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Summary
An important topic for all companies that distribute products is inventory. There needs to
be enough to be able to supply the product demand, but not too much, since that would take
up valuable resources. For distribution networks that are becoming more and more complex,
it is difficult to assess how much inventory there should be held throughout the network.
OM Partners creates software that provides a solution to this problem. It can calculate the
optimal amount of safety stock to aim for in each echelon. A simulation model was created in
this project, which OM Partners can use to gain insight in the validity of analytical methods
to calculate safety stocks in a single/multi-echelon network.

A local distribution center (LDC) supplies its customers, meeting their (daily) demand, and
is replenished by a central distribution center (CDC) or factory, sending larger replenishment
shipments every now and then, to make sure LDC stock does not run out. To prevent running
out it keeps safety stock, the amount of safety stock is determined by a balance between costs
and customer service. A certain amount of safety stock is supposed to guarantee a level of
service towards customers. Calculations determine the necessary amount of safety stock.

Discrete-time simulations are used in this project to validate these calculations. A Matlab
model that follows the same rules as a distribution center would is simulated and gives similar
results as the calculations do. This validates the equations used for demand patterns with a
high demand frequency.

When there is a distribution network the problem becomes more complex, stock must be
minimized by deciding whether to keep more stock centrally or locally. The discrete-time
model was expanded, using curve-fitting and optimization, to also find an optimal safety
stock for two echelons. The multi-echelon model is compared to analytical models. Results
are not equal, but all methods show that a high service level from CDC to LDC is costly and
unnecessary. Furthermore, there are plausible hypotheses to explain the differences between
the analytical approximation and the discrete-time model.

The results of this project give OM Partners a new way to support their calculations towards
customers, and helps to reduce superfluous inventory.
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Symbols

P1 := probability of no stockout just before the arrival of a replenishment order

P2 := fraction of demand satisfied directly from the shelf

R := review period (time)

s := re-order point (number of products)

S := order-up-to level (number of products)

Q := order quantity (number of products)

X(t) := inventory level at time t (number of products)

Y (t) := inventory position at time t (number of products)

O(t) := inventory in transit at time t (number of products)

L := lead time (time)

B := backorders (number of products)

D := demand (number of products)

SS := safety stock (number of products)

k := safety factor (inverse of probability distribution)

E[x] := expected value of x

σ2x := variance of x

COV := coefficient of variation,
σx
E[x]

GamCDF (x) :=
1

βαΓ(α)

∫ x

0
tα−1e

−t
β dt

Γ(x) :=

∫ ∞
0

e−ttx−1dt

Φ(x) :=
1√
2π

∫ x

−∞
e−t

2/2 dt
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Chapter 1

Introduction
This thesis is the result of a collaboration between Eindhoven University of Technology and
OM Partners. OM Partners develops supply chain planning software that is used by many
companies all over the world. Part of this software focuses on the flow of products through a
distribution network. An example of a distribution network is a factory which produces prod-
ucts to be used worldwide, these products are sent to central distribution centers (CDCs),
which are located in strategic locations around the world, in large batches (e.g. freighters).
From here, the products are sent to local distribution centers (LDCs) in smaller batches (e.g.
trucks), from which they are sent to customers/resellers in even smaller batches (e.g. pallet-
s/boxes).

If there were no ordering policies or inventory optimization, when a customer orders a box of
products, they would have to wait until the factory produces it, sends a freighter to a CDC,
which sends a truckload to an LDC, which can then send the box to the customer. This
option is far from ideal.

Zooming in on one DC, the stock level can be defined as the number of products (a number of
units of 1 products) currently available in inventory. Products depart from the DC, towards
a lower level DC or a customer, which reduces stock. To create a more effective product flow
compared to the previous example, a replenishment policy can also be defined to make sure
that stock generally does not go below zero (negative stock is defined as backorders). This
way, in reaction to the reduction in stock caused by customer demand, a replenishment order
is placed at a higher level DC or the factory, which arrives with a delay defined as lead time,
and increases the inventory level. An example of this process can be seen in Figure 1.1. It
also shows that inventory level is the number of available products, which becomes negative
if there is customer demand when there is no stock, and inventory position which is a com-
bination of inventory level and inventory that has been ordered but has not arrived.

When customer demand and all lead times can be predicted perfectly, timely orders can be
placed so that stock never runs out but is also never more than necessary to fulfill the orders
until the next replenishment. Unfortunately, this is generally impossible due to stochas-
tic lead times and demand. This is why, in addition to the stock that would be necessary to
fulfill the average demand between replenishments, it can be helpful to hold extra safety stock.

Holding extra inventory causes higher inventory holding costs, but running out of stock causes
backorder costs and decreased customer satisfaction. A relation can be defined between safety
stock and (customer) service level. This relation is the main subject of this project. The goal
is to validate inventory optimization equations for safety stock calculation and determine op-
timal safety stock levels through discrete-time simulation.
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Figure 1.1: Example of stock level trajectory

The first step is simulating the situation that was explained previously, by zooming in on one
DC, using time intervals. Two common replenishment policies and four demand patterns are
implemented.

The next step is creating a discrete-time model that simulates a distribution network instead
of a single DC. By expanding to multiple echelons, which means that DCs are connected in
series, the relation between safety stock and service level becomes more complex. The only
place where backorders create costs and customer dissatisfaction is at the lower echelons,
where products are shipped to customers. Instead of balancing one safety stock level against
a service level, in this case the safety stocks of all higher echelons determine the service level
towards the customers. This multi-echelon situation is also simulated using a discrete-time
model, and the results are used to validate analytical equations. The discrete-time model is
developed to be able to simulate 1 CDC with multiple LDCs, the LDCs can not exchange
products between each other. Input parameters for the developed discrete-time models can
be defined in an Excel file.

The remaining part of this thesis starts with an elaboration of the theory behind the analytical
model and the way the discrete-time model is created using literature in Chapter 2. The
next step is the design and details of the single-echelon discrete time model, followed by
its validation, in Chapter 3. In Chapter 4, this model is then expanded to multi-echelon,
where the expanded discrete-time model is also used in a curve-fitting and optimization
sequence. Multi-echelon results are validated, and lastly, in Chapter 5, conclusions are drawn
and recommendations are made.
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Chapter 2

Literature review
This chapter gives an overview of the theory from literature that is used in this project. The
first section describes the formulas used in single-echelon inventory optimization to calculate
safety stocks for desired service levels, the second section expands into multi-echelon theory
applied to the single-echelon equations. The third section explains discrete-time simulation
as used in this project and the last section is about the optimization techniques used in the
multi-echelon model.

2.1 Single-echelon inventory optimization equations

In a distribution center where demand D and lead time L are stochastic, when placing an
order to replenish inventory, an estimate must be made of what will happen until the order
arrives and until the next order can be placed to keep service towards customers up. This
estimation is done using inventory optimization equations. To understand the equations, the
terminology used in the previous chapter is explained further. The equations can be used
to calculate service level based on several variables. In [2], the service levels are defined and
calculated using statistical deductions on inventory systems. The service levels P1 and P2 are
defined in the second chapter.

• P1 := probability of no stockout just before the arrival of a replenishment order.

• P2 := fraction of demand satisfied directly from the shelf.

Which means that looking back at past results for a DC, service can be calculated using:

P1 = 1− nso
nrpl

,

P2 = 1− Btot
Dtot

.

nso is the number of times that there was no more stock right before it was replenished, nrpl
is the total number of replenishments, Btot is the total amount of backorders that occurred
and Dtot is the total amount of demand that was requested. This assumes that backordered
demand is sent out as soon as it becomes available.

When looking at the future, these variables are unknown, but it is possible to calculate
expected values for them using data about demand (E[D] and σD), lead time (E[L] and σL)
and policy. For (R, s,Q) and (R,S) policies, which are used in this project, service is based
on what happens during the uncertainty period:

• In case of an (R, s,Q) policy, after amount of time R has passed, an order of Q products
is placed if the inventory position (Y (t)) is below re-order point s. Service levels can
be calculated by deducing the probability distribution of demand that is ordered by
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customers between the moment a replenishment order is placed and the moment it
arrives. The expected uncertainty period therefore is E[L], with standard deviation σL.

• For the (R,S) policy, where the difference between the current inventory position Y (t)
and the order-up-to level S is placed each time that review period R has passed, service
levels can be calculated the same way. Instead of looking between placing and arrival
of an order, it is necessary to look between placing the first order and arrival of the
next order, since inventory will keep decreasing after the arrival of an order, and should
be prevented from going empty in between orders. The expected uncertainty period
therefore is R+ E[L], with standard deviation σL.

Due to the stochastic behavior of demand and lead time, the number of products that is
necessary during this uncertainty period is variable, as can be seen in Figure 2 of [2]. The
amount of fluctuation depends on the variances. If a lot of demand occurs after placement
but before arrival of a replenishment a stockout can occur, but if demand is average and lead
time is long a stockout can still occur. The expected value and variance of demand during
uncertainty period (DDUP ) can be calculated using:

E[DDUP, (R, s,Q)] = E[L]E[D],

E[DDUP, (R,S)] = (E[L] +R)E[D],

σ2DDUP,(R,s,Q) = σ2DE[L] + σ2LE
2(D),

σ2DDUP,(R,S) = σ2D(E[L] +R) + σ2LE
2(D).

Using E[DDUP ] as re-order point or order-up-to level is defined as having 0 safety stock,
which means that:

s(R,s,Q) = E[DDUP, (R, s,Q)] + SS,

S(R,S) = E[DDUP, (R,S)] + SS,

where s is the re-order point, S is the order-up-to level and SS is the amount of safety stock.
If all DC parameters are known, and a re-order point or order-up-to level are chosen, the
probability that DDUP is below this value can be determined using the cumulative distribu-
tion function (CDF) of the demand pattern. This project uses the Gamma distribution, so
this calculation is done using:

GamCDF (S, α, β) :=
1

βαΓ(α)

∫ S

0
tα−1e

−t
β dt,

where

Γ(α) :=

∫ ∞
0

e−ttα−1dt,

α = (
E[DDUP ]

σDDUP
)2,

β =
σ2DDUP

E[DDUP ]
.
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Here, S is used for both the re-order point and the order-up-to-level. Using GamCDF this way,
the P1 service level can be calculated for (R, s,Q) and (R,S) distribution centers. Similarly,
the required safety stock to obtain a service level can be calculated using the inverse of this
CDF. P2 is determined by calculating the expected value of the number of backorders per
replenishment. Using equation (73) from [2], it can be determined for (R,S) policies that:

P2 = 1− Gam1 −Gam2

E[D]R
,

with:

Gam1 = E[DDUP ](1−GamCDF (S, α+ 1, β))− S(1−GamCDF (S, α, β)),

Gam2 = E[DDUP ](1−GamCDF (S+E[D]R,α+1, β))−(S+E[D]R)(1−GamCDF (S+E[D]R,α, β)),

where E[D]R and S can be replaced with Q and s respectively, to use this equation for
(R, s,Q) policies instead of (R,S).

2.1.1 Undershoot

The equations used for service level calculations previously had the assumption that the
inventory level is exactly at s at the moment a replenishment is ordered in case of an (R, s,Q)
policy. There are two reasons why this is almost never the case:

• Demand is not continuous but discrete, so before and after 1 customer order the inven-
tory level can go from above s to below s.

• The inventory level is checked each review period, if it is slightly above s at the moment
of a check, it is probably going to be a lot lower than s a full review period later.

For this reason, undershoot is introduced in Chapter 5.2 of [2]. Undershoot is defined as the
number of products that the inventory level is below s at the moment a replenishment order
is placed. E[DDUP ] and σDDUP can be replaced the following way:

E[U ] =
σ2DR+ E[D]2R2

2E[D]R
,

σ2U = (1 +
( σD
E[D])

2

R
)(1 + 2

( σD
E[D])

2

R
(
(E[D]R)2

3
− E2[U ])),

E[DDUPU ] = E[U ] + E[DDUP ],

σ2DDUPU = σ2U + σ2DDUP .

Here, U represents undershoot. Using the equations described in this section the P1 and P2

service levels for single-echelon inventory optimization can be calculated for any safety stock
for the (R, s,Q) and (R,S) policy.
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2.1.2 Demand pattern classification

In [6], demand patterns are classified according to four quadrants. The parameters used
to classify demand are the coefficient of variation and the average inter-demand interval.
For both parameters there is a threshold that determines which quadrant a demand pattern
belongs to. Demand can be classified as:

• Smooth demand: demand with a low coefficient of variation (COV < 0.5) and a demand
greater than 0 in > 75% of time periods.

• Erratic demand: demand with a high coefficient of variation (COV ≥ 0.5) and a demand
greater than 0 in > 75% of time periods.

• Intermittent demand: demand with a low coefficient of variation (COV < 0.5) and a
demand of 0 in ≥ 25% of time periods.

• Lumpy demand: demand with a high coefficient of variation (COV ≥ 0.5) and a demand
of 0 in ≥ 25% of time periods.

2.2 Multi-echelon inventory optimization equations

In the previous section, a single DC was considered. Replenishments were represented by a
lead time with an expected value and a standard deviation. By that way of modeling, the
assumption is made that in the echelon above the modeled DC, each order can be deployed
immediately and completely. Since the higher ranking echelon is often also a DC (with
occasional stockouts) this assumption is incorrect. This section describes the extensions that
are added to the single-echelon equations so that more echelons can be modeled.

2.2.1 Multi-echelon approach by Desmet

When looking at a two-echelon distribution system with one CDC and multiple LDCs, the
only difference with the single-echelon system occurs when CDC stock is insufficient to fulfill
LDC demand directly. This causes a delay in the delivery of products ordered by LDCs. The
exact impact of this delay is difficult to determine. It is approximated in [4].

The delay is approximated using an adjustment to the lead time parameters of LDCs, making
E[LLDC ] and σLLDC dependent of CDC service level and lead time. Using the equations in
Section 2.1, P1CDC can be determined for a certain amount of CDC safety stock, using the
combined demand of all LDCs as demand for the CDC. This service level is used to calculate
adjusted lead time parameters for LDCs:

E[L∗LDC ] = E[LLDC ] + (1− P1,CDC)E[LCDC ],

σ2L∗LDC
= σ2LLDC + (1− P1,CDC)2σ2LCDC .

Here, L∗ represents the adjusted lead time. In this representation, a stockout at the CDC
means that the LDC will have to wait an extra LCDC , which occurs (1−P1) times on average.
By replacing the values used for lead time in the equations in Section 2.1 with the result of
the equations above, adjusted LDC service levels can be calculated.
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When the objective is to minimize costs while maximizing customer service, the sum of all
safety stocks should be minimized (possibly with a correction for differing inventory costs in
CDCs/LDCs) while maintaining a desired LDC service level. Since SSCDC directly correlates
to P1,CDC , which is used in the equations to determine LDC service levels, the optimal
configuration can be found by searching through configurations with high SSCDC and low
SSLDC to the opposite, to find the minimal total safety stock that meets LDC service level
criteria.

2.2.2 Adjusted P1,CDC by Dendauw

An adjustment to the approximation is proposed in [3]. The reasoning made here is that
when the CDC has a large lotsize, most of the time when an order from the LDC comes in,
there is a higher chance than P1 that stock is still available, since chances are very small that
stock runs out right after replenishment of CDC inventory. It uses an adjusted formula for
P1,CDC :

P ∗1,CDC = Φ(
QCDC/2 + SSCDC

σDDUP,CDC
),

where QCDC is either Q from CDC parameters in case of an (R, s,Q) policy or E[D]R in case
of an (R,S) policy. Φ represents the standardized Normal cumulative distribution function:

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2 dt.

By replacing P1,CDC in the equations in Section 2.1 with the result from the calculation of
P ∗1,CDC , and using this value in the equations in Section 2.2.1, a new optimal safety stock
configuration can be determined.

2.2.3 Adjusted waiting time by Desmet

In [5], an adjusted representation of the waiting time is proposed. In Section 2.2.1, the
proposed waiting time is LCDC . This is replaced by a waiting time approximation that
uses an Exponential distribution with an average that is dependent on CDC parameters. A
formula for calculation of this adjusted waiting time is not shown, the adjusted waiting time
is approximated in Section 4.4.5.

2.3 Discrete-time simulation for distribution systems

Discrete-time simulation can be used to make inventory models of distribution networks, in
this case, this modeling type is used to simulate inventory systems. When analytical models
are used, stochasticity and expansive models can quickly increase complexity in accompanying
calculations. In discrete-time models this mostly increases the workload for the computer.
Processing power in computers increases every year, which makes simulation an accessible
way of modeling supply chains and distribution networks.

As can be seen in Chapter 3.2 of [1], discrete-time models function by iterating through
time-steps and updating variables each step. When applied to inventory models, the basic
equations needed are:

7



X(k + 1) = X(k)−D(k) +Q(k − L),

Y (k + 1) = Y (k)−D(k) +Q(k),

where k represents each time interval, X and Y are inventory level and position respectively,
D is demand which can be stochastic, Q is stock ordered and L is lead time which can also
be stochastic.

A roadmap for using discrete-event simulation to simulate inventory models can be found in
[7]. This can also be applied to discrete-time simulation. The steps of the plan presented in
this article are:

1. Formulate problem

2. Specify independent and dependent variables

3. Develop and validate conceptual model

4. Collect data

5. Develop and verify computer-based model

6. Validate the model

7. Perform simulations

8. Analyze and document results

These steps are quite representative for the project, and broadly lay out the steps that are
taken. This process can be applied for single- and multi-echelon simulation and can partially
be applied in optimization as well.

The modeling environment that is used in this project is Matlab[8], specifically the statistics,
curve-fitting and optimization toolbox. Scripts are made using the Matlab programming
language to create the models and do simulations.

2.4 Constrained nonlinear multivariable optimization

This section describes the optimization method and curve fitting method that are used in this
project. Optimization problems are defined based on the methods introduced in Section 1.2
of [9]:

minimize f(x),

subject to h(x) = 0,

g(x) ≤ 0.

The goal is to minimize the outcome of function f(x) which is dependent of variable(s) x,
while constraints can apply to the variable(s) x. The constraints can be equality constraints
(h(x)), e.g. x1 = 2x2, or inequality constraints (g(x)), e.g. x1 ≥ 4. Applying this to, for
example, the problem in Section 2.2, the optimization problem could be to minimize total

8



safety stock, while making sure the service level does not go below a chosen requirement.

One of the challenges in optimization is described in Chapter 3 of [9]. When a function has
multiple local minima, like the function in Figure 3.3 (p. 97), the minimum that is found
might not be the true minimum. A minimum is found using methods like searching along a
line (Section 4.6 on p. 154), which generally report the first minimum that is observed. It
helps if a function is monotonic, which means that it is either increasing or decreasing for
each value (e.g. f(x2) > f(x1) for each x2 > x1). For example, since each extra unit of safety
stock in a DC decreases the probability that a stockout occurs, the relation between safety
stock and service level is monotonically increasing. To solve an optimization problem it is
necessary to check these properties and to make sure that the optimum that is found is not
just a local optimum.

These methods and properties for optimization problems are applied in this project using
Matlab. The function fmincon is used to find the minimum of a constrained nonlinear
multivariable function. Which is an optimization problem as described in this section.

2.4.1 Least squares curve fitting

Curve fitting can be seen as an optimization problem, as described in Section 2.2 of [9] (p.
49). When a set of x- and y-values is available, and the relation between x and y should be
found, this can be done by curve fitting. When there is a linear correlation (e.g. y = ax),
the problem becomes an optimization problem where an optimal value for a is found by min-
imizing the sum of squared residuals, which is the difference between values calculated using
the formula and data points, by changing the fitting coefficients (e.g. a). This can be done
for nonlinear functions with multiple coefficients as well.

Curve fitting in this project is done using Matlab, which has the function fit, where curve
fitting can be done for a wide range of problems using methods like least squares curve fitting
as described in this section.

The single- and multi-echelon theory has been described in this chapter, as well as the sim-
ulation and optimization methods and software used in the project. In the next chapter
discrete-time simulation will be used to simulate a single echelon distribution system.
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Chapter 3

Single-echelon Matlab model
This chapter applies the theory on discrete-time simulation explained in Section 2.3, and
compares the results to the results of the single-echelon equations in Section 2.1. A discrete-
time Matlab model is created to simulate a distribution center for various policies and demand
patterns.

3.1 Conceptual model

This first section gives a description of the desired input and output of the discrete-time
model, as well as an overview of the steps that are taken in the model. This is based on the
theory in Section 2.3.

3.1.1 Specification of model variables

The discrete-time model should be able to give the same output as the equations in Section 2.1,
based on the same input variables. The output of the model should therefore be the service
levels P1 and P2. A discrete-time model uses timesteps, therefore the input variables are
specified as:

• E[D] and σD are the expected value and standard deviation of the customer demand
per time interval. These are determined using a Gamma distribution, a Normal distri-
bution is common but that distribution can have values below 0. The model is going to
randomly generate demand values using E[D] and σD. To prevent “negative” demand,
the Gamma distribution as described in Section 2.1 is chosen.

• P (D) is used by a Geometric distribution to determine the interval until the next period
with customer demand. This is used in cases where not each time interval contains
demand. After each demand, the distribution P (n0 = k) = (1 − p)k p is sampled to
check the number of time intervals n0 that have no demand, until the next period that
contains demand. When P (D) = 1, the results is always 0, so that there are 0 periods
without demand.

