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Abstract—This paper concerns the recently developed recur-
sive projection-aggregation decoder for short-blocklength Reed-
Muller codes and techniques to reduce its high complexity while
retaining an acceptable error-correcting performance. A common
way to simplify an RPA decoder sufficiently for hardware
implementation is to get rid of projection branches at one or
more of its recursion levels. This paper investigates how a good
performance can be achieved through the method of choosing
branches to retain. In particular, decoders for third-order Reed-
Muller codes and the contributions of their usually large number
of first-order projections are analysed. Analysis and simulation
results suggest that individually, all of these projections perform
equally. However, contributions of certain pairs that are indirectly
constructed very similarly, overlap highly. This suggests that
to take full advantage of the decreased number of first order
projections, pruning should take into account the uniqueness
of remaining branches. We show that a third-order decoder
constructed to contain solely unique first-order projections can
perform better than decoders constructed using a equally-sized
but different selection of first-order projections.

I. INTRODUCTION

HILE the fifth generation network for mobile telecom-
munications (5G) is being rolled out globally, visions
for the sixth generation (6G) are already taking shape. By
the time 6G will be implemented in practice, it will host
connections between a wide range of devices which place a
variety of demands on the network, as described in [1]. For a
large number of these mobile devices, it will be essential to
have an up-, down-, or even sidelink with a considerably low
latency and high reliability. Examples of such applications can
be found in autonomous driving, medical monitoring, or other
situations where human lives might depend on the speed and
robustness of a communication protocol. The protocols used
in these cases are ultra reliable low latency communications
(URLLC) protocols, and will require the usage of a strong
error correction code (ECC) to ensure high reliability. The
current standard for error correction in 5G is the Low Density
Parity Check scheme (LDPC), as described in [2]. This code
excels in the large blocklength regime, which is convenient for
usage in 5G. LDPC codes become less effective for shorter
blocklengths, which is shown in [3] to be a common property
of all ECC’s. However, due to the requirement of low latency
for URLLC, transmitted blocks need to be short and an ECC
needs to be used which performs well in this short blocklength
regime.
A promising candidate for an ECC to be used in URLLC, is
the Reed-Muller (RM) family of codes, which has been around

for over half a century [4]. RM codes have gained more atten-
tion recently due their high effectiveness for short blocklenghts
and the recent development of a near-capacity-achieving de-
coder called recursive projection-aggregation (RPA) [5]. The
major drawback of this decoder is the high complexity due
to its recursive nature, which makes RPA in its original form
not suitable for practical implementation. Multiple attempts to
reduce its complexity have already been done, for example by
collapsing several levels of recursive projection and aggrega-
tion into a single level using a technique called collapsed pro-
jection aggregation (CPA) [6], replacing the recursive structure
by an iterative structure [7], reducing the number of branches
created during projection [8] [9], or by applying a combination
of these techniques [10].

The mentioned technique of removing branches is called
pruning, and is currently one of the most promising options for
simplifying RPA for hardware implementation. Pruning can,
in certain cases, reduce the decoder complexity by up to 87%
while requiring only a 0.1 dB higher E}/Nj to achieve the
same frame error rate (FER), as shown in [8]. The selection
of branches that is retained in these cases, is either chosen
randomly, or spread evenly over the complete set of branches.
Although previous research analyses how different amounts
of pruning affect performance, there has been little research
into the optimal way to choose branches to prune. There
might exist specific selections of branches that make an RPA-
based decoder perform overall better than other, equal-sized
selections of branches. This paper aims to explore whether
such selections of branches exist, by mapping the contributions
of individual branches and sets of branches.

Section II gives an overview of the mechanics of RM codes
and the RPA decoder. Section III describes the different anal-
yses performed to uncover the contributions of the different
elements of an RPA decoder. In section IV, a description can
be found of how these findings can be utilized in practice,
and section V shows the simulation results for the applied
methods.

