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Abstract

In order for robots to most effectively move from industry and into our homes, it is our belief that
robots need to be physically similar to humans and thus scale down in: power, mass, and size
and move around in a similar manner to humans. This requires them to also perform autonomous
biped locomotion. These so-called humanoid robots are still in early stages of development with
much of the essential functionality still under development. The focus of this thesis is stable and
robust sidestepping locomotion of a humanoid robot. Tulip, a 12 joint humanoid developed to
participate in the RoboCup Humanoid Football Championships, is used as the test bed for the
study on which biped locomotion modeling and control techniques are developed. A 12-DoF model
that is able to match the 3D motions that the Tulip robot hardware is capable of performing are
derived and verified by comparing simulated and experimental data. Biped stability is examined
and sidestepping locomotion states are introduced. Joint trajectories are evaluated considering the
resulting joint torques. An algorithm is developed to produce joint trajectories as a function of the
desired stable sidestepping speed. The algorithm utilizes position control and inverse kinematic
computations for the joints. A relation is found for the maximum sidestepping velocity for a biped
as a function of step size and vertical height of the centre of mass. Simulations of robot locomotion
utilizing the developed algorithm are shown to be dynamically stable.
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Chapter 1

Introduction

1.1 Background

The humanoid robots (humanoids), are made such as to mimic human-like characteristics. Hu-
manoids that use two legs for their locomotion are known as bipeds. Bipeds have inspired many
science fiction authors but as of yet have shown little practical application. This raises the ques-
tion, why study bipeds at all? The answer lies in the huge potential that they have, both directly
and indirectly, to advance mankind. An example of the direct potential can be seen in the field of
health care. An aging society is putting an ever increasing burden on the health care industry and
one possible solution to this problem is to design robots which are able to assist the elderly. These
robots would have to be working and interacting with humans in their normal environment and
ideally be using the tools designed for humans. For these reasons, humanoid robots are a natural
choice for the task. The indirect potential of humanoids refers to the technology spin offs which
they will undoubtedly inspire. Although robotics is already a challenging field, stretching across
numerous technological fields such as electronics, mechanics and software, humanoids are right at
the cutting edge of this technology. Technological advances made here have a high potential for
impacting the industrial robot industry, where the robots are known for being bulky, inflexible
and dangerous by comparison. Technological advances in humanoids are also expected to impact
health care indirectly, due to the fact that a better understanding of humanoids is synonymous to
better understanding of the human body.

There is a lot of research done on forward walking however relatively much less on sideways
stepping. This particular form of locomotion is important, for example, for moving in narrow
spaces like a kitchen. Another example where robot movement in narrow spaces can be important
is for preforming rescue tasks, especially where the environment is too dangerous for humans to
go into. The promotion of the development of robotics to preform complex tasks in dangerous,
degraded, human-engineered environments, was the purpose of the DARPA Robotics Challenge,
[2], held for 2012 to 2015. The winning robot, SHAFT, of the 2013 challenge can be seen in figure
1.1, opening a door after preforming side stepping locomotion.

In order to develop side stepping locomotion the following problem statement is formulated:

For a given target position and time, develop an algorithm which calculated motions in
the robot joints such that the biped preforms stable side stepping locomotion to intersect
that target position before the target time.

A humanoid robot, named TUlip,[18], was developed by the three technical universities in the
Netherlands ( TU Delft, TU Eindhoven, UTwente) and Philips, to take part in a similar challenge
as the DARPA Robotics Challenge, namely the RoboCup, adult soccer league. This robot shown
in figure 1.2, provides a test bed for the study. TUlip has 12 actuated degrees of freedom (DoF),
provided by four 90 Watt, and eight 60 Watt, DC motors each with its own planetary gearbox.
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Figure 1.1: Photo taken humanoid SHAFT opening a door after preforming sidestepping locomotion,
taken during the DARPA Robotics Challenge

To evaluate whether the joint trajectories indeed lead to stable locomotion, a multi-body
dynamics model of TUlip is required. Modeling of the TUlip dynamics is discussed in Chapter
3. Calculation of sound and feasible joint trajectories that solve the given problem requires a
solid understanding of the biped dynamics and the concepts of biped balance that are discussed
in Chapter 4. In the same chapter, a side stepping gate, particular type of biped locomotion. The
algorithm to compute the joint trajectories is also explained in Chapter 4. The conclusions to this
project and recommendations for future research are given in Chapter 5.

Figure 1.2: Humanoid named TUlip developed by TU Delft, TU Eindhoven, UTwente and Philips.
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Chapter 2

Literature study on biped
locomotion

2.1 Introduction

The literature study was preformed to investigates various modelling and trajectory generation
techniques that are currently being used. At the end of the chapter, a technique to generate
the robot reference trajectories is chosen. The selected behavior and the trajectory generation
technique are going to be worked out in the following chapters.

2.2 Modelling

2.2.1 Biped modelling

Van Zutven et al in [75] performed a comprehensive study on biped modelling approaches. Based
on thorough experimental analysis, four major conclusions are drawn. Firstly, that point feet
could successfully be imitated on humanoid robots by turning off the ankle control. Next, that
impacts of the feet with the ground can be modeled with discontinuous velocities and energy loss.
It is also found that there are significant couplings between bodies in a humanoid robot and finally,
that dynamics in the coronal plane influences dynamics in the sagittal plane and vice versa. These
conclusions suggest that a 2D model is not sufficient for modelling the biped. Consequently, in
this project 3D modeling of TUlip is performed.

2.2.2 Ground contact model

In [11], Ehsaniseresht takes closer look at the modeling contacts between bipeds and the ground.
He finds out that while many contact models used for the biped locomotion concentrate on a
particular gate, such as walking, these are less suited for the other gaits such as running or
jumping. A smoothing function is used to turn a discontinuous friction model of, for example,
the coulomb friction around zero velocity, into a continuous one. This discontinuity, according to
Ehsaniseresht, may result in modelling errors. This statement is not supported and goes against
Zutven et als finding mentioned earlier. A reason for using the continuous contact model, however,
is that a discontinues model results in a so called stiff equation of motion that are difficult to solve
without relatively sufficiently small integration time-step.
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2.3 Trajectory generation

There are different strategies to generate trajectories for biped locomotion, and these are difficult
to classify due to the overlapping principles involved. One method, proposed by Vanderborght
[63], calssifies these as natural dynamics-based control, soft computing, and model-based trajectory
generation. To begin with, stability and side stepping locomotion are researched.

2.3.1 Stability

Zero moment point (ZMP) is the most popular criterion for evaluating the stability of a biped
robot [66]. This criterion evaluates the reaction forces acting inside an area defined by contact
points between a biped and walking surface. During running or jumping, the humanoid loses
complete contact with the floor and thereby dynamic stability can no longer be guaranteed using
this criterion. If these locomotion phases are periodically repeated, their stability can be evaluated
by computing the spectral radius of the Jacobian of the Poincar map associated with the cyclic
motion, as described in [32]. This criterion describes the robustness of the periodic solution against
small perturbations. Stability is therefore not guaranteed for larger perturbations or even during
the initial transition phase the biped needs to go through to get up to the desired locomotion
speed. To ensure that the biped motion remains stable, in this project it is therefore chosen that
sole of one or both feet of the biped always remain in contact with the walking surface. Jumping
behaviors are consequently not considered.

2.3.2 Side stepping locomotion

The side stepping gait has not been researched as much as the forward walking gait [15]. Alitavoli
[4] is one of a few researchers concentrating on the lateral biped motions. To achieve a control
lateral motions, he proposes a novel sliding-mode tracking and control algorithm. However, he
evaluates that algorithm only in simulations using a two link, 2D biped model. Although not
much research is focused on lateral motions, the stability considerations are similar to the forward
walking. Hence, both ZMP and the Poincar stability map [56] can be used to evaluate stability of
the side stepping.

A possible difference between the sidestepping and forward walking gaits lies in the kinematic
redundancy available in the direction of motion. In the field of robotics, the so called sagittal and
coronal plains are used to describe the motion plains. The sagittal pain is a longitudinal plane
that divides the body into right and left sections. The coronal plain is a plane that divides the
body into front and back parts, perpendicular to the sagittal and horizontal planes.

