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Maximum-distance Race Strategies for a
Fully Electric Endurance Race Car

Jorn van Kampen

Abstract— This thesis presents a bi-level optimization frame-
work to compute the maximum-distance stint and charging
strategies for a fully electric endurance race car, while ac-
counting for thermal limitations of the powertrain components.
Thereby, the lower level computes the minimum-stint-time
Powertrain Operation (PO) for a given charge time and stint
length, whilst the upper level leverages that information to
jointly optimize the stint length, charge time and number of
pit stops, in order to maximize the driven distance in the
course of a fixed-time endurance race. Specifically, we first
extend a convex lap time optimization framework to capture
multiple laps and thermal models, and use it to create a map
linking the charge time and stint length to the achievable stint
time. Second, we leverage the map to frame the maximum-
race-distance problem as a mixed-integer second order conic
program that can be efficiently solved to the global optimum
with off-the-shelf optimization algorithms. Finally, we showcase
our framework on a 6 h race around the Zandvoort circuit. Our
results show that the optimal race strategy can involve partially
charging the battery, and that, compared to the case where the
stints are optimized for a fixed number of pit stops, jointly
optimizing the stints and number of pit stops can significantly
increase the driven distance of several laps.

I. INTRODUCTION

THE ELECTRIFICATION of race cars has been increasing
in popularity over the last years, owing to the advent

of hybrid electric Formula 1 cars and Le Mans Hypercars,
and battery electric vehicles in Formula E. In a setting
where every millisecond counts, it is of paramount impor-
tance to make efficient use of the energy stored on-board
via optimized Energy Management Strategy (EMS), whilst
respecting the thermal limits of the powertrain components.
In this context, the possibility of recharging the battery in the
course of the race further complicates the problem, requiring
race engineers to strike the best trade-off between reducing
consumptions and pit-stops at the cost of lap-time, or driving
faster with more pit-stops, whilst avoiding damage to the
powertrain components by staying within the thermal limits.
This conflict is particularly important in endurance racing,
where the objective is to maximize the driven distance in a
fixed amount of time, which can range up to 24 h [1]. In
this setting, the car has to be strategically recharged during
pit stops in order to maintain a competitive performance and
maximize the distance driven. This calls for algorithms to
compute the maximum-distance race strategies in terms of
number of pit stops, stint length and charge time (which
is directly correlated to charged energy), accounting for the
optimal stint strategies in terms of energy management, ther-
mal management and Powertrain Operation (PO). Against
this backdrop, this thesis presents a bi-level optimization
framework to compute the maximum-distance race strategies
with global optimality guarantees.

Fig. 1. InMotion’s fully electric endurance race car.
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Fig. 2. Schematic layout of the electric race car powertrain topology
consisting of a battery (BAT), inverter (INV), electric machine (EM) and
final drive (FD). The arrows indicate positive power flows.

Related Literature: This work pertains to two main re-
search streams: single-lap optimization of the EMSs jointly
with the vehicle trajectory or for a given race line, and full-
race optimization via simulations.

Several authors optimized the minimum-lap-time race line
for a single race lap using both direct and indirect optimiza-
tion methods [2]–[8]. Some of these studies also include a
maximum energy consumption per lap to approach racing
conditions [9]. Similar approaches extend the minimum-
lap-time problems to minimum-race-time problems. They
consider temperature dynamics, and optimize for multiple
consecutive race laps to enable a variable amount of energy
consumed per lap, but formulate the optimization problem
in space domain for an a-priori-known number of laps [10],
[11]. Finally, considering the race line to be fixed, multi-
lap EMSs are optimized, leveraging nonlinear optimization
techniques [12] or artificial neural networks [13]. However,
these papers lack global optimality guarantees.

Against this backdrop, assuming the race line to be
available in the form of a maximum speed profile, convex
optimization has been successfully leveraged to compute the
globally optimal EMSs for hybrid and fully electric race
vehicles [14], [15], also including gear shift strategies [16],
different transmission technologies [17] and thermal lim-
itations [18]. Yet these methods are focused on single-
lap problems and do not capture pit-stops and recharging
processes. In addition, the studies focused on thermal limi-
tations leverage an iterative algorithm, thereby losing global
optimality guarantees when the velocity is jointly optimized.

The second relevant research stream involves race sim-
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ulations, in which entire races are optimized on a per lap
basis [19], [20]. However, these studies mainly focus on
optimal tire strategies by modeling their degradation as a
lap time increase and do not capture the charging and PO
strategies.

In conclusion, to the best of the authors’ knowledge,
there are no methods specifically focusing on race strategies
in endurance scenarios, whereby the single-stint operational
strategies are jointly optimized and account for the thermal
limits of the powertrain components.

Statement of Contributions: This thesis presents a bi-level
mixed-integer convex optimization framework to efficiently
compute the globally optimal, maximum-distance endurance
race strategies and the corresponding PO in the individual
stints. Our low-level algorithm computes the optimal stint
time for a given number of laps and different levels of
recharged battery energy. To preserve convexity, we describe
the electric motor (EM) efficiency by using speed-dependent
in- and output forces. Subsequently, we fit the relationship
between the stint length, the charged energy, and the achiev-
able stint time as a second-order conic constraint, which we
leverage in the high-level algorithm. Thereby we frame the
maximum-distance race problem as a mixed-integer second-
order conic program which jointly optimizes the stint length,
the charge time—i.e., the charge energy—and the number of
pit stops. The resulting problem can be rapidly solved with
off-the-shelf numerical solvers with global optimality guar-
antees. A preliminary version of this thesis was published at
the 2022 European Control Conference [21]. In this extended
version, we include a battery loss model that captures the
dependence on its energy and temperature and identify a
method to model the battery and EM temperature dynamics
in a convex form. Moreover, we leverage a convex framework
to directly include the vehicle dynamics in the form of a
single-track model in the low-level control problem, so that
we no longer rely on a pre-computed maximum speed profile
and reformulate the high-level control problem to account
for the aforementioned extensions. Finally, we showcase
our framework on the Zandvoort circuit, highlighting the
importance of jointly optimizing the number of pit stops with
the number of laps and charging strategies.

Organization: The remainder of this thesis is structured as
follows: Section II presents the minimum-stint-time control
problem, after which Section III frames the maximum-race-
distance control problem. We discuss some of the limitations
of our work in Section IV and showcase our framework
for a 6 h race in Section V. Finally, Section VI draws the
conclusions and provides an outlook on future research.

