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“...a modern and deep, yet accessible, introduction to the models that make up that 
basis for the theoretical study of random graphs and complex networks. The book strikes a 
balance between providing broad perspective and analytic rigor that is a pleasure for
the reader.”   –  Adam Wierman, California Institute of Technology
 
“...focuses on a number of core models that have driven recent progress in the fi eld, 
including the Erdös-Rényi random graph, the confi guration model, and preferential 
attachment models. A detailed description is given of all their key properties. This is 
supplemented with insightful remarks about properties of related models so that a full 
panorama unfolds. As the presentation develops, the link to complex networks provides 
constant motivation for the routes that are being chosen.”
    – Frank den Hollander, Leiden University
 
“...the defi nitive introduction to the mathematical world of random networks. Written 
for students with only a modest background in probability theory, it provides plenty of 
motivation for the topic and introduces the essential tools of probability at a gentle pace. 
It covers the modern theory of Erdös-Rényi graphs, as well as the most important models 
of scale-free networks that have emerged in the last 15 years. This is a truly wonderful fi rst 
volume; the second volume, leading up to current research topics, is eagerly awaited.”
    – Peter Mörters, University of Bath
 
“...a wonderful addition to the fi eld. It takes the uninitiated reader from the basics of 
graduate probability to the classical Erdös-Rényi random graph before terminating at some 
of the fundamental new models in the discipline. The author does an exemplary job of 
both motivating the models of interest and building all the necessary mathematical tools 
required to give a rigorous treatment of these models. Each chapter is complemented by 
a comprehensive set of exercises allowing the reader ample scope to actively master the 
techniques covered in the chapter.”
    – Shankar Bhamidi, University of North Carolina
 
“...invaluable for anybody who wants to learn or teach the modern theory of random 
graphs and complex networks. I have used it as a textbook for long and short courses at 
different levels. Students always like the book because it has all they need: exciting 
high-level ideas, motivating examples, very clear proofs, and an excellent set of exercises. 
Easy to read, extremely well structured, and self-contained, the book builds profi ciency 
with random graph models essential for state-of-the-art research.”
    – Nelly Litvak, University of Twente
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Aimed at graduate students in math, here take softer approach.

Yet, good source for informal explanations of random graphs for
networks, and for basic results.
Non-mathematicians can ignore proofs...



Lecture 1:

Modeling Complex Networks

B Complex Networks;
B Network statistics and Data;
B Models for complex networks.



Complex networks

Figure 2 |Yeast protein interaction network.A map of protein–protein interactions
18
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Yeast protein interaction network Internet topology in 2001



Scale-free paradigm
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Loglog plot of degree sequences in Internet Movie Data Base (2007)
and in the AS graph (FFF97)



Small-world paradigm
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Network statistics
B Clustering:

C =
3× number of triangles

number of connected triplets
.

Proportion of friends that are friends of one another.

B Assortativity:

ρ =

1
|En|
∑

ij∈En
didj −

(
1
|En|
∑

ij∈En
di

)2
1
|En|
∑

ij∈En
d2i −

(
1
|En|
∑

ij∈En
di

)2 .
Correlation between degrees at either end of edge.

[Recent work vdH-Litvak (2013): flaws assortativity coefficient.
Proposes rank correlations instead.]



Centrality measures
B Closeness centrality:
Measures to what extent vertex can reach others using few hops.
Vertices with low closeness centrality are central in network.

B Betweenness centrality:
Measures extent to which vertex connects
various parts of network.

Betweenness large for bottlenecks.

B PageRank:
Measures extent to which vertex is visited by random walk.
Used in Google to rank importance in web pages.



Modeling networks
Use random graphs to model uncertainty in formation

connections between elements.

B Static models:
Graph has fixed number of elements:

Configuration model

B Dynamic models:
Graph has evolving number of ele-
ments:

Preferential attachment model

Many models!

Universality??



Erdős-Rényi
Vertex set [n] := {1, 2, . . . , n}.

