
Comparison of
Robotic Simulation Environments

Bachelor’s Final Project
Department of Mechanical Engineering

Control System Technology

July 10, 2022

E.J.L. Wolfs

1439537

Supervisor:
Dr. E. Torta

Eindhoven University of Technology / Technische Universiteit Eindhoven
Faculty of Mechanical Engineering / Faculteit Werktuigbouwkunde

TABLE OF CONTENTS

Table of Contents
1 Introduction 1

2 Comparison Setup 3
2.1 Comparison Criteria . 3
2.2 Manipulator Scenario . 4

3 Co-Simulation Simulink and Gazebo 6
3.1 Virtual Machine with ROS Environment . 6
3.2 OpenManipulator into Gazebo . 6
3.3 Connection between Simulink and Gazebo . 6

4 Comparison Simscape vs Gazebo 9
4.1 General Characteristics . 9
4.2 Simulation Workflow . 10
4.3 Sensor Modelling in Simscape Multibody . 11
4.4 Sensor Modelling in Gazebo . 15
4.5 Joint Limits and Collision Modelling . 19
4.6 Simulation Time . 24

5 Perception in Gazebo 27
5.1 Use Case Description . 27
5.2 Gazebo Room with Depth Camera . 27
5.3 2D Binary Occupancy Map . 28
5.4 3D Occupancy Map via OctoMap Package . 29
5.5 Simulation of IGT Robot . 33

6 Conclusion and Recommendation 35

A Co-Simulation and Comparison A-1
A.1 Robot Operating System . A-1
A.2 Virtual Machine . A-1
A.3 Co-Simulation Setup Details . A-2
A.4 Main Simulink Model . A-4
A.5 Time Measurement Configuration . A-5

B Gazebo Perception B-1
B.1 RViz Visualisations . B-1
B.2 Matlab Scripts for 2D/3D Grid Map . B-2
B.3 ROS Computation Graph . B-3
B.4 Launch Files . B-3

C Gazebo Models C-1
C.1 Plugin used for SDF files . C-1
C.2 Lidar Sensor Model . C-1
C.3 IMU Sensor Model . C-2
C.4 RGB Camera Model . C-3
C.5 Collision Settings . C-4
C.6 Kinect Sensor Model . C-5

i

CHAPTER 1. INTRODUCTION

1 Introduction

In today’s world, robots have become increasingly important, more complex, and applied in many
different fields. Robots are also being given more responsibility. Especially for complex medical robot
applications where reliability and consistency are key. The robot should perform exactly what it is ex-
pected to do. Due to this complexity, optimisations in terms of controller algorithms and software are
key factors to make sure that the robotic system works as intended. Validating these systems on real
hardware is expensive and can therefore be executed less often. To improve this optimisation process
and validate the robot before implementing it on a real-life setup, robotic simulation environments are
used. These environments allow modelling of the robot in a realistic real-world environment, reducing
the time and costs of the design cycle [2]. According to a previous study [8], these environments make
it easier to solve problems with algorithms due to their great controllability, which makes it possible
to reduce the number of factors involved in a simulation, such as friction. Another advantage is the
fact that simulation environments are more predictable compared to the real world. This ensures that
the results of the experiments are always constant.

When validating a robot, it is important to choose a suitable simulation environment, since different
environments offer different built-in features. Due to the increasing number of simulation environ-
ments and features, it is sometimes unclear which environment is best suitable for a specific robotic
simulation task. There is a wide range of different robot types like mobile robots, humanoid robots,
and manipulators. All these types require different simulation capabilities in terms of, for example,
sensor implementation, collision modelling or environment simulation. Several studies have examined
the differences between simulation environments. One of them is a study about the Analysis and
Comparison of Robotics 3D Simulators [3]. This study compares the environments V-Rep, Unity and
Gazebo by focusing mostly on the quality and usability of these environments. This research concluded
that V-Rep has more integrated features, while Gazebo requires more plugins. This type of study gives
already an indication of what environment might be more convenient to use for a specific simulation
scenario.

The Robotics System Toolbox in Matlab provides tools for designing, simulating, and testing the
robots in one integrated environment. To visualise and test these tools including complex integrated
cameras and sensors, a simulation environment is needed. A 3D realistic multibody simulation envir-
onment like Simscape Multibody can be used for this [16]. This physical modelling tool is integrated
into Simulink and automatically generates a 3D animation of the robotic setup. Making it convenient
to directly test algorithms on the robot. MathWorks proves that it is also possible to use an external
robotic simulation environment like Gazebo [12] together with Simulink, making use of co-simulation.
Via co-simulation, Simulink and Gazebo are directly connected and can exchange data. This makes
Simulink not limited to Simscape Multibody only. Based on this fact, the following question can be
asked: "What are the main differences between simulating a robotic scenario in Simscape Multibody
and Gazebo via co-simulation with Simulink?". This gives rise to the main objective of this study:

1. Compare Simscape Multibody and Gazebo based on defined comparison criteria by mak-
ing use of co-simulation with Simulink.

In order to compare the simulation environments systematically, comparison criteria are needed. These
criteria should be drawn up based on of the performance indicators to be evaluated. A suitable scenario
must then be chosen where these criteria can be tested for. The same scenario can then be used for the
simulation environments, to allow for a fair comparison. This gives rise to the following sub-objective
of this study:

1

CHAPTER 1. INTRODUCTION

1a. Define comparison criteria and a scenario in order to compare the simulation envir-
onment based on utility, usability and performance.

One requirement of these environments is that they are able to co-simulate with Simulink. This means
that Simulink should be able to send inputs (for example, position, velocity and torque) and receive
outputs data from the robot (for example, position and sensor data) modelled in a specific simulation
environment. To perform co-simulation, a connection between Simulink and Gazebo needs to be made.
This leads to the following sub-objective of this study:

1b. Establish a connection between Gazebo and Simulink to perform a co-simulation with
the defined scenario.

After comparing the two environments, the advantages of sensor simulation in Gazebo will be further
elaborated based on a use case perspective. This use case is based on the implementation of a Model
Predictive Control (MPC) algorithm for an Image-guided Therapy (IGT) robot. For this project, it is
necessary to simulate synthetic sensor data to estimate the position of obstacles in a room, which can
then be further used for obstacle avoidance. This gives rise to the second main study objective:

2. Investigate how to create a grid map of sensor simulation in Gazebo based on the
requirements for the use case.

In Chapter 2, the comparison criteria are elaborated together with the definition of the scenario.
The co-simulation that is used to simulate the scenario in Gazebo is further explained in Chapter 3.
The comparison between Simscape Multibody and Gazebo is elaborated in Chapter 4 and is divided
into different sections. Examples are demonstrated with the scenario and tests are done to find the
differences between the environments. At the end of each section, a conclusion is made that reflects
the main findings of the scenario. Finally, Chapter 5 describes the perception in Gazebo applied to
the use case. Implementation of 2D and 3D grid maps are explained and tested with the IGT robot.
The report ends with Chapter 6, which provides a conclusion and a recommendation.

2

CHAPTER 2. COMPARISON SETUP

2 Comparison Setup

This chapter describes the comparison criteria that serve as guidelines for comparing the simulation
environments. Based on these criteria, a suitable scenario is chosen which is then used to compare the
environments equally. The scenario description consists of an explanation of the chosen robot model
including a visualisation. Furthermore, the main setup of the Simulink model used for the comparison
is explained.

2.1 Comparison Criteria

To compare the simulation environments, several comparison criteria have been established. Because
the differences between the environments can be analysed in many different ways, they are divided into
different sections. This makes it clear which aspects are looked at when comparing. For this study the
comparison criteria are subdivided into three main sections:

• Utility: The functionalities that the simulation environment offers in terms of simulation pos-
sibilities. For example, whether it is possible to include built-in sensor models or different scene
objects in the simulation.

• Usability: How well users can execute/develop the functionalities that are possible with the
environment. For example, how convenient it is to install or use the software and what knowledge
is required to accomplish this.

• Performance: Examines the quality of the simulation in the environment. An example of this
could be the efficiency and accuracy of the computations. Specifications such as CPU core usage,
simulation time, and memory usage can be compared.

Based on these three sections, different criteria are chosen to be evaluated. The criteria that form the
basis of the comparison can be seen in Table 2.1.

Table 2.1: Comparison criteria
Criteria Section Description

General Differences Utility /
Usability

The general characteristics and main features
of the environments.

Simulation Workflow Usability
The general workflow that is needed to perform
a simulation within the environments, based on
the defined scenario.

Sensors Utility The possibility to simulate virtual sensors
including the type of sensors that can be simulated.

Joint Limits and
Collision Modelling Utility Comparing the simulation behaviour of the scenario

in terms of joint limits and collision modelling.

Simulation Time Performance The differences in simulation time between the
environments, based on the scenario.

For this study, the two simulation environments Simscape Multibody and Gazebo will be compared by
using co-simulation with Simulink. The defined comparison criteria form the basis of the comparison
and will be further elaborated in the following sections.

3

CHAPTER 2. COMPARISON SETUP

2.2 Manipulator Scenario

Based on the comparison criteria described in Section 2.1 a scenario is chosen that is suitable to com-
pare the environments. First, a general description of the scenario is given that forms the basis for the
comparison which is equal for both environments:

A robotic manipulator is fixed at the base within an empty environment that includes gravity. The
manipulator consists of four revolute joints and two prismatic joints which can move independently.
The four revolute joints are connected to the arm of the manipulator and the two revolute joints are
connected to the gripper. At the end of the manipulator, an end-effector is attached with a gripper that
can be controlled. This gripper can be closed and opened completely. By making use of co-simulation
between the simulation environment and Simulink, the reference trajectory and controllers are defined
within Simulink. Meanwhile, the joint position data is received from the simulation environment.

2.2.1 Robot Representation and Simulink Model

The above-defined robot description is referred to as the OpenManipulator [26]. On the community
page of MathWorks, a Simulink model is provided including the URDF (Unified Robot Description
Format) files and STL (Standard Triangle Language) files of the OpenManipulator robot [17]. The
Simulink model makes use of tools from the Robotic System Toolbox, Simsacape Multibody Mul-
tiphysics and Simcape Multibody Contact Forces library. In addition, the URDF of the robot model is
implemented in a Simscape Multibody environment. This robot consists of four revolute joints which
are attached to the links of the robot arm and 2 prismatic joints which are connected to the gripper
links, see Figure 2.1. In this Figure the URDF of the robot is visualised in Matlab, showing the
coordinate systems for the fixed (purple axis) and movable joints (RGB axis).

Figure 2.1: URDF of OpenManipulator

To perform an equal comparison, the Simulink models of the manipulator should be the same. In
this model, the trajectory and controllers are defined and will therefore be equal for both simulation
environments. Having the Simulink model, two separate models are made. One contains the plant in
Simscape Multibody and the other consists of a co-simulation connection with Gazebo. The plant is
referred to as the psychical model where the description of the robot is defined and the corresponding
behaviour of the robot is simulated.

4

CHAPTER 2. COMPARISON SETUP

In Figure 2.2 a schematic representation of the comparison setup can be seen when simulating the
OpenManpulator in Simscape Multibody. It can be seen that this environment is located within the
Simulink environment (in Windows) and that no extra connection is needed between the Simulink
model and the simulation environment.

Figure 2.2: Controller scheme using Simscape Multibody environment

The schematic representation of the OpenManipulator in Gazebo can be seen in Figure 2.3. Gazebo is
installed on a virtual machine running on the Linux operating system (Ubuntu). A connection between
the virtual machine and the Simulink environment is needed to perform co-simulation.

Figure 2.3: Controller scheme using Gazebo environment

Different Simulink models are used that are adjusted for each comparison, for example, to include
sensor information. Some models use the reference position directly to move the robot, others contain
a controller that calculates the torque for a given position as input. In Appendix A.4, the Simulink
model is shown which forms the basis for the comparison. The plant model can be changed between
the Simscape Multibody and the Gazebo environment. Four sine-waves are used as input signals for
the four revolute joints and a step signal is used to move the gripper. These signals first go to the
controller where the corresponding torques are calculated. The Simulink model in the documents from
the OpenManipulator [17], provides a simple controller consisting of feedback PD controllers and a
feed-forward controller. The feedforward controller uses the Feedforward Controller Block from the
Robotic System Toolbox which calculates automatically the torques needed for each joint to track the
reference signal. This block uses the URDF model of the robot, where information about the inertia
and the masses of the links are defined. For the feedback controller, six PD controllers are used to
control the four arms separately and the two gripper links. The feedback data comes from one of the
simulation environments. Finally, visualisation plots are used to visualise the reference trajectory and
the behaviour of the robot. These models together with the model in Figure A.5 can be found in
the repository [43]. Chapter 3 further explains how the connection between Gazebo and Simulink was
established.

5

CHAPTER 3. CO-SIMULATION SIMULINK AND GAZEBO

3 Co-Simulation Simulink and Gazebo

In this chapter, it is explained how the OpenManipulator robot is implemented in a Gazebo envir-
onment and how it is connected to Simulink for co-simulation. Background information about the
used plugin is also included. The general workflow for this setup is based on the Mathworks support
documentation [20].

3.1 Virtual Machine with ROS Environment

In order to use Gazebo together with a ROS environment (see Appendix A.1 for a short explanation), a
virtual machine "VMware workstation" is needed to run the Ubuntu operating system. Even though it
is possible to run this software on Windows, it is preferred to use a Linux environment. For this study,
a pre-defined virtual machine is used provided by MathWorks [21]. This virtual machine includes ROS
2 Dashing, ROS Melodic and Gazebo, see Appendix A.2 for more information. In addition, Geany
(integrated development environment) and Terminator (a more advanced Linux terminal) are installed
since they are convenient when using a ROS environment. The machine then provides enough tools to
be used for the simulation of the manipulator scenario. After downloading these programmes, other
plugins present on the machine were updated. The ROS build system is changed from catkin_make
to catkin build. This ROS build system gives an isolated environment, making the build configuration
more robust for changes in the catkin workspace. The complete virtual machine can be found in the
repository [48].