II. LOW-LEVEL STINT OPTIMIZATION

This section illustrates the minimum-stint-time control
problem in space domain, since minimizing the stint time
given a fixed distance represents the dual problem of maxi-
mizing distance within a fixed time. We leverage an existing
convex framework [22], reformulated to a single-track model
without steering and side-slip angles, as we do not consider
torque-vectoring, and extend it to allow multi-lap optimiza-
tion, whilst improving the EM and battery model accuracy to

include temperature dynamics. From the time-optimal control
problem, we obtain the minimum stint time for a given stint
length and charge time (which can be equivalently expressed
in terms of available battery energy).

Fig. 2 shows a schematic representation of the powertrain
topology of the electric race car. The EM propels both of the
rear wheels through a fixed final drive (FD), while receiving
energy from the battery pack via the inverter. As with most
electric vehicles, the EM can also operate as a generator,
thus we account for a bi-directional energy flow between the
battery and the wheels. In addition, we consider auxiliary
components that are powered from the main battery as a
uni-directional energy flow.

In reality, the driver controls the EM torque through the
accelerator pedal and as such we define the mechanical
EM power Pm as the input variable. As state variables,
we choose the battery energy Eb, battery temperature ϑb,
EM temperature ϑm and the kinetic energy of the vehicle
Ekin. The remaining energy flows between the powertrain
components are the propulsion power Pp, electrical EM
power Pac, electrical inverter power Pdc and auxiliary supply
Paux. Since we formulate the control problem in space
domain, we ultimately define the model in terms of forces
rather than power. Thus we divide power by the vehicle
velocity, since the space-derivative of energy is defined with
respect to the vehicle.

A. Objective and Longitudinal Dynamics

In racing, the objective is to minimize the lap times over
the entire race. Since we only consider a stint in the low-
level control problem, the objective is to minimize the stint
time tstint, which is defined as

min tstint = min

∫ Sstint

0

dt

ds
(s) ds, (1)

where Sstint is the stint length in terms of distance and dt
ds (s)

is the lethargy, which is the inverse of the vehicle velocity
v(s) ≥ 0. To implement the lethargy as a convex constraint,
we define

dt

ds
(s) ≥ 1

v(s)
, (2)

which is a convex relaxation that holds with equality in case
of an optimal solution [14].

In this study, we limit ourselves to non-torque-vectoring
powertrain topologies and thereby only capture the longitu-
dinal vehicle dynamics with the use of a bicycle model that
models the front and rear axle individually. The longitudinal
force balance is given by

d

ds
Ekin(s) = Fx,F(s)+Fx,R(s)−Fdrag(s)−m·g ·sin(θ(s)), (3)

where Fx,i(s) is the longitudinal force per axle with i ∈
[F,R] denoting the front and rear axle respectively, Fdrag(s)
is the aerodynamic drag force, m is the total mass of
the vehicle, g is the gravitational constant and θ(s) is the
inclination of the track. The aerodynamic drag force is given
by

Fdrag(s) =
cd ·Af · ρ

m
· Ekin(s), (4)
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where cd is the drag coefficient, Af is the frontal area of the
vehicle and ρ is the air density The longitudinal axle force
are defined as

Fx,i(s) = Fp,i(s)− cr · Fz,i(s)− Fbrake,i(s), (5)

where Fp,i(s) is the propulsion force per axle, cr is the
rolling resistance coefficient, Fz,i(s) represents the vertical
axle force and Fbrake,i(s) is the force from the mechanical
brakes per axle. For non-driven wheels, we set Fp,i(s) = 0,
whereas for driven wheels, we write (5) as two inequality
constraints to capture the final drive losses through

Fx,i(s) ≤ Fm(s) · ηfd − cr · Fz,i(s)− Fbrake,i(s), (6)

Fx,i(s) ≤ Fm(s) · 1

ηfd
− cr · Fz,i(s)− Fbrake,i(s), (7)

where Fm(s) is the mechanical output force from the EM
and ηfd is the efficiency of the final drive, assumed constant.
Due to the objective (1), in case of traction, (6) will hold
with equality, whilst in case of regenerative braking, (7) will
hold with equality, thus capturing the bi-directional power
flow.

The lateral force balance is defined as
2Ekin(s) ·Rinv(s) = Fy,F(s) + Fy,R(s), (8)

where Rinv(s) is the pre-computed inverse corner radius of
the track and Fy,i(s) represents the lateral force per axle.

The vertical force balance consists of the static load and
the aerodynamic downforce as

Fz,F(s) + Fz,R(s) = m · g · cos(θ(s)) + Fdown(s), (9)

where Fz,i(s) is the vertical force per axle and Fdown(s) is
the aerodynamic downforce given by

Fdown(s) =
cl ·Af · ρ

m
· Ekin(s), (10)

where cl is the lift coefficient. We consider steady-state
cornering only, thereby assuming a yaw moment equilibrium
given by

Fy,F(s) · lF = Fy,R(s) · lR, (11)

where li represents the horizontal distance from the axle to
the center of gravity (CoG).

The longitudinal load transfer is determined through the
pitch moment equilibrium, which is defined by

d

ds
Ekin(s) · hG = Fz,R(s) · lR − Fz,F(s) · lF

− Fdrag(s) · hP − Fdown(s) · lGP, (12)

where hG is the height of the CoG with respect to the ground,
hP is the height of the center of pressure (CoP) with respect
to the ground and lGP is the horizontal distance from the
CoG to the CoP.

The longitudinal and lateral forces are bounded by their
respective friction circles per axle, which are defined by the
convex set written as

F 2
x,i(s) + F 2

y,i(s) ≤ (µi · Fz,i(s))
2, (13)

where µi represents the tire friction coefficient, assumed
constant. Although the constraint function is not convex, it
specifies a convex set, which is shown in the Appendix.

The majority of racing vehicles are equipped with mechan-
ical brakes that provide a fixed brake force ratio between
the front and rear wheels. Therefore, we define a relation
between the front and rear brake force as

Fbrake,R(s) · δbrake = Fbrake,F(s) · (1− δbrake), (14)

where δbrake represents the brake balance with respect to the
front, which is assumed to remain constant during the race.

The relation between the kinetic energy and velocity of
the vehicle is defined by a convex relaxation as

Ekin(s) ≥
1

2
·m · v2(s). (15)

In contrast to single-lap scenarios, a stint is represented by
the vehicle starting and stopping at the pit box with a certain
number of free-flow laps in between. However, since we
are working in space domain, the lethargy would diverge
to infinity for zero velocity. To solve this issue, we define
a minimal velocity vmin close to standstill and enforce this
value to the initial and final velocity with

Ekin(0) = Ekin(Sstint) =
1

2
·m · v2min. (16)

Finally, the vehicle should adhere to a strict speed limit,
of which the exact value is track-dependent, when driving
through the pit lane. Therefore, we define an upper bound
vpit,max on the vehicle velocity when the vehicle is exiting
or entering the pit as

Ekin(s) ≤
1

2
·m · v2pit,max ∀s ∈ Spit, (17)

where Spit is the set of distance-based positions that are part
of the pit lane.