II. PRELIMINARIES

A. Reed-Muller codes

The phrase “code” refers to a finite set of codewords of
a fixed length n, used to encode a fixed number of message
bits £ at a time. RM codes and their properties are commonly



denoted as RM(m, r)'. Both of these notations specify a set of
properties that uniquely defines an RM code. The blocklength
is indicated by n, and it holds that n = 2™. The number
of encoded message bits k is equal to the number of basis
vectors in the code and depends on the order 7 of the code in
the following way:

m
k= ; ( . > (1)
Moreover, r influences the minimum Hamming distance d
between codewords, which is determined by d = 2™~". This
last property is relevant, because the maximum number of
errors in a corrupt codeword that can be corrected using hard-
decision maximum likelihood decoding, is equal to |45 |.

The RM code where r = 0 is a special case, and is equal
to a repetition code. On the other hand, when r = m, it will
hold that £ = n according to (1). The latter code will add no
redundancy bits during the encoding process, and will thus be
unable to correct errors, which is also explained by the fact
that d = 0 in this case. In conclusion, these two extreme cases
are not practical, and therefore it always holds that 0 < r < m
for RM codes used in practice.

Next, we will explain the process of encoding messages
using an RM code. If the information bits of message x
are denoted by the vector x = [z1 3 )], then the
corresponding codeword is given by y = [y1 2 Yn|
and is generated by y = xGy,, ). Here, Gy, . is the k-by-n
generator matrix, the rows of which are the basis vectors of
RM(r, m).

Any Gy, ) for a different order or blocklength can be
constructed from a lower-blocklength code as follows:

G(mfl,r) G(mfl,r) )

G(m,r) B 0 G(mfl,rfl)

Any G, ,) can also be constructed from a higher-order,
same-blocklength code by sorting all rows by their Hamming
weight, and using only the first k£ rows. Using these two
properties, any G, ,) can be recursively constructed from
one known generator matrix, G(M), which is defined as:

1 1
Gy = [1 0} 3)

B. Decoding of RM codes using RPA

Known methods to decode RM codes make use of majority
voting, including the original decoding algorithm by Reed
himself [4]. Of these decoders, the recently invented RPA
decoder [5] performs significantly better than alternatives in
the short blocklength regime and is the subject of this paper.

RPA utilizes the fact that first-order RM codes can be
decoded optimally using a Fast Hadamard Transform (FHT)
[11]. The global structure of RPA consists of recursively
projecting higher-order RM codes onto lower orders until a
number of first-order codes is obtained, which can be decoded
using FHT. The decoded RM(m — r 4+ 1,1) codes are then

IThe notation RM(r, m) is also common. However, since » > m in
practice, confusion should not be possible.

recursively aggregated until a single decoded RM(m, r) code
is obtained. How each of these recursive steps works for a
codeword sent over a binary symmetric channel (BSC) will
be explained next, followed by an overview of the adaptations
needed to apply RPA for an additive white gaussian noise
(AWGN) channel.

1) BSC: RPA projects a noisy RM(m,r) codeword re-
ceived over a BSC onto n— 1 codewords of RM(m —1,r—1)
which thus have length n/2. Each of those projections will in
turn be projected onto n/2—1 codewords of RM(m—2,r—2),
etc. Each projection y; is created according to Algorithm 1
which, for each bit of y.,t, combines two bits of y;, into one,
the coordinates of which depend on the projection number
i € {1,..,n}. In the case of a BSC, these two bits are
combined through a bit-wise XOR operation on line 8. This
process will eventually result in a number Ny, of codewords
of RM(m —r +1,1) equal to:

r—2
Now = [J @™ = 1) )

=0

Algorithm 1 Projection

Input: y;,(0: n—1),n,4
Output: y,,(0: 5—1)
1: if i < 5 then

2: Yout(0: §—1) < Projection(yin(0: §—1),5,1%)
3 Yout(§ : 5—1) <= Projection(yin(§ : n—1), §,1)
4: else

