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Abstract 
The low ΔT syndrome is a phenomenon which affects the performance of the chilled water system in 
buildings, and if left unaddressed, can have a significant negative impact on the energy consumption 
of the system and human comfort. The syndrome is observed with a reduced return water 
temperature and an increased mass flow rate through the cooling coil. Both phenomena occur when 
certain faults are present in the air handling unit and/or chilled water system, which lead to a reduced 
cooling output. As a result, the energy consumption of the pumps and chiller increase, to account for 
the reduced cooling output. In some instances, the system is not able to meet the cooling requirements 
hence leading to human discomfort. Most of these faults cannot be easily detected by the building 
management system and are hence not reported to the operator. The issues come to the attention of 
the operator only when severe comfort complaints or increased energy bills are observed.  To prevent 
this, it is necessary to detect and diagnose the low ΔT syndrome at an early stage, so that the faults 
which cause it can be fixed at an early stage, leading to energy savings and better comfort.  

Since there are more than 20 faults that lead to the low ΔT syndrome, the most impactful ones have 
been selected using a Pareto analysis. The analysis was conducted with the help of a building 
simulation software called EnergyPlus, and it was found that the stuck valve fault and reduced supply 
air temperature fault had the largest impact on the energy consumption of the system. A fault 
detection and diagnosis tool was developed which can detect the low ΔT syndrome and diagnose the 
specific fault which caused it, at an early stage. This helps in reducing the unnecessary energy 
consumed during the period when the fault goes unnoticed for a long period of time. The low ΔT 
syndrome is detected using XGBoost based regression algorithms which detect anomalies in the 
cooling coil valve position and return water temperature. The faults are diagnosed using a diagnostic 
Bayesian network, which is based on the 4S3F (4 symptoms 3 faults) framework, where the diagnostic 
results are provided in a probabilistic manner.  

The tool was developed and validated using the data from two case study buildings in the Netherlands. 
It was validated during a final test conducted by introducing the stuck valve and reduced supply air 
temperature faults into the system. The developed tool was able to successfully detect the low ΔT 
syndrome with a detection accuracy of 96% and diagnose the faults by labelling them with a diagnosis 
accuracy of 93%.  
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Executive summary 
 
Project summary 

With the rising global temperatures around the world due to climate change, there is an increasing 
demand for cooling in indoor spaces to ensure that occupants can live and work in a comfortable 
environment. To ensure this, the chilled water systems in buildings are operated more frequently than 
usual to comply with the comfort requirements. With the prolonged and more frequent use of the 
equipment, the chance of faults occurring in the system increase. One such phenomenon which affects 
the performance of the chilled water system in buildings/distribution plants is the low ΔT syndrome. 
The main characteristics of the low ΔT syndrome are a reduced return water temperature and an 
increased mass flow rate through the cooling coil. These characteristics occur when certain faults are 
present in the system, which lead to a reduced cooling output. The consequences of the low ΔT 
syndrome are an increased energy consumption and/or inability to meet the cooling requirements 
leading to discomfort. To avoid both issues, a fault detection and diagnosis tool has been developed 
to detect the low ΔT syndrome swiftly. Bayesian networks are used to diagnose the various faults which 
can cause the low ΔT syndrome.  

Product 

The tool is developed as a larger continuous monitoring tool to detect and diagnose faults in the HVAC 
system, with more focus on the cooling, heating and heat recovery system. The special focus of this 
project is on the development of an algorithm to detect the low ΔT syndrome. The tool is designed as 
an online webpage which can be hosted locally or on the cloud. It consists of multiple sub-pages for 
main alarms, diagnostic Bayesian network analysis and machine learning analysis. The tool is intended 
for use by multiple types of end users including HVAC experts, facility and building managers and 
machine learning experts, hosting special features for each of the end users. The tool provides a simple 
and easy to understand alarm system for when the low ∆T syndrome has been detected (red indicator 
for faulty conditions and green indicator for normal conditions), with multiple to-do actions and 
interactable graphs to assist the user in the final decision-making process.
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Introduction                       1 
__________________________________________________________________________________ 

This chapter introduces the problem related to the low ∆T syndrome and is divided into three sections. 
In section 1.1, the problems related to the low ΔT syndrome are discussed along with the research 
related to its detection and diagnosis. Section 1.2 describes the overall methodology with the division 
of tasks into structured work packages, with each of the subtasks listed as sections of the different 
chapters in the thesis. Finally, in section 1.3, the layout and organization of the thesis is explained.   

1.1 Problem description 
The built environment contributes to about 37% of the total energy consumption in the Netherlands 
(RVO, 2021). With an increasing trend of warming witnessed every year, the cooling demand is 
expected to increase in the European continent (Lhotka et al., 2018). To cope with this rising cooling 
demand, the energy consumption for cooling is also expected to increase. Around 63% of this cooling 
energy use comes from Heating, Ventilation and Air-Conditioning (HVAC) systems (Marquart & Lange, 
2017). The HVAC system aims to maintain thermal comfort and the required indoor air quality for 
human occupation. Research has shown that recommissioning of HVAC systems can lead to a 10-20% 
savings in energy use (Friedman & Piette, 2001; Mills, 2011).  

 

Figure 1: Primary-secondary chilled water system 

In an Air Handling Unit (AHU), cooling and dehumidification of the air is achieved by a cooling coil, 
where the cooling capacity is delivered by chilled water (CHW) which is supplied by a chiller system, 
an Aquifer Thermal Energy Storage (ATES), or a combination of both as used in district cooling systems. 
The most common type of chiller flow system used is the primary-secondary flow system (P-S) as 
shown in Figure 1. The P-S system typically consists of a constant flow primary circuit and a variable 
flow secondary circuit. This system is an improvement from the traditional constant flow system which 
has a lower efficiency compared to the P-S system (Gao et al., 2016). The efficiency of the system, 
which is defined as the ratio of the cooling energy output to the electrical input, is mainly determined 
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by the cooling capacity provided by the chiller and the capability of the cooling coils to supply the 
required load. The performance of the cooling coil is mainly attributed to the water-side temperature 
difference and the mass flow rate (MFR) during part-load conditions. A smaller temperature difference 
between the supply water and return water temperatures (RWT) will lead to an inefficient chilled 
water system, reducing the cooling output and causing energy wastage to operate extra chillers and 
pumps to keep up with demand (Kirsner, 1996). This phenomenon of a reduced temperature 
difference across the cooling coil with an increased demand of MFR to keep up with system demand 
is called the low ∆T syndrome. The low ∆T syndrome is a problem that affects the performance of the 
cooling coils and eventually the chiller. Addressing this problem can be a solution to improving the 
efficiency of chilled water systems and improving comfort conditions. 

One of the ways to identify and eliminate the low ∆T syndrome is by using Fault Detection and 
Diagnosis (FDD) systems. FDD systems are used in the maintenance of building installations with the 
main purpose of detecting faults and diagnosing them, so that corrective measures can be taken to 
solve the occurring faults in the system. The aim of an FDD system is to detect a fault (here, the low 
∆T syndrome) by observing certain signs (e.g., reduced RWT and increased MFR) and then diagnosing 
the causes (e.g., stuck cooling coil control valve, reduced supply air temperature setpoint) leading to 
the fault. Few studies have been conducted that used data-based and knowledge-based grey box 
models to detect the low ∆T syndrome for e.g., using simplified cooling coil models (Yan et al., 2018) 
and comparison of performance indices (Gao et al., 2012, 2014, 2016). In these studies, the FDD 
algorithms were developed for specific faults using methods which cannot be easily generalised and 
scaled for commercial application. Therefore, it is seen that there are no studies that have worked on 
an FDD tool which can be easily scaled for different HVAC systems.  

The aim of this project is to design and develop an FDD tool to detect and diagnose the low ∆T 
syndrome, which can then be easily integrated with building management systems (BMS) (in this 
project, the BMS of Kropman Installatietechniek B.V.: named InsiteView), for continuous monitoring, 
and can be easily scaled up for commercial application. The FDD tool is developed as a larger 
continuous monitoring tool to detect and diagnose faults in the HVAC system, with more focus on the 
cooling, heating and heat recovery system. This project is contributed by three PDEng trainees. The 
contributions related to the heating and heat recovery system are developed by one PDEng trainee, 
whereas the basic prototype of the FDD tool was developed by another. The projects are supported 
by Rijksdienst voor Ondernemen Nederland (RVO), TKI Urban Energy and Eindhoven Engine. The end 
goal of all the PDEng trainees is to develop a product design that could later be further developed for 
commercial expansions for the benefit of the partner company and stakeholders involved. 

1.2 Design methodology and work packages 
To realize the development of the FDD tool, the following design approach has been developed as 
shown in Figure 2, where the project is divided into six work packages (WP). As a part of the 
development process, three different case study buildings were used as show in Table 1. The buildings 
include two simulation models and two real case study buildings, where a simulation model was made 
of one of the real buildings. A simulation model of a 5-zone small office building and an office building 
in Breda, was used for the analysis of the low ΔT syndrome. The office building in Breda and a school 
building in Nijmegen were used for the development of the FDD algorithms and the validation of the 
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FDD tool. Table 1 also includes the different activities conducted for each of the case study buildings, 
along with a description of the HVAC system. 

Table 1: Case study buildings 

Case study building 5-zone CAV office building Office building in Breda School building in Nijmegen 

Type Simulation Simulation and real Real 

Activities • Fault impact 
analysis 

• Fault characterization 
analysis 

• Fault experiments 
• FDD tool development 
• FDD tool validation 

• Fault experiments 
• FDD tool development 

AHU One central AHU for 
five zones 

One central AHU for three 
zones, with cooling coil for each 
zone 

Two AHUs operating in 
parallel for the whole school 

Ventilation system CAV CAV CAV 

CHW system  Constant primary – 
Variable secondary 
with three chillers 
staged in parallel 

Constant primary only with one 
chiller. 

Variable primary – variable 
secondary system with ATES 
and heat pump. 

 

The simulation models of the 5-zone building and the office building in Breda were used for the fault 
impact analysis and the fault characteristic analysis respectively. The office building in Breda and 
school building in Nijmegen were used for conducting experiments and introducing faults in the HVAC 
system to reproduce the low ΔT syndrome. The fault experiments for the school building in Nijmegen 
were conducted by a PhD researcher and were therefore not carried out during the timeline of this 
project. The data from both case study buildings were used for the development of the FDD tool and 
the office building in Breda was used for the validation of the tool. 

 

Figure 2: Project work packages and methodology 

Problem analysis (WP1)  
In WP1, the low ΔT problem was thoroughly analysed and studied from both scientific literature as 
well as data from case study buildings. This was done to get a thorough understanding of possible 
faults which can cause the low ΔT syndrome. The data analysis helps to understand if it is possible to 
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successfully identify the low ΔT syndrome without fault labels or historical fault records, with high 
accuracy. The different FDD methods were also studied from scientific literature to understand the 
possible methods which could be used to detect the fault. 

Low ΔT characterization (WP2) 
The characterization of the low ΔT syndrome was done as a part of WP2, to identify the most impactful 
faults in terms of energy consumption and comfort. It was also done to understand the characteristics 
of the specific faults in terms of MFR increase and RWT decrease. The most impactful faults would 
then be included in the FDD tool. The characterization was conducted using EnergyPlus where two 
case study buildings were analysed. Fault experiments were conducted where the identified faults 
were introduced into an operational HVAC system of a case study building to replicate the low ΔT 
syndrome and produce labelled faulty and fault-free data. This dataset was then used for the 
development of the FDD tool. 

FDD tool design (WP3) 
The most suitable fault detection and fault diagnosis methods were chosen from the literature review 
done in WP1, based on the general requirement of being scalable and generalisable. Different 
regression-based machine learning (ML) algorithms (Support Vector Regression, Neural Networks, 
Ensemble methods) were analysed and compared, and the most suitable algorithm was selected for 
the fault detection module. The labelled dataset from WP2 was used for the comparison and to test 
the ability of the model to detect the low ΔT syndrome. A diagnostic Bayesian network was used as 
the fault diagnosis module.  

Functional integration of FDD tool (WP4) 
The different modules (data pre-processing, fault detection, fault diagnosis) designed in WP3 were 
integrated into one tool in a modular format to ensure replaceability and scalability. The tool was 
designed based on the requirements of the different stakeholders of the project. Prototypes of the 
tool were developed in a prototyping platform called Figma, where the users’ perspective into design 
was considered with the help of interviews by following the agile software development method. The 
final tool was developed in Python using a dashboarding platform known as Dash.  

FDD tool testing (WP5) 
The final version of the FDD tool was verified against the stakeholder requirements and validated by 
conducting in-situ live testing where faults were introduced into the system. The tool was evaluated 
for the different fault cases where its capabilities, drawbacks and limitations were analysed.  

1.3 Thesis layout   
Based on the different work packages and the methodology, the thesis has been laid out in the 
following order: 

• Chapter 2 – Problem definition: Low ∆T syndrome. This chapter contains detailed information 
about the low ΔT syndrome, providing more insights into the specific causes of the 
phenomenon and their consequent impact on the system. A brief introduction to FDD systems 
is also presented. The results from this chapter include the identification of the most impactful 
faults, which is then further used in chapter 3 for FDD method selection. 
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• Chapter 3 – Working phase: Algorithm development. This chapter gives more information 
about the selection of the required FDD methods and development of the algorithms. The 
developed algorithms are then used as back-end components in the final product, which is 
explained in chapter 4. 

• Chapter 4 – Selection phase: Product features. This chapter sets out the complete product 
development process with a focus on stakeholder requirements analysis, the product 
architecture and the front-end layout.  

• Chapter 5 – Shaping phase: Product development. This chapter discusses the verification of 
the product in terms of the stakeholder requirements and includes a validation with a live in-
situ testing of the FDD tool followed by an evaluation of the tool.  

• Chapter 6 – Discussion. This chapter provides an analysis of the different modules of the FDD 
tool, including the limitations and drawbacks. 

• Chapter 7 – Conclusion. This chapter concludes the project, providing recommendations for 
future work and other information regarding relevant publications related to this research. 

A business plan is also proposed (presented in Appendix A9) with a financial analysis for the possibility 
of commercial deployment of the FDD tool.  
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Problem definition: Low ΔT syndrome & FDD methods     2 

__________________________________________________________________________________ 

In this chapter, the low ∆T syndrome and FDD methods are discussed in more detail. In section 2.1, a 
scientific literature summary of the low ΔT syndrome is discussed explaining the characteristics of the 
phenomenon and the different kinds of faults leading to it. The different FDD methods which could be 
used to detect the low ∆T syndrome are studied in section 2.2. In section 2.3, the characterization of 
the low ΔT syndrome is done including a fault impact analysis and a fault characteristic analysis. Finally, 
in section 2.4, the fault experiments conducted in the use case buildings are explained.  

2.1 Literature summary: Low ∆T syndrome 
The low ∆T syndrome is an infamous phenomenon related to the CHW system in a building/distribution 
plant. The problem was noticed during the 1980s when the P-S chilled water system was widely used. 
It was even noticed in the famous NASA Johnson Space Centre in USA, where a central CHW plant 
supplied CHW to 40 buildings on the campus. The issue was that even though the plant was designed 
for a ∆T of 8.9 °C across the central plant chillers, the system could attain only an average ∆T of 3.9 °C, 
with ∆T of 5.6 °C at its best (Kirsner, 1995).  

