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An old fashioned concept

Sensitivity analysis

From Wikipedia, the free encyclopedia

Sensitivity analysis is the study of how the uncertainty in the output of a mathematical model or system

(numerical or otherwise) can be apportioned to different sources of uncertainty in its inputs.'' A related
practice is uncertainty analysis, which has a greater focus on uncertainty quantification and propagation of
uncertainty. Ideally, uncertainty and sensitivity analysis should be run in tandem.
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How does the small control the large ?

Figwrn L1, Income oaguality in the United States, 1910-2070
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Sensitivity analysis across scales

e The brain champions robust signalling across scales

» Sensitivity analysis is at the core of robust control theory.

» How can the large be at the same time sensitive to the small (for
controllability) and insensitive to the small (for robustness) ?




Neuronal excitability is very well understood
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Solution of membrane equation
(circa 1952) — using a desk calculator!
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Hodgkin & Huxley, J Physiol. (1952)

Why neuronal excitability ?

» A unique example of biophysical modelling across scales.
A unique pool of experimental data.

» Signalling and robustness across scales is a core question of
neurophysiology.

» Questions and challenges seem analog at other scales.
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J. Physiol. (1952) 117, 500~544

A QUANTITATIVE DESCRIPTION OF MEMBRANE
CURRENT AND ITS APPLICATION TO CONDUCTION
AND EXCITATION IN NERVE

A circuit model

By A. L. HODGKIN anp A. F. HUXLEY
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Fig. 1. Electrical circuit representing membrane. Ry, =1/gx,; Bx =1/gg; B, =1/g;- .
Ry vary with time and membrane potential; the other components are constant.

“dy=gh ey

A A

Cl




dv 1
— h_(V) m (V)
C— = (E; =V : ]
i o
3
— &
gi = gimPhi E
©
dm =
Tm (V)5 = Moo V) —m
dh 0
T, (V)= =h,(V)—h 40 20 0 20 40
h( ) dt 0 ( ) Voltage relative to rest, mV
— 60 mV %/ i%
- m
ey g — + — +
T*' ENa T_ EK T_ ECa J— ECI
The Hodgkin-Huxley (HH) Model
O After curve fitting, Hodgkin and Huxley derived the following equations:
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O mand n are the activation variables of sodium and potassium channels, respectively; and h is the

inactivation variable of sodium channels.
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My first steps in electrophysiology:
(a student project)
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State-of-the art model of the dopaminergic neuron
About 130 state variables and 500 parameters (Canavier et al., 2006; Drion et al. 2010)

G. Drion master thesis (2008): adding a particular ionic current in the
model; does the computational prediction match the experimental
observation?




A nonlinear electrical circuit can be complicated...
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no general methodolgy to analyze 130 nonlinear differential equations with 500 parameters

and its behavior Simple: pacemaking behavior of midbrain

dopaminergic neuron
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Sensitivity analysis of neuronal behaviors:
how does the small control the large?
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* Why so many parallel branches in the circuit?
« Which ionic currents are the key players of the rhythm?




2009: the engineering approach

- We reduce the model to 5 states

- We hypothetize a systemic role for SK channels, possibly shared
by many different neurons

- We submit our first ‘systems’ paper

SK Channels as Regulators of Synaptically Induced Bursting and Neural Synchrony

2010: the reviewers’ response

- the systemic hypothesis is interesting but unsupported by experimental
data

- the authors should focus on the DA neuron and not aim at generality

- the model predictions contradict several documented experimental
observations about the role of L-type calcium channels.

2010: an extensive literature review
reveals a zoo of conflicting observations

Table 1. Effect of manipulations that block voltage-dependent Ca>* channels on the pacemaking of midbrain DA neurons ex vivo

or in vitro.
Reference Nature of the preparation Agent used Observed effect
Nedergaard Slices from adult guinea-pigs, SNc, nifedipine (1—20 uM) Cessation of firing at undisclosed concentration.
et al, 1993 intracellular recordings.
Mercuri et al, Slices from adult Wistar rats, SNc nifedipine and nimodipine (0.3—30 pM) Decrease in the firing rate of about 50% with 1 uM
1994 and lateral VTA, intracellular recordings. of both drugs.
Cessation of firing with 20 —30 uM of both drugs.
Puopolo et al,  Acutely dissociated neurons from the 1.8 mM Co** in replacement of Ca** Cessation of firing in all neurons (17/17).
2007 SNc of juvenile (16 day-old) mice, nimodipine (I uM) w-aga-4VA (200 nM) Firing rate decreased in 9/17 neurons.
whole cell recordings. Firing rate decreased in 10/14 neurons.
Chan et al, Slices from juvenile mice (younger isradipine (20 uM) and nimodipine (20 M) “Firing largely unaffected” (but firing reduced by an
2007 than P21), SN¢, cell-attached and isradipine (20 M) and nimodipine (20 uM) Iy blocker).
whole-cell recordings. Cessation of firing in all neurons (15/15): “plastic”
Slices from young adult mice (older phenomenon in “several” neurons (firing resumes
than P28), SN¢, cell-attached and during block > 1 hour in some neurons).
whole cell recordings.
Guzman et al, Slices from both juvenile and young isradipine (5 pM) Firing unaffected.
2009 adult mice, SN¢, cell-attached and
whole cell recordings
Putzier et al, Slices from juvenile rats (younger nimodipine (10 pM) Cessation of firing.
2009 than P21), SN¢, whole cell recordings
Khalig and Slices from both juvenile and young adult 0 C2**, 3 mMMg** Firing increased three-fold.
Bean, 2010 mice, medial VTA, whole cell recordings
Seutin et al, Slices from adult (>6 week-old) nifedipine (20 —50 uM) Firing unaffected (N=5).
unpublished rats, SNc, extracellular recordings) nimodipine (5—20 pM) Variable effects, no clear trend (N=5).

