
ASEP

Asymmetric Simple Exclusion Processes
An introduction on methods

Particles moving in one dimension.

Asymmetric: in the direction of motion

Simple: One species

Exclusion: particles can not overlap

Special case: TASEP (Totally Asym. . . ): motion only one way



The basic model

• A one-dimensional chain, in continuous time

• the sites can be occupied with at most one particle.

• particles move stochastically

• to the right with rate p and to the left with rate q

• only if the targeted sites are available.



Connection to growth

Associating a particle with an up slope of a boundary, and an

empty site with a down slope,

translates motion to the left with growth

and motion to the left with shrink
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Applications

Molecular motors on a microtubule

Particles flowing through narrow channel

Constrained traffic

Other motivation

Exact solution of many observables is possible

The model is paradigm for non-equilibrium phenomena

Example to try methods



The Master equation

Consider the probability of each configuration

PN(~τ ; t) with ~τ = {τ1, τ2, τ3, . . . , τN}

How does PN evolve in time?

The sequence . . . ,1,0,. . . turns into . . . ,0,1,. . . with rate p,

while the reverse move occurs with rate q.

We can formally write the differential equation

∂

∂t
P(~τ ; t) =

∑

~σ

W (~σ → ~τ) P(~σ; t)−
∑

~σ

W (~τ → ~σ) P(~τ ; t)

where W (~σ → ~τ) is the rate with which ~σ turns into ~τ .

This is the Master Equation, with its characteristic gain and loss

term.



One of the interests is to obtain the stationary state, satifying

∑

~σ

W (~σ → ~τ)P(~σ; t) =
∑

~σ

W (~τ → ~σ)P(~τ ; t)

NB: no symmetry between LHS and RHS.

Consider a chain with open ends:

δ γ

α βp q



Phenomenology, continuum approach

If the density varies only slowly in space and there are only weak

correlations, we can justify a continuum space approach, and as-

sume that the current J is determined by the density ρ. For ASEP

this would be J ∝ ρ(1− ρ).

Conservation of particles:

∂ρ

∂t
+

∂J

∂x
= 0

then turns into
∂ρ

∂t
+

dJ

dρ

∂ρ

∂x
= 0

We call dJ
dρ = v(ρ), the profile velocity. Because of the implicit

solution

ρ(x, t) = f (x− v(ρ)t)

The density profile moves but with a velocity that depends on the

density itself.



Note that the profile velocity dJ
dρ = v(ρ) is not the mean velocity

of the particles which is J/ρ.

Unlike diffusion, a density profile

does not spread, but it tilts: the

high density part of the profile

may move to the right faster than

the low density part.

One slope sharpens up, while the

opposite softens.

This results in shock waves, that

eventually violate the approxima-

tion that J depends on ρ only:

J(ρ).



Mean Field approximation

Mean field is an easy method that can be applied on almost any

many body system.

Central approximation: neglect correlations.

In this case its starting point is the independence of the τi variables.

As an example, we keep here only the forward motion: q = γ =

δ = 0, and we scale time by setting p = 1.

The remaining control parameters are α and β.

The relevant quantities are the density ρi = 〈τi〉 and the current

Ji = 〈τi(1− τi+1)〉.

In Mean Field: Ji = ρi(1− ρi+1).

In the steady state the current Ji does not depend on i.



The equation J = ρi(1 − ρi+1) gives us a recursion that controls

the density profile:

ρi+1 = 1−
J

ρi

But, while J is fixed, it is not given.

The inflow corresponds to a virtual site 0 with ρ0 = α,

and the outflow with a virtual site with density ρN+1 = 1− β.

So, what happens is that the system ’finds’ a J such that the

recursion corresponds to ρ0 = α and ρN+1 = 1− β.

To see what happens we have to study the recursion:



ρi ρi

ρi+1 ρi+1

J < 1
4 J > 1

4

for J = 1/4 the curve ρi+1 = 1 − J/ρi would just touch the line

ρi+1 = ρi.

The recursion ρi+1 = 1 − J
ρi

follows one of the blue staircases,

initiating at ρ0 = α and terminating on ρN+1 = 1 − β. In the

steady state the system must find a J that accomodates these.