5: for j=0:5—1do

6: Z1 ym(J)

7: z9 < Yin(bi2de(de2bi(i) ® de2bi(j)))

8: yout(j) — 21D 2

9: end for

10: end if

After decoding all projections of a certain y, the original
and decoded projections are aggregated to provide an estimate
for the original transmitted value of y, indicated by y. This
estimate is achieved through majority voting by each of the
projections y; for the bits of y through which they were
created. If y =y, then the decoder will continue to aggregate
the set of projections that y itself was part of in the previous
recursion level. If this is not yet the case, then the decoder
will assign y < y and project, decode and aggregate y again
until its value converges to y, for at most Ny, repetitions.

2) AWGN channel: As mentioned in section II-A, a decoder
for a BSC can correct up to L%J errors. However, this limit
can be surpassed with a soft-decision decoder, using the log-
likelihood ratio (LLR) values from an AWGN channel as an
input. In that case, the XOR function on line 8 of algorithm 1

must be replaced by the following assignment:
Vout(j) < In(exp(z1422)+1) —In(exp(z1) +1n(exp(z2)) (5)

For all simulations in this paper, this is replaced by the min-
sum-approximation [9] which requires less hardware for its
implementation:

Yout(j) = sign(z1)sign(zz) min(|z1], |22[) (6)



As for the aggregation, LLR values cannot be used directly
for a majority voting mechanism. Instead, the new LLR
values of y are determined by taking the averages of the
corresponding LLR values of its projections.

III. ANALYSIS OF CONTRIBUTION OF BRANCHES

Each projection onto a lower order of either the received
codeword or of another projection, is called a branch. The
contributions of branches at all recursion levels are assessed
by projecting the original codeword alongside the received
noisy LLR values in the decoder, and counting the number
of corrections done each time the RPA decoder is invoked. In
this context, a bit is seen as ‘corrected’ if, after the decoder
has been invoked, the corresponding LLR value’s sign equals
that of the corresponding LLR value in the corresponding
projection of the original codeword and additionally, has been
flipped. In the remainder of this section, we analyse the
decoding of 10° samples of both RM(5, 3) and RM(6, 3) sent
over an AWGN channel with 2.0 dB E}/Ny.

A. Individual projection contribution

For this analysis, the number of corrections are visualised
as a bar graph in in figures 1 and 2. The number of bit
corrections, which can be multiple per frame, are shown as
bars. The number of times at least one bit correction took
place in a frame, also called the frame corrections, are added
up per branch and plotted with a red line in figures 1 and 2.
In both figures, the top plot represents the corrections made
by aggregating first-order projections back into each of the
second-order projections they belonged to. The bottom plot
shows all the corrections made by each of the first-order
decoders applying the FHT.

Figures 1 and 2 show that the distribution of corrections
among the branches is notably uniform, and suggest that no
particular decoders contribute above or below average to the
decoding process. This could imply that the performance of a
pruned decoder cannot be improved by a utilizing a selection
based on individual performance of each branch.

B. Combined projection contribution

However, the results of the previous section do not exclude
the possibility that performance is impacted by the choice of
implemented branches due to correlation in corrected errors.
Hence, the next analysis shows how frequently corrections
are done simultaneously by every possible pair of first-
order projections. All first-order projections of RM(5, 3) are
enumerated and represented on both axes in figure 3. Each
value depicted in this graph at coordinate (z,y) shows the
normalized frequency with which first-order projection x and
projection y correct an error simultaneously. This does not
necessarily mean that they correct the exact same error. Figure
3 is therefore an indicator of an upper limit to the overlap
between each pair of first-order projections.

Above-average figures can be found at the diagonal yellow
line, and as scattered orange dots. The diagonal yellow line
can be explained by the fact that these values are the result
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Fig. 2. Corrections per branch in the decoder for RM(6, 3)

of projections being compared to themselves. The orange dots
are caused by pairs of projections that are both very similar,
as will be explained in section III-C. Taking into account
their uniform individual error correcting performance, it can
be reasoned that a certain selection of first-order projections
that shows a low overlap will perform better than one that
shows a high overlap, and will ‘catch’ a larger total number
of errors. This theory will be further explored in section III-C
and tested in section IV.