B. Electric Machine

This section derives a convex representation of the operat-
ing limits and power losses of the EM. Moreover, we derive
the thermal dynamics of the EM and compare the model
against real-world test data.

In general, we can distinguish between a maximum torque
and maximum power operating region for an EM. Translating
this to constraints in space domain results in a lower and
upper bound on the mechanical output force of the EM for
the maximum torque region as

Fm(s) ∈
[
−Tm,max · γfd

rw
,
Tm,max · γfd

rw

]
, (18)

where Tm,max is the maximum torque the EM can deliver, γfd
is the final drive ratio and rw is the radius of the rear wheels.
Note that we include the final drive ratio, as we define the
space-derivatives with respect to the vehicle reference frame.
Similarly, the mechanical output force of the EM within the
maximum power region is bounded as

Fm(s) ∈
[
−Pm,max · dt

ds
(s), Pm,max · dt

ds
(s)

]
, (19)

where Pm,max is the maximum power the EM can deliver.
We model the EM force losses Fm,l(s) rather than the

power losses as a function of the vehicle velocity and force
of the EM. In general, an EM efficiency map shows large
losses at low rotational velocities. Therefore, we want to
include a term in our losses fit that is inversely proportional
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Fig. 3. A speed- and torque-dependent model of the EM. The normalized
RMSE of the model is 1.49% w.r.t. the maximum motor input force Fac.

to the vehicle velocity. To ensure convexity, we model the
EM losses as

Fm,l(s) = x⊤
m,l(s)Qm,lxm,l(s), (20)

where xm,l(s) =

[
1√
v(s)

√
v(s) Fm(s)√

v(s)

]⊤
and Qm,l ∈ S3+

is a symmetric positive semi-definite matrix of coefficients,
whose values are determined through semi-definite program-
ming. Fig. 3 shows the accuracy of our model. To implement
the losses in a convex manner, we take the relation of the
electrical EM input force Fac(s) to the mechanical output
force as

Fac(s) = Fm(s) + Fm,l(s), (21)

substitute the loss model, relax it and rewrite to a relaxation
describing a convex set as

(Fac(s)− Fm(s)) · v(s) ≥ y⊤
m,l(s)Qm,lym,l(s), (22)

where ym,l(s) = [1 v(s) Fm(s)]
⊤. The convexity of this

constraint is shown in the Appendix by writing it as a second-
order conic constraint.

For the cooling circuit of the EM, we consider a con-
ventional setup using liquid cooling and radiators, as com-
monly applied in motorsport. The losses are assumed to
be converted to heat, thereby changing the EM temperature
according to the first-order temperature ordinary differential
equation (ODE) given by

Cm · dϑm

dt
(s) = Pm,l(s)− Pm,c(s), (23)

where Cm is the total lumped thermal capacity of the EM,
ϑm(s) is the temperature of the EM, Pm,l(s) are the EM
power losses and Pm,c(s) ≥ 0 represents the power outflow
to the cooling liquid as

Pm,c(s) =
ϑm(s)− ϑm,c

κm
, (24)

where ϑm,c represents the temperature of the cooling liquid
and κm is the thermal resistance between the EM and the
cooling liquid, where we assume both parameters to be
constant. Rewriting (23) to space domain results in

Cm · dϑm

ds
(s) = Fm,l(s)− Fm,c(s), (25)
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Fig. 4. Semi-definite fit of the EM temperature together with the relative
error. The normalized RMSE is 0.15% w.r.t. the maximum temperature.

where Fm,c(s) ≥ 0 is the force-equivalence of the EM
cooling power. This EM cooling force is ultimately obtained
by rewriting (24) to forces using a convex relaxation and
linear equality constraint. To obtain a convex representation,
we approximate the EM temperature as

ϑm(s) = x⊤
m,ϑ(s)Qm,ϑxm,ϑ(s) + ϑm,0, (26)

where xm,ϑ(s) = [1 ϑm(s)]
⊤, ϑm,0 is an offset required to

obtain positive values and Qm,ϑ ∈ S2− is a negative semi-
definite matrix of coefficients, obtained through semi-definite
programming. The semi-definite fit of the temperature to-
gether with the relative error is shown in Fig. 4. We select
a negative semi-definite matrix, since we require an upper
bound on the EM temperature. Translating (24) to forces
and substituting the offset of (26) results in

Fm,c(s) =
Fm,c(s) + (ϑm,0 − ϑm,c) · dt

ds
(s)

κm
, (27)

where Fm,c(s) is an intermediate variable used to obtain a
convex formulation through

Fm,c(s) · v(s) ≤ x⊤
m,ϑ(s)Qm,ϑxm,ϑ(s), (28)

which can be written as a second-order conic constraint
(see Appendix). Since the cooling circuit consists of liquid
coolant flowing through the EM to a set of radiators, the
coolant temperature cannot exceed the EM temperature,
resulting in

Fm,c(s) ≥ 0. (29)

To obtain the thermal parameters of the EM, we apply the
convex loss- and cooling model to a combination of data sets
recorded from vehicle telemetry. Fig. 5 shows a comparison
between the EM temperature from one of the data sets and
the thermal model.

To prevent the EM from overheating, we define an upper
bound on the temperature through

ϑm(s) ≤ ϑm,max, (30)

where ϑm,max is the maximum temperature of the EM.
Lastly, we specify an initial value for the EM temperature as

ϑm(0) = ϑm,init, (31)

where ϑm,init is the initial value for the temperature and is
calculated during pre-processing using a lookup table that
has the charge time as an input.

5



400 600 800 1000 1200 1400

50

100

Time [s]

E
M

te
m

pe
ra

tu
re

[◦
C

]

Data Fit

Fig. 5. Comparison between the thermal model and one of the vehicle
telemetry data samples. In total, three data sets were used to fit the model
parameters, of which the average normalized RMSE was 4.12% w.r.t. the
maximum temperature of each data set.

C. Inverter

In this section, we derive a quadratic model for the inverter
losses. As opposed to the EM, we do not model the inverter
temperature, since we assume that the motor-inverter com-
bination is designed such that the EM is thermally limiting.
We apply the general quadratic power loss model of the form

Pdc(s) = α · P 2
ac(s) + Pac(s), (32)

where α is an efficiency parameter, subject to identification.
Converting this constraint to forces, rewriting and relaxing
results in

(Fdc(s)− Fac(s)) ·
dt

ds
(s) ≥ α · F 2

ac(s), (33)

where Fdc(s) is the force equivalent to the electrical inverter
power. The convexity of this constraint is shown in the
Appendix by writing it as a second-order conic constraint.

