
Karel Matous ̌

High Performance Computing for
Science and Engineering

College of Engineering Collegiate Associate Professor of Computational Mechanics
Director of Center for Shock-Wave Processing of Advanced Reactive Materials

Department of Aerospace and Mechanical Engineering 2

Outline

Why Parallel Computing
• Importance of parallel computing
• Examples of parallel computing

HPC architecture trends
• Parallel architectures and their trends
• Path towards Exascale

On node, and node to node parallelism
• Modern parallel programming languages, OpenMP, MPI,

and HPX
• Co-processor acceleration, CUDA and OpenCL
• Core kernels packages, Kokkos

Department of Aerospace and Mechanical Engineering 3

Numerical Parallel Algorithms
• Data parallelism
• Scaleability
• PDEs, Optimization tools, Statistical techniques,

Multiscale modeling
• Numerical Libraries, ScaLAPACK, PETSc, LAMMPS,

Trilinos, HYPRE, ParMETIS

Software Engineering Tools
• Gitlab, Jenkins, Debugging, Profiling, Visualization

Outline

Department of Aerospace and Mechanical Engineering 4

Solving Real World Problems — Beyond Academic Exercise

http://nc-cera.renci.org

9 SEPTEMBER 2005 VOL 309 SCIENCE www.sciencemag.org1656

NE

W
S

P A G E 1 6 6 1 1 6 6 2 1 6 6 4 1 6 6 7 1 6 6 8

The evolving

brain

Japan’s next-

generation

facilities

Th i s We e k

There are times when scientists would prefer
to be wrong. Such was the case last week as
Ivor van Heerden and other researchers
reflected upon the devastation that Hurricane
Katrina wrought on New Orleans and the Gulf
Coast towns to the east. As director of
Louisiana State University’s Center for Public
Health Impacts of Hurricanes, Van Heerden
has since 2002 led a multidisciplinary team
looking at what would happen if a major hur-
ricane directly hit New Orleans. The center
has studied everything from how the city
would flood to how many people might ignore
evacuation orders or be unable to flee—almost
1 in 4, they had estimated. “The sad part is that
we called this 100%,” says Van Heerden.

Causing the largest natural disaster in U.S.
history, Katrina slammed into the Gulf Coast
on 29 August with its eye hitting about
55 km east of the city. Although the storm ini-
tially brought more destruction to other areas
along the Mississippi and Louisiana coast,
several levees protecting New Orleans failed
the following the day, and the city, about
80% of which is below sea level, filled with
water. The floods may have killed thousands,
stranded many more, and triggered a massive
relief and evacuation effort.

Numerous studies had warned of this cata-
strophic scenario, and as it played out, many
scientists watched with anger and frustration.
“It’s easy to do studies. Sometimes it’s hard to

act upon them,” says Rick Leuttich of the Uni-
versity of North Carolina, Chapel Hill, who has
helped model how a hurricane could flood New
Orleans. “We’ve had plenty of knowledge to
know this was a disaster waiting to happen.”

In one sense, Katrina, which left many
researchers without homes
and laboratories (see sidebar,
p. 1657), was a rarity: Few hur-
ricanes that powerful have
struck the Gulf Coast in
recorded history. At the same
time, say hurricane experts,
the storm contained few sur-
prises. After speeding across
south Florida as a category 1

hurricane, it reached the Gulf of Mexico and
began converting energy from the warm,
moist air into increased intensity. By Satur-
day, 27 August, Katrina was a category 3
storm—and still growing.

Timothy Olander, a tropical cyclone
researcher at the University of Wisconsin,
Madison, recalls waking up the next morning
to see that Katrina’s central air pressure had
dropped from about 960 millibars to below
905 millibars. The storm was now a category 5
hurricane with winds topping 175 mph. “I
thought, ‘Holy cow. That’s an amazing devel-
opment.’You don’t see that rapid intensifica-
tion very often,” he says. Katrina “became one
of the strongest storms ever recorded in the

Gulf of Mexico–Caribbean region.” Two fac-
tors, says Olander’s colleague James Kossin,
fueled Katrina’s growth: “phenomenally
warm” waters in the gulf and a lack of strong,
high-altitude winds that could have dispersed
the storm’s energy.

On Sunday morning, 28 August, thou-
sands in New Orleans failed to pay heed to an
evacuation order or couldn’t leave. Although
that shocked many, Van Heerden’s center had
recently polled 1000 randomly chosen
New Orleans residents, using social workers
to reach poor people, and had found that

21.4% would stay
despite an order to
leave, many of them
because they lacked
the means to escape.

Just before land-
fall, Katrina took a
jog to the east, spar-
ing New Orleans
from the full force of

the storm. Because of the way spinning
storms interact with land, “hurricanes often
wobble to the right as they come ashore,” says
meteorologist Hugh Willoughby of Florida
International University (FIU) in Miami.

By landfall, Katrina had also shrunk to a
category 4 storm. Scientists have a poor under-
standing of what regulates hurricane intensity,
but Kossin and Willoughby note that some data
indicate Katrina weakened because it had just
undergone a phenomenon called eyewall
replacement. The eyewall is the band of intense
wind and clouds that forms around the hurri-
cane’s eye. Large storms sometimes develop an
outer eyewall that starves the inner one of
energy until it degrades.

Scientists’ Fears Come True as

Hurricane Floods New Orleans

H U R R I C A N E K AT R I N A

Katrina’s wrath.These satellite pictures of New Orleans taken before (left) and after (right and inset) Hurricane Katrina give a sense of the flooding caused
by breaks in the levees holding back Lake Pontchartrain in the north and the Mississippi River.

C
R

ED
IT

S:
JE

FF
 S

C
H

M
A

LT
Z

,M
O

D
IS

 L
A

N
D

 R
A

PI
D

 R
ES

PO
N

SE
 T

EA
M

/G
SF

C
/N

A
SA

;(
IN

SE
T)

 N
O

A
A

▲

Published by AAAS

9 SEPTEMBER 2005 VOL 309 SCIENCE www.sciencemag.org1656

NE

W
S

P A G E 1 6 6 1 1 6 6 2 1 6 6 4 1 6 6 7 1 6 6 8

The evolving

brain

Japan’s next-

generation

facilities

Th i s We e k

There are times when scientists would prefer
to be wrong. Such was the case last week as
Ivor van Heerden and other researchers
reflected upon the devastation that Hurricane
Katrina wrought on New Orleans and the Gulf
Coast towns to the east. As director of
Louisiana State University’s Center for Public
Health Impacts of Hurricanes, Van Heerden
has since 2002 led a multidisciplinary team
looking at what would happen if a major hur-
ricane directly hit New Orleans. The center
has studied everything from how the city
would flood to how many people might ignore
evacuation orders or be unable to flee—almost
1 in 4, they had estimated. “The sad part is that
we called this 100%,” says Van Heerden.

Causing the largest natural disaster in U.S.
history, Katrina slammed into the Gulf Coast
on 29 August with its eye hitting about
55 km east of the city. Although the storm ini-
tially brought more destruction to other areas
along the Mississippi and Louisiana coast,
several levees protecting New Orleans failed
the following the day, and the city, about
80% of which is below sea level, filled with
water. The floods may have killed thousands,
stranded many more, and triggered a massive
relief and evacuation effort.

Numerous studies had warned of this cata-
strophic scenario, and as it played out, many
scientists watched with anger and frustration.
“It’s easy to do studies. Sometimes it’s hard to

act upon them,” says Rick Leuttich of the Uni-
versity of North Carolina, Chapel Hill, who has
helped model how a hurricane could flood New
Orleans. “We’ve had plenty of knowledge to
know this was a disaster waiting to happen.”

In one sense, Katrina, which left many
researchers without homes
and laboratories (see sidebar,
p. 1657), was a rarity: Few hur-
ricanes that powerful have
struck the Gulf Coast in
recorded history. At the same
time, say hurricane experts,
the storm contained few sur-
prises. After speeding across
south Florida as a category 1

hurricane, it reached the Gulf of Mexico and
began converting energy from the warm,
moist air into increased intensity. By Satur-
day, 27 August, Katrina was a category 3
storm—and still growing.

Timothy Olander, a tropical cyclone
researcher at the University of Wisconsin,
Madison, recalls waking up the next morning
to see that Katrina’s central air pressure had
dropped from about 960 millibars to below
905 millibars. The storm was now a category 5
hurricane with winds topping 175 mph. “I
thought, ‘Holy cow. That’s an amazing devel-
opment.’You don’t see that rapid intensifica-
tion very often,” he says. Katrina “became one
of the strongest storms ever recorded in the

Gulf of Mexico–Caribbean region.” Two fac-
tors, says Olander’s colleague James Kossin,
fueled Katrina’s growth: “phenomenally
warm” waters in the gulf and a lack of strong,
high-altitude winds that could have dispersed
the storm’s energy.

On Sunday morning, 28 August, thou-
sands in New Orleans failed to pay heed to an
evacuation order or couldn’t leave. Although
that shocked many, Van Heerden’s center had
recently polled 1000 randomly chosen
New Orleans residents, using social workers
to reach poor people, and had found that

21.4% would stay
despite an order to
leave, many of them
because they lacked
the means to escape.

Just before land-
fall, Katrina took a
jog to the east, spar-
ing New Orleans
from the full force of

the storm. Because of the way spinning
storms interact with land, “hurricanes often
wobble to the right as they come ashore,” says
meteorologist Hugh Willoughby of Florida
International University (FIU) in Miami.

By landfall, Katrina had also shrunk to a
category 4 storm. Scientists have a poor under-
standing of what regulates hurricane intensity,
but Kossin and Willoughby note that some data
indicate Katrina weakened because it had just
undergone a phenomenon called eyewall
replacement. The eyewall is the band of intense
wind and clouds that forms around the hurri-
cane’s eye. Large storms sometimes develop an
outer eyewall that starves the inner one of
energy until it degrades.

Scientists’ Fears Come True as

Hurricane Floods New Orleans

H U R R I C A N E K AT R I N A

Katrina’s wrath.These satellite pictures of New Orleans taken before (left) and after (right and inset) Hurricane Katrina give a sense of the flooding caused
by breaks in the levees holding back Lake Pontchartrain in the north and the Mississippi River.

C
RE

D
IT

S:
JE

FF
 S

C
H

M
A

LT
Z

,M
O

D
IS

 L
A

N
D

 R
A

PI
D

 R
ES

PO
N

SE
 T

EA
M

/G
SF

C
/N

A
SA

;(
IN

SE
T)

 N
O

A
A

▲

Published by AAAS

http://www.nd.edu/~coast/index.html
‣Computational Hydraulics Laboratory

http://nc-cera.renci.org
http://www.nd.edu/~coast/index.html

Department of Aerospace and Mechanical Engineering 5

Solving Real World Problems — Beyond Academic Exercise

The protomeric unit of HRV14 virus
CHARMM mode using 750,000 atoms

‣ (Chemistry at HARvard Macromolecular Mechanics)

KADAU et al., MOLECULAR DYNAMICS COMES OF AGE:
320 BILLION ATOM SIMULATION ON BlueGene/L, 2006

2/19/14 10:18 PM

Page 1 of 9http://www.teratec.eu/actu/newsletter/2014_01_newsletter_teratec_uk.html

If you can not read this email in html format, click HERE

Hervé MOUREN
Directeur de TERATEC

EDITORIAL

Dear friends, let me begin by wishing you and your companies every success in this new year. We are looking forward to a very
busy year, full of events and major program launches in France and across Europe.

