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The problem

Propose a basic model to study the effect of obstacles in a strip in which
particles are moving possibly in a preferred direction.

Question we address: effect of the obstacles on the residence time, that
is to say, the typical time needed by the particles to walk along the whole
lane?

In collaboration with A. Muntean, O. Krehel, R. van Santen, A. Sengar,

– “Residence time estimates for asymmetric simple exclusion dynamics
on strips”, Physica A 4422, 436–457, 2016

In collaboration with A. Muntean, O. Krehel, R. van Santen,

– “A lattice model of reduced jamming by barrier”, Physical Review E
94, 042115, 2016
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Flux in a strip with obstacles

The motion of particles obeys the following rules:

– particle move randomly in any direction on a square
lattice (the strip);

– particles enter the strip through the top boundary;

– particles exit the strip through the bottom boundary;

– top and vertical boundaries are reflecting for particles
moving inside the strip;

– particle possibly experiences a downward drift.

Possible impediments to motion:

– obstacles in the core of the strip modeled by
rectangles with reflecting boundaries;

– particles entering the strip through the bottom
boundary.
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Model
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– (y , x) ∈ {1, . . . , L1} × {1, . . . , L2}
lattice site

– simple exclusion in the bulk

– reflecting vertical boundaries

– reservoirs %u = 1 and %d ∈ [0, 1)

– h ∈ [0, 1) probability of horizontal motion

– δ ∈ [0, 1] vertical drift

– black squares denote obstacles
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Model

At each time step t try to move a number of particles equal to the
number of particles n(t − 1) in the strip at t − 1 plus one.

For n(t − 1) + 1 times with probabilities

%uL1

%uL1 + %dL1 + n(t)
,

%dL1

%uL1 + %dL1 + n(t)
,

n(t)

%uL1 + %dL1 + n(t)

do the following: Top insert, Bottom insert, Bulk move.

Top insert: choose uniformly a site in row 1 and put there a new particle
if empty: n(t) = n(t) + 1.

Bottom insert: choose uniformly a site in row L2 and put there a new
particle if empty: n(t) = n(t) + 1.

Bulk move: see the picture.
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Stationary state

Let evolve the system for a sufficiently long
time t̄ and then for t large the sum

%(y , x) =
1

t − t̄

t∑
t′=t̄

ηt′(y , x)

becomes constant and provides the station-
ary occupation number profile.

Horizontal average:

%(x) =
1

L1

L1∑
x=1

%(y , x)
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Stationary state

Parameters: L1 = 80, L2 = 400, %u = 1, %d = 0, h = 0.5, and δ = 0.04.

One obstacle on the left and three obstacles on the right.

Obstacle width: red 10, green 20, blue 40, and purple 70.
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Residence time

The main quantity of interest is the residence time at stationarity:

R = typical time a particle needs to exit the strip at stationarity

Computing the residence time:

– Monte Carlo estimate: we shall run long simulations and average at
stationarity the time needed by each particle which entered the strip
through the top boundary to exit through the bottom boundary;

– we shall develop two analytic arguments to estimate the residence
time which will be called Mean Field (MF) and Birth–and–Death
(BD) estimates.
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Effect of lateral displacement

In absence of obstacles we expected a trivial effect due to the
two–dimensionality of the problem (positive h):

– consider a phenomenon taking time T for the analogous one
dimensional problem (h = 0);

– in the strip it will take the time T ′ such that

T ′ = T + hT ′ =⇒ T ′ =
T

1− h

Numerically we find this trivial result in the cases δ = 1 or %d = 0

Numerically we find not trivial results in the cases δ = 0 and %d > 0

– absence of monotony with respect to h

– transition between two different analytic results
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Mean Field or Macroscopic Limit

Macroscopic variables under diffusive scaling ε→ 0:

y → εy , x → εx , t → ε2t and δ → εδ

It is derived a macroscopic equation for the typical occupation number
mt(y , x) for ε→ 0:

∂mt

∂t
=

1

2
h
∂2mt

∂y2
+

1

2
(1− h)

∂2mt

∂x2
− δ(1− h)

∂

∂x
[mt(1−mt)]

In the one dimensional case this result is rigorous: A. De Masi, E.
Presutti, E. Scacciatelli, “The weakly asymmetric simple exclusion
process,” Ann. Ist. H. Poincaré A 25, 1–38, 1989.
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Mean field stationary profile

In absence of obstacle: look for stationary solution of the macroscopic
equation % = %(x) not depending on the horizontal coordinate y .

