to the step-wise administration of Dobutamine. In addition,
this type of graph is also used to identify a possible relationship between the a posteriori estimated cLV
and the LV dp

dt max
. The other type of graph that is supplied in Appendix F is illustrated in Figure 6.8, in

which the measured pLV is plotted against the a posteriori estimated pLV over time. This type of graph
is used to determine if the a posteriori estimated pLV follows the behaviour of the measured pLV . When
comparing the results depicted in Figures 6.7 and 6.8, which both belong to patient 1 before the TAVI
procedure, it can be observed that the cLV surprisingly follows the same trend as the maximum pLV .

Figure 6.7: Illustration of the a posteriori es-
timated cLV , the LV dp

dt max
and the Dobutamine

administration of patient 1, obtained before con-
ducting the TAVI procedure.

Figure 6.8: Comparison of the measured pLV and
the a posteriori estimated pLV of patient 1, ob-
tained before conducting the TAVI procedure.
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When evaluating the results of the application of the proposed ROUKF-based algorithm to the data
set with patient-specific measurements, which are presented in Appendix G, a few potentially valuable
aspects can be noted. First, the expected increase in cLV caused by the step-wise administration of
Dobutamine could not be identified for every patient in the data set. Second, when comparing the a
posteriori estimated cLV to the LV dp

dt max
, two more or less distinguishable trends could be identified

across the data set, which are depicted in Figure 6.9a and 6.9b. In Figure 6.9a, the a posteriori estimated
cLV and the LV dp

dt max
illustrate the same behavior over time. On the other hand, in Figure 6.9b, the

a posteriori estimated cLV and the LV dp
dt max

depict the same behavior in the first half of the observed
time interval. However, after a certain amount of Dobutamine has been administered to the patient, the
LV dp

dt max
suddenly increases significantly while the a posteriori estimated cLV remains more or less the

same. Lastly, based on the comparison between the measured pLV and the a posteriori estimated pLV ,
it can be stated that the proposed ROUKF-based algorithm is able to follow the pLV behavior of the
measured data. However, the a posteriori estimated pLV is consistently underestimating the measured
pLV , with this underestimation ranging between approximately 10 to 60 [mmHg]. Furthermore, it can
be observed that the level of underestimation depends on the height of the measured pLV , which implies
that the underestimation is more significant for increasing values of pLV .

(a) (b)

Figure 6.9: Illustrations of the a posteriori estimated cLV , the LV
dp

dtmax
and the step-wise administered

Dobutamine in (a) patient 1 after conducting the TAVI procedure and (b) patient 7 before conducting
the TAVI procedure.
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7. Discussion

To develop a standardized weaning protocol, a method is sought that can accurately and in real-time
predict if the heart is capable of independently providing the required perfusion, ideally based on minimal
to non-invasive measurements. Therefore, the aim of the current study is to supply the basis for such
a method by providing a proof of principle for utilizing ROUKF to establish a digital shadow, which
is capable of estimating the left ventricular contractility (cLV ). The proposed ROUKF-based algorithm
uses a 0D lumped element model of the left ventricular to obtain simulations of the behavior of the
cardiovascular system, which are subsequently merged with left ventricular pressure (pLV ) measurements
originating from: synthetic, in vitro or in vivo data. In the current section, the major findings, the
limitations and the potential future work will be elaborated regarding the current study.

7.1 Major findings

In the current study, a number of different evaluations and analyses were conducted to examine the
capability and feasibility of the proposed ROUKF-based algorithm regarding the estimation of the cLV .
Starting with the results of the synthetic data, which have been supplied in Section 6.1. First of all,
the ability of the proposed algorithm to converge to the true cLV is considered to be independent of the
initialized cLV . This can be stated on the basis of the ability of the proposed algorithm to converge to the
true cLV in all synthetic tests, in which the initialized cLV was identical. As a result, it can be argued that
the performance of the algorithm is independent of the initialized cLV conditions. Secondly, the proposed
algorithm is considered to be capable of handling noisy measurements, since no significant deviations in
the estimated cLV were encountered when noise was added to the pLV measurement. Therefore, it can
be said that the proposed algorithm seems to be insensitive to noisy measurements, which strengthens its
potential applicability in clinical practice. Thirdly, the proposed algorithm can be considered as robust,
since it was able to converge to the true cLV in case the cLV changed during the simulated time. Even in
the case of physiologically infeasible and extreme cLV steps, the proposed algorithm was able to converge
to the true cLV regardless of the presence of noise. Following a changing cLV over time is essential to
become a digital shadow of the patient, because the cLV of the patient will change over time. Therefore,
this finding also proves the potential of the algorithm to act as a potentially valuable tool in the clinical
practice.

Subsequently, the results of the various analysis methods, which have been performed on the basis of the
synthetic data (Sections 6.1.1 through 6.1.3), will be discussed first. The results of the local sensitivity
analysis (Section 6.1.1) illustrate that the cLV is only sensitive for the pLV measurement during the
contraction phase of the cardiac cycle. The results of the identifiability analysis (Section 6.1.2) showed
a bounded CI in both directions for almost all synthetic simulations (tests 1 through 8), with exception
of one synthetic simulation (test 9). This implies that, given the current model structure, the cLV is
identifiable from a pLV measurement that contains no noise or a limited level of noise, whereas the
cLV is practically non-identifiable if the level of noise in the measurement becomes too severe. These
identifiability observations are consistent with the theoretical background, because the measurement error
gives rise to parameter uncertainty and can therefore cause practical non-identifiability [26]. Furthermore,
the estimated cLV and associated CI determined by using the identifiability analysis differ significantly
from those determined on the basis of the PDF. This significant difference could be attributed to the
divergent approaches of these two methods, since the identifiability analysis uses a cost function that
describes the discrepancy between measured and predicted pLV , while the PDF relies on the sequentially
estimated cLV . Lastly, according to the results of the stability analysis (Section 6.1.3), the equilibrium
point of the mathematical model can be considered as locally asymptotically stable in the region of the
parameter space that ranges from cLV=0.1 to cLV=2.0. As a result, it can be concluded that the
mathematical model used in the current study is stable in a physiologically plausible range of the cLV .
This range is considered physiologically plausible because the cLV is a scaling factor for the active stress
in the myocardial fibre which cannot be lower than approximately 0.2/0.3 to be viable and is only higher
than approximately 1.5/1.6 in well trained athletes or under inotropic support conditions. As a result, it
can be argued that the mathematical model is stable in the cLV range that can occur in patients, which
proves that the proposed algorithm can be applied in clinical practice.
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The in vitro data generated by the material twin was used to evaluate the effect of model discrepancy
on the ability of the proposed ROUKF-based algorithm to estimate the true cLV (Section 6.2). First
of all, when the cardiovascular behavior of the material twin was identical to the one described by the
mathematical model of the current study, even then the proposed algorithm was not able to estimate the
true cLV . In addition, it can be stated that deviation from the true cLV increased when the complexity of
the material twin configuration increased. These two observations illustrate that the proposed ROUKF-
based algorithm is not capable of estimating the true cLV in a real world setting, based on the currently
used algorithm architecture. Furthermore, the CI belonging to the estimated cLV is considered to be
relatively narrow in all configurations and does not correlate with the discrepancy between the estimated
cLV and true cLV . This reflects that the proposed algorithm can be considered as over-confident, as well
as that the uncertainty of the estimated cLV does not incorporate the model discrepancy.