C. Unique projections

The scattered orange dots in figure 3 are indicators of
pairs of projections that are identical with regard to the
received third-order codeword, meaning that they are indirectly
constructed from the same LLR values. This can be illustrated
with the following example, in a hard-decision decoder for
simplicity, where y! indicates the ¢-th projection onto order
r. The first second-order projection and its first first-order



TABLE I
DISTRIBUTION OF DUPLICATES AND UNIQUES OF RM(5,3)
second-order proj. index 1 2 3 4 5 6 7 819 (10| 11 |12 ] 13|14 15| 16 | 17 30 | 31
duplicate first-order 0 1 1 3 3 3 3 717 7 7 7 7 7 7 15 | 15 15 | 15
unique first-order 15|14 |14 |12 |12 (12|12 |8 |8 | 8 8 8 8 8 8 0 0 0 0
TABLE 11
DISTRIBUTION OF DUPLICATES AND UNIQUES OF RM(6,3)
second-order proj. index 1 3 4 5 6 7 8 9 | 15|16 | 17 31 | 32 | 33 62 | 63
duplicate first-order 0 1 1 3 3 3 3 7 7 e |7 15 | 15 15 [ 31 | 31 31 | 31
unique first-order 31 | 30 | 30 | 28 | 28 | 28 | 28 | 24 | 24 24 | 16 | 16 16 | 0 0 0 0
TABLE 11T
DISTRIBUTION OF DUPLICATES AND UNIQUES OF RM(7,3)
second-order proj. index 1 2 4 5 6 7 8 15 | 16 31 | 32 62 | 63 126 | 127
duplicate first-order 0 1 1 3 3 3 3 7 7 15 15 | 31 31 | 31 63 63
unique first-order 63 | 62 | 62 | 60 | 60 | 60 | 60 | 56 56 | 48 48 | 32 3210 | .. 0 0
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projection look as follows, given that y3 denotes a received
third-order message.

Yi=[ln v v w Yn] @)
yi=[n®y) (ys®ys) .. (8)
yi=[1 ®p@ys®ya) .| )

The second second-order projection and its first first-order
projection are as follows:

yi=[®ys) 2®ys) -] (10)
] (11)

Considering the properties of the XOR function, it can be
seen that y1 in (9) and (11) are duplicates. In fact, according
to [6], the number of unique projections among all first-order
projections of any RM code is equal to:

yi= [(yl DYz DYz © ya)

r—2 om—z _ q

14z __
o 2 1

Nunique = (12)

which means that, taking into account (4), the number of
duplicates is then equal to:

r—2
N,
Nawicae = = [[ (2" = 1) (13)
unique 2=0

For RM(m,r), each of the 2" — 1 second-order projections
projects onto 2™~ ! —1 first-order projections. The first few of
those 2~! — 1 are duplicates of those produced by second-
order projections with a lower index. The distribution of
duplicates and uniques for RM(m,3) are displayed in table
I, II and III. In all three tables, the second row shows how
many of the first-order projections are duplicates®. The third
row shows the number of remaining uniques?, which will be
used as a basis for pruning in the next section.

IV. NEW PRUNING SELECTION

Next, we show that the number of duplicate and unique
first-order projections in a pruned decoder influence its error-
correcting performance. Figure 3 shows that projection pairs
that are not duplicates have a lower chance of correcting the
same error. Therefore, a decoder containing less duplicates’
and more uniques’ is expected to perform better than a decoder
that contains more duplicates and less uniques. Two decoders
are simulated to test and show the difference in performance
between a decoder pruned with more uniques and a decoder
pruned with more duplicates.