The call for High Performance Computing and Simulation projects sent out by France's Ministry of Productive Recovery and High
Commissioner for Investments, in response to the report on the importance of simulation to make companies more competitive
that our president Gérard Roucairol submitted to the government, is a perfect opportunity to make your most advanced projects
become reality. The launch meetings held in Bruyères-le-Châtel near our Campus and in Toulouse caught the eye of many
industrial firms and research centers. The deadline for applications is March 31; see below for practical details about applying.

On September 12, the French President and the Minister for Productive Recovery announced an industrial policy based on 34
project plans. The "Supercomputers" plan is designed to help France master the future disruptive technologies, both hardware and
software, needed to develop the next generations of supercomputers. It will also accelerate the diversification of different uses of
simulation, help disseminate its use in industry, and increase appropriate training among engineers. Gérard Roucairol has been
chosen to pilot this plan, confirming Teratec's role in organizing and facilitating the French industrial community. We will also have
the chance to describe its content in more detail at the next Teratec Forum on July 1 and 2 at the Ecole Polytechnique, to which
you are all invited.

At the European level, the Commission has just signed a Public-Private Partnership agreement with the ETP4HPC platform to
develop a European HPC ecosystem, slated to receive €700 M in funding over the period of the next "Horizon 2020" framework
program.

Meanwhile, our Campus is growing: ESI Group joined us in 2013, along with Silkan and its partners CMI Defence and Avantis
Technology, and we will welcome more new arrivals in 2014..

All the best for 2014!

Department of Aerospace and Mechanical Engineering

High Performance Computing

6

Department of Aerospace and Mechanical Engineering 7

High Performance Computing

Editors

Mark Sawyer, Business Development and Project Manager, EPCC
Mark Parsons, Executive Director, EPCC; Associate Dean for e-Research, University of Edinburgh

A Strategy for Research
and Innovation through

High Performance
Computing

PlanetHPC is supported under Objective “Computing Systems” of Challenge 3 “Components and
Systems” of the ICT Programme of the European Commission.

2

Executive summary

HPC is without doubt a key enabling technology for many technologically
advanced nations in the 21st century. Many countries world-wide are investing
in HPC and some, most notably the USA, China and Japan are investing vast
sums of public money on related infrastructure.

The importance of HPC is summarised well by the statement contained in a
recent report by industry experts IDC:

“Today, to Out-Compute is to Out-Compete”.

The rise in performance and capability of HPC is now threatened by technological
factors, in particular energy requirements and the fact that microprocessor
speeds are no longer expected to increase in the way they have in the past.

Europe has a strong tradition of research and commercialisation of HPC
applications. On one hand, Europe is threatened by global competitors
making huge investments. On the other hand Europe is well placed due to
its world leading position in mobile and embedded computing, offering
a strong competitive advantage when it comes to addressing some of the
major challenges of HPC – energy-efficiency, dependability, and real-time
responsiveness. Europe must view the challenges ahead as an opportunity
to invest for its future by developing new technology, exploiting synergies
with other domains, providing advanced facilities, educating its workforce
and promoting innovative use of HPC. As the HPC landscape changes, the
economies which adapt the fastest will be the ones that will gain the greatest
benefits.

Unless action is taken, the societal and economic benefits of HPC and computing
in general will stall. The leadership that Europe has shown in many domains of
computing and its applications over the last 20 years must be maintained and
expanded if the European economy is to remain innovative and competitive.
Investment in research, development and training carried out at the European
level together with measures to promote the early industrial and commercial
uptake of new technology will be essential elements in a successful strategy,
in which HPC is one of the key drivers.

A long term programme of R&D must be initiated to overcome the major
technological hurdles that are identified in this report. Areas which should be
prioritised include:

 • Highly scalable methods for modelling and simulation that can
exploit massive parallelism and data locality.

 • New programming models and tools, targeted at massively parallel
and heterogeneous environments.

36

These short term R&D activities will feed into the longer-term research
programme.

In addition to building on European strengths in areas such as embedded and
mobile computing, R&D actions must also aim at a structuring effect, bringing
constituencies together who are rather distinct today but whose collaboration
would have a high economic, technical and competitive potential.

Visioning, roadmapping and constituency-building activities
The immediate actions described above must be coupled to a longer-term
programme of research and development. R&D themes which cut across the
scenarios presented in earlier sections should be established with a view to
their continuation through Horizon 2020.

The longer-term programme must be multidisciplinary, involving HPC experts,
scientists (including computer scientists), mathematicians and engineers,
together with application experts from all appropriate fields.

The themes that should form the basis of the long term programme have been
mentioned earlier, although more may emerge as time progresses.

These themes should form the basis for a set of support actions which will
identify promising research directions within their field, build constituencies
and sketch potential research roadmaps. These should be analysed based on
their market relevance and potential benefit to define in detail a longer-term
research strategy for Horizon 2020.

These actions must be carried out in a way that allows cross-over of ideas to
ensure that gap analysis can be done and a holistic approach can be taken.
There must also be cross-over with strategic programmes such as Factories of
the Future PPP, European Green Car Initiative, the Virtual Physiological Human
project and other initiatives.

Timeline of activities
The preparation for this programme of research needs to start as soon as
possible in Framework 7 and continue through Horizon 2020. The following
timeline is proposed for actions:

Department of Aerospace and Mechanical Engineering 8

Predictive Science Academic Alliance Program
(PSAAP II)

Department of Aerospace and Mechanical Engineering 9

Purdue/Notre Dame

V&V/UQ

Notre Dame

Computational
Physics

Indiana/Notre Dame

Computer
Science

K. Matous

S. Paolucci

G. Tryggvason P. Kogge A. Lumsdaine T. Sterling

A. Mukasyan

S. Son

J. Powers

Shock Wave-processing of Advanced Reactive Materials

Department of Aerospace and Mechanical Engineering 10

Macro-scale
• No-slip on top/bottom
• h= 20 mm, d = 20 mm

E = 205 GPa, ν = 0.25
320K elements in Macro

Micro-scale
• 210 x 210 x 210 µm3

• 98 voids, 30 µm diameter
E = 3 GPa, ν = 0.29
10.2M elements in cell

‣Nonlinear hyperelastic constitutive model

5296 RUCs

Computational Homogenization

Department of Aerospace and Mechanical Engineering 11

9.43B Node, 53.75B Elements, 28.08B DOF

0.0

200

400

600

0.0

208

416

625

1

2

1

2

�e�

0.00

0.30

0.60

0.15

0.45

Multi-scale Simulations, PGFem3D - CH

he(min)=191 nm5296 RUCs

σeq [MPa]

||0t|| [MPa]

‣Full system on LLNL Vulcan — 393,216 cores, 786,432 threads

Department of Aerospace and Mechanical Engineering 12

Fixed

u

2 mm

40 mm

10 mm

5 mm

Macroscale
• Mode I loading
E = 15 GPa, ν = 0.25
10K elements
322 cohesive elements

Microscale
• 250 x 250 x 125 µm3

• 40 voids, 40 µm diameter
E = 5 GPa, ν = 0.34
249K elements in RUC

322 RUCs

‣ 80M Elements, 42.5M DOFs

Multi-scale Simulations, PGFem3D - CH

Department of Aerospace and Mechanical Engineering 13

Fully Coupled Multi-scale DCB Failure: Mode-I

||0t|| [MPa]

1

σeq [MPa]

2

‣ Numerically resolve O(105) scales (1 cm to 100 nm)

12

0 25 50 75 100

0 15 30 45 60

ω
0.0 1.0

Number of elements : 18,227,610
Δt = 0.2 ns, cpar = 0.7

fixed

1.2 mm 1.2 mm

1.2mm

v = 100 m/s

periodic

4096 cores

‣ LANL
Mustang

Department of Aerospace and Mechanical Engineering 14

Shock Simulations in Heterogeneous Materials
Ni Al Matrix

Particle radius [µm] 100 50 / 25 -
Young’s modulus [GPa]

[GPa]
225.9 100 0.1

Density [kg/m3] 9000 2700 500

BinderParticles

Department of Aerospace and Mechanical Engineering 15

Macro-continuum Example - WAMR

• Domain
[0, 5] × [0, 0.75] cm

• Ambient mixture
YN2 = 0.868, YO2 = 0.232
P = 101.3 kPa
T = 1000 K

• Hydrogen bubble
YH2 = 0.99, Yair = 0.01
x = 0.80 cm

• Chemical model
9 species, 38 reactions

• Loaded by shock Ms = 2.0 at
x = 0.46 cm

• Wavelet parameters
ɛ = 10-3

p=6
[Nx × Ny]coarse = [50 × 8]
J = 14

• 256 cores

Department of Aerospace and Mechanical Engineering 16

Macro-continuum Example - WAMR

Resolution required < 1 micron

Department of Aerospace and Mechanical Engineering 17

Third-order statistics

‣ LANL Mustang, 7200 cores

15

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150060

...

spheres

icosahedra

dodecahedra

octahedra

hexahedra

tetrahedra

b/
d

b 12
/d

0.7

0.8

0.9

1.0

1.1

1.2

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

cp

0.2 0.3 0.4 0.5 0.6

(a)

contact type
V–V V–E V–F E–E E–F F–F

(b)

Figure 9. (a) Mean minimum distance of neighbouring particles,β/d, for isotropic systems of Platonic solids as a function of
volume fraction, cp. (b) Distance between only two contacting Platonic solids, β12/d. Contact types are vertex–vertex (V–V),
vertex–edge (V–E), vertex–face (V–F), edge–edge (E–E), edge–face (E–F) and face–face (F–F).

HS bound

TPA-WR spheres

TPA-WR icosahedra

TPA-WR dodecahedra

TPA-WR octahedra

TPA-WR hexahedra

TPA-WR tetrahedra

k e/
k m

cp

1
0 0.2 0.4 0.6

4

7

10

13

16

19

Figure 10. Third-order approximation of thermal conductivity for isotropic systems of Platonic solids with infinite contrast.

using equation (2.13) for an infinite contrast ratio (κp/κm = ∞). In figure 10, the striking feature is
the prominent shape effect in thermal conductivity for different Platonic solids. With tetrahedra
for example (dotted line with triangular markers), the normalized effective thermal conductivity
(κe/κm) for cp = 0.6 is 16.81. In comparison to the pack of spheres (κe/κm = 8.42), the effective
thermal conductivity has increased by 1.99 times (99.6% increase). In general, as the number
of faces, NF, decreases, the effective conductivity increases. Moreover, when revisiting the local
morphology measure β, tetrahedra came to proximity frequently through F–F contact (β/d < 1)

 on April 8, 2015http://rspa.royalsocietypublishing.org/Downloaded from

13

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150060

...

0
icosahedra

octahedra

tetrahedra

d

d

2d

2d

3d

4d

r1

r2

0

d

2d

3d

4d

r2

0

d

2d

3d

4d

r2

3d 4d 0 d 2d
r1

3d 4d 0 d 2d
r1

3d 4d 0.189

0.257

0.326

0.394

0.463

0.532

0.600
q = 60°q = 10°q = 0°

Figure 6. Three-point probability function, Sppp(r1, r2, θ), for isotropic systems of Platonic solids with cp = 0.6. (Online version
in colour.)

It is particularly important to understand the error related to the interactions of the probability
functions in S̃ppp (see equation (2.12)). Therefore, two error metrics are constructed to evaluate
the sampling error and are defined as ε0

S3 = ∥S̃ppp(r1 = 0, r2 = 0, θ)∥∞ and ε∞
S3 = |S̃ppp(r1 = r∞,

r2 = r1, θ = π)|. Both error metrics should approach 0 as Nr → ∞. For all packs with cp = 0.2, both
of these error metrics are below 1.3 × 10−4 when the number of random samples is Nr = 107. For
all packs with cp = 0.6, both of these metrics are below 2.7 × 10−4. These errors are at least 2× less
than the tolerance tol in the adaptive interpolation scheme.