Finally, the results of the application of the proposed algorithm to the in vivo data, which has been
elaborated in Section 6.3. First, it is considered to be promising that the proposed algorithm is able to
deal with pLV measurements that were performed in patients. This is considered to be promising in terms
of the robustness of the proposed algorithm, because patient measurements contain several imperfections
compared to synthetic data. These imperfections could be attributed to the measurement equipment,
the environment of the measurement, the patient itself or the clinician that performs the measurement.
Therefore, the fact that the proposed algorithm is applicable to patient data strengthens its possible
applicability in clinical practice. Besides, the patient itself consists of an even more complex cardiovascular
behavior than described by the most advanced configuration of the material twin. Therefore, it can be
considered as promising that the proposed algorithm seems to be able to deal with such a level of model
discrepancy. However, the exact magnitude of the discrepancy between the estimated cLV and true cLV
is unknown, since the true cLV is not known. Furthermore, it can be argued that the cLV did not
increase with the step-wise administration of Dobutamine, which is considered to be inconsistent with
the predefined expectation. Besides, it can be observed that the LV dp

dt max
does not present the same

information as the cLV in some patients, which can be said based on the identification of two distinct
trends in the data set. Both of these observations could be regarded as possible valuable information
concerning certain specific patients, or either as a deficiency of the proposed algorithm to describe the
true cLV . Furthermore, the fact that the estimated cLV did follow the same trend as the pLV (max) can
be considered as a surprising observation, which can be regarded as unfavorable for the potential of the
algorithm because it is not able to supply additional information. Lastly, based on the comparison of the
measured and estimated pLV it can be stated that the proposed algorithm is not able to follow the exact
behavior of the measurement. Besides, it can be stated that if the magnitude of the pLV measurement
increases, the amount of discrepancy increases.

7.2 Limitations

A promising finding in the current study is the fact that the proposed ROUKF-based algorithm is able
to converge to the true cLV when being applied to various simulated scenarios of the synthetic data.
However, the proposed algorithm was not able to estimate the true cLV in case of application to the
material twin, which could be attributed to different aspects. First of all, the pLV measurement signal
of the material twin used as input for the proposed algorithm was not filtered. As a result, the signal
did contain a significant level of noise, which could possibly affect the accuracy of the estimated cLV or
the identifiability of the cLV . Second, the complexity of the mathematical model that is used to describe
the behavior of the cardiovascular system is most likely attributable for the deviating cLV estimation.
This can be said based on the evaluation of the model discrepancy and it is therefore suggested that
increasing the complexity of the mathematical model will result in a more truthful representation of the
cLV . Third, the number of measured quantities could be regarded as too small to compose a truthful
estimation of the cLV in the real world. An increase in the number of measured quantities leads to an
increase in the amount of patient-specific characteristics included in the proposed algorithm, which could
result in a more truthful representation of the cLV . Another aspect that could be accountable for the
failure of the proposed algorithm to estimate the true cLV are the input parameters of the mathematical
model. These input parameters are currently fixed to certain parameter values, which mostly originate
from the study of Meiburg et al. (2020) [49]. However, some of these fixed input parameters could contain
valuable information regarding the cLV . Therefore, the input parameters that are most influential for
cLV estimation need to be identified first. Subsequently, these input parameters could be specified per
patient to obtain a more truthful estimation of the cLV in a real world scenario.
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A important consolation is that the proposed ROUKF-based algorithm is considered to be over-confident
and does not incorporate the model discrepancy into the CI of the estimated cLV . Consequently, it
can be stated that the incorporation of the model discrepancy in the proposed algorithm will lead to
a more realistic representation of the uncertainty in the estimated cLV . Furthermore, the fact that
the algorithm is over-confident could be attributed to the rank reduction of the covariance matrix. In
the current algorithm, the rank of the covariance matrix is equal to the dimension of the parameter
space, which can be considered as insufficient to truthfully describe the uncertainty of the estimated
cLV . Increasing the rank of the covariance matrix to allow a certain amount of uncertainty on the states
of the augmented space could result in a more realistic representation of the CI of the estimated cLV .
However, it is considered to be essential for the ROUKF method to retain a reduced rank covariance
matrix, because it allows a rank decomposition of this matrix, which is fundamental for the reduced-
order approach. Eventually, the computational expensiveness of the proposed ROUKF-based algorithm
will increase when increasing the rank of the covariance matrix, which could influence the real-time
capabilities of the algorithm.

In the proposed ROUKF-based algorithm, the measurement error covariance matrix R is arbitrarily
chosen. However, this covariance matrix depends on the trueness and precision of the used measurement
equipment [69]. Ideally, this covariance matrix should be adapted to measurement equipment which is
used to perform the pLV measurement. An accurate description of the noise statistics is considered to
be crucial for the performance of the algorithm, as it is known that an incorrect description can result
in significant worsening of the estimation or even failure of the algorithm [20]. Furthermore, when these
noise statistics are known, they can be used for calculating the cost function of the identifiability analysis.
Based on applying this analysis in a clinical setting, the identifiability of the parameter of interest can
be evaluated, given a certain level of noise. Another arbitrarily choice in the proposed ROUKF-based
algorithm is that the re-initialization conditions are equal to the initialization conditions, which are chosen
to concentrate the initial covariance matrix to the parameters only. The rank reduction of the covariance
is considered to be insufficient to truthfully estimate the parameter, which may also call into question the
correctness of the initialization and re-initialization choices. Lastly, the initialized a posteriori estimate
was also determined arbitrarily (Appendix D), but only the influence of the initialized cLV regarding the
convergence of the proposed algorithm to the true cLV is investigated. The effect of the initialization of
the states on the convergence of the proposed algorithm is unknown.

