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Complexity in metabolic pathways

From the Biochemical Pathways chart (dr. Gerhard Michal, Roche)
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Recent technological advances

•

High-throughput genomics, proteomics,
metabolomics measurement systems

•
Advances in genome-scale kinetic modeling

•

Personalized medicine: Treatment of cancer, dia-
betes and other diseases
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Bottom-up approach in biochemistry
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Bottom-up approach
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Analogy of bottom-up in electrical systems
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Basic circuit systems theory
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Example in simple circuit systems
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Graph theoretic approach for electrical circuit

Using Kirchoff voltage and current laws, we have[
0
Ib

]
=
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Back to the radio example
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Thevenin circuit
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Different modeling approaches
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Different modeling approaches
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The graph representation of chemical networks (graph of complexes)

Example

X1 + 2X2 −→ X3 −→ 2X1 +X2 −→ X1 + 2X2

• The complexes are the set of species that are on the left- and
right-hand sides (substrates and products) of the reactions in the
network.

• For the above example, the complexes are C1 = X1 + 2X2, C2 = X3

and C3 = 2X1 +X2,

C1
R1−→ C2

R2−→ C3
R3−→ C1
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The graph representation of chemical networks (graph of complexes)

Example 1.

X1 + 2X2 −→ X3 −→ 2X1 +X2 −→ X1 + 2X2

• The relation between the species concentrations and the complex
concentrations can be given by a complex composition matrix Z.

• For the example above,1 2 0
0 0 1
2 1 0


︸ ︷︷ ︸

ZT

X1

X2

X3

 =

C1

C2

C3

 .
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The incidence matrix

Example 1.

X1 + 2X2 −→ X3 −→ 2X1 +X2 −→ X1 + 2X2

• On the other hand, the relation between the set of fluxes and the rate
changes of complexes can be given by an incidence matrix B.

• For the example above,

d

dt

C1

C2

C3

 =

−1 0 1
1 −1 0
0 1 −1


︸ ︷︷ ︸

B

v1v2
v3

 ,

where v1, v2, v3 are the rate in the reactions R1, R2 and R3,
respectively
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Stoichiometric matrix

Example 1.

X1 + 2X2 −→ X3 −→ 2X1 +X2 −→ X1 + 2X2

• Using Z and B, the usual stoichiometric matrix S can be given by

S := ZB.

• For the aforementioned example,

S =

1 0 2
2 0 1
0 1 0


︸ ︷︷ ︸

Z

−1 0 1
1 −1 0
0 1 −1


︸ ︷︷ ︸

B

=

−1 2 −1
−2 1 1
1 −1 0

 .
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Mass-action kinetics

Example 1.

X1 + 2X2
k1,forw−→ X3

k2,forw−→ 2X1 +X2
k3,forw−→ X1 + 2X2

For mass-action kinetics

v(x) =

k1,forwx1x22k2,forwx3
k3,forwx

2
1x2

 .

For convenience,

v(x) = diag (k1,forw, k2,forw, k3,forw)Exp
(
ZT Ln (x)

)
.
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Mass-action kinetics

Example 1.

X1 + 2X2
k1,forw−→ X3

k2,forw−→ 2X1 +X2
k3,forw−→ X1 + 2X2

For mass-action kinetics, the network dynamics is given by

d

dt

x1x2
x3

 = ZBv(x)

= Z

−1 0 1
1 −1 0
0 1 −1

diag (k1,forw, k2,forw, k3,forw)Exp
(
ZT Ln (x)

)

= Z

−k1,forw 0 k3,forw
k1,forw −k2,forw 0

0 k2,forw −k3,forw


︸ ︷︷ ︸

−L

Exp
(
ZT Ln (x)

)
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General kinetics

Example 1.

X1 + 2X2
k1,forw−→ X3

k2,forw−→ 2X1 +X2
k3,forw−→ X1 + 2X2

If general kinetics is assumed

v(x) =

d1(x)x1x22d2(x)x3
d3(x)x

2
1x2


where d1, d2 and d3 are positive-definite rational functions.