3.2 OpenManipulator into Gazebo

To compare the simulation environments, a suitable example robot model was chosen named the
"OpenManipulator" as explained in Chapter 2. This robot consists of a robotic platform including
OpenSoftware, OpenHardware [10], and an e-manual [26] that explains the usages of the corresponding
software. All robot files needed for the robot description and ROS-controller can be found on GitHub
[7]. The OpenManipulator files from GitHub were downloaded to the virtual machine and a new ROS
package was created to set up the robot environment. Inside this package, the launch file and the
world file are located. A launch file is written in XML and can start programs like Gazebo together
with multiple ROS nodes at once. The world file consists of an SDF format (Simulation Description
Format), an XML code that describes not only the URDF of the robot but also contains all elements
present in the Gazebo simulation world, like obstacles and sensors. This world file can then be opened
with the launch file using the roslaunch command. After the environment with the OpenManipulator
was configured in Gazebo, the connection between Simulink and Gazebo was established.

3.3 Connection between Simulink and Gazebo

To perform co-simulation between Simulink and Gazebo, a connection needs to be made. For this
connection, two main elements are important: the Robotic System Toolbox in Matlab (including Sim-
ulink) and a Gazebo plugin. The Robotic System Toolbox provides robotic algorithms in Matlab and
Simulink for the co-simulation framework with Gazebo. The Gazebo plugin is provided by MathWorks
that consists of scripts which make sure that there is a data transfer between Simulink and the Gazebo
environment. It also provides eight different world examples which can be loaded into Gazebo. The
Gazebo plugin was downloaded and installed on the virtual machine via the MathWorks instructions
[20]. Consequently, the plugin was added to the before-created world file of the OpenManipulator, see
Appendix C.1 for the code.

6

CHAPTER 3. CO-SIMULATION SIMULINK AND GAZEBO

3.3.1 Gazebo Co-simulation Plugin

Below in Figure 3.1, it can be seen how the data transfer of the co-simulation works in general. The
output data coming from the Simulink environment, which is located on the host computer, is first
sent to the Gazebo co-simulation plugin [19]. The plugin then passes the data to the Gazebo simulator.
This plugin together with Gazebo is located in the Linux environment. During the simulation, the data
is sent back to the Gazebo plugin which then sends it back to Simulink located on the host computer.
The plugin ensures that Simulink and Gazebo are synchronised and run at the same pace.

Figure 3.1: Communication between Simulink and Gazebo [19]

An advantage of this plugin is that it does not require the creation of a ROS network. Installing the
plugin and adding it to the world file is enough to control the robot via Simulink. No additional ROS
nodes with topics are needed because the plugin automatically sends the data to the Gazebo topics.
One limitation of this plugin is that it does not support code generation. This means that it is not
possible, for example, to create a ROS node directly from the existing Simulink model used for the
co-simulation.

Instead of using the Gazebo plugin, it is also possible to connect Simulink with a ROS network via the
ROS Toolbox [38]. Simulink can then publish or receive messages by subscribing to a ROS topic from
a ROS network that can be connected to Gazebo. With this method, the Simulink and Gazebo are
not synchronised. This means that Simulink can publish ROS topics at different rates compared to the
updating rate of Gazebo. Via this configuration, it is possible to generate C++ codes for stand-alone
ROS nodes that can be directly uploaded to the ROS environment.

3.3.2 Connection Setup

After the plugin has been successfully installed and configured for the scenario, the connection to
Matlab is made. To do this, the IP of the virtual machine is required. This IP is found using the
ifconfig command in the terminator of the Ubuntu environment. The Matlab co-simulation function
Gzinit is used to initialise the connection between the local host and the Gazebo plugin. Accordingly,
the port number "14581" is specified in the XML code of the world file and is then used for the Matlab
function to make a connection with Gazebo, as can be seen in the following code:

1 ipGazebo = ’192.168.21.134’; % Virtual Machine IP
2 gzinit(ipGazebo,14581); % Initialise connection

To establish the connection with Simulink, the Gazebo Pacer block is used, see Figure 3.2a. This block
is from the Robotic System Toolbox library which can be found in the Gazebo co-simulation section of
the Simulink library. In this block the IP of the virtual machine and the port number are set, Figure
3.2b. Having the Gazebo simulation environment running the connection can be tested here. This
connection block is used for all Simulink files, only the host name needs to be changed when using a
Simulink file from the repository [43].

7

CHAPTER 3. CO-SIMULATION SIMULINK AND GAZEBO

(a) Gazebo pacer block (b) Configuration of connection
Figure 3.2: Configuration of Simulink connection

3.3.3 Complete Co-Simulation Connection

The complete model that connects the OpenManipulator in Gazebo with Simulink is shown in Fig-
ure 3.3. This system consists of two main parts. The left part sends data to Gazebo and consists
of six sending blocks each connected to a different movable joint of the OpenManipulator. The right
part receives data from Gazebo and consists of six receive blocks and is also connected to each joint
individually. The data of the joints received from Gazebo is subsequently filtered using a bus selector
block giving only the position as output. Finally, a rate transition block is used to account for the
possible differences in data rates between the Gazebo and the Simulink model which can otherwise
lead to data integrity. A detailed description of the connection setup can be found in Appendix A.3.

This connection setup forms the basis for connecting Simulink with Gazebo, and it can be modi-
fied in order to use also velocity or torque as an input. In the repository [40], different examples
are located that show how different parts of the OpenManipulator can be controlled using position,
velocity and torque as an input signal.

Figure 3.3: Co-simulation Simulink connection setup

8

CHAPTER 4. COMPARISON SIMSCAPE VS GAZEBO

4 Comparison Simscape vs Gazebo

In this chapter, the comparison between Simscape Multibody and Gazebo is made based on the criteria
and the scenario defined in Chapter 2. First, the main characteristics of the environments and the
general differences between the simulation workflows are compared. Then the sensor possibilities are
elaborated and tested separately for each environment. Subsequently, the difference between joint limit
and collision modelling is discussed after which the results of the time measurements are shown and
evaluated.

4.1 General Characteristics

In Table 4.1, a general comparison between the main characteristics of Simscape Multibody and Gazebo
is shown [32] [25]. (i) Looking at the simulator type, both environments are 3D simulators. Simscape
Multibody is mainly used for mechanical system simulation while in Gazebo a more detailed environ-
ment around the robot can be simulated. (ii) Comparing them in terms of the supported operating
system, Simscape Multibody works perfectly on Windows while for Gazebo it is preferred to run on a
Linux system. Therefore a virtual machine is commonly used to run Gazebo. (iii) One advantage of
Gazebo is the fact that it is open-source software, which means that no licence is required in contrast
to Simscape Multibody where different licences are needed, such as for Matlab and Simulink. (iv) In
terms of programming language, Simscape Multibody can be programmed mainly via Simulink blocks
and Matlab functions. By using these pre-defined blocks, programming becomes relatively convenient
since it gives a clear overview of the robot model. To simulate a robot in Gazebo, ROS is commonly
used that consists of programming languages like C++ and Phyton. In addition, the Linux shell
environment needs to be used which requires also a type of programming knowledge. Changing the
robot model is done directly inside the URDF file of the robot. (v) In Gazebo, it is possible to use
four different physics engines while in Simscape Multibody different solver methods can be chosen
depending on the mechanical simulation scenario. (vi) MathWorks provides built-in functions that can
import CAD models directly to the simulation environment. Different plugins allow CAD conversion
to URDF, which can then be implemented in Gazebo. URDF and SDF models can be used for both
environments but for Simscape a conversion is needed while in Gazebo it can be implemented directly.
(vii) Finally, it is possible to combine the ROS environment with a simulation in Gazebo. The same
codes that are used for Gazebo can be directly implemented on real hardware via this ROS integration.
A ROS connection with Simulink can be established with the Robotic System Toolbox.

Table 4.1: General characteristics comparison
Simscape Multibody Gazebo

(i) Simulator type 3D Multibody Simulator 3D Robotics Simulator
(ii) Supported operating
system Mac, Windows, Linux Linux/GNU (Ubuntu)

(iii) Licences Licence for Matlab,
Simulink, Simscape Open-Source

(iv) Programming
Language Simulink, Matlab C++, C, Python,

Java

(v) Physics engine Different solver
methods

ODE, Bullet, Simbody,
DART

(vi) CAD files /
URDF support

URDF/SDF, STL, FBX,
VRML, CITIA, DAE

URDF/SDF, STL,
Collada, OBJ

(vii) ROS connection Via Simulink or Matlab ROS 1, ROS 2

9

CHAPTER 4. COMPARISON SIMSCAPE VS GAZEBO

4.2 Simulation Workflow

In this section, the general workflow is shown that is used to simulate the manipulator scenario in
Simscape Multibody and Gazebo via co-simulation. These workflows are based on the test setup that
is made for the comparison criteria. Therefore, they may differ, for example when a different scenario
is simulated or when Gazebo is used without co-simulation.

A general workflow scheme that is used to set the manipulator scenario in Simscape Multibody and
Gazebo is shown in Figure 4.1, showing the main differences. First, the URDF of the robot as well
as the necessary STL files are needed for both simulation environments. For Simscape Multibody,
the URDF first needs to be converted to the Simulink environment which can be done via a built-in
function smimport. Next, the missing elements from this URDF that are ignored during the conversion
need to be added, including the STL references to the corresponding visual elements of the robot body.
In Section 4.5.1 the effects of these missing elements will be further elaborated. Finally, the robot
model can be directly implemented in the Simulink file which contains the reference signals and con-
trollers. Based on this workflow, it can be concluded that implementing a robot scenario in Simscape
Multibody does not require many steps or prior programming knowledge.

For Gazebo the workflow is different. First, a new package is made in the catkin workspace of the vir-
tual machine, after which the complete URDF of the robot can be added to the SDF/world file. Next,
the necessary plugins can be added to the world or launch file, for example, the co-simulation plugin
or ROS controller plugins if necessary. The catkin environment is then ready to build after which
the environment can be opened with a before-created launch file. For the scenario, a co-simulation
connection is used so that the controller is in the Simulink environment. Therefore, the last step is
to set up the co-simulation connection within a Simulink file using the blocks of the Robotic System
Toolbox as elaborated in Section 3.3. It can be concluded that for Gazebo basic knowledge is required
about ROS (the catkin workspace and launch files), Linux shell environment and URDF/SDF files
(XML language) which makes the setup relatively more complex compared to Simscape Multibody.

Figure 4.1: General simulation workflow for the two environments

10

CHAPTER 4. COMPARISON SIMSCAPE VS GAZEBO

4.3 Sensor Modelling in Simscape Multibody

In this section, the sensor simulation possibilities within Simscape Multibody are described including
examples of built-in sensors that are demonstrated with the manipulator scenario. The Simulink files
can be found in the repository [46].

According to the official MathWorks documentation [16] and previous literature [25], Simscape Multibody
mainly focuses on the simulation of the mechanical and physical aspects of a robot. It provides limited
functionality in terms of built-in sensor modelling possibilities that can generate synthetic data. No
predefined virtual sensor models such as lidar, camera and IMU sensors were found that could be dir-
ectly implemented without having to make an extra connection to another environment. A tool that
requires an extra connection is the Simulink 3D Animation product. Via this tool, a 3D visualisation
of the robot model can be simulated from the Simscape Multibody model [1]. Different sensors can be
added to the scene such as a PointPickSensor. To use this tool together with Simscape Multibody, the
complete visual representation of the robot needs to be made in the 3D Animation product. Also, an
extra connection between Simscape Multibody blocks and this tool needs to be made in Simulink.

Using the Automated Driving Toolbox and Navigation Toolbox of Matlab, it is possible to model
virtual lidar sensors. However, using these directly in Simscape Multibody is not feasible because
this model is based on an Unreal Engine rendered environment. Co-simulation between Simulink and
Unreal Engine is possible via the Automated Driving Toolbox, allowing to receive data from virtual
sensors in Unreal Engine [15]. Physical models from Simscape Multibody can be implemented in Unreal
Engine while controlling it via Simulink. Nowadays, this toolbox is mainly used for vehicle simulations
but it is also possible for robotic applications. Furthermore, Matlab provides a Sensor Fusion and
Tracking Toolbox that includes real-world sensor models. Nonetheless, no official documentation or
example was found where these sensors are implemented in Simscape Multibody.

4.3.1 Transform Sensor

An example of a built-in sensor block from the Simscape Multibody toolbox is the Transform Sensor.
This block measures the time-depended relationship between two specified frames. Giving the possib-
ility to measure translation and rotational position, velocity and acceleration from the frames during
the simulation. This sensor is commonly used in other robotic scenarios that are simulated in Simscape
Multibody. For example, [39], where the sensor is used to directly measure the distance between the
end effector of the ABB IRB360 robot and the table model.

The working of this sensor is demonstrated on the manipulator scenario to measure the distance
between the specified world link and body link 5, see Figure 4.2 for the Simulink implementation. The
input and output of the blocks are connected to the world frame and link 5 respectively. An additional
output is enabled which sends the data during the simulation to the Matlab workspace. Between the
Transform Sensor and the To Workspace block, a PS-Simulink Converter is used to connect Simscape
physical network to Simulink blocks.

11

CHAPTER 4. COMPARISON SIMSCAPE VS GAZEBO

Figure 4.2: Transform Sensor block Simulink implementation

In Figure 4.3, the measured distance is plotted over the simulation time between the world frame
and link 5 of the manipulator scenario. This sensor directly gives the exact distance between frames
without noise, so there is no need to compensate for uncertainty.

Figure 4.3: Transform sensor distance output plot

Since, for example, a virtual lidar sensor can not be modelled directly within the Simscape Multibody
environment, the Transform Sensor block can be used to pretend/assume there is a sensor which
can measure the distance to an object. This can be seen in the example shown in Figure 4.4. The
OpenManipulator files from MathWorks [17] provide an example where the manipulator catches a ball
falling. In this model, the sensor is used to measure the distance from the world frame to the ball.
The measured distance from x, y and z is transferred to a state-flow chart where the reference position
of the robot is calculated accordingly. The sensor makes it convenient to test controller algorithms
without having to simulate complex synthetic data of virtual sensors since it directly gives the distance
between the frames.

12

CHAPTER 4. COMPARISON SIMSCAPE VS GAZEBO

(a) Position camera sensor in Simulink (b) Manipulator catching a ball

Figure 4.4: Transform sensor application [17]

4.3.2 Joint Sensors

Within the revolute joint model block (see Figure 4.5a) of the OpenManipualator, Simscape Multibody
provides built-in sensors that are able to directly measure joint position, velocity, acceleration and
actuator torque during the simulation. These sensors can be enabled within the joint block whereupon
the data can be stored in the Matlab workspace. In the manipulator scenario, the position of the joints
is measured in this way and is then sent to the feedback controller. In Figure 4.5b, an example of the
measured torque of joint 3 is shown during a simulation of 5 seconds.