• R is the review period, which is represented as the number of time intervals between
reviews.

• Q is the number of products that is ordered when inventory order position is lower than
the re-order point in case of an (R, s,Q) policy.

• E[L] and σL are the expected value and standard deviation of customer demand in time
periods, also generated from a Gamma distribution to prevent negative values.

• SS is the number of products that is added to E[DDUP ] (Section 2.1) to either deter-
mine the re-order point or the order-up-to level depending on the replenishment policy.

In the declaration above, all variables except SS are properties of the distribution center that
is simulated. SS is the independent variable that is changed to influence output service levels.
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3.1.2 Conceptual model overview

A model must be created that uses the input variables described in the previous section to
determine the service level as output. This is accomplished by doing a discrete-time simu-
lation, where the distribution system is simulated for a large number of time intervals. If
the DC is modeled accurately, the number of stockouts and backorders that occurred during
simulation can be used to determine the service levels.

For each discrete time interval the model variables and the values used to calculate the service
levels are updated, as presented in Figure 3.1.

Figure 3.1: Flowchart of communication in single-echelon model

• For each time period the first step is adding any received orders to the inventory level X
and removing those orders from the orders in transit O. The model should keep track
of the number of received replenishments and the number of stockouts so that P1 can
be calculated after simulation.

• Then the demand for that time period is handled by subtracting it from inventory
level X and inventory position Y . The model should keep track of the total amount
of demand and the number of backorders that occur so that P2 can be calculated after
simulation.

• When a review period has passed, the current inventory position Y is checked with the
order policy to determine whether an order should be placed or how large the order
should be, depending on the policy. The inventory position Y and orders in transit O
are updated when necessary.

A more detailed overview is shown in Listing 3.1, where the structure of the model can be seen
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in pseudocode. The Matlab model that is described in the next section follows this structure.

1 initialize
2

3 for each safety stock value
4 for the defined number of experiments
5 for the total number of review periods that fit in an experiment
6 for the number of time periods in a review period
7 %% Receive replenishment orders
8 if an order on order list is receivable
9 if net stock is below zero

10 update number of replenishments and stockouts
11 end
12 add order to net stock
13 end
14 %% Process demand
15 subtract current time period demand from net stock and ...

inventory position
16 if net stock is below zero
17 update backorders
18 end
19 end
20 %% Check replenishment policy
21 if replenishment policy indicates new order
22 add order to order list and inventory position
23 end
24 end
25 calculate service levels (current experiment)
26 end
27 calculate mean and confidence interval (all experiments, current ...

safety stock value)
28 end
29

30 plot mean and confidence interval of all safety stock values

Listing 3.1: Pseudocode model overview
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3.2 Matlab model

This section gives an overview of the Matlab model created to do discrete-time simulation for
single-echelon distribution systems with 1 DC. Details of the model are explained for relevant
parts of the model structure as shown in Listing 3.1. The full code is shown in Appendix A.

3.2.1 Initialization

The code starts with clearing memory and setting simulation parameters as shown in List-
ing 3.2. Simulation accuracy is determined by the simulation scale, the number of time
intervals that are simulated and the total number of simulations that are done to determine
result confidence interval. Nstart is the number of time intervals that do not count for
service level results to prevent startup effects.

1 clearvars; close all;
2

3 %Simulation properties
4 simscale = 1; %Time periods are split into smaller steps using scale
5 Nstart = 500*simscale; %Number of time periods that do not count for results
6 N = (10000+Nstart)*simscale; %Total number of time periods
7 NX = 15; %Number of experiments
8 simgraph = 0; %If 1 the simulation runs once and makes a graph of ...

inventory levels

Listing 3.2: Clear memory and set simulation parameters

Then, the code in Listing 3.3 calculates DC parameters using input values from excel and the
simulation properties determined before. Some basic formulas are used to determine the values
of re-order point/order-up-to level S and order size Q. S is used as the expected demand
during the uncertainty period E[DDUP ] to which safety stock is added during simulation.
Q is a factor of the expected demand during a review period.

10 input = xlsread('InputSE.xlsx','Sheet1');
11

12 %Calculate system properties from input
13 type = input(1); %0 = RsQ policy, 1 = RS policy
14 ED = input(2)/simscale; %Expected value of demand per time period
15 sigD = input(3)/simscale; %standard deviation of demand per time period
16 PD = input(4); %lambda of Poisson distribution that determines demand interval
17 EL = input(5)*simscale; %Expected value of lead time in time periods
18 sigL = input(6)*simscale; %Standard deviation of lead time in time periods
19 R = input(7)*simscale; %Review period in time periods
20 Q = input(8)*ED*R*PD; %Order quantity level using standard formula (only RsQ)
21 sslow = input(9); %Lower bound of safety stock
22 ssint = input(10); %Interval of safety stock values
23 sshigh = input(11); %Upper bound of safety stock
24

25 %Initialization

Listing 3.3: Calculate system properties

Instead of generating demand values during simulation, a demand matrix is generated be-
fore simulation, this is more efficient computationally, and allows each simulation with a
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different SS value to use the same demand matrix. The generation of the demand vector
is shown in Listing 3.4. gamrnd generates demand values using the input values of E[D]
and σD. If P (D) < 1, the intervals between time periods that have demand are generated
using geornd. The periods without demand change the parameters of the demand used in
simulation. Therefore, the average and standard deviation of the demand are calculated from
the demand matrix after it is generated.

36 %used for all values of ss
37 %When a lambda is given, a geometric distribution calculates the time periods
38 %until the next demand
39 if PD == 1
40 seed = gamrnd((ED/sigD)ˆ2,sigDˆ2/ED,N,NX);
41 else
42 seed = zeros(N,NX);
43 for x = 1:NX
44 next = geornd(PD); %Determine time periods until next order
45 for y = 1:N %Generate demand or fill in pause for all demands
46 if next == 0
47 seed(y,x) = gamrnd((ED/sigD)ˆ2,sigDˆ2/ED);
48 next = geornd(PD);
49 else
50 seed(y,x) = 0;
51 Nzero = Nzero + 1;
52 next = next - 1;
53 end
54 end
55 end
56 end
57 avgdemand = mean(mean(seed)); %Resulting average of demands
58 prcntdemand = 1-Nzero/(N*NX); %Resulting % of filled time periods
59 sigdemand = mean(std(seed)); %Resulting standard deviation of demands

Listing 3.4: Demand generation

3.2.2 Receiving replenishment

Next is the main part of the model. For each value in the safety stock range defined by input,
NX simulations are conducted. For 1 simulation of 1 SS value, the model starts by resetting
variables like inventory level and position, after which a loop over all time periods starts.

The loop over each time period starts by checking whether a replenishment order has arrived
between the previous and the current time period, as shown in Listing 3.5. Replenishment
orders that are in transit are stored in cell O which contains a 2-by-no matrix where no is the
number of replenishments in transit. This matrix could contain, for example:

[
100 3.7

100 11.5

]
.

This means that there are currently 2 replenishments in transit that both contain 100 prod-
ucts, the first arriving after 4 time periods and the next after 12 time periods.
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If O is not empty, 1 is subtracted from the second column. If the number in the second
column of the first replenishment becomes negative, it has arrived between the previous and
the current time period. The number of products in that replenishment order is added to the
inventory level, and the numbers of replenishments and stockouts are updated for calculation
of P1. The replenishment order is then removed from O.

87 end
88 %Check if there are orders that have arrived
89 %Update values for P1
90 if size(O{1},1) > 0 %Are there orders?
91 O{1}(:,2) = O{1}(:,2) - 1;
92 if O{1}(1,2) < 0
93 NQtot = NQtot + 1*start;
94 if X < 0
95 Nstockout = Nstockout + 1*start;
96 end
97 X = X + O{1}(1,1);
98 O{1}(1,:) = [];
99 end

Listing 3.5: Receive orders

3.2.3 Demand

Demand is fulfilled in Listing 3.6. The demand value comes from the matrix generated
in Listing 3.4, total demand is updated, and if the current inventory level is insufficient,
backorders are calculated, for calculation of P2. Then, demand is subtracted from Y and
X. The replenishment and demand part of the model are repeated until the end of a review
period.

105 end
106 %Determine demand
107 D = seed(R*(k-1)+i,xper);
108 %Update values for P2
109 Dtot = Dtot + D*start;
110 if X ≤ 0
111 Btot = Btot + D*start;
112 else
113 if X < D
114 Btot = Btot + start*(D - X);
115 end
116 end
117 %Update inventory levels and record data for visualization
118 Y = Y - D;

Listing 3.6: Check demand

3.2.4 Replenishment policy

After each review period, the replenishment policy is checked, this is shown in Listing 3.7.
In case of an (R, s,Q) model (type 0), a multiple of Q products is ordered if the inventory
position is below s, if the inventory position is more than Q products below s, Q is ordered
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twice (or more if necessary). For (R,S) models (type 1), the difference between Y and s
is ordered. Orders are placed by adding a line to the matrix in cell O, containing the order
quantity and the lead time.

124 end
125 %After each review period update orders
126 if Y < s && type == 0
127 L = gamrnd((EL/sigL)ˆ2,sigLˆ2/EL);
128 O{1} = [O{1};ceil((s-Y)/Q)*Q L];
129 Y = Y + ceil((s-Y)/Q)*Q;
130 elseif type == 1
131 L = gamrnd((EL/sigL)ˆ2,sigLˆ2/EL);
132 Q = s-Y;
133 O{1} = [O{1};Q L];
134 Y = Y + Q;

Listing 3.7: Replenishment policy

3.2.5 Results calculation

After simulating all review periods, results for P1 and P2 are recorded in matrix P, this is
done for all NX simulations that are done per value of safety stock, as shown in Listing 3.8. If
the model is in “simulation graph” mode (simgraph 1), it exits the loop after the first run,
since enough data to create a diagram of a single simulation is available.

141 end
142 %Record service levels
143 P(xper,:) = [(1-Nstockout/NQtot) (1-Btot/Dtot)];
144 %Print result of simulation for visualization and terminate loops
145 if simgraph == 1
146 break;
147 end
148 end
149 if simgraph == 1
150 break;

Listing 3.8: Record results

The last step in simulation is shown in Listing 3.9, for both P1 and P2 the average and
confidence interval of all experiments for a safety stock value is calculated and collected in
the results matrix.

151 end
152 %Determine mean and std
153 Results(r,:) = [s mean(P) tinv(0.975,NX-1)/sqrt(NX)*std(P)];

Listing 3.9: Collect results

3.2.6 Results processing

After all simulation loops have finished a plot of the results is created. If the model is in
“simulation graph” mode, data of Y and X is collected for a plot of a single simulation. Mea-
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surements are before each time period loop, after receiving orders, after serving demand and
after updating the replenishment policy. An example of the visualized data for a single run is
shown in Figure 3.2. Here, another function can also be seen, to increase accuracy the time
resolution of the simulation can be decreased. The first diagram shows an (R, s,Q) policy
with normal resolution, the second an (R,S) policy with a 24x higher resolution.

This Matlab model can be simulated for different DC parameters, results for a representative
set of different situations are compared to the analytical equation results in Section 3.4
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Figure 3.2: Single run diagram of normal resolution (R, s,Q) model and 24x resolution (R,S)
model
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3.3 Single-echelon optimization

The single-echelon Matlab discrete-time model is used to simulate and plot safety stock vs.
service level curves. The next step is using the discrete-time model to find the optimal safety
stock value for a set of input variables and a service level requirement. This section handles
an adjusted version of the single-echelon Matlab model that can be used to find the optimal
safety stock value. This Matlab script determines the optimal safety stock using the following
steps:

• Determine approximate safety stock range where service level goes from 0% to 100%.

• Simulate in intervals across relevant range.

• Determine approximate service level equation by curve-fitting on simulation results.

• Calculate optimum from equation.

Some adjustments are made to the original single-echelon script to accommodate the steps
above. To quickly be able to run the original single-echelon script for different input param-
eters that are not predefined, it is turned into a nested function. This way the optimization
part and the simulation part of the script can use the same (excel) input. The full script
can be found in Appendix A.2. The last part of that script contains function SEIO func,
which is very similar to the script explained in the previous section. This function is used
throughout the script and is not explained in detail. To accommodate a nested function, the
optimization script itself is also a function, which is invoked by another script using the Excel
input as input for the function SEIO optim fit.

3.3.1 Find relevant safety stock range

The Matlab model is supposed to find an optimum without prior information about service
level outcomes. Initially, it is therefore assumed that there is no information about the safety
stock at which a service level can be achieved. Before any curve-fitting can be done, the
relevant range of safety stocks must be determined. The first part of the optimization looks
for the approximate point where the service level is 50%, which is the steepest point, in order
to determine the safety stock range where the service level goes from 0% to 100%. It starts
at E[DDUP ], as defined in Section 2.1, and searches in increments of E[D] until the 50%
point is crossed. The re-order point/order-up-to level at which this occurs is used as a basis
for the simulation range.

22 %Find point where P = 50%
23 Stest = EDDUP; %Stest is updated towards the optimum
24 P = SEIO_func(Stest); %Find initial P guess
25 if P > 50 %Iterate towards 50% by steps of ED
26 while P > 50
27 Stest = Stest - ED;
28 P = SEIO_func(Stest);
29 end
30 Stest = Stest + ED;
31 else
32 while P < 50
33 Stest = Stest + ED;
34 P = SEIO_func(Stest);
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35 end
36 end

Listing 3.10: Roughly estimate 50% point

3.3.2 Simulate relevant safety stock range

The next part creates vectors for the simulations within a range around the 50% point and
performs simulations in that range. A wide range from -1 to 2 times E[DDUP ] is chosen to
ensure that simulations are performed around the service level requirement, which is usually
between 80% and 98%.

38 %Create grid for curve fitting area
39 Xvalues = ...

linspace(Stest-ED*(EL+type*R)*PD,Stest+3*ED*(EL+type*R)*PD,Nintervals)'; ...
%Nintervals around 50% point

40 Yvalues = zeros(size(Xvalues,1),1);
41

42 %Find results within grid
43 for j = 1:Nintervals
44 Yvalues(j) = SEIO_func(Xvalues(j));
45 end

Listing 3.11: Simulate around 50% point

3.3.3 Curve-fitting on simulation results

In the next part, Listing 3.12, the results are processed. The results are service level values for
a range of safety stock values. These have to be transformed into a model that can be used to
determine the optimal value. This is accomplished using non-linear least squares curve-fitting
as described in Section 2.4. A function called the logistic function is fitted on the results of
the simulations. The function that is fitted to the data is:

Px =
100%

1 + eα(S−S50%)
,

where Px can be either P1 or P2, α is a fitting coefficient that determines the slope, and S
is the re-order point/order-up-to level (x-axis) with S50% a fitting coefficient with the value
where the result is 50%. Among several functions that can be used to describe an S-curve,
this function follows the simulation results most accurately. The main alternative was the
cumulative distribution function of the Normal distribution, which follows simulation results
slightly less accurately. With a small number of simulations, an accurate fit is achieved. A
sample of the fitting results can be seen in Figure 3.3, where the simulation result points are
shown together with the fitted line.

Since the logistic function is monotonically increasing and there are no constraints except
for the service level target, the target with accompanying safety stock can be found using
an fzero command, which searches along a line until the result is found. The confidence
interval of the service level result around the resulting safety stock value is calculated. At
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this point the optimal safety stock and the service level confidence interval are returned as
results of the optimization script.

1 %Fit results to logistic function and
2 linfun = fit(Xvalues,Yvalues,'100/(1+exp(b*(x-a)))','StartPoint',[Stest ...

0.001]);
3 objective = @(x) linfun(x) - Ptarget;
4 Stest = fzero(objective,EDDUP); %Find optimal S value
5 ci = predint(linfun,Stest,0.95,'functional'); %Find confidence interval ...

for optimum

Listing 3.12: Fit logistic function and determine optimum

The script that calls the optimization script performs simulations using SEIO func to deter-
mine whether the results from fitting are corrects. If results are too low, the optimal safety
stock is increased by increments of E[D] until the true optimum is found. If results are too
high, the same happens in decreasing direction.
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3.4 Validation of single-echelon results

To validate the single-echelon discrete-time model, the simulation results and the analytical
equations can be compared. Before doing so, some possible causes of errors need to be taken
into account:

• Due to the discrete timesteps in simulation, demand and lead time are discretized as
well. Occasionally, a stockout that might have occurred if demand and lead time were
continuous is prevented. If a lot of demand would have occurred near the start of a
time interval while the a replenishment would have arrived too late, a stockout should
occur, but since the total demand for a time period and the total replenishments for a
time period are checked after the time interval, the stockout is not counted. This raises
service level results.

• If σL is larger than approximately 1/3 of R, delays in replenishments occur due to the
prevention of replenishment overtaking. Allowing overtaking would lead to incorrect
results, because the effective lead time of some shipments would decrease. This is
prevented by only allowing the oldest replenishment to be received. If a recently ordered
replenishment has a lower lead time than an older one, it is prevented from being received
until the older one is received.

• The equations used in analytical calculation assume that demand is distributed accord-
ing to a Gamma distribution. If P (D) < 1, the demand pattern in the simulation
becomes a Gamma distribution with Geometrically distributed zeros in between. To
calculate analytical results in these cases, the expected value and standard deviation
of demand are recalculated including the time periods containing 0 demand. The new
E(D) and σD are used in the equations that assume Gamma distributed demand, while
demand does not follow an exact Gamma distribution.

To assess the size of these errors and check the accuracy of the simulation, a comparison with
the analytical equations is made, where different sets of input parameters are checked. The
analytical equations are calculated exactly following the description in Section 2.1.

3.4.1 Method of comparison

To provide a broad comparison of the analytical and discrete-time method, different sets
of input parameters are used. A starting set of parameters is defined from which different
variables are varied in order to see where differences are larger and where they are smaller.
The initial input parameters are shown in Figure 3.4.

Using these parameters as a basis, comparative diagrams and tables are made of the results
for different changes in parameters:

• All changes are compared for both the (R, s,Q) and (R,S) policy, if applicable.

• A visual comparison is made for sets of input parameters that represent the demand
pattern quadrants specified in Section 2.1.2. The analytical results are added to the
simulation results using the script in Appendix A.1.

• A comparison is made for (R, s,Q) without taking undershoot into account.

• The effect of simulating with smaller time intervals is tested.
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• Several values of σL are tested.

• The service level requirement is changed.

• Order quantity is changed for a P2 requirement with an (R, s,Q) policy.

Figure 3.4: Initial input parameters

3.4.2 Results comparison

3.4.3 4 Quadrant comparison

The first comparison is done by simulating in the quadrants of demand as described in Sec-
tion 2.1.2. The initial set of parameters in Figure 3.4 is used as smooth demand. For erratic
demand and lumpy demand σD = 100 is used, so that COV = 1, and for intermittent demand
an lumpy demand P (D) = 0.1 is used. To provide a general overview of model vs. equation
performance, results are shown graphically in Figure 3.5 for the (R, s,Q) policy and in Fig-
ure 3.6 for the (R,S) policy. Furthermore, the optimal safety stock results for P1 = 95% can
be found in Table 3.1. For each figure or table, similarities and differences are discussed.

Figure 3.5a shows the results for an (R, s,Q) replenishment policy with a smooth demand
pattern, the 95% confidence interval of the simulated safety stocks is also shown below and
above the line. The positive bias in service level that was explained at the start of this section
is clearly present in this case, although in the 30% to 90% range for P1 the analytical result is
still within the simulation confidence interval. In the higher service level range, which is more
relevant than the lower range, differences in safety stock become larger as the curve becomes
more horizontal.

In case of erratic demand as shown in Figure 3.5b, P1 results are almost equal while the posi-
tive bias is still present in P2. Intermittent and lumpy demand in Figures 3.5c and 3.5d seem
accurate, even though the equations assume differently distributed demand, as explained at
the start of this section. Intermittent demand results fluctuate in accuracy. In high service
level ranges the same trend as in the other quadrants can be observed.

Compared to the (R, s,Q) results, the smooth quadrant (R,S) results in Figure 3.6a are al-
most the opposite. Between 30% and 90% P1 service, there are large differences, while the
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(c) Intermittent demand
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Figure 3.5: (R, s,Q) 4 quadrant results

highest service levels seem the most accurate. This might be due to the fixed order quantity
in (R, s,Q) models, which is the main difference between (R, s,Q) and (R,S). The same
effect can be seen in Figure 3.6b for erratic demand.

For intermittent and lumpy demand in Figures 3.6c and 3.6d, it can be seen that the simu-
lation has a lower P2 service level than P1 for most safety stocks. This is generally not the
case, but might be caused by the large fluctuations that can occur in demand during the
uncertainty period. The Geometric distribution that is used to generate demand intervals
create stockouts early in the uncertainty period, which can cause a lot of demand in that
period to be backordered. Only 1 stockout can occur per replenishment, while the demand
of multiple time intervals can be backordered in the same replenishment period. This effect
is not taken into account in the analytical equations, since they assume Gamma distributed
demand for every time period, which causes large differences in P2 while differences in P1 are
smaller.