The PDF of the cLV is assumed to be lognormal distributed, which can be doubted in some cases. For
example, consider a pLV measurement of the in vivo data that is used in the current study, which can
constantly change in amplitude and period length, while containing various imperfections. As a result,
the estimated parameter cLV will fluctuate over the time of the analyzed interval, which may result in
various forms of distributions and consequently in a violation of the lognormal distributed assumption.

7.3 Future work

Increasing the number of measured quantities used in the proposed algorithm increases the amount of
included patient-specific characteristics, which could lead to a more veracious cLV estimation. The study
of Bunt (2021) could serve as a starting point to identify which additional measured quantities could be
added to the proposed algorithm. In this particular study, an UKF-based algorithm was used to estimate
the cLV based on five measured quantities, while using the same mathematical model as the current
study [11]. However, future research needs to be conducted to identify which additional measurements
could be valuable in terms of convergence of the proposed ROUKF-based algorithm to the true cLV in a
real-world environment. Furthermore, a global sensitivity analysis can be used to determine the relative
contribution of uncertain model input parameters and their interactions to the amount of uncertainty
in the model output. Based on this sensitivity analysis, the input parameters that contributes the most
to the uncertainty in the model output can be identified, which can be used to conduct parameter
prioritization. In future research, this global sensitivity analysis could be applied based on the adaptive
generalized polynomial chaos expansion (agPCE), which is elaborated in Appendix B.
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Based on the results of the application to the material twin, it can be observed that the proposed
algorithm is incapable of following the behavior of the cLV when the right side of the heart was included
in the material twin configuration. As a result, it can be argued that describing the behavior of the
right side of the heart and the pulmonary circulation by a fixed pulmonary pressure is considered to be
inadequate. Therefore, it can be suggested that substituting the fixed pulmonary pressure by a more
advanced description of the right side of the heart and pulmonary circulation could be a promising
option to increase the complexity of the mathematical model. However, various other modifications of
the mathematical model could be valuable options as well. Future research needs to be conducted to
determine which modifications of the mathematical model allow the proposed algorithm to provide a
more truthful estimation.

In the current study, it is aimed to provide a proof of principle of using the ROUKF method to establish
a digital shadow, which could be used to support the initiation of weaning and the weaning process itself.
Consequently, the ECMO circuit needs to be incorporated in the mathematical model to describe the
cardiovascular behavior of a patient that is undergoing VA-ECMO. Future research needs to be carried
out to identify how to accomplish this incorporation, whereas this incorporation could also supply possible
beneficial alternatives for the invasiveness of the proposed method. Concretely, the pressure sensors in
the ECMO device could be used to calculate the flow of the ECMO, which is detailed in the study of
Pennings et al. (2013) [58]. Subsequently, the flow of the ECMO could be used as input in the proposed
algorithm to estimate the cLV .

The model discrepancy is considered to be an important component for the uncertainty in the model
output. Therefore, including the model discrepancy in the determination of CI of the estimated parameter,
could result in a more truthful representation of the uncertainty of the estimate. Further research needs
to be conducted on how the model discrepancy can be incorporated in the proposed algorithm. For
this incorporation, the study of Brynjarsdóttir and O’Hagen (2014) can be used, which elaborates on the
importance of discrepancy and challenges concerning its incorporation [10]. Besides, a more representative
CI could also be obtained by increasing the rank of the covariance matrix and consequently allow a certain
amount of uncertainty on the states. However, this rank should not be increased too much to limit the
increase in computational expensiveness, whereas the rank should be increased sufficiently to allow for an
appropriate amount of uncertainty on the states that is required to accurately describe the uncertainty
of the estimated cLV . Additional research needs to be conducted to identify the optimal ratio between
these two aspects.

Lastly, a method is desired that is able to describe every possible distribution of the PDF. This method
could lead to a more truthful determination of the estimated cLV and belonging CI in clinical practice. A
method that can be used to approximate every possible distribution is called Gaussian Mixture Models.
This method approximates the shape of the PDF by the weighting sum of multiple Gaussian distributed
functions, to eventually represent the actual shape of PDF [63]. However, future research needs to
be conducted to evaluate the applicability to the current ECMO application. Furthermore, a method
that is capable of estimating the measurement error covariance matrix could increase the performance
of the proposed ROUKF-based algorithm, because proper knowledge of the noise statistics is required
for optimal performance of an estimator [40]. As mentioned before, the covariance matrix incorporates
various stochastic components of the considered system, like instrumental error and the error in the
measurement function h(x) [20]. However, these stochastic components can vary over time, and therefore
an estimator is required that can describe the evolution of this noise covariance matrix over time. In order
to find a suitable estimator for the proposed ROUKF-based algorithm, the study of Dunik et al. (2017)
can be used [20]. This study elaborates various feedback and feedback free methods, which are based on
different assumptions and are therefore suitable being applicable to selective problems. To identify the
most suitable method for the envisioned application, future research needs to be conducted.
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8. Conclusion

The goal of the current study was to develop a digital shadow using ROUKF, which is capable of ac-
curately estimating left ventricular contractility (cLV ) in real-time based on minimal to non-invasive
measurements. The measurement that was used to conduct the cLV estimation is the left ventricular
pressure, which originated from various different data types: synthetic, in vitro and in vivo data. The
proposed ROUKF-based algorithm was applicable to all three mentioned data types and was able to
perform cLV estimations in real-time. In addition, the algorithm presented some promising results when
being applied to synthetic and in vivo data. As a result, the algorithm can be regarded as a promising
method for the development of a digital shadow of the cLV . However, the evaluation of model discrepancy
proved that the accuracy of the proposed algorithm decreased when the model discrepancy increased.
Therefore, future research needs to be conducted to identify the right increase in complexity of the math-
ematical model to obtain a more truthful cLV estimation. Furthermore, additional research also needs to
be performed to evaluate the performance of the proposed algorithm when adding or substituting input
measurements. Eventually, the holy grail remains a method that can perform an accurate estimation of
the cLV in real-time based on only non-invasive measurements to be the ideal tool to conduct weaning
from VA-ECMO.
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APPENDIX A. LOG-NORMAL DISTRIBUTED PDF