Rotation redundancy of the torso is often used to provide corrective action to maintain balance
[17, 35] during the walking. As for TUlip, this rotational redundancy however only exists in the
direction normal to the direction of motion (in the so called coronal plain), which can only be
used for the corrective balance in the orthogonal direction to the sidestepping.

2.3.3 Natural dynamics-based control

This first group is characterized by the fact that design of the trajectories is intrinsic to the
mechanical design of the robot. Passive dynamic walkers give good example of such walking gaits.
The passive dynamic walkers, pioneered by McGeer [30], exploit the natural ballistic dynamics of
the biped walking system to preform stable rhythmic cyclic gaits without actuation or external
energy sources other than gravity. Stability is quantified by examining the eigenvalues of the
linearized step-to-step return map, taken around a point in the period either immediately preceding
or immediately following the time of contact between foot and the ground. Tedrake [60] extended
this approach to actuated dynamic walkers, showing that simple controllers could be used allowing
the robot to walk stably on even terrain and even up a small slope.

These approaches are suited for bipeds designed to preform a particular gaits only. For more
bipeds such as the TUlip, that are aimed to perform much wider range of tasks, Virtual Model
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Control (VMC)[43] , could be used instead of ballistic gaits. VMC can also be considered natural
dynamics-based control where the natural dynamics are artificially created though the use of
control loops. For example where a natural dynamics model would have physical spring, the VMC
would have proportional controller.

Virtual components are placed at strategic locations within the biped or between biped and
it’s environment. A virtual spring and damper element could, for example, be placed between
the robot hip and ground. The virtual forces produced by these elements are then mapped into
physical torques at each of the robot joints. VMC has been successfully implemented in the Spring

Flamingo planar biped [41]. Virtual Gravity Compensation, VGC, is introduced by Keehong
et al. [47]. The VGC combines VMC and capture points [42], and it is successfully implemented
on a biped showing balance even when moving on uneven terrain. A major disadvantage of the
VMC related methods is that parameters need to be tuned by hand and rely heavily on the experts
experience and knowledge [63].

2.3.4 Soft computing methods

Soft computing such as neural networks and fuzzy systems are formal part of the computer science.
These methods are characterized by the use of inexact solutions to computationally- complex tasks
[74]. As such, the soft computing methods are particularly interesting for synthesis annd control
of biped locomotion since the bipeds feature complex and non-linear dynamics of high order with
inherently large model and parameter uncertainties due to, for example, changing friction and
impacts between the feet and the ground.

Choi et al. [6] studied and verified with experiments that a fuzzy logic posture control for biped
walking using ZMP feedback from force sensors on the feet could be used for robust disturbance
rejection. Park et al showed in [37] that using the leg reference trajectories as input to the fuzzy-
logic generator is a way to to generate stable locomotion for a seven link robot model in simulation.

Wiklendt et al showed using simulations in [68, 69] that a 3D biped gains ability to perform
dynamic walking using evolution-strategies after two thousand learning cycles, whereby each learn-
ing cycle ends when the biped falls. This kind of neural network strategy results in walking gaits
that closely resemble human ones [31]. This learning algorithm however relies on recreating the
initial condi- tions for each trial cycle which is very difficult in real life. Another major issue with
this method is that many humanoids would break down and need repairing each time they fall.
Finally, the time span required to run such experiment in real life would also be infeasible due to
wear of the mechanical parts and the general costs involved.

Reinforcement Learning (RL) on the other hand, is shown to be practically more feasi- ble.
Similar to evolution strategies, this generic framework learns new behaviors though rewards for
good and bad behaviors. Tedrake et al [59] used RL algorithm on a simple biped which started
walking within a minute and showed that the learning converges after 20 minutes. Schuitema et
al [46] showed that using RL on a 2D walking robot named LEO, it is possible to make over 43000
footsteps during an 8 hour experiment. It should be noted that LEO was designed and built to
be able to walk, fall and stand up without human interaction and in [46] it is men-tioned that the
most bipeds are not designed robustly enough to withstand the large number of learning trials
required.

Experimental evidence has shown that pattern generators found in spinal cords of mammals
are at least partly responsible for their locomotion [61]. This discovery inspired the development
of Central Pattern Generators (CPGs). Matsubara et al in [28] successfully applied a CPG-based
biped locomotion controller using a neural oscillator model proposed by Matsuoka [29], to preform
stable walking gait using a 6 link 2D biped.
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2.3.5 Model-based approach

The vast majority of biped gaits are designed to be so called Zero Moment Point (ZMP) stable
[63]. This involves generating joint trajectories that make sure that the biped remains dy- nami-
cally stable at all times. Due to the high computational cost for calculating multi-body dynamics
required for ZMP computation, the most popular methods do this off-line [39]. This subgroup,
which Sugihara et al [55] call trajectory replaying divides the problem into two sub-problems,
namely, locomotion planning and control. The other subgroup, termed ”real-time generation”
does the planning and control in a more generic way.

An advantage of the trajectory replaying is absence of concerns about computational demands.
A good example of a computationally expensive technique which can only be performed offline is
the full posture goal method [23, 22]. Given the initial and final goal postures and using kinematic
and dynamic models of the biped as well as geometric model of the environment, this method
performs a heuristic search though the entire configuration space to find all statically stable and
collision avoiding configurations. Next, a smoothing function determines the kinematic trajectory
and finally a dynamic filtering method [72], constraining the ZMP within the support polygon,
gives the joint velocities. Kuffner et al. used in [23] the full posture goal method to simulate
the H6 humanoid model (33-DOF) placing the right foot above the surface of an obstacle while
balancing on the left leg. This was also verified in an actual robot experiment.

Offline trajectory planning is not performed exclusively for computationally expensive meth-
ods. Kajita et al [21] proposed modelling the biped as a Linear Inverted Pendulum Model (LIPM)
witah a linearized relationship between Center Of Mass (CM) and ZMP. Takanishi et al. proposed
in [58] a method to solve the ZMP equations by transforming the equations of motion into the
frequency domain. Kagami et al. later on expanded this notion in [19], proposing a method to
solve the problem in the discrete time-domain.

Optimization criterion using space-time constraints is another offline technique. Wang et al
used in [67] a wide range of object functions including terms for power minimization and an-
gular momentum minimization, for generating a trajectory for a 30 DOF model. The resulting
trajectory interestingly posses numerous human-like features including active toe-off, near-passive
knee swing, and leg extension during the swing phase. An optimization criterion can also be used
online, as Dekker demonstrated in simulations for a 11 link biped in [1]. A possible limitation,
however, is only local optimality of the resulting solution trajectory (for each time step) and not
for the com- plete locomotion period. Furthermore, retuning gains of the cost function might be
necessary for different locomotion phases in order to come up with feasible robot gaits [45].

Online techniques offer great advantages with respect to mobility and disturbance rejection.
Based on the LIPM model, Kajita et al formulated in [20] the ZMP control as a servo problem and
proposed use of preview control. They also showed that the preview controller also compensates
for the ZMP error caused by the difference between the simplified single pendulum model and the
more precise multi-body model.

Ha et al elaborate in [16] on the LIPM by coming up with the virtual height inverted pendulum
model. This model takes into account all link masses and depending on a given trajectory makes a
better approximation/simplification of multi-body dynamics of the biped. Ha demonstrates that
online stabilization action can be achieved by varying the height of the bipeds CM.

While the LIPM model based walking control strategies aim to constantly maintain balance,
the Foot Placement Estimator (FPE) method determines where the foot should be placed in
order to restore balance. FPE is introduced by Dwight et al in [8], showing how a biped could
restore balance by controlling swing foot position during the gait cycle. The theory does make the
assumption that the mass in the legs of a biped can be neglected, which was shown to be untrue
by Zutven et al in [75]. An extension to the FPE approach is introduced by Zutven et al in [62],
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called the Foot Placement Indicator FPI method. This method does not assume massless legs and
has shown in simulation on a 5 link planar biped to work better than the FPE method.

Boer et al presented in [7] a foot placement framework in which a biped was capable of transi-
tioning to a stable stationary posture given any plausible and common states of bipedal locomotion.