As an example, d1(x) =
k1,forw

1+
x1

Km,1
+

x2
Km,2

.

As before,

v(x) = diag (d1(x), d2(x), d3(x))Exp
(
ZT Ln (x)

)
.
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General kinetics

Example 1.

X1 + 2X2
k1,forw−→ X3

k2,forw−→ 2X1 +X2
k3,forw−→ X1 + 2X2

For general kinetics, the network dynamics is given by

d

dt

x1x2
x3

 = Z

−d1(x) 0 d3(x)
d1(x) −d2(x) 0
0 d2(x) −d3(x)


︸ ︷︷ ︸

−L(x)

Exp
(
ZT Ln (x)

)

ICMS Winter School, TU Eindhoven, 17 February 2017 22



Summary on the Network Dynamics

The network dynamics of chemical reactions with mass-action kinetics can
be written as

ẋ = −ZLExp
(
ZTLn (x)

)
,

where L is a Laplacian matrix.
For general kinetics, they can be described by

ẋ = −ZL(x)Exp
(
ZTLn (x)

)
,

with L(x) be state-dependent Laplacian matrix.
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Quasi Steady State Approximation

X1

k1,forw


k1,rev

X2

k2,forw


k2,rev

X3

Consider the above example which has the following dynamics

ẋ1 = −
k1,forwx1
p1(x1, x2)

+
k1,revx2

p1(x1, x2)

ẋ2 =
k1,forwx1
p1(x1, x2)

− k1,revx2
p1(x1, x2)

−
k2,forwx2
p2(x2, x3)

+
k2,revx3

p2(x2, x3)

ẋ3 =
k2,forwx2
p2(x2, x3)

− k2,revx3
p2(x2, x3)

,

where p1(x1, x2) =
(
1 + x1

KI,1
m

+ x2

KI,2
m

)
and

p2(x2, x3) =
(
1 + x2

KII,2
m

+ x3

KII,3
m

)
.
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Quasi Steady State Approximation

X1

k1,forw


k1,rev

X2

k2,forw


k2,rev

X3

When X2 reaches steady state, we have

x2 =
k1,forwx1p2(x2, x3) + k2,revx3p1(x1, x2)

k1,revp2(x2, x3) + k2,forwp1(x1, x2)

If we use QSSA (and using p1, p2 as before), we need to solve for x2 from

x22

(
k2,forw

KI,2
m

+
k1,rev

KII,2
m

)
+ x2

(
k2,forw + k1,forw +

k2,forwx1

KI,1
m

−
k1,forwx1

KII,2
m

+
k1,revx3

KII,3
m

− k2,revx3

KI,2
m

)
− k1,forwx1

(
1 +

x3

KII,3
m

)
− k2,revx3

(
1 +

x1

KI,1
m

)
= 0.

Let x2 = f(x1, x3) denote the solution of the above quadratic equation.
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QSSA-based reduced model

X1 
 X3

The reduced dynamics is given by

ẋ1 = −
k1,forwk2,forwx1 − k1,revk2,revx3

k2,forwp1(x1, f(x1, x3)) + k1,revp2(f(x1, x3), x3)

ẋ3 =
k1,forwk2,forwx1 − k1,revk2,revx3

k2,forwp1(x1, f(x1, x3)) + k1,revp2(f(x1, x3), x3)
.
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QSSA

X1 +X2 
 2X3 
 X4 +X5

For this example, the computation of QSSA for removing X3 leads to a
more complicated expression.

Our approach is based on the application of Kron reduction/Schur
complement applied to the Laplacian-based description as before.
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Recall on the Network Dynamics of CRN

The network dynamics of chemical reactions with general kinetics and with
external fluxes can be written as

ẋ = −ZL(x)Exp
(
ZTLn (x)

)
+ Zvb(x),

where vb(x) is the vector of external flux.