SNc: substantia nigra, pars compacta; VTA : ventral tegmental area. Rodents are classified as juvenile (< P21), young adults (> P28) or adult (> 6 weeks).
doi:10.1371/joumal.pcbi.1002050.t001




The knock-out experiment is fragile
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A two-parameter sensitivity analysis of the
conductance-based model shows the
fragility of the experimental protocol

Simple model Quantitative model
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AND : The model prediction is verified experimentally




2011: the rewarding stage

The arguments for rejection of our previous paper led to a novel paper:

“How Modeling Can Reconcile Apparently Discrepant Experimental Results:
The Case of Pacemaking in Dopaminergic Neurons.”

The new paper is much better received!
The validating experiment was a key factor of appreciation

One reviewer comments: the study will help to sensitize the experimental
community about the large effects on firing pattern induced by subtle changes in
channel composition

Another reviewer comments: Additionally, many other neurons possess multiple
oscillatory mechanisms, and the paper presents one of the pioneering studies that
will lead to more general understanding of pacemaking generated by interacting
oscillatory mechanisms. Thus, presented results should be very interesting for a
general reader and beyond the investigation of the dopaminergic neuron.

Lessons from an anecdote

» Experimentalists (and reviewers) ask the right questions;
we should provide them with the right tools

« Conductance-based modeling is incredibly predictive.
e Our analysis methods are completely ad hoc

» Knock-out experiments are ubiquitous; they can be fragile.




Sensitivity analysis

‘behavior’ A

b >
‘nominal’ ‘environment’

- Local = tractable, analytical, but short-sighted
« Global = desirable and comprehensive, but intractable

Outline

|. A model across scales

ll. The fragility of sensitivity analysis across scales

lll. Sensitivity analysis: a local tool with global aims

IV. Intractable questions and paradoxes across scales




State-of-the art: ‘global’ sensitivity analysis by
extensive simulations

J Neurophysiol 90: 3998—4015, 2003. - -
First published August 27, 2003; 10.1152/jn.00641.2003. innovative methodology

Alternative to Hand-Tuning Conductance-Based Models: Construction and
Analysis of Databases of Model Neurons

Astrid A. Prinz, Cyrus P. Billimoria, and Eve Marder

Conventionally, the parameters of neuronal models are hand-tuned using trial-and-error
searches to produce a desired behavior. Here, we present an alternative approach. We have
generated a database of about 1.7 million single-compartment model neurons by
independently varying 8 maximal membrane conductances based on measurement from
lobster stomatogastric neurons (STG).

Metabolic control analysis :
a success of local sensitivity analysis
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Control coefficients measure static relative change in flux in response to a
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linear control theory:
a success of local sensitivity analysis

V(S
? How much does feedback L(s) _.(gf—):( )

reduce the effect of -
environment ?

The sensitivity analysis function S(s) measures the relative change in closed-
loop in response to a relative change in open-loop

Loop-shaping of the sensitivity function:
a key insight of control theory
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A feedback controller shapes the sensitivity function, at each frequency, and
the entire sensitivity analysis of the dynamical system can be inferred from a

single curve.




Could local sensitivity analysis be relevant
for neuronal behaviors?
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Analogy 1 (metabolic control analysis): channel expression modulates ion flux

Analogy 2 (linear control theory): each ionic current acts as a feedback loop which
alters the sensitivity of the open-loop behavior (i.e. the passive membrane)

BUT: neuronal behaviors look quite dynamic and quite nonlinear

37

A historical hint

The typical regulator system can frequently be described, in essentials, by differential
equations of no more than perhaps the second, third or fourth order. .. In contrast, the order
of the set of differential equations describing the typical negative feedback amplifier used in
telephony is likely to be very much greater. As a matter of idle curiosity, I once counted to find
out what the order of the set of equations in an amplifier I had just designed would have been,
if I had worked with the differential equations directly. It turned out to be 55.

Henrik Bode, Feedback: the history of an idea, 1960

Bode developed loop-shaping analysis to overcome the
intractability of sensitivity analysis of electrical circuits aimed at
signal transmission

38




Sensitivity analysis: lessons from the past

e Sensitivity analysis is a methodology with global
ambitions but local means.

e Sensitivity analysis should be a tractable methodology
to solve an intractable problem, not the other way
around.

« Sensitivity analysis provides key insight when the
behavior is captured by a curve.
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lll. Sensitivity analysis: a local tool with global aims

IV. Intractable questions and paradoxes across scales




In silico neurophysiology
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In silico neurophysiology

A In silico stain of inhibitory e-types B Inhibitory e-types by layer
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In silico neurophysiology

A Virtual brain slice D MEA recording
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Neurons maintain a stable signal in spite of variable
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conductances (Courtesy of Tim O’Leary)
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A well-defined neural circuit! The crustacean stomatogastric

ganglion. _
(Courtesy of Tim O’Leary)
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Pyloric rhythm Pyloric circuit




Sensitivity of a circuit to neurotransmitters
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Figure 3. Multiple Neuromodulators Can Activate Different Forms of the Pyloric Rhythm
In each panel the top two traces are intracellular recordings from the lateral pyloric (LP) and pyloric dilator (PD) neurons. The bottom trace is an extracellular
recording from the lateral ventricular nerve (vn) that carries the axons of the LP, PD, and pyloric (PY) neurons (Marder and Weimann, 1992).
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The complexity of sensitivity analysis across scales

» No signalling across scales without sensitivity of the large to the
small

» No robustness across scales without insensitivity of the large to
the small

* An seemingly intractable question even in the presence of
detailed modelling of the small.




How does the small control the large ?

Figerm L1, Income maguality in the Unitsd States, 1910-2010
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