(a) Built-in joint sensors implementation (b) Torque data plot of simulation
Figure 4.5: Joint sensors tested on scenario

4.3.3 Inertia Sensor

With the built-in time-dependent inertial sensor, it is possible to measure the mass and the centre
of mass of one, or multiple specified body element(s). In addition, it can compute the inertia and
rotation matrix of a specific link. This sensor is also included in the Simulink file of the repository
[46]. Connecting the sensor to the manipulator in Simulink, the following information can be measured
from the model:

• Mass of link

• Inertia matrix of link

• Rotation matrix of link

13

CHAPTER 4. COMPARISON SIMSCAPE VS GAZEBO

4.3.4 Simscape Ideal Sensors

Within the foundation library of Simscape, there are a lot of different sensor blocks. These are spe-
cified in different categorisations named: electrical, gas, hydraulic, magnetic, thermal, and mechanical.
Sensors from all these categories can be combined in one Simulink model. This makes it possible to
model the actuator of a revolute joint in more detail, taking the electrical domain into account [30].

The mechanical section contains four built-in sensors. These sensors are ideal, they do not take any
inertia, friction, energy consumption and delays into account.

• Ideal Force Sensor

• Ideal Rotational Motion Sensor

• Ideal Torque Sensor

• Ideal Transnational Motion Sensor

These 1D sensors can be connected to the 3D Simscape Multibody environment to a single degree
of freedom, for example, an actuator that operates in one direction. To make a connection between
the 1D and the 3D environment, the Simscape Multibody Multiphysics Library provides blocks that
establish this connection. This connection block makes use of these sensors. The library is also used
in the OpenManipulator example to model a translational hard stop of the gripper, see repository [46]
for the implementation. Within the 1D environment, friction and stiffness properties of the joints can
then be simulated in more detail.

4.3.5 Conclusion on Scenario

➢ Simulating the OpenManipulator in the Simscape Multibody environment gives no possibilities
to directly implement virtual sensor models like lidar, camera and IMU sensors without making
an extra connection to environments. If the distance to an object within the environment needs to
be measured, this can be done using the built-in transform sensor block, providing the distance,
velocity, and acceleration between two frames. This gives the possibility to assume the distance is
measured from a specific sensor without having to simulate synthetic data from a virtual sensor.

➢ Within the Simscape Multibody model of the manipulator scenario the joint position, velocity,
acceleration, and torque can be measured directly from the joint blocks. This data, as well as
other sensor data, can be extracted and stored during the simulation.

➢ It is possible to measure mass and inertia properties from selected bodies of the manipulator
using the built-in inertia sensor block. Geometric properties, including the centre of mass and
inertia matrix, can be measured from the complete manipulator model or specified subsystems.

➢ Built-in ideal sensors from Simscape give the possibility to model electric actuators of the joints of
the manipulator scenario in more detail, making use of Simscape Electrical. 1D and 3D physical
models from Simscape can be combined to extend the dynamical properties of individual joints.

14

CHAPTER 4. COMPARISON SIMSCAPE VS GAZEBO

4.4 Sensor Modelling in Gazebo

In this section, three types of sensors are evaluated and tested with the scenario that can be simulated
in Gazebo: IMU, lidar and an RGB camera sensor. To visualise the data from the scenario, the sensor
data is sent from Gazebo to Simulink via co-simulation. The Simulink files and the world files that are
used for the setups are located in the repository [42].

Gazebo is generally well known for its large variety of sensor modelling according to other research
on the comparison of simulation environments [36]. Based on other robotic scenarios in Gazebo, for
example [33], complex environments for mobile robots with virtual synthetic sensor data are simulated.
Within the Gazebo documentation, a variety of sensor classes are listed such as altimeter, camera,
contact, GPS, IMU, lidar and magnetometer sensors [5]. Pre-defined sensor models in XML format
can be added to the world file of the simulation environment together with the necessary plugins.

4.4.1 Lidar Sensor

A lidar sensor can measure the distance to the surface of an object using lasers. The sensor sends
light impulses and then measures the time between the impulse being sent and reflected. This type of
sensor is commonly used for mobile robots to map the environment and avoid obstacles. The Gazebo
plugin from MathWorks (as elaborated in Section 3.3), provides code to model the lidar sensor. It
includes a C++ code which transforms the sensor data from the simulation in real-time to Simulink.
In Appendix C.2, the XML code used for the lidar is shown and is added to the world file of the
scenario. In the first part of the code, a mesh of the Hokuyo is included which is needed to visualise
the sensor in Gazebo. This mesh gives a visual real-world representation of the Hokuyo lidar sensor
in the Gazebo environment. The second part of the code consists of the sensor model itself. A lot of
different parameters can be set including the sample time, resolution, min/max angle, range and noise
of the sensor.

The XML code of the sensor model is added to the world file of the scenario so that the sensor is
simulated together with the OpenManipulator. Launching the world model gives the following results
which can be seen in Figure 4.6.

Figure 4.6: Lidar model with manipulator

15

CHAPTER 4. COMPARISON SIMSCAPE VS GAZEBO

Next to the manipulator, a Coke Can object is placed taken from the standard Gazebo world models.
In the environment, blue lines can be seen which represent the laser signal of the lidar. The lidar laser is
blocked by the two obstacles in the Gazebo environment, showing no laser contours behind the objects.

To collect the data modelled by the sensor, a new Gazebo Read block was added to the Simscape
model in the same way as explained in Appendix A.3.2. The Gazebo topic of the Hokuyo sensor was
selected to receive data from the sensor. Based on the MathWorks example [20], bus elements and a
plot function were used to visualise the received data. In Figure 4.7, the data from the lidar is plotted
for a specific time step of the simulation. Figure 4.7a shows the plotted data without a noise filter
and Figure 4.7b shows the data after specifying a Gaussian filter in the XML code of the world file,
simulating noise on the data.

(a) Lidar scan without noise (b) Lidar scan with Gaussian filter
Figure 4.7: Lidar plots from data received in Simulink

4.4.2 IMU Sensor

An IMU sensor is a device that consists of several sensors which can measure a variety of factors. It
can measure the acceleration, speed, angular rate and magnetic field. The Gazebo plugin also provides
the possibility to simulate an IMU sensor. In Appendix C.3, the XML code used for the IMU sensor
is shown that has the same structure as the lidar sensor. To measure the acceleration, velocity and
orientation of the OpenManipulator during the simulation, the IMU sensor needs to be attached to
the arm of the robot. This is done by creating an extra link that specifies the position of the sensor
with respect to the gripper link. The connection between the new link and the link of the robot is
made by attaching an extra fixed joint in-between. The XML code for the created link and joint can
also be found in Appendix C.3. In Figure 4.8, it can be seen how the IMU sensor is attached to the
arm of the robot.

Figure 4.8: IMU sensor attached to the manipulator

16

CHAPTER 4. COMPARISON SIMSCAPE VS GAZEBO

During the simulation, the data from the IMU sensor is sent to Matlab via co-simulation. In Figure 4.9
the acceleration data measured in the Y-direction is plotted as an example. Likewise, the velocity and
position of the IMU sensor can be stored in the Matlab workspace.

Figure 4.9: Plot of IMU sensor data during simulation

4.4.3 RGB Camera sensor

An RGB camera is a sensor that captures images representing the vision of the human eye in red,
green, and blue wavelengths. This type of sensor can be used on robots to visualise the environment
around them, making it possible to recognise objects based on their shape or colour. However, the
depth cannot be measured with this type of sensor. As the same as for the other sensors, this sensor
model is also included in the Matlab plugin and can therefore be added to the SDF file directly. The
XML code is added to the world file in the same manner as for the other sensors. Figure 4.10a shows
how the camera model is visualised in the Gazebo environment. The lines represent the field of view
which can be changed in the XML code. Behind the robot, the captured vision of the camera sensor
is shown that updates during the simulation.

(a) RGB camera in Gazebo (b) Camera plot in Matlab
Figure 4.10: RGB camera simulation

17

CHAPTER 4. COMPARISON SIMSCAPE VS GAZEBO

The data from the camera is transferred to Matlab where it can be visualised, see Figure 4.10b. In the
Simulink model, it is possible to increase or decrease the sample time of the camera data that is sent
to Simulink. The RGB camera can also be mounted on top of the robot the same way as was done for
the IMU sensor, see Section 4.4.2. In Gazebo, the camera projection and the white lines move along
with the robot’s movement. In Figure 4.11 it can be seen how the camera is attached to the gripper
of the robot.

Figure 4.11: RGB camera model attached to gripper link

4.4.4 Conclusion on Scenario

➢ Simulating the manipulator scenario in the Gazebo environment provides the possibility to sim-
ulate virtual sensors, such as lidar, camera and IMU sensors, including synthetic sensor data.
This data can be sent to Simulink during the simulation using the co-simulation connection.

➢ A lidar sensor can be simulated within Gazebo, measuring the distance to obstacles within the
environment. This information could be used to approximate the location of an object next to
the manipulator.

➢ Internal measurement units, such as an IMU sensor, can be connected to a link of the manipulator.
The orientation, speed, and acceleration of the connecting link can be measured during the
simulation.

➢ Data from an RGB camera model can be visualised in Matlab during the simulation. The
camera can be attached to the robot so that the viewpoint of the camera changes accordingly.
For example, the synthetic data could be further used for algorithms that can recognise the
colours or shapes of objects. This allows the manipulator to distinguish between different colours
and objects within the environment.

➢ In the SDF file, many settings of the sensors can be set. It is possible to simulate sensor noise by
applying a Gaussian filter on the sensor output data before sending the information to Simulink.
More options such as weight, visual description, range and the sample rate of the sensor can be
modified or added.

18

CHAPTER 4. COMPARISON SIMSCAPE VS GAZEBO

4.5 Joint Limits and Collision Modelling

In this section, different tests are done with the OpenManipulator to investigate the differences between
the simulation in Simscape Multibody and Gazebo in terms of joint limits and collision modelling. The
underlying reasons for these differences have been further investigated and described.

4.5.1 Joint Limits

The OpenManipulator consists of four revolute joints and two prismatic joints. These joints have a
limited range of motion defined by "joint limits". For the revolute joints, this range is defined by an
angle (in rad or deg) and for the prismatic joints the limit is defined by a distance (in meters). The
following measurement shows the differences between the trajectory of the robot based on a position as
a reference signal. This can be used to see what differences there are based on simulating joint limits
that are defined in the URDF of the robot. The files used for these measurements can be found in the
repository [45].

Testing Joint Limits in Environments

To test the trajectory differences, a sinus function with an amplitude of 5 and 0.07 was set as input
for joint 1 and the gripper joint respectively. In Figures 4.12a and 4.12b it can be seen that for the
OpenManipulator in Simscape Multibody, no joint limits are simulated in contrast to the model in
Gazebo. This difference can also be seen in the 3D visualisation, where the gripper seems to have no
limit, see Figure 4.13.

(a) Joint 1 - Comparison plot (b) Gripper 1 - Comparison plot

Figure 4.12: Joint limit comparison plots

Figure 4.13: Gripper joint limit test in Simscape Multibody

19

CHAPTER 4. COMPARISON SIMSCAPE VS GAZEBO

Reason for Joint Limit Differences

Despite the fact that for both simulation environments the same URDF model of the manipulator
is used, Simscape Multibody does not include the joint limits defined in this model. Although it is
possible to simulate the joint limits in this environment, they are not simulated directly. To find a
reason for this difference, further investigation is done regarding the URDF implementation between
Simscape Multibody and Gazebo. Based on the support documentation of MathWorks about URDF
import [22], it was found that there are limitations when importing a URDF into Simscape Multibody
since not all elements from the URDF will be converted. This means that the robot model behaves
differently compared to the model in Gazebo where these elements of the URDF description are taken
into account. Below, a list of attributes is shown which are ignored when importing the URDF of a
manipulator to the Simscape Multibody environment:

• <transmission> Defining a relationship between the actuator and joint of the robot to model
gear ratios.

• <gazebo> Defining simulation properties for the Gazebo environment.

• <model_state> Setting "home" position in URDF models.

• <sensor> Defining sensor model and settings.

• <collision> Describing collision shape and parameters.

• <limit> Joint motion limits.

• <scale> Scaling the mesh of a body.

• <friction> Friction in joint internal mechanics.

• <geometry> Creating boxes and spheres.

Comparing this list with the URDF model of the OpenManipulator, the following elements are not
taking into account by the conversion: <collision>, <limit>, <scale>, <friction> and <geometry>.
This means that the standard model of the robot in Simscape Multibody does not automatically take
collision modelling, joint limits and friction of the contact surfaces into account. This explains why
there was a difference between simulating joint limits between the environments while using the same
URDF of the robot.

Simulation Joint Limits in Simscape

Even though the joint limits are not directly taken into account, it is possible to include them in the
Simscape Multibody simulation. Joint limits can be set inside the revolute joint block of the model.
When implementing these limits, it was found that joint limits only work when the input is torque (so
no position input). In Figure 4.14, it can be seen what effect the joint limits have on the trajectory of
OpenManipluator, using the torque Simulink model as explained in Section 2.2.

20

CHAPTER 4. COMPARISON SIMSCAPE VS GAZEBO

Figure 4.14: Joint limit simulation for both environments

4.5.2 Contact Modelling

When it comes to robotics simulation, modelling contacts is one of the most difficult tasks. Bodies
from a robot can move in complicated ways and can have complicated geometries. Contact modelling
is important when the robot needs to interact with the environment. In the following experiments, the
differences between the OpenManipluator in Simscape Multibody and Gazebo are tested concerning
environment and self-collision. The corresponding Simulink files are stored in the repository [44].

Testing Self and Ground Collision

First, it was tested if the manipulator scenario includes self-collision in Simscape Multibody and
Gazebo. In Figure 4.15a, it can be seen that in the Simscape Multibody environment no self-collision
is simulated. The manipulator can move through itself without any interaction between the bodies.
In contrast to Simscape Multibody, it can be seen in Figure 4.15b that the manipulator in Gazebo is
blocked by its own body. The contact boundaries of the self-collision correspond with the geometry of
the manipulator. As explained in 4.5.1, the collision element from the URDF of the OpenManipulator
is ignored during the conversion to Simscape which is in line with the results of the experiment.