A. Log-normal distributed PDF

In the current study, the logarithmic parameter transformation is applied to ensure a positive value of
the parameter of interest. According to this logarithmic transformation, the parameter value ψi can be
expressed logarithmic as follows:

ϕi = ϕref2
ψi (A.1)

Next, this equation is rewritten in order to express the parameter value ψi in terms of the logarithmic
parameter value ϕi and normalization factor ϕref , which results in:

ϕi = ϕref2
ψi ,

ϕi
ϕref

= 2ψi ,

ln(
ϕi
ϕref

) = ln(2ψi),

ln(
ϕi
ϕref

) = ln(2)ψi,

ψi =
1

ln(2)
ln(

ϕi
ϕref

). (A.2)

When assuming that the parameter of interest is normally distributed, the formula for the Gaussian
distributed PDF (Equation 4.2) can be used to describe the a posteriori PDF of the parameter of interest.
Formally, this can be given as:

P (ψi|θk, σk) =
1√
2πσk

e
− 1

2 (
ψi−θk
σk

)2
, with i = 1, 2, ....nbins. (A.3)

To derive an expression for the log-normal distributed PDF, the normal distributed PDF has to be
scaled accordingly. This scaling relies on the normal expressed parameter ψi relative to the logarithmic
expressed parameter ϕi, resulting in:

P (ϕi|θk, σk) = |dψi
dϕi

|P (ψi|θk, σk),

P (ϕi|θk, σk) = |
d( 1
ln(2) ln(

ϕi
ϕref

))

dϕi
|P (ψi|θk, σk),

P (ϕi|θk, σk) = | d
dϕi

ln(
ϕi
ϕref

)
1

ln(2)
|P (ψi|θk, σk). (A.4)

When choosing a value of 1 for the normalization factor ϕref , this expression can be reduced further,
resulting in:

P (ϕi|θk, σk) = | d
dϕi

ln(ϕi)
1

ln(2)
|P (ψi|θk, σk),

P (ϕi|θk, σk) = | 1
ϕi

1

ln(2)
|P (ψi|θk, σk). (A.5)

Subsequently, the definition of the Gaussian distributed PDF (Equation A.3) and the logarithmically
expressed parameter (Equation A.2) will be substituted in the above supplied expression, which leads to:
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P (ϕi|θk, σk) = | 1
ϕi

1

ln(2)
| 1√

2πσk
e
− 1

2 (
ψi−θk
σk

)2
,

P (ϕi|θk, σk) =
1

ϕi

1√
2πσkln(2)

e
− 1

2 (
ψi−θk
σk

)2
,

P (ϕi|θk, σk) =
1

ϕi

1√
2πσkln(2)

e
− 1

2 (
( 1
ln(2)

ln(
ϕi
ϕref

))−θk
σk

)2
,

P (ϕi|θk, σk) =
1

ϕi

1√
2πσkln(2)

e
− 1

2 (
(ln(

ϕi
ϕref

))−θkln(2)

σkln(2)
)2
,

P (ϕi|θk, σk) =
1

ϕi

1√
2πσkln(2)

e
− 1

2 (
(ln(ϕi)−θkln(2)−ϕref

σkln(2)
)2
,

P (ϕi|θk, σk) =
1

ϕi

1√
2πσkln(2)

e
− 1

2 (
(ln(ϕi)−(θkln(2)+ln(ϕref ))

σkln(2)
)2
. (A.6)

This expression will be simplified by defining the logarithmic estimated parameter µk and the corres-
ponding logarithmic standard deviation sk. Both of these logarithmic definitions can be given as:

µk = θkln(2) + ln(θref ) and sk = σkln(2). (A.7)

The above stated definitions of the estimated parameter µk and standard deviation sk will be used to
simplify the derived expression of the log-normal distributed PDF (Equation A.6). Eventually, this will
result in the equation that will be used to calculated the log-normal distributed PDF in the current study,
explicitly:

P (ϕi|µk, sk) =
1

ϕi
√
2πsk

e
− 1

2 (
ln(ϕi)−µk

sk
)2
, with i = 1, 2, ....nbins. (A.8)
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B. Global sensitivity analysis

Adjusting the model input to patient-specific conditions is not a straightforward process, but rather a hard
challenge. The quantification of these model inputs can be performed in various ways, like mathematical
derivation or measurements [21]. However, the measurements needed to obtain information about physical
parameters are hampered by measurement uncertainty as well as biological variability. These factors will
results in sparse and uncertain model input leading to dissociation of model outputs, in other words
uncertainty in the model output [19]. Roughly two distinct sources of uncertainty can be distinguished;
the first is a lack of knowledge, which is called epistemic uncertainty, whereas the second relies on
an association of intrinsic variability [7]. Regarding the application discussed in the current study,
appropriate quantification of uncertainty in the model output is considered to be crucial for a decision-
making in clinical practice. In order to determine the relative contribution of uncertain input parameters
and their interactions to the total amount of uncertainty in the model output, sensitivity analysis can be
used. The outcome of the sensitivity analysis can provide guidance to identify which input parameters can
be fixed based on literature values, which is called parameter fixing [19]. Additionally, the result of the
sensitivity analysis can help to identify which input parameters contribute the most to the total amount
of uncertainty in the model outputs. By analyzing this relative uncertainty contribution, the development
of more accurate methods for the assessment of certain input parameters can be prioritized over others,
which is called parameter prioritization [28]. Furthermore, sensitivity analysis can be defined as a forward
problem, which consists of predicting a model response based on a given set of input parameters [26].

Global sensitivity analysis can be used to quantify the degree of uncertainty in the output arising from
variations in input parameters [7]. This global analysis includes the entire input parameter space, as well
as the interactions between different input parameters in the uncertainty quantification, while the earlier
discussed local method only includes certain parts of the input space. Therefore, this global method can
be regarded as a more accurate method to quantify the uncertainty in the model output compared to the
local method [61]. Consequently, this global method can be used to identify the contribution of uncertain
input parameters to the total uncertainty in the model output.

However, a thorough analysis of the model response requires that all uncertainties of the model and
its fundamental phenomena are taken into consideration, which necessitates repeated simulation with
different configurations of input parameters [36]. As a result, many model simulations are required which
would make a thorough analysis of the model response hardly applicable for a computational demanding
model [7]. To solve this computational problem, a popular approach in engineering is to construct a
surrogate model, which is called a meta-model [7, 44]. This meta-model is an analytical approximation of
the original model, which is typically computationally inexpensive to evaluate and properly approximates
the input-output relation of the original model. Since the evaluation of the meta-model is computationally
inexpensive, the required number of simulations can be performed at low computational cost, making the
execution of uncertainty analysis feasible [44].