E.g. when

α = ρ0 > ρN+1 = (1 − β),

the J will find the value

just above 1/4 such that

precisely N + 1 steps are

needed to get from ρ0 = α

to ρN+1 = 1− β .
α

1-β

corresponding to the four staircases.

ρN+1 < 1/2 < ρ0 and J ≈ 1/4

1/2 < ρN+1 < ρ0 and J = β(1− β)

ρN+1 > ρ0 and

J = min [α(1− α), β(1− β)]

ρN+1 < ρ0 < 1/2 and J = α(1− α)



ρN+1 = 1− β

α=

ρ0

J = 1
4

J = α(1− α)

J = β(1− β)

This gives rise to a rich phase diagram.



Clearly we see a (stationary) shock wave solution in the case α =

β < 1/2. In all other cases the shock is driven to the boundaries.

If we identify a phase transition as a singularity in J(α, β), the black

lines are phase transitions, but the gray one is not.

The choice to set q = γ = δ = 0 is not essential, but made here

only to keep the presentation simple.

Clearly the mean field approach yields a very rich behavior.

The resulting phase diagram is correct, but the density profile is

only qualitative, and correlations are neglected altogether.

The Mean Field approximation is good at finding a qualitative

phase diagram, (here even quantitative).

It can be generalized to incorporate restricted correlations.

We now look into other approaches without approximation.



Exact approaches

The master equation for the steady state:
∑

~σ

W (~σ → ~τ)PN(~σ)−
∑

~σ

W (~τ → ~σ)PN(~τ) = 0

Note the sum is over ~σ, while ~τ is given.

How does one go about finding a solution for this?

The most well-known trick is to hope that the the equation also

holds without the sum over ~σ. The solution is determined by

PN(~τ)

PN(~σ)
=

W (~σ → ~τ)

W (~τ → ~σ)

An overcomplete set of equations, which has solution in equilibrium

only. It requires that for any cyclic sequence of states the forward

probability is equal to the backward.

m
∏

k=1

W (~σm → ~σm+1) =
m
∏

k=1

W (~σm → ~σm−1)



Very useful approach is called the

Matrix Ansatz or Matrix Product Method

(Derrida, Evans, Hakim and Pasquier, 1993).

But an essential ingredient is a recursion in the system size.

(Derrida, Domany, Mukamel, Schütz, 1992)

First we write the equation for the stationary state more explicitly.

Consider the motion between the sites i and i+1.

The contribitions to the steady state equation (gain - loss = 0)

for {τi, τi+1} = {1,0} qPN(. . . ,0,1, . . .)− pPN(. . . ,1,0, . . .)

for {τi, τi+1} = {0,1} pPN(. . . ,1,0, . . .)− qPN(. . . ,0,1, . . .)

and if τi = τi+1 there are not contributions.

These contributions can be written as a matrix multiplication:
∑

σi,σi+1

B(τi, τi+1;σi, σi+1) PN(. . . , τi−1, σi, σi+1, τi+2, . . .)



This should be summed over i in the steady state equation, and

complemented with the left and right boundary terms

∑

σ1

L(τ1;σ1)PN(σ1, τ2, . . .) +
∑

σN

R(τN ;σN)PN(. . . , τN−1, σN)

It is (boldly) proposed that up to normalization

∑

σi,σi+1

B(τi, τi+1;σi, σi+1)PN(. . . τi−1, σi, σi+1, τi+2 . . .) =

− (2τi − 1)PN−1(. . . , τi−1, τi+1, τi+2, . . .)

+ (2τi+1 − 1)PN−1(. . . , τi−1, τi, τi+2, . . .)

This satisfies the obvious properties of the LHS that it vanishes

when τi = τi+1, and that it changes sign as τi ↔ τi+1.

And it solves the steady state equation,

because the two terms cancel one with the previous and the other

with the next term in the sum over i.



For the whole steady state equation we also need

∑

σ1

L(τ1;σ1)PN(σ1, τ2, . . .) = +(2τ1 − 1)PN−1(τ2, τ3, τ4, . . .)

and

∑

σN

R(τN ;σN)PN(. . . , τN−1, σN) = −(2τN − 1)PN−1(. . . , τN−1)

One might wonder why to believe the proposal. But the steady

state admits only one solution. If we find it by means of a proposal

however bold, the proposal is correct.