(a) Simscape Multibody (b) Gazebo
Figure 4.15: OpenManipulator self-collision test

In the following experiment, the collision was tested with the ground of the environment below the
OpenManipulator. For the Gazebo simulation, a standard ground plane was included in the SDF

21

CHAPTER 4. COMPARISON SIMSCAPE VS GAZEBO

file and for Simscape Multibody an extra plane was added (provided by the MathsWork example
[17]) to the model of the robot. As expected, Simscape Multibody does not automatically simulate
collision interaction with the environment, see Figure 4.16a. In Gazebo, interaction with the ground
was simulated as can be seen in Figure 4.16b. The blue balls indicate the collision contacts and the
green lines show an active force vector. It can be seen that the collision boundary is equal to the
geometry of the robot itself.

(a) Simscape Multibody (b) Gazebo
Figure 4.16: OpenManipulator ground collision test

Collision Modelling in Simscape Multibody

To explain the differences, further investigation is done about collision modelling in Simcape Multibody.
In general, Simscape Multibody does not support modelling collision interaction between complex
shapes, such as the geometry of the manipulator itself [29]. Modelling contact forces is mostly done
with simple shapes such as spheres, cylinders and planes. Instead of simulating the complete geometry
of an object as a collision element, spheres can be added as contact points. The Simscape Multibody
Contact Forces Library includes pre-defined contact force models for these simple shapes including 2D
and 3D problems.

The following example shows how a sphere can be used as a contact boundary to simulate a colli-
sion between the OpenManipulator and the ground plane. In Simulink, a connection between the
ground floor and the spherical solids is made using the Spatial Contact Force block, see Figure 4.17a.
In this block, the contact stiffness, contact damping and transition region width are defined. Doing the
previous experiment again, it can be seen that the OpenManipulator cannot go through the ground
plane because the physical interaction between the spheres and the ground plane is simulated, see
Figure 4.17b.

(a) Contact spheres implementation in Simulink (b) Contact spheres simulation
Figure 4.17: Contact spheres tested with OpenManipulator

22

CHAPTER 4. COMPARISON SIMSCAPE VS GAZEBO

During the collision in the example of the robot, Simscape Multibody makes use of a penalty method
[23]. The collision objects are simulated as a stiff spring with damping that is only enabled when
the bodies are in contact with each other. This allows the sphere to penetrate the ground for a
small amount. During this collision, the normal forces are computed according to the spring-damper
force law. The more the objects penetrate each other, the greater the normal force. Within the
Spatial Contact Force block, the normal force and friction force magnitude can be measured during
the simulation.

Collision Modelling in Gazebo

In the Gazebo simulation environment, the collision contact geometry is equal to the mesh of the link
as was shown in Figure 4.16. This collision boundary is defined in the URDF of the model under-
neath the collision element. An example of this code can be seen in Appendix C.5, where the collision
boundary is defined for the first link of the OpenManipulator.

To understand how Gazebo simulates collisions, it is necessary to take a closer look at the physics
engine used by Gazebo. For the manipulator scenario, the Open Dynamics Engine (ODE) is used
as specified in the SDF model. A physics engine is computer software that calculates the dynamical
behaviour including body collision, friction and joint behaviour during the simulation. The ODE uses
"hard contacts" to simulate a collision between objects. This means that when these objects collide
with a given velocity, a non-penetration constraint is used [11]. It is not possible to penetrate the
surface and therefore the contact force does not vary over time. This means that the "true" contact
time is almost zero. The effect of the collision is simulated by giving the objects post-collision move-
ment by a momentum exchange. This method is commonly used for real-time physics engines, where
computation speed and robustness are key. Other physics engines make use of a spring contact (soft
contacts), where penetration is possible as with Simscape Multibody. These soft contacts can be used
to simulate real contact forces, but are computationally expensive and more prone to errors.

4.5.3 Conclusion on Scenario

➢ When a URDF from a robot is imported into Simscape Multibody for simulation, not all elements
are included, for example, joint limits. However, this can be implemented in the Simscape
Multibody model after the conversion. In Gazebo, all elements of the URDF are taken into
account which makes it possible to simulate the joint limits directly.

➢ The specified collision boundaries in the URDF of the OpenManipulator are not taken into
account in Simscape Multibody. The robot can move through itself and the ground plane without
any physical interaction. This is different in Gazebo, where the robot collides with itself and the
ground plane.

➢ Collisions in Simscape Multibody are mostly simulated by simple objects like spheres. These
spheres can be placed on objects that need physical interaction. Reaction forces are computed
during the collision by simulating the bodies as virtual springs.

➢ The ODE that is used for the scenario in Gazebo simulates collisions using the hard contacts
method, which is faster but not as accurate as soft contacts. The bodies are not simulated as
virtual springs resulting in the contact force being constant during the collision.

23

CHAPTER 4. COMPARISON SIMSCAPE VS GAZEBO

4.6 Simulation Time

In this section, the differences between the simulation setup of the robot in Simscape Multibody and
Gazebo are tested in terms of simulation time, using the position as reference input. In addition,
the impact when adding a sensor to Gazebo will be tested with respect to the simulation time. The
definition of simulation time is the actual time needed to complete a simulation of a given robot
model. This time can be influenced by a lot of different factors, such as computer specifications, model
complexity and the computational efficiency of the simulation software. Therefore it is important to
mention that these results only hold for these particular Simulink setups for the chosen scenario on a
particular computer. The setup conditions are shown in Appendix A.5. The virtual machine including
the world files and the Simulink models are stored in the repository [47].

4.6.1 Measurement Method

The simulation time is measured within Simulink using the built-in "profiler" tool for both simulation
environments. This tool can measure the time it takes to complete a simulation in Simulink. After
each simulation, the tool gives the total simulation time for three decimal places including the time it
takes for different blocks in the model to be simulated. Only the total simulation time is considered for
the measurements. It is important to mention that for Gazebo, the simulation time is also measured
from the Simulink model since co-simulation is used. Thus, not only is the time measured that the
environment takes to simulate, but the entire simulation time, including the Simulink model with the
co-simulation connection to the virtual machine. In Appendix A.5, an example measurement using the
profiler tool is shown.

For the measurements with Simscape Multibody, a fixed-step continuous implicit solver is used, named
ode14x. This solver is chosen because it is a fixed-step solver and recommend for physical models
that are stiff. Accordingly, the step sizes for the simulations are changed in the solver settings. For
the Gazebo measurements, the standard ODE (Open Dynamics Engine) is used for the simulations.
The step sizes are changed in the pacer block which is located in the Simulink model as shown in
Section 3.3.2.

The same reference signals are used for both Simulink models, containing sine waves for each of the
four revolute joints and a step signal for the gripper. The stop time in Simulink was set to 5 seconds
for all the measurements. To minimise the influence of various factors during the time measurements,
the simulations are carried out on one computer with no programs running in the background. See
Appendix A.5 for the computer and virtual machine specifications. Each simulation is carried out 10
times from which the average, standard deviation and real-time factor (ratio between the time taken
for the simulation and the input duration) is calculated.

The simulation time is compared in two different ways. First, the simulation time is compared between
Simscape Multibody and Gazebo using a Simulink model with a position as a reference signal. The
sample time of the simulation is changed from 0.01 to 0.001 seconds. Secondly, the simulation time of
Gazebo is compared for different simulation step sizes together with an RGB camera sensor mounted
on the robot, shown in Section 4.4.3. The step size for this camera is varied from 0.1 to 0.01 seconds.

4.6.2 Simulation Time Results

In Table 4.2 the results for the four different measurements are shown including the main settings for
the different simulation typologies. The results for the mean simulation time of the environments with
different step-sized are visualised in a bar chart as can be seen in Figure 4.18.

24

CHAPTER 4. COMPARISON SIMSCAPE VS GAZEBO

Table 4.2: Simscape and Gazebo simulation time measurements

Simulator Simulation
step-size

Solver
method

Mean
simulation

time

Sample
standard
deviation

Real-time
factor

Simscape 0.01 ode14x 0.417 0.031 0.083
Gazebo 0.01 ODE 11.649 0.176 2.330
Simscape 0.001 ode14x 2.375 0.024 0.475
Gazebo 0.001 ODE 51.550 0.522 10.310

Figure 4.18: Simulation time Simscape vs Gazebo

It can be seen that in general Simscape Multibody is considerably faster than Gazebo for both step
sizes. For a step size of 0.01 seconds, Simscape is around 28 times faster than Gazebo. Having a step
size of 0.001 seconds, Simscape is around 22 times faster. The simulation times of Simscape are below
5 seconds and therefore faster than real-time, in contrast to Gazebo which is around 2 and 10 times
slower than real-time. In addition, it can be seen that the sample standard deviation is higher for
Gazebo than for Simscape, which means that Gazebo shows more variation in the simulation time.
For both environments, the variation increased when lowering the simulation step size.

The results for the second comparison are shown in Table 4.3 whereupon the mean simulation time
and the standard deviation are visualised with a bar chart in Figure 4.19.

Table 4.3: Gazebo sensor simulation time measurements

Simulator Simulation
step-size

Camera
step-size

Mean
simulation

time

Sample
standard
deviation

Real-time
factor

Gazebo 0.01 none 11.649 0.176 2.330
Gazebo 0.001 none 51.550 0.522 10.310
Gazebo 0.01 0.1 14.733 0.450 2.947
Gazebo 0.01 0.01 28.546 1.227 5.709
Gazebo 0.001 0.1 63.646 2.479 12.729
Gazebo 0.001 0.01 81.787 3.505 16.357

25

CHAPTER 4. COMPARISON SIMSCAPE VS GAZEBO

Figure 4.19: Simulation time of RGB sensor in Gazebo

From these results, it can be seen that the simulation time increases when adding an RGB camera
sensor to the robot. Adding this sensor can increase the time by around 3 to 30 seconds depending on
the sample times. In addition, the sample standard deviation is higher for the simulations that include
a camera sensor. Comparing the results with a sample time of 0.001 without a camera and 0.001 with
a camera (0.01), the sample standard deviation increases by 571.5 per cent.

4.6.3 Conclusion on Scenario

➢ For this particular setup, the simulation of the manipulator scenario is considerably faster in
Simscape Multibody than in Gazebo with co-simulation. In Simscape Multibody the simulation
is even faster than in real-time, while in Gazebo it takes at least double the amount of time.
It is important to mention that these simulations only use a sinus signal as an input reference.
The simulation time results could be completely different when, for example, collisions between
objects are simulated or when a different solver method is used. The measurement results show
that despite the relatively simple robot, real-time is difficult to achieve with this co-simulation
setup.

➢ The sample standard deviation of the Gazebo measurements is larger for all cases compared to
Simscape Multibody, making these simulations less consistent.

➢ The implementation of a camera sensor has a major effect on the simulation time when relatively
low sample size is chosen. This makes this co-simulation setup, given the simulation speed, not
the preferred method to simulate multiple sensors with a low sample time.

26

CHAPTER 5. PERCEPTION IN GAZEBO

5 Perception in Gazebo

In this chapter, based on a use case defined by a graduation project, sensor simulations in Gazebo
are further explored and applied. The chapter starts with a description of this use case, followed by
an explanation of the test setup in Gazebo. Next, it is shown how a 2D and 3D grid map can be
made based on sensor simulation in Gazebo. Finally, the 3D grid map is tested on a simulation of an
Image-guided Therapy robot from the use case. Files used for the perception in Gazebo can be found
in the repository [41].

5.1 Use Case Description

The investigation of sensor possibilities in Gazebo is further elaborated using a use case from a master’s
thesis. In this thesis, a controller is being developed for an IGT robot. This robot should move from
point A to point B without colliding with static and dynamic obstacles in the room. For obstacle avoid-
ance, the controller needs to know the distance between the robot’s body and the obstacles. In order to
measure this distance, a 2D or 3D top-view map of the room needs to be made. These maps are called
"binary occupancy grid maps", they consist of a grid that represents the location of obstacles. These
grids are equal to 1 for occupied, and 0 for empty spaces. For dynamic obstacles present in the room, it
is important that the grid map can be updated in real-time during the simulation. Since the controller
is working within Matlab, the sensor information from Gazebo needs to be transferred to the Windows
environment where Matlab is located. Based on the sensor comparison as described in Chapter 4,
it can be concluded that Gazebo gives the possibility to co-simulate with Simulink. Moreover, it is
able to model virtual sensors and transform this data during the simulation to Matlab. Since these
requirements are necessary for the use case, Gazebo was chosen as the simulation environment.

5.2 Gazebo Room with Depth Camera

To investigate the depth sensor configuration and data transfer to Matlab, a test setup in Gazebo was
made consisting of a room with four walls. These walls were implemented using the Gazebo Building
Editor tool. This tool automatically generates 3D walls in the Gazebo simulation world based on
the dimensions specified in the 2D view of the build editor. A room of 2 by 3 meters was created
with this tool including four objects placed on the floor of the room. These objects in the shape of
boxes, together with the walls, are specified inside the SDF file containing the dimensions and positions.

For the setup, a depth camera is needed which is mounted at the top of the room, this ensures that a big
part of the room can be captured. The type of depth camera that is used for this setup is the Microsoft
Kinect sensor. The sensor consists of a 3D depth sensor and a normal RGB camera. Combining these
gives the possibility to measure the depth signals simultaneously with the RGB images. The depth
sensors use an IR laser projector together with an IR camera, giving the possibility to create a 3D map
with a resolution of 640 x 480 pixels at 30 Hz. The RGB camera captures images with a resolution of
640 x 480 pixels at 30 Hz but can be increased to 1280 x 1024 pixels running at 10 Hz. The Kinect
sensor is a commonly used sensor for obstacle avoidance as shown in research [13]. This research con-
cluded that the Kinect sensor is best used in indoor environments because there the IR absorption is
much lower than in outdoor environments. Moreover, the sensor has a limited range detection, between
0.5 and 6 meters. In the use case, the sensor is mounted in an indoor environment and does not need
a range larger than approximately 5 meters. Therefore, the Kinect sensor is adequate for the simulation.

27

CHAPTER 5. PERCEPTION IN GAZEBO

To simulate the Kinect sensor in Gazebo, the depth camera ROS plugin is used (included in the
Gazebo ROS package [6]). This plugin gives the possibility to simulate depth sensors and provides a
ROS interface, which allows for the publishing of the data from the Kinect sensor via ROS messages.
The Kinect sensor is added to the SDF file of the previously created room. To mount the sensor at
the top of the room, a fixed joint is made that is attached to the world frame and also to the link of
the camera sensor. The XML code of the camera model including the created joint can be found in
[41]. The setup in Gazebo with the four walls, boxes and Kinect camera can be seen in Figure 5.1.