2.4 Conclusion

This chapter gives an overview of the literature on several topics that are relevant for the gait
generation problem for lateral locomotion task for humanoid robots. The need for 3D modeling is
highlighted by Van Zutven et al in [75] in contrast to more standard 2D modeling approach found
in the literature.

After critical evaluation of the state-of-the-art found in the literature, it is decided to gener-
ate locomotion gait for the side stepping task using the ZMP method. To facilitate online gait
generation, a computationally plausible LIMP method is found as the most appealing one for this
project, since it is already used on many physical bipeds.
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Chapter 3

Dynamic modeling of TUlip

3.1 Introduction

A model is a simplification of a real life system. Consequently, the modeling objectives have
to be clear in order to capture physical phenomena one wishes to simulate. Concerning TUlips
locomotion, there are 2 main reasons for modeling, namely for the purpose of trajectory generation
and for verification that the generated trajectories are feasible for the robot and meet the side
stepping objectives.

Trajectory generation deals with computing the joint trajectories that lead to stable gaits.
For multibody robotic systems, this is a complex nonlinear problem. An elegant solution to this
problem is to use of a simple ZMP model, such as the linear inverted pendulum model (LIMP)
[21]. To evaluate the correctness of the resulting gait, a more realistic / complex dynamical robot
model is required. Such a model can be used to verify that the gait is in fact stable in simulations
before being implemented on the actual robot. The model can also be important for tuning the
controller parameters.

In sections 3.1 and 3.2, we give a general description of the robot system, discussing the
input/output variables along with modeling assumptions. In section 3.2, 3.3 and 3.4, a model
decomposition into subsystems is proposed, namely the actuator, rigid-body, and contact models.
The implementation of these subsystem models in Matlab/Simulink/SimMechanics is discussed in
section 3.5. An experimental verification of the model is given in section 3.6.

3.1.1 Architecture of a model of TUlip multi-body dynamics

Inputs and outputs of the robot multi-body dynamics are given in figure 3.1.

System: biped & 

ground

Internal variables: z(t)
Output

Input

Figure 3.1: Inputs and outputs of the robot multi-body dynamics

When modeling a dynamical system, we need to define its inputs and outputs and states. The
inputs are the control torques acting on the robot joints. These torques are generated by the robot
motion controllers. In models of robot multi-body dynamics, dynamics of electrical motors are
often neglected as bandwidths of these motors in series with the corresponding power amplifiers
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are generally much higher (2 times at least) than of the dynamics of the robot mechanics. In the
particular case of TUlip, significantly higher bandwidths of the motor/amplifier combinations are
not yet achieved in comparison with bandwidths of the robot mechanics. It is therefore decided
to include the motor dynamics in the TUlip dynamical model.

The inputs to the model are the reference torques,τmref
(i is {1, 2, , 12}). These torques are

computed by the robot motion controllers While walking, TUlip experiences reaction forces with
the ground. These forces can be considered as internal forces of the robot dynamics since their
values are directly influenced by the actual robot kinematic configuration and dynamic behaviour.

TUlip is equipped with angular encoders and pressure sensors. Readings from these sensors
can be considered as the system outputs and that is why the dynamical model of TUlips has the
same outputs. Each robot joint has two encoder sensors, one at the motor side and another one at
the load side (after the gearbox), measuring the motor and load angles,qm,i, ql,i (i is {1, 2, , 12}),
respectively.

In the control software of TUlip, the joint velocities are determined by differentiating and
filtering the load angle,ql,i only. This is because the motor shaft rotates in the order of 2 faster
than that of the load and a velocity estimation using qm,i is thus expected to be too inaccurate
and noisy. Consequently qm,i is not used for any feedback purposes and is therefore also excluded
from the model output. In order to reduce computation costs, the model outputs ql,i directly.

TUlips contact pressure sensors are placed at the corners of the sole of each feet. The pressure
measurements are divided by the sensor area to determine the normal contact forces, fcni, at each

contact point f̄cn =
[
fcn1 fcn2 .. .. fcn7 fcn8

]T
. These contact forces can then be used to

compute the actual ZMP location.

3.1.2 Model decomposition into subsystems

To simplify the modeling problem, the system is divided into 3 subsystems: the motor, robot
mechanics, and contact dynamics with the ground. These describe the electro-mechanical mo-
tor/gearbox dynamics, robot multi-body dynamics, and the foot-floor contact dynamics, respec-
tively. The two port-Hamiltonian representation of these sub- systems can be seen in figure 3.2,
showing the relationship between potential and flow sources, p(t) and f(t) respectively. In the
figure p(t) and f(t) with subscript l denote the power transfore at biped motor - joint boundary.
p(t) and f(t) with subscript g represent the power transfer at the foot/floor boundary. When
these sub-systems interact with each other, there is usually a bilateral coupling whereby one of
the variables crossing the system boundary is determined by the system and the other by the en-
vironment. As the product of p(t) and f(t) is a measure of the power transfer, the direction of the
potential and flow sources need to be consistent throughout the system to prevent any causality
errors.

Motor 

system
Biped

system

Ground

system

u(t)

Figure 3.2: 2-port representation of the model subsystems. Here, p(t) and f(t) are the generalized
forces and velocities, respectively, crossing the subsystem boundaries

The implication of the coupling relationship between the subsystems is demonstrated by con-
sidering two common methods for computing the ground forces, fg(t) :

• The penalizing method. [25]
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• The constraint method. Non penetrating constraint equations are added to the system
of equations at the time of contact, t∗, and using The Lagrange multiplier theorem, the
constraint force is computed, as discipled by Nathan van de Wouw in [71].

Since a particular type of the contact model has influence on the modelling accuracy and
simulation time, it needs to be chosen carefully.

3.2 Model of the biped multi-body dynamics

TUlip is made up of 17 individual bodies (links) connected by 16 actuated joints 6 in each leg, 1
in each arm and 2 connecting the neck to the head and torso. As the bodies can be considered
as stiff, so we assume that these can be modeled as rigid bodies. The dynamical contributions of
the head, neck and arms to the overall system dynamics is negligible. This reduces the modeled
system to a 13 link articulated chain of rigid bodies. The articulated rigid body chain has 18 DoF,
of which 12 are actuated and the additional 6 describe the connection of the chain to the inertial
frame. The first step when describing the robot dynamics is to assign a coordinate frame to each
link in the chain. The Denavit-Hartenberg convention described in [49], is chosen for this purpose.

3.2.1 Assignment of the link coordinate frames

Jaques Denavit and Richard S. Hartenberg, [49], proposed a matrix method of systematically
assigning a coordinate frame xiyizi to each robot link i. The convention relies on 4 parameters,
known as the DH-parameters, that define the geometric position of one link w.r.t the previous
one:

• link length ai is the offset distance between the zi−1 and zi axes along the xi axis;

• link twist αi is the angle from the zi−1 axis to the zi axis about the xi axis;

• link offset di is the distance from the origin of frame i− 1 to the xi axis along the zi−1 axis;

• joint angle θi is the angle between the xi−1 and xi axes about the zi−1 axis.

The convention is illustrated in figure 3.3.

Joint i Joint i+1Joint i-1

{i}
Link i

{i-1}

ai

Figure 3.3: joint numbering in the standard DH convention.

For every link/joint pair the homogeneous coordinate transformation from the previous coor-
dinate frame to the next one is described as

An−1
n = Transzn−1(dn) · Rotzn−1(θn) · Transxn(an) · Rotxn(αn) (3.1)

where
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Transzn−1(dn) =


1 0 0 0
0 1 0 0
0 0 1 dn
0 0 0 1

 (3.2)

Rotzn−1
(θn) =


cos θn − sin θn 0 0
sin θn cos θn 0 0

0 0 1 0
0 0 0 1

 (3.3)

Transxn
(an) =


1 0 0 an
0 1 0 0
0 0 1 0
0 0 0 1

 (3.4)

Rotxn
(αn) =


1 0 0 0
0 cosαn − sinαn 0
0 sinαn cosαn 0
0 0 0 1

 (3.5)

Thus:

An−1
n =


cos θn − sin θn cosαn sin θn sinαn rn cos θn
sin θn cos θn cosαn − cos θn sinαn rn sin θn

0 sinαn cosαn dn
0 0 0 1

 =

 Rn−1
n on−1

n

0 0 0 1

 (3.6)

where R and on−1
n are 3 × 3 matrix and 3 × 1 vector, respectively, describing the position

(orientation and translational displacement) of frame i wrt frame i-1.
Following the standard DH convention, we assign the coordinate frames to the links of TUlip

as shown in figure 3.4. The corresponding DH parameters are given in Table 3.1. Coordinates
of the contact points are shown in Table 3.2 and Inertial parameters of each robot link are given
in Table 3.3. Note that these are described in the link coordinate frame as described by the DH
convention.
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Figure 3.4: Schematic representation of the kinematic model of TUlip, from [75], with the link
coordinate frames assigned according to the DH convention.
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3.2.2 (Parameters)

The DH parameters are found in table [?]. Contact Points, CP, in link coordinate frame can be
found in table [?] The link inertial properties, mass, inertia, and center of mass of link,Li, in link
coordinate frame, {i}, can be found in table [?].