The global sensitivity analysis can be performed by using a method called adaptive generalized polynomial
chaos expansion (agPCE). By employing this method, a meta-model will be constructed based on the
output of original model, which is accomplished by expanding the model output by using a basis of
orthogonal polynomials [61]. Formally, an explicit representation of model function f is established by
expanding the model output Y into a series of orthogonal polynomials:

Y = f(X) = fPCE(X) =
∑
ρ∈G∞

cρΦρ(X). (B.1)

In this equation, model output Y is expanded into orthogonal polynomials Φρ, which are functions of
the model input X with associated expansion coefficients cρ. The set of orthogonal polynomials Φρ can
be obtained by making use of univariate polynomials ϕρi with order ρi, which can be derived from the
multi-index vector

˜
ρ =

[
ρ1 ρ2 ..... ρD

]
. Mathematically, this can be stated as follows:

Φρ(X) =

D∏
i=1

ϕρi(Xi). (B.2)

These expansion coefficients cρ belonging to the orthogonal polynomials Φρ are computed by using a
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non intrusive method, which implies that the agPCE method can be applied to any model without
modifying the model code itself [7, 22]. Furthermore, the extent of the series orthogonal polynomials Φρ
with corresponding coefficients cρ that together represent the meta-model increases exponentially with
number of input parameters and polynomial degree. As a result, the required number of model evaluation
will still be large in case of a model with a substantial amount of input parameters. Therefore, the agPCE
method aims to reduce the number of expansion terms by only adding those that contribute significantly
to the quality of the meta-model. This reductive approach is justifiable in the majority of cases because
the model response is dominated by low order interactions between parameters and therefore the high
order interactions can be neglected. In the agPCE method, this reduction of expansion terms is achieved
by iteratively applying forward- and backward steps. During the forward steps, polynomials are added
that increase the quality of the meta-model, whereas during the backward steps polynomials are removed
that initially seemed to be relevant but can be eliminated without reducing the quality of the meta-model
[61]. Ultimately, the primary reason why this agPCE method is considered suitable for global sensitivity
analysis is that the constructed meta-model can be used to analytically compute the Sobol’ indices [68].

Sobol’ indices are global, variance-based sensitivity indices that can be used for uncertainty quantification
[21]. There are two distinct types of Sobol’ indices that will be considered for every input parameter
of the considered system, namely the main- and total sensitivity index. The main sensitivity index of
a particular input parameter represents the individual contribution of this input parameter concerning
the total model output variance, examined by fixing this particular input parameter [76]. This main
sensitivity index is also considered as a first-order Sobol’ sensitivity index because it only includes direct
effects of a certain input parameter, which is defined as:

Si =
V[E(Y|Θi)]

V[Y]
. (B.3)

In this expression the main sensitivity index Si represents the expected reduction in the total variance
of the model output V[(Y)] when the uncertain input parameter Θi would be fixed. Because the main
sensitivity index reflects the direct effects of a particular input parameter, it is considered appropriate for
identifying which uncertain input parameters contribute significantly to the total variance of the model
output and are therefore eligible for parameter prioritization [21]. Furthermore, the second-order Sobol’
sensitivity index will represent the portion of the total variance in the model output V[(Y)] that can be
contributed to interactions between parameter Θi and Θj . This second-order index is defined as following:

Si,j =
V[E(Y|Θi,Θj)]

V[Y]
. (B.4)

However, this separate estimation of each second-order sensitivity index, which is basically every possible
combination of input parameters, will take a considerable amount of time. Luckily, the second mentioned
type of Sobol’ indices, the total sensitivity index, includes information about interaction effects without
the need of estimating all second-order sensitivity index separately [21]. In fact, the total sensitivity
index incorporates both the individual effect of the input parameter and the interaction effect of the
input parameter with all the remaining parameters [76]. The total sensitivity index of parameter Θi is
given by:

ST,i =
V[Y]− V[E(Y|Θ−i)]

V[Y]
= 1− V[E(Y|Θ−i)]

V[Y]
. (B.5)

Here, Θ−i represents a set of all uncertain input parameters except the input parameter of interest Θi.
This expression enables the calculation of the total sensitivity index ST,i of input parameter Θi, which
reflects the variance of the model output that is attributable to both the direct effect of Θi and all
interaction effects of Θi with other input parameters. Therefore, the difference between ST,i and Si will
only reflect the interaction effect, whereas these terms will be equal if there are no interaction effects
present. The total sensitivity index is considered useful for determining which input parameters are
suitable for parameter fixing within their uncertainty domain because this index considers both direct-
and interaction effects [21].
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Both Sobol’ sensitivity indices will be determined trough evaluation of the meta-model, which is construc-
ted by using the agPCE method. As a result, both indices can be calculated analytically [68]. To establish
this calculation, first the variance of the meta-model will be calculated by the following expression:

V[Y] ≈
∑
ρ∈G

c2ρNρ. (B.6)

Where, Nρ represents the normalization factor and cρ the expansion coefficient with order ρ, which can
be obtained from the multi-index vector

˜
ρ =

[
ρ1 ρ2 ..... ρD

]
. The normalization factor Nρ depends

on the type of polynomials used to construct the meta-model. The type of polynomials that will be used
is adopted from the study of Quicken at al. (2016), in which orthogonal Legendre polynomials are used
to construct the meta-model [61]. The use of Legendre polynomials results in a normalization factor Nρ

given by:

Nρ =

D∏
i=1

1

2ρi + 1
. (B.7)

After calculating the normalization factor Nρ, the main- and total sensitivity index of input parameter
Θi can eventually be calculated based on the meta-model. First, the main sensitivity index Si of input
parameter Θi can be obtained from evaluating the meta-model according to:

Si ≈
1

V[Y]

∑
ρ∈Gi

c2ρNρ. (B.8)

In this equation, the term Gi contains all multi-indices of vector ρ in which the index of input parameter
Θi (ρi) is positive while all other terms are equal to zero. Basically, this convention is equal to stating
that only direct effects of input parameter Θi will be included in this main sensitivity index. Lastly, the
total sensitivity index of input parameter Θi can be calculated from the meta-model by using:

ST,i ≈
1

V[Y]

∑
ρ∈GT,i

c2ρNρ. (B.9)

