# Handling complexity in large-scale (bio)-chemical reaction networks 

February 17, 2017

## Contents

- Background and preliminaries on model-order reduction methods
- Kinetic modeling of Chemical Reaction Networks
- Handling the complexity via Kron reduction
- Robustness and multi-stability
- Conclusions and future works


## Complexity in metabolic pathways



From the Biochemical Pathways chart (dr. Gerhard Michal, Roche)

## Recent technological advances



High-throughput genomics, proteomics, metabolomics measurement systems

Advances in genome-scale kinetic modeling

Personalized medicine: Treatment of cancer, diabetes and other diseases

## Bottom-up approach in biochemistry



## Bottom-up approach



## Analogy of bottom-up in electrical systems



## Analogy of bottom-up in electrical systems



## Basic circuit systems theory



Capacitor


Inductor

Resistor, $R$
$i=\frac{1}{R} e$

Voltage, $e$ Capacitor, $C$ $i=C \frac{d e}{d t}$

Current, $i$ Inductor, $L$

$$
e=L \frac{d i}{d t}
$$



Total conductance $=$
Conductance $1+$ Conductance 2

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$



Total resistance $=$
Resistance 1 + Resistance 2

## Example in simple circuit systems



## Graph theoretic approach for electrical circuit



Using Kirchoff voltage and current laws, we have

$$
\left[\begin{array}{c}
0 \\
I_{b}
\end{array}\right]=\left[\begin{array}{c}
B_{i} \\
B_{b}
\end{array}\right] \underbrace{\left[\begin{array}{ccc}
1 / R_{1} & 0 & 0 \\
0 & 1 / R_{2} & 0 \\
0 & 0 & 1 / R_{3}
\end{array}\right]}_{G}\left[\begin{array}{ll}
B_{i}^{T} & B_{b}^{T}
\end{array}\right]\left[\begin{array}{l}
V_{2} \\
V_{1} \\
V_{3}
\end{array}\right]
$$

where $B_{i}=\left[\begin{array}{lll}-1 & 1 & 1\end{array}\right]$ and $B_{b}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & -1\end{array}\right]$. Eliminating the first row,

$$
\begin{gathered}
I_{b}=\underbrace{\left[B_{b} G B_{b}^{T}-B_{b} G B_{i}^{T}\left(B_{i} G B_{i}^{T}\right)^{-1} B_{i} G B_{b}^{T}\right]}_{\mathcal{L}_{b}}\left[\begin{array}{l}
V_{1} \\
V_{3}
\end{array}\right] \text {, or } \\
V_{1}-V_{3}=R_{1}+\frac{1}{\frac{1}{R_{2}}+\frac{1}{R_{3}}} I_{b}
\end{gathered}
$$

## Back to the radio example



ICMS Winter School, TU Eindhoven, 17 February 2017

## Thevenin circuit



## Different modeling approaches



High-fidelity
model


Simple model

## Different modeling approaches



## The graph representation of chemical networks (graph of complexes)

## Example

$$
X_{1}+2 X_{2} \longrightarrow X_{3} \longrightarrow 2 X_{1}+X_{2} \longrightarrow X_{1}+2 X_{2}
$$

- The complexes are the set of species that are on the left- and right-hand sides (substrates and products) of the reactions in the network.


## The graph representation of chemical networks (graph of complexes)

## Example

$$
X_{1}+2 X_{2} \longrightarrow X_{3} \longrightarrow 2 X_{1}+X_{2} \longrightarrow X_{1}+2 X_{2}
$$

- The complexes are the set of species that are on the left- and right-hand sides (substrates and products) of the reactions in the network.
- For the above example, the complexes are $C_{1}=X_{1}+2 X_{2}, C_{2}=X_{3}$ and $C_{3}=2 X_{1}+X_{2}$,

$$
C_{1} \xrightarrow{R_{1}} C_{2} \xrightarrow{R_{2}} C_{3} \xrightarrow{R_{3}} C_{1}
$$

## The graph representation of chemical networks (graph of complexes)

## Example 1.

$$
X_{1}+2 X_{2} \longrightarrow X_{3} \longrightarrow 2 X_{1}+X_{2} \longrightarrow X_{1}+2 X_{2}
$$