Get the equation:

1

2

d2

dx2
%− δ d

dx
%(1− %) = 0 with %(0) = %u, %(L2 + 1) = %d

Parameters: L1 = 100, L2 = 200, h = 0.5, and δ = 0.8. Left: %u = 1,
%d = 0. Right: %u = 0.8, %d = 0.55.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

d
e
n
si

ty
 p

ro
fi
le

vertical coordinate

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0  50  100  150  200

d
e
n
si

ty
 p

ro
fi
le

vertical coordinate

Strip without obstacles mean field or macroscopic limit page 13/30



Mean Field residence time prediction

The Mean Field equation is a continuity equation for the flux

~Jt = −1

2
h
∂mt

∂y
~e1 +

(
− 1

2
(1− h)

∂mt

∂x
+ δ(1− h)mt(1−mt)

)
~e2

At stationarity the density % depends only on x , thus the flux reads

J = −1

2
(1− h)

∂%

∂x
(x) + δ(1− h)%(x)[1− %(x)] = −1

2
(1− h)%′(0)

Assume that the typical velocity v(x) of a particle occupying a position
with vertical coordinate x is such that

%(x)v(x) = J

A simple integration gives the residence time

R =

∫ L2+1

0

%(x)

J
dx = − 2

(1− h)%′(0)

∫ L2+1

0

%(x) dx
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Analogy with a not symmetric Random Walk

t t t t t t t t0 1

i

L2 L2+1

? ?
boundary %d boundary %u

�
pi
-

qi

%u = 1

%d

Jump probabilities are chosen as follows:

qi =
1− h

2
(1 + δ)[1− %(L2 + 1− i + 1)] for i = 1, . . . , L2

pi =
1− h

2
(1− δ)[1− %(L2 + 1− i − 1)] for i = 0, . . . , L2 − 1
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Analogy with a not symmetric Random Walk

t t t t t t t t0 1

i

L2 L2+1

? ?
boundary %d boundary %u

�
px
-

qx

Residence time
R

?
= E[T ]

where

T = first hitting time to 0 for a walker started at L2

It is well known that

E[T ] =
1

qL2

+
L2−1∑
i=1

1

qi

(
1 +

L2∑
j=i+1

j∏
k=i+1

pk−1

qk

)
A general explicit expression cannot be provided, but one can compute
the above sum numerical for any choice of the parameters.
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Results: %d = 0
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Parameters: %d = 0, L1 = 100, and L2 = 200; the symbols •, N and �
refer to the cases h = 0, 0.4, 0.8.

Solid curves are the random walk prediction, open disks represent the
Mean Field prediction.
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Results: δ = 1
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Results: δ = 0 e %d > 0
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Solid curves are the random walk prediction, dashed lines represent the
Mean Field prediction.
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Transition between the MF and BD regimes
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Residence time vs. horizontal displacement probability h for L1 = 100,
L2 = 200, δ = 0, %d = 0.1 (left) and %d = 0.4 (right). Solid curves are
the random walk prediction, dashed lines represent the Mean Field
prediction.

Explicit formulas

RMF =
1

1− h

1 + %d
1− %d

(L2 + 1)2 and RBD =
1

1− h

1

1− %d
L2(L2 + 1)
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Non–monotonicity on h: δ = 0, L1 = 100, and L2 = 200
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Strip with obstacles



Mean Field stationary state

Solve the equation

1

2
h
∂2%

∂y2
+

1

2
(1− h)

∂2%

∂x2
− δ(1− h)

∂

∂x
[%(1− %)] = 0

in the domain equal to the strip minus the region occupied by the
obstacle

– with Neumann homogeneous boundary conditions on the vertical
boundaries and on the boundaries of the obstacle

– with Dirichlet boundary conditions %u and %d on the top and on the
bottom boundaries.