A further proposal

(which gave the method its name Matrix product ansatz)

is that the statonary state can be written as an element of a

product of matrices:

PN(. . . ,0,1,1,0,0,1, . . .) = 〈W | . . . EDDEED . . . |V 〉

the matrix E for an empty site and D for a particle. Formally we

could write

PN(~τ) =
1

ZN
〈W |

N
∏

i=1

Mτi|V 〉

with M0 = E and M1 = D, and with normalization

ZN = 〈W |
N
∏

i=1

(D +E)|V 〉

This proposal is reasonable, as long as the matrices are free.



Now we combine the proposals:
∑

σi,σi+1

B(τi, τi+1;σi, σi+1)PN(. . . τi−1, σi, σi+1, τi+2 . . .) =

− (2τi − 1)PN−1(. . . , τi−1, τi+1, τi+2, . . .)

+ (2τi+1 − 1)PN−1(. . . , τi−1, τi, τi+2, . . .)

yields

pDE − qED = D +E

And the boundary terms

(βD − δE)|V 〉 = |V 〉

〈W |(αE − γD) = 〈W |

The matrix formulation gives a convenient approach to correlation

functions, e.g.

ρi = 〈τi〉 =
1

ZN
〈W | . . . Ci−1DCN−i . . . |V 〉

where C = E +D.



It still requires some manipulation to actually get explicit answer

from these matrix products.

But consider

〈Ji〉 = 〈pτi(1− τi+1)− qτi+1(1− τi)〉 =

1

ZN
〈W | . . . Ci−1(pDE − qED)CN−i−1 . . . |V 〉 =

1

ZN
〈W | . . . Ci−1(D +E)CN−i−1 . . . |V 〉 =

ZN−1

ZN

This may not be explicit, but we find that it is independent of i as

it should. It also promises that once one is able to calculate ZN ,

the phase diagram for J(α, β) is recovered, with explicit softening

of the boundaries for finite sizes.



Such observables can be computed exactly. For instance in the

case q = γ = δ = 0, it is found that

ZN =
N
∑

k=0

k(2N − k − 1)!

N !(N − k)!

α−k−1 − β−k−1

α−1 − β−1

Similar expressions can be found for the density profile and other

observables.

This can be obtained from using the algebraic relations between

E, D, |V 〉 and 〈W |, or by constructing an explicit (but infinite

dimensional) representation of these objects.

The approach has been generalized to numerous variations, mul-

tiple species with particular passing rules, non conserved particles,

one exceptional particle. In all cases (so far) the method is limited

to the stationary state.



Bethe Ansatz

When one is interested in time-dependence, the study of the sta-

tionary state does not suffice. We now aim for the complete

diagonalization of the transition matrix. A formidable task.

But similar to statistical mechanics (transfer matrix) and quantum

mechanics (Hamiltonian).

Back to the Master equation:

∂

∂t
PN(~τ ; t) =

∑

~σ

W (~σ → ~τ) P(~σ; t)−
∑

~σ

W (~τ → ~σ) P(~τ ; t)

We could formally write this as

∂

∂t
PN = −H · PN

then H is a stochastic (probability conserving) operator.

Its spectrum controls how transient contributions to the states will

decay in time.



Bethe proposed a form for the eigenstates of the Heisenberg chain,

now called the Bethe Ansatz, which works also in this case.

(Gwa and Spohn, 1992)

I will expose it for periodic boundary conditions (number of parti-

cles conserved).

We denote PN as function of τ , by Ψ as function of the position

of the particles.

In the sector with one particle:

EΨ(x) = (p+ q)Ψ(x)− pΨ(x− 1)− qΨ(x+1)

proposal for eigenvector Ψ(x) = zx (plane wave), then

Ezx = (p+ q)zx − pzx−1 − qzx+1

so clearly E = p(1− z−1) + q(1− z),

hile periodicity requires that zN = 1.



Bethe proposed that also with more particles, the solutions consist

of plane waves, as long as the particles do not overlap.