- The relation between the species concentrations and the complex concentrations can be given by a complex composition matrix $Z$.
- For the example above,

$$
\underbrace{\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 1 \\
2 & 1 & 0
\end{array}\right]}_{Z^{T}}\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]=\left[\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right] .
$$

## The incidence matrix

## Example 1.

$$
X_{1}+2 X_{2} \longrightarrow X_{3} \longrightarrow 2 X_{1}+X_{2} \longrightarrow X_{1}+2 X_{2}
$$

- On the other hand, the relation between the set of fluxes and the rate changes of complexes can be given by an incidence matrix $B$.
- For the example above,

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right]}_{B}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right],
$$

where $v_{1}, v_{2}, v_{3}$ are the rate in the reactions $R_{1}, R_{2}$ and $R_{3}$, respectively

## Stoichiometric matrix

## Example 1.

$$
X_{1}+2 X_{2} \longrightarrow X_{3} \longrightarrow 2 X_{1}+X_{2} \longrightarrow X_{1}+2 X_{2}
$$

- Using $Z$ and $B$, the usual stoichiometric matrix $S$ can be given by

$$
S:=Z B
$$

- For the aforementioned example,

$$
S=\underbrace{\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]}_{Z} \underbrace{\left[\begin{array}{ccc}
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right]}_{B}=\left[\begin{array}{ccc}
-1 & 2 & -1 \\
-2 & 1 & 1 \\
1 & -1 & 0
\end{array}\right] .
$$

## Mass-action kinetics

## Example 1.

$$
X_{1}+2 X_{2} \xrightarrow{k_{1, \text { form }}} X_{3} \xrightarrow{k_{2, \text { form }}} 2 X_{1}+X_{2} \xrightarrow{k_{3, \text { form }}} X_{1}+2 X_{2}
$$

For mass-action kinetics

$$
v(x)=\left[\begin{array}{c}
k_{1, \text { forw }} x_{1} x_{2}^{2} \\
k_{2, \text { forw }} x_{3} \\
k_{3, \text { forw }} x_{1}^{2} x_{2}
\end{array}\right] .
$$

## Mass-action kinetics

Example 1.

$$
X_{1}+2 X_{2} \xrightarrow{k_{1, \text { form }}} X_{3} \xrightarrow{k_{2, \text { form }}} 2 X_{1}+X_{2} \xrightarrow{k_{3, \text { form }}} X_{1}+2 X_{2}
$$

For mass-action kinetics

$$
v(x)=\left[\begin{array}{c}
k_{1, \text { forw }} x_{1} x_{2}^{2} \\
k_{2, \text { forw }} x_{3} \\
k_{3, \text { forw }} x_{1}^{2} x_{2}
\end{array}\right] .
$$

For convenience,

$$
v(x)=\operatorname{diag}\left(k_{1, \text { forw }}, k_{2, \text { forw }}, k_{3, \text { forw }}\right) \operatorname{Exp}\left(Z^{T} \operatorname{Ln}(x)\right) .
$$

## Mass-action kinetics

## Example 1.

$$
X_{1}+2 X_{2} \xrightarrow{k_{1, \text { forw }}} X_{3} \xrightarrow{k_{2, \text { form }}} 2 X_{1}+X_{2} \xrightarrow{k_{3, \text { form }}} X_{1}+2 X_{2}
$$

For mass-action kinetics, the network dynamics is given by

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] & =Z B v(x) \\
& =Z\left[\begin{array}{ccc}
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right] \operatorname{diag}\left(k_{1, \text { forw }}, k_{2, \text { forw },}, k_{3, \text { forw }}\right) \operatorname{Exp}\left(Z^{T} \operatorname{Ln}(x)\right) \\
& =Z \underbrace{\left[\begin{array}{ccc}
-k_{1, \text { forw }} & 0 & k_{3, \text { forw }} \\
k_{1, \text { forw }} & -k_{2, \text { forw }} & 0 \\
0 & k_{2, \text { forw }} & -k_{3, \text { forw }}
\end{array}\right]}_{-L} \operatorname{Exp}\left(Z^{T} \operatorname{Ln}(x)\right)
\end{aligned}
$$

