The self-organised dynamics of shape and internal structure of flocks of starlings

> Charlotte K. Hemelrijk Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen The Netherlands

Beautiful collective movements

Youtube

'Dancing' above the sleeping site

Individual behaviour?

- Telepathy (Selous, 1931)
- Selforganisation
 - Interactions of starlings are local, 7 neighbours (Ballerini *et al* 2008)

How can we learn more about this?

,Understanding by building'

Pfeifer and Scheier 1999

Rules of local interaction

Complex patterns of the group

Hypotheses for empirical studies

Start with model of fish schools

Shape of flocks

Fish schools: usually oblong in shape

Pitcher 1967

Bird flocks: All shapes

Carere et al 2009

Model of fish school

Hemelrijk & Hildenbrandt, 2008, Ethology

Individuals move and interact with neighbours:

- attraction
- alignment
- avoidance:

through slowing down (Katz et al 2011; Herbert-Read et al 2011)

Moving schools emerge, With shape that is oblong!

Oblong shape

(Kunz & Hemelrijk 2003, *Artificial Life*; Hemelrijk & Kunz 2004, *Behavioural Ecology*; Hemelrijk & Hildenbrandt, 2008, *Ethology*; Hemelrijk *et al* 2010, *Ethology*)

Causation of oblong shape

Corresponds to the patterns of the model!

Fish schools are oblong due to coordination while avoiding collisions

Question

What behaviour causes variation in shape in bird flocks?

Complex shapes of starling flocks

Youtube

Our model of starling flocks, StarDisPlay

(Hildenbrandt, Carere, Hemelrijk, 2010) *Behavioural Ecology*

Stay over the site for sleeping

Horizontal attraction

$$F_{Steering_i} = F_{Social_i} + F_{Roost_i}$$

Flying by Fixed Wing Aerodynamics

Balanced constant level flight

Lift and drag

$$L = \frac{v^2}{v_0^2} L_0 = \frac{v^2}{v_0^2} mg \qquad D = \frac{C_D}{C_L} L$$

Flight force

$$m{F}_{\mathsf{Flight}_{\mathsf{i}}} = ig(m{L}_{\mathsf{i}} + m{D}_{\mathsf{i}} + m{T}_{m{ heta}} + m{m}m{g}ig)$$

Update Acceleration,
$$a(t)$$

Velocity $\mathbf{v}_i (t + \Delta t) = \mathbf{v}_i (t) + \frac{1}{m} (\mathbf{F}_{steering_i}(t) + \mathbf{F}_{Flight_i}(t)) \cdot \Delta t$
Location $\mathbf{r}_i (t + \Delta t) = \mathbf{r}_i (t) + \mathbf{v}_i (t + \Delta t) \cdot \Delta t$

Parameters from starlings

(Hildenbrandt, Carere, Hemelrijk, 2010, Behavioural ecology)

Parameter	Description	Default value
Δu	Reaction time	50 -70 ms
v ₀	Cruise speed	10 m/s = 36 km/h
М	Mass	80 g
C_L/C_D	Lift-drag coefficient	3.3
L _o	Default lift	0.78 N
D_0, T_0	Default drag, default thrust	0.24 N
n _c	Number of interaction partners	6.5
r _h	Radius of max. separation ("hard sphere")	0.2 m
R _{Roost}	Radius fo Roosting Area	150 m

Model of large flock size, 20.000 individuals

Hemelrijk, Hildenbrandt, 2011, 2012, PLOS ONE, InterfaceFocus

Resembles empirical data in shape, orientation, internal structure, but volume is too small

Causes of variation of flock shape

Hemelrijk & Hildenbrandt, 2011, PlosOne; 2012, Interface Focus

- Flying behaviour
- Asynchrony of behaviour in large flocks

Biophysics of flight: Low variability of speed

Hemelrijk & Hildenbrandt, 2011, PlosOne

causes change of flock-shape for each turning

Adjustable speed causes oblong shape during turns in **fish schools**

Hemelrijk & Hildenbrandt, 2011, PlosOne

slower

Prediction for empirical study of fish

Biophysics: Rolling while turning!