Consider a partition of Z, vb(x) and L(x) according to the complexes that
will be retained or removed:

L(x) =

[
L11(x) L12(x)
L21(x) L22(x)

]
Z =

[
Z1 Z2

]
vb(x) =

[
vb1(x)
vb2(x)

]
.
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Partitioning the dynamics

ẋ = −
[
Z1 Z2

]([L11(x) L12(x)
L21(x) L22(x)

] [
Exp

(
ZT
1 Ln (x)

)
Exp

(
ZT
2 Ln (x)

)]+ [vb1(x)
vb2(x)

])
,

Consider now the auxiliary system[
ẏ1
ẏ2

]
= −

[
L11(x) L12(x)
L21(x) L22(x)

] [
w1

w2

]
+

[
vb1(x)
vb2(x)

]
.

Imposing complex-balanced condition on the complexes Y2 (i.e., ẏ2 = 0)
leads to

w2 = −L22(x)
−1(vb2(x)− L21(x)w1).
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Substituting it to the first equation gives

ẏ1 = −L̂(x)w1 +
[
I −L12(x)L

−1
22

]
vb(x)

where L̂(x) = L11(x)− L12(x)L22(x)
−1L21(x) is the Schur complement

of L(x) with respect to the removed complexes.

Our reduced model

ẋ = −Z1L̂(x)Exp
(
ZT
1 Ln(x)

)
+ Z1

[
I −L12(x)L

−1
22

]
vb(x)︸ ︷︷ ︸

v̂b(x)

Here v̂b(x) becomes a modified external flux and L̂(x) is the new
Laplacian. The above equation describes again a proper chemical reaction
network.
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Proposition 1 (SR, vdS & BJ, 2014)

Consider a weighted Laplacian L(x) as before. The Schur complement of
L(x) with respect to any cluster of complexes satisfies the following
properties

1 All diagonal elements of L̂(x) are positive and off-diagonal elements
are non-negative for all x in positive orthant

2 1T L̂(x) = 0

This proposition shows that the resulting reduced model is again a CRN
with general kinetics described by

ẋ = −Z1L̂(x)Exp
(
ZT
1 Ln(x)

)
+ Z1v̂b(x)

Stability property is preserved (since it is again a chemical reaction
network as before). The original set of equilibrium points E is a subset of
the set of equilibrium points of reduced model Ê (SR, vdS & BJ, 2013).
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Recall an Example

X1

k1,forw


k1,rev

X2

k2,forw


k2,rev

X3

The reduced CRN

X1 
 X3

ẋ1 = −
k1,forwk2,forwx1 − k1,revk2,revx3

1 + x1

Kred,1
m

+ x3

Kred,3
m

ẋ3 =
k1,forwk2,forwx1 − k1,revk2,revx3

1 + x1

Kred,1
m

+ x3

Kred,3
m

where Kred,1
m ,Kred,3

m are linearly dependent on all Kms and kforw, krev from
the original network.
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Again Another Example

X1 +X2 
 2X3 
 X4 +X5

The reduced CRN

X1 +X2 
 X4 +X5

v(x) =

[
k1,forwk2,forwx1x2

p(x)
k1,revk2,revx4x5

p(x)

]
,

where

p(x) = 1 +
x1

Kred,1
m

+
x2

Kred,2
m

+
x4

Kred,4
m

+
x5

Kred,5
m

+
x1x2

Kred,12
m

+
x4x5

Kred,45
m

with Kred
m s are again linearly dependent on all Kms and kforw, krev from

the original network.
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Systematic Model Reduction

Model reduction of high-order model can be done systematically.
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Systematic Model Reduction
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Simplifying Glycolysis Model

The following normalized error integral is used to evaluate the quality

I =
∑
i∈M

1

Tdim(M)

∥∥∥∥1− xi,red
xi,full

∥∥∥∥
L1

or I =
∑
i∈M

1

Tdim(M)

‖xi,full − xi,red‖L1

‖xi,full‖L1

with T be the time interval of interest and L1-norm is taken over [0, T ].
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Simplifying Glycolysis Model

Error integral vs number of complexes deleted from the glycolysis model.