3.2.3 Equations of motion

The kinematics of TUlip is described in terms of n=18 generalized coordinates q =
[
q1 q2.... q17 q18

]T
.

The robot equations of motion, as described in [49], can be expressed as follows :

τ = M(q)q̈ + C(q, q̇)q̇ + F (q̇) +G(q) (3.7)

where

• q is the vector of generalized joint coordinates.

• q̇ is the vector of joint velocities.

• q̈ is the vector of joint accelerations.

• M is the symmetric inertia matrix.

• Cq̇ describes Coriolis and centripetal effects. Centripetal torques are proportional to q̇2
i ,

while the Coriolis torques are proportional to qiqj .

• F describes viscous and Coulomb friction.

• G is the gravity vector.

• τ is the vector of generalized actuation torques at the robot joints.

3.3 Contact Model

Unilateral contact describes a mechanical constraint which prevents two bodies from penetrating.
Contact modeling describes how the contact force, λ, relates to a gap, h, (a measure of the distance
between colliding bodies), as illustrated in figure 3.5.

h

Figure 3.5: Unilateral contact, contact force λ, and gap h, a measure of the signed distance between
the bodies.
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Li Link Description ai [m] di[m] α [rad] θi [rad] qoffset

1 virtual link 0 q1 π/2 0 0
2 virtual link 0 q2 π/2 π/2 0
3 virtual link 0 q3 π/2 π/2 0
4 virtual link 0 0 π/2 q4 π/2
5 virtual link 0 0 π/2 q5 π/2
6 Right foot 0 0 π/2 q6 −π/2
7 right ankle L1 0 π/2 q7 π/2
8 right lower leg L2 0 0 q8 0
9 right upper leg L3 0 0 q9 0
10 right lower hip L4 −L6 −π/2 q10 0
11 right upper hip 0 0 −π/2 q11 π/2
12 torso L7 0 π q12 0
13 left upper hip 0 0 −π/2 q13 π
14 left lower hip L4 0 −π/2 q14 π/2
15 left upper leg L3 L6 0 q15 0
16 left lower leg L2 0 0 q16 0
17 left ankle L1 0 π/2 q17 0
18 left foot 0 0 0 q18 0

Table 3.1: DH parameters

CPi Description Right Foot, r
¯
6
RCPi

Left Foot, r
¯
18
LCPi

1 Outside toe [ L12; −L10; −L8 ] [ L10; L12; L8 ]
2 Inside toe [ −L11; −L10; −L8 ] [ L10; −L11; L8 ]
3 Inside heel [ −L11; −L10; L9 ] [ L10; −L11; −L9 ]
4 Outside heel [ L12; −L10; L9 ] [ L10; L12; −L9 ]

Table 3.2: Contact Points

Li Description Mi Iii r
¯
i
CM

6 right foot 0.366 (Rw6)T Iw6 R
w6 [ −L10/2; 0; L8/2 ]

7 right ankle 0.614 (Rw7)T Iw7 R
w7 [ −L1/2; 0; 0 ]

8 right lower leg 0.315 (Rw8)T Iw8 R
w8 [ −L2/2; 0; 0 ]

9 right upper leg 2.141 (Rw9)T Iw9 R
w9 [ −L3/2; 0; 0 ]

10 right lower hip 0.614 (Rw10)T Iw10R
w10 [ −L4; L6; 0 ]

11 right upper hip 0.614 (Rw11)T Iw11R
w11 [ 0; 0; −L5/2 ]

12 torso 8.594 (Rw12)T Iw12R
w12 [ −L7/2; 0; L5 + 0.17 ]

13 left upper hip M11 (Rw13)T Iw11R
w13 [ 0; −L5/2; 0 ]

14 left lower hip M10 (Rw14)T Iw10R
w14 [ 0; 0; 0 ]

15 left upper leg M9 (Rw15)T Iw9 R
w15 [ −L3/2; 0; 0 ]

16 left lower leg M8 (Rw16)T Iw8 R
w16 [ −L2/2; 0; 0 ]

17 left ankle M7 (Rw17)T Iw7 R
w17 [ −L1/2; 0; 0 ]

18 left foot M6 (Rw18)T Iw6 R
w18 [ L10/2; 0; L8/2 ]

Table 3.3: Link inertial properties
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Contact forces are functions of the contacting area which,is on TUlip, constrained to the four
small rubber pressure sensors extruding at the outer ends of both feet. As a result the contact
area is modelled using 8 possible contact points. Placing the origin of the inertia frame in the
plane on the floor (a plane with normal ~n) hi can be expressed simply as the dot product of the
normal and position vector to contact point i, ~rcpi :

hi = ~rcpi · ~n (3.8)

Forward kinematics can be used to express the position vector ~rcpi , and therefore the gap, h,
is also a function of only the generalized coordinates: h(q).

Strategies for modeling the contact dynamics fall generally into 2 categories: the constraint
modelling and the penalizing method. The first one describes non-smooth behaviours of contact
forces that obey non-penetrating and rigidity conditions associated with the rigid body dynamics.
The second one allows some interbody penetration which simulates compliant bodies by means of
virtual spring and damper elements. Modeling choices can significantly affect computation time,
modeling complexity and physical resemblance. Both techniques are therefore studied in depth.
The constraint method, requires solving differential algebraic equations, DAE and is described in
more detail in Appendix C.2.

3.3.1 Penalizing method

A penalizing method is used to compute the normal reaction forces by attaching virtual spring
and damper elements to the contacting surfaces. In contrast to the constraint method approach,
the contact forces becomes a function of the state vector and can therefore can be eliminated to
obtain a system of ordinary differential equations. A regularized1 friction model approximates the
stick - slip transition using the regularization parameter, ẋtol. This removes the infinite gradient,
dẋ
dλ at ẋ = 0, which is illustrated in figure 3.6,A, and approximates this with a gradient dµFN

dẋtol
,

which is illustrated in figure 3.6,B.
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fN-

f
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x tol2

Figure 3.6: Left: Block which can slide or stick on a table. Outmost at the right-hand side: A) Dry
Coulomb friction model B) Regularized friction model

The approach ensures the existence and uniqueness of a solution which is not always the case
when using set valued force laws [27]. Another advantage is that contact forces are regarded as
external forces making this approach easily implementable.

The penalizing method does have a number of drawbacks:

1Regularization is a method of dealing with infinite divergent expressions by introducing an auxiliary concept
of a regulator ε [27]. Correct physical result is obtained in the limit in which the regulator goes away: ε → 0.
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• It introduces very large stiffness into the system leading to stiff differential equations.

• Oscillating behaviour is often noticed, especially on the acceleration level [3].

• Sticking does not respect Coulomb’s law. Any non zero tangential force always results in
slipping. The biped model would, for example, therefore always slide down an inclined slope.

After careful investigation, event-driven integration, although expected to be the best choice
in terms of accuracy of simulation, was rejected as the simulation time turned to be too large.
Implementing the model using a time-stepping scheme, for example using OpenDE, as described
in Appendix C.2, was also rejected because of limited accuracy . Use of more sophisticated
implementation of the time stepping method in Matlab was rejected, too, due to algorithmic and
computational complexity. Instead, SimMechanics toobox of Matlab was chosen as the modelling
and simulation platform.