## General kinetics

## Example 1.

$$
X_{1}+2 X_{2} \xrightarrow{k_{1, \text { forw }}} X_{3} \xrightarrow{k_{2, \text { form }}} 2 X_{1}+X_{2} \xrightarrow{k_{3, \text { form }}} X_{1}+2 X_{2}
$$

If general kinetics is assumed

$$
v(x)=\left[\begin{array}{c}
d_{1}(x) x_{1} x_{2}^{2} \\
d_{2}(x) x_{3} \\
d_{3}(x) x_{1}^{2} x_{2}
\end{array}\right]
$$

where $d_{1}, d_{2}$ and $d_{3}$ are positive-definite rational functions.
As an example, $d_{1}(x)=\frac{k_{1, \text { forw }}}{1+\frac{x_{1}}{K_{m, 1}}+\frac{x_{2}}{K_{m, 2}}}$.

## General kinetics

## Example 1.

$$
X_{1}+2 X_{2} \xrightarrow{k_{1, \text { forw }}} X_{3} \xrightarrow{k_{2, \text { form }}} 2 X_{1}+X_{2} \xrightarrow{k_{3, \text { form }}} X_{1}+2 X_{2}
$$

If general kinetics is assumed

$$
v(x)=\left[\begin{array}{c}
d_{1}(x) x_{1} x_{2}^{2} \\
d_{2}(x) x_{3} \\
d_{3}(x) x_{1}^{2} x_{2}
\end{array}\right]
$$

where $d_{1}, d_{2}$ and $d_{3}$ are positive-definite rational functions.
As an example, $d_{1}(x)=\frac{k_{1, \text { forw }}}{1+\frac{x_{1}}{K_{m, 1}}+\frac{x_{2}}{K_{m, 2}}}$.
As before,

$$
v(x)=\operatorname{diag}\left(d_{1}(x), d_{2}(x), d_{3}(x)\right) \operatorname{Exp}\left(Z^{T} \operatorname{Ln}(x)\right)
$$

## General kinetics

## Example 1.

$$
X_{1}+2 X_{2} \xrightarrow{k_{1, \text { form }}} X_{3} \xrightarrow{k_{2, \text { form }}} 2 X_{1}+X_{2} \xrightarrow{k_{3, \text { form }}} X_{1}+2 X_{2}
$$

For general kinetics, the network dynamics is given by

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=Z \underbrace{\left[\begin{array}{ccc}
-d_{1}(x) & 0 & d_{3}(x) \\
d_{1}(x) & -d_{2}(x) & 0 \\
0 & d_{2}(x) & -d_{3}(x)
\end{array}\right]}_{-L(x)} \operatorname{Exp}\left(Z^{T} \operatorname{Ln}(x)\right)
$$

## Summary on the Network Dynamics

The network dynamics of chemical reactions with mass-action kinetics can be written as

$$
\dot{x}=-Z L \operatorname{Exp}\left(Z^{T} \operatorname{Ln}(x)\right),
$$

where $L$ is a Laplacian matrix.
For general kinetics, they can be described by

$$
\dot{x}=-Z L(x) \operatorname{Exp}\left(Z^{T} \operatorname{Ln}(x)\right),
$$

with $L(x)$ be state-dependent Laplacian matrix.

## Quasi Steady State Approximation

$$
X_{1} \underset{k_{1, \text { rev }}}{\stackrel{k_{1}, \text { form }}{\rightleftharpoons}} X_{2} \stackrel{k_{2, \text { forw }}^{\rightleftharpoons}}{\rightleftharpoons} x_{2, \text { rev }}
$$

Consider the above example which has the following dynamics

$$
\begin{aligned}
\dot{x}_{1} & =-\frac{k_{1, \text { forw }} x_{1}}{p_{1}\left(x_{1}, x_{2}\right)}+\frac{k_{1, \text { rev }} x_{2}}{p_{1}\left(x_{1}, x_{2}\right)} \\
\dot{x}_{2} & =\frac{k_{1, \text { forw }} x_{1}}{p_{1}\left(x_{1}, x_{2}\right)}-\frac{k_{1, \text { rev }} x_{2}}{p_{1}\left(x_{1}, x_{2}\right)}-\frac{k_{2, \text { forw }} x_{2}}{p_{2}\left(x_{2}, x_{3}\right)}+\frac{k_{2, \text { rev }} x_{3}}{p_{2}\left(x_{2}, x_{3}\right)} \\
\dot{x}_{3} & =\frac{k_{2, \text { forw } x_{2}}^{p_{2}\left(x_{2}, x_{3}\right)}-\frac{k_{2, \text { rev }} x_{3}}{p_{2}\left(x_{2}, x_{3}\right)}}{}
\end{aligned}
$$