(a) Side view of Gazebo room (b) Top view of Gazebo room

Figure 5.1: Gazebo test room with Kinect sensor and obstacles

The following camera ROS topics are available when starting the simulation and will be further used
in the next sections for 2D and 3D grid maps:

• camera/depth/colour/image_raw

• camera/depth/image_raw

• camera/depth/points

5.3 2D Binary Occupancy Map

The camera ROS topics are further used to create a 2D grid map. Via the rqt_image_view package
[28], a depth image can be visualised subscribing to the camera/depth/image_raw ROS topic. This
image shows the depth of the objects captured by the Kinect camera, see Figure 5.2a. This image can be
saved in PNG format, after which it can be loaded into Matlab. Accordingly, the binaryOccupancyMap
function from Matlab is used to automatically create a binary 2D occupancy map. The PNG image
is first converted to a black and white image before it can be used with the occupancy map function.
In addition, the function requires a resolution specified as the number of pixels in one meter. To
estimate this, the "spatial_calibartion_demo.m" script is used from the MathWorks forum. This
script measures the length of objects and calculates the number of pixels selected after inserting the
real length. In Figure 5.2b, the final result of the 2D grid map is shown. The Matlab script used for
this map can be found in Appendix A. Having this grid map, the checkOccupancy command can be
used to check if a certain specified position (in meters) is occupied by an obstacle or empty.

28

CHAPTER 5. PERCEPTION IN GAZEBO

(a) Camera depth PNG-image (b) 2D Binary Occupancy Map
Figure 5.2: Camera depth image and 2D Binary Occupancy Map

5.3.1 Real Time Updating to Matlab

For the use case, it is also important to display dynamic objects in the grid map. Therefore, it was
further investigated to update the 2D grid map in real-time to Matlab. By connecting with Matlab
to the ROS master of the virtual machine, it is possible to subscribe to ROS topics and receive the
information that is published. In this way, information from the /camera/depth/image topic can be
transferred to Matlab for further processing. The Franka Panda Robot was added to the test room
in Gazebo, including a co-simulation connection between Simulink and Gazebo in the same way as
described in Chapter 3. By sending a reference signal to the robot via Simulink, it could be further
tested how dynamic objects can be registered in a 2D grid map. The Matlab scripts used for the gird
map generation and the ROS connection can be found in Appendix B.2. The rate at which the 2D grid
map is updated in Matlab is measured to be 0.186 to 0.283 seconds, which is fast enough to update
the displacements of the Panda robot in the 2D grid map.

5.4 3D Occupancy Map via OctoMap Package

Having a 3D grid of the room gives a more detailed representation of the room compared to a 2D grid
map, for example, the height of the obstacles. Therefore, it was further investigated how a 3D map
can be generated for the Gazebo simulated point clouds and how it can be updated in real-time to
Matlab.

5.4.1 OctoMap Framework

A commonly used method for 3D depth mapping is the OctoMap open-source framework [9]. Used in
several robotic applications, for example for obstacle avoidance of drones [37]. This algorithm converts
point cloud data into a 3D occupancy map using an octree map compression method. This method
describes the volume of an environment in 3D cubes, called voxels. The volume is subdivided into eight
sub-volumes, where the smallest voxels correspond with the specified resolution, see Figure 5.3. To
decrease the storage space, not all root nodes are expended to leaf nodes for large areas. This method
requires relatively less storage space than the point clouds, where data points from all locations are
stored with the same resolution. The octree stores information about free, occupied or unknown spaces,
which can later be used to determine whether or not an obstacle is located at a specific coordinate.

29

CHAPTER 5. PERCEPTION IN GAZEBO

Figure 5.3: Schematic octree representation

To quantify the probability that a voxel is occupied, the log odds are used. If a voxel is seen as
occupied after several scans, the log odds value of this voxel will be increased. If it exceeds a certain
value, the voxel is considered occupied and will be registered in the OctoMap. This also applies the
other way around when a voxel is not occupied. This probability representation of the environment
reduces the effects of sensor noise on the 3D map. Modifying the specified boundaries and probability
parameters, one can choose to increase the probability that a voxel is occupied. In this way, one
can choose to registry static as well as dynamic objects depending on the specified boundaries and
probability parameters. Given these characteristics, this OctoMap framework is further used for the
use case described in Section 5.1.

5.4.2 OctoMap Implementation

To implement the OctoMap on the Gazebo setup described in Section 5.2, the ROS octo_mapping
package [9] was installed on the virtual machine. With this package, a 3D occupancy grid can be
generated from the data captured by the Kinect sensor. This map can be static and saved as a .bt
file, or dynamic, incrementally updating the map based on the incoming point cloud data. The data
from the Kinect sensor is published to the camera/depth/points ROS topic. This topic is added to the
OctoMap launch options so that the sensor data can be used for the OctoMap server. Visualising the
OctoMap generated from this server in RVis, it was noticed that the map was displayed upside down
with respect to the ground plane, see Appendix B.1. This is because the data is stored relative to the
camera’s viewpoint, which is specified at the top of the room. To display the OctoMap in the desired
orientation, a new frame must be specified that translates the viewpoint from the camera back to the
origin coordinate of the Gazebo world. One way to solve this was to use the ROS tf package [34].
This package includes the command line static_transform_publisher, which allows transforming
one frame into another frame given translations and rotations as input, shown in Appendix B.1. This
node is then specified in the launch file and used for the Gazebo test setup room. Accordingly, this new
coordinate frame from this ROS node is specified in the RVis as a fixed reference frame. As displayed
in Figure 5.4, the OctoMap is now created with the right orientation with respect to the world frame.

Figure 5.4: 3D OctoMap in RViz

30

CHAPTER 5. PERCEPTION IN GAZEBO

The next step is to transfer the OctoMap data published to the ROS network on the virtual machine
to Matlab, which is in the Windows environment. This is done in the same way as for the 2D grid
map in Section 5.3, by connecting Matlab to the ROS network on the virtual machine. Subscribing to
the /OctoMap_full ROS topic allows receiving data published by the OctoMap server. Accordingly,
this data can be used directly with the readOccupancyMap3D function in Matlab to create the 3D
occupancy map. This map can then be plotted, as can be seen in Figure 5.5. The checkOccupancy
command can then be used to check if the specified coordinate (in meters) is unknown (-1), obstacle-
free (0) or occupied (1). The corresponding Matlab script used for this map generation can be found
in Appendix B.2.

Figure 5.5: 3D Occupancy map in Matlab

5.4.3 Real Time Updating to Matlab

It was further tested how fast the 3D occupancy map can be updated in Matlab while controlling the
Franka Panda Robot in the Gazebo test room, representing a dynamic obstacle. Looking at the refresh
rates of the ROS topics, it was concluded that the generation of the OctoMap from the point cloud was
the bottleneck. It took between 2.633 to 4.193 seconds before a new map was published to the ROS
topic. This makes it difficult to capture dynamic objects on the map, especially when the objects are
moving relatively fast. To increase the refresh rate of the OctoMap, the following actions were taken:

Modifying Parameters of OctoMap

As explained in Section 5.4.1, the OctoMap algorithm works with a log odds estimation, where the
probability that a voxel is being occupied will be added or subtracted until the max or min from the
log-space is reached. These boundaries can be changed in such a way that the sensor data will be
"trusted" more, resulting in a faster updating rate of the voxels. A disadvantage of this is that any
sensor noise can have a greater impact on the quality of the map. Since it is important for the use
case to also register dynamic objects, the hit probability is increased and miss probability decreased
in the launch file of the OctoMap. The launch file of the OctoMap including the specified parameters
can be found in Appendix B.4.

The voxels that specify the ground plane in the OctoMap are not relevant for the use case and can
therefore be filtered from the map in order to reduce the data points. The OctoMap plugin provides
a built-in feature to filter the ground from the measured data. This filter is enabled and specified
together with a reference frame in the launch file of the octoserver.

31

CHAPTER 5. PERCEPTION IN GAZEBO

Because a detailed description of the objects in the room is not necessary for the use case, the resolution
is increased from 5 to 10 centimetres. The resolution has a large impact on the refresh time of the
OctoMap.

Increasing CPU cores and RAM of Virtual Machine

Because the generation of an OctoMap requires a lot of computational power, the number of CPU cores
has increased from 2 to 4. In addition, the memory (RAM) is increased from 4 to 8 in the VMware
Workstation settings.

Decrease Frequency of Point Clouds

Comparing the frequency from the ROS topic camera/depth/points (± 11 Hz) and the topic OctoMap/-
binary (± 0.29 Hz), it was found that there is a big difference between these update rates. An extra
ROS node was added to the launch file making use of the throttle function of the topic_tools ROS
package [35]. This node reduces the frequency from the incoming ROS topic camera/depth/points from
11 Hz to 1 Hz, as specified in the launch file.

Sup-Sample Point Clouds Resolution

Another way to increase the OctoMap computation time is to sub-sample the point clouds from the
Kinect sensor to a lower resolution. Since the resolution from the OctoMap is relative low (10cm), it is
not necessary to have a very detailed point clouds resolution. Therefore, another ROS node is started
via the launch file using the VoxelGrid filtering tool from the pcl_ros package [27]. This node receives
and publishes the new point clouds to the /voxel_grid/output topic which can then be further used
for the OctoMap generation.

Combining all these actions resulted in an increase of the refresh rate from ±0.287 Hz to ±0.989 Hz of
the OctoMap topic. This means that dynamic objects are better incorporated into the 3D grid map.
In Appendix B.3, a ROS computation graph is shown that gives a complete overview containing all the
ROS nodes and topics running during the simulation. Explaining the data transformation from the
Gazebo simulation to the Matlab node in a schematic graph. This graph is made via the rqt_graph
package [28]. The launch file that is used to start the nodes can be found in Appendix B.4. The final
3D occupancy map with the Panda robot and the ground filter can be seen in Figure 5.6.

Figure 5.6: 3D Occupancy map in Matlab with Panda robot

32

CHAPTER 5. PERCEPTION IN GAZEBO

5.5 Simulation of IGT Robot

After investigating how to make a 3D grid map in Matlab from a Kinect sensor simulation in Gazebo,
the perception method was further tested with the IGT robot from the use case. A new package was
created on the virtual machine containing the robot files (URDF and STL files), a Gazebo world and
a launch file to spawn the robot with the necessary ROS nodes. A co-simulation with Simulink was
set via the Gazebo plugin in the same way as described in Chapter 3. The simulation of the robot
can then be used to test the sensor configurations and to make a final recommendation. The complete
simulation setup can also be used by the master student for controller validation.

5.5.1 Sensor Configurations

A Kinect sensor was added to the SDF file and attached to the top of the room next to the rails of
the robot. In this way, the sensor can capture the complete top-view of the box which represents a
hospital bed, see Figure 5.7a. Different sine waves for the first three joints are used to move the robot
during the simulation. The OctoMap generated from the sensor data was meanwhile visualised in RViz.
The refresh rate was measured around ±1.1 seconds, making it possible to capture dynamic obstacles
(the robot itself in this case). When the robot’s movements were made more complex, for example by
moving additional joints, the simulation speed and thus the refresh rate of OctoMap decreased. The
simulation in Gazebo together with the co-simulation connection with Simulink seemed now to be the
limiting factor for updating the OctoMap data. It is therefore important to ensure that the Gazebo
simulation speed is not reduced too much, for example by not using a lower step size which has a large
impact on the simulation speed as was demonstrated in Section 4.6. This problem will disappear if the
Gazebo simulation is replaced by a real-life Kinect camera setup.

As can be seen in Figure 5.7b, a big part of the robot was sometimes visible in the OctoMap or
blocking the view of the sensor. Since the robot was constantly moving, the sensor was only blocked
for a small time moment. Therefore, the box was always visible in the grid map although a big part
of the robot was captured as well.

(a) Gazebo simulation (b) RViz OctoMap
Figure 5.7: Attaching Kinect sensor to ceiling

33

CHAPTER 5. PERCEPTION IN GAZEBO

Another sensor configuration was tested by attaching the Kinect sensor to the robot itself. It was
chosen to mount the sensor on the carrier link which slides over the rails. If the camera would be
attached to another link of the robot, the viewpoint of the camera would change too much, making
it difficult to capture a part of the box. The robot was moved along the rails to test how the box
was captured in the OctoMap, see Figure 5.8a. In Figure 5.8b, it can be seen that only a part of the
object remains visible while the robot is moving. Only the visible part of the sensor will be stored
in the OctoMap. This partially has to do with the custom settings described in Section 5.4.3, which
ensures that the OctoMap is updated faster to also capture dynamic objects. An advantage of this
configuration is that the robot is less visible, but this depends on the trajectory of the robot. It was also
noticed that due to the changing camera viewpoint, the quality of the OctoMap decreased compared
to the stationary camera viewpoint. As a result, sometimes voxels were shown to be occupied when
they were not.

(a) Gazebo simulation (b) RViz OctoMap
Figure 5.8: Attaching Kinect sensor to robot

5.5.2 Filter Robot from Point Clouds

Since the position of the robot is already known during the simulation, it is not necessary to capture
the geometry of the robot in the OctoMap. A solution to this would be to remove registered point
clouds that represent the shape of the robot. The OctoMap can then be generated from the filtered
point clouds so that only the box is visible on the map. Moveit includes an example where the UR5
robot is filtered from the point clouds captured by a Kinect sensor [24]. However, this tool is not
documented in detail and it requires the ROS Noetic version. Another recently updated package is the
Robot Body Filter [4]. Because it is a bit cumbersome to use, an additional Sensor Filter package [14]
was found that includes a launch file to start simple nodes. This file loads the .yaml file that contains
all settings and defines the ROS in and output topic to where the filtered point clouds are published
to. Both packages were installed on the virtual machine and tested on the setup. However, since no
comparable sensor setup was found, it was difficult to find the right settings. The example .yaml files
from the plugin are applied to a fixed camera and robot frame, while for the IGT robot, it is necessary
to filter the complete moving robot. Since the package is recently updated and has better documents
than comparable packages, the implementation of this plugin could be further explored in future work.

34

CHAPTER 6. CONCLUSION AND RECOMMENDATION

6 Conclusion and Recommendation

In this study, the differences between Simscape Multibody and Gazebo have been investigated based
on the comparison criteria defined in Chapter 2. The main objective was formulated as follows:

1. Compare Simscape Multibody and Gazebo based on defined comparison criteria by mak-
ing use of co-simulation with Simulink.