Table 3.1 shows the results of optimization for the input parameters described for each quad-
rant where the optimum is found for P1 = 95%. For (R, s,Q), differences have a small positive
bias for the simulation, except for erratic demand, where the results are very accurate. This
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Figure 3.6: (R,S) 4 quadrant results

corresponds to the results discussed for Figure 3.5. For (R,S), differences for smooth and
erratic demand are relatively larger.

SS(R,s,Q) SS(R,S)
P1 = 95% Calc Sim Calc Sim

Smooth 864 761 351 318

Erratic 1185 1192 734 696

Intermittent 304 275 221 184

Lumpy 469 454 321 310

Table 3.1: Comparison of optimal safety stock per qudrant

Undershoot

Undershoot is sometimes excluded in calculations, because in practice the strict guidelines
of an (R, s,Q) policy are often stretched, orders are already placed if the inventory position
is still slightly above the re-order point at the moment it is reviewed, and if it is below the
re-order point, the order quantity can be increased. The discrete-time model follows the
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policy exactly. To compare differences, the additions from Section 2.1.1 are left out of the
calculations for the initial set of input parameters. Results can be seen in Table 3.2. There
is a large difference in results, this should be taken into account when choosing to calculate
safety stock without undershoot.

SS(R,s,Q)

Calc Sim

With undershoot 864 761

Without undershoot 365 761

Table 3.2: Comparison of optimal safety stock without undershoot

Simulation scale

As explained in Section 3.2, the positive bias caused by discretization of demand can be
decreased by making the discrete time intervals smaller. The simulation scale can be adjusted
to accomplish this. In Table 3.3 it can be seen that for higher scales, the difference becomes
smaller. However, increasing the scale also increases computational load.

SS(R,s,Q) SS(R,S)
P1 = 95% Calc Sim Calc Sim

Scale 1 864 761 351 318

Scale 2 864 778 351 320

Scale 5 864 780 351 326

Scale 20 864 811 351 330

Table 3.3: Comparison of optimal safety stock for different simulation scale

Lead time variance

As described at the start of this section, a bias occurs when σL increases towards R, this is
validated in Table 3.4. The simulation safety stocks increase relative to the analytical results,
becoming similar for σL = 4 and significantly higher for σL = 8 compared to analytical
equations. This way the bias caused by discrete demand and the bias caused by replenishment
overtaking prevention coincidentally can negate each other.

SS(R,s,Q) SS(R,S)
P1 = 95% Calc Sim Calc Sim

σL = 2 864 761 351 318

σL = 4 1189 1205 722 804

σL = 8 1980 2578 1532 2249

Table 3.4: Comparison of optimal safety stock for different lead time variance (R = 7)
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Service level requirement

The results are compared for different service level requirements in Table 3.5. For (R,S) is
seems like higher service levels produce more accurate results, while the opposite is true for
(R, s,Q). This corresponds to the results from Figures 3.5 and 3.6.

SS(R,s,Q) SS(R,S)
Calc Sim Calc Sim

P1 = 80% 579 519 167 114

P1 = 95% 864 761 351 318

P1 = 98% 1025 895 450 444

P2 = 80% 289 231 -102 -156

P2 = 95% 603 523 126 88

P2 = 98% 775 657 242 212

Table 3.5: Comparison of optimal safety stock for different service level requirements

This chapter describes the conceptual and Matlab model of the single-echelon discrete-time
simulation. Furthermore, the version of this model that is used to find optimal safety stock
values for various inputs is described. Finally, the single-echelon results are compared to the
analytical equations from Chapter 2. The next step is to make the transition from single- to
multi-echelon.

27



28



Chapter 4

Multi-echelon Matlab model
In the previous chapter a discrete-time model for a single DC was presented. That model
had unlimited supply (although with a lead time) and 1 input (safety stock) with 1 output
(service level). Using this model it was possible to determine the optimal safety stock for the
single-echelon case. However, the supplier of the DC usually does not have a service level of
100%. In most cases an LDC is supplied by a CDC, which both have safety stock and ser-
vice levels. Since the relevant performance indicator in distribution networks is service level
towards the customer, instead of calculating the safety stock for echelons individually, it is
possible to take multiple echelons of safety stock into account when determining the minimal
safety stock to fulfill service level requirements.

This chapter presents a discrete-time model for multi-echelon distribution systems. The
single-echelon model is expanded, and able to simulate networks of 1 CDC with N LDCs. To
find the minimal cumulative safety stock of all DCs, a model is fitted to simulation results,
which is used in constrained nonlinear optimization. The minimal total safety stock that
fulfills LDC confidence interval requirements is determined. In the last section, resulting
optima are compared to analytical approximations.

4.1 Conceptual model

The single-echelon model needs to be expanded to multi-echelon, this causes conceptual
changes that need to be addressed. The supply to the CDC and the demand fulfillment
of the LDC are similar to the single-echelon model, the big change from single-echelon is the
connection between CDC and LDC. Demand for the CDC is generated by the replenishment
policy of LDCs, this causes two problems:

• When the CDC has insufficient stock to meet the demand of LDCs, it needs to be
divided between LDCs.

• In the above case, backorders are created at the CDC, these need to be sent to the
LDCs that did not get their demand fulfilled as soon as a new replenishment arrives.

The solution to these problems is addressed in this section.

4.1.1 Specification of model variables

The input and output variables are mostly equal to the ones mentioned in Section 3.1.1.
There are a couple of differences:

• R, Q, E[D], σD, P (D), E[L], σL, SS, P1 and P2 have a separate value for each DC.
The DC they belong to is added as a suffix, e.g. RCDC or E[LLDC2 ].

• E[DCDC ], σD,CDC and P (DCDC) are based on the replenishment orders of the LDCs.
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• Since LDCs are supplied by the CDC, SSCDC indirectly influences LDC service levels.
If CDC service levels are low, LDCs will experience delays in replenishment, which can
subsequently decrease LDC service levels.

• The single-echelon model used backorders only to calculate P2, in the multi-echelon
model backorders from CDC to LDC still need to be sent to LDCs as soon as new stock
is available. BLDCn is defined as the number of backorders from the CDC to each LDC.

Due to the differences between single- and multi-echelon an extra step needs to be imple-
mented for handling the (back)orders from LDC to CDC. This is elaborated hereafter.

4.1.2 Conceptual model overview

Expanding from to multi-echelon brings changes to the original concept, which can be seen
in Figure 4.1. Two new steps are added, and existing steps need to be done for each DC.
Changes are shown in bold font.

Figure 4.1: Flowchart of communication in multi-echelon model

The first three steps of each time period are similar to the original single-echelon steps. Orders
are received if necessary, demand is subtracted from inventory level and replenishment orders
are made when necessary. All of this happens for all LDCs at the same time. However, instead
of just adding a replenishment order to the order list, these orders need to be supplied by
the CDC. Therefore, after calculation LDC replenishment orders the CDC checks whether it
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has enough stock to satisfy all orders. If it does, the orders are sent to the LDCs, if it has
insufficient stock, two things happen:

• The shortage of stock becomes a backorder for the ordering LDC, to be sent when a
new replenishment arrives at the CDC.

• The remaining stock needs to be divided between the ordering LDCs, depending on
the sharing policy. This can either be done by “fair sharing”, where every LDC gets
an equal percentage of its order, or by priority, which means each LDC has a rank,
and higher ranked LDCs receive their complete order, at the cost of lower ranked LDC
orders.

Backorders need to be kept track of, so that when a replenishment order is received by the
CDC in the first step of a time period, the received products are sent to the LDCs with
outstanding backorders according to the sharing policy.

The CDC replenishment policy is checked separately, because the demand from LDCs, which
is determined by checking their replenishment policy, has to be subtracted from the CDC
inventory level before the CDC order quantity can be determined.

The changes proposed in this section are implemented in a pseudocode model based on the
single-echelon pseudocode model. It is shown in Listing 4.1. Compared to the single-echelon
model, the largest additions are sending backorders from CDC to LDC and processing LDC
demand in the CDC. The next section contains a detailed description of the effects these
changes on the Matlab model.

1 initialize
2 for each experiment
3 for each time period
4 %% Receive replenishment orders
5 for each DC
6 if orders in order list
7 if order is ready to be received
8 update DC P1 parameters and add order to net stock
9 end

10 end
11 end
12 %% Handle backorders
13 if CDC just received an order and has backorders
14 send backorders to LDCs
15 end
16 %% Process LDC demand and replenishment
17 subtract LDC demand and update LDC P2 parameters
18 for each LDC
19 if review period passed
20 if replenishment policy satisfied
21 place order at CDC
22 end
23 add to inventory position
24 end
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25 end
26 %% Process CDC demand and replenishment
27 if orders from any LDC to CDC
28 if CDC stockout
29 update CDC P2 parameters and save backorders
30 elseif sufficient CDC stock
31 for each LDC
32 if LDC ordered from CDC
33 add order to LDC order list
34 end
35 end
36 else
37 if fair share policy
38 place equal percentage of order on each LDC order list
39 subtract LDC demand from CDC net stock and update P2
40 elseif priority policy
41 for each LDC
42 place orders on LDC order list based on priority
43 end
44 end
45 end
46 subtract LDC demand from CDC inventory position and net stock
47 end
48 if CDC review period passed
49 if replenishment policy satisfied
50 add order to CDC order list
51 end
52 end
53 end
54 for each DC
55 calculate final service levels
56 end
57 end
58 determine mean and confidence interval of service levels and make plots

Listing 4.1: Pseudocode model overview
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4.2 Matlab model

The multi-echelon discrete-time Matlab model is an extension of the single-echelon model.
The conceptual changes discussed in the previous section are implemented in the single-
echelon Matlab model, the full script is shown in Appendix B. The details of new sections in
the Matlab script are explained in this section.

4.2.1 Parameters for multiple DCs

The structure of the script and variables is changed to accommodate multiple DCs. An
example of the input parameters that the model needs to process can be seen in Figure 4.2,
for each parameter that has a single value in the single-echelon model, there now is a row of
values for each DC. The first column contains CDC data, which is calculated partially from
LDC data, E[DCDC ], σD,CDC and P (DCDC) are calculated from LDC demand, but these
are mostly used as a reference, since the CDC demand in the model is actually generated
by replenishment orders of LDCs. Every column of data that is added to the Excel sheet
represents as an extra LDC. The order of the columns of LDC data also determines the order
of LDC priority, in case of a priority sharing policy. The LDC ranking goes from left to right,
meaning the data in column C contains the highest priority LDC and each subsequent column
represents a lower rank.

Figure 4.2: Example of excel input

The first changes that are made to the Matlab model to handle a CDC and N LDCs, each
having input parameters and time-sensitive variables, are:

• All input parameters are changed to vectors, e.g. E[D] = (400, 100, 100, 100, 100). The
first value in vectors with a value for all DCs always is the CDC value, the second value
is the value for the first LDC, the third for the second LDC, going on until the final
LDC.

• Variables that were already stored in vectors are changed into matrices, e.g. the vector
that contains the LDC demand values generated for each time period becomes a matrix
with each column representing the demand values for one LDC.

• The order list matrix becomes a set of matrices that each represent the order list of a DC.
Since order matrix length changes by number of orders, as explained in Section 3.2.2,
these matrices are stored in a cell. A cell can handle multiple matrices of varying sizes.

• BLDCn and DCDC are defined as vectors containing the backorders to LDCs that still
need to be sent and the demand of LDCs to the CDC.
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Using these multi-DC variables, the steps taken in the single-echelon Matlab model can be
changed to multi-echelon.

4.2.2 Adjustment of single-echelon steps

The single-echelon steps of receiving replenishment orders, handling customer demand and
processing replenishment policy are done in a similar manner for each LDC. The same steps
are taken in a for-loop that loops over each (L)DC. An example of this can be seen in
Listing 4.4, where customer demand is processed. Demand for each LDC is determined from
the demand matrix seed, total backorders and total demand are updated to calculate P2

after simulation, and the inventory position Y and inventory level X are updated.

150 %Process demand for LDC's
151 for z = 1:Ndc-1
152 D(z) = seed(i,xper,z); %Read from demand matrix
153 Dtot(z+1) = Dtot(z+1) + D(z)*start; %For P2
154 %Update values for P2
155 if X(z+1) < 0
156 Btot(z+1) = Btot(z+1) + D(z)*start;
157 else
158 if X(z+1) < D(z)
159 Btot(z+1) = Btot(z+1) + (D(z) - X(z+1))*start;
160 end
161 end
162 end
163 %Update inventory levels and record data for visualization
164 Y(2:end) = Y(2:end) - D;
165 X(2:end) = X(2:end) - D;

Listing 4.2: LDC demand processing

4.2.3 LDC replenishment order processing

The largest addition to the multi-echelon script is where the LDCs places replenishment
orders at the CDC and the CDC divides its stock among those orders. The replenishment
orders are determined first in Listing 4.3. The passing of the review period is checked for each
LDC separately, since review periods might differ. In the single-echelon model, replenishment
orders were added to the order list immediately. Now, they are saved in the vector Dcdc
which represents demand from LDCs to the CDC. Orders are then added to the inventory
position of the LDCs and to the total demand of the CDC.

166 %After each review period update orders, LDC's first
167 r = r + 1;
168 for z = 2:Ndc
169 if r(z) ≥ R(z)
170 if type(z) == 1 %Order up to S for (R,S)
171 Dcdc(z-1) = S(z)-Y(z);
172 elseif Y(z) < S(z) %Order Q for (R,s,Q)
173 Dcdc(z-1) = ceil((S(z)-Y(z))/Q(z))*Q(z);
174 else
175 Dcdc(z-1) = 0;
176 end
177 Y(z) = Y(z) + Dcdc(z-1);
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178 Dtot(1) = Dtot(1) + Dcdc(z-1)*start;
179 r(z) = 0;
180 end
181 end

Listing 4.3: LDC replenishment

Next, the LDC replenishment orders are processed by the CDC in Listing 4.4, which represents
lines 27-47 of the pseudocode in Listing 4.1. If there are orders by LDCs, the model performs
the following steps:

• Check whether CDC stock is empty, if so, add all LDC demand to the backorder vector
Bcdc, which contains the number of backorders to be sent to each LDC. Furthermore,
the total number of backorders is updated for calculation of P2,CDC and the inventory
level is updated.

• If the CDC is not empty, and stock is sufficient to fulfill all LDC demand, add replen-
ishment orders to the order list matrices of the LDCs that ordered replenishments and
update CDC inventory level.

• If the CDC has insufficient stock, but is not empty, the remaining stock has to be
divided between all ordering LDCs based on rationing policy:

– If the fair share policy is chosen, each ordering LDC receives an equal percentage
of its order. These orders are added to the order list matrices of ordering LDCs,
the shortage is added to the backorder vector.

– If the priority policy is used, each LDC order is fulfilled by LDC rank, as long as
stock remains. When stock is insufficient to fulfill the demand of the LDC that is
currently being processed, the remaining stock goes to that LDC, all lower ranking
LDCs receive nothing.

– For this step CDC inventory level is updated per LDC that is being processed, so
that remaining CDC stock can be checked for each LDC individually.

• Finally, CDC inventory position is updated and the vector of demand from LDCs is
emptied.

183 if max(Dcdc) > 0 %Check orders from LDC to CDC
184 if X(1) ≤ 0 %In case of stockout everything backorders
185 if Tempty == 0
186 Tempty = i;
187 end
188 Btot(1) = Btot(1) + sum(Dcdc)*start;
189 for z = 1:Ndc-1
190 Bcdc(z) = Bcdc(z) + Dcdc(z);
191 end
192 X(1) = X(1) - sum(Dcdc);
193 elseif X(1) ≥ sum(Dcdc) %If stock is sufficient everyting is sent
194 for z = 2:Ndc
195 if Dcdc(z-1) > 0
196 L = gamrnd((EL(z)/sigL(z))ˆ2,sigL(z)ˆ2/EL(z));
197 O{z} = [O{z};Dcdc(z-1) L];
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198 end
199 end
200 X(1) = X(1) - sum(Dcdc);
201 else%When no stockout but also insufficient stock
202 if Tempty == 0
203 Tempty = i;
204 end
205 if fairshare == 1
206 Opart = X(1)/sum(Dcdc);
207 for z = 2:Ndc %Send partial order if fair share
208 if Dcdc(z-1) > 0
209 L = gamrnd((EL(z)/sigL(z))ˆ2,sigL(z)ˆ2/EL(z));
210 O{z} = [O{z};Opart*Dcdc(z-1) L];
211 Bcdc(z-1) = Bcdc(z-1) + (1-Opart)*Dcdc(z-1);
212 Btot(1) = Btot(1) + (1-Opart)*Dcdc(z-1)*start;
213 end
214 X(1) = X(1) - Dcdc(z-1);
215 end
216 else
217 for z = 2:Ndc %Check DC's in order
218 if Dcdc(z-1) > 0 && X(1) ≥ Dcdc(z-1) %Send if ...

sufficient
219 L = gamrnd((EL(z)/sigL(z))ˆ2,sigL(z)ˆ2/EL(z));
220 O{z} = [O{z};Dcdc(z-1) L];
221 elseif X(1) ≤ 0 %Backorder when finished
222 Bcdc(z-1) = Bcdc(z-1) + Dcdc(z-1);
223 Btot(1) = Btot(1) + Dcdc(z-1)*start;
224 elseif Dcdc(z-1) > 0 %Else send remaining stock
225 L = gamrnd((EL(z)/sigL(z))ˆ2,sigL(z)ˆ2/EL(z));
226 O{z} = [O{z};X(1) L];
227 Bcdc(z-1) = Bcdc(z-1) + Dcdc(z-1) - X(1);
228 Btot(1) = Btot(1) + (Dcdc(z-1) - X(1))*start;
229 end
230 X(1) = X(1) - Dcdc(z-1);
231 end
232 end
233 end
234 Y(1) = Y(1) - sum(Dcdc);
235 Dcdc = zeros(Ndc-1,1);
236 end

Listing 4.4: CDC to LDC shipment

4.2.4 Fulfilling LDC backorders

Since backorders from the CDC still need to be sent to the LDCs when available, Listing 4.5
runs after the CDC receives a replenishment. When a replenishment is received by the CDC,
Qcdc is set to the number of products in that replenishment in the section where orders
are received. The steps taken are similar to the previous part, in the case that there was
insufficient but also not empty stock. For the fair share policy, everything is divided evenly,
if the replenishment that was received is insufficient to fulfill all backorders. For the priority
policy backorders are sent as long as the replenishment suffices.
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125 %Send backorders to LDC's
126 if Qcdc > 0
127 if fairshare == 1 && sum(Bcdc) > Qcdc
128 Opart = Qcdc/sum(Bcdc);
129 for z = 2:Ndc
130 L = gamrnd((EL(z)/sigL(z))ˆ2,sigL(z)ˆ2/EL(z));
131 O{z} = [O{z};Opart*Bcdc(z-1) L];
132 Bcdc(z-1) = (1-Opart)*Bcdc(z-1);
133 end
134 else
135 for z = 2:Ndc
136 if Bcdc(z-1) ≤ Qcdc && Bcdc(z-1) > 0 %If there is ...

enough send B
137 L = gamrnd((EL(z)/sigL(z))ˆ2,sigL(z)ˆ2/EL(z));
138 O{z} = [O{z};Bcdc(z-1) L];
139 Qcdc = Qcdc - Bcdc(z-1);
140 Bcdc(z-1) = 0;
141 elseif Qcdc > 0 && Bcdc(z-1) > Qcdc %Send remaining Q ...

when finished
142 L = gamrnd((EL(z)/sigL(z))ˆ2,sigL(z)ˆ2/EL(z));
143 O{z} = [O{z};Qcdc L];
144 Bcdc(z-1) = Bcdc(z-1) - Qcdc;
145 Qcdc = 0;
146 end
147 end
148 end
149 Qcdc = 0;
150 end

Listing 4.5: CDC backorder processing

With adjustments discussed in this section, the Matlab model is capable of simulating multi-
echelon distribution systems of 1 CDC with a variable number of LDCs, while keeping the
same options of demand patterns and replenishment policies used in the single-echelon model.

Furthermore, functionality was added to the multi-echelon model to keep count of the num-
ber of time periods between a stockout and a replenishment of the CDC, this represents the
delay that LDCs experience due to CDC stock shortages. The delay is discussed further in
Section 4.4.

It is still possible to collect data of a single run of the experiment, similar to the single-echelon
model. This can provide a detailed view of the changes in inventory during simulation. A
diagram is shown in Figure 4.3, which contains details for a simulation with 4 LDCs and an
(R,S) policy. This figure shows that inventory fluctuations occur in the same way that they
occurred in the single-echelon model, as seen in Figure 3.2. Furthermore, the effect of a CDC
stockout on LDC inventory levels can be seen at the inventory level minimum that each DC
experiences between time periods 8300 and 8400.
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Figure 4.3: Details of multi-echelon simulation results
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4.3 Multi-echelon optimization

The multi-echelon discrete-time model can determine service levels for a set of CDC and LDC
safety stocks. Although this can be useful, the minimal combined safety stock of all DCs that
meets a service level requirement is still unknown. The next step is determining this optimal
safety stock configuration by solving the following optimization problem:

minimize f(SSCDC , SSLDCn) = SSCDC +

NLDC∑
n=1

SSLDCn ,

subject to gn = Px,LDCn(SSCDC , SSLDCn) ≥ SLx,LDCn for n = 1, ..., NLDC ,

where SS is safety stock, NLDC is the number of LDCs, gn are inequality constraints, P is
the service level corresponding to a combination of CDC and LDC safety stock and SLx,LDCn
are the service level requirements for LDCs based on input parameters.