A CHW system is designed to meet the demand load of the building(s) by supplying CHW with the 
required cooling capacity. This cooling capacity is defined by the waterside temperature difference and 
the MFR. In the instance when certain faults occur in the system, the RWT would be lower than usual. 
This leads to an increased demand of MFR to keep up with the required cooling capacity to cool the 
air. This smaller temperature difference between the supply water and return water will lead to an 
inefficient chilled water system, reducing cooling output and causing energy wastage to operate extra 
chillers and pumps to keep up with demand (Kirsner, 1996). This phenomenon of a reduced 
temperature difference across the cooling coil with an increased demand of flow to keep up with 
system demand is called the low ∆T syndrome (Kirsner, 1996).  

The issue with the low ΔT syndrome is that MFR and the cooling load do not keep up with each other, 
hence requiring additional chillers to maintain the flow requirements even though they might not be 
fully loaded (Taylor, 2002), i.e. not running at its full capacity. Otherwise, the flow direction in the 
common leg would reverse (see Figure 1). The subsequent result is the increased unnecessary energy 
consumption of the chiller and pump, and/or the failure to meet the cooling loads, hence leading to 
occupant discomfort. To prevent the low ΔT syndrome from happening, it is important to understand 
what are the causes which lead to the degradation of ΔT. Table 2 shows a selection of possible faults 
which have been identified (Dai et al., 2021; Taylor, 2002). These various faults have been classified as 
design faults, abrupt faults or incipient faults. This is done in order to identify which faults can be 
detected from continuous monitoring and data analysis methods.  
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Table 2: Classification of known causes of the low ΔT syndrome 

Design faults Abrupt faults Incipient faults  

Use of 3-way valves Reduced supply air temperature (SAT) 
setpoint 

Reduced coil effectiveness through 
fouling 

Improper coil selection Supply air temperature sensor offset Air filter fouling 

Improperly selected control valves Cooling coil control valve failure  

No control valve interlock Supply fan control failure  

Improperly piped coils High chilled water supply temperature  

Outdoor air economizers Improper PID parameter settings  

100% outdoor air systems Increased supply water temperature 
(SWT) 

 

Unbalanced water loops   

Oversized pumps   

 

Table 2 shows that most of the causes of the low ΔT syndrome are design faults and abrupt faults. 
Design faults on one hand can be avoided during the design or installation phase of the HVAC system 
and can also be avoided once commissioned but with more complexity. Abrupt faults on the other 
hand can be fixed during operation since they are mostly failure or control faults. Incipient faults occur 
over a period of time and cannot be suddenly detected. Faults like coil fouling due to biocontamination 
usually occur in hot and humid climates like in Florida (Firrantello et al., 2018) and is not often observed 
in a moderate climate like in the Netherlands. A detailed 8-year analysis of cooling coils in an office 
building near Schiphol showed that the effectiveness of the coil did not reduce and fouling was unlikely 
also due to the fact that the coils were epoxy coated to prevent corrosion from salty air (Sembian, 
2019). Air filter fouling is also prevented in most of the installations using predictive maintenance 
techniques and timely replacement of filters. The focus of this study is therefore mostly on abrupt 
faults. 

As a part of a continuous monitoring system, an FDD tool can mostly detect abrupt faults since it uses 
anomaly detection/ pattern recognition models. Design faults being inherent faults which exist from 
the beginning of system life are rather difficult to be detected using data-based FDD methods. A more 
detailed explanation of the different FDD methods is explained in the next section. A more detailed 
analysis of the different abrupt faults, their characteristics, and their impacts are explained in section 
2.4. 

2.2 Literature summary: FDD methods 
FDD tools play an important role in improving building energy efficiency and reducing equipment 
downtime, energy penalties, and service costs (Zhao et al., 2019). Malfunctions and degradations of 
sensors, actuators, controllers and other HVAC components, which can lead to an uncomfortable 
indoor environment and/or increase the total HVAC energy consumption can be detected using FDD 
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tools. These FDD tools can be commissioned to monitor the data obtained from the BMS and provide 
insights to a user if certain faults are detected.  

FDD is split into two parts, fault detection and fault diagnosis. Fault detection is the process of 
identifying if a fault is present in a system by observing certain symptoms or anomalies. Fault diagnosis 
is the process of identifying the exact fault present in the system and its location. Generally, both fault 
detection and fault diagnosis methods can be split into data driven-based and knowledge driven-based 
methods.  

2.2.1 Fault detection  
Figure 3 shows the classification of different fault detection methods. Knowledge driven-based 
methods generally rely on domain knowledge where fault detection is based on simple rules having 
clear physical meaning. The most common ruleset used is the air handling unit performance 
assessment rules (APAR) (Schein et al., 2006). They are generally easier to develop and the rule sets 
can be easily expanded (Bruton et al., 2014). In contrast, data driven-based models work by detecting 
changes in patterns or anomalies in the measured data. They usually require a sufficient amount of 
data to function properly and can be easily deployed to other HVAC systems as well (Bruton et al., 
2014).  

 

Figure 3: Classification of fault detection methods for building energy systems (Zhao et al., 2019) 

Under the umbrella of data-driven methods, classification-based methods work on the principle of 
assigning data into specific classes, where data can be assigned as either faulty or fault-free (one-class 
classification) or be assigned into multiple fault classes (multi-class classification). For this approach, 
there is a need for a well-developed dataset with labelled faulty and fault-free data points. Since this 
is not practical for large scale commercial applications, classification-based methods are ruled out. 

Unsupervised learning-based methods, which include different clustering-based methods, try to 
detect faults by splitting the data into different clusters based on their statistical characteristics (Zhao 
et al., 2019). The drawback with this method is that the clusters would not be labelled for faults specific 
to the low ΔT syndrome making it difficult for fault diagnosis.  

Regression-based methods use anomaly detection as a means of detecting a fault, where the model, 
which is trained to predict fault-free data, detects a deviation from the measured value and signals a 
fault. This method is more suitable for situations where it is not possible to develop faulty training data 
sets and labelled data. This approach is more scalable with better chances of commercial development.  

Figure 4 shows a flow diagram of how regression-based fault detection methods work. In this method, 
an ML model is trained and developed offline using pre-processed fault-free operational data of the 
building. The ML model, therefore, predicts fault-free operational data. During operation of the FDD 
tool, the ML model makes a prediction of the variable of concern and a comparison is made between 
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the predicted value and the measured value. A fault is then detected if the residual values (predicted 
value – measured value) are greater than a specified threshold. Once a fault is detected, the data set 
is sent to the fault diagnosis module.  

 

Figure 4: Flow diagram of regression-based fault detection methods (Zhao et al., 2019) 

2.2.2 Fault diagnosis  
The classification of fault diagnosis methods is very similar to fault detection. Figure 5 shows the 
classification of different fault diagnosis methods, with the main classification as data driven-based 
and knowledge driven-based methods. The data driven-based fault diagnosis methods which are 
classification and unsupervised learning-based, rely on similarity of patterns and statistical 
characteristics to diagnose the fault. In this case as well, large amounts of labelled faulty data are 
required to achieve a good quality diagnosis, something which is not always practically and 
commercially feasible when considering scalability. Within knowledge driven-based methods, the 
inference-based method is an attractive fault diagnosis method, since expert domain knowledge is 
more effective than data-based approaches especially in situations where diagnostic information is 
incomplete and uncertain (Zhao et al., 2019). A few highlights of knowledge-based methods include 
probabilistic reasoning and fuzzy reasoning which is observed in Bayesian networks and fuzzy logic 
methods.  

 

Figure 5: Classification of fault diagnosis methods for building energy systems (Zhao et al., 2019) 

Fuzzy logic methods include complex “IF-THEN” rules and known facts to produce conclusions from a 
set of input variables. The issue with fuzzy logic method is that as the complexity of the problem grows, 
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the number of fuzzy rules and sets increases as well, making it difficult to adjust and tune the fuzzy 
sets if required.  

A Bayesian network is a probabilistic graphical model that represents the relationships of probabilistic 
dependence within a group of variables (Zhao et al., 2019). It consists of nodes and edges, where nodes 
are divided into fault nodes and symptom nodes, and edges link the fault node with the symptom 
node.  The edge which connects the nodes is directional in nature which indicates that a fault causes 
specific symptoms to occur, as shown in Figure 6.  Each fault node has a prior probability assigned to 
it and the edge between the fault node and symptom node has a conditional probability assigned to 
it, indicating the probabilistic relationship between the fault and the symptom. The main advantage of 
Bayesian networks is that labelled faulty data is not required for developing the FDD tool since the 
probabilistic relationships between faults and symptoms are obtained from domain knowledge.  

 

Figure 6: Schematic of a Bayesian network (Zhao et al., 2019) 

2.3 Characterization of the low ΔT syndrome 
The different abrupt and incipient faults mentioned in section 2.1 have varied characteristics which 
impact the cooling system differently. This means that each of the faults shows the low ΔT syndrome 
differently. During the development stage of the FDD tool, it is important to focus on those faults which 
have the largest impact on the system, i.e., the energy consumption of the pumps/chillers or the unmet 
cooling hours in the zone. The Pareto rule can be used here, where 20% of the faults account for the 
top 80% of the extra energy consumption in the system (Corten, 2019). The intensity of the observed 
low ΔT syndrome, and the subsequent impact on the energy consumption and comfort due to the 
different faults can be studied using building energy simulation software.  

Building performance simulation software like EnergyPlus is useful to simulate operational faults in an 
HVAC system of a building to understand their influence on energy consumption and occupant comfort 
(Zhang & Hong, 2017). It has the capability to simulate different kinds of faults including fouling faults, 
sensor offset faults, performance degradation, control faults and stuck faults. The availability of native 
fault modelling objects within EnergyPlus makes it a highly desirable simulation tool compared to other 
commercially available software. Previous studies of fault impact analysis have already been done 
where air filter fouling, coil fouling and sensor offset were simulated (Zhang & Hong, 2017). This study 
would expand the list of faults and focus more on the low ΔT syndrome.  

The characterization of the low ΔT syndrome is divided into two parts. In the first part, the simple 5-
zone small office building model was used to conduct a fault impact analysis and eventually identify 
the most impactful faults using the Pareto rule. The 5-zone small office building is a standard validated 
model developed by the United States Department of Energy (DOE). Here, the most impactful faults 
were determined based on the influence on key performance indicators like chiller energy 
consumption, pump energy consumption, and unmet cooling hours.  
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For the second part, the identified faults were studied in more detail in a simulation model of an actual 
building which is also one of the case study buildings used in this project. The building simulation model 
of the office building in Breda was developed in EnergyPlus, with the main purpose of understanding 
the intensity of the faults and the corresponding increase in MFR and decrease in RWT. The simulation 
model was validated by comparing the chiller energy consumption, cooling coil power, MFR, and 
temperature difference for both high demand cooling days and low demand cooling days. Since the 
EnergyPlus simulation was not linked with real-time data, it was necessary to find days where the 
weather data in the simulation matched with real conditions. For this purpose, a comparison was made 
between the hourly outdoor air temperature profiles of the real data and simulation data in terms of 
quartiles, median and mean values, and only those specific days were chosen where the values were 
similar. The detailed results of the validation are shown in Appendix A1. 

2.3.1 Fault impact analysis  
For the fault impact analysis, the 5-zone office building was used, a 3-dimensional visualization of 
which is shown in Figure 7.  A few changes were made to the original DOE model. For instance, a P-S 
chilled water system was used with three chillers staged in parallel. The building uses a CAV system, 
where the system provides constant airflow to the zones and the zone temperature is controlled by 
varying the SAT.  The purpose of including these modifications was to study the low ΔT syndrome in 
detail, which occurs more in P-S chiller water systems with multi-staged chillers. Moreover, both the 
case study buildings used in this study use CAV systems. From Table 2, only the abrupt and incipient 
faults were considered for fault impact analysis. Even though it was determined that incipient faults 
like coil fouling rarely occur in a Dutch climate, it is nevertheless included in the analysis to get an 
understanding of its impact on energy and comfort. Out of the nine faults mentioned, only six of them 
were analysed since it was not possible to simulate all the abrupt and incipient fault cases in 
EnergyPlus. The faults were introduced using the native EnergyPlus operational faults module, the 
component design module, and the Energy Management System (EMS) module. The various faults and 
the method of introducing the fault in EnergyPlus are shown in Table 3. 

 

Figure 7: 3D model of 5-zone office building 
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Table 3: Implemented faults and methods for the fault impact analysis of the 5-zone building model 

Fault type (abrupt 
and incipient) 

Intensity Method of implementation 

Reduced SAT Reduce by 2K. Reduce the temperature setpoint by 2K in operational 
schedules. 

Stuck cooing coil valve Stuck at 75%. Use EMS to fix the MFR actuator at 75% of max value. 

Stuck fan fault Stuck at lower (70%) and higher (130%) 
position compared to design value. 

Set the fan flow rate to desired value in component 
module. 

Cooling coil fouling Reduced effectiveness by 30%. Reduce effective UA value by 30% using operational 
faults module. 

SAT offset Offset of +2K. Introduce an offset of +2K using operational faults 
module. 

Increased SWT Increase by 2K. Increase SWT setpoint by 2K in operational schedules. 

 

The main parameters influenced by the presence of the low ΔT syndrome are the secondary pump 
energy consumption, the chiller energy consumption, and the unmet cooling coil hours which indicate 
the number of hours where the comfort conditions were not met by the cooling system. The most 
impactful faults would be decided based on which parameters have the highest impact. The detailed 
results of MFR and RWT trends for each fault case are shown in Appendix A2. The comparisons of 
energy consumption of the pump and chiller were made for one particular day during the whole 
period, where the outdoor air dry-bulb temperature was between 10°C and 24°C. This specific range 
was chosen since it is the average daily temperature range found in the Netherlands during the cooling 
season (CBS, 2019). For the same day, there were no unmet cooling hours present for the baseline 
case, as well as faulty cases. A yearly analysis showed that unmet cooling hours occurred for less than 
six days a year. Therefore, an annual comparison is done for unmet cooling hours.  

Figure 8, Figure 9, and Figure 10 show the percentage change in energy consumption of the chiller, 
energy consumption of the pump, and the unmet cooling hours respectively (annual basis). For the 
energy consumption, shown in Figure 8 and Figure 9, it can be seen that in almost all cases there is an 
increase in energy consumption, with the largest increase present for the stuck valve fault and the 
reduced SAT fault. The energy consumption and unmet cooling hours (shown in Figure 10) are the 
same for both the reduced SAT fault and the SAT offset fault. This is because in the simulation, both 
faults have the same net effect of reducing the SAT. Therefore, for the next set of studies only the 
reduced SAT fault is considered. 

The energy consumption increase is the lowest for the fouling and higher airflow fault, with values less 
than 0.5% (except for a change in pump energy consumption due to fouling, where it is approximately 
10%). Compared to the other fault cases, the increase is negligible. 