Erdős-Rényi random graph is random subgraph of complete graph
on [n] where each of

(
n
2

)
edges is occupied with probab. p.

Simplest imaginable model of a random graph.

B Attracted tremendous attention since introduction 1959, mainly
in combinatorics community.

Probabilistic method (Erdős et al).

B Egalitarian: Every vertex has equal connection probabilities.
Misses hub-like structure of real networks.

Inhomogeneous versions have been suggested and investigated.



Null model 1
Many adaptations, including the original Erdős-Rényi random
graph, where a fixed number m of edges is chosen uniformly at
random without replacement.

Models are closely related when taking

p ≈ 2m/(n(n− 1)).

Random graph with fixed number of edges is uniform random graph
with that number of edges:

Null model.
Yields bench mark to compare real-world networks to having same
number of edges.

B Directed ERRG: One can also study directed versions.



Configuration model
B Invented by Bollobás (1980)

to study number of graphs with given degree sequence.
Inspired by Bender+Canfield (1978)
Giant component: Molloy, Reed (1995)
Popularized by Newman, Strogatz, Watts (2001).

B n number of vertices;
B d = (d1, d2, . . . , dn) sequence of degrees is given.

Often take (di)i∈[n] to be sequence of independent and identically
distributed (i.i.d.) random variables with certain distribution.

B Special attention to power-law degrees, i.e., for τ > 1 and cτ

P(d1 ≥ k) ≈ cτk
−τ+1.



Power-laws CM
B Special attention to power-law degrees, i.e., for τ > 1 and cτ

P(d1 ≥ k) = cτk
−τ+1(1 + o(1)).
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n = 1, 000, 000 and τ = 2.5 and τ = 3.5, respectively.



Graph construction
B Assign dj half-edges to vertex j. Assume total degree

`n =
∑
i∈[n]

di

is even.

B Pair half-edges to create edges as follows:
Number half-edges from 1 to `n in any order.
First connect first half-edge at random with one of other `n − 1 half-
edges.

B Continue with second half-edge (when not connected to first)
and so on, until all half-edges are connected.

B Resulting graph is denoted by CMn(d).



Null model 2
Configuration model with fixed degrees and conditioned on simplic-
ity yields uniform random graph with those degrees:

Null model.
Yields bench mark to compare real-world networks.

When degrees are not too heavy-tailed,

Probability simplicity uniformly positive.

B Note: degrees in ERRG are close to Poisson, which does not fit
well with many real-world networks.

B Can also create uniform random graph with prescribed degrees
by rewiring edges from any simple graph with those degrees. Is
practical way to simulate graph. Problem: mixing time is unknown.



Graph distances in CM
Hn is graph distance between uniform pair of vertices in graph.

Theorem 1. (vdHHVM03). When ν = E[D(D − 1)]/E[D] ∈ (1,∞)

and E[D2
n]→ E[D2], conditionally on Hn <∞,

Hn

logν n

P−→ 1.

For i.i.d. degrees having power-law tails, fluctuations are bounded.

Theorem 2. (vdHHZ07, Norros+Reittu 04). When τ ∈ (2, 3), condi-
tionally on Hn <∞,

Hn

log log n

P−→ 2

| log (τ − 2)|
.

For i.i.d. degrees having power-law tails, fluctuations are bounded.



x 7→ log log x grows extremely slowly
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Preferential attachment
Albert-Barabási (1999):
Emergence of scaling in random networks (Science).

26159 cit. (14-2-2017).

Bollobás, Riordan, Spencer, Tusnády (2001):
The degree sequence of a scale-free random graph process (RSA)

[In fact, Yule 25 and Simon 55 already introduced similar models.]

In preferential attachment models, network is growing in time, in
such a way that new vertices are more likely to be connected to
vertices that already have high degree.

Rich-get-richer model:



Preferential attachment
At time n, single vertex is added with m edges emanating from it.
Probability that edge connects to ith vertex is proportional to

Di(n− 1) + δ,

where Di(n) is degree vertex i at time n, δ > −m is parameter.