Following the statistical analysis and error quantification, the microstructural parameters ζp
and ηp are computed. The same numerical parameters reported for the systems of impenetrable
spheres (r∞ = 12d and Nr = 107) are used. The parameters ζp and ηp for all packs of Platonic solids
are shown in figure 7a,b, respectively. Note that there is a monotonic increase of ζp as the number
of faces, NF, decreases. However, the value of ηp does not follow this simple trend.

Considering the local configurations of the shapes aids in understanding the values obtained
for ηp. A measure βIJ is introduced to quantify the local arrangement of particles. βIJ, as illustrated
in figure 8, is the distance between a particle I and a neighbouring particle J. The minimum
distance between particle I and all neighbouring particles is denoted βI = min(βIJ). Finally, β =
mean(βI) is defined as the average βI for all particles in a pack. In figure 9a, β is presented for
each pack and is normalized by the equivalent sphere diameter, d. In order to complement the
values of β/d, the distances, β12/d, associated with the various types of contacts between only two

 on April 8, 2015http://rspa.royalsocietypublishing.org/Downloaded from

‣ Morphology is important

Statistical Micromechanics

Department of Aerospace and Mechanical Engineering 18

HPC architecture trends

‣ Top 500

Collaboration of Oak
Ridge, Argonne, and
Lawrence Livermore

(CORAL) — $525 Million

‣ SUMMIT — Oak Ridge
‣ SIERRA — LLNL
‣ AURORA — Argonne

Department of Aerospace and Mechanical Engineering 19

Technology Demands new Response

The Free Lunch Is Over
 

A Fundamental Turn Toward
Concurrency in Software

By Herb Sutter, 2005

“There ain’t no such thing as a free
lunch.” —Robert A. Heinlein

 The Moon Is a Harsh Mistress

Department of Aerospace and Mechanical Engineering 20

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1/1/92 1/1/96 1/1/00 1/1/04 1/1/08 1/1/12 1/1/16

Rm
ax
	(G

flo
ps
/s
ec
)

Heavyweight Lightweight
Hybrid Trend:	CAGR=1.88

Extreme Scale Architectures

LINPACK (TOP500) Still Increasing

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Heavyweight Lightweight Hybrid

H
PC

G
 E

ffi
ci

en
cy

LINPACK Efficiency

1.E-02

1.E-01

1.E+00

1.E+01

1/1/92 1/1/96 1/1/00 1/1/04 1/1/08 1/1/12 1/1/16

By
te
s	p

er
	F
lo
p/
s		
(R
m
ax
)	

Heavyweight Lightweight
Hybrid Trend:	CAGR=0.72

Memory/Flop/s Is Cratering

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1/1/92 1/1/96 1/1/00 1/1/04 1/1/08 1/1/12 1/1/16

TC
:	F
lo
ps
	p
er
	C
yc
le
	(R

m
ax
)

Heavyweight Lightweight
Hybrid Trend:	CAGR=1.99

Concurrency Is Skyrocketing

Department of Aerospace and Mechanical Engineering 21

Extreme Scale Architectures

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

2005 2010 2015 2020 2025

Fu
ll	
Sy
st
em

	R
pe

ak
	(G

f/
s)

Top10 2008	Model New	Scaled New	Constant

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

2005 2010 2015 2020 2025

En
er
gy
	p
er
	fl
op

	(p
J/
flo

p)

Top10 New	Scaled New	Constant

20pJ/flop	=	20MW	for	1	exaflop	

We Might Get a HeavyWeight Exaflop/s

Energy/Flop Predicts 0.5 GW

‣Looking Forward
Flops are not the question (esp.
dense)
Conventional heavyweight multi-
cores with statically located
threads are not the answer
Problem lies in
Memory systems (bandwidth, latency)
Handling massive concurrency,

asynchrony
Exascale architectures must be
memory-centric, with ability for
threads to move

‣It is the Memory, not the Core
‣It is the Data, not the Computations

Department of Aerospace and Mechanical Engineering 22

On node, and node to node parallelism

Proc

Interconnection Network

Memory

Proc Proc Proc

Proc Proc

Memory Memory Memory Memory

Where is the memory physically located?
Is it connected directly to processors?
What is the connectivity of the network?

‣ A generic parallel architecture

CS267 Lectures

Department of Aerospace and Mechanical Engineering 23

• Programming model is made up of the languages and
libraries that create an abstract view of the machine

• Control
•  How is parallelism created?
•  What orderings exist between operations?

• Data
•  What data is private vs. shared?
•  How is logically shared data accessed or communicated?

• Synchronization
•  What operations can be used to coordinate parallelism?
•  What are the atomic (indivisible) operations?

• Cost
•  How do we account for the cost of each of the above?

Parallel Programming Models

CS267 Lectures

Department of Aerospace and Mechanical Engineering 24

Programming Models Machine Models

1.  Shared Memory 1a. Shared Memory
1b. Multithreaded Procs.
1c. Distributed Shared Mem.

2.  Message Passing

2a. Global Address Space

2a. Distributed Memory
2b. Internet & Grid Computing
2c. Global Address Space

3. Data Parallel 3a. SIMD
3b. Vector

4. Hybrid 4. Hybrid

Parallel Programming Models

CS267 Lectures

(Single Instruction Multiple Data)

Department of Aerospace and Mechanical Engineering 25

Programming Model 1a: Shared Memory

P1

bus

$

memory

•  Processors all connected to a large shared memory.
•  Typically called Symmetric Multiprocessors (SMPs)
•  SGI, Sun, HP, Intel, IBM SMPs
•  Multicore chips, except that all caches are shared

•  Advantage: uniform memory access (UMA)
•  Cost: much cheaper to access data in cache than main memory
•  Difficulty scaling to large numbers of processors

•  <= 32 processors typical
 P2

$

Pn

$

Note: $ = cache
shared $

CS267 Lectures

Department of Aerospace and Mechanical Engineering 26

Programming Model 1b: Multithreaded Processor

• Multiple thread �contexts� without full processors
• Memory and some other state is shared
• Sun Niagra processor (for servers)

•  Up to 64 threads all running simultaneously (8 threads x 8 cores)
•  In addition to sharing memory, they share floating point units
•  Why? Switch between threads for long-latency memory operations

• Cray MTA and Eldorado processors (for HPC)

Memory

shared $, shared floating point units, etc.

T0 T1 Tn

CS267 Lectures

arithmetic logic unit/bus

Department of Aerospace and Mechanical Engineering 27

• Cray XE6 (Hopper), Cray XC30 (Edison)
• PC Clusters (Berkeley NOW, Beowulf)
• Edison, Hopper, most of the Top500, are distributed

memory machines, but the nodes are SMPs.
• Each processor has its own memory and cache but

cannot directly access another processor�s memory.
• Each �node� has a Network Interface (NI) for all

communication and synchronization.

interconnect

P0

memory

NI

. . .

P1

memory

NI Pn

memory

NI

Programming Model 2a: Distributed Memory

CS267 Lectures

Department of Aerospace and Mechanical Engineering 28

PC clusters — Contributions of Beowulf
•  An experiment in parallel computing systems (1994)
•  Established vision of low cost, high end computing

•  Cost effective because it uses off-the-shelf parts

•  Demonstrated effectiveness of PC clusters for
some (not all) classes of applications

•  Provided networking software
•  Conveyed findings to broad community (great PR)
•  Tutorials and book
•  Design standard to rally
 community!

•  Standards beget:
 books, trained people,
 software … virtuous cycle

Adapted from Gordon Bell, presentation at Salishan 2000 Dr. Thomas Sterling
CS267 Lectures

Department of Aerospace and Mechanical Engineering 29

Programming Model 2a: Internet/Grid Computing
•  SETI@Home: Running on 3.3M hosts, 1.3M users (1/2013)

•  ~1000 CPU Years per Day (older data)
•  485,821 CPU Years so far

•  Sophisticated Data & Signal Processing Analysis
•  Distributes Datasets from Arecibo Radio Telescope

Next Step-
Allen Telescope Array

Google
 “volunteer computing”
 or “BOINC”

CS267 Lectures

Department of Aerospace and Mechanical Engineering 30

Introduction to OpenMP

(application programming interface)

CS267 Lectures

• What is OpenMP?
•  Open specification for Multi-Processing, latest version 4.0, July 2013
•  �Standard� API for defining multi-threaded shared-memory

programs
•  openmp.org – Talks, examples, forums, etc.
•  computing.llnl.gov/tutorials/openMP/
•  portal.xsede.org/online-training
•  www.nersc.gov/assets/Uploads/XE62011OpenMP.pdf

• High-level API

•  Preprocessor (compiler) directives (~ 80%)
•  Library Calls (~ 19%)
•  Environment Variables (~ 1%)

Department of Aerospace and Mechanical Engineering 31

• OpenMP is a portable, threaded, shared-memory
programming specification with �light� syntax

•  Exact behavior depends on OpenMP implementation!
•  Requires compiler support (C, C++ or Fortran)

• OpenMP will:
•  Allow a programmer to separate a program into serial regions and

parallel regions, rather than T concurrently-executing threads.
•  Hide stack management
•  Provide synchronization constructs

• OpenMP will not:
•  Parallelize automatically
•  Guarantee speedup
•  Provide freedom from data races

A Programmer’s View of OpenMP

CS267 Lectures

(concurrent memory access)

Department of Aerospace and Mechanical Engineering 32

Programming Model – Concurrent Loops
•  OpenMP easily parallelizes loops

•  Requires: No data dependencies
(reads/write or write/write pairs)
between iterations!

•  Preprocessor calculates loop
bounds for each thread directly
from serial source

?

?

for(i=0; i < 25; i++)
{

 printf(�Foo�);

}

#pragma omp parallel for

CS267 Lectures

Department of Aerospace and Mechanical Engineering 33

• OpenMP is a compiler-based technique to create
concurrent code from (mostly) serial code

• OpenMP can enable (easy) parallelization of loop-based
code

•  Lightweight syntactic language extensions

• OpenMP performs comparably to manually-coded
threading

•  Scalable
•  Portable

• Not a silver bullet for all (more irregular) applications

•  Lots of detailed tutorials/manuals on-line

OpenMP Summary

CS267 Lectures

Department of Aerospace and Mechanical Engineering 34

Distributed Memory Machines and Programming
Network Analogy

• To have a large number of different transfers occurring at once,
you need a large number of distinct wires

•  Not just a bus, as in shared memory

• Networks are like streets:
•  Link = street.
•  Switch = intersection.
•  Distances (hops) = number of blocks traveled.
•  Routing algorithm = travel plan.

• Properties:
• Latency: how long to get between nodes in the network.

•  Street: time for one car = dist (miles) / speed (miles/hr)
• Bandwidth: how much data can be moved per unit time.

•  Street: cars/hour = density (cars/mile) * speed (miles/hr) * #lanes
•  Network bandwidth is limited by the bit rate per wire and #wires

CS267 Lectures

Department of Aerospace and Mechanical Engineering 35

Message Passing Interface — MPI

• All communication, synchronization require subroutine calls
•  No shared variables
•  Program run on a single processor just like any uniprocessor

program, except for calls to message passing library
• Subroutines for

•  Communication
•  Pairwise or point-to-point: Send and Receive
•  Collectives all processor get together to

–  Move data: Broadcast, Scatter/gather
–  Compute and move: sum, product, max, prefix sum, …

of data on many processors
•  Synchronization

•  Barrier
•  No locks because there are no shared variables to protect

•  Enquiries
•  How many processes? Which one am I? Any messages waiting?