For the increased SWT fault, the chiller energy consumption decreases whereas the pump energy 
increases. This is because the leaving chilled water temperature from the chiller is higher than normal 
(by 2K) hence requiring lesser energy to generate the required cooling. But on the demand side, since 



13 
 

the supply water temperature is higher, the pump needs to supply more water to maintain the cooling 
power supplied to the air, therefore increasing the energy consumption.  

The energy consumption of both chiller and pump decreases when the lower airflow fault was 
introduced. This happens because, when the airflow rate is reduced, the cooling capacity of air reduces 
as well (since the SAT setpoint remains the same). Due to this, lesser water is circulated through the 
coil to provide lesser cooling power to the air. Consequently, the energy consumption of the pumps 
and chiller decrease as well.  

 

Figure 8: Percentage change in chiller energy consumption 
for faults compared to fault-free scenario (5338 kWh) in 5-

zone building. Comparison is made for a specific day. 

 

Figure 9: Percentage change in pump energy consumption 
for faults compared to fault-free scenario (136 kWh) in 5-

zone building. Comparison is made for a specific day. 

For the percentage change in unmet cooling hours (annual comparison), as seen in Figure 10, the 
largest increase is seen in the lower airflow fault. This is because the supply air, even though attaining 
the required temperature, does not have the required cooling capacity to cool the indoor air 
sufficiently, due to the reduced air flow rate. In this case, the supply air temperature setpoint is 
constant. In reality, due to comfort complaints, the SAT setpoint would be reduced to account for the 
reduced cooling capacity from the lower airflow fault. Only in this case, when the SAT setpoint is 
reduced, would the low ΔT syndrome appear in the system. It is therefore clear that the lower airflow 
fault in itself does not cause the low ΔT syndrome for CAV systems, since the main characteristic 
symptoms of increased MFR and reduced RWT were not observed.  

From this study, it is concluded that among all the faults simulated, the stuck valve and reduced SAT 
faults are the ones (~ 20% of all faults) with the largest energy impact on the system. Even though the 
lower airflow fault showed signs of increased discomfort, there was no low ΔT syndrome detected in 
the system. Low ΔT syndrome would appear in the system only when the SAT setpoint is reduced due 
to insufficient cooling from the lower airflow fault.  
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Figure 10: Percentage change in unmet cooling hours for faults compared to fault-free scenario (79 h) in 5-zone building. 
Comparison is made for a whole year. 

The next step is to analyse the most impactful faults in detail by observing the MFR increase and RWT 
decrease. This helps to understand how much deviation is expected from the MFR and RWT when a 
fault is present. For this purpose, the fault characteristic analysis was done, as explained in the next 
subsection. The analysis was done for the simulation model of the office building in Breda since it 
would give a better understanding of the characteristics of the low ΔT syndrome when it would be 
simulated in the form of fault experiments at the real building. 

2.3.2 Fault characteristic analysis  
From the fault impact analysis, it was identified that the stuck valve fault and the reduced SAT fault 
are the most impactful faults in terms of energy consumption. Both these faults were introduced into 
the simulation model of the office building in Breda for a complete simulation period of one year. The 
simulation model was validated for a few days, by comparing important variables like chiller energy 
consumption, cooling power, waterside ∆T across the cooling coil, etc., with data from the BMS. The 
detailed validation is shown in Appendix A1. Figure 11 shows the 3D model of the office building in 
Breda, used in EnergyPlus.  

 

Figure 11: 3D model of office building in Breda 

The modelling was done taking the properties of the thermal envelope, the division of HVAC zones, 
specific setpoints and schedules obtained from the BMS of the building, and the detailed design of the 
HVAC system into account. The model was developed in DesignBuilder and later imported to the 



15 
 

standalone EnergyPlus simulation software, to conduct the fault simulations. The focus of this study is 
to understand the characteristics of the low ΔT syndrome in terms of MFR increase and RWT decrease 
when the two identified faults are introduced.   

Figure 12 shows the annual percentage change in MFR and RWT for the stuck valve and reduced SAT 
faults for two fault severity levels. On a yearly average, the 75 % stuck valve fault is observed to have 
the largest change in MFR and RWT whereas the reduced SAT – 1K fault is observed to have the lowest. 
Both 50% stuck valve and reduced SAT – 2K show similar trends in terms of MFR increase and RWT 
decrease. It is also worth noting that the MFR increases only by approximately 30% for the reduced 
SAT – 1K fault, whereas the other faults have values greater than 60%. Similarly, in terms of RWT 
decrease, the reduced SAT – 1K fault shows only an 8% change whereas the other fault show values 
greater than 15%. It is therefore possible that the MFR increase and RWT decrease might not be very 
substantial for the reduced SAT – 1K fault in an actual situation.  

 

Figure 12: Annual percentage change in MFR and RWT from fault characteristic analysis 

The comparison of the trends of MFR and RWT between the faulty and fault-free cases, for each of the 
fault cases for a specific day, is shown in Appendix A3. 

2.4 Fault experiments  
From the fault impact analysis, it was identified that the stuck valve fault and the reduced SAT fault 
have the largest impact on the energy consumption of the system. In order to successfully develop an 
operational FDD tool which can detect the low ΔT syndrome, it is necessary to introduce these faults 
into the system, reproduce the low ΔT syndrome and generate labelled faulty data so that the 
developed FDD tool can detect the low ΔT syndrome.  

For the experiments, the office building in Breda was utilized which has also been developed as a living 
lab, where temperature, humidity, and MFR are measured at multiple positions in the HVAC system. 
The building uses a CAV system, divided into three zones: north, south and office, where each of the 
zones are conditioned separately by a dedicated cooling coil. The HVAC installations were retrofitted 
with additional sensors at multiple locations to ensure that the maximum amount of data was available 
for analysis. The cooling coil water circuit was also retrofitted with pressure sensors, energy meters 
and MFR meters on both the airside and waterside which make it ideal to study and analyse the low 
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ΔT syndrome in the cooling system. Figure 13 shows the simplified schematic layout of the HVAC 
system with a focus on only one of the three zones in the building.  

 

Figure 13: HVAC layout at Kropman Breda with faults indicated 

Fault number 1 indicated in the figure highlights the stuck valve fault introduced in the system, 
whereas fault number 2 indicates the reduced SAT fault introduced in the system. For the stuck valve 
fault, the maximum and minimum values of the valve position were fixed to a specific value (50% and 
75%) whereas, for the reduced SAT fault, the SAT setpoint was reduced by 1K and 2K. Both faults were 
introduced into the system for a few days during the summer of 2021. Sensor offset experiments were 
conducted for the same use case building by another Master’s student, but these faults are not 
included in the scope of this study. The diagnostic performance of the developed FDD tool for sensor 
offset faults will be discussed in Chapter 5 in the evaluation part of the tool. 

Another set of experiments was conducted at the school building in Nijmegen before the beginning of 
this project. Even though it was not conducted during the course of the project, it is important to 
mention the fault cases which were introduced in this building since the FDD tool would be developed 
using data from that building as well. Only the reduced SAT fault was introduced in the HVAC system 
where the setpoint was reduced by 2K.  

The data collected during the days where fault experiments were conducted were classified as “faulty 
days”, whereas the days where the system operated normally were classified as “fault-free days”. This 
was confirmed by conducting thorough pre-processing of the data to remove any outliers or noise. The 
fault-free dataset was used for developing the FDD tool (model training), whereas the faulty dataset 
was used to test and check whether the FDD tool is able to detect the faults in the system.  

In the next chapter, the whole process of FDD algorithm selection and development is discussed where 
the process of fault detection and diagnosis is explained in detail. The labelled faulty data from the 
experiments were used to validate the FDD algorithms.  
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Working phase: Algorithm development                          3 

__________________________________________________________________________________ 

This chapter provides a detailed explanation of the FDD algorithms used in the final FDD tool. Section 
3.1 discusses the selection of the FDD algorithms based on the final product requirement. Section 3.2 
provides an analysis of the chosen fault detection algorithm whereas section 3.3 provides an analysis 
of the fault diagnosis algorithm. The analysis of the chosen FDD algorithms uses the labelled faulty and 
fault-free data obtained from the results of Chapter 3.  

3.1 FDD method selection 
From the previous chapter in section 2.2, it was identified that regression-based fault detection is an 
ideal way to detect faults in the system when labelled faulty data isn’t available. It was also identified 
that knowledge-based methods like Bayesian networks are suitable for fault diagnosis since they don’t 
require labelled faulty data and provide better insights to the user in case of incomplete or uncertain 
information.  

3.1.1 Fault detection algorithms 
Anomaly detection is a popular way of detecting faults in the data by identifying unexpected or 
abnormal data from normal fault-free data. This is usually done using supervised learning regression 
models that predict fault-free data and is then compared with the measured data. When large 
residuals are identified between the expected value (fault-free) and the measured value (faulty), it can 
be assumed that a fault exists in the system. Different kinds of ML algorithms have been used for 
regression purposes including Artificial Neural Networks (ANN), Support Vector Machines (SVM) or 
Support Vector Regression (SVR), Decision Trees, Random Forest, and eXtreme Gradient Boosting 
(XGBoost). Each of these algorithms is advantageous over the other depending on the characteristics 
of the dataset. 

SVM or SVR is an algorithm used for both classification as well as regression-based problems. It has the 
advantage of performing well with a limited amount of data compared to other models. But the 
computational time required for model development is considerably higher than other ML algorithms 
like ANN and Random Forest (Walker et al., 2020). Decision trees are also regression algorithms that 
are based on the approach of splitting a dataset while evaluating certain conditions. Ensemble 
algorithms are based on the ML theory that a group of weak learners create a much stronger ensemble 
than a single strong learner (Zhou & Liu, 2021). XGBoost is one such ensemble algorithm that has 
proven to be a well-performing ML algorithm in several studies (Mo et al., 2019; Pan, 2018; Yao et al., 
2019) and has been previously used for fault detection in HVAC systems (Chakraborty & Elzarka, 2019). 
Since previous research clearly showed the benefits of ensemble algorithms compared to individual 
Decision Trees (Zhou & Liu, 2021), Decision Trees are not included in this study. ANN has also been 
used to develop regression models to predict continuous variables like energy consumption (Walker 
et al., 2020), temperature (Montazeri & Kargar, 2020) and cooling coil valve position (Wang & Jiang, 
2004). But ANN is more complex in nature compared to SVR and XGBoost, and requires precise 
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adjustment of its many hyper-parameters (Seyedzadeh et al., 2018). Neural networks also perform 
better with larger amounts of data, which could be a drawback if limited data is available (Seyedzadeh 
et al., 2018). 

Since each of the algorithms has its advantages and disadvantages, it is necessary to compare their 
performance to see which algorithm can make predictions with the least amount of error, which is an 
essential factor for anomaly detection. The performance of the different algorithms were compared 
based on performance metrics like the root mean square error (RMSE) and the coefficient of 
determination, which is the R2 score. The algorithm with the highest R2 score and the lowest RMSE 
would be the most successful algorithm which can detect the low ΔT syndrome.  

The low ΔT syndrome can be detected using two symptoms – a decrease in RWT from the cooling coil 
and an increase in MFR through the cooling coil, as discussed in Chapter 2. Since MFR meters are not 
generally available in most of the installations, the cooling coil valve position (CCVP) was used in this 
study which indicates the demand for mass flow from the system. This is true for smaller HVAC systems 
where the pressure drop across the valve is almost always constant and the relationship between valve 
position and MFR is maintained. Therefore, to detect the low ΔT syndrome, two ML models need to 
be developed, one to monitor the CCVP and the other to monitor the RWT. 

The model comparison analysis was conducted using the HVAC installation in the office building in 
Breda. The data required for developing the CCVP prediction model was available for two years (2020-
2021) whereas the data for developing the RWT prediction model was available only for six months 
(April 2021-September 2021). This was because additional sensors around the cooling coil were 
installed during March 2021.  

Figure 14 shows the methodology followed to compare the performance of the different regression 
algorithms. The raw data from a historical database was first pre-processed to remove noise, outliers 
and missing data fields. Since the low ΔT syndrome occurs only when the AHU operates in cooling 
mode, it is necessary to filter out only the cooling mode data. This was done by observing the cooling 
coil valve position (𝑈𝑈 > 0%) and the chiller leaving water temperature (𝑇𝑇 < 10 °C).  

 

Figure 14: Methodology of regression model comparison 

The processed data was evaluated to identify the required features for model development. Feature 
selection was done using recursive feature elimination using cross-validation (RFECV) for both XGBoost 
and SVR, and analysis of the cross-correlation matrix for ANN, since RFECV is not compatible with 
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ANNs. The algorithms were trained using a simple train-test split of 80% training data and 20% test 
data for the complete dataset for each prediction model (RWT & CCVP). All the ML algorithms were 
validated using the k-fold cross-validation method with a k value of 10. K-fold cross-validation is a 
commonly used statistical method to determine the performance and accuracy of an ML model. In this 
method, the dataset was split into k folds (groups), where one group was held as a test set and the 
rest (k-1) groups were held as the training set.  

The model was then fit with the training set, evaluated with the test set and discarded while retaining 
the values. The process was then continued for the other k-1 test groups, eventually giving averaged 
R2 scores and RMSE values of the model. The performance metrics of all the algorithms were then 
compared to choose the best performing algorithm. Certain benchmark thresholds were chosen for R2 
and RMSE for each prediction model. An R2 score above 0.9 is desired for the predictions whereas an 
RMSE lower than 0.5K for RWT prediction and 5% for CCVP prediction is required. The RMSE 
benchmark values were identified from fault characteristic analysis for the office building in Breda 
where it was observed that the RWT dropped by 1K, whereas the mass flow rate increased by 0.1 kg/s 
(≈10% CCVP). This is clearly seen in the trends of RWT decrease and MFR increase of the reduced SAT 
by 1K fault implemented in the simulation of the office building in Breda as shown in Figure 94 and 
Figure 95 in Appendix A3. 

Figure 15 and Figure 17 show the comparison of the R2 score and RMSE for the RWT prediction 
algorithms respectively. It is observed that the XGBoost and SVR algorithms perform well within the 
performance metrics well within the benchmark, whereas the scores of ANN lie just outside the 
threshold.   

  

Figure 16 and Figure 18 show the comparison of the R2 score and RMSE for the CCVP prediction 
algorithms respectively. In this scenario, XGBoost is the only algorithm which performs well with the 
performance metrics lying within the benchmark. SVR performs quite poorly for the CCVP prediction, 
and this is because the dataset is much larger compared to the dataset for the RWT prediction models. 
The performance of ANN is relatively the same where the performance metrics are right outside the 
threshold value. It is therefore clear that XGBoost is the best-suited regression algorithm to be used 
for fault detection of the low ΔT syndrome in this study.  

Figure 15: Comparison of R2 score for RWT prediction Figure 16: Comparison of R2 score for CCVP prediction 
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But for larger buildings with more complex HVAC systems, the cooling demand from one subsystem 
can affect the flow parameters in other parts of the system. Due to this, the pressure drop across the 
cooling coil and valve is not always constant, and the valve opening fluctuates to cope with the change 
or control strategy of the pump. Due to this, the valve position and MFR do not have the same 
relationship anymore.  For this reason, monitoring the CCVP might not always be the best approach to 
identifying the demand/trends of MFR for a universal case. In this case, a virtual MFR is beneficial, 
especially since installing new MFR meters is not always financially feasible.  