where $p_{1}\left(x_{1}, x_{2}\right)=\left(1+\frac{x_{1}}{K_{m}^{I, 1}}+\frac{x_{2}}{K_{m}^{I, 2}}\right)$ and
$p_{2}\left(x_{2}, x_{3}\right)=\left(1+\frac{x_{2}}{K_{m}^{I, 2}}+\frac{x_{3}}{K_{m}^{I 1,3}}\right)$.

## Quasi Steady State Approximation

$$
X_{1} \underset{k_{1, \text { rev }}}{\stackrel{k_{1, \text { form }}}{\rightleftharpoons}} X_{2} \underset{k_{2, \text { rev }}}{k_{2, \text { forw }}} X_{3}
$$

When $X_{2}$ reaches steady state, we have

$$
x_{2}=\frac{k_{1, \text { forw }} x_{1} p_{2}\left(x_{2}, x_{3}\right)+k_{2, \text { rev }} x_{3} p_{1}\left(x_{1}, x_{2}\right)}{k_{1, \text { rev }} p_{2}\left(x_{2}, x_{3}\right)+k_{2, \text { forw }} p_{1}\left(x_{1}, x_{2}\right)}
$$

If we use QSSA (and using $p_{1}, p_{2}$ as before), we need to solve for $x_{2}$ from

$$
\begin{aligned}
& x_{2}^{2}\left(\frac{k_{2, \text { forw }}}{K_{m}^{I, 2}}+\frac{k_{1, \text { rev }}}{K_{m}^{I I, 2}}\right) \\
& +x_{2}\left(k_{2, \text { forw }}+\right. \\
& k_{1, \text { forw }}+\frac{k_{2, \text { forw }} x_{1}}{K_{m}^{I, 1}}-\frac{k_{1, \text { forw } x_{1}}}{K_{m}^{I I, 2}}+\frac{\left.k_{1, \text { rev } x_{3}}^{K_{m}^{I I, 3}}-\frac{k_{2, \text { rev }} x_{3}}{K_{m}^{I, 2}}\right)}{} \begin{aligned}
& \quad k_{1, \text { forw }} x_{1}\left(1+\frac{x_{3}}{K_{m}^{I I, 3}}\right)-k_{2, \text { rev }} x_{3}\left(1+\frac{x_{1}}{K_{m}^{I, 1}}\right)=0 .
\end{aligned}
\end{aligned}
$$

Let $x_{2}=f\left(x_{1}, x_{3}\right)$ denote the solution of the above quadratic equation.

## QSSA-based reduced model

$$
X_{1} \rightleftharpoons X_{3}
$$

The reduced dynamics is given by

$$
\begin{aligned}
\dot{x}_{1} & =-\frac{k_{1, \text { forw }} k_{2, \text { forw }} x_{1}-k_{1, \text { rev }} k_{2, \text { rev }} x_{3}}{k_{2, \text { forw }} p_{1}\left(x_{1}, f\left(x_{1}, x_{3}\right)\right)+k_{1, \text { rev }} p_{2}\left(f\left(x_{1}, x_{3}\right), x_{3}\right)} \\
\dot{x}_{3} & =\frac{k_{1, \text { forw }} k_{2, \text { forw }} x_{1}-k_{1, \text { rev }} k_{2, \text { rev }} x_{3}}{k_{2, \text { forw }} p_{1}\left(x_{1}, f\left(x_{1}, x_{3}\right)\right)+k_{1, \text { rev }} p_{2}\left(f\left(x_{1}, x_{3}\right), x_{3}\right)}
\end{aligned}
$$

## QSSA

$$
X_{1}+X_{2} \rightleftharpoons 2 X_{3} \rightleftharpoons X_{4}+X_{5}
$$

For this example, the computation of QSSA for removing $X_{3}$ leads to a more complicated expression.
Our approach is based on the application of Kron reduction/Schur complement applied to the Laplacian-based description as before.