In this final mathematical expression, GT,i represents all multi-indices in which the index of input para-
meter Θi (ρi) is positive. Formally, the resulting set of multi-indices GT,i incorporate both direct- and
interaction effects of input parameter Θi.
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C. Decision rule of profile likelihood

As described in Section ??, the probability density function of a certain parameter of interest θ will
describes the conditional probability of parameter value ψ when knowing parameter estimate θ̂ and
corresponding standard deviation σ. When assuming a Gaussian distribution of the a posteriori PDF,
the likelihood of a certain parameter L(θPL) by evaluating parameter value ψPL, which can be described
by using Equation 4.2:

L(θPL) = P (ψPL|θ̂, σ) =
1√
2πσ

e−
1
2 (
ψPL−θ̂

σ )2 . (C.1)

Subsequently, the maximum likelihood estimation (MLE) is used to find the parameter value ψ which
will most likely reflect the measured data. The maximum likelihood of the parameter of interest θ, or
in other words the most probable parameter value ψopt, will occur when parameter value ψ is exactly

matching parameter estimate θ̂. In this particular case, the difference between the parameter value ψ
and the parameter estimate θ̂ will be equal to 0, which implies that the last of Equation C.1 will be equal
to 1. Therefore, the maximum likelihood of the parameter of interest L(θopt) will be located at the most
probable parameter value ψopt, which can be stated as:

L(θopt) = P (ψopt = θ̂, σ) =
1√
2πσ

(C.2)

After determining the definition of the profile likelihood (Equation C.1) and the maximum likelihood
(Equation C.2), the maximum likelihood ratio Λ can be derived. The derivation of the maximum likeli-
hood ratio Λ will start by supplying the logarithmic defined ratio Λ, following by substitution of Equations
C.1 and C.2:

Λ(θPL) = −2ln
L(θPL)

L(θopt)

= −2ln

1√
2πσ

e−
1
2 (
ψ−θ̂
σ )2

1√
2πσ

= −2ln e−
1
2 (
ψ−θ̂
σ )2

=
−2

−2

(
ψ − θ̂

σ

)2

=

(
ψ − θ̂

σ

)2

=
(ψ − θ̂)2

σ2
(C.3)

This eventually derived expression does contain the structure of the Chi-squared formula. Therefore, the
Chi-squared distribution with a certain amount of degrees of freedom (df = 1) and chosen confidence
level γ will be used to determine the boundaries of the confidence interval [σ−

θ , σ
+
θ ]. As a result, the

decision rule for the profile likelihood method is formulated as:

−2ln

(
L(θPL)

L(θopt)

)
≤ χ2

1−γ,df=1. (C.4)
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D. Initialized a posteriori estimate

The a posteriori estimate
˜
x̂ak needs to be initialized to be able to perform the first iteration of the

proposed ROUKF algorithm. In this a posteriori estimate
˜
x̂ak the states (

˜
x) and parameters (

˜
θ) are

gathered in one collective state-parameter space, which is called the augmented state vector. Therefore,

the a posteriori estimate can be denoted as
˜
x̂ak =

[
˜
x̂k

˜
θ̂k
]T

. The size of this a posteriori estimate is
determined by the number of states (ns) and the number of parameters (np), explicitly the size of

˜
x̂ak

is equal to ns + np. In the current study, the number of states (ns) is equal to 9, with their explicit
definition being elaborated below. The number of parameters (np) is equal to 1, because the parameter of
interest regarding the ECMO application is the left ventricular contractility cLV . The initial a posteriori
estimate

˜
x̂ak is arbitrarily determined, which can be given as:

˜
x̂a0 =

[
˜
x̂0

˜
θ̂0

]
=



pLV
pao
VLV
qmv
qav
Vc1
qc1−c2
Vc2
qper
clv


=



8 [mmHg]
80 [mmHg]

2VLV,0 [mL]
0 [mLs ]
0 [mLs ]

paoCart [mL]
0 [mLs ]

paoCart [mL]
0 [mLs ]
0.8 [−]


(D.1)

Some elements of this initial a posteriori estimate
˜
x̂a0 are correlated to the input parameters of the

mathematical model. In the current study, almost all input parameter are adopted from the study of
Meiburg et al. (2020) [49]. According to this study, the unloaded cavity volume VLV,0 is set to 80 [mL]
and the arterial compliance Cart to 1 [ mL

mmHg ]. This results in the follow representation of the a posteriori
estimate

˜
x̂a0 :

˜
x̂a0 =



8 [mmHg]
80 [mmHg]
160 [mL]
0 [mLs ]
0 [mLs ]
80 [mL]
0 [mLs ]
80 [mL]
0 [mLs ]
0.8 [−]


(D.2)
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E. Results identifiability analysis

(a) (b)

(c) (d)

(e) (f)

Figure E.1: Illustration of the identifiability analysis based on the synthetic data of (a) Test 1, (b)
Test 2, (c) Test 3, (d) Test 4, (e) Test 5 and (f) Test 6.
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(a) (b)

(c)

Figure E.2: Illustration of the identifiability analysis based on the synthetic data of (a) Test 7, (b)
Test 8 and (c) Test 9
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F. Results in vitro data

True cLV [-] Estimated cLV [-] CI cLV [-] RMSE Diff. cLV [-]
0.4 0.469 [0.455 , 0.483] 0.001 +0.069
0.4 0.467 [0.451 , 0.483] 0.002 +0.067
0.4 0.470 [0.456 , 0.484] 0.001 +0.070
0.6 0.693 [0.679 , 0.707] 0.002 +0.093
0.6 0.683 [0.667 , 0.699] 0.001 +0.083
0.6 0.693 [0.679 , 0.707] 0.002 +0.093
0.8 0.878 [0.866 , 0.890] 0.003 +0.078
0.8 0.879 [0.867 , 0.891] 0.003 +0.079
0.8 0.878 [0.868 , 0.880] 0.002 +0.078
1.0 1.054 [1.022 , 1.086] 0.009 +0.054
1.0 1.024 [1.010 , 1.038] 0.004 +0.023
1.0 1.032 [1.012 , 1.052] 0.006 +0.032
1.2 1.191 [1.149 , 1.233] 0.014 -0.009
1.2 1.152 [1.132 , 1.172] 0.008 -0.048
1.2 1.129 [1.115 , 1.143] 0.008 -0.071
1.4 1.196 [1.158 , 1.238] 0.014 -0.204
1.4 1.239 [1.189 , 1.289] 0.017 -0.161
1.4 1.184 [1.150 , 1.218] 0.013 -0.216

Table F.1: Results of the application of the proposed ROUKF-based algorithm to the in vitro data that
were generated by the material twin in Configuration 1.