Figure 19 shows a schematic of a cooling coil with multiple sensors located around it. With temperature 
sensors located at the inlet and outlet of both air and water circuits, humidity sensors located at the 
inlet and outlet of the airside and a flow rate sensor at the airside, it is possible to calculate the MFR 
at the waterside using a simple energy balance as shown in Equation (1). While following this approach, 
it is important to understand the different modes of cooling which occur in the coil, so that accurate 
estimations of MFR can be made. The air entering the cooling coil can either be dry-cooled (no change 
in humidity ratio) or wet-cooled (decreased humidity ratio). Wet cooling occurs when the surface 
temperature of the cooling coil tubes is lower than the dew-point temperature of the inlet air passing 
through it. Dry cooling occurs when there is no change in humidity between the inlet and outlet 
conditions and the heat transfer is sensible.  

The airside heat capacity is calculated using enthalpy ℎ since it accounts for both sensible and latent 
heat transfer which occurs during wet cooling mode. The calculation of airside heat transfer using 
enthalpy is also done for dry cooling. The enthalpy value of air at the outlet of the cooling coil is 
calculated using the setpoint SAT and not the measured SAT since the setpoint defines the required 
value by the system and is not influenced by faults in the system. The value of RWT used in the equation 
is also obtained from the RWT prediction model since it can also be influenced by faults in the system. 
The obtained value of MFR is thus required to be fault-free just like the prediction of CCVP presented 
earlier.  

Figure 17: Comparison of RMSE for RWT prediction Figure 18: Comparison of RMSE for CCVP prediction 
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Figure 19: Required sensors at cooling coil installation for virtual MFR meter 
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(1) 

To check the fidelity of the proposed method, the virtual MFR was calculated for the office building in 
Breda using the XGBoost prediction of RWT. Figure 20 shows the comparison between the predicted 
MFR of water calculated using Equation (1), and the actual MFR measured using a meter present in 
the waterside circuit for the north cooling coil. The mean biased error for the virtual MFR was 
calculated to be 23 l/h whereas the RMSE was calculated to be 108 l/h. It is observed that the data 
points lie within the 25% error range for MFR values ranging between 250 l/h to 1250 l/h, and within 
the 10% error range for MFR values between 1250 l/h to 3500 l/h. But since the data points mostly 
occur within the part-load range, i.e., between 0 to 1500 l/h, it should be expected that there would 
be a maximum error of approximately 25% for predicting fault-free MFR values. Since this approach is 
a low-cost alternative to installing physical mass flow rate sensors, there exists a trade-off in terms of 
accuracy v/s initial installation cost. Based on the RMSE value of 108 l/h, the threshold for fault 
detection is set at 150 l/h, where a fault would be detected if the residual crosses this specific 
threshold.  

 

Figure 20: Comparison of predicted and actual MFR for the cooling coil of the north zone 

To observe an increase in the MFR, the calculated fault-free MFR needs to be compared with a 
measured MFR value. For this purpose, another MFR meter needs to be developed. Differential 
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pressure sensors across the coil at the waterside are proportional to the MFR across the coil (Song & 
Ph, 2011). These sensors are easier to install in an existing installation and with the use of a balancing 
valve, the MFR can be measured at various cooling coil valve positions thus generating a polynomial 
relationship between differential pressure and MFR. Figure 21 shows a 6th order polynomial regression 
curve generated for MFR vs pressure difference. The regression model gives values of MFR with an 
RMSE of 54.4 l/h. Therefore, with data of differential pressure, it is possible to virtually calculate the 
MFR of water. It is also observed that for zero MFR, the pressure difference is ~ 0.1-0.2 kPa. This is the 
static pressure difference which is observed due to the difference in height between inlet and outlet 
ports of the cooling coil (∆𝑃𝑃 =  𝜌𝜌𝜌𝜌ℎ, where ℎ is the height difference, 𝜌𝜌 is the acceleration due to 
gravity and  𝜌𝜌 is the density of water). 

 

Figure 21: Polynomial regression trend line for MFR vs pressure difference for the north cooling coil  

3.1.2 Fault diagnosis algorithm 
From chapter 2 it was identified that a Bayesian network is a suitable knowledge-based method which 
provides the user with probabilistic information even with incomplete or missing information. For this 
study, a Diagnostic Bayesian Network (DBN) is developed based on the 4S3F method (Taal & Itard, 
2020). The 4S3F method stands for 4 symptoms 3 faults, where the DBN is composed of 4 different 
kind of symptom nodes (balance, energy performance, operational state, additional information) and 
3 different kinds of fault nodes (model, component and control). Figure 22 shows the structure of the 
4S3F layout. The fault nodes in purple influence the symptom nodes in yellow with the directional 
arrow shown. 

Figure 23 shows the architecture of the 4S3F method, where the different data flows are shown. The 
pre-processed raw data from the BMS is fed into different fault detection models which detect if a 
fault is present in the system based on user-defined thresholds. Each symptom node has a defined set 
of states (positive, negative, fault-free) which are linked to the different state of a fault node (faulty, 
fault-free) through a conditional probability table. The outcome of the fault detection models are 
therefore probability values (0 or 1) for all the states of a symptom node.  
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Figure 22: Structure of 4S3F DBN (Taal & Itard, 2020) 

 

Figure 23: Architecture of the 4S3F DBN (Taal & Itard, 2020) 

The algorithm of a DBN is based on the Bayes theorem of probability with its fundamental formula as 
shown in Equation (2). The posterior probability 𝑃𝑃(𝐴𝐴|𝐵𝐵), which signifies the probability of a faulty A 
occurring in the presence of symptom B, is calculated using Bayes theorem as shown in Equation (2), 
where 𝑃𝑃(𝐴𝐴) is the prior probability for the fault node, 𝑃𝑃(𝐵𝐵|𝐴𝐴) is the conditional probability between 
the symptom node and the fault node signifying the probability a symptom B occurs given the presence 
of fault A, and the probability of the symptom occurring is 𝑃𝑃(𝐵𝐵), which is obtained from the fault 
detection models. The different probability terms used in Equation (2) are indicated in Figure 24. The 
conditional probability values 𝑃𝑃(𝐵𝐵|𝐴𝐴) are in the form of a large conditional probability table (CPT). 
Since the CPT for a fault node with multiple (>3) symptom nodes is quite large, the noisy-MAX 
approximation is used, more of which is discussed in Appendix A4. 

𝑃𝑃(𝐴𝐴|𝐵𝐵) =  
𝑃𝑃(𝐵𝐵|𝐴𝐴) × 𝑃𝑃(𝐴𝐴)

 𝑃𝑃(𝐵𝐵)
 

(2) 

 

Figure 24 shows the DBN developed for cooling mode operation. The network includes the most 
impactful faults leading to the low ΔT syndrome including the stuck valve fault and the reduced SAT 
fault, and the lower airflow fault which can lead to comfort issues. The two ML models developed in 
subsection 3.1.1 are specific to detect the presence of the low ΔT syndrome, but more fault detection 
models are required to detect other symptoms in the HVAC system to properly diagnosis the root 
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cause of the low ΔT syndrome. In this context, the other models can also be termed as symptom 
detection models with the process being termed as symptom detection, whereas the ML models 
specific to detecting the low ΔT syndrome could be termed as fault detection models and the process 
being terms as fault detection. 

 

Figure 24: DBN for cooling mode 

Therefore, rules-based and simple statistical models are also used to detect symptoms and provide 
more information to the DBN. The rules are based on the APAR set (Schein et al., 2006), obtained from 
literature. The different algorithms used in each of the symptom nodes are explained in Table 4. It is 
relevant to note that for the current DBN, only operational state symptom nodes are used since for 
the specific faults identified, energy balance or energy performance symptom nodes are not required. 
Energy balance symptom nodes would be used for sensor offset faults, which is beyond the scope of 
this study. 

Table 4: List of fault detection models used in the DBN symptom nodes 

Node name Model type Equation 

Airflow comparison Statistical model (Exponential 
weighted moving average) 

𝑉𝑉𝑚𝑚𝑖𝑖𝑎𝑎𝑚𝑚𝑜𝑜𝑎𝑎𝑖𝑖𝑚𝑚 −  𝑉𝑉𝑖𝑖𝑒𝑒𝑚𝑚𝑎𝑎 >  0.5 𝑚𝑚/𝑠𝑠 

CCVP prediction ML model (XGBoost) 𝑈𝑈𝑚𝑚𝑖𝑖𝑎𝑎𝑚𝑚𝑜𝑜𝑎𝑎𝑖𝑖𝑚𝑚 −  𝑈𝑈𝑝𝑝𝑎𝑎𝑖𝑖𝑚𝑚𝑎𝑎𝑝𝑝𝑖𝑖𝑖𝑖𝑚𝑚 >  5% 

SAT design comparison  Rules based model 𝑇𝑇𝑚𝑚𝑖𝑖𝑎𝑎𝑚𝑚𝑜𝑜𝑎𝑎𝑖𝑖𝑚𝑚 −  𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚𝑎𝑎𝑑𝑑𝑖𝑖 >  1𝐾𝐾 

RAT setpoint comparison  Rules based model 𝑇𝑇𝑚𝑚𝑖𝑖𝑎𝑎𝑚𝑚𝑜𝑜𝑎𝑎𝑖𝑖𝑚𝑚 −  𝑇𝑇𝑚𝑚𝑖𝑖𝑖𝑖𝑝𝑝𝑜𝑜𝑎𝑎𝑖𝑖𝑖𝑖 >  1𝐾𝐾 

RWT prediction  ML model (XGBoost) 𝑇𝑇𝑚𝑚𝑖𝑖𝑎𝑎𝑚𝑚𝑜𝑜𝑎𝑎𝑖𝑖𝑚𝑚 −  𝑇𝑇𝑝𝑝𝑎𝑎𝑖𝑖𝑚𝑚𝑎𝑎𝑝𝑝𝑖𝑖𝑖𝑖𝑚𝑚 >  0.5𝐾𝐾 

SAT setpoint comparison  Rules based model 𝑇𝑇𝑚𝑚𝑖𝑖𝑎𝑎𝑚𝑚𝑜𝑜𝑎𝑎𝑖𝑖𝑚𝑚 −  𝑇𝑇𝑚𝑚𝑖𝑖𝑖𝑖𝑝𝑝𝑜𝑜𝑎𝑎𝑖𝑖𝑖𝑖 >  1𝐾𝐾 

 

With the fault diagnosis method developed, the different fault use cases were tested for the selected 
fault detection and fault diagnosis method, more of which is explained in the next section.  

3.2 Fault detection 
The low ΔT syndrome can be detected in two ways: 

• Monitoring the RWT and CCVP 
• Monitoring the RWT and virtual MFR 
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The use of CCVP is meaningful when the pressure drop across the valve is constant, whereas a virtual 
MFR meter would be used when the pressure drop is fluctuating. Results from both methods are 
discussed below.  

Fault experiments were conducted at the office building in Breda, where the stuck valve faults were 
introduced at two severity levels (50% stuck and 75% stuck) and the SAT was reduced as well (by 1K 
and 2K). The severity levels for the stuck valve fault were specifically chosen since the cooling coil valve 
is mostly open in the range between 25% and 56% (2nd and 3rd quartiles respectively based on a normal 
distribution for a large dataset), where the chance of a 50% stuck fault is much higher. The 75% stuck 
valve fault is considered to be a more severe fault which would happen rarely but could even happen 
due to control signal failure. For the reduced SAT faults, the severity levels of 1K and 2K were chosen, 
since it is the most probable values by which the setpoint would be reduced if comfort complaints 
were observed.  

3.2.1 Using return water temperature and cooling coil valve position  
Figure 25 to Figure 28 show the RWT and CCVP prediction for the stuck valve fault at two severity 
levels. The residuals for both CCVP and RWT are greater than the thresholds of 5% and 0.5K for both 
fault cases. The low ΔT syndrome was therefore detected for the stuck valve fault.  

  

  

Figure 29 to Figure 32 show the RWT and CCVP predictions for the reduced SAT fault for different 
severity levels. It is observed that the residuals for the RWT prediction is greater than the threshold 

Figure 25: RWT prediction for 75% stuck valve for north 
cooling coil in office building Breda 

Figure 26: CCVP prediction for 75% stuck valve for north 
cooling coil in office building Breda 

Figure 27: RWT prediction for 50% stuck valve for north 
cooling coil in office building Breda 

Figure 28: CCVP prediction for 50% stuck valve for north 
cooling coil in office building Breda 
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for the reduced SAT 2K fault and the CCVP prediction is greater than the threshold for the first half of 
the day. The low ΔT syndrome is therefore detected for the first half of the day for the reduced SAT 2K 
fault. 

A closer look at the RWT and CCVP predictions for the reduced SAT by 1K fault show that the residuals 
do not cross the threshold at all. This is possible because there isn’t a sufficient increase in MFR due to 
a reduction of the SAT by 1K. The outdoor air temperature for the days the reduced SAT faults were 
introduced, did not go higher than 24 °C. This could be a possible explanation as to why the predictions 
do not deviate much from the actual values. But based on the results from the fault characteristic 
analysis done in subsection 2.3.2, it was expected that the increase in MFR and decrease in RWT would 
not be as substantial compared to the other more severe fault cases. 

  

  

3.2.2 Using virtual mass flow rate 
The low ΔT syndrome can also be detected using the RWT prediction and calculation of MFR. Figure 
33 to Figure 36  show the MFR predictions for the stuck valve and reduced SAT faults. In the case of 
the stuck valve faults as seen in Figure 33 and Figure 34, the ideal MFR is almost zero. This is because 
in the calculation of MFR, the SAT setpoint is used in Equation (1) rather than the measured SAT. Since 
the building is excessively cooled due to the stuck valve fault, there is no demand for cooling. 
Therefore, the ideal MFR in this case would be close to zero.  

Figure 29: RWT prediction for reduced SAT by 2K for north 
cooling coil in office building Breda 

Figure 30: CCVP prediction for reduced SAT by 2K for north 
cooling coil in office building Breda 

Figure 31: RWT prediction for reduced SAT by 1K for north 
cooling coil in office building Breda 

Figure 32: CCVP prediction for reduced SAT by 1K for north 
cooling coil in office building Breda 



27 
 

For the reduced SAT fault, the residuals are greater than the threshold of 150 l/h during the second 
half of the day for the reduced SAT by 2K fault, as seen in Figure 35. The low ΔT syndrome is therefore 
detected during the second half of the day, which is contrary to the results from the CCVP predictions 
where low ΔT syndrome was detected during the first half of the day. It is important to note that the 
CCVP prediction model is black-box, therefore, it is difficult to make a proper inference as to why it 
behaves in such a manner.  

For the reduced SAT by 1K fault, however, the residuals keep fluctuating and cross the threshold 
intermittently during the latter half of the day. This is clearly seen in Figure 36. Therefore, the low ΔT 
syndrome cannot be detected for consecutive timestamps, since the RWT prediction doesn’t show any 
sufficiently large residuals either, as seen in Figure 31. 