## Recall on the Network Dynamics of CRN

The network dynamics of chemical reactions with general kinetics and with external fluxes can be written as

$$
\dot{x}=-Z L(x) \operatorname{Exp}\left(Z^{T} \operatorname{Ln}(x)\right)+Z v_{b}(x),
$$

where $v_{b}(x)$ is the vector of external flux.
Consider a partition of $Z, v_{b}(x)$ and $L(x)$ according to the complexes that will be retained or removed:

$$
L(x)=\left[\begin{array}{ll}
L_{11}(x) & L_{12}(x) \\
L_{21}(x) & L_{22}(x)
\end{array}\right] \quad Z=\left[\begin{array}{ll}
Z_{1} & Z_{2}
\end{array}\right] \quad v_{b}(x)=\left[\begin{array}{l}
v_{b 1}(x) \\
v_{b 2}(x)
\end{array}\right] .
$$

## Partitioning the dynamics

$$
\dot{x}=-\left[\begin{array}{ll}
Z_{1} & Z_{2}
\end{array}\right]\left(\left[\begin{array}{ll}
L_{11}(x) & L_{12}(x) \\
L_{21}(x) & L_{22}(x)
\end{array}\right]\left[\begin{array}{l}
\operatorname{Exp}\left(Z_{1}^{T} \operatorname{Ln}(x)\right) \\
\operatorname{Exp}\left(Z_{2}^{T} \operatorname{Ln}(x)\right)
\end{array}\right]+\left[\begin{array}{l}
v_{b 1}(x) \\
v_{b 2}(x)
\end{array}\right]\right),
$$

Consider now the auxiliary system

$$
\left[\begin{array}{l}
\dot{y}_{1} \\
\dot{y}_{2}
\end{array}\right]=-\left[\begin{array}{ll}
L_{11}(x) & L_{12}(x) \\
L_{21}(x) & L_{22}(x)
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]+\left[\begin{array}{l}
v_{b 1}(x) \\
v_{b 2}(x)
\end{array}\right] .
$$

Imposing complex-balanced condition on the complexes $Y_{2}$ (i.e., $\dot{y}_{2}=0$ ) leads to

$$
w_{2}=-L_{22}(x)^{-1}\left(v_{b 2}(x)-L_{21}(x) w_{1}\right)
$$

Substituting it to the first equation gives

$$
\dot{y}_{1}=-\hat{L}(x) w_{1}+\left[\begin{array}{ll}
I & -L_{12}(x) L_{22}^{-1}
\end{array}\right] v_{b}(x)
$$

where $\hat{L}(x)=L_{11}(x)-L_{12}(x) L_{22}(x)^{-1} L_{21}(x)$ is the Schur complement of $L(x)$ with respect to the removed complexes.

## Our reduced model

$$
\dot{x}=-Z_{1} \hat{L}(x) \operatorname{Exp}\left(Z_{1}^{T} \operatorname{Ln}(x)\right)+Z_{1} \underbrace{\left[\begin{array}{ll}
I & -L_{12}(x) L_{22}^{-1}
\end{array}\right] v_{b}(x)}_{\hat{v}_{b}(x)}
$$

Here $\hat{v}_{b}(x)$ becomes a modified external flux and $\hat{L}(x)$ is the new Laplacian. The above equation describes again a proper chemical reaction network.

## Proposition 1 (SR, vdS \& BJ, 2014)

Consider a weighted Laplacian $L(x)$ as before. The Schur complement of $L(x)$ with respect to any cluster of complexes satisfies the following properties
(1) All diagonal elements of $\hat{L}(x)$ are positive and off-diagonal elements are non-negative for all $x$ in positive orthant
(2) $\mathbb{1}^{T} \hat{L}(x)=0$

This proposition shows that the resulting reduced model is again a CRN with general kinetics described by

$$
\dot{x}=-Z_{1} \hat{L}(x) \operatorname{Exp}\left(Z_{1}^{T} \operatorname{Ln}(x)\right)+Z_{1} \hat{v}_{b}(x)
$$

Stability property is preserved (since it is again a chemical reaction network as before). The original set of equilibrium points $\mathcal{E}$ is a subset of the set of equilibrium points of reduced model $\hat{\mathcal{E}}$ (SR, vdS \& BJ, 2013).