Ψ(x1, x2) = z
x1
1 zx

2

2

When the particles are far apart, they can move freely, as if they

are alone. This requires that

E = p(1− z−1
1 ) + q(1− z1) + p(1− z−1

2 ) + q(1− z2)

But if we exchange the zi, the energy remains the same. Therefore

we propose that

Ψ(x1, x2) = A z
x1
1 z

x2
2 +B z

x1
2 z

x2
1

for x1 < x2, and with this work out the eigenvalue equation.

The eigenvalue follows from the cases that x2 > x1 +1, but when

x2 = x1 +1 = x+1, we have an extra requirement:



Eigenvalue ×Ψ = sum of allowed processes.

(2p + 2q − pz−1
1 − qz1 − pz−1

2 − qz2) (z1z2)
x (Az2 + Bz1) =

(z1z2)
x
[

Az2(p + q − pz−1
1 − qz2) + Bz1(p + q − pz−1

2 − qz1)
]

This results in

A z2 (p + q − pz−1
2 − qz1) + B z1 (p + q − pz−1

1 − qz2) = 0

or
B

A
= −

p z2 + q z2 − p − q z1 z2
p z1 + q z1 − p − q z1 z2

So for this choice of the coefficients A and B, the eigenvalue also

applies to the configurations where the particles are adjacent.

Periodicity now requires that

AzN2 = B and BzN1 = A

Eliminating the coefficient we find

zN1 = −
pz1 + qz1 − p− qz1z2
pz2 + qz2 − p− qz1z2

and zN2 = −
pz2 + qz2 − p− qz1z2
pz1 + qz1 − p− qz1z2



Before we proceed to more than two particles, we pause to look

at

A z2 (p + q − pz−1
2 − qz1) + B z1 (p + q − pz−1

1 − qz2) = 0

This equation gives a ratio between A and B unless

(p + q − pz−1
2 − qz1) = (p + q − pz−1

1 − qz2) = 0

that is unless z1 = z2 = 1.

In that case the ration is undetermined but also meaningless.

This exception we have to keep in mind.



Now for more particles, we propose:

Ψ(x1, x2, . . . , xn) =
∑

σ
Aσ

n
∏

i=1

z
xi
σ(i)

where {σ(1), σ(2), . . . , σ(n)} is a permutation of {1,2,3, . . . , n}.

Clearly this proposal works while all particles are well separated.

But when two are adjacent, we obtain a requirement on the coef-

ficients Aσ:

A...,µ,ν,...

A...,ν,µ,...
= −

(p+ q) zµ − p − q zµ zν

(p+ q) zν − p − q zµ zν

again unless both zµ and zν are equal to 1.

This leads to the so called Bethe Ansatz equations:

zNi = −
n
∏

j=1

−
(p+ q) zj − p − q zi zj

(p+ q) zi − p − q zi zj



These equations can be used to find numerically exact solution.

These are non-linear coupled equations, but there are only n, while

the matrix H is

(

N
n

)

×

(

N
n

)

: exponential in n.

In the thermodynamic limit more is possible, but not without pain.

When q = 0 or q = p there are significant simplifications.

The ground state for generic p and q all zj = 1, a distribution in

which all states are equally probable.

In order to find out how fast a system will decay into this state

one needs to calculate the first higher state, presumably one in

which one z 6= 1.



Let Ak be the coefficient for the k-th particle carrying the non-zero

momentum. Then

Ak

Ak − 1
= −

(p+ q) − p − q z

(p+ q) z − p − q z
=

q

p

Therefore z is the solution of

zN = −

(

p

q

)n−1

so that

z =

(

p

q

)(n−1)/N

exp((1 + 2m)iπ/N)

The corresponding gap in the eigenvalue follows from

E = q(1− z) + p(1− z−1)



• Mean Field: very flexible, very easy, powerful for qualitative

understanding

• But uncontrolled approximation

• Matrix product: exact description of steady state.

• also quite flexible, but requiring advanced combinatorics

• Bethe Ansatz: Exact spectrum and eigenstates

• Efficient way to obtain spectrum of finite system numerically

• in principle acces to time dependence