 

Figure 33: MFR prediction for 75% stuck valve for north 
cooling coil in office building Breda 

 

Figure 34: MFR prediction for 50% stuck valve for north 
cooling coil in office building Breda 

 

Figure 35: MFR prediction for reduced SAT by 2K for north 
cooling coil in office building Breda 

 

Figure 36: MFR prediction for reduced SAT by 1K for north 
cooling coil in office building Breda 

3.3 Fault diagnosis  
The output data from the different fault (symptom) detection models, including the rules based and 
statistical models were then inputted into the DBN, where all the states present in each of the 
symptom nodes were assigned a probability value. For e.g., for the CCVP prediction for the reduced 
SAT by 2K fault as shown in Figure 30, the different states for the symptom include positive stuck, 
negative stuck and fault free. Between 8 am and 12 pm, the state would be positive stuck, therefore 
the positive stuck state would be assigned a value of 1 whereas the other states would be 0. Between 
12 pm and 5 pm, the state is fault free, therefore the fault free state would be assigned a value of 1 
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whereas the other states would be 0. Similarly, this process is done for all the other symptom nodes 
and the posterior probabilities for the different faults are calculated.  

Figure 37 to Figure 40 show the posterior probability values for different fault cases introduced at the 
office building in Breda. The stuck valve faults are easily diagnosed with the posterior probability 
almost equal to 1 for both severity levels, as shown in Figure 37 and Figure 38. The posterior probability 
for the reduced SAT fault for the same days are 0, which means that it has not been detected in the 
system. For the reduced SAT by 2K fault, the posterior probabilities are larger than 0.5 and 
intermittently attain a value close to 1, as seen in Figure 39. During the latter half of the day, the values 
are closer to 0.6 since the CCVP prediction does not detect any fault during this period and therefore 
indicates a fault-free condition. The posterior probability values for the reduced SAT by 1K fault, as 
shown in Figure 40, fluctuates between 0.05 and 0.9. Even though the low ΔT syndrome was not 
detected, the reduced SAT fault was diagnosed in an intermittent manner due to the other symptom 
detection nodes present in the DBN (which are not related to the detection of the low ΔT syndrome). 

 

Figure 37: Posterior probability for 75% stuck valve for 
north cooling coil in office building Breda 

 

Figure 38: Posterior probability for 50% stuck valve for 
north cooling coil in office building Breda 

 

Figure 39: Posterior probability for reduced SAT by 2K for 
north cooling coil in office building Breda 

 

Figure 40: Posterior probability for reduced SAT by 1K for 
north cooling coil in office building Breda 

 

The developed FDD algorithms which include the two XGBoost models and the DBN, show the ability 
to detect the low ΔT syndrome and diagnose certain faults which lead to it, which include the stuck 
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valve fault (50% and 75% stuck) and the reduced SAT fault (2K). The algorithm is not able to detect the 
low ΔT syndrome when the SAT was reduced by 1K, and this is because a sufficient increase in MFR 
was not observed. This is probably because the maximum outdoor air temperature for the specific day 
the fault was introduced, was lower than 24°C. The same fault was introduced during a day when the 
outdoor temperature was higher than 25°C, and the fault was detected. The results of this case will be 
explained in section 5.4 with the figures shown in Appendix A7. 

Similar analysis of fault detection and fault diagnosis were also conducted for the school building in 
Nijmegen for the reduced SAT fault, and the FDD algorithms were able to isolate the fault successfully. 
The results are shown in Appendix A5.  

In the next chapter, the complete product development process is discussed, where the requirements 
of the stakeholders are analysed, and the final product architecture is explained including the 
integration of different modules and the FDD algorithms discussed in this chapter.  

 



30 
 

Selection phase: Product features                  4 

__________________________________________________________________________________ 

This chapter provides a step-by-step explanation of the product feature selection process which 
consists of a stakeholder analysis explained in section 4.1 , requirements analysis discussed in section 
4.2, and the product architecture explained in section 4.3. These steps are necessary to get a proper 
understanding of the requirements of different stakeholders and develop the final product layout 
accordingly, using the different algorithms tested in the previous chapter. 

4.1 Stakeholder analysis 
The goal of a stakeholder analysis is to identify the different entities who are involved in the project 
and group them based on their level of interest, participation and influence in the project. The analysis 
helps in determining the best way to communicate with the different stakeholders and how to involve 
them in the product development process. A Mendlow’s matrix is useful to understand the respective 
power and interest of different stakeholders within a project such that they can be managed 
effectively. The different stakeholders of this project are laid out on a Mendlow’s matrix as shown in 
Figure 41. 

 

Figure 41: Mendlow’s matrix used for the stakeholder analysis  

With an understanding of how the different stakeholders need to be managed, the next step is to 
understand the requirements of each of the stakeholders. This is done by developing user stories, 
which is a common practice in agile software development (Dalpiaz & Brinkkemper, 2018) . User stories 
help in capturing the requirements of the stakeholders more precisely in the form of needs/goals. 
Table 5 shows a list of the different stakeholders, the different roles within a stakeholder organization, 
and their specific user stories. Alongside each stakeholder, a code is also specified which is used later 
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to link the defined requirements with the stakeholder. The goals specified in the form of user stories 
would later be translated into requirements.  

Table 5: Stakeholder user stories 

Stakeholder Role I want <goal> So that <reason> 

Kropman 
Installatietechniek 
(A) 

HVAC Advisor To predict the low ∆T syndrome at an 
early stage and identify its possible 
causes 

Energy efficiency of the system can be 
increased, occupant comfort can be 
improved, and extreme system failure can 
be avoided. 

To get insights about fault severity 
levels 

I can prioritise my efforts on more serious 
issues in the system which require 
immediate attention  

To receive fault explanations and to-
do actions 

I get a preliminary idea of what the issue 
is, and it saves me time to try and 
diagnose the issue myself 

Visualizations to explain the fault in 
the form of heat maps, scatter plots 

So that I can understand the issue better 
and observe the phenomenon from data 

Remote 
Services 
Engineer 

To monitor the energy performance of 
all my projects with minimum effort in 
one platform 

I don’t have to individually monitor 
energy efficiency issues for each system in 
a project.  

To see alarms from any building 
site/project immediately 

I can inform service engineers to take 
corrective actions accordingly 

To receive detailed information about 
the fault alarm 

I can send the required field technician 

Technician To be informed of corrective actions 
to be taken in case a fault occurs  

I don’t have to diagnose the fault myself 
and eventually saves me time 

To see the historical alarms list I can get an understanding of the system 
performance and past issues 

Software 
Development 
Department 
Head 

An FDD tool which is modular in 
nature and can be integrated to the 
existing BMS  

Iterative and constant improvements and 
upgrades can be made 

Building 
Automation 
Director 

To improve the current fault detection 
and diagnosis approach from rules-
based to AI-based including predictive 
maintenance 

The value proposition of the tool 
increases and is in line with market 
growth  

TU/e (B) University 
Researcher 

To implement the latest research in 
FDD to a commercial product 

Buildings are equipped with intelligent 
systems to achieve energy efficiency  

ROC Nijmegen (C) Building 
Manager 

To receive automated diagnosis 
results for faults in the system  

I can take corrective actions quickly and 
ensure comfortable occupant 
environment 
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To understand the impact of faults on 
important key performance indicators 
(KPIs)  

Decisive actions can be taken accordingly 

UMC Radboud (D) Building 
Manager 

To monitor the performance of all 
AHUs in the university complex and 
receive alarms on priority basis 

It saves me time and makes it easier to 
isolate faults in specific areas 

SystemAir (E) Product 
Manufacturer 

To understand the low ΔT syndrome 
better 

I can provide my clients with a better 
selection of cooling coils 

ISSO (F) Research 
institute 

To provide the Dutch building sector 
with the knowledge of better design 

The buildings can be more energy 
efficient 

TKI Urban Energy 
(G) 

Funding 
organization 

To promote the development of 
intelligent FDD systems in buildings 

There is an increase in the energy 
performance and energy savings of the 
building. 

Eindhoven Engine 
(H) 

Funding 
organisation 

To promote innovative research, 
collaborate with other researchers 
and learn from them 

There is accelerated innovation to provide 
technology-based solutions to societal 
problems. 

 

4.2 Requirements analysis 
Based on the user stories of the different stakeholders, a list of functional and realization requirements 
was generated as shown in Table 6 and Table 7. The product was developed based on the defined 
functional and realization requirements.  

Table 6: Functional requirements 

ID Functional requirements  Concerned 
stakeholders 

F1 The tool should be able to detect multiple faults which can occur simultaneously. A,B 

F2 The tool should be able to provide additional information for faults diagnosed. A,B,C 

F3 Fault detection model training should be completely automated. A,B,C,D 

F4 The tool should be able to provide to-do actions in case faults are diagnosed. A 

F5 The tool should be able to show the severity level of the fault. A 

F6 The tool should be able to show the effect of a fault on key performance indicators. A,B 

F7 The tool should provide the capability to analyse and understand the symptoms in detail. A,B 

F8 The tool should provide the possibility to analyse the fault probabilities for all states of each 
fault. 

 

F9 The tool should have the capability to track, monitor and compare the performance of 
different fault detection models. 

A,B 
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Table 7: Realisation requirements 

ID Realization requirements  Concerned 
stakeholders 

R1 The tool should have modular components.  A,B 

R2 The tool should be developed on an open-source platform. A,B,G,H 

R3 The tool should be interoperable with all kinds of BMS platforms. A,B,C,D 

R4 The tool should be generalizable and usable for new building installations. A,B,G 

R5 The knowledge needs to be shared with other organizations within the building services 
community and other research communities. 

F,G,H 

R6 Additional sensor requirements and installation methods need to be provided to ensure FDD 
of low ΔT syndrome is possible in new installations. 

E,F 

 

4.3 Product architecture 
The architecture of the FDD tool consists of the different functional blocks of the tool and how each of 
them interact with each other. Figure 42 shows the product architecture with the different modules 
present in it. Each of the modules are explained below. In general, the tool is developed in Python with 
different object-oriented classes and methods for each of the modules in the tool. 

 

Figure 42: FDD tool product architecture 

Data pre-processing 

The raw data from the BMS is usually unfiltered, with missing data points and outliers. The first step 
of the FDD process is to clean the data to ensure that noise and outliers do not influence the FDD 
process. The pre-processing module consists of different functions like missing data removal, outlier 
removal and operational mode (cooling mode) filters of the AHU. The missing data fields are removed 
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rather than interpolated since interpolation could lead to incorrect data points. The operation mode 
filters consist of simple rules like: 

1. CCVP signal > 0% 
2. Chiller outlet water temperature <10°C 

The filtered data is then passed through the fault detection module. 

Fault detection 

The fault detection module consists of an offline model development class and model prediction class 
for the ML models. Each of the classes contain functions to train, predict and evaluate the ML model. 
The cleaned data is passed through the fault (symptom) detection module which consists of different 
models where certain data points pass through specific models including ML models, statistical model 
and simple rules-based models where residuals are generated.  

Figure 43 shows an example of the detection of a fault in the air speed using a statistical method known 
as exponential weighted moving average (EWMA). The predicted air speed which is approximately 2.3 
m/s (obtained from the historical moving average) is greater than the measured value by 0.6 m/s, 
hence indicating a lower airflow.  

 

Figure 43: Fault detection of air speed in the AHU using an 
EWMA statistical model 

 

Figure 44: Fault detection of the difference in SAT setpoint 
and design value using a rules-based model 

Figure 44 shows a rule-based symptom detection method where the SAT setpoint is compared with 
the minimum design SAT setpoint which is a linear equation based on the outdoor air temperature. 
The fault is detected between 10 am and 4:30 pm, as seen in the figure. 

Figure 45 shows the detection of a symptom using an ML model. The model is used to predict the fault-
free CCVP and is compared with the measured faulty CCVP. The ML models are trained and developed 
using historical data from the server. This process will be done only in the beginning and when model 
performance starts to drop below certain thresholds. Once the residuals are generated from each fault 
detection model, the data is sent to the fault diagnosis module. 



35 
 

 

Figure 45: Fault detection of CCVP deviation using an ML model 

Fault diagnosis 

The fault diagnosis module consists of a DBN, which is based on the 4S3F method. The DBN consists of 
symptom nodes, which is where all the data from the BMS is fed into, and it contains fault nodes which 
is where the posterior probability for each fault is calculated. The symptoms nodes receive residuals 
from each of the fault (symptom) detection models and are translated to symptom states which are 
readable by the DBN. The DBN then calculates posterior probabilities for the different fault nodes 
present and maps the faults with the underlying symptoms.  

Visualizations 

The data from the fault diagnosis module is transferred to the visualisations module where the data is 
represented in the form of different visuals (bar graphs, line graphs and heat maps), reports 
(interactive tables), and alarms (coloured indicators to signal the presence of low ∆T syndrome). 
Additional visualizations of the DBN are also present which show the connection between the faults 
and where they are located in the P&ID diagram.  

The next chapter discusses the final product development process including prototyping, realisation 
of the final tool, verification, validation, and evaluation. 
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Shaping phase: Product development           5 

__________________________________________________________________________________ 

This chapter discusses the product development, product testing and evaluation of the developed FDD 
tool. Section 5.1 discusses the prototyping of the tool, where the product layout is designed based on 
the agile software development process. The final developed product is discussed in section 5.2, where 
the different features of the tool are highlighted and explained. Section 5.3 presents the verification 
of the tool, where the functional requirements of the tool are checked for by analysing the different 
features of the tool. Section 5.4 presents the validation of the tool where data from the in-situ 
experiments conducted at the office building in Breda were analysed by the FDD tool. The tool’s ability 
to perform based on the specified requirements is analysed. Section 5.5 presents an evaluation of the 
tool in terms of its ability to detect and diagnose all the faults, and its limitations. 

5.1 Prototyping 
The main aspect of the FDD tool where the user interaction occurs is the dashboard (visualization), 
where the user interface (UI) and user experience (UX) aspects need to be considered. The product 
dashboard was developed based on the agile software development method, a flow schema of which 
is shown in Figure 46. The agile development method includes requirements discovery and solutions 
improvement through the collaborative effort with the end user (Dalpiaz & Brinkkemper, 2018). The 
main purpose of following such a method was to implement practices such as evolutionary 
development, continual improvement, flexible responses to changes in requirements and a better 
understanding of the problem to be solved.  

To get a better understanding of what the different stakeholders expect, an initial design prototype 
was developed on the prototyping platform called Figma. The design prototype was made based on 
the initial requirements which have been laid out.                          

 

Figure 46: Agile software development method 

The first prototype was developed in Figma, which is a web-based vector graphics and prototyping tool 
which is mainly used by designers for building digital products. The first design prototype was shown 
to the stakeholders to get their feedback and impressions of how the tool would look like and what 
expectations they have in terms of features. Their feedback, expectations, and suggestions were 
considered while updating the prototype layout. A second update of the prototype tool was made to 
get a final confirmation of the dashboard layout. The different screens of the design prototype 
developed in Figma are shown in Appendix A6. 
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Once the design was confirmed, the actual frontend of the product was developed in Dash, which is a 
python-based dashboarding application from the Plotly library. The application (frontend) developed 
in Dash is rendered in the web browser using an HTML template with CSS and JavaScript elements 
references inside it. The backend of the tool includes algorithms which were developed using the 
specific libraries required for fault detection (sci-kit learn) and fault diagnosis (pomegranate). 
Pomegranate is an open-source probabilistic modelling package in Python (Schreiber, 2018) used 
specifically for Bayesian network modelling for the FDD tool. The prototype of the tool was made and 
shown to stakeholders so that they can see how the tool works. Their feedback and suggestions were 
considered, and the product was updated accordingly.  