Hildenbrandt, Carere, Hemelrijk, 2010, Behav Eco

Flying:10 m/s = 36 km/h

Spreeuwen

Banking while turning

Biophysics: rolling while turning

10s 20s 60s 50m 100m 50m 100m 30s 40s

Rolling induces variability of altitude

Model without rolling:

Loss of altitude during turns in Rock Doves and Steppe Eagles (Pomeroy & Heppner 1992; Gillies et al 2008)

Shape changes in the vertical direction

Asynchrony

Asynchrony (large flocks): heterogenous environment

N = 2000

Shape changes due to frontal individuals turning earlier Resembles Rock doves (Pomeroy and Heppner, 1992)

Asynchrony: low # interaction partners (6-7)

6-7 neighbours interaction partners

High number of interaction partners (50):

more static volume

causes variable shape due to local interaction, weaker synchronisation

Asynchrony: flock size

Larger groups -> greater sub-flocks of similar speed deviation like scale- free correlations in real starlings (Cavagna *et al* 2010)

Larger sub flocks differ in direction more -> flock shape is more variable

Very large flock of 20.000 individuals

Formation of sub groups and pseudopodia

Variation of shapes of flocks in birds

arises from

- Physical constraints of flying behaviour:
 - Banking while turning (-> loss of altitude)
 - Low variation in speed (-> changes of shape during turning)
- Asynchrony in a flock:
 - Heterogenous environment (returning to sleeping site)
 - Coordinating with only few neighbours
 - Large flocks
- Many more causes to be detected!

Internal structure

Internal motion in flock

Hemelrijk and Hildenbrandt, 2015, PlosOne

Recently empirical: stability of neighbours, % of the neighbours that are the same over time (Cavagna *et al* 2013)

In model too stable (also volume too small, remember)

Avoid only their closest neighbour?

Avoid single, closest neighbour (instead of seven)

Neighbour stability

% of the neighbours that are the same over time

Volume of flock

increases if avoid single, closest neighbour -> resembles empirical data better

Number of interaction partners and behaviour

For avoidance of collisions, there are fewer interaction partners than for attraction and alignment

Flock: reduction of capture success of predator

Procaccini et al 2011, Animal Behaviour

Agitation wave in starling flock: moves away from predator, reduces capture rate

Flocks are too far away from us to observe details of behaviour

What individual behaviour underlies this collective behaviour?

Agitation waves

- 'Wave of orientation'
 - In dunlins (Pott 1984), white belly, brown back
 - In anchovies (Radakov 1973; Gerlotto *et al.* 2006a) silvery belly, dark back
- 'Density wave' in herring (Axelsen et al. 2001)

What escape manoeuvre is used by starlings?

In model-starlings

Orientation wave

Moving closer: **Density** wave

Study in model, StarDisplay

Hemelrijk, van Zuidam, Hildenbrandt, 2015, Beh Eco and SocioBio

Extensions to Stardisplay:

- Predator attack: escape manoeuvre
- Repetition of escape manoeuvre by neighbours
- Two escape manoeuvres
 - Speeding-up-forward into the flock (-> density wave)
 - A 'Zig' like escape (-> orientation wave)

Repeated speeding up manoeuvre

(Potts, 1984; Kastberger et al 2008)

Density wave is not visible as a dark band

Repeated Zig (Rolling)

Min. projected

Computational model

Observable orientation wave (due to great difference in surface)

Agitation wave is an orientation wave rather than density wave

Also effects of density?

Hemelrijk, van Zuidam, Hildenbrandt, 2015, Beh Eco and SocioBio

Take out effects of orientation wave:

Starlings as balls in model

Maximal and Minimal projected area Zig-manoeuvre

Always same projected area Independent or orientation

In case of balls only wave of density (no of orientation) is observable

Wave of orientation: also due to density?

'bird- shaped' individuals

'ball - shaped'No wave

Agitation wave is merely orientation wave, like in dunlins and anschovies

Speed of the agitation wave

- Empirically on average 13.5 m/s (Procacini *et al* 2011)
 - Similar to cruise speed of starling (10 m/s)
 and to speed of falcon (11-15 m/s)
- Anticipation over large distance? Not needed
 - wave speed for transmission to nearest neighbour:
 - = average NND / latency to react :

thus 1.1m / 0.076s = 14.5 m/s

Empirical speed of wave 2-25m/s Reproduce in model?

Speed of wave

Hemelrijk, van Zuidam, Hildenbrandt, 2015, PlosOne

Larger number of neighbours to repeat from - > higher speed Lower density -> faster wave

Wave speed: Model and empirical

(empirical Proccacini et al 2011, model Hemelrijk et al 2015, BESC)

For repetition range between 2-7 neighbours (without long-range anticipation) and NND between 0.71 m – 1.93m

Summary

wave of agitation in starling flocks

Individual behaviour

- Zig like behaviour -> large change in visible wing surface
- Long-range antipation is not needed, local transmittion to 2-7 closest neighbours suffices -> empirical wave speed

Hypotheses for empirical data

,Understanding by building'

Pfeifer and Scheier 1999

Rules of local interaction

Complex patterns of the group

Hypotheses for empirical studies

Thanks

- Collaborators
 - Hanno Hildenbrandt (scientific programmer)
 - Claudio Carere (empirical data)
 - Lars van Zuidam (master student)
- Grants
 - Startup money Rosalind Frankin Fellowship
 - StarFlag European Framework
 - NWO pilot money
 - Gratama Foundation

Predator attacks