D. Battery

This section derives a model for the battery efficiency and
the power-split between the electrical inverter power and the
auxiliary component power. The latter can be observed from
Fig. 2 and is written as

Pb(s) = Pdc(s) + Paux, (34)

where Pb(s) is the battery power at the terminals. Here,
the auxiliary component supply is assumed to be constant
and uni-directional, while the other powers are bi-directional.
Converting (34) to forces results in

Fb(s) = Fdc(s) + Paux · dt
ds

(s), (35)

where Fb(s) is the force equivalent of the battery power at
the terminals.

The battery efficiency is mostly determined by its internal
resistance R0 and open-circuit voltage Voc. We derive the
battery losses Pb,l(Eb, ϑb, Pi) from a Thévenin model [23]
as

Pb,l(Eb, ϑb, Pi) =
1

Psc(Eb, ϑb)
· P 2

i (s), (36)

where Psc(Eb, ϑb) =
V 2
oc(Eb)

R0(Eb,ϑb)
is the short-circuit

power [24]. In reality, both the internal resistance and open-
circuit voltage are a function of the battery temperature
and energy. However, since the influence of the battery
temperature on the open-circuit voltage is rather small within
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Fig. 6. A temperature- and energy-dependent battery model. The normal-
ized RMSE of the model is 2.23% w.r.t. the maximum short-circuit power.

the operating window in racing scenarios, we neglect the
dependency of the open-circuit voltage on temperature [25],
[26]. For the dependency of internal resistance on tempera-
ture, we apply a correction factor inversely proportional to
temperature [27], [28] to obtain

Psc(Eb, ϑb) =
V 2
oc(Eb)

R0(Eb)
· ϑb(s)

ϑref
, (37)

where ϑref represents the reference temperature at which the
battery data is measured. Similarly to the thermal EM model,
we fit the short-circuit power in a convex manner through

Psc(s) = x⊤
b,l(s)Qb,lxb,l(s) + Psc,0, (38)

where xb,l(s) = [1 Eb(s) ϑb(s)]
⊤, Psc,0 is an offset re-

quired to obtain positive values and Qb,l ∈ S2− is a negative
semi-definite matrix of coefficients, identified through semi-
definite programming. Again, we select a negative semi-
definite matrix, since it is optimal to maximize the short-
circuit force and thereby we require an upper bound. The
temperature- and energy-dependent model of the short-circuit
power is shown in Fig. 6. Translating (37) to forces and
substituting the offset of (38) results in

Fsc(s) · v(s) = F sc(s) + Psc,0 ·
dt

ds
(s), (39)

where Fsc(s) is the short-circuit force and F sc(s) is an
intermediate variable used to obtain a convex formulation
through

F sc(s) · v(s) ≤ x⊤
b,l(s)Qb,lxb,l(s). (40)

To obtain the battery losses during discharging Fb,l(s), we
translate (36) to forces and relax it, which results in

Fb,l(s) · Fsc(s) ≥ F 2
i (s), (41)

where Fi(s) is the internal battery force, which ultimately
dictates a change in battery energy. To prevent the battery
losses and short-circuit force from cooling the battery, we
explicitly define

Fb,l(s) ≥ 0, (42)
Fsc(s) ≥ 0. (43)
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In general, a Li-ion battery generates more heat during
charging compared to discharging. Therefore, we add an
additional term to the battery losses to represent the addi-
tional losses during charging. Since this term should only be
present during negative power flow, we implement a set of
inequality constraints similar to the final drive losses as

Fi(s) ≥ Fb(s) + Fb,l(s), (44)
Fi(s) ≥ (1− αcharge)·Fb(s) + Fb,l(s), (45)

where Fb(s) is the battery force at the terminals and
αcharge ≥ 0 is a coefficient that represents the additional
charging losses. In energy-limited scenarios, (44) will hold
with equality during discharging, whereas (45) will hold with
equality during charging.

In contrast to the EM cooling, where the difference
between the EM temperature and the ambient temperature
is sufficient to apply radiators, the difference between the
battery temperature and the ambient air is relatively small.
Therefore, it is common to apply a refrigerant circuit instead
of radiators to cool the battery during fast-charging pit stops
and driving, which allows the coolant temperature to drop
below the ambient level. Again, all losses are assumed to be
converted to heat, thereby changing the battery temperature
according to the first-order temperature ODE given by

Cb · dϑb

dt
(s) = Pb,l(s)− Pb,c(s), (46)

where Cb is the total lumped thermal capacity of the battery,
ϑb(s) is the temperature of the battery and Pb,c(s) ≥ 0
represents the power outflow from the battery cells to the
cooling liquid. Since we consider a battery cooling circuit
where the coolant temperature can be actively controlled,
the cooling power is free within the bounds defined as

0 ≤ Pb,c(s) ≤
ϑb(s)− ϑb,c

κb
, (47)

where ϑb,c represents the lowest achievable temperature of
the cooling liquid and κb is the thermal resistance between
the battery cells and the cooling liquid, where we again
assume both parameters to be constant. Rewriting (46) to
space domain results in

Cb · dϑb

ds
(s) = Fi(s)− Fb(s)− Fb,c(s), (48)

where Fb,c(s) ≥ 0 is the force-equivalence of the battery
cooling power. Note that we explicitly use the difference
between the internal battery force and the battery force
at the terminals to include the additional charging losses.
Similarly as with the EM cooling, we approximate the battery
temperature as

ϑb(s) = x⊤
b,ϑ(s)Qb,ϑxb,ϑ(s) + ϑb,0, (49)

where xb,ϑ(s) = [1 ϑb(s)]
⊤, ϑb,0 is an offset required to

obtain positive values and Qb,ϑ ∈ S2− is a negative semi-
definite matrix of coefficients, obtained through semi-definite
programming. The semi-definite fit of the battery temperature
is similar to Fig. 4, except that the normalized RMSE is
reduced to 0.034% due to the smaller temperature window.
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Fig. 7. Comparison between the thermal model and three data sets, of which
two represent a dynamic discharge (blue and green) and one represents a
constant current charge profile followed by a cooldown period (red). The
average normalized RMSE is 0.87% w.r.t. the maximum temperature of each
data set.

Translating (47) to forces and substituting the offset of (49)
results in

Fb,c(s) =
F b,c(s) + (ϑb,0 − ϑb,c) · dt

ds
(s)

κb
, (50)

where F b,c(s) is an intermediate variable used to obtain a
convex formulation (see Appendix) through

F b,c(s) · v(s) ≤ x⊤
b,ϑ(s)Qb,ϑxb,ϑ(s). (51)

As the coolant temperature cannot exceed the battery tem-
perature, we define

Fb,c(s) ≥ 0. (52)

To obtain the thermal parameters of the battery, we apply
the convex loss- and cooling model to a combination of
data sets recorded from vehicle telemetry. Fig. 7 shows a
comparison between the battery temperature from various
data sets and the thermal model.