True cLV [-] Estimated cLV [-] CI cLV [-] RMSE Diff. cLV [-]
0.4 0.484 [0.470 , 0.498] 0.001 +0.084
0.4 0.488 [0.472 , 0.504] 0.001 +0.088
0.4 0.491 [0.477 , 0.505] 0.001 +0.091
0.6 0.728 [0.712 , 0.744] 0.003 +0.128
0.6 0.721 [0.709 , 0.733] 0.002 +0.119
0.6 0.721 [0.709 , 0.733] 0.002 +0.119
0.8 0.924 [0.868 , 0.988] 0.015 +0.124
0.8 0.893 [0.881 , 0.905] 0.003 +0.093
0.8 0.892 [0.880 , 0.904] 0.003 +0.092
1.0 1.080 [0.978 , 1.038] 0.009 +0.008
1.0 0.985 [0.969 , 1.010] 0.005 -0.015
1.0 1.007 [0.973 , 1.041] 0.010 +0.007
1.2 1.071 [1.047 , 1.095] 0.008 -0.129
1.2 1.020 [1.000 , 1.040] 0.008 -0.180
1.2 1.008 [0.986 , 1.030] 0.008 -0.192
1.4 1.066 [1.018 , 1.114] 0.015 -0.334
1.4 1.070 [1.034 , 1.106] 0.012 -0.330
1.4 1.042 [1.012 , 1.072] 0.011 -0.358

Table F.2: Results of the application of the proposed ROUKF-based algorithm to the in vitro data that
were generated by the material twin in Configuration 2.
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True cLV [-] Estimated cLV [-] CI cLV [-] RMSE Diff. cLV [-]
0.4 0.373 [0.343 , 0.403] 0.005 -0.027
0.4 0.398 [0.328 , 0.468] 0.025 -0.002
0.4 0.422 [0.358 , 0.486] 0.008 +0.022
0.6 0.729 [0.717 , 0.741] 0.002 +0.129
0.6 0.731 [0.717 , 0.745] 0.003 +0.131
0.6 0.725 [0.713 , 0.737] 0.002 +0.125
0.8 0.903 [0.891 , 0.915] 0.003 +0.103
0.8 0.905 [0.893 , 0.917] 0.003 +0.105
0.8 0.903 [0.885 , 0.921] 0.003 +0.103
1.0 1.017 [0.997 , 1.037] 0.006 +0.017
1.0 1.008 [0.990 , 1.026] 0.005 +0.008
1.0 1.007 [0.991 , 1.023] 0.005 +0.007
1.2 1.057 [1.039 , 1.075] 0.007 -0.143
1.2 1.044 [1.022 , 1.066] 0.009 -0.156
1.2 1.060 [1.040 , 1.080] 0.008 -0.140
1.4 0.998 [0.960 , 1.036] 0.015 -0.402
1.4 0.976 [0.928 , 1.024] 0.016 -0.424
1.4 0.999 [0.959 , 1.039] 0.013 -0.401

Table F.3: Results of the application of the proposed ROUKF-based algorithm to the in vitro data that
were generated by the material twin in Configuration 3.

True cLV [-] Estimated cLV [-] CI cLV [-] RMSE Diff. cLV [-]
0.4 0.564 [0.540 , 0.588] 0.004 +0.164
0.4 0.629 [0.549 , 0.709] 0.015 +0.229
0.4 0.599 [0.533 , 0.665] 0.012 +0.199
0.6 0.801 [0.787 , 0.815] 0.003 +0.201
0.6 0.804 [0.790 , 0.818] 0.003 +0.204
0.6 0.801 [0.789 , 0.813] 0.003 +0.201
0.8 0.990 [0.976 , 1.004] 0.004 +0.190
0.8 0.978 [0.956 , 1.000] 0.005 +0.178
0.8 0.972 [0.960 , 0.984] 0.003 +0.172
1.0 1.114 [1.090 , 1.138] 0.007 +0.114
1.0 1.073 [1.059 , 1.087] 0.005 +0.073
1.0 1.084 [1.072 , 1.096] 0.004 +0.084
1.2 1.080 [1.010 , 1.150] 0.020 -0.120
1.2 0.993 [0.965 , 1.021] 0.010 -0.207
1.2 1.005 [0.973 , 1.037] 0.011 -0.195
1.4 0.879 [0.793 , 0.965] 0.023 -0.521
1.4 0.916 [0.818 , 1.014] 0.025 -0.484
1.4 0.826 [0.776 , 0.876] 0.015 -0.574

Table F.4: Results of the application of the proposed ROUKF-based algorithm to the in vitro data that
were generated by the material twin in Configuration 4.
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True cLV [-] Estimated cLV [-] CI cLV [-] RMSE Diff. cLV [-]
0.4 0.636 [0.624 , 0.648] 0.002 +0.236
0.4 0.633 [0.615 , 0.651] 0.002 +0.233
0.4 0.639 [0.623 , 0.655] 0.002 +0.239
0.6 0.824 [0.800 , 0.848] 0.006 +0.224
0.6 0.800 [0.788 , 0.812] 0.002 +0.200
0.6 0.812 [0.794 , 0.830] 0.004 +0.212
0.8 0.935 [0.921 , 0.949] 0.004 +0.135
0.8 0.932 [0.918 , 0.946] 0.004 +0.132
0.8 0.938 [0.918 , 0.958] 0.005 +0.138
1.0 1.043 [1.023 , 1.063] 0.006 +0.043
1.0 1.020 [1.008 , 1.032] 0.003 +0.020
1.0 1.013 [1.003 , 1.023] 0.003 +0.013
1.2 1.128 [1.088 , 1.168] 0.013 -0.072
1.2 1.072 [1.060 , 1.084] 0.005 -0.128
1.2 1.067 [1.053 , 1.081] 0.005 -0.133
1.4 0.976 [0.928 , 1.024] 0.015 -0.424
1.4 0.980 [0.936 , 1.024] 0.013 -0.420
1.4 0.949 [0.911 , 0.987] 0.011 -0.451

Table F.5: Results of the application of the proposed ROUKF-based algorithm to the in vitro data that
were generated by the material twin in Configuration 5.

