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Robust amplitude+time localization by feedback 
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Neuronal	excitability	is	very	well	understood

Recording	from	giant	squid	axon	
(circa	1952)

Solution	of	membrane	equation	
(circa	1952)	–	using	a	desk	calculator!

Hodgkin	&	Huxley,	J	Physiol.	(1952)
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2014 -    excitable systems as behaviors  

•  What is an excitable system ? How is it regulated ? 

•How can we study interconnections of excitable systems ? 

•  What makes those nonlinear systems tractable ? 

•  What makes those systems worth studying beyond their 
relevance in neuroscience?



Excitability in a system theoretic language

G. Drion, T. O'Leary, J. Dethier, A. Franci, R. Sepulchre. Neuronal behaviors: a control 
perspective. 54th IEEE Conference on Decision and Control, Osaka, Japan, pp. 1923 - 1944,  
December 2015. Tutorial paper.
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2017.
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What is 
excitability ?
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From google …
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From google …
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From google …
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A behavioral property

I
V

I(t)

V (t)

spike

pulses

A family of trajectories characterised by current pulses and all-or-none voltage spikes



Electrical activity of the brain at many scales
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A threshold phenomenon :  
   localised sensitivity +  analog-digital conversion
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Excitable behaviors

•Neuronal networks are interconnections of neurons and 
synapses. In neurons, the current is the input. In synapses, the 
voltage is the input. 

•The all-or-none nature of the spike makes the behavior nonlinear 
and hybrid. Intractable ? 

•Excitable behaviors have a resolution. Tractable ?
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How ?
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A circuit representation 

                        An energy balance 
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A circuit representation

passive switch regulator
I1

V1 V2 V3

V = V1 = V2 = V3

I = I1 + I2 + I3

I2 I3

backbone negative resistance 
device

localizes the switch 
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Fitzhugh Nagumo circuit

V = V1 = V2 = V3

negative resistance 
device 
(sodium activation)

CV̇1 = I1 I2 =
V 3
2

3
� kV2 Lİ3 +R3I3 = V3

passive switch regulator

22

Hodgkin Huxley circuit

CV̇ + ILpassive membrane: 

The switch:   sodium activation 

The regulator:   potassium current 

INa

IK
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Dissipativity analysis

passive switchregulator
I1

V1 V2V3

I2I3

negative resistance 
device

Ṡ1  V1I1 Ṡ3  V3I3

‘discrete’ ‘analog’ 

S = S1 + S3 storage
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Dissipativity theory of locally active devices

(Sepulchre & Stan 2005, Stan & Sepulchre 2007)

A fundamental mechanism of oscillation 

Bifurcations dictated by structure 

Synchronization theory through diffusive coupling

A bottleneck : state-space approach
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Dissipativity of behaviors
(Willems, EJC 2009)

I
V supply (power) : s(t) =< I(t), V (t) >

What can we infer for the behavior from the supply ?

E.g. : dissipativity = integral of supply is positive along trajectories.
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A feedback representation 

A balance between positive and negative feedback 
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The voltage clamp experiment

The current response to a voltage step assesses the 
sign of the feedback gain in a given temporal and 
amplitude windows 
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Measuring the time 
course of  
for a given step change  
of  

�I(t)

�V

�V

�I = �INa +�IK

Assessing the localised positive feedback of I_Na
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gs(V )

A local characterisation of excitability :  
the local admittance is negative real over a localised 
range of amplitude and frequency. 

Because time scales are well separated in a spike, it is 
sufficient to compute the fast dynamic conductance  
and the slow dynamic conductance         . 

The threshold and refractory period are well estimated 
from those quantities, which can be easily computed 
from a model or from an experiment.

�I

�V
(V ; j!)

gf (V )

Dynamic input conductances

Decomposing the voltage step response into different timescales

Most of  neuron activity is shaped by the transient changes in membrane permeability.
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∆Vm=1mV

Im

t

I0

-40 mV

10 ms

100 ms



Decomposing the voltage step response into different timescales

Most of  neuron activity is shaped by the transient changes in membrane permeability.

Vm
∆Vm=1mV

Im

t

Tf

I0

If

-40 mV

10 ms

100 ms

Decomposing the voltage step response into different timescales

Most of  neuron activity is shaped by the transient changes in membrane permeability.