To solve this optimization problem, a surrogate model is fitted to results of multiple simu-
lations for varying safety stock combinations. Using a surrogate model mediates stochastic
errors in simulation results and provides approximations for values between simulated points.
This section describes the approach to the surrogate model as well as a Matlab script in which
this model is implemented, and the optimization problem is solved.

4.3.1 Surrogate model approach

The surrogate model should represent a relation between CDC and LDC safety stocks, and
LDC service levels, based on results from simulations. A change in LDC safety stock only
affects the service level of that LDC. It does not affect CDC service level or service levels of
other LDCs, these would be affected if the order pattern from an LDC would be dependent
on safety stock, which it is not. The amount ordered by an LDC depends on E[DDUP ],
which is independent of safety stock.

Since LDC service levels are independent of each other, the surrogate model can be split
into a separate model for each LDC. The model then should determine LDC service level
based on CDC safety stock and LDC safety stock. To find this relation, data from simula-
tions is visualized as a 3D model with CDC safety stock on the x-axis, LDC safety stock on
the y-axis and LDC service level on the z-axis. A sample of this data can be seen in Figure 4.4.

A first approach for fitting a surrogate model on this data is a surface model. While testing
this the closest fit was found using a triple logistic function, the function that was also used
for the single-echelon model. The surface model is based on the same function as the single-
echelon model, with shifting slope and 50% point parameters. The logistic function is used
again to represent the shift in slope and 50% point:
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Figure 4.4: Multi-echelon simulation results

Px(SLDCn , SCDC) =
100%

1 + e−α(SCDC)(SLDCn−SLDC50%
(SCDC))

,

with: α(SCDC) = c1 +
c2

1 + e−c3(SCDC−c4)
,

SLDC50%
(SCDC) = c5 +

c6

1 + e−c7(SCDC−c8)
,

where ci are fitting coefficients, which can be roughly estimated using input parameters. S
represents either the re-order point or the order-up-to level based on replenishment policy. An
example of the resulting surface model fit and errors can be seen in Figure 4.5. Unfortunately,
the highest error in this surface model occurs in the 70−98% range, which is a common range
for LDC service levels. To improve accuracy in that area, another approach is formulated.

Sequential curve-fitting approach

Modeling the shifting slope and 50% point parameters in the surface model using more logistic
functions seems to be causing inaccuracies. These inaccuracies can be circumvented by deter-
mining the LDC safety stock corresponding to the service level requirement directly for each
CDC safety stock value. By looking at LDC safety stock vs. service level separately for each
CDC safety stock, fitting can be done using the same approach as described in Section 3.3.
The resulting points each represent the LDC safety stock corresponding to the LDC service
level requirement for a CDC safety stock. These results are shown in Figure 4.6. This figure
also shows a curve fitted on the resulting points, contrary to the previously fitted curves, the
Normal cumulative distribution function has a closer fit here, although the difference is very
small.
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Figure 4.5: Multi-echelon surface fitting
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Figure 4.6: Multi-echelon sequential curve-fitting
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The function that is fitted to the data is:

SLDCSL%
(SCDC) = c1 + c2Φ

(
SCDC − c3

c4

)
,

with: Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2 dt.

Here, SLDCSL%
is the re-order point/order-up-to level corresponding to the service level re-

quirement of an LDC, ci are all fitting coefficients. This surrogate model is used for optimiza-
tion in a script that finds the optimal safety stock configuration.

4.3.2 Optimization script

A Matlab script is made, which uses the multi-echelon discrete-time model and the surrogate
model described in this section to determine the optimal safety stock configuration for a set
of input parameters. The steps taken in this script are:

1. Use input parameters in single-echelon optimization to determine CDC and LDC safety
stock boundaries to simulate within.

2. Perform simulations over a grid of CDC and LDC safety stock intervals within bound-
aries.

3. Perform sequential curve fitting on simulation results.

4. Find optimal safety stock configuration using fitted curves.

5. Perform simulations to find service level confidence interval of resulting optimum.

6. Compare confidence interval of optimum to requirement using simulation.

7. Find linear fit and perform optimization to determine new optimum.

8. Repeat steps 5, 6 and 7 until service level requirement is within optimum confidence
interval.

The script performing these steps is shown in Appendix C. Details on the steps performed in
the script are explained in the rest of this section.

4.3.3 Simulation grid and boundaries

The results of the simulations that are performed in this script should contain the CDC and
LDC safety stock ranges in which LDC service level goes from 0% to 100%. To find these
ranges, the single-echelon optimization function is used for the CDC and twice for each LDC,
as can be seen in Listing 4.6.

Based on the input parameters it is not yet clear in which (CDC and LDC) safety stock
ranges the multi-echelon simulation should be performed. Since the service level types are
known from input, it can be stated that the range should go from 0% to 100% in the required
service level type (P1 or P2) for CDC and LDCs. It is also known that when the S value
of the CDC approaches 0 the lead time parameters of the CDC can be added to those of
the LDCs, since at that point a replenishment order from the LDC is ordered by the CDC
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the moment it comes in, without any stock to buffer. The CDC range can be determined
by taking the approximate 0% and 100% points, using the combined LDC demand as input.
The LDC ranges by taking the approximate 0% point, and the 100% point for a simulation
with added CDC lead time.

The function SE fit is a variation of the single-echelon optimization script in Section 3.3. It
returns the safety stocks corresponding to 0.01% and 99.9% service. The safety stock ranges
that are simulated are determined by taking the safety stocks from SE fit and determining
a range of points between them of Nintervals intervals, Nintervals is a simulation pa-
rameter.

18 %% Determine simulation ranges
19 %SE_fit returns approximate 0% and 100% safety stocks
20 CDCbounds = SE_fit(input(:,1));
21 CDCrange = linspace(round(CDCbounds(1)),round(CDCbounds(2)),Nintervals);
22 %CDC lead time (variance) is added to LDC to determine upper LDC bounds
23 CDCLvalues = zeros(size(input,1),1);
24 CDCLvalues(5) = input(5,1);
25 CDCLvalues(6) = input(6,1);
26 LDCranges = cell(Nldc,1);
27 for i = 2:Ndc %Determine LDC ranges
28 output = SE_fit(input(:,i));
29 low = round(output(1));
30 output = SE_fit(input(:,i)+CDCLvalues);
31 high = round(output(2));
32 LDCranges{i-1} = linspace(low,high,Nintervals);
33 end

Listing 4.6: Boundary calculation

As explained at the start of this section, LDC service levels are independent. This means that
LDC safety stock ranges can be simulated in parallel, so that the grid in which simulations
are performed becomes a square of Nintervals-by-Nintervals.

For each CDC safety stock and for each set of LDC safety stocks per CDC safety stock, a
simulation is performed using a script similar to the Matlab model described in the previous
section, which can be seen in in Listing C.2. The results are saved in the Results matrix,
which is built as:

[
SCDC SLDC1 SLDC2 SLDCn ... P1,CDC P2,CDC P1,LDC1 ...

...
...

...
...

...
...

...
...

...

]
.

where each row contains results from a simulation.

4.3.4 Sequential curve fitting

Using the simulation results in the matrix Results, the surrogate model can be fitted. As
described at the start of this section, this is done by performing the fitting function from the
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single-echelon model for each CDC safety stock value. For each LDC, the main script prepares
input data for a fitting function in Listing 4.7. It runs through all results for a set of SCDC ,
SLDC and Px,LDC and gives a higher fitting weight to simulations with a service level between
70% and 99%, to increase fitting accuracy in that range. The function FindTargetLine,
which is shown in Listing C.3, performs curve fitting as described in Section 4.3.1. The fitting
coefficients are stored in matrix fitvalues, which is save to a .mat file which is used for
optimization.

51 %% Fit service level target line for each LDC
52 fitvalues = zeros(4,Nldc);
53 Scdc = Results(:,1);
54 for i = 1:Nldc
55 Weigths = ones(size(Results,1),1);
56 Sldc = Results(:,i+1);
57 Pldc = Results(:,Ndc+2*i+input(9,i+1)); %Choose P1 or P2
58 for j = 1:size(Scdc,1)
59 if Pldc(j) > 70 && Pldc(j) < 99
60 Weigths(j) = Pldc(j)/70*2;%Increase weight in relevant range
61 end
62 end
63 fitvalues(:,i) = ...

FindTargetLine(Scdc,Sldc,Pldc,Weigths,CDCrange,LDCranges{i},Ptarget(i));
64 end

Listing 4.7: Service level requirement line fitting

4.3.5 Constrained nonlinear optimization

Using the optimal safety stock line determined by sequential curve-fitting for each LDC, a
total optimum can now be found using optimization. The optimization problem is defined as:

minimize f(SCDC , SLDCn) = SCDC +

NLDC∑
n=1

SLDCn ,

subject to hn = 0 = SLDC −
(
c1,n + c2,nΦ

(
SCDC − c3,n

c4,n

))
for n = 1, ..., NLDC .

Here, S is the re-order point (for (R, s,Q)) or the order-up-to level (for (R,S)) of a DC,
NLDC is the total number of LDCs, hn are equality constraints based on fitted data and ci,n
are fitting coefficients. This optimization is performed in the main script using fmincon as
shown in Listing 4.8.

67 %% Initiate optimization
68 options = optimset('fmincon');
69 options = optimset(options,'MaxFunEvals',10000,'TolFun',1E-3);
70 x0 = zeros(1,Ndc);
71 x0(1) = CDCrange(end); %Start at P=100%
72 for i = 1:Nldc %Find appropriate LDC values from fits
73 x0(i+1) = ...

fitvalues(1,i)-fitvalues(2,i)*normcdf(x0(1),fitvalues(3,i),fitvalues(4,i));
74 end
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75 lb = zeros(1,Ndc);
76 ub = value; %Last simulation point
77

78 %Perform constrained optimization
79 [CurrOptimum,fval,exitflag,output,lambda,grad]=...
80 fmincon(@objfunMEIO,x0,[],[],[],[],lb,ub,@confunMEIOPline,options);
81

82 if exitflag < 1 %Stop if no optimum available
83 print = 'Optimum not found, pleasy retry or change parameters'
84 return
85 end

Listing 4.8: Multi-echelon optimization call

The objective function and constraint function used for this optimization are shown in List-
ing 4.9 and 4.10.

1 function f = objfunMEIO(x)
2 % Objective function
3 f = sum(abs(x)); %Don't go below zero stock

Listing 4.9: Multi-echelon optimization objective function

The objective function calculates the sum of the values of S for each DC that are given
as input. The constraint function uses the previously saved service level targets and fitting
coefficients to construct the equality constraints.

1 function [g,h] = confunMEIOPline(x)
2 %Load target service levels and fit values
3 load('Ptarget.mat');
4 load('fitvalues.mat');
5 Nldc = size(fitvalues,2);
6 h=zeros(Nldc,1);
7 % Constraints
8 g = [];
9 %Equality constraints for target service level lines

10 for i = 1:Nldc
11 h(i) = x(i+1) - ...

(fitvalues(1,i)-fitvalues(2,i)*normcdf(x(1),fitvalues(3,i),fitvalues(4,i)));
12 end

Listing 4.10: Multi-echelon optimization constraint function

The initial guess is at a CDC service level of 100%, so that the optimization looks for the
minimum with the highest CDC service level. A lower minimum might be found when looking
close to SCDC = 0, but this minimum is not preferable as a result. When SCDC → 0, CDC
holding costs are no longer being reduced, since holding costs can not decrease below 0, which
occurs when the inventory level is at 0.

If the optimization succeeds, the resulting optimum is stored so that it can be checked using
simulations.
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4.3.6 Local linear optimization

The optimum found using constrained optimization is the optimum based on the fitted func-
tions found by curve-fitting. This might not be the true optimum, since fitting contains
errors. Therefore, the found optimum is compared to the service level requirement using
the confidence interval of multiple simulations. If the service level requirement is within the
confidence interval of those simulations, the optimum is accepted, otherwise a more suitable
optimum is searched for using multiple simulations and local linear optimization. The code
for this is shown in Listing 4.11. It uses script MEIO withCI (Appendix C) which runs the
multi-echelon simulation Nexp times for a given safety stock configuration and determines
the service level confidence interval.

If the optimum is not yet found, script ReOptimize is executed, which can be seen as a small
version of the main script. The script can be found in Appendix C. It does the following:

• Determine new simulation points based on the difference between the current opti-
mum and the service level requirements. If the resulting service level is higher than
the requirement the percentage difference is subtracted from SLDCn , if it is lower the
percentage is added.

• Simulate using MEIO withCI to prevent stochastic inaccuracy. The results form a
2-by-2 matrix which should be around the service level requirement.

• Fit a linear function on new points. Fitting is done this way since results on small scale
are indistinguishable from nonlinear functions like the logistic function.

• Perform optimization to find a new estimate for the optimum. fmincon is used in the
same way as the main script, with linear equality constraints based on new curve-fitting
results.

The loop then starts again by checking the new optimum, and reiterates until it has found a
simulation-proven value or until it has taken too many iterations, to prevent an infinite loop.
The final optimum is returned when the script finishes.

87 %% Initiate optimum iteration
88 Pdiff = zeros(1,Nldc); %Difference between requirement and results
89 finished = 0; %Becomes 1 when final optimum is found
90 Iterations = 0; %Increases up to a defined maximum
91 while finished == 0
92 %Initiate new results matrix
93 RES2 = zeros(4,2*(Ndc)-1);
94 x = CurrOptimum; %x is used in simulations in MEIO_withCI
95 MEIO_withCI; %Determine Pavg and Pci, the average and CI of x
96 RES2(1,:) = [x Pavg];
97

98 %Determine difference between current optimum and service level target
99 for i = 1:Nldc

100 if Pavg(i)+Pci(i) > Ptarget(i) && Pavg(i)-Pci(i) < Ptarget(i)
101 Pdiff(i) = 0; %Count as 0 if within confidence interval
102 else
103 Pdiff(i) = Ptarget(i)-Pavg(i);
104 end
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105 end
106

107 %If result not within confidence interval, reiterate
108 if not(isequal(Pdiff,zeros(1,Nldc)))
109 ReOptimize;
110 Iterations = Iterations + 1;
111 else
112 finished = 1; %exit loop when optimum found
113 end
114 if Iterations ≥ 10 %Exit if optimum is not found within 10 times
115 print = 'Optimum not found, pleasy retry or change parameters'
116 return
117 end
118 end
119 FinalOptimum = CurrOptimum - EDDUP' %Print final safety stock results

Listing 4.11: Multi-echelon final optimum iteration
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4.4 Validation of multi-echelon results

A multi-echelon discrete-time model and optimization script have been developed. For a
distribution system consisting of 1 CDC and N LDCs, an optimal configuration of safety stock
can be found. This optimum can be compared to the result of an analytical approximation,
which also determines the optimal safety stock configuration. The comparison can be used
to validate the discrete-time model and the analytical approximation with each other. This
section shows results from both methods, and analyzes possible sources of differences between
simulation results and analytical calculation results.

4.4.1 General observations on simulation results

Before comparing analytical and simulation results, a few general remarks about accuracy of
the multi-echelon discrete-time model need to be taken into account:

• The discrepancies between single-echelon simulation and analytical calculation that were
noted in Section 3.4 also apply to the multi-echelon model.

• When CDC safety stock is increased so that the service level becomes 100%, results
for LDCs should be equal to single-echelon results, since it never needs to wait for a
replenishment longer than the standard lead time. Simulations have shown that this is
indeed what happens in the multi-echelon discrete-time model.

• The discrete-time Matlab model was tested with many different sets of input param-
eters to check for bugs and inconsistencies. Since simulations are stochastic, multiple
simulations with equal input parameters often do not give identical results. Differences
in total safety stock are negligible, but the balance between CDC and LDC safety stock
sometimes by noticeable amounts, an example of this can be seen later in Table 4.6.
Since service levels and the sum of safety stocks do not change significantly, this is not
deemed a problem.

• To facilitate the “fair share” policy, review periods of LDCs must end in the same time
period. This causes the demand towards the CDC to coincide at intervals of RLDC time
periods, while analytical equations assume continuous demand. Replenishments can
arrive between demand moments, occasionally preventing a stockout that would have
happened if demand would have been subtracted each time period. This causes CDC
service to be higher than would be expected for a certain average demand, an example
of this is shown in Figure 4.7. This effect is similar to the effect that was noted in the
single-echelon model, where discrete demand caused deviations compared to continuous
demand.

This influences the accuracy of the results, but should not cause major errors.

4.4.2 Analytical approximation

This section describes how the analytical results, that are used to compare to, are acquired.
An Excel tool is being developed at OM Partners that can be used to determine optimal
safety stock, and corresponding P1,CDC for a set of input parameters similar to the input
parameters of the multi-echelon discrete-time model (Figure 4.2).

The Excel tool calculates the total average inventory for a P1,CDC range from 0% to 100%,
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Figure 4.7: Continuous demand vs. Demand per review period

while LDC service levels are kept at the requirement. Average inventory is calculated by
adding the safety stock to half of the average order quantity and subtracting the average
number of backorders. For each value of P1,CDC , the safety stock necessary in the CDC
and all LDCs is calculated based on the theories described in Section 2.2.1. From all to-
tal average inventory levels the lowest value is picked as the optimum. The resulting value
of P1,CDC and safety stock at each DC can be compared to results of discrete-time simulation.

Figure 4.8 shows an example of results of the Excel tool. The x-axis contains the safety factor
z, which is the inverse of a standard probability distribution, corresponding to the P1 of the
CDC. Taking the Normal distribution as an example, the z-value for a percentage is deter-
mined by calculating the inverse of the standard Normal cumulative distribution function,
which is shown in Section 2.2.2.

Increasing in the x-direction corresponds to decreasing P1,CDC . The y-axis represents average
inventory. As can be seen, a decrease in P1,CDC corresponds to less safety stock in the CDC
(blue line), as would be expected from single-echelon results (Section 3.4). The other colors,
cumulatively representing average inventory in the LDCs, increase when CDC inventory de-
creases, to make up for waiting times caused by decreasing CDC service. The optimal safety
stock configuration can be seen at z ≈ 0.0. The P1,CDC and safety stock values corresponding
to this z-value are used to compare analytical approximation to discrete-time simulation.

4.4.3 Method of comparison

Optima found using the discrete-time model and optima found using the Excel tool can be
compared for various sets of input parameters. To obtain a broad overview of results, ranges
are specified for input parameters. Some restrictions apply due to model constraints which
are also discussed.

Input parameters were specified in Section 4.1.1. By choosing different values for each pa-
rameter and comparing results, it is possible to see the effect of these input parameters on
differences between the compared methods. First, a “standard” set of input parameters is
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Figure 4.8: Multi-echelon excel results

created as a starting point from which the deviations are made. This set is set up with:

• 1 CDC and 4 LDCs, with differing demand and lead time, but similar replenishment
policy, demand variance, and lead time variance, which are changed later.

• Smooth demand for all 4 LDCs, since this is most accurate in single echelon form,
with E(D) = (5, 10, 20, 40), σD = (0.5, 1, 2, 4) and P (D) = (1, 1, 1, 1). These values
corresponds to LDCs 1-4.

• Initially, a lead time with low variance is chosen, since high variance also led to errors
in the single-echelon model. For the CDC, which has a longer review period, it can be
changed later. E(L) = (20, 12, 10, 8, 6), σL = (3, 1, 1, 1, 1). The first value corresponds
to the CDC, with subsequent values corresponding to LDCs 1-4.

• The LDCs start with a review period of a week R = 7, the CDC initially has R = 30,
a month.

• All DCs have an (R,S) review policy. (R, s,Q) can not be compared, because the
analytical approximation does not take undershoot into account, while the simulation
automatically contains undershoot, as described in Section 3.4.

• The initial service level requirement is P1 = 95%, which is common in practice. P2 is
not compared as the current version of the analytical approximation only supports P1.

Using this as a starting point, optima are determined using analytical approximation and
discrete-time simulation. This is repeated for varying input parameters, which are described
in the next section. The initial input parameters are shown in Figure 4.9.

4.4.4 Results comparison

The optima determined by the analytical and simulation method are shown in the follow-
ing tables. Differences, trends and possible causes thereof are discussed per set of input
parameters.

50



Figure 4.9: Initial multi-echelon input parameters

4 quadrant comparison

For each of the 4 quadrants that are used to classify demand, as described in Section 2.1.2,
the optimal safety stock configuration is determined using analytical approximation (Calc)
and discrete-time simulation (Sim). The input parameters are specified:

• Smooth demand is equal to the initial settings described in the previous section.

• Erratic demand has a σD equal to E(D) so that COV = 1, compared to smooth demand
the standard deviation is increased tenfold.

• Intermittent and lumpy demand have P (D) = 0.2. To keep average overall demand
equal E(D) (and σD to keep COV equal) is multiplied by 5, to compensate for only
having demand once every five days on average.

The results are shown in Table 4.1.