True cLV [-] Estimated cLV [-] CI cLV [-] RMSE Diff. cLV [-]
0.4 0.631 [0.613 , 0.649] 0.003 +0.231
0.4 0.648 [0.636 , 0.660] 0.002 +0.248
0.4 0.650 [0.638 , 0.662] 0.002 +0.250
0.6 0.760 [0.744 , 0.776] 0.003 +0.160
0.6 0.761 [0.745 , 0.770] 0.003 +0.161
0.6 0.762 [0.744 , 0.780] 0.004 +0.162
0.8 0.754 [0.732 , 0.776] 0.006 -0.046
0.8 0.710 [0.676 , 0.774] 0.005 -0.090
0.8 0.758 [0.734 , 0.782] 0.010 -0.042
1.0 0.719 [0.637 , 0.801] 0.016 -0.281
1.0 0.695 [0.655 , 0.735] 0.009 -0.305
1.0 0.640 [0.584 , 0.696] 0.017 -0.360
1.2 0.661 [0.615 , 0.707] 0.010 -0.539
1.2 0.729 [0.655 , 0.803] 0.015 -0.471
1.2 0.632 [0.584 , 0.680] 0.013 -0.568
1.4 0.654 [0.602 , 0.706] 0.012 -0.746
1.4 0.666 [0.612 , 0.720] 0.011 -0.734
1.4 0.597 [0.541 , 0.635] 0.019 -0.803

Table F.6: Results of the application of the proposed ROUKF-based algorithm to the in vitro data that
were generated by the material twin in Configuration 6.
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G. Results in vivo data

Figure G.1: Data belonging to patient 1, obtained before conducting the TAVI procedure. Comparison
of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.2: Data belonging to patient 1, obtained before conducting the TAVI procedure. Comparison
of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.3: Data belonging to patient 1, obtained after conducting the TAVI procedure. Comparison
of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.4: Data belonging to patient 1, obtained after conducting the TAVI procedure. Comparison
of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.5: Data belonging to patient 2, obtained before conducting the TAVI procedure. Comparison
of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.6: Data belonging to patient 2, obtained before conducting the TAVI procedure. Comparison
of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.7: Data belonging to patient 2, obtained after conducting the TAVI procedure. Comparison
of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.8: Data belonging to patient 2, obtained before conducting the TAVI procedure. Comparison
of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.9: Data belonging to patient 3, obtained before conducting the TAVI procedure. Comparison
of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.10: Data belonging to patient 3, obtained before conducting the TAVI procedure. Compar-
ison of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.11: Data belonging to patient 3, obtained after conducting the TAVI procedure. Comparison
of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.12: Data belonging to patient 3, obtained after conducting the TAVI procedure. Comparison
of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.13: Data belonging to patient 4, obtained before conducting the TAVI procedure. Compar-
ison of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.14: Data belonging to patient 4, obtained before conducting the TAVI procedure. Compar-
ison of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.15: Data belonging to patient 4, obtained after conducting the TAVI procedure. Comparison
of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.16: Data belonging to patient 4, obtained after conducting the TAVI procedure. Comparison
of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.17: Data belonging to patient 5, obtained before conducting the TAVI procedure. Compar-
ison of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.18: Data belonging to patient 5, obtained before conducting the TAVI procedure. Compar-
ison of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.19: Data belonging to patient 5, obtained after conducting the TAVI procedure. Comparison
of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.20: Data belonging to patient 5, obtained after conducting the TAVI procedure. Comparison
of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.21: Data belonging to patient 6, obtained before conducting the TAVI procedure. Compar-
ison of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.22: Data belonging to patient 6, obtained before conducting the TAVI procedure. Compar-
ison of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.23: Data belonging to patient 6, obtained afer conducting the TAVI procedure. Comparison
of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.24: Data belonging to patient 6, obtained after conducting the TAVI procedure. Comparison
of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.25: Data belonging to patient 7, obtained before conducting the TAVI procedure. Compar-
ison of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.26: Data belonging to patient 7, obtained before conducting the TAVI procedure. Compar-
ison of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.27: Data belonging to patient 7, obtained after conducting the TAVI procedure. Comparison
of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.28: Data belonging to patient 7, obtained after conducting the TAVI procedure. Comparison
of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.29: Data belonging to patient 8, obtained before conducting the TAVI procedure. Compar-
ison of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.30: Data belonging to patient 8, obtained before conducting the TAVI procedure. Compar-
ison of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.31: Data belonging to patient 8, obtained after conducting the TAVI procedure. Comparison
of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.32: Data belonging to patient 8, obtained after conducting the TAVI procedure. Comparison
of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.33: Data belonging to patient 9, obtained before conducting the TAVI procedure. Compar-
ison of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.34: Data belonging to patient 9, obtained before conducting the TAVI procedure. Compar-
ison of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.35: Data belonging to patient 9, obtained after conducting the TAVI procedure. Comparison
of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.36: Data belonging to patient 9, obtained after conducting the TAVI procedure. Comparison
of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.37: Data belonging to patient 10, obtained before conducting the TAVI procedure. Com-
parison of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.38: Data belonging to patient 10, obtained before conducting the TAVI procedure. Com-
parison of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.39: Data belonging to patient 11, obtained before conducting the TAVI procedure. Com-
parison of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.40: Data belonging to patient 11, obtained before conducting the TAVI procedure. Com-
parison of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.41: Data belonging to patient 11, obtained after conducting the TAVI procedure. Compar-
ison of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.42: Data belonging to patient 11, obtained after conducting the TAVI procedure. Compar-
ison of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.43: Data belonging to patient 13, obtained before conducting the TAVI procedure. Com-
parison of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.44: Data belonging to patient 13, obtained before conducting the TAVI procedure. Com-
parison of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.45: Data belonging to patient 13, obtained after conducting the TAVI procedure. Compar-
ison of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.46: Data belonging to patient 13, obtained after conducting the TAVI procedure. Compar-
ison of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.47: Data belonging to patient 14, obtained before conducting the TAVI procedure. Com-
parison of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.48: Data belonging to patient 14, obtained before conducting the TAVI procedure. Com-
parison of the measured pLV and the a posteriori estimate of the pLV .
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Figure G.49: Data belonging to patient 14, obtained after conducting the TAVI procedure. Compar-
ison of estimated CLV and LV dp

dt max
with step-wise Dobutamine administration.

Figure G.50: Data belonging to patient 14, obtained after conducting the TAVI procedure. Compar-
ison of the measured pLV and the a posteriori estimate of the pLV .
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