Yields power-law degree
sequence with exponent
τ = 3 + δ/m > 2.

BRST01 δ = 0,

DvdEvdHH09,... 1 10 100 1000
1

10

100

1000

10000

 100000

m = 2, δ = 0, τ = 3, n = 106



Distances PA models
Theorem 3 (Bol-Rio 04). For all m ≥ 2 and τ = 3,

Hn =
log n

log log n
(1 + oP(1)).

Theorem 4 (Dommers-vdH-Hoo 10). For all m ≥ 2 and τ ∈ (3,∞),

Hn = Θ(log n).

Theorem 5 (Dommers-vdH-Hoo 10, DerMonMor 11). For all m ≥ 2

and τ ∈ (2, 3),
Hn

log log n

P−→ 4

| log (τ − 2)|
.



Network modeling
mayhem

Models:

B Configuration Model
B Inhomogeneous Random Graphs
B Preferential Attachment Model

What is bad about these models?

B Low clustering and few short cycles (unlike social networks);
B No communities (unlike collaboration networks and WWW);
B No attributes (geometry, gender,...);

Models are caricature of reality!



Conclusions
B Networks useful way to view real-world phenomena:

centrality and clustering.

B Unexpected commonality networks:

scale free and small worlds.

B Random graph models:

Used to explain properties of real-world networks and
as benchmark.



Lecture 2:

Network Functionality

B Competition processes;
B Ising model and consensus reaching.



Competition

B Viral marketing aims to use social networks so as to excelerate
adoption of novel products.

B Observation: Often one product takes almost complete market.
Not always product of best quality:

Why?

B Aim: Explain this phenomenon, and relate it to network structure
as well as spreading dynamics.



Competition: setting
B Model social network as random graph:

configuration model.

B Model dynamics as competing rumors spreading through net-
work:

vertices, once occupied by certain type, try to occupy their neigh-
bors at (possibly) random and i.i.d. times:

Fastest type corresponds to best product.

Questions:
BWho wins?
B How much does loosing type get?
B How do results depend on network topology?
B How do results depend on spreading dynamics?



Markovian spreading
Theorem 6. [Deijfen-vdH (2013)] Fix τ ∈ (2, 3).

Consider competition model, where types compete for territory at
fixed, but possibly unequal rates. Then, each of types wins majority
vertices with positive probability:

N1

n

d−→ I ∈ {0, 1}.

Number of vertices for losing type converges in distribution:

Nlos(n)
d−→ Nlos ∈ N.

The winner takes it all, the loser’s standing small...

BWho wins is determined by location of starting point types:

Location, location, location!



Deterministic spreading
Theorem 7. [Baroni-vdH-Komjáthy (2014)] Fix τ ∈ (2, 3).

Consider competition model, where types compete for territory with
deterministic traversal times. Without loss of generality, assume
that traversal time type 1 is 1, and of type 2 is λ ≥ 1.

Fastest types wins majority vertices, i.e., for λ > 1,

N1(n)

n

P−→ 1.

Number of vertices for losing type 2 satisfies that there exists ran-
dom variable Z s.t.

log(N2(n))

(log n)2/(λ+1)Cn

d−→ Z.

B Here, Cn is some random oscillatory sequence.



Deterministic spreading
Theorem 8. [vdH-Komjáthy (2014)] Fix τ ∈ (2, 3).

Consider competition model, where types compete for territory with
deterministic equal traversal times.

BWhen starting locations of types are sufficiently different,

N1(n)

n

d−→ I ∈ {0, 1},

and number of vertices for losing type satisfies

log(Nlos(n))

Cn log n

d−→ Z,

where Cn ∈ (0, 1) whp.
B When starting locations are sufficiently similar, coexistence oc-
curs, i.e., there exist 0 < c1, c2 < 1 s.t. whp

N1(n)

n
,
N2(n)

n
∈ (c1, c2).