Smooth Erratic Intermittent Lumpy
Calc Sim Calc Sim Calc Sim Calc Sim

P1,CDC 57% 0% 57% 5.6% 57% 11% 57% 10%

SSCDC 0 -930 0 -739 0 -946 0 -1285

SSLDC1 16 57 50 60 104 114 159 183

SSLDC2 29 115 94 118 195 226 294 360

SSLDC3 58 229 183 227 382 444 578 726

SSLDC4 115 459 354 453 740 882 1101 1450

SStot 218 -69 681 118 1421 720 2132 1434

Table 4.1: Comparison of resulting optimal safety stock configuration per quadrant

Before evaluating these results an explanation must be added to the input parameters. For
the intermittent and lumpy quadrant, it is not clear in advance what exactly the mean and
standard deviation of the demand pattern is, since it is generated from a mean, a standard
deviation and a probability that there is demand in a time period. The measured E(D)
and σD are shown in Table 4.2. These are the values used in the analytical approximation
to calculate intermittent and lumpy results. As was argued in Section 3.4, the analytical
approximation is meant for a demand pattern without intervals between demand, which can
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cause inaccuracies in intermittent and lumpy results.

Intermittent Lumpy
E(D) σD E(D) σD

CDC 75 95 75 138

LDC 1 5 10 5 15

LDC 2 10 20 10 30

LDC 3 20 40 20 60

LDC 4 40 80 40 120

Table 4.2: Measured multi-echelon demand

The comparison shows significant differences between analytical results and simulation results.
Even though these differences are large, some observations can be made:

• For both methods, from left to right the total safety stock increases, which corresponds
to the measured σD = (5, 50, 95, 183). When excluding smooth demand the total safety
stock increases by roughly the same amount, which might be coincidence. From smooth
to erratic the difference for the calculation is roughly double when compared to the
simulation. This difference between simulation and analytical method could be caused
by the analytical approximation keeping the CDC service level at 57%.

• Smooth and intermittent demand respectively have similar safety stock at the CDC for
both methods, but LDC safety stock increases sevenfold for the analytical method while
it increases twice for the simulation method. This difference between simulation and
analytical method could be caused by the analytical approximation keeping the CDC
service level at 57%.

• P1,CDC stays the same for the calculation while it seems to increase for the simula-
tion. This is probably caused by the calculation of average inventory in the analytical
approximation, which includes average backorders in this calculation.

• For the simulation, LDC safety stock stays equal from smooth to erratic, the increased
demand uncertainty is compensated by increased CDC safety stock. The calculation
keeps CDC safety stock equal while increasing LDC safety stock.

CDC lead time variance

In the initial parameters σL,CDC = 3, to simulate different lead time variances it is multiplied
and divided by 3. Results are shown in Table 4.3.
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σL,CDC = 1 σL,CDC = 3 σL,CDC = 9
Calc Sim Calc Sim Calc Sim

P1,CDC 41% 0% 57% 0% 60% 9%

SSCDC -29 -1297 0 -930 68 -833

SSLDC1 11 80 16 57 36 70

SSLDC2 22 160 29 115 63 140

SSLDC3 43 320 58 229 126 284

SSLDC4 85 639 115 459 252 566

SStot 132 -98 218 -69 544 228

Table 4.3: Comparison of resulting optimal safety stock configuration per σL,CDC

It looks like the simulation mostly compensates increased lead time variance by increasing
CDC safety stock. The calculation also increases CDC safety stock for increased σL,CDC , but
LDC safety stock also increases, σL,CDC has a large effect on σL,LDC in the equations, which
might account for this difference in SSLDC .
The differences between σL,CDC = 3 and σL,CDC = 9 are roughly equal for both methods.

Relative CDC review period

To test the effect of a longer review period in the CDC relative to LDCs, the initial RCDC of
a month is changed to two weeks and to three months. Results are shown in Table 4.4.

RCDC = 14 RCDC = 30 RCDC = 90
Calc Sim Calc Sim Calc Sim

P1,CDC 57% 1.4% 57% 0.0% 57% 0.0%

SSCDC 0 -538 0 -930 0 -1393

SSLDC1 16 19 16 57 16 67

SSLDC2 29 37 29 115 29 135

SSLDC3 58 76 58 229 58 268

SSLDC4 115 151 115 115 252 534

SStot 218 -255 218 -69 218 -390

Table 4.4: Comparison of resulting optimal safety stock configuration for different review
period ratios

For the analytical approximation, results do not change by changing the review period. The
simulation has a decreasing CDC safety stock, but this could be explained by the increased
uncertainty period causing a larger order-up-to level. Total safety stock also changes in the
simulation, but the middle case is highest. The low total in the RCDC = 14 case could
be caused by the endings of review periods being synchronized for CDC and LDCs, which
means that 1 out of every 2 orders by the LDCs is immediately re-ordered by the CDC,
since the simulation first checks LDC review periods and then CDC review period. The lower
SSCDC in the simulation for the highest review period could corresponds to an increasing
E[DDUPCDC ], which includes RCDC in its calculation.
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Service level requirement

The effect of different service level requirements can be seen in Table 4.5. The P1 of all LDCs
is set to the value in the table.

P1 = 80% P1 = 95% P1 = 98%
Calc Sim Calc Sim Calc Sim

P1,CDC 41% 0.0% 57% 0.0% 60% 0.1%

SSCDC -80 -1033 0 -930 23 -676

SSLDC1 9 30 16 57 19 52

SSLDC2 18 59 29 115 35 105

SSLDC3 35 117 58 229 69 208

SSLDC4 70 235 115 459 138 417

SStot 52 -593 218 -69 284 106

Table 4.5: Comparison of resulting optimal safety stock configuration per quadrant

Both methods increase CDC safety stock, and total safety stock, for increased P1 of the LDCs.
LDC safety stock increases for the analytical approximation, while not clearly increasing or
decreasing for the simulation. This might be caused by the stochastic component of results
that was mentioned at the start of this section.

Number of LDCs

Using the input parameters of LDC 3 to find results for 1, 2, 3 and 4 equal LDCs, the optima
in Table 4.6 were found.

1 LDC 2 LDCs 3 LDCs 4 LDCs
Calc Sim Calc Sim Calc Sim Calc Sim

P1,CDC 57% 0% 57% 0% 57% 0% 57% 0%

SSCDC 0 -297 0 -595 0 -793 0 -1181

SSLDC1 63 222 63 220 63 186 63 215

SSLDC2 58 220 58 187 58 215

SSLDC3 58 186 58 215

SSLDC4 58 215

SStot 63 -74 121 -155 178 -234 236 -320

Table 4.6: Comparison of resulting optimal safety stock configuration per quadrant

The expected result of this experiment would be that many results change linearly with in-
creasing LDCs, which is roughly what happens in the results. The analytical approximation
has a slightly differing safety stock at the first LDC compared to the others. The simulation,
for the 3 LDC option, shifts the CDC-LDC safety stock balance towards CDC safety stock,
but total safety stock keeps the same trend, as explained by the stochastic component of
results that was mentioned at the start of this section.
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SSCDC for the simulation decreases in direct relation to E[DDUPCDC ], since this doubles
for each added LDC, so that SSCDC stays equal in relation to E[DDUPCDC ] except for the
situation with 3 LDCs, which was already discussed.

In most cases, the analytical approximation chooses an optimum with SSCDC = 0, which
is likely to be caused by the large effect of backorders on average stock level. Also using a
measurement of the average inventory in the simulation would be a useful future step. The
next section compares adjustments to the analytical approximation to the simulation results.

4.4.5 Analytical calculation extensions

The comparison showed a lot of large differences between the discrete-time model and the
analytical approximation. Causes of inaccuracies of the simulation were addressed at the start
of Section 4.4.1. Adjustments to the equations in Section 2.2.1 are described in Sections 2.2.2
and 2.2.3. Assumptions made in the analytical approximation are compared to simulation
results. Proposals for adjusted equations are described and compared.

The equations from Section 2.2.1 are:

E[L∗LDC ] = E[LLDC ] + (1− P1,CDC)E[LCDC ],

σ2L∗LDC
= σ2LLDC + (1− P1,CDC)2σ2LCDC .

The addition of (1− P1,CDC)LCDC to LDC lead time is analyzed. This can be split into the
assumption that the delay in case of a stockout is LCDC , and the assumption that the LDC
is affected negatively at each stockout:

• When a CDC has a make-to-order (MTO) strategy, a delay of LCDC would be the case:
An LDC orders from the CDC, and at that moment the CDC orders from e.g., a factory.
The CDC lead time passes, and the replenishment arrives at the CDC only to be sent
immediately to the LDC. Then the LDC lead time passes, and the shipment arrives at
the LDC with lead time L = LCDC +LLDC . However, with a replenishment policy like
(R, s,Q) or (R,S) this delay does not apply. A replenishment is ordered after a review
period, and by the time a stockout occurs, this order has almost arrived in most cases.
Therefore, the “waiting time” the LDC is discussed further in this section.

• The other assumption is that the extra waiting time of the LDCs is a function of P1,CDC .
This seems to infer that at each CDC stockout, the replenishment to the LDC should
have a measurable delay. This is partially true, except that when the stockout occurs,
demand is still partially met (depending on the policy). In case of a fair share policy,
each LDC still gets an equal percentage of its replenishment order. If this percentage is
high enough to cover the delay of the rest of the shipment, there is no measurable effect
at all on LDC service levels. Adjusted versions of this equation are tested hereafter.

Analytical approximation in Matlab

To see the effect of adjusted versions of the analytical approximation, a script is made that
calculates the analytical results for the same CDC safety stock range as the simulation, and
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makes a diagram to compare results.

In Matlab, a single-echelon analytical calculation is already available (Appendix A.1). To
transform this calculation to multi-echelon, a few small adjustments are made:

• For each CDC safety stock, the CDC P1 needs to be calculated.

• This P1,CDC is used in the calculation of an adjusted E(L) and σL for each LDC, for
each CDC safety stock.

• Using the adjusted lead time parameters, the necessary LDC safety stock to maintain
service level requirements can be calculated.

After these adjustments the script can be used to calculate data points to make a similar
diagram to the one used in the Excel tool, using total safety stock instead of total average
inventory. The script expanded from single-echelon can be seen in Appendix D. The analytical
results from Matlab are presented in Figure 4.11, the LDC safety stocks are added to the CDC
safety stock, the lines in the figure represent the total safety stock. The input parameters
from Figure 4.9 were used.

Adjusted P1,CDC

An adjustment to the Desmet formula that is currently being developed, is an adjusted value
that can be used instead of P1,CDC , as described in Section 2.2.2. The proposed equation is:

P ∗1,CDC = Φ(
QCDC/2 + SSCDC

σDDUP,CDC
),

where σDDUP is the standard deviation of demand during the uncertainty period. This
equation is implemented in the Matlab model, results are compared to previous results in
Figure 4.11. As can be seen, the resulting values are closer to those of the simulation compared
to the initial analytical method.

Adjusted variance equation

It was noticed that the equation for σ∗L,LDC is different from the result of the mean of square
minus square of mean rule, as shown in Appendix E, the derived adjustment is:

σ2L∗LDC
= σ2LLDC + (1− P1,CDC)2σ2LCDC + (1− P1,CDC)P1,CDCE(L2

CDC).

The results of this method are also compared to previous results in Figure 4.11. It seems that
the resulting values are not closer to those of the simulation compared to the initial analytical
approximation.
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Waiting time

In Section 2.2.3, an extended version of the Desmet formula is discussed. It uses an exponen-
tial distribution with a different µ for each P1 of the CDC. The calculation of the exponential
distribution is not mentioned, but it is possible to compare this to simulation results for the
waiting time.

An addition to the multi-echelon simulation keeps track of the time at which a stockout oc-
curs, and subtracts this time from the time of the next replenishment arrival, so that a list
of waiting times is generated. Waiting time histograms for several P1 values can be seen in
Figure 4.10.

Waiting times measured from simulation also seem to follow a probability distribution, by
testing different distributions it was found that the Gamma distribution most closely rep-
resents the waiting times found during simulation. A Gamma distribution is fitted to the
waiting time data for each CDC safety stock value, resulting in an E[W ] and σW for each
CDC safety stock.

The resulting values follow a pattern similar to Figure 4.6, which is why the same Normal
cumulative distribution function is fitted to the Gamma parameters for each CDC safety
stock. This fit is implemented in the calculation of E∗[LLDC ] and σL∗LDC . The results of
this method are also compared to previous results in Figure 4.11, the corresponding line
seems a bit closer to the simulation results compared to the initial approximation. However,
these results are partially based on simulation results, which might be the cause of the re-
duced difference. The script used to find the waiting time data can be found in Appendix D.1.

In addition to the individual adjustments to the analytical approximation, the combination of
P ∗1,CDC , variance calculation using the mean of square minus square of mean rule and waiting
time measurement from simulation is added to the diagram. It seems that this combination
is closest to simulation results overall, with minimal total safety stock at roughly the same
CDC safety stock as the final simulation optimum.

In this chapter, the single-echelon discrete-time model was expanded to be able to simulate
multi-echelon distribution networks. A method to find the optimal safety stock configuration
was described, and results were compared to analytical methods. It is clear that the currently
available methods used to calculate multi echelon safety stock, and the simulation, do not
give equal results. However, both results indicate that a high service level from CDC to LDCs
is undesirable. Since using high CDC service levels is currently common, this can be a useful
opportunity in inventory (cost) reduction.
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Chapter 5

Conclusion & Recommendations
While the previous chapters provided an in-depth perspective of the discrete-time models
and their detailed functions, this chapter discusses the results of this whole project. Drawing
conclusions on results vs. expectations that were created in the problem statement, and
comparing simulation results to analytical results. Based on possibilities to improve and
expand the current model, some recommendations are formulated.

5.1 Conclusion

Before discussing the details of model results, the objectives of the project are discussed:

• A single- and multi-echelon model were created, a switch was made from discrete-event
simulation to discrete-time simulation to have a better match with discrete demand
intervals.

• Single-echelon functionality was added. Input parameters can be used to simulate (R,S)
and (R, s,Q) policies, with stochastic lead times and stochastic demand in all four
demand quadrants. The exception is forecast based replenishment, which was not added.
Since forecast based replenishment is done by adjusting demand parameters for different
forecast periods this can be done by using differing input parameters in the current
model.

• The multi-echelon model keeps the functions of the single-echelon model. It is able to
simulate networks of 2 echelons, 1 CDC can be simulated with N LDCs one echelon
lower. It would still be possible to optimize larger networks manually, by doing sequen-
tial optimizations. By determining optimal CDC service levels for multiple CDCs in a
larger network, and afterwards using these CDC parameters as “LDC” parameters in a
simulation where the “CDC” is the higher echelon CDC/factory. This might not be as
accurate as adding extra echelons to the model.

• Optimization was added for both the single-echelon and multi-echelon model. Mini-
mal safety stock can be determined for a set of input parameters and a service level
requirement.

5.1.1 Results validation

Both the single-echelon and multi-echelon results of analytical equations and simulations have
been compared in several ways. The single echelon results are similar, some differences were
noted:

• A systematic error is created by using discrete time intervals, when as a first step
replenishments are checked for an interval, and as a second step demand is checked
for that interval. This causes situations where stock might have run out if it were a
continuous process. Using a smaller time interval decreases this error but increases
computing time.
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• Lead time variances larger than approximately 1/3 of the review period lead to differ-
ences in results, due to replenishments that are delayed to prevent overtaking.

• For intermittent and lumpy demand, differences in results are larger. This is probably
due to the formulas that were used, these are not intended for use with infrequent
demand.

Based on overall results it seems that simulation and analytical single-echelon results are
equivalent. The multi-echelon results are less consistent. Since the multi-echelon discrete-time
model is purely an expansion of the single-echelon model, which is validated with analytical
results, this indicates that the main source of inequalities is in the analytical equations. Some
options to increase the accuracy of the results were considered and tested, resulting in less
difference, but the most similar options are still unequal. Errors in simulation results, on
top of errors transfered from the single-echelon model, can be caused by simultaneous orders
from all LDCs. This causes clustered demand at the end of the review period of the LDCs.
Situations can occur when a stockout would have happened if demand was less clustered,
increasing the results in CDC service levels. This could not be prevented, because the use of
a fair share policy needed the demands to arrive simultaneously in order to determine each
LDCs share.

Nevertheless, it can be concluded that in most cases, CDC service level should be a lot
lower than it is in current practice, which is agreed upon by both analytical equations and
simulations. Having two resources which give this advice can help to convince customers of
this conclusion. Furthermore, in this project, two tools have been created that OM Partners
can use to get a second opinion on the results of their calculations.

5.2 Recommendations

Based on the points of the initial problem description that were not implemented, and the
sources of errors that were identified, better results might be possible by doing further research
in the following ways:

• The problem of overtaking replenishments is caused by a large lead time variance. In
practice large lead time variance often means that production is planned in batches,
which causes some replenishments orders to be available quickly and some after a long
wait. To solve this problem in the simulation, it might be possible to implement this
batching process into the simulation. Instead of large lead time variance a large batch
size with smaller variance could be used, with pauses between batches.

• The error caused by time intervals might be reduced by switching the order of steps in
the simulation for half of the simulation and taking the average result. A more rigorous
solution would be a continuous-time model. If demand is modeled as a continuous
process this could be done using discrete-event simulation.

• The fair share policy and priority policy at the CDC in the multi-echelon simulation
impose restrictions on the model. A more robust solution might be possible that does
not require simultaneous LDC orders.

• The discrete-time multi-echelon optimization model minimizes total safety stock, which
implies that there are negative holding costs for negative stock. Using the average

62



positive inventory level measured during simulation would provide a more accurate
safety stock optimum.

• The initial goal of N echelons, to simulate large distribution networks, should also be
possible to model. The same expansion that was implemented for going from one to
two echelons could be implemented to add a third echelon. If this expansion could be
automated N echelons would be possible.

• The multi-echelon optimization uses a sequential curve-fitting method. Resulting fits
are close to the data, but not equal. In regions where service level curves are almost
horizontal, a small inaccuracy can lead to a big difference in safety stock. Increasing
the accuracy of the fitted curves or surface would make the initially guesses optimum a
lot more accurate, or possibly equal to the simulation data.

• By aiming the multi-echelon simulations in the area where service levels fluctuate, more
relevant data could be acquired using less computing time.

This concludes the last chapter of this thesis.
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Appendix A

Single-echelon matlab scripts
This appendix contains the Matlab scripts used for single-echelon simulation, validation and
optimization. The first script is the simulation described in Section 3.2.