## Recall an Example

$$
X_{1} \underset{k_{1, \text { rev }}}{\stackrel{k_{1, \text { form }}}{\rightleftharpoons}} X_{2} \underset{k_{2, \text { rev }}}{\stackrel{k_{2, \text { forw }}}{\rightleftharpoons}} X_{3}
$$

## The reduced CRN

$$
X_{1} \rightleftharpoons X_{3}
$$

$$
\begin{aligned}
& \dot{x}_{1}=-\frac{k_{1, \text { forw }} k_{2, \text { forw }} x_{1}-k_{1, \text { rev }} k_{2, \text { rev }} x_{3}}{1+\frac{x_{1}}{K_{m}^{\text {red, }, 1}}+\frac{x_{3}}{K_{m}^{\text {red,3 }}}} \\
& \dot{x}_{3}=\frac{k_{1, \text { forw }} k_{2, \text { forw }} x_{1}-k_{1, \text { rev }} k_{2, \text { rev } x_{3}}^{x_{1}}}{1+\frac{x_{m}^{\text {rod, }, ~}}{K_{3}}+\frac{x_{3}}{K_{m}^{\text {re, }, 3}}}
\end{aligned}
$$

where $K_{m}^{\text {red, } 1}, K_{m}^{\text {red,3 }}$ are linearly dependent on all $K_{m} \mathrm{~s}$ and $k_{\text {forw }}, k_{\text {rev }}$ from the original network.

## Again Another Example

$$
X_{1}+X_{2} \rightleftharpoons 2 X_{3} \rightleftharpoons X_{4}+X_{5}
$$

## The reduced CRN

$$
X_{1}+X_{2} \rightleftharpoons X_{4}+X_{5}
$$

$$
v(x)=\left[\frac{k_{1, \text { forw }} k_{2, \text { forw }} x_{1} x_{2}}{p(x)}\left[\frac{k_{1, \text { rev }} k_{2, \text { rev }} x_{4} x_{5}}{p(x)}\right]\right.
$$

where

$$
p(x)=1+\frac{x_{1}}{K_{m}^{\text {red }, 1}}+\frac{x_{2}}{K_{m}^{\text {red }, 2}}+\frac{x_{4}}{K_{m}^{\text {red, } 4}}+\frac{x_{5}}{K_{m}^{\text {red }, 5}}+\frac{x_{1} x_{2}}{K_{m}^{\text {red }, 12}}+\frac{x_{4} x_{5}}{K_{m}^{\text {red }, 45}}
$$

with $K_{m}^{\text {red }} \mathrm{s}$ are again linearly dependent on all $K_{m} \mathrm{~s}$ and $k_{\text {forw }}, k_{\text {rev }}$ from the original network.

## Systematic Model Reduction

Model reduction of high-order model can be done systematically. Full Network: $\quad \mathcal{C}_{1} \rightleftharpoons \mathcal{C}_{2} \rightleftharpoons \mathcal{C}_{3} \rightleftharpoons \cdots \cdots \rightleftharpoons \mathcal{C}_{n}$ Reduced Network: $\quad \mathcal{C}_{1} \rightleftharpoons \mathcal{C}_{3} \rightleftharpoons \cdots \cdots \rightleftharpoons \mathcal{C}_{n}$

## Systematic Model Reduction

Model reduction of high-order model can be done systematically. Full Network: $\quad \mathcal{C}_{1} \rightleftharpoons \mathcal{C}_{2} \rightleftharpoons \mathcal{C}_{3} \rightleftharpoons \cdots \cdots \rightleftharpoons \mathcal{C}_{n}$

Reduced Network: $\quad \mathcal{C}_{1} \rightleftharpoons \mathcal{C}_{3} \rightleftharpoons \cdots \cdots \rightleftharpoons \mathcal{C}_{n}$
Full Network 1: $\quad \cdots \quad \mathcal{C}_{1} \rightleftharpoons \mathcal{C}_{2} \rightarrow \mathcal{C}_{3} \quad \ldots$
Reduced Network 1: $\quad \cdots \quad \mathcal{C}_{1} \rightarrow \mathcal{C}_{3} \quad \cdots$