Remark: the solution will depend on the horizontal coordinate y .
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Mean Field stationary profile

Parameters: ρd = 0.9 (left), ρd = 0.0 (right), W = 85 (top), W = 90
(bottom), L1 = 100, L2 = 400, h = 0.5, δ = 0.05, ρu = 1, O2 = 3.

Strip with obstacles mean field stationary state page 24/30



Residence time estimate

As before we compare the Monte Carlo (labelled LA), the Mean Field
(MF) and the Birth–and–Death (BD).

We use the horizontally averaged density profile

%(x) =
1

L1

L1∑
x=1

%(y , x)

We do not expect quantitative agreement, since in this case the
horizontal translation invariance is lost.
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Results: zero drift (δ = 0)
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Parameters: L1 = 100, L2 = 400, O2 = 3, h = 0.5, ρd = 0 (left), and
ρd = 0.9 (right).

We find the expected results: increasing with W , good agreement on the
left for W small enough (MF much better than BD), poor agreement on
the right (BF better that MF).
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Results: not zero drift (δ > 0)

Parameters: L1 = 100, L2 = 400, h = 0.5, O2 = 3, and δ = 0.1.
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Remarks:

– good agreement with MF (not reported on the picture);

– increasing with W for %d ≤ 0.5;

– not monotonic behavior with W for %d > 0.5;
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Focus on the case %d = 0.9

Parameters: L1 = 100, L2 = 400, h = 0.5, O2 = 3, and ρd = 0.9 (right).
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The residence time R is almost constant till a critical value of W is
reached, where it decreases abruptly. After that it starts to increase.

We can explain this effect in terms of the occupation number stationary
profile.
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Horizontally averaged occupation number profile

0 50 100 150 200 250 300 350 400 450

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

W = 0, RT = 15972;

W = 10, RT = 16105;

W = 20, RT = 16740;

W = 30, RT = 18176;

W = 40, RT = 20405;

W = 50, RT = 23446;

W = 60, RT = 27833;

W = 70, RT = 34344;

W = 80, RT = 45248;

W = 90, RT = 69906;

W = 95, RT = 103821;

0 50 100 150 200 250 300 350 400 450

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

W = 0, RT = 16488;

W = 10, RT = 16564;

W = 20, RT = 17093;

W = 30, RT = 18468;

W = 40, RT = 20674;

W = 50, RT = 23748;

W = 60, RT = 28050;

W = 70, RT = 34531;

W = 80, RT = 45537;

W = 90, RT = 69942;

W = 95, RT = 104442;

0 50 100 150 200 250 300 350 400 450

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

W = 0, RT = 80054;

W = 10, RT = 79763;

W = 20, RT = 79734;

W = 30, RT = 79644;

W = 40, RT = 79153;

W = 50, RT = 78686;

W = 60, RT = 77890;

W = 70, RT = 76692;

W = 80, RT = 51828;

W = 90, RT = 76447;

W = 95, RT = 114826;

Parameters: lattice 100× 400, h = 0.5, δ = 0.1, ρd = 0 (left), ρd = 0.4
(center), ρd = 0.9 (right), and O2 = 3. Remarks:

– left and center pictures are similar: nothing happens for %d ≤ 0.5;

– at %d = 0.9 the average occupation number in the upper region is
much higher and hence so it is the residence time;

– for W = 80 there is an abrupt change in the profile after the
obstacle: the residence time decrease;

– the further increase of the occupation number in the upper part
justifies the finale increase of the residence time.
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Comments

– modeled the problem by means of a lattice exclusion process

– developed two analytical tools to estimate the residence time

– without obstacles: we found strange behaviors in the zero drift
regime when particles are allowed to enter through the bottom
boundary

– with obstacles: in the not zero drift regime we found a not
monotonic behavior of the residence time with respect to the width
of the obstacle

– explored the connection of such a behavior with the shape of the
occupation number stationary profile

– what is the reason of the behaviors described above?

– what happens if other parameters of the obstacles are changed?
Position? Height?

– last question is connect to Alessandro Ciallella’s poster: a similar
problem in the framework of the Lorentz Gas system
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Addenda
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