1 clearvars; close all;
2

3 %Simulation properties
4 simscale = 1; %Time periods are split into smaller steps using scale
5 Nstart = 500*simscale; %Number of time periods that do not count for results
6 N = (10000+Nstart)*simscale; %Total number of time periods
7 NX = 15; %Number of experiments
8 simgraph = 0; %If 1 the simulation runs once and makes a graph of ...

inventory levels
9

10 input = xlsread('InputSE.xlsx','Sheet1');
11

12 %Calculate system properties from input
13 type = input(1); %0 = RsQ policy, 1 = RS policy
14 ED = input(2)/simscale; %Expected value of demand per time period
15 sigD = input(3)/simscale; %standard deviation of demand per time period
16 PD = input(4); %lambda of Poisson distribution that determines demand interval
17 EL = input(5)*simscale; %Expected value of lead time in time periods
18 sigL = input(6)*simscale; %Standard deviation of lead time in time periods
19 R = input(7)*simscale; %Review period in time periods
20 Q = input(8)*ED*R*PD; %Order quantity level using standard formula (only RsQ)
21 sslow = input(9); %Lower bound of safety stock
22 ssint = input(10); %Interval of safety stock values
23 sshigh = input(11); %Upper bound of safety stock
24

25 %Initialization
26 Results = zeros((sshigh-sslow)/ssint,5); %Results matrix
27 r = 1; %Counter for results matrix
28 P = zeros(NX,2); %Service level matrix
29 Nzero = 0; %Count # zeros in case of Lambda
30 if simgraph == 1
31 data = zeros((round(N/R)-1)*(1+R*3),3); %Matrix to save inventory data
32 c = 1; %counter
33 end
34

35 %One vector of demands is generated for each experiment, this vector is
36 %used for all values of ss
37 %When a lambda is given, a geometric distribution calculates the time periods
38 %until the next demand
39 if PD == 1
40 seed = gamrnd((ED/sigD)ˆ2,sigDˆ2/ED,N,NX);
41 else
42 seed = zeros(N,NX);
43 for x = 1:NX
44 next = geornd(PD); %Determine time periods until next order
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45 for y = 1:N %Generate demand or fill in pause for all demands
46 if next == 0
47 seed(y,x) = gamrnd((ED/sigD)ˆ2,sigDˆ2/ED);
48 next = geornd(PD);
49 else
50 seed(y,x) = 0;
51 Nzero = Nzero + 1;
52 next = next - 1;
53 end
54 end
55 end
56 end
57 avgdemand = mean(mean(seed)); %Resulting average of demands
58 prcntdemand = 1-Nzero/(N*NX); %Resulting % of filled time periods
59 sigdemand = mean(std(seed)); %Resulting standard deviation of demands
60

61 EDDUP = avgdemand*(EL+type*R); %EDDUP according to standard formula
62

63 %Loop over values of s
64 for s = sslow+EDDUP:ssint:sshigh+EDDUP
65 %Loop over number of simulations in 1 experiment
66 for xper = 1:NX;
67 %Initialize simulation values
68 Y = s + (1-type)*Q;%Inventory position initialization
69 X = s + (1-type)*Q;%Net stock initizalization
70 Dtot = 0;%Used in calculation of P2
71 Btot = 0;%Used in calculation of P2
72 NQtot = 0;%Used in calculation of P1
73 Nstockout = 0;%Used in calculation of P1
74 O = cell(1,1);%Orders in transit are added to this matrix
75 start = 0;%Start will become 1 after a startup period
76 %Loop over all review periods
77 for k = 1:N/R
78 if k*R > Nstart %Start measuring P1 and P2 after startup period
79 start = 1;
80 end
81 %Loop over demands in 1 review period
82 for i = 1:R;
83 %Record data for visualization
84 if simgraph == 1
85 data(c,:)=[R*(k-1)+i Y X];
86 c = c + 1;
87 end
88 %Check if there are orders that have arrived
89 %Update values for P1
90 if size(O{1},1) > 0 %Are there orders?
91 O{1}(:,2) = O{1}(:,2) - 1;
92 if O{1}(1,2) < 0
93 NQtot = NQtot + 1*start;
94 if X < 0
95 Nstockout = Nstockout + 1*start;
96 end
97 X = X + O{1}(1,1);
98 O{1}(1,:) = [];
99 end

100 end
101 %Record data of delivered orders for visualization

68



102 if simgraph == 1
103 data(c,:)=[R*(k-1)+i+0.01 Y X];
104 c = c + 1;
105 end
106 %Determine demand
107 D = seed(R*(k-1)+i,xper);
108 %Update values for P2
109 Dtot = Dtot + D*start;
110 if X ≤ 0
111 Btot = Btot + D*start;
112 else
113 if X < D
114 Btot = Btot + start*(D - X);
115 end
116 end
117 %Update inventory levels and record data for visualization
118 Y = Y - D;
119 X = X - D;
120 if simgraph == 1
121 data(c,:)=[R*(k-1)+i+0.02 Y X];
122 c = c + 1;
123 end
124 end
125 %After each review period update orders
126 if Y < s && type == 0
127 L = gamrnd((EL/sigL)ˆ2,sigLˆ2/EL);
128 O{1} = [O{1};ceil((s-Y)/Q)*Q L];
129 Y = Y + ceil((s-Y)/Q)*Q;
130 elseif type == 1
131 L = gamrnd((EL/sigL)ˆ2,sigLˆ2/EL);
132 Q = s-Y;
133 O{1} = [O{1};Q L];
134 Y = Y + Q;
135 end
136 %Update data for visualization
137 if simgraph == 1
138 data(c,:)=[R*(k-1)+i+0.03 Y X];
139 c = c + 1;
140 end
141 end
142 %Record service levels
143 P(xper,:) = [(1-Nstockout/NQtot) (1-Btot/Dtot)];
144 %Print result of simulation for visualization and terminate loops
145 if simgraph == 1
146 break;
147 end
148 end
149 if simgraph == 1
150 break;
151 end
152 %Determine mean and std
153 Results(r,:) = [s mean(P) tinv(0.975,NX-1)/sqrt(NX)*std(P)];
154 r = r + 1;
155 end
156 %Plot single graph of visualization or service level results
157 if simgraph == 1
158 figure(1)
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159 hold on
160 grid on
161 for px = 1:2
162 plot(data(:,1),data(:,1+px));
163 end
164 plot(data(:,1),s*ones(size(data(:,1),1),1))
165 legend('Inventory position','Net stock');
166 title('Details of simulation run');
167 xlabel('Time');
168 ylabel('Number of products');
169 else
170 figure
171 hold on
172 grid on
173 grid MINOR
174 for px = 1:2
175 errorbar(Results(:,1),Results(:,1+px),Results(:,3+px),'Color',[px/2 ...

0 0],'DisplayName',['P' num2str(px) ' Model']);
176 end
177 legend(gca,'show')
178 if type == 0
179 title(['(R=' sprintf('%0.0f',R) ',E[DDUP]=' sprintf('%0.0f',EDDUP) ...

',Q=' sprintf('%0.0f',Q) ') ED=' sprintf('%0.0f',avgdemand) ' ...
sigD=' sprintf('%0.0f',sigdemand) ' D>0=' ...
sprintf('%0.0f',100*prcntdemand) '% EL=' sprintf('%0.0f',EL) ' ...
sigL=' sprintf('%0.0f',sigL)]);

180 else
181 title(['(R=' sprintf('%0.0f',R) ',E[DDUP]=' sprintf('%0.0f',EDDUP) ...

') ED=' sprintf('%0.0f',avgdemand) ' sigD=' ...
sprintf('%0.0f',sigdemand) ' D>0=' ...
sprintf('%0.0f',100*prcntdemand) '% EL=' sprintf('%0.0f',EL) ' ...
sigL=' sprintf('%0.0f',sigL)]);

182 end
183 xlabel('s (re-order stock level)');
184 ylabel('Service level (%)');
185 end

Listing A.1: Single-echelon matlab model

A.1 Single-echelon analytical results code

The second script contains the script used to calculate analytical results for validation of the
discrete-time model, described in Section 3.4.

1 %% Initialize
2 SEIO_RsQ_RS_v1;
3

4 AnalyticalResults = zeros((sshigh-sslow)/ssint,3);
5 a = 1;
6 sigDDUP = sqrt((EL+type*R)*sigdemandˆ2+avgdemandˆ2*sigLˆ2); %Standard formula
7 Ushoot = 1;
8

9 %% Determine Gamma parameters
10 if type == 0 && Ushoot == 1 %include undershoot in (R,s,Q)
11 EU = (sigdemandˆ2*R+avgdemandˆ2*Rˆ2)/(2*R*avgdemand);
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12 sigU = sqrt((1+((sigdemand/avgdemand)ˆ2)/R) * ...
(1+2*(sigdemand/avgdemand)ˆ2/R) * (avgdemand*R)ˆ2/3-EUˆ2);

13 EUDDUP = EU + EDDUP;
14 sigUDDUP = sqrt(sigUˆ2+sigDDUPˆ2);
15 alpha = (EUDDUP/sigUDDUP)ˆ2;
16 beta = sigUDDUPˆ2/EUDDUP;
17 else
18 alpha = (EDDUP/sigDDUP)ˆ2;
19 beta = sigDDUPˆ2/EDDUP;
20 end
21

22 %% Determine service level results for safety stock range
23 for s = sslow+EDDUP:ssint:sshigh+EDDUP
24 P1 = gamcdf(s,alpha,beta);
25 if type == 0 && Ushoot == 1
26 GAMMA1 = EUDDUP * (1-gamcdf(s,alpha+1,beta))- s * ...

(1-gamcdf(s,alpha,beta));
27 GAMMA2 = EUDDUP * (1-gamcdf(s+Q,alpha+1,beta)) - (s+Q) * ...

(1-gamcdf(s+Q,alpha,beta));
28 P2 = 1-(GAMMA1-GAMMA2)/Q;
29 elseif type == 0 && Ushoot == 0
30 GAMMA1 = EDDUP * (1-gamcdf(s,alpha+1,beta))- s * ...

(1-gamcdf(s,alpha,beta));
31 GAMMA2 = EDDUP * (1-gamcdf(s+Q,alpha+1,beta)) - (s+Q) * ...

(1-gamcdf(s+Q,alpha,beta));
32 P2 = 1-1/(Q)*(GAMMA1-GAMMA2);
33 else
34 GAMMA1 = EDDUP * (1-gamcdf(s,alpha+1,beta)) - s * ...

(1-gamcdf(s,alpha,beta));
35 GAMMA2 = EDDUP * (1-gamcdf(s+avgdemand*R,alpha+1,beta)) - ...

(s+avgdemand*R) * (1-gamcdf(s+avgdemand*R,alpha,beta));
36 P2 = 1-1/(avgdemand*R)*(GAMMA1-GAMMA2);
37 end
38 AnalyticalResults(a,:) = [s P1 P2];
39 a = a + 1;
40 end
41 AnalyticalResults = AnalyticalResults(1:a-1,:)
42

43 %% Add results plot to simulation results
44 for px = 1:2
45 plot(AnalyticalResults(:,1),AnalyticalResults(:,px+1),'Color',[0 0 ...

px/2],'DisplayName',['P' num2str(px) ' Theory']);
46 end
47 legend('off');
48 legend(gca,'show');
49 legend('Location','southeast');

Listing A.2: Single-echelon results comparison

A.2 Single-echelon optimization code

The last script is the script used to determine the optimum amount of safety stock for a given
set of input parameters and a service level requirement as used in Section 3.3.

1 function output = SEIO_optim_fit(xlsinput)
2
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3 %Simulation properties
4 simscale = 1; %Time periods are split into smaller steps using scale
5 Nstart = 500*simscale; %Number of time periods that do not count for results
6 N = (10000+Nstart)*simscale; %Total number of time periods
7 Nintervals = 30; %Number of intervals used in simulating fitting data
8

9 %Calculate system properties from input
10 type = xlsinput(1); %0 = RsQ policy, 1 = RS policy
11 ED = xlsinput(2)/simscale; %Expected value of demand per time period
12 sigD = xlsinput(3)/simscale; %standard deviation of demand per time period
13 PD = xlsinput(4); %lambda of Poisson distribution that determines demand ...

interval
14 EL = xlsinput(5)*simscale; %Expected value of lead time in time periods
15 sigL = xlsinput(6)*simscale; %Standard deviation of lead time in time periods
16 R = xlsinput(7)*simscale; %Review period in time periods
17 EDDUP = ED*PD*(EL+type*R); %S according to standard formula
18 Q = xlsinput(8)*ED*PD*R; %Order quantity level using standard formula ...

(only RsQ)
19 Ptype = xlsinput(9); %P1 or P2 requirement
20 Ptarget = xlsinput(10); %Target service level
21

22 %Find point where P = 50%
23 Stest = EDDUP; %Stest is updated towards the optimum
24 P = SEIO_func(Stest); %Find initial P guess
25 if P > 50 %Iterate towards 50% by steps of ED
26 while P > 50
27 Stest = Stest - ED;
28 P = SEIO_func(Stest);
29 end
30 Stest = Stest + ED;
31 else
32 while P < 50
33 Stest = Stest + ED;
34 P = SEIO_func(Stest);
35 end
36 end
37

38 %Create grid for curve fitting area
39 Xvalues = ...

linspace(Stest-ED*(EL+type*R)*PD,Stest+3*ED*(EL+type*R)*PD,Nintervals)'; ...
%Nintervals around 50% point

40 Yvalues = zeros(size(Xvalues,1),1);
41

42 %Find results within grid
43 for j = 1:Nintervals
44 Yvalues(j) = SEIO_func(Xvalues(j));
45 end
46

47 %Fit results to logistic function and
48 linfun = fit(Xvalues,Yvalues,'100/(1+exp(b*(x-a)))','StartPoint',[Stest ...

0.001]);
49 objective = @(x) linfun(x) - Ptarget;
50 Stest = fzero(objective,EDDUP); %Find optimal S value
51 ci = predint(linfun,Stest,0.95,'functional'); %Find confidence interval ...

for optimum
52 % plot(linfun)
53 % hold on
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54 % plot(Xvalues,Yvalues,'+','DisplayName','Simulation results')
55 % xlabel('Re-order point/order-up-to level')
56 % ylabel('Service level')
57 % title('Single-echelon optimization fitting results')
58 % legend('off');
59 % legend(gca,'show');
60 output = [Stest Ptarget ci]; %Return S value, P value and confidence interval
61

62 %%Single run version of single-echelon script
63 function P = SEIO_func(s)
64 if PD == 1
65 seed = gamrnd((ED/sigD)ˆ2,sigDˆ2/ED,N,1);
66 else
67 seed = zeros(N,1);
68 next = geornd(PD);
69 for y = 1:N
70 if next == 0
71 seed(y) = gamrnd((ED/sigD)ˆ2,sigDˆ2/ED);
72 next = geornd(PD);
73 else
74 seed(y) = 0;
75 next = next - 1;
76 end
77 end
78 end
79

80 Y = s + (1-type)*Q;%Inventory position initialization
81 X = s + (1-type)*Q;%Net stock initizalization
82 Dtot = 0;%Used in calculation of P2
83 Btot = 0;%Used in calculation of P2
84 NQtot = 0;%Used in calculation of P1
85 Nstockout = 0;%Used in calculation of P1
86 O = cell(1,1);%Orders in transit are added to this matrix
87 start = 0;%Start will become 1 after a startup period
88

89 %Loop over all review periods
90 for k = 1:N/R
91 if k*R > Nstart %Start measuring P1 and P2 after startup period
92 start = 1;
93 end
94 %Loop over demands in 1 review period
95 for i = 1:R;
96 %Check if there are orders that have arrived
97 %Update values for P1
98 if size(O{1},1) > 0
99 O{1}(:,2) = O{1}(:,2) - 1;

100 if O{1}(1,2) < 0
101 % if size(O{1},1) > 1 && O{1}(1,2) > O{1}(2,2)
102 % test = [test;O{1}(1,2) - O{1}(2,2)];
103 % end
104 NQtot = NQtot + 1*start;
105 if X < 0
106 Nstockout = Nstockout + 1*start;
107 end
108 X = X + O{1}(1,1);
109 O{1}(1,:) = [];
110 end

73



111 end
112 %Determine demand
113 D = seed(R*(k-1)+i);
114 %Update values for P2
115 Dtot = Dtot + D*start;
116 if X ≤ 0
117 Btot = Btot + D*start;
118 else
119 if X < D
120 Btot = Btot + start*(D - X);
121 end
122 end
123 Y = Y - D;
124 X = X - D;
125 end
126 %After each review period update orders
127 if Y < s && type == 0
128 L = gamrnd((EL/sigL)ˆ2,sigLˆ2/EL);
129 O{1} = [O{1};ceil((s-Y)/Q)*Q L];
130 Y = Y + ceil((s-Y)/Q)*Q;
131 elseif type == 1
132 L = gamrnd((EL/sigL)ˆ2,sigLˆ2/EL);
133 Q = s-Y;
134 O{1} = [O{1};Q L];
135 Y = Y + Q;
136 end
137 end
138 %Record service levels
139 P = (2-Ptype)*100*(1-Nstockout/NQtot)+(Ptype-1)*100*(1-Btot/Dtot);
140 end
141 end

Listing A.3: Single-echelon inventory optimization code
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Appendix B

Multi-echelon discrete-time Matlab
script
The script in this appendix is used to simulate the multi-echelon discrete-time model, as
described in Section 4.2.

1 clearvars; close all
2

3 %Simulation properties
4 simscale = 1; %Changes the amount of steps in 1 demand period
5 Nstart = 500*simscale;
6 N = (10000+Nstart)*simscale; %Number of demands generated
7 NX = 10; %Number of experiments
8 simgraph = 0; %if this is 1 the simulation will run once while recording ...

values of Y and X
9 fairshare = 1;

10

11 xlsvalues = xlsread('Input.xlsx','Sheet1');%Read input from excel
12

13 %System parameters are vectors containing the properties for each DC
14 Ndc = size(xlsvalues,2); %Number of DC's = Number of columns
15 ED = zeros(Ndc,1);
16 sigD = zeros(Ndc,1);
17 PD = zeros(Ndc,1);
18 EL = zeros(Ndc,1);
19 sigL = zeros(Ndc,1);
20 R = zeros(Ndc,1);
21 Q = zeros(Ndc,1);
22 S = zeros(Ndc,1);
23 type = zeros(Ndc,1);
24

25 %Extract correct values from input matrix for each DC
26 for z = 1:Ndc
27 type(z) = xlsvalues(1,z);
28 ED(z) = xlsvalues(2,z)/simscale;
29 sigD(z) = xlsvalues(3,z)/simscale;
30 PD(z) = xlsvalues(4,z)/simscale;
31 EL(z) = xlsvalues(5,z)*simscale;
32 sigL(z) = xlsvalues(6,z)*simscale;
33 R(z) = xlsvalues(7,z)*simscale;
34 Q(z) = xlsvalues(8,z)*ED(z)*R(z);
35 S(z) = ED(z)*(EL(z)+type(z)*R(z))+xlsvalues(9,z);
36 end
37 %Initialization
38 P = zeros(NX,2*Ndc);%Service level matrix
39 W = zeros(10ˆ4,3);
40 cW = 1;
41 seed = zeros(N,NX,Ndc-1);
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42

43 %One table of demands is generated per experiment, different values of s
44 %use the same table When a lambda is given, a poisson distribution
45 %calculates the time until the next demand
46

47 for z = 1:(Ndc-1)
48 if PD(z+1) == 1 %If each period contains demand, all values are ...

generated at once
49 seed(:,:,z) = gamrnd((ED(z+1)/sigD(z+1))ˆ2,sigD(z+1)ˆ2/ED(z+1),N,NX);
50 else
51 for x = 1:NX %If demand is intermittent or lumpy exponential ...

intervals are put in
52 next = geornd(PD(z+1));
53 for y = 1:N
54 if next == 0
55 seed(y,x,z) = ...

gamrnd((ED(z+1)/sigD(z+1))ˆ2,sigD(z+1)ˆ2/ED(z+1),N,NX);
56 next = geornd(PD(z+1));
57 else
58 seed(y,x,z) = 0;
59 next = next - 1;
60 end
61 end
62 end
63 end
64 end
65

66 %This option is used to visualize 1 simulation, data is recorded in a matrix
67 if simgraph == 1
68 data = zeros(N*2,3,Ndc);
69 end
70 %% Loop over NX experiments
71 for xper = 1:NX;
72 %Initialize simulation values
73 Y = zeros(Ndc,1);
74 for z = 1: Ndc
75 Y(z) = S(z) + (1-type(z))*Q(z);
76 end
77 X = Y;
78 D = zeros(Ndc-1,1);
79 Dcdc = zeros(Ndc-1,1);
80 Dtot = zeros(Ndc,1);
81 Btot = zeros(Ndc,1);
82 Bcdc = zeros(Ndc-1,1);
83 NQtot = zeros(Ndc,1);
84 Nstockout = zeros(Ndc,1);
85 O = cell(Ndc,1);
86 r = zeros(Ndc,1);
87 Qcdc = 0;
88 start = 0;
89 Tempty = 0;
90 %Loop over all demands
91 for i = 1:N;
92 if i > Nstart
93 start = 1;
94 end
95 %Record data for visualization
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96 if simgraph == 1
97 for z = 1:Ndc
98 data((i-1)*2+1,:,z)=[i Y(z) X(z)];
99 end

100 end
101 %Check if there are orders that have arrived
102 %Update values for P1
103 for z = 1:Ndc
104 if size(O{z}) > 0 %If O contains anything there are orders waiting
105 O{z}(:,2) = O{z}(:,2) - 1; %Subtract 1 for next time period
106 if O{z}(1,2) < 0 %Check for order due
107 NQtot(z) = NQtot(z) + 1*start; %For P1
108 if X(z) < 0
109 Nstockout(z) = Nstockout(z) + 1*start; %For P1
110 end
111 X(z) = X(z) + O{z}(1,1); %Add to net stock
112 if z == 1
113 Qcdc = O{z}(1,1); %Used for CDC backorders
114 if Tempty > 0
115 W(cW,:) = [i-Tempty sum(Bcdc) Qcdc];
116 cW = cW + 1;
117 Tempty = 0;
118 end
119 end
120 O{z}(1,:) = []; %Delete order from O
121 end
122 end
123 end
124 %Send backorders to LDC's
125 if Qcdc > 0
126 if fairshare == 1 && sum(Bcdc) > Qcdc
127 Opart = Qcdc/sum(Bcdc);
128 for z = 2:Ndc
129 L = gamrnd((EL(z)/sigL(z))ˆ2,sigL(z)ˆ2/EL(z));
130 O{z} = [O{z};Opart*Bcdc(z-1) L];
131 Bcdc(z-1) = (1-Opart)*Bcdc(z-1);
132 end
133 else
134 for z = 2:Ndc
135 if Bcdc(z-1) ≤ Qcdc && Bcdc(z-1) > 0 %If there is ...

enough send B
136 L = gamrnd((EL(z)/sigL(z))ˆ2,sigL(z)ˆ2/EL(z));
137 O{z} = [O{z};Bcdc(z-1) L];
138 Qcdc = Qcdc - Bcdc(z-1);
139 Bcdc(z-1) = 0;
140 elseif Qcdc > 0 && Bcdc(z-1) > Qcdc %Send remaining Q ...