To ensure safe operation of the battery, we define an upper
bound on the temperature through

ϑb(s) ≤ ϑb,max, (53)

where ϑb,max is the maximum temperature of the battery.
Due to the relatively long charge time compared to the
refueling time of a conventional race car, it is essential to
minimize the charge time. Therefore, we assume that the
battery temperature reaches the upper limit at the end of
charging, since the temperature is the main limitation. Thus
we enforce the initial battery temperature to be at the upper
bound through

ϑb(0) = ϑb,max. (54)

Lastly, we specify a terminal value for the battery tempera-
ture as

ϑb(Sstint) ≤ ϑb,N, (55)

where ϑb,N is the terminal value for the temperature and is
calculated during pre-processing using a lookup table having
the charge time as an input.

The energy consumption of the battery is modeled as
d

ds
Eb(s) = −Fi(s), (56)

7



and we constrain the battery energy as

Eb,min ≤ Eb(s) ≤ Eb,max, (57)

where Ebat,min and Ebat,max correspond to the battery
energy at the lower and upper State of Energy (SoE) bound,
respectively. Since the voltage of the battery increases with
the battery energy, it is optimal to operate the battery at
higher energy levels. Therefore, we set the initial battery
energy to the upper bound and constrain the terminal battery
energy according to the amount of energy charged after
driving as

Eb(0) = Eb,0, (58)
Eb(Sstint) ≥ Eb,0 − Eb,charge, (59)

where Eb,0 is the initial battery energy and Eb,charge is the
energy the battery receives during charging. In this way, the
battery is guaranteed to be charged back to the upper energy
bound in energy-limited scenarios. To calculate the battery
energy during charging, we leverage a lookup table with
input charge time tcharge and output Eb,charge for a given
charging current profile during pre-processing.

E. Low-level Optimization Problem

This section presents the minimum-stint-time control
problem of the electric race car. Given a predefined stint
length and charge time we formulate the control problem
using the state variables x = (Ekin, Eb, ϑb, ϑm) and the
control variables u = (Fm, Fbrake,F, Fbrake,R) as follows:

Problem 1 (Minimum-stint-time Control Strategy). The
minimum-stint-time control strategies are the solution of

min

∫ Sstint

0

dt
ds

(s) ds,

s.t. (2) − (19), (22), (25), (27) − (31), (33),
(35), (39) − (45), (48), (50) − (59).

Since the feasible domain and the cost function are convex,
the low-level control problem is fully convex and therefore
we can compute a globally optimal solution with standard
nonlinear programming methods.

III. HIGH-LEVEL RACE OPTIMIZATION

In this section, we present the high-level maximum-race-
distance control problem. First, we formulate the maximum-
race-distance control problem that optimizes the stint length
and charge time for a pre-defined number of pit stops.
Second, we model the minimum stint time by leveraging the
low-level control problem and optimizing for various com-
binations of stint length and initial battery energy. Finally,
we extend the maximum-race-distance control problem to
allow joint optimization of the stint length, charge time, and
number of pit stops.

A. Mixed-integer Control Problem

We define the high-level control problem for a pre-defined
number of pit stops in stint domain, so that we have a
fixed and finite optimization horizon. Here, each index in the
optimization variables represents a stint. The goal is then to
maximize the driven distance as the sum of all completed
laps during the stints as

maxSrace = max

nstops∑
k=0

Slap ·Nlaps(k), (60)

where Srace is the total race distance, nstops is the pre-
defined number of pit stops, Nlaps(k) ∈ N, ∀ k ∈
[0, ..., nstops − 1] is the stint length and N the set of natural
numbers, and Slap is the length of one lap. Since the vehicle
starts and stops at the pit box, the stint length should be an
integer number of laps. As it is unlikely that the vehicle is
exactly at the finish line when the race time limit is reached,
we allow the final stint length to be a non-integer number of
laps. This way, we have nstops +1 stints for nstops pit stops
and thus we have nstops integer stint lengths and one final
non-integer stint length.

The race can be divided into the car driving a stint and the
car recharging the battery during pit-stops. Given the total
race time trace, we can link it to the time to complete the
stint tstint(k) ≥ 0 and the time spent charging tcharge(k) ≥ 0
as

trace =

nstops∑
k=0

tstint(k) +

nstops−1∑
k=0

tcharge(k). (61)

We then decompose the total race into blocks consisting of
the vehicle first driving a stint followed by a pit stop in which
the battery is charged. Assuming that a stint is always energy-
limited, the charge time uniquely defines the terminal battery
energy for the prior stint and is not influenced by other
stints. Furthermore, we assume that the battery is thermally-
limited during charging, which allows us to pre-calculate the
maximum terminal battery temperature for the prior stint
through backwards integration of the battery temperature
dynamics during charging. Thereby, we uniquely base the
terminal battery temperature on the charge time, without
being influenced by other stints. Lastly, we assume that
the EM temperature reaches the upper limit at the end of
driving and assume that the charge times across consecutive
stints remains constant. This allows us to calculate the EM
temperature at the beginning of the stint by integrating the
EM temperature dynamics during charging. This way, we
uniquely define the initial EM temperature on the charge
time.

To ensure that the battery is not overcharged, we apply an
upper bound on the charge time through

tcharge(k) ≤ tcharge,max, (62)

where tcharge,max is the maximum charge time corresponding
to charging the battery from the lower to the upper energy
level. Finally, the time to complete the stint is obtained by
solving the low-level control problem, which we explain in
the next section.
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B. Stint Time Model

In this section, we derive a method for modeling the stint
time as a function of the stint length and charge time during
the pit stop prior to the stint. We solve the low-level control
Problem 1 for a combination of stint lengths and charge times
to obtain the respective achievable minimum stint time. This
way, we can create the lookup table with stint time as a
function of stint length and charge time shown in Fig. 8.
Thereby, the charge time and terminal battery energy are
linked through a pre-defined charging profile, cf. Section II-
D, whereas the terminal battery temperature and initial EM
temperature are calculated during pre-processing based on
the charge time solely, cf. Section II-B, II-D. As the stint
time increases for larger stint lengths and shorter charge
times, similar to the EM loss fit in Section II-B above,
we approximate the low-level optimization results via the
continuous function

tstint(k) = x⊤
s (k)Qsxs(k), (63)

where xs(k) =

[
1√

tcharge(k)

√
tcharge(k)

Nlaps(k)√
tcharge(k)

]⊤
and

Qs ∈ S3+ is a symmetric positive semi-definite matrix of
coefficients. The result of the fit is shown in Fig. 8. For a
convex implementation, we relax and rewrite (63) to

tstint(k) · tcharge(k) ≥ ys(k)
⊤Qsys(k), (64)

where ys(k) = [1 tcharge(k) Nlaps(k)]
⊤, and convert this

relaxation to a conic constraint [29] as

tstint(k) + tcharge(k) ≥
∥∥∥∥ 2 · zs(k)
tstint(k)− tcharge(k)

∥∥∥∥
2

, (65)

where zs = Lsys(k) with Ls being the Cholesky factorization
of Qs [29]. Since it is optimal to minimize stint time, this
constraint will hold with equality at the optimum.