To accomplish the first main objective, comparison criteria and a robotic scenario are defined as was
stated in the first sub-objective:

1a. Define comparison criteria and a scenario in order to compare the simulation envir-
onment based on utility, usability and performance.

These criteria include, general characteristics, workflow, sensor possibilities, joint limits, collision mod-
elling and simulation time. The OpenManipulator robot is chosen for the comparison since is contains
elaborate documentation. Based on the implementation of this robot, it can be concluded that Gazebo
requires prior knowledge about the ROS environment including the catkin workspace, while for Sim-
scape Multibody the implementation can be done directly with an integrated function. The next
sub-objective was stated as follows:

1b. Establish a connection between Gazebo and Simulink to perform a co-simulation with
the defined scenario.

This connection is made via the Gazebo co-simulation plugin from MathWorks. This plugin directly
sends the input references from Simulink to the Gazabo topics of the robot. During the simulation,
sensor information can be received in Simulink for further processing. Based on the simulation time
comparison, it was shown that the simulations with the OpenManpulator take at least twice as long
as real-time. This will take even longer if the simulation is extended with sensors. If simulation speed
is important for a scenario, a standalone ROS node would be an alternative, as this is expected to be
faster as no data transformation or synchronization between different environments is required.

All in all, the comparison gives a general idea of what is possible within the environments applied
to the same scenario. It is important to note that the examples in this study only give a partial indic-
ation of what is possible in the simulation environments. The examples mainly represent general or
commonly used possibilities. Based on these findings, it is recommended to use Simscape Multibody
when the focus of the scenario is on the mechanical part of the robot. It provides a lot of built-in sensor
blocks and additional libraries to measure and modify the dynamic properties of the robot. Built-in
sensor blocks allow for directly test algorithms without needing to simulate complex virtual sensors.
Sensor simulation could be further extended by, for example, integrating with Unreal Engine or Sim-
ulink 3D animation. Collisions between bodies are simulated as virtual springs, consisting of simple
geometries that allow more accuracy than hard contacts. The Simulink blocks make it convenient
to adjust the dynamic properties of the robot. No extra knowledge of URDF or other programming
languages except Matlab and Simulink is required.

Gazebo is preferred to be used when a more complex environment needs to be simulated, such as
rooms with dynamic obstacles. In addition, Gazebo supports a wide variety of sensor models that
can generate synthetic data. Due to the ROS connection, algorithms can be directly tested on real
hardware. By making use of the default ODE physics engine, hard contact method is used which is
more robust and faster compared to soft contacts. More complex collision geometries can be simulated,
such as the complete mesh of the robot but this does come at the expense of accuracy compared to
soft contacts.

35

CHAPTER 6. CONCLUSION AND RECOMMENDATION

Apart from Gazebo, there are more external simulation environments that enable co-simulation with
Simulink, for example, V-Rep, Unreal Engine and Unity. Therefore, a suggestion for future work would
be to connect these environments to Simulink and compare them in terms of, for example, usability,
utility and performance. This would further expand the understanding of simulation possibilities when
co-simulating with Simulink.

In the second part of this study, sensor simulation in Gazebo is further explored based on a use
case perspective. The second main objective of the study was as follows:

2. Investigate how to create a grid map of sensor simulation in Gazebo based on the
requirements for the use case.

Two ways of creating a grid map of sensor simulation in Gazebo have been investigated, in 2D and
3D. In addition, the IGT robot is further implemented in Gazebo including the Kinect sensor, so that
it can be further used by the master student. An advantage of the 2D grid map is the fact that it
updates fast to Matlab (around ±0.23 seconds), making it possible to include dynamic obstacles in
the map. However, since it is important to measure the distance between different body links of the
robot and the objects, a 3D grid map would be preferable for the use case. The OctoMap gives the
possibility to directly process the data in Matlab so that it can be further used for controller input.
The refreshing time of the OctoMap has been decreased from 4.0 seconds to around 1.1 seconds. This
makes it still relatively slower than the 2D grid map, but fast enough to capture moving objects in the
room. For the use case, it is preferred to attach the Kinect sensor to the ceiling. Due to the relative
complex movements of the robot, it is difficult to capture objects in the room without a lot of noise in
the OctoMap.

Finding the best sensor configuration requires more research. Since the IGT robot is relatively large,
it is difficult to capture all objects in a room without blocking the sensor’s view. For future work,
the 3D representation of the room could be more detailed by combining point clouds from multiple
Kinect sensors. This would also make the 3D map more detailed, allowing to capture objects from
multiple viewpoint angles. Another suggestion for future work is to filter the robot’s geometry from
the map. Since the position of the robot is already known, it is not necessary to capture the robot in
the OctoMap. Suggestions for ROS packages can be found in Section 5.5.2.

36

BIBLIOGRAPHY

Bibliography

[1] Ahmed R.J. Almusawi, L. Canan Dülger and Sadettin Kapucu. “Robotic arm dynamic and sim-
ulation with Virtual Reality Model (VRM)”. In: International Conference on Control, Decision
and Information Technologies, CoDIT 2016 (Oct. 2016), pp. 335–340. doi: 10.1109/CODIT.
2016.7593584.

[2] Heesun Choi et al. “On the use of simulation in robotics: Opportunities, challenges, and sugges-
tions for moving forward”. In: Perspective 118.1 (Sept. 2020). doi: 10.1073/pnas.1907856118/-
/DCSupplemental.

[3] Mirella Santos Pessoa De Melo et al. “Analysis and comparison of robotics 3D simulators”. In:
Proceedings - 2019 21st Symposium on Virtual and Augmented Reality, SVR 2019. Institute of
Electrical and Electronics Engineers Inc., Oct. 2019, pp. 242–251. isbn: 9781728154343. doi:
10.1109/SVR.2019.00049.

[4] Tomas Petricek Eitan Marder-Eppstein. robot_body_filter - ROS Wiki. url: http://wiki.ros.
org/robot_body_filter.

[5] Gazebo API Reference. Gazebo: Sensors. url: https://osrf-distributions.s3.amazonaws.
com/gazebo/api/dev/group__gazebo__sensors.html.

[6] gazebo_ros_pkgs - ROS Wiki. url: http://wiki.ros.org/gazebo_ros_pkgs.

[7] GitHub - ROBOTIS-GIT/open_manipulator: OpenManipulator for controlling in Gazebo and
Moveit with ROS. url: https://github.com/ROBOTIS-GIT/open_manipulator.

[8] Victor I C Hofstede, Bachelor Opleiding and Kunstmatige Intelligentie. The importance and
purpose of simulation in robotics. Tech. rep. Amsterdam: University of Amsterdam, June 2015.

[9] Armin Hornung et al. “OctoMap: An efficient probabilistic 3D mapping framework based on
octrees”. In: Autonomous Robots 34.3 (Feb. 2013), pp. 189–206. issn: 09295593. doi: 10.1007/
S10514-012-9321-0.

[10] Hyejong Kim. open_manipulator - ROS Wiki. url: http://wiki.ros.org/open_manipulator.

[11] Ehsan Izadi and Adam Bezuijen. “Simulating direct shear tests with the Bullet physics library:
A validation study”. In: PLoS ONE 13.4 (Apr. 2018). issn: 19326203. doi: 10.1371/journal.
pone.0195073.

[12] Nathan Koenig and Andrew Howard. “Design and use paradigms for Gazebo, an open-source
multi-robot simulator”. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) 3 (2004), pp. 2149–2154. doi: 10.1109/IROS.2004.1389727.

[13] Jizhan Liu et al. “Experiments and analysis of close-shot identification of on-branch citrus fruit
with realsense”. In: Sensors 18.5 (May 2018). issn: 14248220. doi: 10.3390/s18051510.

[14] Martin Pecka. sensor_filters - ROS Wiki. url: http://wiki.ros.org/sensor_filters.

[15] MathWorks. Connect a Physical Model in Simulink to Unreal Engine | AUV Deep Dive, Part 6
- YouTube. May 2021. url: https://www.youtube.com/watch?v=fNd0fVYxkGg.

[16] MathWorks. Simscape Multibody - MATLAB & Simulink. url: https://nl.mathworks.com/
products/simscape-multibody.html.

[17] MathWorks Student Competitions Team. Designing Robot Manipulator Algorithms - File Ex-
change - MATLAB Central. Oct. 2019. url: https://nl.mathworks.com/matlabcentral/
fileexchange/65316-designing-robot-manipulator-algorithms.

37

https://doi.org/10.1109/CODIT.2016.7593584
https://doi.org/10.1109/CODIT.2016.7593584
https://doi.org/10.1073/pnas.1907856118/-/DCSupplemental
https://doi.org/10.1073/pnas.1907856118/-/DCSupplemental
https://doi.org/10.1109/SVR.2019.00049
http://wiki.ros.org/robot_body_filter
http://wiki.ros.org/robot_body_filter
https://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/group__gazebo__sensors.html
https://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/group__gazebo__sensors.html
http://wiki.ros.org/gazebo_ros_pkgs
https://github.com/ROBOTIS-GIT/open_manipulator
https://doi.org/10.1007/S10514-012-9321-0
https://doi.org/10.1007/S10514-012-9321-0
http://wiki.ros.org/open_manipulator
https://doi.org/10.1371/journal.pone.0195073
https://doi.org/10.1371/journal.pone.0195073
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.3390/s18051510
http://wiki.ros.org/sensor_filters
https://www.youtube.com/watch?v=fNd0fVYxkGg
https://nl.mathworks.com/products/simscape-multibody.html
https://nl.mathworks.com/products/simscape-multibody.html
https://nl.mathworks.com/matlabcentral/fileexchange/65316-designing-robot-manipulator-algorithms
https://nl.mathworks.com/matlabcentral/fileexchange/65316-designing-robot-manipulator-algorithms

BIBLIOGRAPHY

[18] MathWorks Support. Gazebo Simulation for Robotics System Toolbox - MATLAB & Simulink
- MathWorks Benelux. url: https : / / nl . mathworks . com / help / robotics / ug / gazebo -
simulation-for-robotics-system.html.

[19] MathWorks Support. How Gazebo Simulation for Robotics System Toolbox Works - MATLAB &
Simulink - MathWorks Benelux. url: https://nl.mathworks.com/help/robotics/ug/how-
gazebo-simulation-for-robotics-works.html.

[20] MathWorks Support. Perform Co-Simulation between Simulink and Gazebo - MATLAB & Sim-
ulink - MathWorks Benelux. url: https://nl.mathworks.com/help/robotics/ug/perform-
co-simulation-between-simulink-and-gazebo.html.

[21] MathWorks Support. ROS 2 Dashing and Gazebo - MATLAB & Simulink. url: https://nl.
mathworks.com/support/product/robotics/ros2- vm- installation- instructions- v5.
html.

[22] MathWorks Support. URDF Import - MATLAB & Simulink - MathWorks Benelux. url: https:
//nl.mathworks.com/help/physmod/sm/ug/urdf-import.html#bvmwhdm-1.

[23] Mathworks Support. Modeling Contact Force Between Two Solids - MATLAB & Simulink -
MathWorks Benelux. url: https://nl.mathworks.com/help/physmod/sm/ug/modeling-
contact-force-between-two-solids.html.

[24] MoveIt. Mesh Filter with UR5 and Kinect — moveit_tutorials Noetic documentation. url:
https://ros-planning.github.io/moveit_tutorials/doc/mesh_filter/mesh_filter_
tutorial.html.

[25] Dragomir N. Nenchev, Atsushi Konno and Teppei Tsujita. “Simulation”. In: Humanoid Robots.
Elsevier, 2019, pp. 421–471. isbn: 9780128045602. doi: 10.1016/B978-0-12-804560-2.00015-8.
url: https://linkinghub.elsevier.com/retrieve/pii/B9780128045602000158.

[26] OpenMANIPULATOR-X. url: https://emanual.robotis.com/docs/en/platform/openmanipulator_
x/overview/.

[27] pcl_ros - ROS Wiki. url: https://wiki.ros.org/pcl_ros.

[28] rqt_common_plugins - ROS Wiki. url: https://wiki.ros.org/rqt_common_plugins.

[29] U Schmucker et al. Contact processing in the simulation of the multi-body systems. Tech. rep.
Magdeburg, Germany: University of Magdeburg, Institute for Electrical Energy Systems, Dec.
2008. url: https://www.researchgate.net/publication/228699941.

[30] Sebastian Castro. Walking Robot Modeling and Simulation » Student Lounge - MATLAB &
Simulink. Dec. 2019. url: https://blogs.mathworks.com/student-lounge/2019/12/20/
walking-robot-modeling-and-simulation/.

[31] Stanford Artificial Intelligence Laboratory et al. Robotic Operating System, ROS Melodic Morenia.
May 2018. url: https://www.ros.org/.

[32] Aaron Staranowicz and Gian Luca Mariottini. “A Survey and Comparison of Commercial and
Open-Source Robotic Simulator Software”. In: Proceedings of the 4th International Conference
on PErvasive Technologies Related to Assistive Environments - PETRA ’11 (May 2011). doi:
10.1145/2141622.

[33] Kenta Takaya et al. “Simulation environment for mobile robots testing using ROS and Gazebo”.
In: 2016 20th International Conference on System Theory, Control and Computing, ICSTCC 2016
- Joint Conference of SINTES 20, SACCS 16, SIMSIS 20 - Proceedings (Dec. 2016), pp. 96–101.
doi: 10.1109/ICSTCC.2016.7790647.

[34] tf - ROS Wiki. url: http://wiki.ros.org/tf.

[35] topic_tools - ROS Wiki. url: http://wiki.ros.org/topic_tools.