when finished
141 L = gamrnd((EL(z)/sigL(z))ˆ2,sigL(z)ˆ2/EL(z));
142 O{z} = [O{z};Qcdc L];
143 Bcdc(z-1) = Bcdc(z-1) - Qcdc;
144 Qcdc = 0;
145 end
146 end
147 end
148 Qcdc = 0;
149 end
150 %Process demand for LDC's
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151 for z = 1:Ndc-1
152 D(z) = seed(i,xper,z); %Read from demand matrix
153 Dtot(z+1) = Dtot(z+1) + D(z)*start; %For P2
154 %Update values for P2
155 if X(z+1) < 0
156 Btot(z+1) = Btot(z+1) + D(z)*start;
157 else
158 if X(z+1) < D(z)
159 Btot(z+1) = Btot(z+1) + (D(z) - X(z+1))*start;
160 end
161 end
162 end
163 %Update inventory levels and record data for visualization
164 Y(2:end) = Y(2:end) - D;
165 X(2:end) = X(2:end) - D;
166 %After each review period update orders, LDC's first
167 r = r + 1;
168 for z = 2:Ndc
169 if r(z) ≥ R(z)
170 if type(z) == 1 %Order up to S for (R,S)
171 Dcdc(z-1) = S(z)-Y(z);
172 elseif Y(z) < S(z) %Order Q for (R,s,Q)
173 Dcdc(z-1) = ceil((S(z)-Y(z))/Q(z))*Q(z);
174 else
175 Dcdc(z-1) = 0;
176 end
177 Y(z) = Y(z) + Dcdc(z-1);
178 Dtot(1) = Dtot(1) + Dcdc(z-1)*start;
179 r(z) = 0;
180 end
181 end
182 if max(Dcdc) > 0 %Check orders from LDC to CDC
183 if X(1) ≤ 0 %In case of stockout everything backorders
184 if Tempty == 0
185 Tempty = i;
186 end
187 Btot(1) = Btot(1) + sum(Dcdc)*start;
188 for z = 1:Ndc-1
189 Bcdc(z) = Bcdc(z) + Dcdc(z);
190 end
191 X(1) = X(1) - sum(Dcdc);
192 elseif X(1) ≥ sum(Dcdc) %If stock is sufficient everyting is sent
193 for z = 2:Ndc
194 if Dcdc(z-1) > 0
195 L = gamrnd((EL(z)/sigL(z))ˆ2,sigL(z)ˆ2/EL(z));
196 O{z} = [O{z};Dcdc(z-1) L];
197 end
198 end
199 X(1) = X(1) - sum(Dcdc);
200 else%When no stockout but also insufficient stock
201 if Tempty == 0
202 Tempty = i;
203 end
204 if fairshare == 1
205 Opart = X(1)/sum(Dcdc);
206 for z = 2:Ndc %Send partial order if fair share
207 if Dcdc(z-1) > 0
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208 L = gamrnd((EL(z)/sigL(z))ˆ2,sigL(z)ˆ2/EL(z));
209 O{z} = [O{z};Opart*Dcdc(z-1) L];
210 Bcdc(z-1) = Bcdc(z-1) + (1-Opart)*Dcdc(z-1);
211 Btot(1) = Btot(1) + (1-Opart)*Dcdc(z-1)*start;
212 end
213 X(1) = X(1) - Dcdc(z-1);
214 end
215 else
216 for z = 2:Ndc %Check DC's in order
217 if Dcdc(z-1) > 0 && X(1) ≥ Dcdc(z-1) %Send if ...

sufficient
218 L = gamrnd((EL(z)/sigL(z))ˆ2,sigL(z)ˆ2/EL(z));
219 O{z} = [O{z};Dcdc(z-1) L];
220 elseif X(1) ≤ 0 %Backorder when finished
221 Bcdc(z-1) = Bcdc(z-1) + Dcdc(z-1);
222 Btot(1) = Btot(1) + Dcdc(z-1)*start;
223 elseif Dcdc(z-1) > 0 %Else send remaining stock
224 L = gamrnd((EL(z)/sigL(z))ˆ2,sigL(z)ˆ2/EL(z));
225 O{z} = [O{z};X(1) L];
226 Bcdc(z-1) = Bcdc(z-1) + Dcdc(z-1) - X(1);
227 Btot(1) = Btot(1) + (Dcdc(z-1) - X(1))*start;
228 end
229 X(1) = X(1) - Dcdc(z-1);
230 end
231 end
232 end
233 Y(1) = Y(1) - sum(Dcdc);
234 Dcdc = zeros(Ndc-1,1);
235 end
236 if r(1) ≥ R(1) %Check orders for CDC when review period passed
237 if type(1) == 1 %Order up to S for (R,S)
238 Qp = S(1)-Y(1);
239 Y(1) = Y(1) + Qp;
240 L = gamrnd((EL(1)/sigL(1))ˆ2,sigL(1)ˆ2/EL(1));
241 O{1} = [O{1};Qp L];
242 elseif Y(1) < S(1) %Or order N*Q for (R,s,Q)
243 L = gamrnd((EL(1)/sigL(1))ˆ2,sigL(1)ˆ2/EL(1));
244 O{1} = [O{1};ceil((S(1)-Y(1))/Q(1))*Q(1) L];
245 Y(1) = Y(1) + ceil((S(1)-Y(1))/Q(1))*Q(1);
246 end
247 r(1) = 0;
248 end
249 %Update data for visualization
250 if simgraph == 1
251 for z = 1:Ndc
252 data(2*i,:,z)=[i Y(z) X(z)];
253 end
254 end
255 end
256 %Record service levels
257 for z = 1:Ndc
258 P(xper,2*z-1:2*z) = [(1-Nstockout(z)/NQtot(z))*100 ...

(1-Btot(z)/Dtot(z))*100];
259 end
260 if simgraph == 1
261 P(1,:)
262 break;
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263 end
264 %Print result of simulation for visualization and terminate loops
265 end
266 %Determine confidence interval of service levels
267 Pavg = mean(P);
268 Pci = tinv(0.975,NX-1)/sqrt(NX)*std(P);
269 W = W(1:cW-1,:);
270 save('WaitingTime','W');
271 %Plot single graph of visualization or service level results
272 if simgraph == 1
273 figure
274 ha(1) = subplot(2,4,[1,2,5,6]);
275 hold on
276 grid on
277 for px = 1:2
278 plot(data(:,1,1),data(:,1+px,1));
279 end
280 legend('Inventory position','Stock level');
281 title('Details of simulation run');
282 xlabel('Time');
283 ylabel('Number of products');
284 for z=2:Ndc
285 if z > 3
286 pl = 3;
287 else
288 pl = 1;
289 end
290 ha(z) = subplot(2,4,z+pl);
291 hold on
292 grid on
293 for px = 1:2
294 plot(data(:,1,z),data(:,1+px,z));
295 end
296 plot(data(:,1),S(z)*ones(size(data(:,1),1),1))
297 xlabel('Time');
298 ylabel('Number of products');
299 end
300 linkaxes(ha,'x');
301 else
302 figure
303 hold on
304 grid on
305 grid MINOR
306 for px = 1:2
307 errorbar(1:Ndc,Pavg(px:2:end),Pci(px:2:end),'.','Color',[px/2 0 ...

0],'DisplayName',['P' num2str(px) 'Matlab']);
308 end
309 % plot(RES(:,1),95*ones(size(RES,1),1),'k','DisplayName','95% line');
310 legend(gca,'show')
311 title('model results');
312 xlabel('Number of DC (1=CDC)');
313 ylabel('Service level (%)');
314 end

Listing B.1: Multi-echelon model
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Appendix C

Multi-echelon optimization scripts
This appendix contains all scripts used for multi-echelon optimization, the main script and
all subscripts are described in Section 4.3.

1 clearvars; close all;
2

3 %% Initialize
4 input = xlsread('Input.xlsx','Sheet1'); %Read input parameters
5 Ptarget = 100*input(10,2:end); %Turn service level targets into percentage
6 save('Ptarget.mat','Ptarget'); %Save for use in constraint functions
7 Ndc = size(input,2); %Number of DCs
8 Nldc = Ndc-1; %Number of LDCs
9 Nexp = 10; %Number of experiments for confidence interval calculation

10 Nintervals = 10; %Number of intervals in safety stock simulation range
11

12 %Determine standard formula order-up-to levels or re-order points
13 EDDUP = zeros(Ndc,1);
14 for i = 1:Ndc
15 EDDUP(i) = input(2,i)*(input(7,i)*input(1,i)+input(5,i))*input(4,i);
16 end
17

18 %% Determine simulation ranges
19 %SE_fit returns approximate 0% and 100% safety stocks
20 CDCbounds = SE_fit(input(:,1));
21 CDCrange = linspace(round(CDCbounds(1)),round(CDCbounds(2)),Nintervals);
22 %CDC lead time (variance) is added to LDC to determine upper LDC bounds
23 CDCLvalues = zeros(size(input,1),1);
24 CDCLvalues(5) = input(5,1);
25 CDCLvalues(6) = input(6,1);
26 LDCranges = cell(Nldc,1);
27 for i = 2:Ndc %Determine LDC ranges
28 output = SE_fit(input(:,i));
29 low = round(output(1));
30 output = SE_fit(input(:,i)+CDCLvalues);
31 high = round(output(2));
32 LDCranges{i-1} = linspace(low,high,Nintervals);
33 end
34

35 Results = zeros(10ˆ3,3*(Ndc)); %Create results matrix
36 k=1;
37 %% Perform simulations for whole range
38 value = zeros(1,Ndc);
39 for i = 1:Nintervals
40 for j = 1:Nintervals
41 value(1) = CDCrange(i);
42 for l = 1:Nldc
43 value(l+1) = LDCranges{l}(j);
44 end
45 Results(k,:)=MEIO_optim_v3(value,input);

81



46 k = k+1;
47 end
48 end
49 Results = Results(1:k-1,:); % Trim away zeros
50

51 %% Fit service level target line for each LDC
52 fitvalues = zeros(4,Nldc);
53 Scdc = Results(:,1);
54 for i = 1:Nldc
55 Weigths = ones(size(Results,1),1);
56 Sldc = Results(:,i+1);
57 Pldc = Results(:,Ndc+2*i+input(9,i+1)); %Choose P1 or P2
58 for j = 1:size(Scdc,1)
59 if Pldc(j) > 70 && Pldc(j) < 99
60 Weigths(j) = Pldc(j)/70*2;%Increase weight in relevant range
61 end
62 end
63 fitvalues(:,i) = ...

FindTargetLine(Scdc,Sldc,Pldc,Weigths,CDCrange,LDCranges{i},Ptarget(i));
64 end
65 save('fitvalues.mat','fitvalues'); %Save for use in constraint functions
66

67 %% Initiate optimization
68 options = optimset('fmincon');
69 options = optimset(options,'MaxFunEvals',10000,'TolFun',1E-3);
70 x0 = zeros(1,Ndc);
71 x0(1) = CDCrange(end); %Start at P=100%
72 for i = 1:Nldc %Find appropriate LDC values from fits
73 x0(i+1) = ...

fitvalues(1,i)-fitvalues(2,i)*normcdf(x0(1),fitvalues(3,i),fitvalues(4,i));
74 end
75 lb = zeros(1,Ndc);
76 ub = value; %Last simulation point
77

78 %Perform constrained optimization
79 [CurrOptimum,fval,exitflag,output,lambda,grad]=...
80 fmincon(@objfunMEIO,x0,[],[],[],[],lb,ub,@confunMEIOPline,options);
81

82 if exitflag < 1 %Stop if no optimum available
83 print = 'Optimum not found, pleasy retry or change parameters'
84 return
85 end
86

87 %% Initiate optimum iteration
88 Pdiff = zeros(1,Nldc); %Difference between requirement and results
89 finished = 0; %Becomes 1 when final optimum is found
90 Iterations = 0; %Increases up to a defined maximum
91 while finished == 0
92 %Initiate new results matrix
93 RES2 = zeros(4,2*(Ndc)-1);
94 x = CurrOptimum; %x is used in simulations in MEIO_withCI
95 MEIO_withCI; %Determine Pavg and Pci, the average and CI of x
96 RES2(1,:) = [x Pavg];
97

98 %Determine difference between current optimum and service level target
99 for i = 1:Nldc

100 if Pavg(i)+Pci(i) > Ptarget(i) && Pavg(i)-Pci(i) < Ptarget(i)
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101 Pdiff(i) = 0; %Count as 0 if within confidence interval
102 else
103 Pdiff(i) = Ptarget(i)-Pavg(i);
104 end
105 end
106

107 %If result not within confidence interval, reiterate
108 if not(isequal(Pdiff,zeros(1,Nldc)))
109 ReOptimize;
110 Iterations = Iterations + 1;
111 else
112 finished = 1; %exit loop when optimum found
113 end
114 if Iterations ≥ 10 %Exit if optimum is not found within 10 times
115 print = 'Optimum not found, pleasy retry or change parameters'
116 return
117 end
118 end
119 FinalOptimum = CurrOptimum - EDDUP' %Print final safety stock results
120 SStot = sum(FinalOptimum)
121 P1final

Listing C.1: Multi-echelon optimization main script

1 function output = MEIO_optim_v3(Svalues,input)
2

3 %Simulation properties
4 simscale = 1; %Changes the amount of steps in 1 demand period
5 Nstart = 100*simscale;
6 N = (10000+Nstart)*simscale; %Number of demands generated
7 simgraph = 0; %if this is 1 the simulation will run once while recording ...

values of Y and X
8 fairshare = 1;
9

10 values = input;
11

12 %System parameters are vectors containing the properties for each DC
13 Ndc = size(values,2); %Number of DC's = Number of rows
14 ED = zeros(Ndc,1);
15 sigD = zeros(Ndc,1);
16 PD = zeros(Ndc,1);
17 EL = zeros(Ndc,1);
18 sigL = zeros(Ndc,1);
19 R = zeros(Ndc,1);
20 Q = zeros(Ndc,1);
21 S = zeros(Ndc,1);
22 type = zeros(Ndc,1);
23

24 %Extract correct values from matrix for each DC
25 for z = 1:Ndc
26 type(z) = values(1,z);
27 ED(z) = values(2,z)/simscale;
28 sigD(z) = values(3,z)/simscale;
29 PD(z) = values(4,z)/simscale;
30 EL(z) = values(5,z)*simscale;
31 sigL(z) = values(6,z)*simscale;
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32 R(z) = values(7,z)*simscale;
33 Q(z) = values(8,z)*ED(z)*R(z);
34 S(z) = Svalues(z);
35 end
36

37 %Initialization
38 P = zeros(1,2*Ndc);%Service level matrix
39 seed = zeros(N,Ndc-1);
40 %actualdemand = zeros(Ndc,2);
41

42 %One table of demands is generated per experiment, different values of s
43 %use the same table When a lambda is given, a poisson distribution
44 %calculates the time until the next demand
45

46 for z = 1:(Ndc-1)
47 if PD(z+1) == 1 %If each period contains demand, all values are ...

generated at once
48 seed(:,z) = gamrnd((ED(z+1)/sigD(z+1))ˆ2,sigD(z+1)ˆ2/ED(z+1),N,1);
49 else
50 next = geornd(PD(z+1));
51 for y = 1:N
52 if next == 0
53 seed(y,z) = gamrnd((ED(z+1)/sigD(z+1))ˆ2,sigD(z+1)ˆ2/ED(z+1));
54 next = geornd(PD(z+1));
55 else
56 seed(y,z) = 0;
57 next = next - 1;
58 end
59 end
60 end
61 end
62

63 %This option is used to visualize 1 simulation, data is recorded in a matrix
64 if simgraph == 1
65 data = zeros(N*2,3,Ndc);
66 end
67 %% Run experiment
68 %Initialize simulation values
69 Y = zeros(Ndc,1);
70 for z = 1: Ndc
71 Y(z) = S(z) + (1-type(z))*Q(z);
72 end
73 X = Y;
74 D = zeros(Ndc-1,1);
75 Dcdc = zeros(Ndc-1,1);
76 Dtot = zeros(Ndc,1);
77 Btot = zeros(Ndc,1);
78 Bcdc = zeros(Ndc-1,1);
79 NQtot = zeros(Ndc,1);
80 Nstockout = zeros(Ndc,1);
81 O = cell(Ndc,1);
82 r = zeros(Ndc,1);
83 Qcdc = 0;
84 start = 0;
85 %Loop over all demands
86 for i = 1:N;
87 if i > Nstart
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88 start = 1;
89 end
90 %Record data for visualization
91 if simgraph == 1
92 for z = 1:Ndc
93 data((i-1)*2+1,:,z)=[i Y(z) X(z)];
94 end
95 end
96 %Check if there are orders that have arrived
97 %Update values for P1
98 for z = 1:Ndc
99 if size(O{z}) > 0 %If O contains anything there are orders waiting

100 O{z}(:,2) = O{z}(:,2) - 1; %Subtract 1 for next time period
101 if O{z}(1,2) < 0 %Check for order due
102 NQtot(z) = NQtot(z) + 1*start; %For P1
103 if X(z) < 0
104 Nstockout(z) = Nstockout(z) + 1*start; %For P1
105 end
106 X(z) = X(z) + O{z}(1,1); %Add to net stock
107 if z == 1
108 Qcdc = O{z}(1,1); %Used for CDC backorders
109 end
110 O{z}(1,:) = []; %Delete order from O
111 end
112 end
113 end
114 %Send backorders to LDC's
115 if Qcdc > 0
116 if fairshare == 1 && sum(Bcdc) > Qcdc
117 Opart = Qcdc/sum(Bcdc);
118 for z = 2:Ndc
119 L = gamrnd((EL(z)/sigL(z))ˆ2,sigL(z)ˆ2/EL(z));
120 O{z} = [O{z};Opart*Bcdc(z-1) L];
121 Bcdc(z-1) = (1-Opart)*Bcdc(z-1);
122 end
123 else
124 for z = 2:Ndc
125 if Bcdc(z-1) ≤ Qcdc && Bcdc(z-1) > 0 %If there is enough ...

send B
126 L = gamrnd((EL(z)/sigL(z))ˆ2,sigL(z)ˆ2/EL(z));
127 O{z} = [O{z};Bcdc(z-1) L];
128 Qcdc = Qcdc - Bcdc(z-1);
129 Bcdc(z-1) = 0;
130 elseif Qcdc > 0 && Bcdc(z-1) > Qcdc %Send remaining Q when ...

finished
131 L = gamrnd((EL(z)/sigL(z))ˆ2,sigL(z)ˆ2/EL(z));
132 O{z} = [O{z};Qcdc L];
133 Bcdc(z-1) = Bcdc(z-1) - Qcdc;
134 Qcdc = 0;
135 end
136 end
137 end
138 Qcdc = 0;
139 end
140 %Determine demand for LDC's
141 for z = 1:Ndc-1
142 D(z) = seed(i,z); %Read from demand matrix
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143 Dtot(z+1) = Dtot(z+1) + D(z)*start; %For P2
144 %Update values for P2
145 if X(z+1) < 0
146 Btot(z+1) = Btot(z+1) + D(z)*start;
147 else
148 if X(z+1) < D(z)
149 Btot(z+1) = Btot(z+1) + (D(z) - X(z+1))*start;
150 end
151 end
152 end
153 %Update inventory levels and record data for visualization
154 Y(2:end) = Y(2:end) - D;
155 X(2:end) = X(2:end) - D;
156 %After each review period update orders, LDC's first
157 r = r + 1;
158 for z = 2:Ndc
159 if r(z) ≥ R(z)
160 if type(z) == 1 %Order up to S for (R,S)
161 Dcdc(z-1) = S(z)-Y(z);
162 elseif Y(z) < S(z) %Order Q for (R,s,Q)
163 Dcdc(z-1) = ceil((S(z)-Y(z))/Q(z))*Q(z);
164 else
165 Dcdc(z-1) = 0;
166 end
167 Y(z) = Y(z) + Dcdc(z-1);
168 Dtot(1) = Dtot(1) + Dcdc(z-1)*start;
169 r(z) = 0;
170 end
171 end
172 if sum(Dcdc) > 0 %Check orders to CDC
173 if X(1) ≤ 0 %In case of stockout everything backorders
174 Btot(1) = Btot(1) + sum(Dcdc)*start;
175 for z = 1:Ndc-1
176 Bcdc(z) = Bcdc(z) + Dcdc(z);
177 end
178 X(1) = X(1) - sum(Dcdc);
179 elseif X(1) ≥ sum(Dcdc) %If stock is sufficient everyting is sent
180 for z = 2:Ndc
181 if Dcdc(z-1) > 0
182 L = gamrnd((EL(z)/sigL(z))ˆ2,sigL(z)ˆ2/EL(z));
183 O{z} = [O{z};Dcdc(z-1) L];
184 end
185 end
186 X(1) = X(1) - sum(Dcdc);
187 else%When no stockout but also insufficient stock
188 if fairshare == 1
189 Opart = X(1)/sum(Dcdc);
190 for z = 2:Ndc %Check DC's in order
191 if Dcdc(z-1) > 0
192 L = gamrnd((EL(z)/sigL(z))ˆ2,sigL(z)ˆ2/EL(z));
193 O{z} = [O{z};Opart*Dcdc(z-1) L];
194 Bcdc(z-1) = Bcdc(z-1) + (1-Opart)*Dcdc(z-1);
195 Btot(1) = Btot(1) + (1-Opart)*Dcdc(z-1)*start;
196 end
197 X(1) = X(1) - Dcdc(z-1);
198 end
199 else
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200 for z = 2:Ndc %Check DC's in order
201 if Dcdc(z-1) > 0 && X(1) ≥ Dcdc(z-1) %Send if sufficient
202 L = gamrnd((EL(z)/sigL(z))ˆ2,sigL(z)ˆ2/EL(z));
203 O{z} = [O{z};Dcdc(z-1) L];
204 elseif X(1) ≤ 0 %Backorder when finished
205 Bcdc(z-1) = Bcdc(z-1) + Dcdc(z-1);
206 Btot(1) = Btot(1) + Dcdc(z-1)*start;
207 elseif Dcdc(z-1) > 0 %Else send remaining stock
208 L = gamrnd((EL(z)/sigL(z))ˆ2,sigL(z)ˆ2/EL(z));
209 O{z} = [O{z};X(1) L];
210 Bcdc(z-1) = Bcdc(z-1) + Dcdc(z-1) - X(1);
211 Btot(1) = Btot(1) + (Dcdc(z-1) - X(1))*start;
212 end
213 X(1) = X(1) - Dcdc(z-1);
214 end
215 end
216 end
217 Y(1) = Y(1) - sum(Dcdc);
218 Dcdc = zeros(Ndc-1,1);
219 end
220 if r(1) ≥ R(1) %Check orders for CDC when review period passed
221 if type(1) == 1 %Order up to S for (R,S)
222 Qp = S(1)-Y(1);
223 Y(1) = Y(1) + Qp;
224 L = gamrnd((EL(1)/sigL(1))ˆ2,sigL(1)ˆ2/EL(1));
225 O{1} = [O{1};Qp L];
226 elseif Y(1) < S(1) %Or order N*Q for (R,s,Q)
227 L = gamrnd((EL(1)/sigL(1))ˆ2,sigL(1)ˆ2/EL(1));
228 O{1} = [O{1};ceil((S(1)-Y(1))/Q(1))*Q(1) L];
229 Y(1) = Y(1) + ceil((S(1)-Y(1))/Q(1))*Q(1);
230 end
231 r(1) = 0;
232 end
233 %Update data for visualization
234 if simgraph == 1
235 for z = 1:Ndc
236 data(2*i,:,z)=[i Y(z) X(z)];
237 end
238 end
239 end
240 %Calculate service levels
241 for z = 1:Ndc
242 P(2*z-1:2*z) = [(1-Nstockout(z)/NQtot(z))*100 (1-Btot(z)/Dtot(z))*100];
243 end
244