The final stint of the race is not followed by a pit stop in
which the battery is charged. Therefore, the battery can be
fully depleted and there is no margin needed in the battery
temperature. Therefore, we separately model the final stint
by solving the low-level control Problem 1 for a range of
stint lengths, with a fixed charge time tcharge(nstops) =
tcharge,max and terminal battery temperature ϑb(Sstint) =
ϑb,max. With the charge time being fixed, we can then model
the final stint time by a quadratic function with the stint
length as

tstint(nstops) ≥ D⊤
s,fxs,f , (66)

where Ds,f is a vector of coefficients and xs,f =
[N2

laps(nstops) Nlaps(nstops) 1]
⊤. Fig. 9 shows the quadratic

fit of the final stint time model.

C. Optimal Pit Stop Strategy

In the previous sections, we introduced the objective
and constraints for the high-level control problem when
optimizing the race strategy for a pre-defined number of pit
stops. In this section, we apply some modifications in order
to jointly optimize the stint lengths, charge times and number
of pit stops, thereby removing the need to search over a large
space of pre-defined number of pit stops.
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Fig. 8. Fit of optimization results for a combination of stint lengths and
charge times. The normalized RMSE of the fit is 2.2% w.r.t. the maximum
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Fig. 9. Fit of the final stint times for a range of stint lengths. The normalized
RMSE of the fit is 0.58% w.r.t. the maximum stint time.

We define a binary variable bpit(k) that indicates whether
pit stop and stint k is taken or skipped as

bpit(k) =

{
0, if stint and stop skipped
1, if stint and stop taken,

(67)

and include it in (63) via the big-M formulation [30]
tstint(k) ≥ xs(k)

⊤Qsxs(k)−M · (1− bpit(k)), (68)

where M ≫ tstint,max. This way, we obtain the original
constraint if bpit(k) = 1 and we obtain a negative lower
bound when bpit(k) = 0. By defining

tstint(k) ≥ 0, (69)
tcharge(k) ≥ 0, (70)

the k-th stint time and charge time will be pushed to zero,
hence skipping the stint. We convert (68) to a cone as

M · (1− bpit(k)) + tstint(k) + tcharge(k) ≥∥∥∥∥ 2 · zs(k)
M · (1− bpit(k)) + tstint(k)− tcharge(k)

∥∥∥∥
2

.
(71)

Hence, whenever a stint is skipped, the corresponding stint
time and charge time will be zero if an optimal solution
is obtained. To prevent the stint length from diverging to
infinity whenever the stint is actually skipped, i.e., bpit(k) =
0, we define an upper bound on stint length as

Nlaps(k) ≤ Nlaps,max · bpit(k), (72)

where Nlaps,max is the maximum stint length that was used
to obtain the lookup table. This will ensure Nlaps(k) = 0
whenever bpit(k) = 0. Since the final stint is not constrained
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by a lower terminal battery temperature and can deplete the
battery without spending time on charging afterwards, the
final stint has to be part of the optimal race strategy. We
ensure this by writing

bpit(k + 1) ≥ bpit(k), ∀k ∈ [0, nstops − 1]. (73)

Suppose we set the length of the variables to N and that x
stints and stops are skipped. Then the first x entries in bpit
will be zero and the last N − x entries will be one. This
way, the final stint is always taken and the search space for
the solver is reduced.

D. High-level Optimization Problem

This section presents the maximum-race-distance control
problem of the electric race car. Given a predefined race
time we formulate the control problem using the control
variables (tcharge, Nlaps, bpit) as follows:

Problem 2 (Maximum-race-distance Strategies). The
maximum-race-distance strategies are the solution of

max

nstops∑
k=0

Slap ·Nlaps(k),

s.t. (61), (62), (66), (69) − (73).

Since Problem 2 can be solved with mixed-integer second-
order conic programming solvers, we can guarantee global
optimality upon convergence [31], [32].

IV. DISCUSSION

A few comments are in order. First, we assume that
endurance racing tires do not degrade significantly and can
be changed every stint due to the long pit stop time. Yet the
high-level control problem can be readily extended to capture
these dynamics if the lookup table is devised accounting for
tire degradation. Second, we assume that the time gained
from starting the race from the grid compared to the pit
lane is negligible on a full endurance race. Thus we do not
separately optimize the first stint. Third, when the battery
temperature is not an active constraint, the battery cooling
relaxes in order to maximize the battery efficiency. Yet
this can be interpreted as the battery coolant temperature
being controlled by the refrigerant cooling system, which
allows reduced cooling power, assuming that the system can
cope with the requested coolant temperature changes. Fourth,
in scenarios where the battery or EM temperature is very
limiting and the lower battery energy limit is not reached,
it can occur that (2) relaxes due to the positive contribution
in (27), (39) and (50). Yet, these situations will not be part
of the optimal race strategy, since charging the battery to
such an extent that the available energy during driving cannot
be used is sub-optimal. In fact, these situations were not
found to be part of the optimal strategies in this study, as
will be shown in the next section. If the solution where the
lethargy relaxes is not part of the optimal race strategy, it
is guaranteed that the physically correct solution will not be
part of the optimal strategy either, since it is always worse or
equal. Finally, we assume a fixed value for the terminal EM
temperature when pre-calculating the bound on the initial

Fig. 10. Velocity, EM power and battery SoE trajectories per lap for an 11
lap stint. The battery energy is an active constraint, thus the stint is energy-
limited. The EM power shows a gradual decrease at high velocities, thus
indicating energy management.

EM temperature. However, it can occur that this value is
not reached, e.g., in scenarios where the EM temperature is
not an active constraint. In these situations, the temperature
trajectories might not reflect reality, yet this does not affect
the resulting solution, as there are no other states that depend
on the EM temperature.

V. RESULTS

This section presents numerical results for both the low-
and high-level control problem. We base our use case on
the rear-wheel driven electric endurance race car of InMo-
tion [33], shown in Fig. 1, performing an 11 lap stint at the
Zandvoort circuit for the low-level control problem and a 6 h
race at the same circuit for the high-level control problem.
First, we discuss the numerical solutions for both control
problems. Second, we validate the high-level control problem
by comparing the optimal race strategy against fixed-pit-stop-
number strategies and compare the results to the expected
optimal combinations of stint length and charge time.