38

https://nl.mathworks.com/help/robotics/ug/gazebo-simulation-for-robotics-system.html
https://nl.mathworks.com/help/robotics/ug/gazebo-simulation-for-robotics-system.html
https://nl.mathworks.com/help/robotics/ug/how-gazebo-simulation-for-robotics-works.html
https://nl.mathworks.com/help/robotics/ug/how-gazebo-simulation-for-robotics-works.html
https://nl.mathworks.com/help/robotics/ug/perform-co-simulation-between-simulink-and-gazebo.html
https://nl.mathworks.com/help/robotics/ug/perform-co-simulation-between-simulink-and-gazebo.html
https://nl.mathworks.com/support/product/robotics/ros2-vm-installation-instructions-v5.html
https://nl.mathworks.com/support/product/robotics/ros2-vm-installation-instructions-v5.html
https://nl.mathworks.com/support/product/robotics/ros2-vm-installation-instructions-v5.html
https://nl.mathworks.com/help/physmod/sm/ug/urdf-import.html#bvmwhdm-1
https://nl.mathworks.com/help/physmod/sm/ug/urdf-import.html#bvmwhdm-1
https://nl.mathworks.com/help/physmod/sm/ug/modeling-contact-force-between-two-solids.html
https://nl.mathworks.com/help/physmod/sm/ug/modeling-contact-force-between-two-solids.html
https://ros-planning.github.io/moveit_tutorials/doc/mesh_filter/mesh_filter_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/mesh_filter/mesh_filter_tutorial.html
https://doi.org/10.1016/B978-0-12-804560-2.00015-8
https://linkinghub.elsevier.com/retrieve/pii/B9780128045602000158
https://emanual.robotis.com/docs/en/platform/openmanipulator_x/overview/
https://emanual.robotis.com/docs/en/platform/openmanipulator_x/overview/
https://wiki.ros.org/pcl_ros
https://wiki.ros.org/rqt_common_plugins
https://www.researchgate.net/publication/228699941
https://blogs.mathworks.com/student-lounge/2019/12/20/walking-robot-modeling-and-simulation/
https://blogs.mathworks.com/student-lounge/2019/12/20/walking-robot-modeling-and-simulation/
https://www.ros.org/
https://doi.org/10.1145/2141622
https://doi.org/10.1109/ICSTCC.2016.7790647
http://wiki.ros.org/tf
http://wiki.ros.org/topic_tools

BIBLIOGRAPHY

[36] M. Torres-Torriti, T. Arredondo and P. Castillo-Pizarro. “Survey and comparative study of free
simulation software for mobile robots”. In: Robotica 34.4 (Apr. 2016), pp. 791–822. issn: 14698668.
doi: 10.1017/S0263574714001866.

[37] Simon Vanneste, Ben Bellekens and Maarten Weyn. 3DVFH+: Real-Time Three-Dimensional
Obstacle Avoidance Using an Octomap. Tech. rep. Antweropen: CoSys-Lab, Faculty of Applied
Engineering, 2014.

[38] Andres Vivas and Jose Maria Sabater. “UR5 Robot Manipulation using Matlab/Simulink and
ROS”. In: 2021 IEEE International Conference on Mechatronics and Automation, ICMA 2021
(Aug. 2021), pp. 338–343. doi: 10.1109/ICMA52036.2021.9512650.

[39] Maida Cohodar Nedzma Kobilica Vjekoslav Damic. “Development of Dynamic Model of Robot
with Parallel Structure Based on 3D CAD Model, Proceedings of the 30th DAAAM International
Symposium”. In: Published by DAAAM International (2019), pp. 155–0160. issn: 1726-9679. doi:
10.2507/30th.daaam.proceedings.020.

[40] Guido Wolfs. Co-Simluation Simulink and Gazebo Examples · main · ETProjects / GW CompSi-
mEnv · GitLab. 2022. url: https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/
main/Co-Simluation%20Simulink%20and%20Gazebo%20Examples.

[41] Guido Wolfs. Gazebo Perception Files · main · ETProjects / GW CompSimEnv · GitLab. 2022.
url: https : / / gitlab . tue . nl / et _ projects / gw - compsimenv/ - /tree / main / Gazebo %
20Perception%20Files.

[42] Guido Wolfs. Scenario OpenManipulator Files · main · ETProjects / GW CompSimEnv · GitLab.
2022. url: https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/Scenario%
20OpenManipulator%20Files.

[43] Guido Wolfs. Simulink Models · main · ETProjects / GW CompSimEnv · GitLab. 2022. url:
https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/Simulink%20Models.

[44] Guido Wolfs. Simulink Models/Collision Comparison · main · ETProjects / GW CompSimEnv
· GitLab. 2022. url: https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/
Simulink%20Models/Collision%20Comparison.

[45] Guido Wolfs. Simulink Models/Joint-limit Comparison · main · ETProjects / GW CompSimEnv
· GitLab. 2022. url: https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/
Simulink%20Models/Joint-limit%20Comparison.

[46] Guido Wolfs. Simulink Models/Sensor Comparison · main · ETProjects / GW CompSimEnv ·
GitLab. 2022. url: https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/
Simulink%20Models/Sensor%20Comparison.

[47] Guido Wolfs. Simulink Models/Time Comparison · main · ETProjects / GW CompSimEnv ·
GitLab. 2022. url: https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/
Simulink%20Models/Time%20Comparison.

[48] Guido Wolfs. Virtual Machine · main · ETProjects / GW CompSimEnv · GitLab. 2022. url:
https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/Virtual%20Machine.

39

https://doi.org/10.1017/S0263574714001866
https://doi.org/10.1109/ICMA52036.2021.9512650
https://doi.org/10.2507/30th.daaam.proceedings.020
https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/Co-Simluation%20Simulink%20and%20Gazebo%20Examples
https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/Co-Simluation%20Simulink%20and%20Gazebo%20Examples
https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/Gazebo%20Perception%20Files
https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/Gazebo%20Perception%20Files
https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/Scenario%20OpenManipulator%20Files
https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/Scenario%20OpenManipulator%20Files
https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/Simulink%20Models
https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/Simulink%20Models/Collision%20Comparison
https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/Simulink%20Models/Collision%20Comparison
https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/Simulink%20Models/Joint-limit%20Comparison
https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/Simulink%20Models/Joint-limit%20Comparison
https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/Simulink%20Models/Sensor%20Comparison
https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/Simulink%20Models/Sensor%20Comparison
https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/Simulink%20Models/Time%20Comparison
https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/Simulink%20Models/Time%20Comparison
https://gitlab.tue.nl/et_projects/gw-compsimenv/-/tree/main/Virtual%20Machine

APPENDIX A. CO-SIMULATION AND COMPARISON

A Co-Simulation and Comparison
This appendix contains information about ROS, the virtual machine and the Simulink main model
that forms the basis for the comparison. Detailed information on the computer setup used for the time
measurements is also provided.

A.1 Robot Operating System

The Robot Operating System (ROS) is an open-source framework for building robotic systems. It
includes a huge repository with algorithms, packages and drivers. ROS ensures that different robotic
components, like actuators, sensors and controllers are connected to each other and can exchange
information. A simple ROS setup can be seen in Figure A.1. Each ROS network consists of a ROS
master, which allows for communication between the different processes. This information goes via
ROS topics. In this way, node 2 can receive information that is published by node 1. It is also possible
to have nodes that both publish and receive information. More information about ROS can be found
at [31].

Figure A.1: Basic schematic ROS setup

A.2 Virtual Machine

A virtual machine is a computer program that runs as a "guest" on a host computer. This makes it
possible to use other operating systems and programmes that do not have to be installed on the main
computer. The virtual machine is uploaded to the repository [48]. The following main elements are
included in the machine:

• Ubuntu 18.04.6 LTS.

• ROS distribution Melodic.

• ROS 2 Dashing.

• Gazebo 9.19.0-1 bionic.

• Example Gazebo worlds from MathWorks.

• World files and robot models used for manipulator scenario.

• World files and packages used for the perception in Gazebo.

A-1

APPENDIX A. CO-SIMULATION AND COMPARISON

A.3 Co-Simulation Setup Details

Having a connection between the OpenManipulator in Gazebo and Simulink, it is possible to send
data using Matlab commands or by using Simulink blocks. Different types of data to Gazebo such
as position, velocity and torque can be sent as a reference signal to the robot. Via the co-simulation
functions from Matlab, it is possible to manipulate the pose of the robot using the following function:

1 [status,message] = gzjoint(’set’,’robot’,’joint1’,’Axis’,’0’,’Angle’,pi/4)

This function directly changes the position of the first joint of the manipulator from 0 to pi/4. For
this command, neither a connection with Simulink nor a feedback controller is needed. Other types of
commands can be found in the the MathWorks support documentation, see [18].

A.3.1 Simulink Sending Data to Gazebo

To send the input reference signal from Simulink to Gazebo, several blocks are needed. These are
required to control each joint of the OpenManipulator separately. In Figure A.2, the Simulink model
can be seen that sends the reference input to the robot in Gazebo.

Figure A.2: Set joint position in Simulink

The Gazebo Apply Command block on the right sends the data to the plugin in the Linux environment.
This block receives data collected by the bus assignment, which consists of the following elements:

• Gazebo Blank Message block: Creates a blank Gazebo message or command. For the
manipulator scenario, "SetJointPostion", "SetJointVelocity", "ApplyJointTorque" are used since
these are needed to control the revolute and prismatic joints.

• Gazebo Select Entity bock: A joint or link from the Gazebo model can be selected to be
actuated. These topics are Gazebo topics and can be directly found in Simulink. There is no
ROS node required to transfer the data, this is all done by the plugin itself. The type of topics
depends on the possibilities of the robot in the Gazebo environment. For the OpenManipulator
the following options can be chosen, see Figure A.3. Only the joints 1 up to 4 and the gripper
topics are used for the scenario.

A-2

APPENDIX A. CO-SIMULATION AND COMPARISON

Figure A.3: OpenManipulator Gazebo topics

• Constant block with "uint32(0)": Indicates which axes will be actuated. Since the OpenMa-
nipulator has only 1 degree of freedom joints, this value will be set to "uint32(0)". This indicates
that the first axes are actuated.

• Constant block with "0" and "1e7" duration: With these blocks, the duration of the applied
input (in this case position) is defined. Two separate blocks are used to increase precision. For
the OpenManipulator, the duration of the input signal is chosen to be equal to the sample time
which is specified as "0.01" seconds. Therefore the duration was set to 1e7 nanoseconds. When
increasing the sample time of the mode, also the duration of the reference input can be increased
accordingly as was done for the simulation time comparison in Section 4.6.

• Position: The reference position data that the joints need to follow. This element specifies in
this case the chosen position of the OpenManipulator. This port can also be changed to velocity
and torque if another type of reference input is required. For example, when changing the type
of reference from position to torque, it is also required to change the Gazebo message block.

A.3.2 Simulink Receiving Data from Gazebo

Receiving data from a chosen Gazebo topic goes via a Gazebo Read block. Position and velocity data
from the joints are extracted using a bus selector. With this block, also data from sensors located in
the Gazebo environment can be received and used for the sensor comparison in Section 4.4.

Figure A.4: Receiving data in Simulink from Gazebo

A-3

APPENDIX A. CO-SIMULATION AND COMPARISON

A.4 Main Simulink Model

Figure A.5: Simulink model with two different plants [17]

A-4

APPENDIX A. CO-SIMULATION AND COMPARISON

A.5 Time Measurement Configuration

The time measurement setup consists of a dual monitor setup, displaying Simulink on the first screen
and the robot on the second screen. Only Simulink and the virtual machine are running during the
measurements. The virtual machine is only used for the Gazebo measurements.

Table A.1: PC specification
OS Windows 10 64bit Edition
CPU Intel Core i5 8600K
GPU ASUS GeForce GTX 1070 Ti
Memory HyperX Predator - DDR4 - 16GB
SSD Samsung 970 EVO Plus M.2 - SSD - 1TB

Figure A.6: VMware workstation settings

Figure A.7: Time measurement example with Simulink Profiler

A-5

APPENDIX B. GAZEBO PERCEPTION

B Gazebo Perception
In this appendix, RViz visualisations are included to demonstrate the coordinate transformation from
the sensor frame. In addition, Matlab codes for the grid maps, a ROS computation graph and the
launch file that is created for the sensor simulation in Gazebo are included.

B.1 RViz Visualisations

Figure B.1: 3D Octomap in RViz before coordinate transformation

Figure B.2: RViz coordinate transformation camera_link2

B-1

APPENDIX B. GAZEBO PERCEPTION

B.2 Matlab Scripts for 2D/3D Grid Map

Listing B.1: MATLAB script - 2D grid map
1 clear all; close all; clc;
2 %% Make a connection to ROS server and show ROS topics
3 rosinit(’192.168.21.134’)
4 rostopic list
5

6 %% Reading PNG image
7 imageData = imread(’top_view_grey.png’);
8 imageData(imageData<250) = 0;
9 imshow(imageData)

10

11 %% Convert to grayimage
12 grayimage = rgb2gray(imageData);
13 bwimage = grayimage < 0.5;
14

15 %% Create and plot grid map
16 % Set the resolution, this value is calculated with spatial_calibration_demo.m file
17 resolution = 245.182076;
18

19 grid = binaryOccupancyMap(bwimage,resolution);
20 inflate(grid, 0.05)
21

22 show(grid)
23

24 %% Checking for obstacle
25 occVal = checkOccupancy(grid,[1.2 1])

Listing B.2: MATLAB script - 3D grid map
1 clear all; close all; clc;
2 %% Make a connection to ROS server and show ROS topics
3 rosinit(’192.168.21.134’)
4 rostopic list
5 rosshutdown
6

7 %% Subscribe to ROS topic and make OccupancyMap
8 map_topic_info_full = rossubscriber(’/octomap_full’);
9 map_topic_info_binary = rossubscriber(’/octomap_binary’);

10 map_message = receive(map_topic_info_binary);
11 map = readOccupancyMap3D(map_message);
12 % r_inflation = 0.05
13 % inflate(map, r_inflation);
14

15 show(map);
16 save 2D_gridmap map
17

18 %% Loading mapFile
19 load(’mapFile_translated.mat’)
20 grid on;
21 show(map)
22

23 %% Check if location is occupied
24 % Occupancy values can be obstacle-free (0), occupied (1), or unknown (1).
25 % Each row of the array XYZ corresponds to a point with [X Y Z] world coordinates.
26

27 % Check if the coordinate is occupied
28 OccVal1 = checkOccupancy(map,[0 0 0])
29

30 % Check probabliltiy of location being occupied
31 OccVal1 = getOccupancy(map,[0 0 0])

B-2

APPENDIX B. GAZEBO PERCEPTION

B.3 ROS Computation Graph

Figure B.3: ROS qrt computation graph (nodes only) [28]

B.4 Launch Files

Listing B.3: XML code - Launch file for RGBd_room
1 <?xml version="1.0" encoding="UTF-8"?>
2 <launch>
3 <!-- Set standard world -->
4 <arg name="world" default="empty"/>
5

6 <!-- Starting rviz -->
7 <node type="rviz" name="rviz" pkg="rviz" args="-d rviz_files/rviz/depth_camera.rviz" />
8

9 <!-- Selecting world -->
10 <include file="$(find gazebo_ros)/launch/empty_world.launch">
11 <arg name="world_name" value="$(find guido)/worlds_usecase/$(arg world).world" />
12 </include>
13