245 output = [S' P];

Listing C.2: Multi-echelon optimization simulation script

1 function [vals] = FindTargetLine(Scdc, Sldc, Pldc, W, CDCrange, LDCrange, ...
Ptarget)

2 %% Initialize
3 check = Scdc(1); %Used to check for next Scdc value
4 temp = []; %Will contain results for 1 Scdc value
5 k = 1; %counter
6 midpointguess = LDCrange(end);%Should be close to last value in range
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7 TargetPoints = zeros(10ˆ3,1);
8

9 %% Loop fit over all CDC safety stock values and find P targets
10 for l = 1:size(Scdc,1)
11 if Scdc(l) 6= check %perform fit when at new Scdc value
12 [linfun, gof] = ...

fit(temp(:,1),temp(:,2),'100/(1+exp(-k*(x-x0)))','StartPoint',[0.05 ...
midpointguess],'Lower',[0 1],'Upper',[1 ...
20000],'Weights',temp(:,3));

13 objective = @(x) linfun(x) - Ptarget;
14 TargetPoints(k) = fzero(objective,linfun.x0); %Target Sldc value
15 temp = []; %Reinitialize
16 check = Scdc(l);
17 k = k + 1;
18 end
19 temp = [temp;Sldc(l) Pldc(l) W(l)]; %Add current Scdc values
20 if Pldc(l) > 20 && Pldc(l) < 80
21 midpointguess = Sldc(l); %Roughly estimate midpoint guess for fit
22 end
23 end
24 %Perform fit on final list of values
25 [linfun, gof] = ...

fit(temp(:,1),temp(:,2),'100/(1+exp(-k*(x-x0)))','StartPoint',[0.05 ...
midpointguess],'Lower',[0 1],'Upper',[1 20000],'Weights',temp(:,3));

26 objective = @(x) linfun(x) - Ptarget;
27 TargetPoints(k) = fzero(objective,linfun.x0);
28 TargetPoints = TargetPoints(1:k);%Trim matrix
29 %Save results for visual comparison
30 load('TargetPointsLDC.mat')
31 TargetPointsLDC = [TargetPointsLDC TargetPoints];
32 save('TargetPointsLDC.mat','TargetPointsLDC')
33

34 %% Perform final curvefit
35 %Roughly estimate coefficients based on target points
36 aguess = TargetPoints(1);
37 bguess = TargetPoints(1)-TargetPoints(end);
38 cguess = CDCrange(round((k)/2));
39 dguess = cguess - CDCrange(round((k)/4));
40

41 %Fit final line and return line coefficients
42 Pline = ...

fit(CDCrange',TargetPoints,'a-b*normcdf(x,c,d)','StartPoint',[aguess ...
bguess cguess dguess],'Lower',0.1*[aguess bguess cguess ...
dguess],'Upper',10*[aguess bguess cguess dguess]);

43 vals = coeffvalues(Pline);

Listing C.3: Multi-echelon fitting function

1 %Script to run the simulation Nexp times and determine confidence interval
2 %for the appropriate service level
3 P1final = 0; %To use in comparison
4 P = zeros(Nexp,Nldc);
5 %% Run experiments
6 for i = 1:Nexp
7 y = MEIO_optim_v3(x,input);
8 P1final = P1final + y(Ndc+1);
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9 for j = 1:Nldc
10 P(i,j) = y(Nldc+3+input(9,j+1)+(j-1)*2);
11 end
12 end
13

14 %% Determine average and confidence interval
15 P1final = P1final/Nexp;
16 Pavg = mean(P);
17 Pci = tinv(0.95,Nexp-1)/sqrt(Nexp)*std(P);

Listing C.4: Multi-echelon simulation script with confidence interval calculation

1 %First determine new LDC simulation values based on Pdiff
2 % interval of twice the difference between result and target
3 for i = 1:Nldc
4 if Pdiff(i) > 0
5 lb(i+1) = x(i+1);
6 x(i+1) = x(i+1) + 2*0.01*Pdiff(i)*(LDCranges{i}(end)-LDCranges{i}(1));
7 ub(i+1) = x(i+1);
8 elseif Pdiff(i) < 0
9 ub(i+1) = x(i+1);

10 x(i+1) = x(i+1) + 2*0.01*Pdiff(i)*(LDCranges{i}(end)-LDCranges{i}(1));
11 lb(i+1) = x(i+1);
12 else
13 if mean(Pdiff) > 0
14 lb(i+1) = x(i+1);
15 x(i+1) = x(i+1) + ...

2*0.01*mean(Pdiff)*(LDCranges{i}(end)-LDCranges{i}(1));
16 ub(i+1) = x(i+1);
17 elseif mean(Pdiff) < 0
18 ub(i+1) = x(i+1);
19 x(i+1) = x(i+1) + ...

2*0.01*mean(Pdiff)*(LDCranges{i}(end)-LDCranges{i}(1));
20 lb(i+1) = x(i+1);
21 end
22 end
23 end
24

25 %Simulate LDC new and CDC old values
26 MEIO_withCI;
27 RES2(2,:) = [x Pavg];
28

29 %Determine new CDC value based on average of Pdiff
30 if abs(Pdiff) == Pdiff
31 lb(1) = x(1);
32 x(1) = x(1) + 0.01*max(Pdiff)*(CDCrange(end)-CDCrange(1));
33 ub(1) = x(1);
34 elseif -abs(Pdiff) == Pdiff
35 ub(1) = x(1);
36 x(1) = x(1) - 0.01*max(abs(Pdiff))*(CDCrange(end)-CDCrange(1));
37 lb(1) = x(1);
38 else
39 if mean(Pdiff) > 0
40 lb(1) = x(1);
41 x(1) = x(1) + 2*0.01*mean(Pdiff)*(CDCrange(end)-CDCrange(1));
42 ub(1) = x(1);
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43 elseif mean(Pdiff) < 0
44 ub(1) = x(1);
45 x(1) = x(1) + 2*0.01*mean(Pdiff)*(CDCrange(end)-CDCrange(1));
46 lb(1) = x(1);
47 end
48 end
49

50 %Simulate new CDC value with new LDC value
51 MEIO_withCI;
52 RES2(3,:) = [x Pavg];
53

54 %Return LDC values to original
55 x(2:end) = CurrOptimum(2:end);
56

57 %Simulate old LDC with new CDC values
58 MEIO_withCI;
59 RES2(4,:) = [x Pavg];
60

61

62

63 %Linear fitting based on new simulations
64 fitvalueslin = zeros(3,Nldc);
65 Scdc = RES2(:,1);
66 for i = 1:Nldc
67 Sldc = RES2(:,i+1);
68 Pldc = RES2(:,Nldc+1+i);
69 fitvalueslin(:,i) = createFitLin(Scdc,Sldc,Pldc);
70 end
71 save('fitvalueslin.mat','fitvalueslin');
72

73 options = optimset('fmincon');
74 options = optimset(options,'MaxFunEvals',1000,'TolFun',1E-3);
75

76 % Initial guess in middle of range
77 x0 = 0.5.*lb + 0.5.*ub;
78

79 %Perform optimization
80 [CurrOptimum,fval,exitflag,output,lambda,grad]=...
81 fmincon(@objfunMEIO,x0,[],[],[],[],lb,ub,@confunMEIOLin,options);

Listing C.5: Multi-echelon optimization iteration

1 function fitvalues = createFitLin(X, Y, Z)
2

3 % Fit model to data and return coefficients
4 [fitresult, gof] = fit( [X, Y], Z, fittype('poly11'));
5

6 fitvalues = coeffvalues(fitresult);

Listing C.6: Multi-echelon local linear fit function

1 function [ineq,eq] = confunMEIOLin(x)
2 % Import values
3 load('Ptarget.mat');
4 load('fitvalueslin.mat');
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5 Nldc = size(fitvalueslin,2);
6 % Recreate fit formulas from fitvalues
7 s = zeros(Nldc,1);
8 for i = 1:Nldc
9 s(i) = fitvalueslin(1,i) + fitvalueslin(2,i)*x(1) + ...

fitvalueslin(3,i)*x(i+1);
10 end
11 % Constraints
12 ineq = Ptarget' - s; %Inequality constraints
13 eq = []; % no equality constraints

Listing C.7: Multi-echelon linear fit constraint function

91



92



Appendix D

Multi-echelon validation scripts
The script in this appendix is used to compare multi-echelon simulation results to analytical
approximations, as described in Section 4.4.

1 %To be run after Main_v2_servicetime.m
2 load('TargetPointsLDC.mat')
3 SS = CDCrange - Snorm(1);
4 SSsimtot = SS;
5 for i = 1:Nintervals
6 SSsimtot(i) = SSsimtot(i) + sum(TargetPointsLDC(i,:)) - sum(Snorm(2:end));
7 end
8

9 %Plot simulation results
10 figure
11 hold on
12 plot(SS,SSsimtot,'LineWidth',2,'DisplayName','Simul. total safety stock')
13 set(gca,'XDir','reverse')
14 xlabel('CDC safety stock')
15 ylabel('Total safety stock')
16

17 %% Analytical results
18 %Get input parameters
19 ED = zeros(Ndc,1);
20 sigD = zeros(Ndc,1);
21 PD = zeros(Ndc,1);
22 for z = 1:Ndc
23 ED(z) = input(2,z);
24 sigD(z) = input(3,z);
25 PD(z) = input(4,z);
26 end
27 seed = zeros(10ˆ4,Nldc);
28 actualdemand = zeros(Ndc,2);
29

30 %Get actual demand in case of intermittent or lumpy
31 for z = 1:(Nldc)
32 if PD(z+1) == 1 %If each period contains demand, all values are ...

generated at once
33 seed(:,z) = gamrnd((ED(z+1)/sigD(z+1))ˆ2,sigD(z+1)ˆ2/ED(z+1),10ˆ4,1);
34 else
35 next = geornd(PD(z+1));
36 for y = 1:10ˆ4
37 if next == 0
38 seed(y,z) = gamrnd((ED(z+1)/sigD(z+1))ˆ2,sigD(z+1)ˆ2/ED(z+1));
39 next = geornd(PD(z+1));
40 else
41 seed(y,z) = 0;
42 next = next - 1;
43 end
44 end
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45 end
46 actualdemand(z+1,:) = [mean(seed(:,z)) std(seed(:,z))];
47 end
48

49 actualdemand(1,:) = [sum(actualdemand(2:end,1)) ...
sqrt(sumsqr(actualdemand(2:end,2)))];

50 %Strings used in plots
51 methods{1} = 'Desmet';
52 methods{2} = 'Desmet with adjusted variance';
53 methods{3} = 'Desmet with adjusted waiting time';
54 methods{4} = 'Dendauw adjusted P1';
55 methods{5} = 'Adjustments combined';
56

57 methods{6} = '--';
58 methods{7} = ':';
59 methods{8} = '-*';
60 methods{9} = '-ˆ';
61 methods{10} = '-o';
62

63 for m = 1:5
64 SStot = SS;
65 %Calculate SS values for same points as simulation results
66 for i = 1:Nintervals
67 for z = 1:Ndc
68 %Turn undershoot calculation on or off for RsQ
69 Ushoot = 1;
70

71 %Get final input parameters
72 type = input(1,z);
73 ED = actualdemand(z,1);
74 sigD = actualdemand(z,2);
75 R = input(7,z);
76 Q = input(8,z)*ED*R;
77 P1LDC = input(10,z);
78

79 %Determine adjusted lead time parameters
80 if z == 1
81 EL = input(5,1);
82 sigL = input(6,1);
83 else
84 if m == 1 || m == 4 %Formula Desmet
85 EL = input(5,z) + (1-P1CDC)*input(5,1);
86 sigL = sqrt(input(6,z)ˆ2 + (1-P1CDC)ˆ2*input(6,1)ˆ2);
87 elseif m == 2 %Adjustment Adan & Lefeber
88 EL = input(5,z) + (1-P1CDC)*input(5,1);
89 sigL = sqrt(input(6,z)ˆ2 + (1-P1CDC)ˆ2*input(6,1)ˆ2 + ...

(1-P1CDC)*P1CDC*input(5,1)ˆ2);
90 elseif m == 3 %Adjusted waiting time
91 EL = input(5,z) + (1-P1CDC)*feval(muline,CDCrange(i));
92 sigL = sqrt(input(6,z)ˆ2 + ...

(1-P1CDC)ˆ2*feval(sigline,CDCrange(i))ˆ2);
93 else %Adjusted everything
94 EL = input(5,z) + (1-P1CDC)*feval(muline,CDCrange(i));
95 sigL = sqrt(input(6,z)ˆ2 + ...

((1-P1CDC)ˆ2*feval(sigline,CDCrange(i))ˆ2 + ...
(1-P1CDC)*P1CDC*feval(mulineWS,CDCrange(i))));

96 end
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97 end
98

99 %Determine uncertainty period parameters
100 sigX = sqrt((EL+type*R)*sigDˆ2+EDˆ2*sigLˆ2);
101 DDUP = (EL+type*R)*ED;
102

103 %Calculate Gamma distribution parameters
104 if type == 0 && Ushoot == 1
105 EU = (sigDˆ2*R+EDˆ2*Rˆ2)/(2*R*ED);
106 sigU = sqrt((1+((sigD/ED)ˆ2)/R) * (1+2*(sigD/ED)ˆ2/R) * ...

(ED*R)ˆ2/3-EUˆ2);
107 EUDDUP = EU + DDUP;
108 sigUDDUP = sqrt(sigUˆ2+sigXˆ2);
109 alpha = (EUDDUP/sigUDDUP)ˆ2;
110 beta = sigUDDUPˆ2/EUDDUP;
111 else
112 alpha = (DDUP/sigX)ˆ2;
113 beta = sigXˆ2/DDUP;
114 end
115

116 %Calculate safety stocks
117 if z == 1
118 if m > 3
119 sigmaDD = ...

sqrt((input(5,1)+input(1,1)*input(7,1))*actualdemand(1,2)ˆ2+actualdemand(1,1)ˆ2*input(6,1)ˆ2);
120 formuleDD = (0.5*(input(1,1) + ...

(1-input(1,1)*input(8,1)))*actualdemand(1,1)*input(7,1) ...
+ SS(i))/sigmaDD;

121 P1CDC = normcdf(formuleDD,0,1); %Formula Dendauw
122 else
123 P1CDC = gamcdf(SS(i)+Snorm(1),alpha,beta); %Formula Desmet
124 end
125 else
126 SStot(i) = SStot(i) + gaminv(P1LDC,alpha,beta) - Snorm(z);
127 end
128 end
129 end
130 %Plot in same plot as simulation results
131 plot(SS,SStot,methods{m+5},'LineWidth',2,'DisplayName',[methods{m} ' ...

total safety stock'])
132 end
133 % Plot final simulation optimum
134 plot(FinalOptimum(1),sum(FinalOptimum),'*','DisplayName','Final sim. ...

optimum total safety stock')
135 legend('off');
136 legend(gca,'show');
137 legend('Location','southwest');
138 title('Total multi-echelon safety stock vs. CDC safety stock')

Listing D.1: Multi-echelon comparison script

D.1 Waiting time processing script

The script in this appendix is used to process lists of waiting times into Gamma distributions,
as described in Section 4.4.
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1 %Run after main_v2_servicetime;
2 Coeffs = zeros(Nintervals,2);
3 CoeffsWS = zeros(Nintervals,2); %Squared waiting time for adjusted variance
4 WaitingTimeSquared = cell(Nintervals,1);
5 CDCrangeWT = CDCrange;
6 ToDelete = [];
7 % Fit distribution parameters or delete value if not waiting data
8 for w = 1:Nintervals
9 if size(WaitingTime{w}(:,1),1) > 1

10 Dist = fitdist(WaitingTime{w}(:,1),'Gamma');
11 Coeffs(w,:) = [Dist.a*Dist.b sqrt(Dist.a*Dist.bˆ2)];
12 WaitingTimeSquared{w} = WaitingTime{w}(:,1).ˆ2;
13 DistWS = fitdist(WaitingTimeSquared{w},'Gamma');
14 CoeffsWS(w,:) = [DistWS.a*DistWS.b sqrt(DistWS.a*DistWS.bˆ2)];
15 else
16 ToDelete = [ToDelete;w];
17 end
18 end
19 td = size(ToDelete,1);
20 Coeffs = Coeffs(1:w-td,:);
21 CoeffsWS = CoeffsWS(1:w-td,:);
22 if td > 0
23 for i = 1:td
24 CDCrangeWT(ToDelete(td+1-i)) = [];
25 end
26 end
27

28

29 %% Fit mu and sigma curves
30 %Roughly estimate coefficients
31 aguess = input(7,1);
32 bguess = aguess - input(6,1);
33 cguess = CDCrange(round(Nintervals/2));
34 dguess = CDCrange(round(Nintervals/4));
35

36 muline = ...
fit(CDCrangeWT',Coeffs(:,1),'a-b*normcdf(x,c,d)','StartPoint',[aguess ...
bguess cguess dguess],'Lower',0.1*[aguess bguess cguess ...
dguess],'Upper',10*[aguess bguess cguess dguess]);

37 mulineWS = ...
fit(CDCrangeWT',CoeffsWS(:,1),'a-b*normcdf(x,c,d)','StartPoint',[1.5*aguessˆ2 ...
1.5*aguessˆ2 cguess dguess],'Lower',0.1*[1.5*aguessˆ2 1.5*aguessˆ2 ...
cguess dguess],'Upper',100*[1.5*aguessˆ2 1.5*aguessˆ2 cguess dguess]);

38

39 %Roughly estimate coefficients
40 aguess = 0.5*input(7,1);
41 bguess = aguess - 0.5*input(6,1);
42 cguess = CDCrange(round(Nintervals/2));
43 dguess = CDCrange(round(Nintervals/4));
44

45 sigline = ...
fit(CDCrangeWT',Coeffs(:,2),'a-b*normcdf(x,c,d)','StartPoint',[aguess ...
bguess cguess dguess],'Lower',0.1*[aguess bguess cguess ...
dguess],'Upper',10*[aguess bguess cguess dguess]);

Listing D.2: Multi-echelon comparison script
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Appendix E

Multi-echelon validation scripts
The calculation of the ”mean of square minus square of mean” for the variance equation of
the Desmet formula, as mentioned in Section 4.4.5 is shown in this appendix. The ”mean of
square minus square of mean” rule is defined as:

σ2x = E(x2)− E2(x).

The new LDC lead time is:

LLDC with probability P1,CDC ,

LLDC + LCDC with probability 1− P1,CDC .

These can be used in the ”mean of square minus square of mean” rule:

E(L∗LDC
2) = P1,CDC∗E2(LLDC)+(1−P1,CDC)∗(E(L2

LDC)+E(L2
CDC)+2E(LLDC)E(LCDC)),

E2(L∗LDC) = E2(LLDC) + (1− P1,CDC)2E2(LCDC) + 2(1− P1,CDC)E(LLDC)E(LCDC),

combining into:

σ2L∗LDC
= (P1,CDC−1)∗E2(LLDC)+(1−P1,CDC)∗(E(L2

LDC)+E(L2
CDC)−(1−P1,CDC)2E2(LCDC).

Using the rule backwards this can be simplified into:

σ2L∗LDC
= σ2LLDC + (1− P1,CDC)σ2LCDC + (1− P1,CDC)P1,CDCE

2(LCDC).

This can be transformed into a function similar to the Desmet equation:

σ2L∗LDC
= σ2LLDC + (1− P1,CDC)2σ2LCDC + (1− P1,CDC)P1,CDCE(L2

CDC).
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