Normal contact force

At the beginning of the modeling phase, the Kelvin Voigt linear spring-damper model [25] was
considered for the contact model. It was later on rejected as it produces non-smooth friction
force behavior due to the non-zero initial velocity of the foot coming into contact with the floor.
Hunt and Crossley proposed a model in [27] for which the damping term is also a function of the
penetration depth, thereby solving the abovementioned issue with the Kelvin Voight model. The
Hunt and Crossley model consists of nonlinear spring and damper elements, where the contact
force λN equals:

λN = λNK
+ λND

if h < 0 (3.9)

= λNK
+ erλND

ḣ (3.10)

Forces λNK
and λND

= erλND
ḣ are due to the contact stiffness and damping respectively,

while er is the coefficient of restitution. In model (3.9), the stiffness term is calculated using Hertz
theory [40], which states that for two contacting flexible spheres the contact force as a function of
the stiffness of the flexible spheres is:

λKN
= 4

3E
∗R∗1/2|g|3/2 = KN |h|3/2 (3.11)

where KN = 4
3E
∗R∗1/2, and h is the gap distance. A value of E∗ is derived from the combined

material properties of the contacting bodies:

1

E∗
=

1 + µ2
1

E1
+

1 + µ2
2

E2
(3.12)

where µ is the Poison ratio and E the Modulus of elasticity. Parameter R∗ is a function of the
curvature of the contacting bodies:

1

R∗
=

1

R1
+

1

R2
(3.13)

where R1 and R2 are defined as in figure 3.7.

Notice that for a flat surface: R2 →∞, R∗ → R1

The normal contact force therefore becomes:

λN = KN |g|3/2 + erKN |g|3/2ġ (3.14)
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Figure 3.7: Illustration of how to apply formula for calculating curvature radius of two contacting
bodies

Tangential contact force

A smooth approximations of the sign(x) function is needed to approximate dry Coulomb friction.
Several approximation were considered:

• Linear approximation, S1 = Kx, which inbetween ±xtol, approaches sign as xtol → 0 (or as
K →∞).

• S2 = tanh(Kx) = e2Kx−1
e2Kx+1

, which approaches sign(x) as K →∞.

• S3 = x√
x2+ε2

. which approaches sign(x) as ε→ 0.

The maximum function stiffness (dSi/dx|x=0), needs to be chosen by a trade off: it should be
high enough for reasonable approximation of the sign function, but also not so high to slow down
the simulation too much. For this reason it was decided to use the linear approximation, giving
the smallest error, as it can be seen in figure 3.8.

This gives the relation for the tangent contact force, λT :

λT =

{
KT ẋ if|ẋ| < ẋtol
±µ if∓ ẋ > ẋtol

(3.15)

where ẋ and λT are the tangent velocity of contact point and contact force respectively. see fig-
ure 3.6. The stiffness parameter KT = µ

ẋtol
is heuristically tuned using a method of trial and error

for a given reference trajectory, taking into consideration model accuracies: keep KT as small a
possible, but also considering the computation speed which increases inversely proportional to KT .
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Figure 3.8: Various approximations of the sign function, with normalized maximum stiffness,
(dFi(0)/dx = 2)

The properties of the contacting bodies that are used in equations (3.15) and (3.14) can be
found in Appendix E.

3.4 Motor Sub-system Model

The motor sub-system can be described by dynamics of the electrical and mechanical parts, as
illustrated in figure 3.9. Torque delivered by the motors is a product of the motor current i and
a motor constant Km, τm = iKm. The reference torque, rτ therefore needs to be transformed
into a reference current, ri = rτm/Km. The first problem, however, is that power, supplied by the
batteries is a voltage source rather than current source. Consequently a current feedback loop is
needed to follow the reference current input to the motors.

Electric Motor

system

Mechanical Motor

system

Motor system

Figure 3.9: The motor sub-system split into its electric and mechanical parts, where rτm is the
reference input torque, τl and τm are the load and motor torques, respectively, and θ̇l and θ̇m are the

angular velocities of load and motor shafts, respectively.

3.4.1 Electrical motor dynamics

To derive the motor dynamics, we first look at the circuit diagram for an armature controlled DC
motor in figure 3.10.
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Figure 3.10: Circuit diagram for an armature controlled DC motor. Parameters R and L are the rotor
winding inductance and resistance respectively. The applied voltage, V, is the control input and Vb is the

back electromotive force (EMF).

Whenever a conductor moves in a magnetic field, a voltage, Vb is generated across the terminals
that is proportional to the velocity of the conductor in the field. The differential equation for the
armature current is therefore

V = Li̇a +Ria + Vb. (3.16)

Voltage,Vb, known as back EMF, opposes the current flow in the conductor, according to

Vb = Kbθ̇m. (3.17)

where Kb is a motor constant called the back EMF constant. The motor torque is a function
of the current, τm = iKm, where Km is a motor constant. If SI units are used for parameters Km

and Kb, it can be shown that the numerical values of these parameters are the same, although
there units are different. Therefore, we can use equations (3.16) and (3.17) to express the motor
torque as a function of the voltage and motor velocity. This is shown in figure 3.11.

Figure 3.11: Model of an electrical motor

Power is supplied by batteries that deliver a constant voltage. In order to control the power
delivered to the motors, this voltage needs to be modulated in amplitude by switching it on and
off. The process responsible for converting the power delivery is known as the power processing
unit, PPU, which is explained in Appendix B. In this process, output of a controller vc is amplified
by a constant factor KPWM , thus V (t) = vc(t)KPWM . As the torque is a function of current,
rather than voltage, a PI controller is used to track the current reference. The electric motor
model, as shown in figure 3.9 can now be presented as in figure 3.12
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Electric Motor system

Figure 3.12: Electric motor model.

The current feedback system suggests that τm tracksrτm within a particular servo control
bandwidth.

3.4.2 Mechanical motor model

The dynamics is modelled to better understand the influence of the θ̇m term. On TUlip, as
depicted in figure 3.13, gear reduction is used rather than a direct-dive actuation to reduce the
dynamic coupling among the joints. However, the gearboxes increase friction while introducing
backlash and compliance in the motor drive-trains.

Jm

Bm

rl

rm

Figure 3.13: Lumped model of a single link with actuator / gearbox drive-train. Parameters Jm, Bm
are the motor inertia and coefficient of motor friction, respectively. Gearbox ratio equals N = rl/rm

The dynamics is determined by splitting the mechanical sub-system into its components, as
shown in figure 3.14.

Jm

Bm

rl

rm

Motor side Load side

Figure 3.14: Motor model separated into subsystems. On the left-hand side, labelled motor side, the
motor consists of inertia and motor damping elements. Variable τlm is the reflected torque from the load
side. The middle figures, labelled load side, represents the gearbox. Variable τml is the torque exerted by
the motor onto the load side (equal and opposite to τlm). On the right-hand side, forces Fml and Flm are

shown that are the equal to each other.

For the motor side, we can write:

τm = Jmθ̈m +Bmθ̇m + τlm (3.18)
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where τlm is the load torque reflected onto the motor side. Neglecting frictional losses, backlash
and slippage, we can derive velocity and force constraints at the point of gear contact:

θ̇mrm = θ̇lrl ⇒ θ̇m =
rl
rm

θ̇l

= Nθ̇l (3.19)

Flm = Fml ⇒
τl
rl

=
τml
rm

τml =
1

N
τl (3.20)

where the gear ratio equals N = rl
rm

. Differentiating (3.19) in time gives:

θ̈m = Nθ̈l (3.21)

After substituting (3.20) and (3.21) into (3.18), we obtain:

τm = JmNθ̈l +BmNθ̇l +
1

N
τl

⇒ τl = Nτm − JmN2θ̈l −BmN2θ̇l (3.22)

Equation (3.22) can now be used to express the mechanical motor system as in figure 3.15

(s)

Mechanical 

Motor system

Figure 3.15: Mechanical motor model

3.4.3 Torque control

Using equation (3.22), the current and velocity feedbacks can be expressed as in figure 3.16A. As
for TUlip N = 100, τL can be neglected and the velocity feedback term can be expressed as in
figure 3.16B. Since the velocity feedback is opposite proportional to N2, it can also be considered
as negligible, leading to further simplification of the torque control loop which is illustrated in
figure 3.16C.
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(s)
A)

B)

C)

Figure 3.16: torque control loop

The open-loop current transfer function, GI,OL, can now be expressed as

GI,OL = PI ·KPWM
1

Ls+R
(3.23)

=
kI
s

(1 +
s

kI/kp
)KPWM

1/R

1 + sτe
(3.24)

where the PI- control law is, PI = kI
s (1+ s

kI/kp
) and the motor time constant equals τe = L/R.