## Systematic Model Reduction

Model reduction of high-order model can be done systematically. Full Network: $\quad \mathcal{C}_{1} \rightleftharpoons \mathcal{C}_{2} \rightleftharpoons \mathcal{C}_{3} \rightleftharpoons \cdots \cdots \rightleftharpoons \mathcal{C}_{n}$

Reduced Network: $\quad \mathcal{C}_{1} \rightleftharpoons \mathcal{C}_{3} \rightleftharpoons \cdots \cdots \rightleftharpoons \mathcal{C}_{n}$
Full Network 1: $\quad \cdots \quad \mathcal{C}_{1} \rightleftharpoons \mathcal{C}_{2} \rightarrow \mathcal{C}_{3} \quad \ldots$
Reduced Network 1: $\quad \cdots \quad \mathcal{C}_{1} \rightarrow \mathcal{C}_{3} \quad \cdots$
Full Network 2: $\quad \cdots \quad \mathcal{C}_{1} \rightarrow \mathcal{C}_{2} \rightleftharpoons \mathcal{C}_{3} \quad \cdots$
Reduced Network 2: $\quad \cdots \quad \mathcal{C}_{1} \rightarrow \mathcal{C}_{3} \quad \cdots$

## Systematic Model Reduction

## Full Network

$$
\begin{array}{rlll}
\cdots \mathcal{C}_{1} \stackrel{1}{\rightleftharpoons} & \mathcal{C}_{2} \stackrel{2}{\rightleftharpoons} \mathcal{C}_{3} & \cdots \\
& 1^{3} \\
& \mathcal{C}_{4}
\end{array}
$$

Reduced Network


## Simplifying Glycolysis Model



The following normalized error integral is used to evaluate the quality
$I=\sum_{i \in \mathcal{M}} \frac{1}{T \operatorname{dim}(\mathcal{M})}\left\|1-\frac{x_{i, \text { red }}}{x_{i, \text { ful }}}\right\|_{L^{1}}$ or $I=\sum_{i \in \mathcal{M}} \frac{1}{T \operatorname{dim}(\mathcal{M})} \frac{\left\|x_{i, \text { full }}-x_{i, \text { red }}\right\|_{L^{1}}}{\left\|x_{i, \text { full }}\right\|_{L^{1}}}$
with $T$ be the time interval of interest and $L^{1}$-norm is taken over $[0, T]$,

## Simplifying Glycolysis Model



Error integral vs number of complexes deleted from the glycolysis model.

## Simplifying Glycolysis Model



## Simplifying Fatty-acid Oxidation Model



## Simplifying Fatty-acid Oxidation Model



Error integral vs number of complexes deleted from the fatty-acid model.

## Simplifying Fatty-acid Oxidation Model



The reduced model

## Simplifying Fatty-acid Oxidation Model



The dynamic behaviour of the full model in comparison to the reduced ones.

## Preserving multi-stability in sporulation initiation in Bacillus Subtilis

$B$. Subtilis can undergo sporulation to survive harsh condition where the resulting spore can last for years.
This process should be initiated under right (environmental) conditions. In (Jabbari, 2010), a model with four external signals is proposed, they are:

- Population size
- DNA condition
- Competency
- Nutrient level

Depending on the initial conditions of these signals, sporulation phosphorelay will respond to them.

## Preserving multi-stability in sporulation initiation in Bacillus Subtilis

| State | Population size | DNA | Competent | Nutrients | Sporulation desirable? |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Small | Healthy | No | High | No |
| 2 | Small | Healthy | No | Low | Yes |
| 3 | Small | Healthy | Yes | High | No |
| 4 | Small | Healthy | Yes | Low | No |
| 5 | Small | Damaged | No | High | No |
| 6 | Small | Damaged | No | Low | No |
| 7 | Small | Damaged | Yes | High | No |
| 8 | Small | Damaged | Yes | Low | No |
| 9 | Large | Healthy | No | High | No |
| 10 | Large | Healthy | No | Low | Yes |
| 11 | Large | Healthy | Yes | High | No |
| 12 | Large | Healthy | Yes | Low | Yes |
| 13 | Large | Damaged | No | High | No |
| 14 | Large | Damaged | No | Low | No |
| 15 | Large | Damaged | Yes | High | No |
| 16 | Large | Damaged | Yes | Low | No |