One of these two decoders will be pruned in such a way that
it contains as many as possible unique first-order projections,
and no duplicates. Tables I, I and III show that the second
half of the second order-projections produce no unique first-
order projections, and are thus pruned away in this decoder.
Moreover, of the remaining second-order projections, only the
unique first-order projections are retained and the duplicates
are left out. As mentioned in section III-C, the former always
have a lower projection index than the latter. For example, for

2The phrases ‘duplicates’ and ‘uniques’ always refer to first-order projec-
tions in this paper. For third-order RM codes, second-order projections are
always unique with respect to each other.



yi of RM(5,3), the first 3 first-order projections are duplicates,
and the last 12 are uniques. Therefore, the pruned RM(5,3)
decoder will contain all 15 first-order projections of its first
second-order projection, the last 14 of the second, the last 14
of the third, the last 12 of the fourth, etc. according to the third
row of table I. The pruned RM(6,3) and RM(7,3) decoders are
constructed in the same way, using table II and III respectively.

The second type of decoder serves the purpose of showing
how a pruning selection containing many duplicates can de-
crease the performance of the decoder. This pruned RM(5,3)
decoder contains all 15 first-order projections of its first
second-order projection, the first 14 of the second, the first
14 of the third, the first 12 of the fourth, etc. according to the
third row of table I. Note that the only difference between both
decoders is the fact that the one pruned with uniques contains
the last few first-order projections of each set, and the one
pruned with duplicates contains the first few projections of
each set.

Previous research has resulted in a different decoder [6]
that, like the first of the two decoders described above, only
contains unique first-order projections. This CPA decoder does
however not have a recursive structure similar to RPA de-
coders. Because of its equal number of first-order projections,
the simulations of two pruned decoders described above are
compared to a simulation of a CPA decoder, in addition to the
unpruned RPA decoder they are derived from.

V. RESULTS

The four decoders, being RPA, pruned RPA with dupli-
cates, pruned RPA with uniques, and CPA, are simulated
for RM(5, 3), RM(6, 3) and RM(7, 3). The frame error rates
(FER) for these three codes when applied for several Eb/Ny
values are shown in figure 4, 5 and 6 respectively. It can
be observed that with all three RM codes, the pruned RPA
decoder that contains more uniques performs better than the
pruned RPA decoder with more duplicates, although only
marginally. Due the almost equal structure of the two and the
equal distribution of number of first-order projections over the
second-order projections, it can be stated that the difference
in performance is purely the result of the specific choice of
first-order projections.

Moreover, for all three RM codes, the efficiently pruned
decoder performs almost equal to the unpruned RPA decoder
and performs slightly better than the CPA decoder, which
can be an advantage. In order to implement CPA, complex
hardware is needed to aggregate several decoded first-order
projections back into one third-order or higher output message.
This hardware is more complex than the hardware needed for
aggregation within an RPA decoder. Therefore, it is useful
to have a method of pruning to create a decoder that shares
with CPA the low number of first-order decoders, but shares
with RPA the relatively low complexity of the aggregation
structure, which in addition performs better than CPA. One
disadvantage however, is the uneven distribution of unique
first-order projections, as this might complicate hardware
implementation.

FER
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Fig. 4. Simulation results of several decoders for RM(5,3)
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VI. CONCLUSIONS

In this paper, we have analysed the efficiency of individual
first order projections within an RM(m,3) decoder, and evalu-
ated the overlap in their contributions to the overall decoding
process. It can be concluded that each first order decoder
on its own contributes equally much. However, some first
order decoders contribute almost exactly the same as other
first order decoders. This paper has shown that choosing first
order projections which show little overlap, can contribute to a
higher efficiency of a pruned decoder when compared to a very
similar decoder where pruned branches are chosen slightly
differently. How large this advantage can be exactly has to be
assessed further in future work. Lastly, although the pruned
decoder is easier to implement in hardware than CPA, future
implementations in hardware will also benefit from a more
even distribution of unique first order projections.
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