Insight: local analysis

B Competition is to large extent determined by local behavior
around starting points, including

discovery process early on in game.

B Configuration model is

locally tree-like.

Means that local neighborhood around a vertex is close to tree, i.e.,
no cycles. Make life much easier.

� Thus, need to understand process on tree in detail.



Neighborhoods CM

B Important ingredient in proof is description local neighborhood of
uniform vertex U1 ∈ [n]. Its degree has distribution DU1

d
= D.

B Take any of DU1 neighbors a of U1. Law of number of forward
neighbors of a, i.e., Ba = Da − 1, is approximately

P(Ba = k) ≈ (k + 1)∑
i∈[n] di

∑
i∈[n]

1{di=k+1}
P−→ (k + 1)

E[D]
P(D = k + 1).

Equals size-biased version of D minus 1. Denote this by D? − 1.



Local tree-structure CM

B Forward neighbors of neighbors of U1 are close to i.i.d. Also
forward neighbors of forward neighbors have asymptotically same
distribution...

B Conclusion: Neighborhood looks like branching process with off-
spring distribution D? − 1 (except for root, which has offspring D.)

B τ ∈ (2, 3) : Infinite-mean BP, which has double exponential
growth of generation sizes:

(τ − 2)k log(Zk ∨ 1)
a.s.−→ Y ∈ (0,∞).



Graph distances CM
Hn is graph distance between uniform pair of vertices in CMn(d).

Theorem 2. [vdHHZ07, Norros-Reittu 04]. Fix τ ∈ (2, 3). Then,

Hn

log log n

P−→ 2

| log (τ − 2)|
,

and fluctuations are tight, but do not converge in distribution.

B In absence of competition, it takes each of types about log log n
| log (τ−2)|

steps to reach vertex of maximal degree.

B Type that reaches vertices of highest degrees (=hubs) first wins.
When λ > 1, fastest type wins whp.



Deterministic dynamics
B With Z (i)

k number of vertices reachable in precisely k steps by
type i, in absence of competition, as long as k is ‘small’ wrt log log n

| log (τ−2)|,

(τ − 2)k logZ (i)

k
d−→ Y (i).

B When fastest type has occupied hubs, i.e., vertices of highest
degrees, it occupies all vertices of smaller and smaller degrees.

B Number of vertices of losing kind can be computed by investigat-
ing at what degrees types encounter each other first.

B Coexistence occurs when both vertices find hubs at same time,
which occurs when

Y (1)/Y (2) ∈ (τ − 2, 1/(τ − 2)).



Ising Model
Ising model is spin system, where vertices can be in two states
{−1, 1}. Invented as model for magnetism. Think of 1 indicating
one opinion, −1 as opposite opinion.

Ising model describes collection of opinions using Boltzman dis-
tribution: Let G = (V,E) denote social network, and σ = (σi)i∈V as
collection of opinions. Then, distribution of opinions equals

µβ,B(σ) =
1

Z(β,B)
e−H(σ),

where H(σ) is Hamiltonian of configuration of opinions σ

H(σ) = −β
∑

(x,y)∈E

σxσy −B
∑
x∈V

σx.

Z(β,B) is normalization constant. Here β > 0 determines prefer-
ence for consensus, and B ∈ R determines preference opinion 1.



Ising model dynamics
At time t ≥ 0, one randomly chosen person v changes his/her opin-
ion σv to 1− σv with probability

min
{

e−[H(σv)−H(σ)], 1},

where σv is obtained from σ by flipping status of v.
Measure µβ,B is stationary distribution.

Finite systems do not have phase transitions. However, these may
arise in the infinite-volume limit:

Phase transition:
Exists critical βc. Below it stationary distribution is unique for
h = 0.

Above it, two distinct stationary distributions (obtained from
configurations where all spins agree):

Positive instantaneous magnetization.



Equilibrium Ising model
B Dynamics has preference for neighbors to align:

quest for order.

Opposing entropy effect:

many more configurations with many sign changes.