For the discretization of the model, we apply the trape-
zoidal method with a fixed step-size of ∆s = 4m. We
parse the low-level control problem with CasADi [34] and
solve it using IPOPT [35] combined with the MA57 linear
solver [36], whilst we parse the high-level control problem
with YALMIP [37] and solve it using MOSEK [38]. We
perform the numerical optimization on an Intel Core i7-
4710MQ 2.5 GHz processor and 8 GB of RAM. Thereby,
the computation time for solving the low-level problem was
about 0.68 s of parsing and 61 s of solving, whereas the high-
level problem needed 0.15 s of parsing and 8.1 s of solving.

A. Low-level Optimization

In this section, we compute the optimal trajectories for
a stint of 11 laps around the Zandvoort circuit. We set the
terminal battery capacity to the energy level corresponding to
a 5 min charge time using constant current charging, which
means that the battery is partially charged. The total stint
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Fig. 11. Velocity, power loss, battery SoE, battery temperature and
EM temperature trajectories for an 11 lap stint. The battery energy is an
active constraint, thus the stint is energy-limited and energy management
is needed. Furthermore, the maximum EM temperature is reached multiple
times throughout the stint. Therefore, the velocity profile decreases when
the maximum EM temperature is reached.

Fig. 12. The friction circles per axle showing the normalized longitudinal
and lateral forces. The vehicle is rear-wheel driven and braking is done
mostly using the EM. Therefore, the front axle (left figure) mostly generates
lateral forces, whereas the rear axle (right figure) shows more combined
forces.

time is about 1127 s with an average flying lap time of 101 s
(not counting the first and last lap).

The velocity profile together with the EM power and
SoE per lap is shown in Fig. 10. Furthermore, the total
stint velocity profile together with the powertrain losses,
SoE, battery temperature and EM temperature is shown
in Fig. 11. First, we observe that the velocity profiles of
consecutive free-flow laps are slightly different, which is
due to the EM temperature being an active constraint. Since
the EM temperature starts below the limit, the velocity
in the first laps is the highest and decreases as the EM
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Fig. 13. Evolution of the completed laps as a function of time for the
optimal strategy (black) and the strategies optimized for a fixed number
of pit stops. Jointly optimizing the number of stints can significantly
outperform other strategies by multiple laps.

temperature reaches the upper limit. In this scenario, the
battery temperature is not an active constraint, since the
battery temperature is kept at the maximum level during the
first half of the stint by reducing the cooling power, thereby
increasing the battery efficiency. In the second half of the
stint, the battery temperature decreases gradually by applying
maximum cooling to reach the terminal value. Second, the
EM power decreases gradually before the vehicle reaches a
corner and regenerative braking is applied. However, both
the power during traction as well as the regenerative braking
power decrease when the EM temperature limit is reached. In
general, the velocity profile shows smooth behavior, which
is typical for energy-limited scenarios, since regenerative
braking is used to reduce the velocity before cornering
instead of the mechanical brakes. Third, we observe that
the battery energy exceeds the terminal value before the
end of the stint. Since the battery is partially charged in
this scenario, the absolute lower energy limit is not reached.
With the use of regenerative braking, the battery energy then
reaches the terminal value exactly at the end of the stint,
indicating an energy-limited scenario. Finally, Fig. 12 shows
the normalized lateral and longitudinal per axle, along with
the maximum grip limit defined by the friction coefficient.
Since the vehicle in this study is rear-wheel driven, the
front axle only provides negative forces in the longitudinal
direction. It is noticeable that the data points do not show
the typical pattern for the front axle that is expected in
racing scenarios [39]. This is because the mechanical brakes
are only used during pit entry at the end of the stint and
because the vehicle applies regenerative braking to slow
down for cornering. Moreover, both the front and rear axles
are operated at the lateral grip limit in corners, indicating
that the cornering velocity is maximized.

B. High-level Optimization

This section presents the optimal race strategy in terms
of number of pit stops, stint length and charge time, and we
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Fig. 14. Optimal race strategy (black) in terms of stint length, charge
time and stint time with tcharge,max = 7.5min. For comparison, we show
other optimal fixed pit stops strategies together with the relaxed solution in
gray. Stint length, charge- and stint time are related and the optimal integer
solution minimizes the differences to the relaxed solution.

compare it against the strategies optimized for a fixed number
of pit stops. We select a 6 h race, yet longer races can be
solved as well with our approach, considering the very low
computational times needed by our high-level framework to
converge. To link the terminal battery energy Eb(Sstint) to
the charge time tcharge, we apply constant current charging.
Furthermore, we calculate the terminal battery temperature
ϑb,N using the losses that correspond to the constant current
profile and obtain the initial EM temperature ϑm,init by
applying maximum cooling, for the given charge time.

Fig. 13 shows the evolution of the completed laps as a
function of time for various fixed pit stop strategies. We
observe that the optimal strategy of 15 stops results in the
largest amount of completed laps, thereby confirming that
it is indeed optimal in terms of number of pit stops. The
difference in covered race length between the optimal and
fixed-pit-stop-number strategies can exceed multiple laps and
hence significantly affect the final race outcome in terms
of finishing position, highlighting the importance of jointly
optimizing the number of pit stops.

Fig. 14 shows the individual stints in terms of length and
charge time, together with the relaxed non-integer solution.
We can conclude that a constant stint length over the race
is optimal, since all stints in the relaxed solutions are equal,
with the only exception being the last stints. In this use case,
the optimal integer solution consists of the stint lengths that
minimize the difference to the relaxed solution, namely, of
a stint length between 10 and 11 laps together with a charge
time of about 4.2 min and 15 pit stops in total. For the vehicle
considered in this study, the 8 stop strategy is the fastest
strategy that involves fully charging the battery. However,
this strategy is 0.6 laps behind on the optimal race strategy,
thereby showing that fully charging the battery can be sub-
optimal. This is explained by the constant current charging,

Fig. 15. The average stint velocity for a combination of stint lengths and
charge times together with the optimal combinations and actual numerical
solutions. The optimal combinations of stint length and charge time show
a clear (linear) correlation, to which the numerical solutions are aligned.

which effectively reduces the average charging power for
longer charge times due to the battery voltage decreasing
for lower energy levels. With a different charging profile,
such as constant power charging, a different optimal race
strategy will be obtained. However, it is beyond the scope
of this thesis to optimize the charging profile. Moreover,
reducing the charge time results in shorter stints, thereby
increasing the number of pit stops needed, as indicated by
the results. This then results in more time lost in the pit lane
due to the speed limit. Thus there is a clear trade-off being
made in determining the optimal charge time. When we also
consider thermally-limited scenarios, this trade-off becomes
even more complex. In these cases, a shorter charge time
is expected to be in favor, since this increases the terminal
battery temperature. Although a longer charge time reduces
the initial EM temperature, it was observed that this has
a relatively small impact on the stint time. In fact, it was
observed that in longer stints the EM was operated relatively
more at the thermal limit compared to shorter stints, thereby
disfavoring longer charge times. Lastly, we observe that
there is a considerable decrease in race distance when an
increasing stint length cannot be compensated by an increase
in charge time, as illustrated by the difference between the 7
and 8 stop strategies. From the aforementioned observations,
we conclude that the stint length, stint time and charge time
are closely related in case of an optimal solution.