CS267 Lectures

Department of Aerospace and Mechanical Engineering 36

Message Passing Interface — MPI

• The Standard itself:
• at http://www.mpi-forum.org
• All MPI official releases, in both postscript and HTML
• Latest version MPI 3.1, released June 2015

• Other information on Web:
• at http://www.mcs.anl.gov/mpi
• pointers to lots of stuff, including other talks and

tutorials, a FAQ, other MPI pages

CS267 Lectures & Bill Gropp, UIUC

Department of Aerospace and Mechanical Engineering 37

Message Passing Interface — MPI

•  Using MPI: Portable Parallel Programming
with the Message-Passing Interface (2nd edition),
by Gropp, Lusk, and Skjellum, MIT Press,
1999.

•  Using MPI-2: Portable Parallel Programming
with the Message-Passing Interface, by Gropp,
Lusk, and Thakur, MIT Press, 1999.

•  MPI: The Complete Reference - Vol 1 The MPI Core, by
Snir, Otto, Huss-Lederman, Walker, and Dongarra, MIT
Press, 1998.

•  MPI: The Complete Reference - Vol 2 The MPI Extensions,
by Gropp, Huss-Lederman, Lumsdaine, Lusk, Nitzberg,
Saphir, and Snir, MIT Press, 1998.

•  Designing and Building Parallel Programs, by Ian Foster,
Addison-Wesley, 1995.

•  Parallel Programming with MPI, by Peter Pacheco, Morgan-
Kaufmann, 1997.

CS267 Lectures & Bill Gropp, UIUC

Department of Aerospace and Mechanical Engineering 38

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int rank, size;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I am %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}

Hello World (C)

mpirun –np 4 a.out
CS267 Lectures & Bill Gropp, UIUC

Department of Aerospace and Mechanical Engineering 39

• We need to fill in the details in

• Things that need specifying:
• How will �data� be described?
• How will processes be identified?
• How will the receiver recognize/screen messages?
• What will it mean for these operations to complete?

Process 0 Process 1

Send(data)
Receive(data)

MPI Basic Send/Receive

CS267 Lectures & Bill Gropp, UIUC

Department of Aerospace and Mechanical Engineering 40

Parallel Environment

• Two important questions that arise early in a
parallel program are:

• How many processes are participating in this
computation?

• Which one am I?

• MPI provides functions to answer these
questions:
• MPI_Comm_size reports the number of processes.
• MPI_Comm_rank reports the rank, a number between

0 and size-1, identifying the calling process

CS267 Lectures & Bill Gropp, UIUC

Department of Aerospace and Mechanical Engineering 41

• Processes can be collected into groups
• Each message is sent in a context, and must be

received in the same context
• Provides necessary support for libraries

• A group and context together form a
communicator

• A process is identified by its rank in the group
associated with a communicator

• There is a default communicator whose group
contains all initial processes, called
MPI_COMM_WORLD

Some Basic Concepts

CS267 Lectures & Bill Gropp, UIUC

Department of Aerospace and Mechanical Engineering 42

MPI Datatypes

• The data in a message to send or receive is described
by a triple (address, count, datatype), where

• An MPI datatype is recursively defined as:
•  predefined, corresponding to a data type from the language

(e.g., MPI_INT, MPI_DOUBLE)
•  a contiguous array of MPI datatypes
•  a strided block of datatypes
•  an indexed array of blocks of datatypes
•  an arbitrary structure of datatypes

• There are MPI functions to construct custom datatypes,
in particular ones for subarrays

• May hurt performance if datatypes are complex

CS267 Lectures & Bill Gropp, UIUC

Department of Aerospace and Mechanical Engineering 43

MPI Tags

• Messages are sent with an accompanying user-
defined integer tag, to assist the receiving
process in identifying the message

• Messages can be screened at the receiving end
by specifying a specific tag, or not screened by
specifying MPI_ANY_TAG as the tag in a
receive

• Some non-MPI message-passing systems have
called tags �message types�. MPI calls them
tags to avoid confusion with datatypes

CS267 Lectures & Bill Gropp, UIUC

Department of Aerospace and Mechanical Engineering 44

MPI Basic (Blocking) Send

MPI_SEND(start, count, datatype, dest, tag,
comm)

• The message buffer is described by (start, count,
datatype).

• The target process is specified by dest, which is the rank of
the target process in the communicator specified by comm.

• When this function returns, the data has been delivered to
the system and the buffer can be reused. The message
may not have been received by the target process.

A(10)
B(20)

MPI_Send(A, 10, MPI_DOUBLE, 1, …) MPI_Recv(B, 20, MPI_DOUBLE, 0, …)

CS267 Lectures & Bill Gropp, UIUC

Department of Aerospace and Mechanical Engineering 45

MPI Basic (Blocking) Receive

MPI_RECV(start, count, datatype, source, tag,
comm, status)

• Waits until a matching (both source and tag) message is
received from the system, and the buffer can be used

• source is rank in communicator specified by comm, or
MPI_ANY_SOURCE

• tag is a tag to be matched or MPI_ANY_TAG
•  receiving fewer than count occurrences of datatype is

OK, but receiving more is an error
• status contains further information (e.g. size of message)

A(10)
B(20)

MPI_Send(A, 10, MPI_DOUBLE, 1, …) MPI_Recv(B, 20, MPI_DOUBLE, 0, …)

CS267 Lectures & Bill Gropp, UIUC

Department of Aerospace and Mechanical Engineering 46

#include �mpi.h�
#include <stdio.h>
int main(int argc, char *argv[])
{
 int rank, buf;
 MPI_Status status;
 MPI_Init(&argv, &argc);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 /* Process 0 sends and Process 1 receives */
 if (rank == 0) {
 buf = 123456;
 MPI_Send(&buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 }
 else if (rank == 1) {
 MPI_Recv(&buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
 &status);
 printf(�Received %d\n�, buf);
 }

 MPI_Finalize();
 return 0;
}

A Simple MPI Program

•MPI_INIT
•MPI_FINALIZE
•MPI_COMM_SIZE
•MPI_COMM_RANK
•MPI_SEND
•MPI_RECV

Many parallel programs can be written using just these six
functions, only two of which are non-trivial:

CS267 Lectures & Bill Gropp, UIUC

Department of Aerospace and Mechanical Engineering 47

Buffers

Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

Process 0 Process 1

User data

User data

the network

When you send data, where does it go?

Avoiding copies uses less memory
May use more or less time

CS267 Lectures & Bill Gropp, UIUC

Department of Aerospace and Mechanical Engineering 48

Deadlocks

CS267 Lectures & Bill Gropp, UIUC

• Send a large message from process 0 to process 1
•  If there is insufficient storage at the destination, the send must

wait for the user to provide the memory space (through a
receive)

• What happens with this code?

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

•  This is called �unsafe� because it depends on the
availability of system buffers in which to store the data
sent until it can be received

Process 0

Send(1)
Recv(1)

Process 1

Recv(0)
Send(0)

‣Order the operations
more carefully

Department of Aerospace and Mechanical Engineering 49

MPI — Non-blocking Operations

• Non-blocking operations return (immediately) �request
handles� that can be tested and waited on:

MPI_Request request;
MPI_Status status;

 MPI_Isend(start, count, datatype,
 dest, tag, comm, &request);

 MPI_Irecv(start, count, datatype,
 dest, tag, comm, &request);

 MPI_Wait(&request, &status);
 (each request must be Waited on)

• One can also test without waiting:
 MPI_Test(&request, &flag, &status);

• Accessing the data buffer without waiting is undefined

CS267 Lectures & Bill Gropp, UIUC

Department of Aerospace and Mechanical Engineering 50

Collective Operations in MPI

• Collective operations are called by all processes in a
communicator

• MPI_BCAST distributes data from one process (the
root) to all others in a communicator

• MPI_REDUCE combines data from all processes in
communicator and returns it to one process

•  In many numerical algorithms, SEND/RECEIVE can be
replaced by BCAST/REDUCE, improving both simplicity
and efficiency

CS267 Lectures & Bill Gropp, UIUC

Department of Aerospace and Mechanical Engineering 51

Collective Operations in MPI

http://mpitutorial.com

http://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/

Department of Aerospace and Mechanical Engineering 52

MPI is Simple

• Claim: most MPI applications can be written with only 6
functions (although which 6 may differ)

• You may use more for convenience or performance

• Using point-to-point:
• MPI_INIT
• MPI_FINALIZE
• MPI_COMM_SIZE
• MPI_COMM_RANK
• MPI_SEND
• MPI_RECEIVE

• Using collectives:
• MPI_INIT
• MPI_FINALIZE
• MPI_COMM_SIZE
• MPI_COMM_RANK
• MPI_BCAST
• MPI_REDUCE

CS267 Lectures

Department of Aerospace and Mechanical Engineering 53

Programming Model 3a: SIMD & GPU
• A large number of (usually) small processors.

•  A single �control processor� issues each instruction.
•  Each processor executes the same instruction.
•  Some processors may be turned off on some instructions.

• Originally machines were specialized to scientific computing,
few made (CM2, Maspar)

• Programming model can be implemented in the compiler
•  mapping n-fold parallelism to p processors, n >> p, but it’s hard

(e.g., HPF)

interconnect

P1

memory

NI
. . .

control processor

P2

memory

NI P3

memory

NI Pn-1

memory

NI Pn

memory

NI

CS267 Lectures

Department of Aerospace and Mechanical Engineering 54

Programming Model : GPU
GPU’s big performance opportunity is data parallelism
• Most programs have a mixture of highly parallel operations,

and some not so parallel
• GPUs provide a threaded programming model (CUDA) for

data parallelism to accommodate both
• Current research attempting to generalize programming

model to other architectures, for portability (OpenCL)
CUDA is a programming model designed for
• Heterogeneous architectures, Wide SIMD parallelism,

Scalability
CUDA provides
• Synchronization & data sharing between small thread groups

A thread abstraction to deal with SIMD
CS267 Lectures

Department of Aerospace and Mechanical Engineering 55

• Multicore/SMPs are a building block for a larger machine
with a network

• Old name:
• CLUMP = Cluster of SMPs

• Many modern machines look like this:
•  Edison and Hopper (2x12 way nodes), most of Top500

• What is an appropriate programming model #4 ???
• Treat machine as �flat�, always use message passing,

even within SMP (simple, but ignores an important part
of memory hierarchy).

• Shared memory within one SMP, but message passing
outside of an SMP.

• GPUs may also be building block
•  Nov 2014 Top500: 14% have accelerators, but 35% of performance

Programming Model 4: Hybrid machines

CS267 Lectures

Department of Aerospace and Mechanical Engineering 56

Programming Model : Hybrids
• Programming models can be mixed

• Message passing (MPI) at the top level with shared
memory within a node is common

• New DARPA HPCS languages mix data parallel and
threads in a global address space

• Global address space models can (often) call message
passing libraries or vice verse

• Global address space models can be used in a hybrid
mode

•  Shared memory when it exists in hardware
•  Communication (done by the runtime system) otherwise

• For better or worse
•  Supercomputers often programmed this way for peak performance

CS267 Lectures

Increasingly Complex Heterogeneous Future;
¿ Future Proof Performance Portable Code?