5.2 Final product 
The final application was developed which can be deployed as a standalone application as well. Figure 
47 to Figure 55  illustrate the different screens of the final product developed in Dash. Figure 47 shows 
the main screen of the application with the different projects (office building in Breda and school 
building in Nijmegen) along with their locations on the map. A purple icon is placed on the specific 
coordinates of each project (indicated by ‘a’ in the figure), where hovering over it provides information 
about the number of alarms present in the building. The size of the icon is dependent on the number 
of existing alarms. Therefore, the larger the icon, the more fault alarms present. To access the main 
alarms page of a particular building, the black button on the building image (indicated by ‘b’ in the 
figure) needs to be clicked on. The main menu of the tool can be accessed by click on the “Explore” 
button (indicated by ‘c’ in the figure). 

 

Figure 47: FDD tool main screen 

a b c 
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Figure 48: FDD tool alarms screen for a facility manager 

The main alarms page for the building site is shown in Figure 48, where the diagnosed fault, its priority, 
description and consequent to-do actions for the particular fault, are displayed in an interactive alarms 
table (indicated by ‘a’ in the figure). The page also includes indicators (indicated by ‘c’ in the figure) for 
other general information including the total number of faults diagnosed for the year, month, and 
week.  

 

Figure 49: FDD tool low ΔT syndrome analysis screen for an HVAC expert 

a 

b 
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There also includes a round low ΔT syndrome status indicator (indicated by ‘b’ in the figure) which 
turns red in colour if the low ∆T syndrome is present and turns green when the system is functioning 
normally without the low ΔT syndrome. A date selector is also present (indicated by ‘d’ in the figure) 
to surf freely through the different days of the year. The low ΔT indicator and the alarms table get 
updated accordingly. On further clicking the “Analyse” button below the indicator, a low ΔT syndrome 
analysis page appears (Figure 49), where the MFR and RWT trends can be studied in more detail. This 
page is intended for the HVAC expert who would like to study the low ∆T syndrome in detail by looking 
at trends of MFR and RWT. As seen in Figure 49, the graphs on the screen include predicted and 
measured values, a date selector, and a low ΔT syndrome indicator. 

 

Figure 50: FDD tool DBN screen for an HVAC expert 

The DBN screen can be accessed by clicking on the “Explore” button and selecting the specific DBN for 
the required site. Figure 50 shows the DBN screen for the north cooling coil of the office building in 
Breda where the KPIs (Key performance indicators) like chiller on/off cycles, unmet cooling hours, and 
average chiller shutoff time, (indicated by ‘a’ in the figure), the DBN (indicated by ‘b’ in the figure), and 
the P&ID diagram) (indicated by ‘c’ in the figure), are displayed. The specific KPIs are used to 
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understand the impact of the faults on energy consumption (reflected upon the number of chiller 
on/off cycles and average chiller shutoff time) and comfort (unmet cooling hours). On clicking any of 
the KPIs, a modal appears where the user can conduct further analysis. A tooltip also appears when 
hovering over the KPI (indicated by ‘d’ in the figure), to indicate that a graph will be displayed if clicked 
on. Additional user-guiding features include highlighting of the fault in the P&ID diagram (indicated by 
‘e’ in the figure), when hovering over a specific fault node in the DBN. In the figure, the CCV stuck fault 
node is hovered over, to highlight the pink box over the cooling coil valve. On clicking the KPIs 
(indicated by ‘d’ in the figure), a modal opens which gives a more detailed analysis of the KPIs. 

Figure 51 shows a multi-tab modal for the chiller staging performance, which appears after clicking the 
chiller on/off cycle KPI in Figure 50. The modal consists of an interactive graph with multiple tabs 
(indicated by ‘a’ in the figure) to assess both total chiller staging cycles in the form of a bar plot, as well 
as chiller staging cycles as a line plot. The graph also includes a range slider for outdoor air temperature 
(indicated by ‘b’ in the figure), to display datapoints that lie in the specific range selected.  

 

 

Figure 51: FDD tool KPI modal for an HVAC expert 

On clicking the specific fault and symptom nodes on the DBN, Figure 52 and Figure 53 open as modals 
respectively. Figure 52 shows the fault probabilities in the form of a line graph, where the fault 
probabilities for different states of all the symptom nodes are available for analysis. The different 
states of the fault nodes can be checked using the check boxes (indicated by ‘a’ in the figure), to display 
the required probability values. The graphs are interactable in the manner that they can be zoomed 
into and analysed for a particular period.  

a 

b 



41 
 

 

Figure 52: FDD tool fault probability modal for an HVAC expert 

 

Figure 53: FDD tool symptom residual analysis modal for an HVAC expert 

Figure 53 shows the modal where the intensity of the residuals of the symptom nodes are presented 
in the form of a heatmap. A user can toggle through different symptom nodes by just clicking on the 

a 

a 
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different tabs (indicated by ‘a’ in the figure). The data can be accessed by selecting the specific year 
and week of interest (indicated by ‘b’ in the figure). 

Figure 54 shows the ML screen which displays the performance of the different ML models. Additional 
information on the models is also displayed including the RMSE in the form of a gauge (indicated by 
‘a’ in the figure), R2 score in the form of a gauge (indicated by ‘b’ in the figure) and the number of 
features (indicated by ‘c’ in the figure). An important feature is the display of a message which shows 
whether model re-training is required (indicated by ‘d’ in the figure). The historical performance of the 
model can be analysed by clicking on the “Check performance” button (indicated by ‘e’ in the figure). 

 

Figure 54: FDD tool ML screen for an ML expert 

Figure 55 shows a modal that displays the historical performance of the ML model in terms of R2 score 
and RMSE in the form of an interactable line graph. The historical scores can be analysed to check if 
the model is performing sufficiently well within the benchmark values. 

 

Figure 55: FDD tool ML analysis modal for an ML expert 
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With the final product developed, the next step is to verify the product and see if it meets all the 
requirements of the stakeholders. This is done by analysing the individual features of the product and 
checking if it satisfies the requirements specified in Table 6.   

5.3 Verification  
As a part of the product evaluation, verification is conducted to ensure that the product meets all the 
requirements set by the stakeholder. This is done by evaluating the different features present in the 
tool, without actually running the application.  

The different functional and realisation requirements from Table 6 and Table 7 respectively, are 
analysed in detail, and the relevant properties or features of the tool are highlighted next to each 
requirement as shown in Table 8 and Table 9. 

Table 8: Verification of functional requirements 

ID Functional requirements FDD tool feature developed  

F1 The tool should be able to detect multiple faults 
which can occur simultaneously. 

The algorithm of a DBN allows multiple faults to be diagnosed 
at the same time since it is based on probabilistic inference. 

F2 The tool should be able to provide additional 
information for faults diagnosed. 

The alarms screen of the FDD tool provides information about 
the specific timestamp at which the fault was diagnosed, the 
priority level and the type of fault. 

F3 Fault detection model training should be 
completely automated. 

The FDD tool consists of a module that tracks the performance 
of the ML models and automatically re-trains them based on 
the RMSE and R2 score. 

F4 The tool should be able to provide to-do actions 
in case faults are diagnosed. 

The alarms screen of the FDD tool provides to-do actions for 
each fault diagnosed by the DBN. 

F5 The tool should be able to show the priority level 
of the fault. 

The alarms screen of the FDD tool provides a colour-based 
indicator of the specific fault where red means high priority, 
orange means low priority. 

F6 The tool should be able to show the effect of a 
fault on key performance indicators. 

In the DBN screen of the tool, different key performance 
indicators are presented in the form of icons with indicators of 
the average trend. The icons are also clickable, which show 
interactable graphs with the possibility to analyse in detail. 

F7 The tool should provide the capability to analyse 
and understand the symptoms in detail. 

In the DBN screen of the tool, on clicking the symptom nodes of 
the DBN, a modal appears which provides a heatmap of the 
residuals of all the symptom nodes. 

F8 The tool should provide the possibility to analyse 
the fault probabilities for all states of each fault. 

In the DBN screen of the tool, on clicking the fault nodes of the 
DBN, a modal appears which provides a line graph displaying 
the fault probabilities of all the states of each fault. 

F9 The tool should have the capability to track, 
monitor and compare the performance of 
different fault detection models. 

In the ML screen of the tool, each ML model is listed in a row 
format where the performance metrics are displayed in the 
form of simple gauges. A message box is also included which 
informs the user if the relevant ML model requires re-training. 
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Table 9: Verification of realisation requirements 

ID Realization requirements  FDD tool feature developed 

R1 The tool should have modular components.  The back-end of the tool consists of multiple python pages for 
each screen with modular blocks of code which can be 
replicated for other projects. 

R2 The tool should be developed on an open-source 
platform. 

The tool is developed using the python programming language 
with open-source components including ML libraries, DBN 
library, and dashboarding library. 

R3 The tool should be interoperable with all kinds of 
BMS platforms. 

The tool communicates with the data server over API. 
Communication over API is possible for all kinds of BMS as long 
as a history server for the specific building exists. 

R4 The tool should be generalizable and usable for 
new building installations. 

The tool consists of modular components and a structure where 
new projects can be easily added.  

R5 The knowledge needs to be shared with other 
organizations within the building services 
community and other research communities. 

The tool is developed as a private GitHub project where access 
can be provided to relevant organizations and research 
partners. Knowledge sharing sessions of the developed tool are 
also organized among the building services community in the 
Netherlands.  

R6 Additional sensor requirements and installation 
methods need to be provided to ensure FDD of 
low ΔT syndrome is possible in new installations. 

An instruction manual for the FDD tool is developed, providing 
users with information about the features of the tool and the 
pre-requisites for proper functioning of the FDD algorithms. The 
sensor requirement list for a minimum viable product is also 
listed.  

 

5.4 Validation  
With the completion of the verification of the tool in terms of all the requirements, the next step is to 
validate the tool with a live in-situ test. The tool was tested in the office building in Breda, where the 
initial algorithm testing study was conducted as discussed in chapter 3. The stuck valve fault (50% 
stuck) and the reduced SAT fault (1K and 2K) were introduced to the north cooling coil, in May 2022 
and June 2022. For the stuck valve fault, the setpoints for the valve position were fixed in the BMS 
whereas for the reduced SAT fault, the minimum temperature setpoints were reduced by 1K and 2K. 
Table 10 shows the specific dates and timings during which the faults were introduced.  

Table 10: List of faults introduced to the north cooling coil at office building Breda for validation of the tool 

Date Time Fault  Severity level 

20-05-2022 to 22-05-2022 15:30 – 22:40 Stuck valve 50% 

03-06-2022 08:15 – 12:00, 15:30 – 17:00 Reduced SAT 2K 

15-06-2022 12:30 – 17:00 Reduced SAT 1K 

17-06-2022 12:40 – 17:00 Reduced SAT 2K 
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The validation of the product was done by analysing the alarms page and DBN page of the FDD tool 
during the days when the different faults were introduced. Figure 56 shows a screenshot of the alarms 
page during the period when the 50% stuck valve was introduced. The low ΔT syndrome indicator 
blinks red which shows that the low ΔT syndrome has been detected in the system. The alarms list at 
the bottom of the figure shows the fault diagnosed as the stuck valve fault with a description of the 
possible issue and a to-do action required to solve the problem.  

 

Figure 56: Screenshot of alarms page for validation of 50% stuck valve fault 

Figure 57 shows the probability distribution modal for all possible faults which can be diagnosed by 
the DBN. It is seen that the probability of the stuck valve fault at the positive state is almost equal to 1 
between the evening of 20th June and the evening of 22nd June, whereas the probability values for the 
other faults are close to 0. 

  

Figure 57: Screenshot of DBN page modal for validation of 50% stuck valve fault 

The validation of the tool for the other three fault cases was also conducted and the screenshot results 
are shown in Appendix A7. All the three faults were diagnosed by the DBN, including the reduced SAT 
by 1K fault. This was probably because the reduced SAT faults were conducted during warm days when 
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the outdoor air dry-bulb temperatures rose above 24 °C. Since the cooling demand was high during 
the 3rd, 15th, and 17th of June 2022, the introduction of the fault resulted in the occurrence of the low 
ΔT syndrome as there was sufficient MFR increase and RWT decrease in the cooling coils. This is logical, 
since the SAT would be reduced only when the outside temperature is too hot, and the indoor 
conditions get too uncomfortable. 

The validation of the tool for the school building in Nijmegen was also conducted, with the different 
screens for the fault cases shown in Appendix A8. No additional fault experiments were conducted for 
validation apart from the experiments of summer 2020. It was observed that the tool was able to 
detect the low ∆T syndrome and diagnose the reduced SAT faults which caused it.  

5.5 Evaluation  
With the validation of the FDD tool completed, it is necessary to analyse the tool in terms of its fault 
classification accuracy and other limitations. The FDD tool in general was able to detect the low ΔT 
syndrome in almost all the fault cases except for some of the reduced SAT faults when the outside air 
temperature was not very high. There is no clear explanation as to why this happens since the 
prediction is black-box. The most likely assumption is the influence of a lower outdoor air temperature. 

Figure 58 shows the confusion matrix obtained for the DBN analysis conducted for the validation 
between 3rd March 2022 and 17th June 2022. During this period 4 fault cases were introduced, as 
explained in section 5.4. The classification accuracy of the DBN is usually described by performance 

indicators like accuracy ( 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

), sensitivity ( 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

), specificity ( 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

) and precision ( 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

) 

(Ruuska et al., 2018), where 𝑇𝑇𝑃𝑃,𝐹𝐹𝑃𝑃,𝑇𝑇𝑇𝑇 and 𝐹𝐹𝑇𝑇 are number of true positives, false positives, true 
negatives and false negatives respectively.  

 

Figure 58: Confusion matrix for the DBN for the north cooling coil of the office building in Breda  

The DBN was able to detect the low ΔT syndrome with an accuracy of 95.5%. The sensitivity of the 
DBN, which describes the ability to positively detect the fault, was calculated to be 0.81. The specificity 
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of the DBN, which describes the ability to avoid false alarms, was 0.98. The precision of the tool, which 
describes the relevant positively classified instances, was 0.91. The fault diagnosis accuracy (accuracy 
of labelling the faults that caused the low ΔT syndrome) of the tool was calculated to be 93%. 

False positive cases were identified for certain timestamps when the ML models made incorrect 
predictions leading to a fault being diagnosed when it really isn’t present. Even though the DBN 
provides a high probability for the fault, it is not usually reported in the alarms table since the fault 
needs to be detected for consecutive timesteps over a certain window period.  