On TUlip, for stability robustness, safe control gains are set as kp = 1, kI = 0, giving the closed-
loop frequency response shown in figure 3.17.
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Figure 3.17: Calculated frequency response of the current control loop before and after tuning

To reduce computational costs, it is decided to neglect the current control-loop from the overall
model, thereby considering that the reference torque is equal to the actual one:

rτm = τm (3.25)

This reduces the motor model shown in figure 3.9 to the one depicted in figure 3.18.

(s)

Figure 3.18: Reduced motor / gearbox model

3.4.4 Summary and conclusions on the motor dynamics

By closely looking at the motor sub-system, it can be concluded that the control bandwidth of
the current control-loop is high enough to be neglected from the model. This reduces the motor
model only to the static gain term from the gear box and damping and inertial terms of the motor.
The resulting simplified model is shown in figure 3.18.

3.5 Software package implementation

After having considered advantages and disadvantages of contact modelling and integration meth-
ods, a critical look is given to the types of simulation environments that are available. Mat-
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lab/simulink/SimMechanics was chosen because of its friendliness, the feasibly of knowledge trans-
fer and the flexibility it proved for maintaining and adapting the model.

3.5.1 Implementation in SimMechanics

The SimMechanics model is built up from 10 different objects illustrated in figure 3.19.

B
F

Revolute Joint

Env

Machine

Environment
Joint SensorJoint Initial Condition

Joint Actuator

Ground

B
F

Custom Joint
Body Sensor

Body Actuator

CS1 CS2

Body

Figure 3.19: SimMechanics object blocks used to build model

Topology

Implementation in SimMechanics poses no restriction on choosing which robot link should repre-
sent the robot base. Featherstone showed in [12] that the inertia matrix of a branched kinematic
tree in general has a lower condition number than that of a single kinematic tree structure. This
is significant as it is shown in Appendix C.1) that the integration error is directly proportional to
the condition number of the inertia matrix. For this reason the torso is chosen to be the floating
base link leading to the topology shown in figure 3.20

6DOF: 

q1..q6

q7

q9 q10q8 q11 q12

q13

q18q17q16q15q14

Figure 3.20: Connectivity graph of the TUlipmodel implemented in SimMechanics

The implementation of the SimMechanics model is consists of 3 parts, namely, the floating
base, leg and feet subsystems.
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Floating base link

The machine environment block is used to define X-Y-Z world frame and gravity vector. Next,
a ground block is needed to define a fixed point in the space for connectio to a joint object. A
custom joint is used whose 3 mutually orthogonal axes of rotation and 3 axes of translation are
defined with respect to the world coordinate frame. Variableq1, q2 and q3 denote X, Y and Z
displacements and variables q4, q5 and q6, the rotations about X,Y and Z axes respectively. As
Particular rotational variables, the role, pitch and yaw angles are chosen. The B and F on the
joint object, see figure 3.19 , stand for bass and follow-er, indicating the direction of the joint in
accordance with the right hand rule. The direction is set in accordance with the direction of the
kinematic chain. The final step is adding a body object representing the torso, but before this
could be done, coordinate frames needed to be assigned to the body. The origins of thse frames
are located at the connection ports, labeled CSi,, where i is the number of the coordinate frame
defined. Per body, at least 3 coordinate frames have to be assigned:

• Ψin,the point which connects to the follower side of the joint. This is defined as having an
origin at the same place as the coordinate fame attached to the base side of the joint, with
orientation equal to that of ΨCOM .

• ΨCOM has the origin at the center of mass. Inertial properties of the body are expressed
in this frame. The initial orientation is by default equal to the orientation of the world
coordinate frame

• Ψout has the origin at the connecting point with the next joint in the kinematic chain. The
orientation of Ψout is also equal to the orientation of ΨCOM .

For the torso body, ΨoutL and ΨoutR are defined, that connect to the left- and right legs,
respectively.

Leg

The leg subsystem consists of 4 repeated joints - mass combinations that describe how the the
kinematic chain from the upper hip down to the ankle is attached to the preceding body.

Foot

A joint - mass combination is added to the end of the chain. The body rep- resenting the feet has
four extra coordinate frames at the vertices of the feet that identify the points of contact to the
ground.

The initial conditions blocks are added to all the joints. Also, the sensor and actuator blocks
are added to all the actuated joints and also the body force and body sensor blocks are added at
the contact points.

3.5.2 Conclusions on implementation of the equations of motion

Because of its user friendless and accuracy, the software package SimMechanics is chosen for mod-
eling and simulations of the robot multi-body dynamics. Equations (3.22) and (3.25) describing
the motor dynamics and equations (3.14) and (3.15) describing the contact model are also imple-
mented in Matlab/Simulink/SimMechanics. The resulting robot model can be found in Appendix
F.

3.6 Model validation

To evaluate quality of the robot model, the simulated joint angles and joint forces are compared to
the actual ones that are measured on physical TUlip robot for the same reference trajectory and

26



controller parameters. Two test configurations are used. In the first test, the biped was placed
with its feet on the floor and it executed a forward walking gait designed by dr. D. Kostic [9].
To prevent it from falling over, the biped was manually supported by several gentle touches. In
the second test, TUlip was hanging on a stative with no contacts with the ground. While being
suspended by cables, the biped was performing the same gait as before. The method used for
measuring the motor torques is described in Appendix H. The joint rotations in these experiments
were defined in accordance with the kinematic model shown in figure 3.21.

R_hip_Z

R_hip_X

R_hip_Y

R_knee_Y

R_ankle_Y

R_ankle_X

L_hip_Z

L_hip_X

L_hip_Y

L_knee_Y

L_ankle_Y

L_ankle_X

Figure 3.21: The adopted definition of the joint angles

3.6.1 Balancing configuration

The reference joint trajectories and the achieved motor and joint rotations (after gearboxes ) were
measured. These are shown in figure 3.22. Note that the motor rotations were scaled using the
joint gear box ratios. Note that the motor rotations are mapped to the joint side by dividing them
by the gear box ratios.
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Figure 3.22: Recorded reference, joint and motor angles of the right leg, when the biped preforms a
straight forward walking gait. Assistance was given to prevent the biped from falling down. The motor

angles are reflected to the joint side.

When performing the forward walking test, manual assistance was needed to prevent the biped
from falling. At the time of the testing, TUlip suffered some mechanical issues that prevented it
to remain balanced. Before these issues arose, TUlip was able to perform the same walking gait
without any human intervention. The issues were caused by wear and tear due to extensive robot
usage at the art and technology festival STRP 2010. By inspection of figure 3.22, one can notice
differences between the actual motions in the R ankle X joint at the motor and joint sides. These
differences can be attributed to a backlash phenomenon in the drive train of this joint. The same
backlash phenomenon is also the cause of large jumps of the torque measured in this joint that
can be observed in figure 3.23.
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Figure 3.23: The measured and simulated joint-side torques when the biped preforms a straight
forward walking gait.

The largest tracking error appears in the R hip Z joint. Figure 3.24 shows the torque measured
in the R hip Z joint together with the measured position error in this joint (difference between
the reference and actual joint motions), By closer inspection, one can notice a correlation between
the measured torque and the position error. That correlation can be explained by the fact that
the controller gains were simply too low. In particular, the controller gains for the R hip Z joint
were an order of 10 lower than the controller gains of the other robot joints. This was realized
only after the experiments have been finished, after which the biped was unavailable for further
testing due to a longer repair and maintenance period.
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Figure 3.24: The torque and position error in the hip Z joint on the right-hand side of the biped.
These values were measured as the biped preformed a straight forward walking gait.