1

PIM DDR

L2*

NVRAM

PIM

L1
*

Te
x

Scr

L1
*

Te
x

Scr

L1
*

Te
x

Scr

NIC L3

Memory Spaces
 - Bulk non-volatile (Flash?)
 - Standard DDR (DDR4)
 - Fast memory (HBM/HMC)
 - (Segmented) scratch-pad on die

Execution Spaces
 - Throughput cores (GPU)
 - Latency optimized cores (CPU)
 - Processing in memory

Special Hardware
 - Non caching loads
 - Read only cache
 - Atomics

Programming
models
 - GPU: CUDA-ish
 - CPU: OpenMP
 - PIM: ??

Department of Aerospace and Mechanical Engineering 57

Kokkos —Dr. H. Carter Edwards
Sandia National Laboratories

‣ Increasingly Complex Heterogeneous Future

Department of Aerospace and Mechanical Engineering 58

Application & Library Domain Layer

3

Kokkos: A Layered Collection of Libraries
� Standard C++, Not a language extension

� In spirit of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ...
� Not a language extension: OpenMP, OpenACC, OpenCL, CUDA

� Uses C++ template meta-programming
� Currently rely upon C++1998 standard (everywhere except IBM’s xlC)
� Prefer to require C++2011 for lambda syntax

� Need CUDA with C++2011 language compliance

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Kokkos Sparse Linear Algebra
Kokkos Containers
Kokkos Core

Kokkos — A Layered Collection of Libraries

Department of Aerospace and Mechanical Engineering 59

High Performance ParalleX - HPX

HPX-5 v2.1.0

0	

0.05	

0.1	

0.15	

0.2	

0	 2	 4	 6	 8	 10	 12	 14	 16	 18	 20	 22	 24	 26	 28	

Ti
m
e	
pe

r	i
te
ra
*o

n	
(s
)	

Cores	

Thousands	

MPI	 HPX-5	

Cray XC30 weak scaling

HPX-5 LULESH

The HPX runtime system reifies the ParalleX execution model to support large-scale
irregular applications:

• Localities, ParalleX Processes, Complexes (ParalleX Threads and Thread Management)
• Parcel Transport and Parcel Management (simple parcel continuations)
• Local Control Objects (LCOs), Networking (MPI ISIR and PWC)

Department of Aerospace and Mechanical Engineering 60

C-SWARM codes are
written in a DSEL that
sits atop a multi-tiered
software stack
Progressive abstraction of
applications away from
the runtime system
Ultimately, everything
runs on HPX
U n i fi e d b y P a r a l l e X
execution model

C-SWARM Framework

Applications (WAMR-HPX, PGFem3D + PASTA-DDM)

DSEL (MTL, TTL)

Standard library algorithms and data structures

Programming interfaces (XPI, XPI++, Kokkos, …)

Utilities (collectives, I/O, …)

HPX-5 runtime system (AGAS, parcels, threads, …)

Exascale hardware (heterogeneous, distributed, …)

Programming languages (PXC, PXC++)

Department of Aerospace and Mechanical Engineering 61

Numerical Parallel Algorithms
Parallelism and Locality in Simulation

• Parallelism and data locality both critical to performance
•  Recall that moving data is the most expensive operation

• Real world problems have parallelism and locality:
•  Many objects operate independently of others.
•  Objects often depend much more on nearby than distant objects.
•  Dependence on distant objects can often be simplified.

•  Example of all three: particles moving under gravity

• Scientific models may introduce more parallelism:
•  When a continuous problem is discretized, time dependencies are

generally limited to adjacent time steps.
•  Helps limit dependence to nearby objects (eg collisions)

•  Far-field effects may be ignored or approximated in many cases.
• Many problems exhibit parallelism at multiple levels

CS267 Lectures

Department of Aerospace and Mechanical Engineering 62

Parallelism and Locality in Simulation

CS267 Lectures

•  Types of simulations
•  Discrete Event Systems
•  Particle Systems
•  Ordinary Differential Equations (ODEs)
•  Partial Differential Equations (PDEs)

•  Common problems:
•  Load balancing

•  May be due to lack of parallelism or poor work distribution
•  Statically, divide grid (or graph) into blocks
•  Dynamically, if load changes significantly during run

•  Locality
•  Partition into large chunks with low surface-to-volume ratio

–  To minimize communication
•  Distributed particles according to location, but use irregular spatial

decomposition (e.g., quad tree) for load balance
•  Constant tension between these two

•  Particle-Mesh method: can�t balance particles (moving), balance mesh
(fixed) and keep particles near mesh points without communication

Department of Aerospace and Mechanical Engineering 63

Discrete Event Systems

• Systems are represented as:
•  finite set of variables.
•  the set of all variable values at a given time is

called the state.
•  each variable is updated by computing a transition

function depending on the other variables.

• System may be:
•  synchronous: at each discrete timestep evaluate all

transition functions; also called a state machine.
•  asynchronous: transition functions are evaluated

only if the inputs change, based on an �event� from
another part of the system; also called event driven
simulation.

CS267 Lectures

Department of Aerospace and Mechanical Engineering 64

indicator function:

ensemble average:

assuming ergodicity, statistical homogeneity

for statistically isotropic system

⇥r (x) =
�

E
⇥r (x;�) p (�) d�

Sr1r2...rn (x1,x2, ...xn) = �1 (x1) �2 (x2) ...�rn (xn)

⇥r (x;�) =
�

1 if x is in r
0 otherwise

⇥

Sr(x) = cr

Srs(x,x�) = Srs(x� x�)
Srsq(x,x

�) = Srsq(x� x�,x� x�)

Srsq(x,x
�,x��) = Srsq(|x� x�|, |x� x��|, �)

Srs(x,x
�) = Srs(|x� x�|)

r

Statistical Micromechanics

Department of Aerospace and Mechanical Engineering 65

ti
m
e
[s
]

Np

0 100 200 300 400 500 600
101

102

103

104

(a)

Ideal Scaling
Stat3D result

S
p
ee
d
u
p
:
ti
m
e(
N

p
=

1)
/t
im

e(
N

p
)

Np

1 2 4 8 16 32 64 128 256 512 1000
1

2

4

8

16

32

64

128

256

512

1000

(b)

Figure 3.4. Strong scaling of statistical sampling method. The performance
is compared to ideal speedup curve.

3.2.1 Random Number Sampling

As noted in Algorithm 1, random numbers must be generated for creating ran-

dom translations and random rotations. A true random number generator would

37

ti
m
e
[s
]

Np

0 100 200 300 400 500 600
101

102

103

104

(a)

Ideal Scaling
Stat3D result

S
p
ee
d
u
p
:
ti
m
e(
N

p
=

1)
/t
im

e(
N

p
)

Np

1 2 4 8 16 32 64 128 256 512 1000
1

2

4

8

16

32

64

128

256

512

1000

(b)

Figure 3.4. Strong scaling of statistical sampling method. The performance
is compared to ideal speedup curve.

3.2.1 Random Number Sampling

As noted in Algorithm 1, random numbers must be generated for creating ran-

dom translations and random rotations. A true random number generator would

37

Embarrassingly parallel
Simple parallel domain decomposition, N/p
Efficient three-based search algorithm

Statistical Micromechanics — Stat3D

Department of Aerospace and Mechanical Engineering 66

Governing equations

⇥ · q(x) = 0 in �,

T (x) = Q0 · x on ⇥�,

q(x) =�(x) ·Q(x)

where Q(x) =�⇥T (x)

�(x) =
N�

i=1

�i�i(x)

•Third order bounds (Beran)

L = cpp + cmm � cmcp(p � m)2

cmp + cpm + 2
⇣

⇣p
p

+ ⇣m
m

⌘�1

U = cpp + cmm � cmcp(p � m)2

cmp + cpm + 2 (⇣pp + ⇣mm)

⇣i =
9

cpcm

Z 1

0

Z 1

0

Z 1

�1

P2(cos✓)

r1r2
˜Siii(r1, r2, ✓)d(cos✓)dr1dr2

S̃iii(r1, r2, ✓) = Siii(r1, r2, ✓)�
Sii(r1)Sii(r2)

ci

e

m
=

1 + 2cp�pm � 2cm⇣p�2
pm

1� cp�pm � 2cm⇣p�2
pm

, where �pm =
p � m

p + 2m

•Third order approximation (Torquato)

•Microstructural parameter involving three-point statistics

Statistical Micromechanics

Department of Aerospace and Mechanical Engineering

0

2

4

0
1

2
3

4
−0.05

0

0.05

0.1

0.15

r2r1
0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

r2

r 1

�adapt > tolf

�adapt � tolf

67

Numerical Methods Algorithm Summary

S̃iii(r1, r2, �)

Iteratively construct a Delaunay triangulation with local
linear interpolation (C0 continuity) to create an
interpolant of .

�adapt

S̃
ii
i(
r 1
,r

2
,�

=
0)

S̃
ii
i(
r 1
,r

2
,�

=
0)

tolf = 0.005 max
�
S̃iii(r1, r2, �)

⇥

• Construct initial regular tetrahedral grid
for domain [r1 = 0, r1 = r�] ⇥ [r2 =
0, r2 = r1] ⇥ [⇤ = 0, ⇤ = ⌅]. Initial tri-
angulation and associated function values,
S̃iii(r1, r2, ⇤), define Tl=0 (l is adaptive it-
eration level).

• A bisection method is then used to refine
the interpolant based on the local error of
each tetrahedron:

– For all tetrahedron midpoints
in Tl, evaluate the error in-
dicator function, �adapt =���S̃iii(r1, r2, ⇤)� Tl(r1, r2, ⇤)

���.

– If �adapt > tolf for given midpoint,
each edge of the tetrahedron is bi-
sected and added to Tl+1.

– If all midpoints in a tetrahedron sat-
isfy �adapt ⇤ tolf , the tetrahedron is
added to Tl+1 unchanged.

– Repeat until all midpoints satisfy
�adapt ⇤ tolf

• After constructing S̃iii(r1, r2, ⇤), MC inte-
gration is utilized for computing ⇥i.

Department of Aerospace and Mechanical Engineering

0

2

4

0
1

2
3

4
−0.05

0

0.05

0.1

0.15

r2r1
0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

r2

r 1

�adapt > tolf

�adapt � tolf

67

Numerical Methods Algorithm Summary

S̃iii(r1, r2, �)

Iteratively construct a Delaunay triangulation with local
linear interpolation (C0 continuity) to create an
interpolant of .

�adapt

S̃
ii
i(
r 1
,r

2
,�

=
0)

S̃
ii
i(
r 1
,r

2
,�

=
0)

tolf = 0.005 max
�
S̃iii(r1, r2, �)

⇥

• Construct initial regular tetrahedral grid
for domain [r1 = 0, r1 = r�] ⇥ [r2 =
0, r2 = r1] ⇥ [⇤ = 0, ⇤ = ⌅]. Initial tri-
angulation and associated function values,
S̃iii(r1, r2, ⇤), define Tl=0 (l is adaptive it-
eration level).

• A bisection method is then used to refine
the interpolant based on the local error of
each tetrahedron:

– For all tetrahedron midpoints
in Tl, evaluate the error in-
dicator function, �adapt =���S̃iii(r1, r2, ⇤)� Tl(r1, r2, ⇤)

���.

– If �adapt > tolf for given midpoint,
each edge of the tetrahedron is bi-
sected and added to Tl+1.

– If all midpoints in a tetrahedron sat-
isfy �adapt ⇤ tolf , the tetrahedron is
added to Tl+1 unchanged.