C. Validation

In this section, we validate the correctness of the model
by showing that the lethargy constraint holds with equal-
ity for various stints that were presented in the previous
section. Furthermore, we validate the convex models by
implementing the optimal inputs into a non-linear simulator
and compare the drift in battery energy. Finally, we validate
the numerical combinations of stint length and charge time
for the various strategies. For the latter, we calculate the
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Fig. 16. Battery energy calculated through the non-linear and convex
models, using the optimized inputs for the globally optimal stint of 10 laps
and 4.2 min charging.

average stint velocity vstint(k) for every strategy as

vstint(k) =
Sstint(k)

tcharge(k) + tstint(k)
, ∀k ∈ [0, nstops − 1]. (74)

The globally optimal stint should maximize the average
stint velocity, since that maximizes the driven distance per
unit of time. Fig. 15 shows the average stint velocity for
all possible combinations of stint length and charge time
together with the theoretical optimal charge times that max-
imize the average stint velocity for a given stint length, to
which we refer as the optimal combinations. These optimal
combinations show an almost linear relation between charge
time and stint length until the maximum charge time is
reached. The most noticeable exception is the single-lap stint,
which shows a relatively higher optimal charge time. This
is because a single-lap stint does not include a flying-lap,
where the vehicle starts the lap with a high initial velocity.
Thus, the vehicle requires more energy in the first lap to
accelerate towards the optimal velocity, which explains the
longer charge time for a single-lap stint. The globally optimal
stint consists of 10 laps and 4.2 min charging, which is the
exact same combination that we obtained as the optimal
strategy in the previous section. Furthermore, we observe
that the average stint velocity decreases in sensitivity around
the optimal combinations for increasing stint length and
charge time. When the maximum charge time is reached, the
average stint velocity diminishes considerably for increasing
stint lengths. Thereby, increasing the stint length beyond
18 laps quickly becomes less favorable, since it cannot be
compensated by an increase in charge time. This explains
why the 7 stop strategy is significantly worse than the others.
Finally, we note that the numerical solutions are in line
with the theoretically optimal combinations. The outliers not
aligning with the optimal combinations, e.g., at 16.4 laps and
7.5 min charging, correspond to the last stints, for which the
charge time is not part of the race and thus the calculation
of the stint velocity in (74) is not valid.

To validate the convex loss models for the EM and battery,
we calculate the battery energy trajectory by applying the
optimal input trajectories to non-linear models and compare
the result to the trajectory obtained from the optimization.
Fig 16 shows both battery energy trajectories for the globally
optimal stint of 10 laps with 4.2 min charging. From this fig-
ure, we observe small deviations, with a total drift of -1.53 %
with respect to the non-linear models, thereby indicating that

Fig. 17. Validation of the lethargy constraint for the mode of the stints
obtained from the high-level optimization.

the convex models accurately capture the dynamics of the
powertrain components.

Finally, we verify that all relaxed constraints hold with
equality. As noted previously, it can occur that the lethargy
constraint does not hold with equality in thermally-limited
scenarios. Therefore, we explicitly show this constraint for
the most frequently used stints per pit stops strategy that were
obtained in the previous section. Fig 17 shows that all data
points align with the constraint, thereby indicating that the
lethargy constraint holds with equality for all optimal stints.

VI. CONCLUSION

In this thesis, we devised a bi-level optimization frame-
work to efficiently solve the maximum-distance endurance
race strategy problem for a fully electric race car. In order
to tackle the large problem size stemming from the length of
an endurance race, we decomposed the problem into separate
stints, which we solved by extending a minimum-lap-time
convex optimization framework that can rapidly deliver the
globally optimal solution to capture multiple laps and include
more accurate force-based models to account for thermal
limitations, whilst including the vehicle dynamics directly
in the optimization using a bicycle model. This way, we
were able to compute the optimal number of pit stops, the
charging time per stop and the individual stint lengths via
mixed-integer second-order conic programming with global
optimality guarantees. Our bi-level framework could solve
the problem of a 6 h race around the Zandvoort circuit
with low computation times below 10 s for the high-level
framework. Our results showed that, from a stint perspective,
there is a clear correlation between optimal stint length
and charge time, which corresponds to the maximization
of the average stint velocity. Moreover, the results showed
that the optimal race strategy can involve partially charging
the battery, depending on the charging profile. Finally, we
highlighted the importance of optimizing both levels and
that, compared to the strategies optimized for a pre-defined
number of pit stops, jointly optimizing the number of pit
stops can significantly increase the total distance driven by
multiple laps, hence considerably improving the achievable
race outcome.

This work opens the field for the following possible
extensions: First, the model could be extended to account
for the temperature dynamics of the cooling liquids, since
they can limit the available cooling power. Second, we are
interested in the impact of tire degradation on the achievable
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stint time and the resulting race strategies. Finally, we would
like to derive a method to allow drivers to provide the optimal
inputs to the vehicle and validate the results on a real vehicle.
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APPENDIX

In Section II-E, we frequently used the following relax-
ations

x · y ≥ z⊤z, (75)

which defines a convex set. To prove convexity, we can
rewrite this constraint to a second-order conic constraint as

x+ y ≥
∥∥∥∥ 2 · z
x− y

∥∥∥∥
2

, (76)

which can be solved with global optimality guarantees [29].
Since (75) is mathematically equivalent to (76), both opti-
mization problems will converge to the same KKT points,
thereby guaranteeing global optimality.

As an alternative to second-order conic programming, we
can write (75) as a semi-definite constraint through[

x z
z y

]
⪰ 0, (77)

which can be solved to global optimality with semi-definite
programming solvers.

Another type of constraint that was used in Section II-E
for the friction circles is

x2 + y2 ≤ z2. (78)

This constraint can be directly translated to a second-order
conic constraint as ∥∥∥∥xy

∥∥∥∥
2

≤ z, (79)

which again can be solved to global optimality [29], thereby
proving that (78) defines a convex set.
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