## Possible combinations of the 4 different signals on the initiation of sporulation.

## Preserving multi-stability in sporulation initiation in Bacillus Subtilis



## Full model

## Preserving multi-stability in sporulation initiation in Bacillus Subtilis



Reduced model

## Preserving multi-stability in sporulation initiation in Bacillus Subtilis









## Maillard reaction



Full and reduced model of Maillard model

## Robustness to different initial condition



Transient behaviour of the full and reduced model under different initial condition of glucose and fructose

## Conclusions and Future Works

- We have presented a model reduction approach for CRN which preserve the structure and stability properties.
- The efficacy of the approach has been shown in several examples (i.e., curated models from BioModels).


## Acknowledgments

This work is supported by the NWO Centre for Systems Biology and is a joint collaboration with the following people

- Arjan van der Schaft
- Barbara M. Bakker
- Shodhan Rao (Ghent University Global Campus)
- Ward Sikkema


## Model-order reduction (literature overview (1980s - onwards))

For a high-order linear system

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

where $x(t) \in \mathbb{R}^{n}, u(t) \in \mathbb{R}^{m}, y(t) \in \mathbb{R}^{p}$ are state, input and output variables.

## Model-order reduction problem

Find a low-order system

$$
\begin{aligned}
\dot{\hat{x}}(t) & =A_{r} \hat{x}(t)+B_{r} u(t) \\
\hat{y}(t) & =C_{r} \hat{x}(t)+D u(t)
\end{aligned}
$$

with $\hat{x}(t) \in \mathbb{R}^{N}, N \ll n$, such that the input-output behaviour $u \mapsto \hat{y}$ is close to $u \mapsto y$ and the approximation error $x-\hat{x}$ is small.

## How close is close?

The closeness of input-output behaviour and nicety of systems' matrices can be in terms of

- Systems' properties: controllability \& observability (balanced truncation), passivity-preserving method, moment-matching method.
- Trajectories for a given class of input signals: POD-based Commonality: Find $V, W \in \mathbb{R}^{n \times N}$ with $W^{*} V=I_{N}$ so that $V W^{*}$ is a projection matrix.
Define $\hat{x}=W^{*} x$ (in which case, $x \approx V \hat{x}$ ) and we have

$$
\begin{aligned}
\dot{\hat{x}}(t) & =W^{*} A V \hat{x}(t)+W^{*} B u(t) \\
\hat{y}(t) & =C V \hat{x}(t)+D u(t) .
\end{aligned}
$$

## Projection approach for nonlinear systems

For a non-linear system

$$
\begin{aligned}
& \dot{x}(t)=f(x(t), u(t)) \\
& y(t)=h(x(t), u(t))
\end{aligned}
$$

As before, we can find $V, W \in \mathbb{R}^{n \times N}$ with $W^{*} V=I_{N}$ and the reduced-order model through projection is given by

$$
\begin{aligned}
\dot{\hat{x}}(t) & =W^{*} f(V \hat{x}(t), u(t)) \\
\hat{y}(t) & =h(V \hat{x}(t), u(t)) .
\end{aligned}
$$

Nonlinear mapping has also been explored in literature. In (Scherpen, 1993), generalization of balanced trunction for nonlinear systems is given. The moment-matching approach for linear systems has been generalized to nonlinear ones in (Astolfi, 2010).

## Applicability for general chemical reaction networks

- These systems are nonlinear systems with a "nice" certain structure.
- The linear projection approach can lead to state variables that do not have chemical interpretation.
- Linearization combined with linear projection provides good approximation only locally (Hardin, 2012).
- The generalization as in (Scherpen, 1993) \& (Astolfi, 2010) requires the solvability of nonlinear PDEs.
- Quasi Steady State Approximation (QSSA) is one of popular techniques. It is effective for small network (e.g., less than three reactions). We will review this again later.
- There are many other heuristic approaches: (Bhattacharjee etal, 2003), (Dano etal, 2006), (Schmidt etal, 2008), (Apri etal, 2012). These results focuses mainly on model reduction for simulation purposes, i.e., preservation of systems properties is NOT considered.