– Repeat until all midpoints satisfy
�adapt ⇤ tolf

• After constructing S̃iii(r1, r2, ⇤), MC inte-
gration is utilized for computing ⇥i.

Department of Aerospace and Mechanical Engineering

0

2

4

0
1

2
3

4
−0.05

0

0.05

0.1

0.15

r2r1
0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

r2

r 1

�adapt > tolf

�adapt � tolf

67

Numerical Methods Algorithm Summary

S̃iii(r1, r2, �)

Iteratively construct a Delaunay triangulation with local
linear interpolation (C0 continuity) to create an
interpolant of .

�adapt

S̃
ii
i(
r 1
,r

2
,�

=
0)

S̃
ii
i(
r 1
,r

2
,�

=
0)

tolf = 0.005 max
�
S̃iii(r1, r2, �)

⇥

• Construct initial regular tetrahedral grid
for domain [r1 = 0, r1 = r�] ⇥ [r2 =
0, r2 = r1] ⇥ [⇤ = 0, ⇤ = ⌅]. Initial tri-
angulation and associated function values,
S̃iii(r1, r2, ⇤), define Tl=0 (l is adaptive it-
eration level).

• A bisection method is then used to refine
the interpolant based on the local error of
each tetrahedron:

– For all tetrahedron midpoints
in Tl, evaluate the error in-
dicator function, �adapt =���S̃iii(r1, r2, ⇤)� Tl(r1, r2, ⇤)

���.

– If �adapt > tolf for given midpoint,
each edge of the tetrahedron is bi-
sected and added to Tl+1.

– If all midpoints in a tetrahedron sat-
isfy �adapt ⇤ tolf , the tetrahedron is
added to Tl+1 unchanged.

– Repeat until all midpoints satisfy
�adapt ⇤ tolf

• After constructing S̃iii(r1, r2, ⇤), MC inte-
gration is utilized for computing ⇥i.

Department of Aerospace and Mechanical Engineering

0 1 2 3 4 5 6
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

r

S m
m
(r)

Sm···m(x1,x2, · · · ,xn) = exp (��Vn)
Vn � union volume of n spheres, �� number density of spheres

S̃
m

m
m
(r

1
,r

2
,�

=
0)

cp ⇣m ⇣R1
m "⇣PS ⌘m ⌘R1

m "⌘PS

0.2 0.5187 0.5174 0.24% 0.4178 0.4163 0.35%
0.4 0.6571 0.6489 1.26% 0.5579 0.5604 0.44%
0.6 0.7743 0.7702 0.54% 0.6987 0.7050 0.89%

68

Penetrable Sphere Model (Verification Example)
•n-point probability functions can be formulated analytically
for penetrable sphere model

[R1] - Helte, Proc. R. Soc. A. 79(3), 1983.

Penetrable sphere
microstructure

•Comparison of our microstructural
parameters to literature

Department of Aerospace and Mechanical Engineering 69

Porous Silver Paste

Mark Roelofs, Andrew Gillman, Varvara Kouznetsova, Karel Matous, Marc Geers(a) (b)

(c)

Figure 1: Three-dimensional visualization (orthoslices) of porous silver: (a) Sample 1, (b)

Sample 2, and (c) Sample 3. White and black represent the silver and void phases, respec-

tively. All visualization and image-processing done using using AvizoFire (FEI) [1]. The

red, green, and blues axes are the x, y, and z axes, respectively. Volumes sizes obtained

with pixel size of 0.03 µm: (a) 510 pixels ⇥ 430 pixels ⇥ 490 pixels (15.3 µm ⇥ 12.9 µm ⇥
14.7 µm). (b) 520 pixels ⇥ 460 pixels ⇥ 430 pixels (15.6 µm ⇥ 13.8 µm ⇥ 12.9 µm). (c)

540 pixels ⇥ 560 pixels ⇥ 460 pixels (16.2 µm ⇥ 16.8 µm ⇥ 13.8 µm). The material volume

fractions of each sample are (a) c
m

= 0.714, (b) c
m

= 0.739, and (c) c
m

= 0.767.

2

Department of Aerospace and Mechanical Engineering 69

Porous Silver Paste

Mark Roelofs, Andrew Gillman, Varvara Kouznetsova, Karel Matous, Marc Geers(a) (b)

(c)

Figure 1: Three-dimensional visualization (orthoslices) of porous silver: (a) Sample 1, (b)

Sample 2, and (c) Sample 3. White and black represent the silver and void phases, respec-

tively. All visualization and image-processing done using using AvizoFire (FEI) [1]. The

red, green, and blues axes are the x, y, and z axes, respectively. Volumes sizes obtained

with pixel size of 0.03 µm: (a) 510 pixels ⇥ 430 pixels ⇥ 490 pixels (15.3 µm ⇥ 12.9 µm ⇥
14.7 µm). (b) 520 pixels ⇥ 460 pixels ⇥ 430 pixels (15.6 µm ⇥ 13.8 µm ⇥ 12.9 µm). (c)

540 pixels ⇥ 560 pixels ⇥ 460 pixels (16.2 µm ⇥ 16.8 µm ⇥ 13.8 µm). The material volume

fractions of each sample are (a) c
m

= 0.714, (b) c
m

= 0.739, and (c) c
m

= 0.767.

2

Department of Aerospace and Mechanical Engineering 70

Ordinary Differential Equation (ODE)

CS267 Lectures

• Explicit methods for ODEs need sparse-matrix-vector mult.
•  Implicit methods for ODEs need to solve linear systems
• Direct methods (Gaussian elimination)

•  Called LU Decomposition, because we factor A = L*U.
•  Future lectures will consider both dense and sparse cases.
•  More complicated than sparse-matrix vector multiplication.

•  Iterative solvers
•  Will discuss several of these in future.

•  Jacobi, Successive over-relaxation (SOR) , Conjugate Gradient (CG),
Multigrid,...

•  Most have sparse-matrix-vector multiplication in kernel.

• Eigenproblems
•  Also depend on sparse-matrix-vector multiplication, direct methods.

Department of Aerospace and Mechanical Engineering 71

Partial Differential Equation (PDE)
• As with ODEs, either explicit or implicit approaches are

possible
•  Explicit, sparse matrix-vector multiplication
•  Implicit, sparse matrix solve at each step

•  Direct solvers are hard
•  Iterative solves turn into sparse matrix-vector multiplication

–  Graph partitioning

• Graph and sparse matrix correspondence:
•  Sparse matrix-vector multiplication is nearest neighbor
�averaging� on the underlying mesh

• Not all nearest neighbor computations have the same
efficiency

•  Depends on the mesh structure (nonzero structure) and the
number of Flops per point.

CS267 Lectures

Department of Aerospace and Mechanical Engineering 72

SMP — Compressed Sparse Row (CSR) Format

CS267 Lectures

Department of Aerospace and Mechanical Engineering 73

Domain Decomposition
•  Suppose graph is nxn mesh with connection neighbors
•  Which partition has less communication? (n=18, p=9)

n*(p-1)
edge crossings

2*n*(p1/2 –1)
edge crossings

•  Minimizing communication on mesh ≡ minimizing �surface to volume ratio�
of partition

CS267 Lectures

Department of Aerospace and Mechanical Engineering 74

7.2. Parallelization Principles
The repetition of the same computational operations for different matrix elements is typical of different matrix

calculation methods. In this case we can say that there exist data parallelism. As a result, the problem to parallelize
matrix operations can be reduced in most cases to matrix distributing among the processors of the computer system.
The choice of matrix distribution method determines the use of the definite parallel computation method. The
availability of various data distribution schemes generates a range of parallel algorithms of matrix computations.

The most general and the most widely used matrix distribution methods consist in partitioning data into stripes
(vertically and horizontally) or rectangular fragments (blocks).

1. Block-striped matrix partitioning. In case of block-striped partitioning each processor is assigned a certain
subset of matrix rows (rowwise or horizontal partitioning) or matrix columns (columnwise or vertical partitioning)
(Figure 7.1). Rows and columns are in most cases subdivided into stripes on a continuous sequential basis. In case of
such approach, in rowwise decomposition (see Figure 7.1), for instance, matrix A is represented as follows:

 , (7.1) pmkkjjikiaaaAAAAA jiiii
T

p k
/,0,),,...,,(,),...,,(

110110 =<≤+===
−−

where a = (a , a ,… a),i i 1 i 2 i n 0≤ i <m, is i-th row of matrix A (it is assumed, that the number of rows m is
divisible by the number of processors p without a remainder, i.e. m = k ⋅p). Data partitioning on the continuous
basis is used in all matrix and matrix-vector multiplication algorithms, which are considered in this and the
following sections.

Another possible approach to forming rows is the use of a certain row or column alternation (cyclic) scheme. As
a rule, the number of processors p is used as an alternation parameter. In this case the horizontal partitioning of
matrix A looks as follows:

pmkkjjpiiaaaAAAAA jiiii
T

p k
/,0,),,...,,(,),...,,(

110110 =<≤+===
−− . (7.2)

The cyclic scheme of forming rows may appear to be useful for better balancing of computational load (for instance,
it may be useful in case of solving a linear equation system with the use of the Gauss method, see Section 9).

2. Checkerboard Block Matrix Partitioning. In this case the matrix is subdivided into rectangular sets of
elements. As a rule, it is being done on a continuous basis. Let the number of processors be qsp ⋅= , the number of
matrix rows is divisible by s, the number of columns is divisible by q, i.e. skm ⋅= and . Then the matrix A
may be represented as follows:

qln ⋅=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=

−−−−

−

111211

100200

...
...

...

qsss

q

AAA

AAA
A ,

where Aij - is a matrix block, which consists of the elements:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

−−−−

−

111101

101000

...
...

lkkk

l

jijiji

jijiji

ij

aaa

aaa
A , smkkvvikiv /,0, =<≤+= , qnlluujlju /,0, =≤≤+= . (7.3)

In case of this approach it is advisable that a computer system have a physical or at least a logical processor grid
topology of s rows and q columns. Then, for data distribution on a continuous basis the processors neighboring in
grid structure will process adjoining matrix blocks. It should be noted however that cyclic alteration of rows and
columns can be also used for the checkerboard block scheme.

Figure 7.1. Most widely used matrix decomposition schemes

 2

Parallel Sparse Matrix-vector multiplication
‣Matrix decomposition

7.6. Matrix-Vector Multiplication in Case of Rowwise Data Decomposition
As the first example of parallel matrix computations, let us consider the algorithm of matrix-vector

multiplication, which is based on rowwise block-striped matrix decomposition scheme. If this case, the operation of
inner multiplication of a row of the matrix A and the vector b can be chosen as the basic computational subtask.

7.6.1. Analysis of Information Dependencies

To execute the basic subtask of inner multiplication the processor must contain the corresponding row of matrix
A and the copy of vector b. After computation completion each basic subtask determines one of the elements of the
result vector c.

To combine the computation results and to obtain the total vector c on each processor of the computer system, it
is necessary to execute the all gather operation (see Sections 3-4, 6), in which each processor transmits its computed
element of vector c to all the other processors. This can be executed, for instance, with the use of the function
MPI_Allgather of MPI library.

The general scheme of informational interactions among subtasks in the course of computationS is shown in
Figure 7.2.

1 x =

2 x =

3 x =

Figure 7.2. Computation scheme for parallel matrix-vector multiplication based on rowwise
striped matrix decomposition

7.6.2. Scaling and Subtask Distribution among Processors

In the process of matrix-vector multiplication the number of computational operations for computing the inner
product is the same for all the basic subtasks. Therefore, in case when the number of processors p is less than the
number of basic subtasks m, we can combine the basic subtasks in such a way that each processor would execute
several of these tasks. In this case each subtask will hold a row stripe of the matrix A After completing
computations, each aggregated basic subtask determines several elements of the result vector c.