β is inverse temperature.
B Order wins when temperature low, alignment effect is high.

B Entropy wins when temperature high, alignment effect is
not strong enough to enforce order.

Here, focus on

equilibrium behavior.



Key quantities

Magnetization:

Mn(β,B) =
〈1

n

∑
i∈[n]

σi

〉
µn

=
∂

∂B
ψn(β,B).

Pressure per particle:

ψn(β,B) =
1

n
logZn(β,B).

Internal energy:

Un(β,B) = −1

n

∑
(i,j)∈E

〈
σiσj

〉
µn

=
∂

∂β
ψn(β,B).



Thermodynamic limits
Theorem 9. [DemMon 10, DGvdH 10] For all 0 ≤ β <∞, B ∈ R,

lim
n→∞

ψn(β,B) = ϕ(β,B).



Thermodynamic limits
Theorem 9. [DemMon 10, DGvdH 10] For all 0 ≤ β <∞, B ∈ R,

lim
n→∞

ψn(β,B) = ϕ(β,B),

where ϕ(β,B) equals for B > 0,

E[D]

2
log cosh(β)− E[D]

2
E[log(1 + tanh(β) tanh(h1) tanh(h2))]

+E

[
log

(
eB

D∏
i=1

{1 + tanh(β) tanh(hi)} + e−B
D∏
i=1

{1− tanh(β) tanh(hi)}

)]
,

with (hi)i≥1 i.i.d. copies of fixed point h∗ = h∗(β,B) of distributional
recursion

h(t+1) d
= B +

D?
t−1∑
i=1

atanh(tanh(β) tanh(h
(t)
i )),

and h(0) ≡ B. Here (D?
t )t≥1 are i.i.d. size-biased degrees.



Thermodynamic limits
Theorem 10. [Dem-Mon 10, DGvdH 10] For all β ≥ 0, B 6= 0 :

(a) Magnetization.

M(β,B) ≡ lim
n→∞

Mn(β,B) =
∂

∂B
ϕ(β,B).

(b) Internal energy.

U(β,B) ≡ lim
n→∞

Un(β,B) = − ∂

∂β
ϕ(β,B).

(c) Susceptibility. Let susceptibility be

χn(β,B) =
1

n

∑
(i,j)∈En

(〈σiσj〉µn − 〈σi〉µn〈σj〉µn) =
∂Mn

∂B
(β,B).

Then,

χ(β,B) ≡ lim
n→∞

χn(β,B) =
∂2

∂B2
ϕ(β,B).



Ising phase transition CM

Theorem 11. [Dem-Mon 10, DGvdH 10] Ising model on locally
tree-like random graph has critical value

βc = 0 for τ ∈ (2, 3),

βc = atanh(1/ν) for τ > 3, ν > 1.

Here ν = E[D(D − 1)]/E[D] <∞ when τ > 3 or E[D2] <∞.

B Means that, for τ ∈ (2, 3), tiny external effects (media?) can
cause opinion population to flip.



Critical exponents CM

Theorem 12. [DGvdH 14] For (β,B) close to (βc, 0),

M(βc, B) ∼ B1/δ, M(β, 0+) ∼ (β − βc)β,

where
(δ,β) = (3, 1/2) for τ > 3;

while
(δ,β) = (τ − 2, 1/(τ − 3)) for τ ∈ (3, 5).

Non-universal exponents!



Insight: local analysis

B Behavior Ising model is to large extent determined by local be-
havior around all points.

Vertices far away hardly influence spins.

B Configuration model is

locally tree-like.

Means that local neighborhood around a vertex is close to tree, i.e.,
no cycles. Make life much easier.

� Thus, need to understand Ising model on a tree in detail. For
example, βc is same as critical value on random tree.



Local tree-structure CM
B Forward neighbors of neighbors of U1 are close to i.i.d. Also
forward neighbors of forward neighbors have asymptotically same
distribution...

B Conclusion: Neighborhood looks like branching process with off-
spring distribution D? − 1 (except for root, which has offspring D.)