An incorrect fault labelling was also identified for the reduced SAT by 2K fault introduced on the 17th 
of June 2022. The fault was diagnosed as a reduced SAT fault for the first 30 minutes but was later 
diagnosed as a positive stuck valve fault. This is because the outdoor air temperature gradually 
increased from 26 °C to 30 °C during the period when the fault was introduced. At this point, the design 
SAT setpoint was calculated to be approximately 16 °C, the value to which the SAT was initially reduced 
to. Due to this, the specific symptom node to compare the design SAT with the actual SAT did not 
detect a deviation and hence the DBN was not able to detect the fault.  

Multiple false negatives cases were also identified by the DBN. Apart from the reduced SAT and stuck 
valve faults, sensor offset faults were also introduced into the system as a part of another research 
project in the same consortium. These faults were introduced during the month of August 2021 and 
September 2021. Some of the sensor offset faults that can lead to the low ΔT syndrome include the 
SAT sensor offset fault (positive offset), the RAT sensor offset fault (positive offset) and the SAT sensor 
(before cooling coil) offset fault (negative offset).  

 

Figure 59: Screenshot of alarms page showing detection of low ΔT syndrome but no diagnosis during the sensor offset faults 

 

Figure 60: Screenshot of low ΔT syndrome page with MFR and RWT comparison graphs 
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Figure 59 shows a screenshot of the alarms page for the period when the sensor offset fault was 
introduced. Between the 10th and 11th of September, an RAT sensor offset (positive offset) fault was 
introduced into the system with an offset of +3K, but no diagnosis was made as seen in the empty 
alarms table. Since there was an increase in the MFR and a reduction in the RWT, the low ΔT syndrome 
was detected, as seen in Figure 60, where the red lines indicate the measured value, and the blue lines 
indicate the predicted value.   

The DBN was not able to provide a suitable diagnosis since there was no specific fault node present for 
the sensor offset faults. Therefore, in the instance when the low ΔT syndrome is detected, but no 
alarms are displayed, it is possibly due to the occurrence of other faults which are not included in the 
fault list of the DBN. 

The evaluation of the tool for the school building in Nijmegen was also conducted and it was found 
that the tool could detect the low ∆T syndrome with an accuracy of 95.8%. The DBN had a sensitivity 
of 0.94, specificity of 0.96 and a precision of 0.49. The overall fault diagnosis accuracy of the tool was 
calculated to be 94.8%. The lower precision is since the SAT setpoint, which is calculated using a cooling 
curve based on the outdoor air temperature, was not properly set for this HVAC system (compared to 
a proper reference curve as in the building in Breda), therefore giving certain false positive cases for 
the SAT setpoint comparison symptom node.  

The DBN in general clearly shows that it can detect the low ∆T syndrome, providing visual alarms to 
the user, and providing diagnostic results as well. The overall performance of the tool, it’s advantages, 
limitations and further recommendations for its improvement are discussed in the next chapter.   
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Discussion                   6 

__________________________________________________________________________________ 

In this chapter, the performance of the FDD tool is discussed, highlighting its advantages, drawbacks 
and limitations.  

In this study, the low ∆T syndrome was analysed in detail by conducting fault simulations in EnergyPlus, 
where the impact of each fault in terms of energy consumption and comfort, and the characteristics 
of the faults in terms of MFR increase and RWT decrease were studied. The analysis showed that the 
stuck valve fault and the reduced SAT fault had the highest impact on energy consumption. Therefore, 
an FDD tool was developed to detect the low ∆T syndrome in the HVAC system and diagnose these 
specific faults. To make the tool as generalizable as possible, the low ΔT syndrome detection is based 
on the CCVP and RWT sensor data, which is widely available in most existing HVAC systems. This 
approach works well for smaller CHW systems with a constant pressure drop across the valve. When 
the tool is to be implemented for larger CHW systems, where there is a higher possibility of fluctuating 
pressure drop across the valve, a virtual MFR meter is used to detect the low ΔT syndrome. This 
ensures reliable alarms for the building operator/technician so that appropriate actions can be taken.  

The validation of the tool showed that it can detect the low ∆T syndrome in the system and diagnose 
two kinds of faults (stuck valve and reduced SAT) that can lead to it. In some instances, the reduced 
SAT by 1K fault cannot be easily detected by the XGBoost based ML prediction models since there 
might not always be a substantial increase in the MFR of water or a decrease in the RWT. Other kinds 
of faults which can lead to the low ΔT syndrome, including sensor offset faults and coil fouling are not 
included in the DBN. In the instances that such kinds of faults occur in the system, the fault detection 
model will detect the low ΔT syndrome but not provide any diagnosis result since the relevant fault 
nodes do not exist. In this situation, the building operator/technician would have to diagnose the fault 
manually. However, the DBN can be altered to include relevant symptom nodes and fault nodes to 
expand the fault node list.  

The visualization layer of the tool (dashboard) provides the user with information about instances 
when the low ∆T syndrome was detected and the diagnosed fault along with to-do actions on the main 
alarms page. Interactable graphs for ML predictions and posterior probability values are also present 
to assist the user in certain findings. In the situation where the low ∆T syndrome is caused by other 
faults (for e.g., sensor faults), the low ∆T status indicator would turn red in colour but not show any 
diagnostic result in the alarms table. This limitation could be further improved by including a 
suggestion to the user in the alarms table, that a fault was detected but not diagnosed and that manual 
diagnosis needs to be done. 

 



50 
 

Conclusion                   7 

 

This chapter concludes the research and product development work presented in this project along 
with recommendations for future work. 

7.1 Conclusions 
An FDD tool has been developed which can detect the low ΔT syndrome and diagnose two kinds of 
faults which caused it. The tool is developed in Python using the dashboarding framework called Dash, 
thus making it open-source, generalisable, and scalable. The tool was developed and tested for two 
case study buildings, where the low ΔT syndrome was detected and diagnosed for the stuck valve and 
reduced SAT faults.  

For the tool to be functional as a minimum viable product, there is no requirement of additional 
sensors which require complex installation procedures, for e.g., an MFR meter. The fault detection 
algorithms are based on the RWT and CCVP sensors, which are generally available in most CHW 
installations. This approach is usually feasible for small and simple CHW systems. In the case of larger 
buildings with more complex installations, the use of CCVP as a means of detecting the low ΔT 
syndrome reduces the accuracy of the model since the pressure drop across the valve would not be 
constant. At this point, the CCVP and MFR do not have the same relationship as in a constant pressure 
drop condition, leading to inaccurate estimations of MFR demand. In this case, a virtual MFR meter 
should be used to calculate the fault-free MFR using energy balance equations. Another virtual MFR 
meter should be developed to measure the actual faulty value using a regression model based on 
pressure difference of water across the cooling coil. Both faulty and fault-free values of MFR are 
required to generate residuals and identify if there is an increase or decrease in MFR. 

The DBN developed for the office building in Breda was able to diagnose the faults with a diagnosis 
accuracy of 93% during a validation period of two months. The low ∆T syndrome was detected with an 
accuracy of 95.5%, where the DBN had a sensitivity of 0.81, specificity of 0.98 and precision of 0.91. 
The DBN developed for the school building in Nijmegen had a sensitivity of 0.94, specificity of 0.96, 
and precision of 0.49, with a fault detection accuracy of 95.7% and a fault diagnosis accuracy of 94.8%. 

7.2 Recommendations 
Even though the FDD tool can detect the low ΔT syndrome and provide diagnostic results for most of 
the faults easily, there are certain limitations to its performance and substantial effort is required to 
make modifications to the tool in terms of adding new projects. To improve the general performance 
and characteristics of the tool, certain recommendations for future work are proposed as follows: 

1. Inclusion of sensor faults in the DBN with the addition of energy balance symptom nodes to 
provide a complete diagnostic capability.  

2. Upgrade of current pomegranate-based DBN to a newer, more user-friendly DBN library to 
easily configure and update the DBN.  
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3. Inclusion of additional symptom nodes based on user feedback of thermal comfort to 
strengthen the diagnostic analysis.  

4. Improve the current back-end code base to improve the interaction between different screens 
and add new projects.  

7.3 Publications 
As a part of this research, a conference paper has been published at the CLIMA 2022 conference held 
in Rotterdam, under the topic Digitization. The paper is titled “Detection of the low ∆T syndrome using 
machine learning models”.  
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Appendix  
A1. Validation of simulation model of office building in Breda 
 

 

Figure 61: HVAC layout of office building in Breda designed in DesignBuilder 

 

Figure 62: Comparison of simulated and actual dry-bulb outdoor air temperature 
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Figure 63: Comparison of simulated and actual chiller 
power for high outdoor air temperature case (MBE = 8.9 

kW) 

 

Figure 64: Comparison of simulated and actual chiller 
power for low outdoor air temperature case (MBE = 5.1 

kW) 

 

Figure 65: Comparison of simulated and actual cooling rate 
for high outdoor air temperature case (MBE = 1.2 kW) 

 

Figure 66: Comparison of simulated and actual cooling rate 
for low outdoor air temperature case (MBE = 3.1 kW) 

 

Figure 67: Comparison of simulated and actual MFR for 
high outdoor air temperature case (MBE = 0.13 kg/s) 

 

Figure 68: Comparison of simulated and actual MFR for 
high outdoor air temperature case (MBE = 0.16 kg/s) 
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Figure 69: Comparison of simulated and actual ΔT for high 
outdoor air temperature case (MBE = 3.3 K) 

 

Figure 70: Comparison of simulated and actual ΔT for low 
outdoor air temperature case (MBE = 3 K) 

 

A2. Fault impact analysis of 5-zone office building 

 

Figure 71: Temperature profile of outdoor air for a reference day used in the simulation of the 5-zone model 
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Figure 72: Comparison of normal and faulty mass flow rate 
for 75% stuck valve fault of 5-zone building 

 

Figure 73: Comparison of normal and faulty return water 
temperature for 75% stuck valve fault of 5-zone building 

 

Figure 74: Comparison of normal and faulty mass flow rate 
for 50% stuck valve fault of 5-zone building 

 

Figure 75: Comparison of normal and faulty return water 
temperature for 50% stuck valve fault of 5-zone building 

 

Figure 76: Comparison of normal and faulty mass flow rate 
for reduced SAT by 1K fault of 5-zone building 

 

Figure 77: Comparison of normal and faulty return water 
temperature for reduced SAT by 1K fault of 5-zone 

building 
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Figure 78: Comparison of normal and faulty mass flow rate 
for reduced SAT by 2K fault of 5-zone building 

 

Figure 79: Comparison of normal and faulty return water 
temperature for reduced SAT by 2K fault of 5-zone 

building 

 

Figure 80: Comparison of normal and faulty mass flow rate 
for 30% fouling fault of 5-zone building 

 

Figure 81: Comparison of normal and faulty return water 
temperature for 30% fouling fault of 5-zone building 

 

Figure 82: Comparison of normal and faulty mass flow rate 
for higher airflow fault of 5-zone building 

 

Figure 83: Comparison of normal and faulty return water 
temperature for higher airflow fault of 5-zone building 
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Figure 84: Comparison of normal and faulty mass flow rate 
for lower airflow fault of 5-zone building 

 

Figure 85: Comparison of normal and faulty return water 
temperature for lower airflow fault of 5-zone building 

 

Figure 86: Comparison of normal and faulty mass flow rate 
for increased SWT fault of 5-zone building 

 

Figure 87: Comparison of normal and faulty return water 
temperature for increased SAT fault of 5-zone building 

 

Figure 88: Comparison of normal and faulty mass flow rate 
for positive sensor offset fault of 5-zone building 

 

Figure 89: Comparison of normal and faulty return water 
temperature for positive sensor offset fault of 5-zone 

building 
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A3. Fault characteristic analysis of office building in Breda 

 

Figure 90: Temperature profile of outdoor dry-bulb air for simulation of office building in Breda during working hours 

 

Figure 91: Comparison of normal and faulty mass flow rate 
for 75% stuck valve fault at simulation of office building in 

Breda 

 

Figure 92: Comparison of normal and faulty return water 
temperature for 75% stuck valve fault at simulation of 

office building in Breda 
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Figure 93: Comparison of normal and faulty mass flow rate 
for 50% stuck valve fault at simulation of office building in 

Breda 

 

Figure 94: Comparison of normal and faulty return water 
temperature for 50% stuck valve fault at simulation of 

office building in Breda 

  

 

Figure 95: Comparison of normal and faulty mass flow rate 
for reduced SAT by 1K fault at simulation of office building 

in Breda 

 

Figure 96: Comparison of normal and faulty return water 
temperature reduced SAT by 1K fault at simulation of 

office building in Breda 
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Figure 97: Comparison of normal and faulty mass flow rate 
for reduced SAT by 2K fault at simulation of office building 

in Breda 

 

Figure 98: Comparison of normal and faulty return water 
temperature reduced SAT by 2K fault at simulation of 

office building in Breda 

 

A4. Noisy-max algorithm development  
To develop a graphical probabilistic model such as a Bayesian network, it is necessary to provide CPTs 
which consist of discrete joint probability distributions between the different states of the parent 
nodes and the child node. With an increase in parent nodes however, the size of the CPT increases 
exponentially. This is where canonical models are used which reduce the complexity of elicitation of 
numerical probabilities (Francisco J. & Marek J., 2007). There are three types of canonical models – 
deterministic, indeterministic and simple canonical models. Deterministic models are obtained from 
logical and algebraic functions and do not require any numerical parameters. Indeterministic models 
are based on the assumption of independence of causal influence (ICI) and are further sub-divided into 
noisy and leaky models. The conversion of a noisy MAX probability distribution to a CPT probability 
distribution follows a defined procedure. For the FDD tool, the leaky causal MAX algorithm is used 
since it is the same conversion algorithm used in GeNie. Figure 99 shows the structure of a noisy MAX 
canonical model. Here 𝑋𝑋  is the original parent node, 𝑍𝑍 is an auxiliary variable and 𝑌𝑌 is the child node 
such that 𝑌𝑌 is a deterministic function of the 𝑍𝑍s and each 𝑍𝑍 is probabilistically dependant on 𝑋𝑋. There 
can be in total 𝑛𝑛 such parent nodes for a particular child node. 

