

Statistical crowd dynamics

Federico Toschi

TU/e

e Technische Universiteit Eindhoven University of Technology

Where innovation starts

Crowds observation and modeling ?

Table of contents

Our motivations

- Our **approach** to crowd dynamics
- Modelling pedestrians as active Brownian particles
- "Collisional cross section" of pedestrians at NS station
- Ongoing projects and ideas for the future

Crowd experiment: "in vitro"

Credits: Juelich

Our (general) motivations

- Basic question: **how do people move** ?
- Can we (statistically) define "normal" behaviors ?

> Average behaviour

- > Normal variability around average behavior
- > Emergent behaviour: from single pedestrian to crowds
- > Physics / mathematical modeling of crowds
- Can we quantify the influence of environmental factors (light, temperature, etc) on crowds ?
- Can we (in real-time) **stir a crowd** ?

Our approach

- 1. Study **simple** but "**real life**" setting(s)
- 2. People should **not be aware** of taking part in an experiments (psychological factor)
- 3. **Outstanding statistical samples** from (temporally) homogenous setting (i.e. dynamics repeats itself over days)

Simplifying the problem... (?)

Pedestrians walking from A to B

Metaforum building, TU/e Federico Toschi

How?

Microsoft Kinect

Microsoft Kinect 360

Light coding technique

Kinect one: time of flight!

ZED 2K stereo camera

~500\$

Pedestrians detection/tracking

[Seer et al. 2014, Willneff et Al. 2002, Willneff 2003]

Typical dynamics @ MF

Dataset specs:

- 108 days of continuous recording
- ~250K trajectories collected
- ~2.2K traj/day
- Multiple, heterogeneous, traffic scenarios
 - "Undisturbed" pedestrians
 - Multiple pedestrians
 - "Co-flows"
 - "Counter-flows"

Load of the structure

Fundamental diagram

Fundamental diagram

Heat map

Heat maps

The role of statistics

Diluted crowds with low statistics

Diluted crowds with high statistics

Lagrangian statistics – single ped

vy distribution, single ped

Model for Brownian active particles

- The model is analytically soluble (Langevin equation)
- Longitudinal and transversal dynamics are decoupled
- Turn-around probability is connected to noise

$$\begin{split} \dot{x} &= v_x & \dot{y} = v_y \\ \dot{v}_x &= -4\alpha (v_x^2 - v_0^2) v_x + \eta_x & \dot{v}_y = -2\beta (y - y_0) - 2\gamma v_y + \eta_y \\ \eta_x &= \eta_x^{rms} \dot{W} & \eta_y = \eta_y^{rms} \dot{W} \\ \hline \left(\sqrt{y(t)^2} \right) &= \frac{(\eta_y^{rms})^2}{8\beta\gamma} & \beta = \frac{\langle v_y(t)^2 \rangle}{2\langle y(t)^2 \rangle} & \left((v_y(t))^2 \right) = \frac{(\eta_y^{rms})^2}{4\gamma} \\ \hline \text{Time correlations} \end{split}$$

TIME CONCLAUOUS

$$\langle v_y(t+\tau)v_y(t)\rangle = \langle (v_y(t))^2\rangle e^{-\gamma\tau} \left[\cos(\sqrt{2\beta-\gamma^2}\tau) - \frac{\gamma}{\sqrt{2\beta-\gamma^2}}\sin(\sqrt{2\beta-\gamma^2}\tau)\right]$$

[Corbetta et al. 17, Phys. Rev. E]

Federico Toschi

Crowd measurements in real-life

Continuous, 24/7, measurement

Metaforum @ TU/e Sept. 13 – Sept. 14

2.2K trajs/day => 220K trajs in total

[Corbetta et al. 14,15,16,16,17,17] + Phd thesis

Eindhoven Train Station Sept. 14 – Mar. 15

80K trajs/day => 5M trajs in total

Diluted crowds with high statistics

<< bus stop <

> city center >>

448

3133760 14.11.27 19:55:14.891

Transversal fluctuations

Stochastic motion around preferred path:

Quadratic potential for position (V) and velocity (K)

Confined Gaussian fluctuation:

$$\dot{v} = -2\gamma v - 2\beta y + \sigma_y \dot{w}$$

[Corbetta et al. 17, Phys. Rev. E

4th order velocity potential velocity (K)

Simplest bi-stable stochastic velocity dynamics

Acarbietta TU/e

[Corbetta et al. 17, Phys. Rev. E]

4th order velocity potential velocity (K)

Simplest bi-stable stochastic velocity dynamics

Acarbietta TU/e

[Corbetta et al. 17, Phys. Rev. E]

Note: extension of social force approach for undisturbed motion \cong Taylor exp. around positive velocity state

[Corbetta et al. 17, Phys. Rev. E]

Time-Correlation functions

[Corbetta et al. 17, Phys. Rev. E]

High density + higher statistics data?

Crowd: a simple or complex fluid ?

Preparing the installation...

Overlapping fields of view

Local density estimate

What happens out of the lab...

PDFs of velocity at NS station

Pedestrian collisional cross section?

Interaction dynamics

Graph queried for connected components

(interacting subnets)

Collision between pedestrians

Thank you.

- Alessandro Corbetta
- Chung-min Lee
- Roberto Benzi
- Jasper Meeusen
- Adrian Muntean