Subtasks distribution among the processors of the computer system may be performed in an arbitrary way.

7.6.3. Efficiency Analysis

To analyze the efficiency of parallel computations, two kinds of estimations will be formed henceforward. To
form the first type of them algorithm complexity is measured by the number of computational operations that are
necessary for solving the given problem (without taking into account the overhead caused by data communications
among the processors); the duration of all elementary computational operations (for instance, addition and
multiplication) is considered to be the same. Besides, the obtained constants are not taken into consideration in
relations. It provides to obtain the order of algorithm complexity and, as a result, in most cases such estimations are
rather simple and they can be used for the initial efficiency analysis of the developed parallel algorithms and
methods.

The second type of estimation is aimed at forming as many exact relationships for predicting the execution time
of algorithms as possible. Such estimations are usually obtained with the help of refinement of the expressions
resulting from the first stage. For that purpose the parameters, which determine the execution time, are introduced in
the existing relations; time complexity of communication operations are estimated; all the necessary constants are
stated. The accuracy of the obtained expressions is examined with the help of computational experiments. On the
basis of their results the time of executed computations is compared to the theoretically predicted estimation of the
execution time. As a result, such estimations are, as a rule, more complex, but they make it possible to estimate the
efficiency of the developed parallel computation methods more precisely.

Let us consider the time complexity of the algorithm of matrix-vector multiplication. If matrix A is square
(m=n), the sequential algorithm of matix-vector multiplication has the complexity T1=n2. In case of parallel
computations each processor performs multiplication of only a part (stripe) of the matrix A by the vector b. The size

 4

Row-wise decomposition

x =

x =

x =

+ + =

+ + =

+ + =

Figure 7.5. Computation scheme for parallel matrix-vector multiplication based on
columnwise striped matrix decomposition

7.7.2. Scaling and Subtask Distribution among Processors

The selected basic subtasks are of equal computational intensity and have the same amount of the data
transferred. If the number of matrix columns exceeds the number of processors, the basic subtasks may be
aggregated by uniting several neighboring columns within one subtask. In this case, the initial matrix A is
partitioned into a number of vertical stripes. If all the stripe sizes are the same the above discussed method of
computation aggregating provides equal distribution of the computational load among the processors.

As with the previous algorithm, the subtasks may be arbitrarily distributed among the computer system
processors.

7.7.3. Efficiency Analysis

As previously, let matrix A be square, i.e. m=n. At the first stage of computations each processor multiplies its
matrix columns by the vector b elements. The obtained values are summed for each matrix row separately:

∑
−

=

<≤=
1

0

j

j

,0,)('
l

j
jsjs nsbaic (7.9)

(j0 and jl-1 are the initial and the final column indices of the basic subtasks i, 0≤ i< n). As the sizes of matrix stripes
and the block of the vector b are equal n/p, the time complexity of such computations may be estimated as

 operations. After the subtasks have exchanged the data at the second stage of computations each
processor sums the obtained values up for its block of the result vector c. The number of the summed values for each
element c

pnT /2=′

i of vector c coincides with the number of processors p. The size of result vector block is equal to n/p.
Thus, the number of operations carried out for the second stage appears to be equal to T ′′ =n. With regards to the
relations obtained the speedup and the efficiency of the parallel algorithm may be expressed as follows:

p
pn

nS p ==
/2

2
, 1

)/(2

2
=

⋅
=

pnp
nEp . (7.10)

Now let us consider more accurate relations for estimation of the time of parallel algorithm execution. With
regard to the above discussion the execution time of the parallel algorithm computations may be estimated by means
of the following expression:

() ⎡ ⎤() τ⋅+−⋅⋅=]12[npnncalcTp . (7.11)

(here, as previously, τ is the execution time for one basic scalar computational operation).
Let us discuss two possible methods to carry out the total exchange (see also Section 3). The first method is

provided by the algorithm, according to which each processor sends its data to all the rest of computer system
processors sequentially. Let us assume that the processors may simultaneously send and receive messages, and there
is a direct communication line between any pair of processors. The time complexity estimation (execution time) of
the total exchange algorithm may be written as follows:

() () ⎡ ⎤()βα //11 pnwpcommTp +−= . (7.12)

(where α is the communication network latency, β is the network bandwidth, w is the data element size in bytes)
The second method of carrying out the total exchange is considered in Section 3 (the computational network

topology should be represented as a hypercube). As it has been shown above, the algorithm may be executed in

 10

Column-wise decomposition

Department of Aerospace and Mechanical Engineering 75

Graph Partitioning and Sparse Matrices

1 1 1 1

2 1 1 1 1

3 1 1 1

4 1 1 1 1

5 1 1 1 1

6 1 1 1 1

 1 2 3 4 5 6

3

6

1

5

2

• Relationship between matrix and graph

•  Edges in the graph are nonzero in the matrix: here the matrix is
symmetric (edges are unordered) and weights are equal (1)

•  If divided over 3 procs, there are 14 nonzeros outside the diagonal
blocks, which represent the 7 (bidirectional) edges

4

Department of Aerospace and Mechanical Engineering 76

Graph Partitioning and Sparse Matrices

2. Kernel 2: Search graph for a maximum weight edge.
3. Kernel 3: Perform breadth first searches from a set of start vertices.
4. Kernel 4: Recover the underlying clique structure from the undirected graph.

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 7464
0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 8488

Fig. 2. (a) Input graph (b) After clustering, clusters are along the diagonal.

We implement only the integer version of the benchmark. The first three
kernels are easily implemented using the infrastructure described in the earlier
section. We focus our attention on kernel 4, which can be considered to be a par-
titioning problem or a clustering problem. We have several implementations of
kernel 4 based on spectral partitioning (Figure 1) and seed growing techniques
(Figure 2). The seed growing implementations scale better than the spectral
methods, as expected. We will demonstrate how we use the infrastructure de-
scribed above to implement kernel 4 in a few lines of matlab.

J = sparse(v,1:nseeds,1,n,nseeds); % Sparse matrix, 1 seed per column.

J = G*J; % Vertices reachable with 1 hop.

J = J + G*J; % Vertices reachable with 1 or 2 hops.

J = J > 1; % Vertices reachable with at least 2 paths of 1 or 2 hops.

Fig. 3. Breadth first parallel clustering by seed growing.

Our implementation starts out by picking out a set of seeds from the graph.
These seeds may be chosen such that they form an independent set. One way to
do this is to run one round of Luby’s algorithm [4], which is part of our toolbox,
or simply pick them randomly. Then, we grow the seeds so that each seed claims
all vertices reachable by at least 2 paths of length 1 or 2. Since there may be some
overlap, we use each vertex attaches itself to a cluster using a ’peer pressure’
algorithm. Figure 3 describes the ’seed growing’ and Figure 4 describes the ’peer
pressure’ algorithm.

Our implementation of SSCA #2 uses StarP [3], which is a parallel imple-
mentation of the matlab language with global array semantics. We are in the

2. Kernel 2: Search graph for a maximum weight edge.
3. Kernel 3: Perform breadth first searches from a set of start vertices.
4. Kernel 4: Recover the underlying clique structure from the undirected graph.

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 7464
0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 8488

Fig. 2. (a) Input graph (b) After clustering, clusters are along the diagonal.

We implement only the integer version of the benchmark. The first three
kernels are easily implemented using the infrastructure described in the earlier
section. We focus our attention on kernel 4, which can be considered to be a par-
titioning problem or a clustering problem. We have several implementations of
kernel 4 based on spectral partitioning (Figure 1) and seed growing techniques
(Figure 2). The seed growing implementations scale better than the spectral
methods, as expected. We will demonstrate how we use the infrastructure de-
scribed above to implement kernel 4 in a few lines of matlab.

J = sparse(v,1:nseeds,1,n,nseeds); % Sparse matrix, 1 seed per column.

J = G*J; % Vertices reachable with 1 hop.

J = J + G*J; % Vertices reachable with 1 or 2 hops.

J = J > 1; % Vertices reachable with at least 2 paths of 1 or 2 hops.

Fig. 3. Breadth first parallel clustering by seed growing.

Our implementation starts out by picking out a set of seeds from the graph.
These seeds may be chosen such that they form an independent set. One way to
do this is to run one round of Luby’s algorithm [4], which is part of our toolbox,
or simply pick them randomly. Then, we grow the seeds so that each seed claims
all vertices reachable by at least 2 paths of length 1 or 2. Since there may be some
overlap, we use each vertex attaches itself to a cluster using a ’peer pressure’
algorithm. Figure 3 describes the ’seed growing’ and Figure 4 describes the ’peer
pressure’ algorithm.

Our implementation of SSCA #2 uses StarP [3], which is a parallel imple-
mentation of the matlab language with global array semantics. We are in the

‣ High–performance graph algorithms from parallel sparse matrices, Gilbert et al. 2006

Zoltan — Parallel Partitioning, Load Balancing and Data-Management
Services (http://www.cs.sandia.gov/zoltan/)
ParMETIS — Parallel Graph Partitioning and Fill-reducing Matrix Ordering
(http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview)
PT-SCOTCH —Graph and mesh partitioning, static mapping, and sparse
matrix ordering (http://www.labri.fr/perso/pelegrin/scotch/)

http://www.cs.sandia.gov/zoltan/
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://www.labri.fr/perso/pelegrin/scotch/

Department of Aerospace and Mechanical Engineering 77

Meshes in Computational Mechanics

CS267 Lectures

Department of Aerospace and Mechanical Engineering 78

Matrices in Computational Mechanics

Volumetric + Cohesive Elements

HIERARCHICALLY PARALLEL MULTISCALE SOLVER 759

Figure 8. Speedup of the hierarchically parallel fully coupled multiscale solver with respect to the number
of microscale servers.

Figure 9. Dimensions, loading conditions, and microscale morphology for the 1.1 billion element FE2 sim-
ulation. (a) shows the dimensions and loading conditions of the macroscale adherends. (b) shows the RUC

for the heterogeneous layer containing 40 arbitrarily located 40 !m diameter voids (cv D 17:17%).

significant gains in computational performance, particularly in terms of strong scaling speedup.
We measure the speedup of our implementation by timing the first loading step of the finest FE2

simulation described in Section 4.1. Traditionally, a single processing core is used as the unit of com-
putational resources for speedup analysis. Here, we use a microscale server as the unit of resources,
with each server consisting of 128 processing cores. An additional 16 cores are used to solve the
macroscale problem for all cases. Figure 8 shows that the hierarchically parallel multiscale solver
exhibits ideal speedup to 2048 cores (16 servers computing one cell each). The computations were
performed on up to 129 IBM nodes, each with dual eight-core Intel Xeon 2.60 GHz processors and
32 GB of RAM, connected by Mellanox FDR InfiniBand.

4.3. 1.1 Billion element FE2 simulation

We now present the capability of the hierarchically parallel FE2 solver by simulating a complex
multiscale nonlinear example devoted to hyperelastic porous interfaces. Figure 9(a) shows the dual
cantilever beam (DCB) specimen loaded by mixed-mode opening displacement. Table V provides
the macroscale dimensions and loading direction. The RUC (Figure 9(b)) is lc D 0:125 mm thick,
lRUC D 0:25 mm wide and contains 40 arbitrarily placed 40 !m diameter voids (cv D 17:17%).
The microstructure is generated using a random sequential addition algorithm (see, e.g., [32]).
More complex microstructures may be generated using the packing algorithm described in [33], for
example. Figure 10 shows the in-plane isotropic two-point probability functions, Srs , computed

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 102:748–765
DOI: 10.1002/nme

Periodic Unit Cell

Department of Aerospace and Mechanical Engineering 79

Challenges of Irregular Meshes

CS267 Lectures

• How to generate them in the first place
•  Start from geometric description of object
•  2D hard!
•  3D harder!!