14 <!-- Change ref frame -->
15 <node pkg="tf" type="static_transform_publisher" name="link1_broadcaster" args="0.5 0 2.5 -1.57079

0 3.14159 camera_link camera_link2 100" />
16

17 <!-- Start throttle point clouds to 1 Hz -->
18 <node name="foo_throttler" type="throttle" pkg="topic_tools" args="messages /camera/depth/points 1

/camera/depth/points_throttled" />
19

20 <!-- Downsample Pointclouds -->
21 <node pkg="nodelet" type="nodelet" name="pcl_manager" args="manager" output="screen" />
22

23 <!-- Run a VoxelGrid filter to clean NaNs and downsample the data -->
24 <node pkg="nodelet" type="nodelet" name="voxel_grid" args="load pcl/VoxelGrid pcl_manager" output=

"screen">
25 <remap from="~input" to="/camera/depth/points_throttled" />
26 <rosparam>
27 filter_field_name: x
28 filter_limit_min: -3
29 filter_limit_max: 3
30 filter_limit_negative: False
31 leaf_size: 0.05
32 </rosparam>
33 </node>
34

35 <!-- Find Panda robot -->
36 <param name ="robot_description" command= "cat ’$(find franka_panda_description)/robots/panda_arm.

urdf’" />
37

38 <!-- Import Panda robot -->
39 <node

B-3

APPENDIX B. GAZEBO PERCEPTION

40 name="spawn_model"
41 pkg="gazebo_ros"
42 type="spawn_model"
43 args="-urdf -param robot_description -model panda_arm"
44 output="screen" />
45

46 </launch>

Listing B.4: XML code - Launch file for OctoMap including specified parameters
1 <launch>
2 <node pkg="octomap_server" type="octomap_server_node" name="octomap_server">
3 <param name="resolution" value="0.1" />
4

5 <!-- fixed map frame (set to ’map’ if SLAM or localization running!) -->
6 <param name="frame_id" type="string" value="camera_link2" />
7 <param name="base_frame_id" type="string" value="camera_link2" />
8

9 <!-- maximum range to integrate (speedup!) -->
10 <param name="sensor_model/max_range" value="5.0" />
11

12 <!-- data source to integrate (PointCloud2) -->
13 <remap from="cloud_in" to="/voxel_grid/output" />
14

15 <!-- Set parameters -->
16 <param name="sensor_model/hit" value="1" />
17 <param name="sensor_model/miss" value="0.01" />
18 <param name="sensor_model/min" value="0.49" />
19 <param name="sensor_model/max" value="0.5" />
20

21 <param name="filter_ground" type="bool" value="true" />
22 </node>
23 </launch>

B-4

APPENDIX C. GAZEBO MODELS

C Gazebo Models
In this appendix, the XML codes that are used for the Gazebo models are included. These codes can
be added directly to an SDF file for a Gazebo simulation. The complete SDF files containing these
sensor models and the URDF for the OpenManipulator can be found in the repository [42].

C.1 Plugin used for SDF files

Listing C.1: XML code - Gazebo plugin
1 <plugin name=’GazeboPlugin’ filename=’lib/libGazeboCoSimPlugin.so’>
2 <portNumber>14581</portNumber>
3 </plugin>

C.2 Lidar Sensor Model

Listing C.2: XML code - Lidar sensor
1 <!-- Lidar Sensor Model -->
2 <model name="hokuyo0">
3 <link name="link">
4 <pose>0.25 0.25 0.05 0 0 0</pose>
5 <gravity>false</gravity>
6 <inertial>
7 <mass>0.1</mass>
8 </inertial>
9 <visual name="visual">

10 <geometry>
11 <mesh>
12 <uri>model://hokuyo/meshes/hokuyo.dae</uri>
13 </mesh>
14 </geometry>
15 </visual>
16 <sensor name="laser" type="ray">
17 <pose>0.01 0 0.03 0 -0 0</pose>
18 <ray>
19 <scan>
20 <horizontal>
21 <samples>640</samples>
22 <resolution>1</resolution>
23 <min_angle>-3.14</min_angle>
24 <max_angle>3.14</max_angle>
25 </horizontal>
26 </scan>
27 <range>
28 <min>0.08</min>
29 <max>10</max>
30 <resolution>0.01</resolution>
31 </range>
32 <noise>
33 <type>gaussian</type>
34 <mean>0.0</mean>
35 <stddev>0.01</stddev>
36 </noise>
37 </ray>
38 <always_on>1</always_on>
39 <update_rate>200</update_rate>

C-1

APPENDIX C. GAZEBO MODELS

40 <visualize>true</visualize>
41 </sensor>
42 </link>
43 </model>-

C.3 IMU Sensor Model

Listing C.3: XML code - IMU sensor
1 <!-- IMU Sensor Model -->
2 <link name="imu_sensor_link">
3 <pose>0.22 0 0.25 0 -0 0</pose>
4 <inertial>
5 <mass>0.0001</mass>
6 </inertial>
7 <visual name="visual">
8 <geometry>
9 <box>

10 <size>0.01 0.01 0.01</size>
11 </box>
12 </geometry>
13 </visual>
14 <collision name="collision">
15 <geometry>
16 <box>
17 <size>0.01 0.01 0.01</size>
18 </box>
19 </geometry>
20 </collision>
21

22 <sensor name="imu" type="imu">
23 <imu>
24 <angular_velocity>
25 <x>
26 <noise type="gaussian">
27 <mean>0.0</mean>
28 <stddev>2e-4</stddev>
29 <bias_mean>0.0000075</bias_mean>
30 <bias_stddev>0.0000008</bias_stddev>
31 </noise>
32 </x>
33 <y>
34 <noise type="gaussian">
35 <mean>0.0</mean>
36 <stddev>2e-4</stddev>
37 <bias_mean>0.0000075</bias_mean>
38 <bias_stddev>0.0000008</bias_stddev>
39 </noise>
40 </y>
41 <z>
42 <noise type="gaussian">
43 <mean>0.0</mean>
44 <stddev>2e-4</stddev>
45 <bias_mean>0.0000075</bias_mean>
46 <bias_stddev>0.0000008</bias_stddev>
47 </noise>
48 </z>
49 </angular_velocity>
50 <linear_acceleration>
51 <x>
52 <noise type="gaussian">

C-2

APPENDIX C. GAZEBO MODELS

53 <mean>0.0</mean>
54 <stddev>1.7e-2</stddev>
55 <bias_mean>0.1</bias_mean>
56 <bias_stddev>0.001</bias_stddev>
57 </noise>
58 </x>
59 <y>
60 <noise type="gaussian">
61 <mean>0.0</mean>
62 <stddev>1.7e-2</stddev>
63 <bias_mean>0.1</bias_mean>
64 <bias_stddev>0.001</bias_stddev>
65 </noise>
66 </y>
67 <z>
68 <noise type="gaussian">
69 <mean>0.0</mean>
70 <stddev>1.7e-2</stddev>
71 <bias_mean>0.1</bias_mean>
72 <bias_stddev>0.001</bias_stddev>
73 </noise>
74 </z>
75 </linear_acceleration>
76 </imu>
77 <always_on>1</always_on>
78 <update_rate>200</update_rate>
79 </sensor>
80 </link>
81

82 <!-- Sensor joint -->
83 <joint name=’imu_sensor_joint’ type=’fixed’>
84 <pose>0.16 0 0.2045 0 -0 0</pose>
85 <parent>link5</parent>
86 <child>imu_sensor_link</child>
87 </joint>

C.4 RGB Camera Model

Listing C.4: XML code - camera sensor
1 <!-- Camera Sensor Model -->
2 <model name="camera0">
3 <pose>0 1 0.1 0 0 -1.57079633</pose>
4 <link name="link">
5 <inertial>
6 <mass>0.1</mass>
7 <inertia>
8 <ixx>0.000166667</ixx>
9 <iyy>0.000166667</iyy>

10 <izz>0.000166667</izz>
11 </inertia>
12 </inertial>
13 <collision name="collision">
14 <geometry>
15 <box>
16 <size>0.1 0.1 0.1</size>
17 </box>
18 </geometry>
19 </collision>
20 <visual name="visual">
21 <geometry>

C-3

APPENDIX C. GAZEBO MODELS

22 <box>
23 <size>0.1 0.1 0.1</size>
24 </box>
25 </geometry>
26 </visual>
27 <sensor name="camera" type="camera">
28 <camera>
29 <horizontal_fov>1.047</horizontal_fov>
30 
34 <clip>
35 <near>0.1</near>
36 <far>100</far>
37 </clip>
38 </camera>
39 <always_on>1</always_on>
40 <update_rate>200</update_rate>
41 <visualize>true</visualize>
42 </sensor>
43 </link>
44 </model>

C.5 Collision Settings

Listing C.5: XML code - collision settings in Gazebo
1 <collision name=’link1_collision’>
2 <pose frame=’’>0 0 0 0 -0 0</pose>
3 <geometry>
4 <mesh>
5 <scale>0.001 0.001 0.001</scale>
6 <uri>/home/user/catkin_ws/src/open_manipulator/open_manipulator_description/meshes/

chain_link1.stl</uri>
7 </mesh>
8 </geometry>
9 <surface>

10 <contact>
11 <ode>
12 <kp>1e+06</kp>
13 <kd>100</kd>
14 <max_vel>1</max_vel>
15 <min_depth>0.001</min_depth>
16 </ode>
17 </contact>
18 <friction>
19 <ode>
20 <mu>30</mu>
21 <mu2>30</mu2>
22 </ode>
23 <torsional>
24 <ode/>
25 </torsional>
26 </friction>
27 <bounce/>
28 </surface>
29 <max_contacts>10</max_contacts>
30 </collision>

C-4

APPENDIX C. GAZEBO MODELS

C.6 Kinect Sensor Model

Listing C.6: XML code - Kinect sensor with fixed joint attachment
1 <!-- Kinect Sensor Model -->
2 <model name=’depth_camera’>
3 <pose frame=’’>0.5 0 2.5 -1.57079 1.57079 3.14159</pose>
4 <link name=’camera_sensor_link’>
5 <inertial>
6 <mass>0.1</mass>
7 <inertia>
8 <ixx>0.000166667</ixx>
9 <iyy>0.000166667</iyy>

10 <izz>0.000166667</izz>
11 <ixy>0</ixy>
12 <ixz>0</ixz>
13 <iyz>0</iyz>
14 </inertia>
15 <pose frame=’’>0 0 0 0 -0 0</pose>
16 </inertial>
17 <collision name=’collision’>
18 <geometry>
19 <box>
20 <size>0.073 0.276 0.072</size>
21 </box>
22 </geometry>
23 <max_contacts>10</max_contacts>
24 <surface>
25 <contact>
26 <ode/>
27 </contact>
28 <bounce/>
29 <friction>
30 <torsional>
31 <ode/>
32 </torsional>
33 <ode/>
34 </friction>
35 </surface>
36 </collision>
37 <visual name=’visual’>
38 <geometry>
39 <mesh>
40 <uri>model://kinect/meshes/kinect.dae</uri>
41 </mesh>
42 </geometry>
43 </visual>
44 <sensor name=’RGB_camera1’ type=’depth’>
45 <update_rate>20</update_rate>
46 <camera name=’__default__’>
47 <horizontal_fov>1.0472</horizontal_fov>
48 
53 <clip>
54 <near>0.05</near>
55 <far>3</far>
56 </clip>
57 </camera>
58 <plugin name=’camera_plugin’ filename=’libgazebo_ros_openni_kinect.so’>
59 <baseline>0.2</baseline>

C-5

APPENDIX C. GAZEBO MODELS

60 <alwaysOn>1</alwaysOn>
61 <updateRate>0.0</updateRate>
62 <cameraName>camera_ir</cameraName>
63 <imageTopicName>/camera/color/image_raw</imageTopicName>
64 <cameraInfoTopicName>/camera/color/camera_info</cameraInfoTopicName>
65 <depthImageTopicName>/camera/depth/image_raw</depthImageTopicName>
66 <depthImageCameraInfoTopicName>/camera/depth/camera_info</depthImageCameraInfoTopicName>
67 <pointCloudTopicName>/camera/depth/points</pointCloudTopicName>
68 <frameName>camera_link</frameName>
69 <pointCloudCutoff>0.5</pointCloudCutoff>
70 <pointCloudCutoffMax>3.0</pointCloudCutoffMax>
71 <distortionK1>0</distortionK1>
72 <distortionK2>0</distortionK2>
73 <distortionK3>0</distortionK3>
74 <distortionT1>0</distortionT1>
75 <distortionT2>0</distortionT2>
76 <CxPrime>0</CxPrime>
77 <Cx>0</Cx>
78 <Cy>0</Cy>
79 <focalLength>0</focalLength>
80 <hackBaseline>0</hackBaseline>
81 </plugin>
82 </sensor>
83 <self_collide>0</self_collide>
84 <enable_wind>0</enable_wind>
85 <kinematic>0</kinematic>
86 </link>
87 <joint name=’RGBd_joint’ type=’fixed’>
88 <pose frame=’’>2 2 2 0 -0 0</pose>
89 <parent>world</parent>
90 <child>camera_sensor_link</child>
91 </joint>
92 </model>

C-6

	Table of Contents
	Introduction
	Comparison Setup
	Comparison Criteria
	Manipulator Scenario

	Co-Simulation Simulink and Gazebo
	Virtual Machine with ROS Environment
	OpenManipulator into Gazebo
	Connection between Simulink and Gazebo

	Comparison Simscape vs Gazebo
	General Characteristics
	Simulation Workflow
	Sensor Modelling in Simscape Multibody
	Sensor Modelling in Gazebo
	Joint Limits and Collision Modelling
	Simulation Time

	Perception in Gazebo
	Use Case Description
	Gazebo Room with Depth Camera
	2D Binary Occupancy Map
	3D Occupancy Map via OctoMap Package
	Simulation of IGT Robot

	Conclusion and Recommendation
	Co-Simulation and Comparison
	Robot Operating System
	Virtual Machine
	Co-Simulation Setup Details
	Main Simulink Model
	Time Measurement Configuration

	Gazebo Perception
	RViz Visualisations
	Matlab Scripts for 2D/3D Grid Map
	ROS Computation Graph
	Launch Files

	Gazebo Models
	Plugin used for SDF files
	Lidar Sensor Model
	IMU Sensor Model
	RGB Camera Model
	Collision Settings
	Kinect Sensor Model