ICMS Winter School, TU Eindhoven, 17 February 2017 37



Simplifying Glycolysis Model
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Simplifying Fatty-acid Oxidation Model

The full model
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Simplifying Fatty-acid Oxidation Model

Error integral vs number of complexes deleted from the fatty-acid model.
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Simplifying Fatty-acid Oxidation Model

The reduced model
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Simplifying Fatty-acid Oxidation Model

The dynamic behaviour of the full model in comparison to the reduced
ones.
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Preserving multi-stability in sporulation initiation in Bacillus Subtilis

B. Subtilis can undergo sporulation to survive harsh condition where the
resulting spore can last for years.
This process should be initiated under right (environmental) conditions.
In (Jabbari, 2010), a model with four external signals is proposed, they
are:

• Population size

• DNA condition

• Competency

• Nutrient level

Depending on the initial conditions of these signals, sporulation
phosphorelay will respond to them.
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Preserving multi-stability in sporulation initiation in Bacillus Subtilis

Possible combinations of the 4 different signals on the initiation of
sporulation.
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Preserving multi-stability in sporulation initiation in Bacillus Subtilis

Full model
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Preserving multi-stability in sporulation initiation in Bacillus Subtilis

Reduced model
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Preserving multi-stability in sporulation initiation in Bacillus Subtilis
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Maillard reaction

Full and reduced model of Maillard model
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Robustness to different initial condition

Transient behaviour of the full and reduced model under different initial
condition of glucose and fructose
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Conclusions and Future Works

• We have presented a model reduction approach for CRN which
preserve the structure and stability properties.

• The efficacy of the approach has been shown in several examples (i.e.,
curated models from BioModels).
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Model-order reduction (literature overview (1980s - onwards))

For a high-order linear system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp are state, input and output
variables.

Model-order reduction problem

Find a low-order system

˙̂x(t) = Arx̂(t) +Bru(t)

ŷ(t) = Crx̂(t) +Du(t)

with x̂(t) ∈ RN , N � n, such that the input-output behaviour u 7→ ŷ is
close to u 7→ y and the approximation error x− x̂ is small.
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How close is close?

The closeness of input-output behaviour and nicety of systems’ matrices
can be in terms of

• Systems’ properties: controllability & observability (balanced
truncation), passivity-preserving method, moment-matching method.

• Trajectories for a given class of input signals: POD-based

Commonality: Find V,W ∈ Rn×N with W ∗V = IN so that VW ∗ is a
projection matrix.
Define x̂ = W ∗x (in which case, x ≈ V x̂) and we have

˙̂x(t) = W ∗AV x̂(t) +W ∗Bu(t)

ŷ(t) = CV x̂(t) +Du(t).
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Projection approach for nonlinear systems

For a non-linear system

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t), u(t))

As before, we can find V,W ∈ Rn×N with W ∗V = IN and the
reduced-order model through projection is given by

˙̂x(t) = W ∗f(V x̂(t), u(t))

ŷ(t) = h(V x̂(t), u(t)).

Nonlinear mapping has also been explored in literature. In (Scherpen,
1993), generalization of balanced trunction for nonlinear systems is given.
The moment-matching approach for linear systems has been generalized to
nonlinear ones in (Astolfi, 2010).
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Applicability for general chemical reaction networks

• These systems are nonlinear systems with a ”nice” certain structure.

• The linear projection approach can lead to state variables that do not
have chemical interpretation.

• Linearization combined with linear projection provides good
approximation only locally (Hardin, 2012).

• The generalization as in (Scherpen, 1993) & (Astolfi, 2010) requires
the solvability of nonlinear PDEs.

• Quasi Steady State Approximation (QSSA) is one of popular
techniques. It is effective for small network (e.g., less than three
reactions). We will review this again later.

• There are many other heuristic approaches: (Bhattacharjee etal,
2003), (Dano etal, 2006), (Schmidt etal, 2008), (Apri etal, 2012).
These results focuses mainly on model reduction for simulation
purposes, i.e., preservation of systems properties is NOT considered.
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