 

Figure 99: Internal structure of a noisy MAX canonical model 

 

The conversion algorithm used for noisy MAX to general CPTs is based on the following set of equations 
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Here, 𝑃𝑃(𝑦𝑦|𝑥𝑥) is the final generated CPT for each state 𝑥𝑥 of parent node 𝑋𝑋𝑎𝑎 in the parent set X, and 𝑦𝑦 in 
the child node 𝑌𝑌, where the set X = {𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑖𝑖}. Here, 𝑧𝑧𝑎𝑎 is the individual auxiliary state of 𝑍𝑍𝑎𝑎, 𝐶𝐶𝑦𝑦𝐿𝐿 
is the sum of all the leak probability distribution values in the auxiliary distribution Z. A leak probability 
is the probability of the state 𝑦𝑦 in node 𝑌𝑌 where the 𝑥𝑥’s of X are in their neutral states, i.e., for example 
if a stuck valve fault node (𝑋𝑋) has a fault-free state, then the probability of the cooling coil valve 
position symptom node (𝑌𝑌) with the fault-free state (no residuals) is the leak probability. Therefore, 
the final probability distribution corresponding to each state of the child node and the specific 
combination of states of the parent nodes 𝑃𝑃(𝑦𝑦|𝑥𝑥) is calculated using Equation ( 5 ). The different values 
of  𝑃𝑃(𝑦𝑦|𝑥𝑥) for all the different states constitute the complete CPT for a particular child-parent acyclic 
graph 
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( 4 ) 

𝑃𝑃(𝑦𝑦|𝑥𝑥) =  �𝑃𝑃
(𝑌𝑌 ≤ 𝑦𝑦|X) − 𝑃𝑃(𝑌𝑌 ≤ 𝑦𝑦 − 1|X)      𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦 ≠ 𝑦𝑦𝑚𝑚𝑎𝑎𝑖𝑖
𝑃𝑃(𝑌𝑌 ≤ 𝑦𝑦|X)                                         𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦 = 𝑦𝑦𝑚𝑚𝑎𝑎𝑖𝑖

  

( 5 ) 
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A5. FDD algorithm development for school building in Nijmegen 

 

Figure 100: Comparison of predicted and actual RWT for 
reduced SAT fault by 2K conducted at school building in 

Nijmegen on 08/08/2020 

 

Figure 101: Comparison of predicted and actual CCVP for 
reduced SAT fault by 2K conducted at school building in 

Nijmegen on 08/08/2020 

 

Figure 102: Comparison of predicted and actual RWT for 
reduced SAT fault by 2K conducted at school building in 

Nijmegen on 09/08/2020 

 

Figure 103: Comparison of predicted and actual CCVP for 
reduced SAT fault by 2K conducted at school building in 

Nijmegen on 09/08/2020 

 

Figure 104: Posterior probability distribution of all faults 
on 08/08/2020 

 

Figure 105: Posterior probability distribution of all faults on 
09/08/2020 
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A6. Figma screens during prototype development 

 

Figure 106: Figma screen of alarms page 

 

Figure 107: Figma screen of DBN page 
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Figure 108: Figma screen of ML page 

 

 

Figure 109: Figma screen of fault probability modal 
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Figure 110: Figma screen of symptom node residual modal 

A7. Validation of FDD tool for office building in Breda – other fault cases 

 

Figure 111: Screenshot of alarms page for validation of reduced SAT by 2K fault on 03/06/2022 
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Figure 112: Screenshot of low ∆T syndrome analysis page for validation of reduced SAT by 2K fault on 03/06/2022 

 

Figure 113: Screenshot of alarms page for validation of reduced SAT by 1K fault on 15/06/2022 

 

Figure 114: Screenshot of low ∆T syndrome analysis page for validation of reduced SAT by 1K fault on 15/06/2022 
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A8. Validation of FDD tool for school building in Nijmegen 

 

Figure 115: Screenshot of alarms page for school building in Nijmegen during the reduced SAT by 2K fault on 08/08/2020 

 

 

Figure 116: Screenshot of alarms page for school building in Nijmegen during the reduced SAT by 2K fault on 09/08/2020 

 

 

Figure 117: Screenshot of low ∆T syndrome analysis page for school building in Nijmegen during the reduced SAT by 2K 
fault on 08/08/2020 and 09/08/2020 
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Figure 118: Confusion matrix for DBN of AHU-1 of school building in Nijmegen 

The DBN developed for the school building in Nijmegen was able to accurately detect the low ∆T 
syndrome for 95.8% of the total cases. The DBN was found to have a sensitivity of 0.94, specificity of 
0.96 and a precision of 0.49. The overall fault labelling accuracy (diagnosis accuracy) of the tool was 
calculated to be 94.8%. The precision of the model is not very high, and this is because during the 
reduced SAT faults conducted at the location collided with very warm days during the summer of 2020, 
where the outside air temperatures were higher than 30 °C. This led to certain unusual circumstances, 
where some symptom nodes did not indicate a fault since the   

A9. Business plan proposed for the developed FDD tool 
Introduction 

The Smart HVAC tool is the latest HVAC monitoring tool with capabilities of fault detection and 
diagnosis of commonly occurring HVAC related faults and auto-correction of control and setpoint 
related faults. The tool also has the additional function of being able to detect the low ∆T syndrome in 
cooling coils, which is a decades long problem in the HVAC industry. The predictive maintenance 
strategy employed by the system allows the user to identify severe faults in the system beforehand.  

Situation                  
The number of commercial buildings in the world are ever increasing to meet the demand of a growing 
population and workforce. With an increasing average global temperature, the cooling demand in 
buildings is at its highest and is expected to grow in the coming years. To comply with this demand, 
HVAC systems are increasingly used in buildings to comply with the comfort requirement of the 
occupants. With an increased use of HVAC systems, the possibilities of faults occurring in the system 
are much higher, leading to higher energy consumption of the system and degradation of occupancy 
comfort. The use of an FDD tool with re-commissioning of systems in the form of predictive 
maintenance can lead to energy savings of 10-20%.  
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Problem                                                   
Currently, many buildings in the Netherlands do not have a sophisticated FDD tool integrated with the 
building management system (BMS). The BMS module can detect some very minor faults in the system 
and provide alarms respectively, but this is not the case for gradual faults or control faults which can 
lead to excessive energy consumption of the HVAC components. Faults related to the coils like 
performance degradation and leakage need appropriate methods for detection and diagnosis. Such 
faults can only be noticed by technicians during regular maintenance.  

Solution                                       
One promising solution for such kinds of faults is the use of machine learning, data analytics and 
pattern recognition methods. Our product, which is a smart fault detection and diagnosis tool, consists 
of multiple modules based on state-of-the-art artificial intelligence tools. The Smart HVAC tool can 
continuously monitor the performance of different HVAC components and identity faulty instances 
due to performance degradation using advanced data analytics. The control and sensor setpoint faults 
which can occur sporadically, will be detected using machine learning models and will be auto-
corrected to operate at optimal operating conditions. The tool can also prevent certain severe faults 
from occurring by notifying the user of early degradation of HVAC systems. 

Unique value proposition and business model                            
The Smart HVAC ΔT tool is a multi-functional fault detection and diagnosis tool with capability of auto-
correction of control and setpoint faults. This minimizes the requirement of human intervention for 
repairs, reducing labour and energy costs. Since the product offers purely digital and smart solutions, 
the operational costs to the customer are much lower compared to conventional manual maintenance 
costs required per year. The product will be sold to the customer in the form of a monthly subscription 
which includes customer service support and technical support with the tool. Additional maintenance 
for serious faults will be handled by Kropman Installatietechniek. 

Product                          
The product is an application which is integrated into the BMS platform of a building and connected 
with the sensor and actuators of all HVAC components. The tool continuously monitors the data 
streams from all components and analyses the performance of sensors and actuators. Detected faults 
are displayed in a user-friendly interface with the proper diagnosis of the faults, indication of fault 
severity, recommended actions and corrective actions taken. The system is also accessible to technical 
professionals to get a more detailed diagnosis report of faults. A prototype mock-up of the application 
interface is shown below. 
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Figure 119: DBN analysis page of the FDD tool 

The product can be sold in two forms: 

1. BMS + FDD which is aimed for new buildings and re-commissioning buildings where the BMS 
platform of Kropman Installatietechniek will be used. 

2. FDD only system which is aimed for existing buildings having a BMS system but no FDD 
capabilities. 

Market 

Market size                             
Currently there are around 470,000 commercial buildings in the Netherlands, with many of them 
constantly being renovated and HVAC equipment being recommissioned. Furthermore, there are 
around 400-500 new buildings built every year. Initially, the product will be targeted to around 10 new 
buildings in the first year of market introduction with a further expansion to 25 buildings in the second 
year. With more market penetration in new buildings, the product can be targeted to recommissioning 
buildings as well.  

Target customers                              
Customers that are most likely to buy the product include property owners of hotels, schools, 
universities, hospitals, offices, factories and labs. The product would first be sold to existing customers 
of Kropman Installatietechniek who are using the Kropman BMS system. Since Kropman has already 
established a strong clientele in the Netherlands, it is relatively easier to sell the product to customers. 
The Smart HVAC ΔT tool, which is a module of the Kropman BMS system, would be sold at a lower 
price compared to the annual maintenance contract provided to the customer. The module will then 
be extended to other customers in the Netherlands, promoting the cheaper and more efficient BMS 
alternative of Kropman Installatietechniek.  

Competitors                                 
There are a few basic diagnostic features available in some BMS and building automation systems 
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offered currently but they are mostly oriented towards the US HVAC configuration and climate or are 
detect only very simple and basic faults. The comparison is shown below in Table 11. 

Table 11: Market survey of competitors 

Tool Company Cons 

OpenBlue Johnson Controls ● US only 
● Not developed for EU 
● Rules based 

Priva Blue Priva ● Basic rules-based method 

HVAC-Cx NIST ● US based 
● Offline basis 
● Minimal flexibility with BMS 
● Rules based 

Brainbox AI Brainbox AI ● Australia and Canada only 
● Not developed for EU 

Clockworks 
Analytics 

Clockworks Analytics ● US based 

 

From a customer standpoint, the FDD systems of OpenBlue, HVAC-Cx and Brainbox are not very useful 
to the Dutch buildings since they are built for a different region. Brainbox AI and Clockworks Analytics 
are not yet available in the EU and therefore not available to any of the Dutch customers. The Priva 
Blue system, which is currently used by many customers in the Netherlands, only provides basic alarms 
for system malfunction etc., whereas the Smart HVAC ΔT tool provides fault detection for all faults 
occurring in the HVAC system, including the chiller, boiler, air handling unit and its components. Our 
tool on the other hand is built for a Dutch climate and it helps in the predictive maintenance of all 
HVAC components, resulting in cheaper operation costs for the customer in the long run.  
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SWOT analysis 

 

Marketing 

Price                  
Where in conventional methods customers must pay a separate fee for the BMS system and extra 
maintenance and fault repair charges with both adding up to around €7-10 / m2/ year, Smart HVAC ΔT 
is sold as a standalone FDD application at a lower cost € 0.2 / m2/ month. The FDD + BMD platform of 
Kropman is sold at a fee of € 0.5 / m2/ month. 

Promotion                 
The product will be promoted among customers using social media platforms, TVVL (Dutch Building 
Association) newsletters, Kropman website as well as building automation and smart building 
conventions. 

Organization 

The company will be set up as an independent business unit under Kropman Installatietechniek with 
the main aim of developing and selling the Smart HVAC ΔT tool. The beta version of the product is 
developed with another PDEng trainee until the second quarter of 2022. In the third quarter, the 
company will be set up with the PDEng trainees as employees. Each member works on different 
modules of the FDD tool. The final version of the product with the software development will require 
another engineer who will be hired. 

Legal structure                                        
The company would be set up as a private limited liability company, besloten vennootschap (bv), with 
the main shareholder being Kropman Installatietechniek. The board of directors include the PDEng 
trainees with the board of Kropman Installatietechniek as the supervisory board of directors.  

Personnel                                        
The company will initially require two smart building engineers (the two PDEng trainees) and a 
software engineer. The smart building engineers also act as the directors of the company. One of the 
engineers will lead the technical development of the product whereas the other will lead the sales and 

Strengths 

• AI based FDD 
• Cheaper than manual 

maintenance contracts 
• Copyrighted technologies and 

 

Weaknesses 

• Cooperation with other 
installation companies for 
compatibility  

• Requirement of additional sensors 
    

Opportunities 

• No specific Ai based FDD tool in 
the market 

• Requirement to digitize buildings 
from government 

Threats 

• Possibility of foreign companies 
entering the Dutch market 

• Customer may not want to 
implement unless required by 
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customer advisory (consulting). In the 2nd year, two additional engineers will be hired to support the 
team. For research and development, interns will be hired to accomplish specific tasks or goals. 
Additional engineers for sales and product development will be hired based upon on the revenue and 
growth of the company from the 3rd year onwards. 

Fixed assets                                           
The company will use the workspace (one office room) in one of the buildings of Kropman 
Installatietechniek. The most relevant assets include workstations and non-tangible property 
(codebase, algorithms). The workspace would be rented out to the company at a reduced rate 
compared to the market.  

Sales 

Sales forecast                                        
The beta version of the product which is to be tested among the customers of Kropman will be released 
in Q4 2021 and tested among 10 buildings. With the feedback of the customers the product will be 
updated with the final commercial release aimed at Q3 2022. The aim is to sell the product to 10 
customers within the first 12 months of commercial release which will then be extended to 25 
customers within the next 12 months.  

Customer development                                                                      
In the first year, the product will be sold to customers of Kropman who use the Kropman BMS software, 
so that proper user-feedback can be received. Once the product has been successfully tested (beta 
version as well as final commercial release), the FDD only product will be sold to customers without 
Kropman BMS system including new building owners (recently constructed buildings), buildings 
undergoing recommissioning and existing buildings with other BMS software. 

Financial analysis 

The initial investments for the company are provided by Kropman Installatietechniek. This includes 
payroll for the employees and equipment. Financial forecasts for three different cases were done: base 
case, best case and worst case. A profit and loss summary is shown for the base case scenario as shown 
in Table 12. 

The financial model for the base case scenario shows that the company requires external funding of 
€67,166. For the worst case scenario, external funding of €222,862 is required and for the best case 
scenario, funding of €20,186 is required. 

The value of WACC is assumed to be 12% since the company is a start-up. A very high value of 15% is 
not used since there are similar companies successfully operating in other parts of the world. In the 
base case scenario, the pre-money evaluation of the company is €2,137,736. With an additional 
funding of €67,166, the post-money evaluation becomes € 2,204,902. Kropman then owns 3.05% of 
the total equity.  

In the worst case scenario, the pre-money evaluation of the company is €676,138. With an additional 
funding of €222,862, the post-money evaluation becomes € 899,000. Kropman then owns 24.7% of 
the total equity.  
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Table 12: Profit and Loss summary for base case scenario 

Profit and Loss summary 

  31-Dec-22 31-Dec-23 31-Dec-24 31-Dec-25 31-Dec-26 

Sales  300,000  570,000  840,000  1,110,000  1,380,000  

Cost of goods sold (-/-) (18,000) (45,000) (72,000) (99,000) (126,000) 

Gross Margin  282,000  525,000  768,000  1,011,000  1,254,000  

Personnel cost (-/-) (280,000) (415,000) (510,000) (645,000) (785,000) 

Sales & Marketing (-/-) (8,000) (8,000) (8,000) (8,000) (8,000) 

General Administration (-/-) (12,600) (18,000) (23,400) (28,800) (36,000) 

Research & development (-/-)  -  -  -  - - 

Other costs (-/-) (7,500) (8,000) (11,000) (14,000) (14,000) 

Total cost  (308,100) (449,000) (552,400) (695,800) (843,000) 

EBITDA  (26,100) 76,000  215,600  315,200  411,000  

Depreciation and amortisation (-/-) (5,000) (5,000) (5,000) (5,000) (5,000) 

EBIT  (31,100) 71,000  210,600  310,200  406,000  

Interest 6% -  (4,030) (1,309) -  -  

Financial cost  -  (4,030) (1,309) -  -  

Earnings before tax (EBT)  (31,100) 66,970  209,291  310,200  406,000  

Tax 25% 7,775  (16,743) (52,323) (77,550) (101,500) 

Net result  (23,325) 50,228  156,969  232,650  304,500  

Discounted cash flow  59969.73 38567.26 106764.6 144888.1 170311.2 
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