By comparing the simulated and measured torques, one can notice very different profiles al-
though these profiles have the similar order of magnitude. The differences could be caused by the
manual assistance and by friction in the robot joints which is not captured by the SimMechanics
model. Repeating the walking gait while TUlip is hanging on the cables eliminates the need for
assistance. Also, the gravity loading on the robot joints is much lower which reduces the frictional
forces in the joints.

3.6.2 Hanging configuration

Due to the mechanical and balance issues mentioned above, the measurements were repeated while
TUlip hung on a stand with two chains attached to the torso. This hanging situation was modeled
by replacing the 6DOF joint connecting the torso to the inertial frame (see figure F.4 in Appendix
G) with a hinge joint.

The measured and simulated joint angles for the hanging robot configuration are shown in
figure 3.26. The reference trajectory is not visible as it coincides with the simulated and measured
joint trajectories. Hence, the position errors are much lower for the hanging configuration.

The simulated and measured joint torques are plotted together in figure 3.27 and then in figure
3.28 the simulated torques are shown separately. for convenience. By inspection of figure 3.27,
still large differences between the measurement and simulation results can be noticed. Same as
for the walking configuration, these differences were likely caused by the friction forces.

The joint torques for the simulated and measured system were plotted first together (figure
3.27) and then separately (figure 3.28), for clarity. The figures show that there is still a large
difference in joint torques values between those computed in simulation and those measured on
the biped. This again is thought to most likely caused by frictional forces.

3.6.3 Conclusions

The simulation results achieved with the developed Matlab/Simulink/SimMechanics model of
TUlip show deviations with respect to data measured on the physical robot. It is expected that
friction in the robot joints which is not included in the model is the main cause of the observed dif-
ference. Hence, it can be concluded that the model cannot directly be used for tuning parameters
of the robot motion controllers. That is why it is recommended to be include the joint friction in
the robot model and identify the fiction parameters in direct robot experiments. The other forces
influencing the robot multi-body dynamics, namely the inertial, Coriolis/centripetal and grav-
ity forces, are captured by the model and their parameter have been identified and validated by
Pieter van Zutven in [44]. Consequently, despite absence of the joint friction, the developed Mat-
lab/Simulink/SimMechanics model of TUlip can be considered good enough for the development
and analysis of the sidestepping gait.
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Figure 3.25: Reference, motor and joint encoder trajectories for the hanging robot configuration
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Figure 3.26: The measured and simulated angles in the joints on the right hand side of the biped for
the hanging robot configuration.
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Figure 3.27: The measured and simulated joint-side torques in the joints on the right hand side of the
biped for the hanging robot configuration.
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Figure 3.28: Simulated joint-side torques in the joints on the right hand side of the biped for the
hanging robot configuration for the hanging robot
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Chapter 4

Sidestep planning and control

4.1 Introduction

The main objective of this work and the topic of this chaotor is to design a timely sidestepping
biped gait. That can be achieved if the robot reaches a location before a certain time. An
assumption is made that all inertial and kinematic parameters of the biped are known. The
following two requirements have therefore been formulated:

• Requirement 1: Generate the gait that brings the robot to the required position earlier than
a given time.

• Requirement 2: The gait must not compromise balance of the biped. Even stricter, a high
margin on the balance is desired.

The balance margin mentioned in the second requirement refers to gait stability, a measure of
the ability to sustain a gait without falling to the ground. This notion of stability notably differs
from the classical definition used in control theory, namely that a system is said to be stable if its
output remains a bounded function of its inputs for a given working range. A sufficient, although
not necessary condition for a gait to be stable is that it remains dynamically balanced at all time.
To account for this requirement the linear inverted pendulum strategy proposed by Ka- jita et al
[21], for the gate computation is chosen because it allows formal synthesis of a dynamically stable
gait.

4.2 Maintaining dynamic balance

4.2.1 Introduction

M. Vukobratovi first introduced the concept of using the so called zero movement point, ZMP,
to control stability of humanoids in [26], 16 years prior to the first practical application of the
dynamically balanced biped gait was realized in the WL-10RD robot [57]. ZMP has since then
become famous for its role in the synthesis of stable gates for the bipeds [66]. Vukobratovi defined
ZMP in 1972 as follows:

As the load has the same sign all over the surface, it can be reduced to the resultant force, Fp,
the point of attack of which will be in the boundaries of the foot. Let the point on the surface of
the foot, where the resultant Fp passed, be denoted as the Zero-Moment point [26]

This section describes the derivation of the ZMP for a general 3D multi-body dynamics model
of a biped. Since these dynamics are computationally demanding and require knowledge of all
robot inertial parameters, there is a need for a simplified computation of the ZMP. Under certain
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motion constraints ,the ZMP computation can be simplified, leading to the so called linear inverted
pendulum and the table-cart model. These are often used in practice to derive a motion pattern
for the center of mass which, together with a foot placement pattern, ensure a stable gait. In this
chapter, the linear inverted pendulum method is going to be used to generate stable side stepping
gait for a walking robot.

4.2.2 ZMP computation

To explain the notion of ZMP, let us consider the mechanism in single-support phase, with the
whole foot in contact with the ground. This is illustrated in figure 4.1, where the influence of the
bodies above the ankle are replaced by a force and moment FA and MA, respectively, acting on
the ankle.

 

FA

G

mg

A

MA

MAy

MAx

MAz

P=PZMP

RZMP

Mzmp = MZMPz

Y

Z

X

MA

Figure 4.1: Representation of the ZMP

We can express the resultant of the ground reaction forces and moments acting on the foot at
a general point, Pi, which is keeping the mechanism in equilibrium with force and moment Ri,Mi.
The horizontal components of the reaction force Rix, Riy, are static friction forces that balance the
horizontal forces of FA, while the vertical moment of friction, Miz, balance MAz and the vertical
moment induced by FA. Force Riz balances the vertical resultant forces FA and gravitational force
of the foot, FG. Due to the unidirectional nature of the foot contact, all the reaction forces points
towards the foot and consequently can not induce a moment. This means that the horizontal
components of MA can only be balanced by changing the position of the reaction force, Pi, to
P∗, such that the moment induced by Riz completely balance the applied horizontal moments
MAx,MAy and those induced by FAz and FG. Since we have P∗ = P , we can derive the following
expression:

R+ FA +mfg = 0 (4.1)

~OP ×R+ ~OG×mfg +MA +Mp + ~OA× FA = 0 (4.2)

where ~OP , ~OG and ~OA, are radius vectors from the origin of a coordinate frame to points P,
G and A. Parameter mf is the mass of the foot and g is the gravitation acceleration. Notice that

if the acting moments MA increase, it would be compensated by the term ~OP × R. As R stays
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the same, this means that the zero moment point would shift outwards with it until reaching the
edge of the foot. The resultant reaction force obviously can not act outside the support region and
thus any further increase in the acting moment would create a resultant moment causing rotation
of the foot. The point outside the support polygon which still satisfies equation (4.2) is known
as the fictional zero moment point, FZMP. Both terms, the ZMP and FZMP are often referred
together as the computed ZMP (see [49] and [66]). The robot joint trajectories therefore need to
be designed such that the computed ZMP does not leave the support polygon. If we attach a
coordinate frame to point P, we can express the horizontal moments about P as:

∑[
MAx

MAy

]
+
∑[

MFx

MFy

]
+
∑[

MGx

MGy

]
=

[
0
0

]
(4.3)

where MFi,MGi are the i component of moments about about P ∗ induced by forces FA and
G respectively. For an n-link biped, see figure 4.2, we can express equation (4.3) as

n∑
i

{ri − rp)×mir̈i + Iiωi − (ri − rp)×mig} =
[
0 0 ∗

]
(4.4)

where ri,rp are the position vectors of link i and the zmp respectively. Parameters mi and Ii
are the mass and inertia of link I, respectively.

Fp

z

y

x

ri

mi

P
rp

Figure 4.2: Description of link positions used to compute the ZMP, p, with equation (4.4).

Given a set of joint trajectories q, q̇ of a particular gait and the inertial properties of the biped,
dynamic balance can easily be verified. This can be done by first assuming dynamic balance
is indeed sustained, in which case there is no unknown additional DoF to consider. We can
differentiate the trajectory and use forward kinematics to solve (4.4) for rp, giving either the ZMP
or FZMP. Dynamic balance can then be verified by checking if rp remains inside the support
polygon. The goal for stable sidestepping is to find a particular set of joint trajectories which
satisfy equation (4.4) given a particular ZMP trajectories. This is not a trivial task as it is a
highly non-linear differential problem which does not give a unique solution.