P(D? − 1 = k) ≈ (k + 1)∑
i∈[n] di

∑
i∈[n]

1{di=k+1}
P−→ (k + 1)

E[D]
P(D = k + 1).



Proof thermodynamics

Proposition 1. [Dem-Mon 10, DGvdH 10] Let B > 0 and let (D?
t )t≥1

be i.i.d. random variables. Consider sequence of random variables
(h(t))t≥0 defined by h(0) ≡ B and, for t ≥ 0, by

h(t+1) d
= B +

D?
t−1∑
i=1

atanh(tanh(β) tanh(h
(t)
i )),

Distributions h(t) are stochastically monotone and h(t) converges in
distribution to unique fixed point h∗ that is supported on [0,∞).

B Tree computation!



Conclusions
B Networks useful way to view real-world phenomena:

competition and consensus reaching.

B Unexpected commonality networks:

scale free and small worlds.

B Random graph models:

Used to explain properties of real-world networks and
as benchmark for brain networks.



Lecture 3:

Complex Networks and the Brain

B Brain as a Complex Network;
B Ising model as abstract model for brain functionality.



Networks of the brain
Several levels:
B Neuronal level: 1011 vertices of average degree 104;

B Functional level: much smaller, modular structure...
What is meaning network?

Features:
B Short time scales: stochastic process on network (non-linear?);
B Long time scales: network is changed by functionality brain
(learning, pruning,...);
B Strong dependence between different regions network.

Big question:

What is a good network model for brain functionality?



Random graphs in/and
Brain

Kozma-Puljic (05):

There is dominant view that brains are not random and
one should not use the term random graphs and net-
works for brains.

Without going into metaphysical debate, it can be safely
assumed that brains, viewed either as complex determin-
istic machines or as random objects, can benefit from use
of statistical methods in their characterization.



All models are wrong...
George Box (78):

Now it would be very remarkable if any system existing in
the real world could be exactly represented by any simple
model. However, cunningly chosen parsimonious models
often do provide remarkably useful approximations....

For such a model there is no need to ask the question “Is
the model true?". If "truth" is to be the "whole truth" the
answer must be "No". The only question of interest is "Is
the model illuminating and useful?".

Question: How to “cunningly” choose a model for brain
network topology and functionality?



Empirical brain networks
Complex brain networks: graph theoretical analysis of structural and functional systems

Bullmore and Sporns, Nature Reviews (09):

Empirical brain networks consistently show following features:

B Small worlds;

B High clustering;

B Hub-like degree structure, with (possibly exponentially truncated)

power-law degree sequences;

B Hubs have rich-club organisation;

B Modular structure;

B Long-range spatial connections occurring at low rate.

Networks change with age.



Why network analysis?
Complex brain networks: graph theoretical analysis of structural and functional systems

Bullmore and Sporns, Nature Reviews (09):

Emprirical analysis shows that network topology is affected in pa-
tients with mental disorders:

Disorders investigated include Alzheimer disease (AD) and
schizophrenia:

B Small world nature diminished, suggesting loss of effi-
ciency of brain functionality;

B Clustering affected by AD, most often lower.



Ising and fMRI
Ising-like dynamics in large-scale functional brain networks

Daniel Fraiman, Balenzuela, Foss and Chialvo (Phys Rev E 09):

Interesting comparison of 2D Ising model and

fMRI data of brain resting state.

64× 64× 49 sites corresponding to voxels of dimension
3.4375× 3.4375× 3 mm3.

Compared measured correlations to correlations measured in dy-
namical Ising model at

critical temperature.

Reasonable comparison.



Ising-fMRI



Conclusions
B Networks useful way to view real-world phenomena:

friendship paradox and centrality.

B Unexpected commonality networks:

scale free and small worlds.

B Random graph models:

Used to explain properties of real-world networks and
as benchmark for brain networks.

B Graph theory useful tool for neuroscience.

B View brain functionality as stochastic process on brain network.