• How to partition them
•  ParMetis, a parallel graph partitioner

• How to design iterative solvers
•  PETSc, a Portable Extensible Toolkit for Scientific Computing
•  Prometheus, a multigrid solver for finite element problems on

irregular meshes
• How to design direct solvers

•  SuperLU, parallel sparse Gaussian elimination

• These are challenges to do sequentially, more so in parallel

Department of Aerospace and Mechanical Engineering 80

and assign node ownership. The partitioned mesh provided by ParMETIS balances

the number of elements in each domain and minimizes the number of nodes along

the partition boundary. This has the effect of nominally balancing the work and

minimizing the amount of communication between processors.

(a) (b) (c)

=

(A)

(B)

Element (A)

Element (B) Global system of equations

Figure 5.1. Schematic of the parallel communication structure in
PGFem3D. (a) The partitioned mesh with owned nodes denoted by • and
shared nodes denoted by ◦. Arrows denote direction of communication
during the assembly operation. The scatter operation is in the opposite
direction. (b) Fully local (top) and shared/communicated (bottom)

element stiffness matrices and residuals. (c) The global system of equations
partitioned by rows. Note that elements containing only owned nodes

assemble directly into the block diagonal (dashed-boxes) and do not require
communication.

In PGFem3D, there are two primary operations that require communication via

MPI: i) assembly of local information to the global system of equations (an accumula-

tion operation) and ii) scattering of the global information (e.g., the solution) to the

sub-domains (an assignment operation). In general, these operations do not require

49

Stiffness Matrix Assembly — Finite Element Method

Use local and global numbering for efficient operations
Assemble first border elements
Overlay computation and communication

Department of Aerospace and Mechanical Engineering

Cohesive modeling

81

t

⟦u⟧

P

P

traction-separation law

Cohesive law based on lower scale physics

?
t

⟦u⟧
t

⟦u⟧

t

⟦u⟧ lRUC

Multiscale Materials Modeling

1R =
lc

|�0|

⇤

�0

1P : ⇥Y (�1u) dV = 0

�0u⇥R =
�

0N · 1
|�0|

⇤

�0

1P dV � 0t

⇥
·
⇤
�(0u)

⌅
= 0

Department of Aerospace and Mechanical Engineering

Hierarchically Parallel Multiscale Solver

10 M. MOSBY AND K. MATOUŠ

i = i+1
Initialize

Send requests
to microscale

Check convergence No
Yes

Build macroscale Assemble from micro

Done

Downscaling

Upscaling

Key
M

ic
ro

sc
al

e
Se

rv
er

No
Yes

Check convergence

j = j+1

BuildReceive request
from macroscale

Send result
to mactoscale

Figure 4. The hierarchically parallel implementation of the nested iterative solution procedure given in
Algorithm 2. Macroscale and microscale computations are overlaid via non-blocking communication
patterns. Note that there are Ns microscale servers that simultaneously compute microscale contributions

for the Np macroscale clients.

4. NUMERICAL EXAMPLES

In this section, we present two numerical examples using the hierarchically parallel multiscale solver

for modeling nonlinear response of a heterogeneous layer. The first example is a simple verification

problem and convergence study. The second example shows the solver’s ability to perform large

and detailed simulations that would unlikely be possible by DNM with the same computational

resources. In particular, we perform a multiscale simulation with ∼ 1.1 Billion elements and ∼ 575

million nonlinear equations on only 1,552 computing cores. Similarly sized simulations presented

in the literature [4] are typically computed on several thousand computing cores.

Table I. Material properties for all numerical examples.

Young’s modulus Shear modulus Poisson’s ratio
E [MPa] G [MPa] ν [-]

Adherends 15 · 104 6.000 · 104 0.25
Interface 5 · 103 1.866 · 103 0.34

In both examples, we use hyper-elastic material potentials for both macro- and micro-scales given

by

0W ≡ 1W =
G

2

(
trĈ − 3

)
+

E

6(1− 2ν)
[exp(J − 1)− ln(J)− 1] , (16)

where E is Young’s modulus, G is the shear modulus, and ν is Poisson’s ratio. The Jacobian of

the deformation is given by J = det(C)1/2, and Ĉ = J−2/3C is the deviatoric right Cauchy-Green

deformation tensor. Note that the appropriate macro- and micro-deformation gradients (0C and C,

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)

Prepared using nmeauth.cls DOI: 10.1002/nme

0R =
�

⇥±0

0P : ⇥X(�0u) dV �
�

⇥±0

f · �0u dV �
�

�⇥t
0

tp · �0u dA +
�

�0

0t ·
�
�0u

⇥
dA = 0

82

Department of Aerospace and Mechanical Engineering 83

X2X1

X3

t = 10 µs

PGFem3D solver

‣Highly scalable finite strains
PGFem3D solver

‣Multiscale FE2 capability

‣Quasi-steady or transient analysis

‣ Complex constitutive Eq.

Ne = 123,168,768
Nn = 28,366,848
10 Nonlinear time steps
4 Linear iterations

∆t = 1 µs v = 1 m/s

Department of Aerospace and Mechanical Engineering 84

micro

m
ac
ro

micro micro

MPI_COMM_WORLD

m
m
_i
nt
er

m
ic
ro
_a
ll

migrate

Load-balancing for microscale simulations
• Time-based metrics for adaptation, load-

balancing heuristics
• Non-blocking data migration among

servers/computing nodes
• Overlay computations with data migration

Ideal

512 RUC

1k = 1024

S
p
ee
d
u
p

No. of cores (servers)

4k
(8)

8k
(16)

16k
(32)

32k
(64)

64k
(128)

128k
(256)

256k
(512)

1

2

4

8

16

32

64 RUC (512 cores)
1.46M Elements
262K Nodes
773K DOF

‣ LLNL Vulcan
‣ 262,114 cores

Multi-scale Simulations, PGFem3D - GCTH

Department of Aerospace and Mechanical Engineering 85

Micro-server Rebalancing

Accounts for physics-induced imbalance
Utilizes resources better
Faster time-to-solution
Highly-scalable

‣12% speedup when rebalancing the micro servers

0 100 200 300 400 500
0

50

100

150

Server Cycle

M
a
x.

 S
e
rv

e
r

Im
b
a
la

n
ce

 [
s]

Avg. Imbalance:
16.658 [s]

Avg. Imbalance:
10.122 [s]

Unbalanced
Balanced

0 100 200 300 400 500
4

6

8

10

12

Server Cycle

N
u
m

b
e
r

o
f
C

e
lls

Max. No. Cells
Min. No. Cells

Macro-time
adaptation

‣ C-SWARM, 1136 cores
‣ 16 Clients, 35 micro-servers
‣ 32 cores per micro-server

Department of Aerospace and Mechanical Engineering 86

Numerical Libraries

PETSc —Portable, Extensible Toolkit for Scientific
Computation (www.mcs.anl.gov/petsc/)
HYPRE — library for solving large, sparse linear
systems of equations on massively parallel computers
(computation.llnl.gov/project/linear_solvers/index.php)
ScaLAPACK — Scalable Linear Algebra PACKage
(www.netlib.org/scalapack/)
LAMMPS — Large-scale Atomic/Molecular Massively
Parallel Simulator (http://lammps.sandia.gov)
Trilinos — large-scale, complex multi-physics
engineering and scientific problems (https://trilinos.org)

https://www.mcs.anl.gov/petsc/
http://computation.llnl.gov/project/linear_solvers/index.php
http://www.netlib.org/scalapack/
http://lammps.sandia.gov
https://trilinos.org

Department of Aerospace and Mechanical Engineering 87

Parallel Visualization & Data Analysis

The ParaView project started in 2000 as a collaborative effort between
Kitware Inc. and Los Alamos National Laboratory. (http://
www.paraview.org)

VisIt was originally developed by the Department of Energy (DOE)
Advanced Simulation and Computing Initiative (ASCI) to visualize and
analyze the results of terascale simulations. (wci.llnl.gov/simulation/
computer-codes/visit)

http://www.paraview.org
https://wci.llnl.gov/simulation/computer-codes/visit

Department of Aerospace and Mechanical Engineering 88

Debugging and Profiling

TAU — profiling and tracing toolkit for performance
analysis of parallel programs (www.cs.uoregon.edu/
research/tau/home.php)
APEX — Autonomic Performance Environment for
eXascale (www.nic.uoregon.edu/~khuck/apex_docs/doc/
html/index.html)
Allinea DDT — Parallel debugger (www.allinea.com/
products/ddt)
TotalView — Parallel debugger (www.roguewave.com/
products-services/totalview)

http://www.cs.uoregon.edu/research/tau/home.php
http://www.nic.uoregon.edu/~khuck/apex_docs/doc/html/index.html
http://www.allinea.com/products/ddt
http://www.roguewave.com/products-services/totalview

Department of Aerospace and Mechanical Engineering 89

Software Engineering Tools
Source Code and Data Control

• C-SWARM maintained through wiki tracking system

• Open-source control system GitLab

Automated Builds, Full-System, and Regression Testing

• Frequent builds on C-SWARM cluster, Jenkins

Maintain Third-party Software

• HYPRE, ParMETIS, ParaView, TAU, etc.
Documentation, Release, and Support

• Doxygen documentation system

• PDF User’s and Developer’s guides

Department of Aerospace and Mechanical Engineering 90

Gitlab and Jenkins

Repository manager with wiki and issue tracking features

(gitlab.com)

• repository management, code reviews, issue tracking,

activity feeds and wikis, code statistics

Continuous integration tool (jenkins.io)

• Builds can be started by various means, including being

triggered by commit in a version control system (gitlab),

by scheduling

http://gitlab.com
https://jenkins.io

Department of Aerospace and Mechanical Engineering 91

Regression testing takes place
•daily at midnight and
•whenever developer pushes a new feature
Developers receive an email if test fails

gitlab-cswarm.crc.nd.eduwiki-cswarm.crc.nd.edu jenkins-cswarm.crc.nd.edu

Internet Users

InCommon
(Authentication)

Notre Dame Firewall

80/443

Apache

SSH

Shibboleth

CSWARM
Cluster

Submit

ApacheApache Jenkins ShibbolethGitLab-Omnibus

SSH

FosWiki Shibboleth

SSHSSH
80/443 80/443

Trigger
Tests

Software Engineering Tools

Department of Aerospace and Mechanical Engineering 92

‣ Thanks to Colleagues, Research Staff, Students
‣ Kokkos Documentations, Dr. H. Carter Edwards

‣ Material Taken from:

Conclusions

U.C. Berkeley CS267, Applications of Parallel Computers,
Dr. James Demmel

High performance computing is here to stay

Need in initial investment

Use existing libraries

Software engineering is important component

It is never to late to start

Karel Matous

College of Engineering Collegiate Associate Professor of Computational Mechanics
Director of Center for Shock-Wave Processing of Advanced Reactive Materials

Department of Aerospace & Mechanical Engineering
University of Notre Dame

367 Fitzpatrick Hall of Engineering
Notre Dame, IN 46556
Email: kmatous@nd.edu
www.nd.edu/~kmatous
www.cswarm.nd.edu

 ̌