Vm
∆Vm=1mV

Im

Ts

Tf

I0

If

Is

-40 mV

t

10 ms

100 ms



Decomposing the voltage step response into different timescales

Most of  neuron activity is shaped by the transient changes in membrane permeability.
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Decomposing the voltage step response into different timescales

What really matters is not the value of  the transmembrane current itself, but the value of  the 
variations in transmembrane current ∆Im that is induced by the variation of  membrane potential 
∆Vm at each period of  time.
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Dynamic input conductances of HH model

36

A one port behavior made of spikes and pulses.  
All-or-none sensitivity in a localised amplitude and 
temporal range. 

A behavioral characterisation : the localised energy 
balance of a switch regulated by a strictly passive circuit.  

A feedback characterisation: a locally positive feedback 
amplifier regulated by negative feedback. 

Tractability: the balance is localised in amplitude and 
frequency, hence amenable to local analysis tools.

Excitable behaviors
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What for ?

2014 -    excitable systems as behaviors  

•  What is an excitable system ? How is it regulated ? 

•How can we study interconnections of excitable systems ? 

•  What makes those nonlinear systems tractable ? 

•  What makes those systems worth studying beyond their 
relevance in neuroscience?



39

Bursting, an essential component of neuronal signalling  
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Bursting as interconnection of excitable systems 
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An ‘obviously’ correct picture … 

fast excitable
slow excitable
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A formidable experimental and computational 
achievement 

40 years of experience

… without a theory 



A loop-shaping view of neuronal activity
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A neuronal rhythm is determined by its dynamic 
conductance, i.e its loop gain in localised ranges 

The loop gain depends on amplitude and frequency. 

The Qualitative Shape of  the Dynamic Input Conductances 
Matches the Feedback Motif
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Dynamic conductances shape behavior

spike amplitude

intraburst frequency

burst type

interburst frequency

+

-

I V

fast excitability 
high state

fast+slow excitability 
high+low state

hyperpolarized 
low-state

up
down

fast f slow f

The firing modes of an endogenous burster
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The dominant bursting model of neurodynamics

+

-

I V

adaptation

Endogenous bursting : Slow negative feedback (adaptation) 
provides the driving oscillating input to the excitable model 

Izhikevich, Chapter 9 
Terman and Ermentrout, Chapter 5 
Keener and Sneyd, Chapter 9
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The dominant model of neurodynamics

(Izhikevich) 
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Should we care ?

No modulation (no route to burst) 

No robustness (fragile to noise and 
time scale separation) 

No interconnections 

Classification based on bifurcations

the slow negative conductance controls 
the modulation between spike and burst 

The motif is as robust as the spiking motif 

Interconnection based approach 

No classification ; loop shaping regulation

50

Networks of excitable bursters 



A feedback motif to localize across scales
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Population of two-level individual behaviors interconnected in the slow time scale: 

Anything between a heterogenous population of spiking individuals 
and a homogenous population of synchronized bursters 
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Red = synchronized network oscillations leading to LFPs  

Blue = no LFP despite similar spiking activity in network 

Localization across scales
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Conclusions

What ?

Why ?

How ?

What for ?

Neurophysiologists study neuronal circuits as systems. 
But there is a lack of systems methodology to study (state-space)  
conductance-based models.

An excitable behavior is a relationship between spikes and pulses. 
The threshold phenomenon is a sensitivity localised in amplitude and time. 

An energy balance between localised activation and global dissipation 

Interconnections : signalling properties of neuronal circuits
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Complexity and simplicity of neuronal behaviours

Lecture 2

Lecture 1

Lecture 3

Complexity is an evolving concept about how the tiny interacts with the large. 
Feedback is a zooming principle. It changes the resolution of a behavior. 
Sensitivity is a local analysis tool at the core of robustness and controllability.

Neuronal excitability is a unique modelling an experimental platform  
to study sensitivity across scales. 
Some of the simplest questions appear to be intractable, both experimentally 
and computationally. 

An excitable behaviour has a localised sensitivity window regulated by a 
balance of positive and negative feedback. 

Interconnections of excitable behaviours are tractable and provide a paradigm 
to analyse robust signalling across scales. 
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