4.2.3 Simplification of the ZMP and CM relation

Two single mass models, namely the so called cart-table model and the linear inverted pendulum
model are investigated to help understand and derive the ZMP equations, [63], that give the
centre of mass, CM as a function of the ZMP. The linear inverted pendulum model gives a more
comprehensive insight into how the CM can be manipulated to constrain the ZMP to a certain
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point which coincides with the origin of the support polygon. The cart-table model is even more
simplified model which relies on a constraint that the CM has one degree of motion only. The
simplicity of these equations are used derived the trajectory of the CM. For completeness, the
linear inverted pendulum model is described in appendix A.

4.2.4 Cart-table model

The cart-table model, illustrated in figure 4.3, is possibly the simplest model of the ZMP motion.

Figure 4.3: The table-kart model, a very simple model of a humanoid, used to compute the ZMP
equations. M represents the total mass of the biped and zc the hight of the center of mass. τpi is the

resultant of the ground reaction moment exerted by the ground on the ’biped’ at point point pi.

The model considers a mass, M, and position, x, of the CM of the biped, which moves on a
massless table. Also, the support polygon of the table coincides with the support polygon of the
biped. The resultant reaction torque,τ , at a random point p equals

τp = −Mg(x− p) +Mẍzc (4.5)

where zc is the height of the center of mass, and x is the horizontal displacement. The computed
ZMP,p, where τ = 0 equals

p = x− zc
g
ẍ (4.6)

Equation (4.6) can be used derive a CM motion pattern which ensures that the ZMP remains
within the support polygon.

4.2.5 CM motion pattern generation

In order to determine how the CM should move to ensure the gait stability, it is necessary to
consider what is the desired position of the ZMP. Designing the trajectories such that the ZMP
remains at the origin of the support polygon, which coincides with the mid-point of this polygon,
has three main advantages:

• Motion is energy efficient as ankle X and Y motion occur passively. This is because the
actuated torques, ux and uy, in equations (A.14) and (A.15) in Appendix A, are equal to
zero in the corresponding directions.
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• The highest margin in terms of the balance. As the ankle joint is positioned more or less
at the center of the foot, if the ZMP leaves the ankle position (or more accurately, the
floor projection of the ankle position) the allowable error bound, e = (zmpref − zmp) is
maximized.

• For a fixed CM height, this will potentially maximize the side stepping speed. To explain
this first notice that for side stepping locomotion it is required to accelerate and then decel-
erate the CM. From equation (4.6), it can be seen that the acceleration is a function of the
horizontal distance the CM is from the ZMP, therefore to maximise the acceleration and de-
celeration the CM needs to be as far as possible from the ZMP. While taking into account the
mentioned stability bound, this means that the ZMP will optimally switch instantaneously
form one supporting foot to the other.

Placing the origin of the coordinate system at the mid-point of the support foot (coincides
with the mid-point of the ankle joint) and by integrating equation (4.6) twice, we get

p = x− zc
g
ẍ = 0

⇒ ẍ− g

zc
x = 0 (4.7)

To solve equation (4.7), we first compute the roots of the auxiliary equation:

m2 − g

zc
x = 0

⇒ m = ±
√
g

zc
(4.8)

Therefore

x = C1e
at + C2e

−at (4.9)

where a =
√
g/zc. C1 and C2 are the constants of integration. Differentiating equation (4.9) and

by applying initial conditions at x(ti) = xi, ẋ(ti) = ẋi, we get:[
xi
ẋi

]
=

[
C1e

ati + C2e
−ati

aC1e
ati − aC2e

−ati

]
=

[
eati e−ati

aeati −ae−ati

] [
C1

C2

]
⇒
[
C1

C2

]
=

[
1

2eati

1
2aeati

1
2e−ati

− 1
2ae−ati

] [
xi
ẋi

]
=

[
1

2eati
xi + 1

2aeati
ẋi

1
2e−ati

xi − 1
2ae−ati

ẋi

]
(4.10)

By substituting values of (4.10) back into equation (4.9), we obtain

x(t) = (
1

2eati
xi +

1

2aeati
ẋi)e

at + (
1

2e−ati
xi −

1

2ae−ati
ẋi)e

−at

= (
eat

2eati
+

e−at

2e−ati
)xi + (

eat

2aeati
− e−at

2ae−ati
)ẋi

= xi(
ea(t−ti) + e−a(t−ti)

2
) +

ẋ0

a
(
ea(t−ti) − e−a(t−ti)

2
)

= xicosh(a(t− ti)) +
ẋi
a

sinh(a(t− ti))

= xicosh(
t− ti
Tc

) + Tcẋisinh(
t− ti
Tc

) (4.11)

where Tc = 1/a =
√
zc/g, is a motion time constant. By increasing zc, which is he height of

the CM, a slower motion, x(t), is achieved. Equation (4.11) can be easily differentiated to find
the velocity profile of the CM:
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ẋ(t) =
xi
Tc

sinh(
t− ti
Tc

) + ẋ0cosh(
t− ti
Tc

) (4.12)

By using (4.11), we are able to describe the relative motion of the CM with respect to the
ZMP, given initial position and velocity of the CM, xi, ẋi. Next, we will show how the initial
conditions are derived such that the CM moves from the initial to the finish position during a
single side stepping gait cycle, whiles keeping the ZMP in the ideal position, underneath the ankle
of the supporting foot (the midpoint of the support polygon).

4.3 Side stepping motion phases

The side stepping motion consists of motion phases that incorporate 5 distinct postures (states)
shown in 4.4. Figure 4.5 shows the state transitions the biped makes when executing a left-hand
side stepping walk. For a right stepping walk the arrows indicating a state transition point to the
other direction. Notice that after the transition from postures P1 to P2 to P3 to P4 and back to
P1, the biped has made 1 full side step which consists of 2 half steps. These 5 state transitions can
be repeated for any given number of sidesteps. The initial and final state transitions, illustrated
with the dotted lines, move the biped to and from its initial posture, P0.

Figure 4.4: Distinct postures where the biped transitions to and from during the side stepping gait.
The position of the CM projected onto the floor plain in indicated by the blue ball

P3

P2

P1

P4

P0

T11

T21

T12

T22

Figure 4.5: State transition diagram shown the phases the biped moves though during the left
direction sidestepping. The initial and final transitions are illustrated by dotted lines

The initial and final movements are clearly less critical with respect to keeping the balance and
therefore a motion trajectory with a cosine velocity profile for the CM is implemented for these
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phases. Equations (4.11) and (4.12) are used to describe motion of the CM which ensures that the
position of the ZMP remains underneath the ankle while repositioning between the side stepping
postures, P1 to P4. The following sections will show how, giving a particular side stepping step
size, the position of the CM in P1 can be manipulated to produce a side stepping gaite with the
required movement speed. It will also be shown that this speed is bounded and an estimate of the
maximum speed will be computed.

4.3.1 Time period per motion phase

As mentioned in 4.3, the side stepping gait consists of the 4 repeating state transitions and 2
initiating state transitions. Due to symmetry in the motion, only the left to right-hand side side
stepping motions are considered. Specifically the following transitions and phase times are first
defined:

• Phase 01, phase period: Tstart. The transition from posture P0 to P1. CM moves to an initial
start position. At this position, there is a certain offset between CM and the supporting
ankle (which is the desired position of the ZMP). If the initial offset increases, the CM needs
accelerate more in order to remain balanced. During this phase, the CM moves relatively
slowly according to a cosine velocity profile. A time period of 1 second is chosen which is in
simulation verified as long enough for stable motion.

• Phase 20, phase period: Tend. The transition from posture P2 to P0. CM moves to from
the final back to the start posture. A time period of Tend = Tstart = 1 second is chosen.

• Phase 11, phase period: T11 : t0 ≤ t < t1. The transition from posture P1 to P2. CM
accelerates in such a way that the ZMP remains under the supporting ankle. The final
position is half way between the feet. While the CM accelerates, the left foot makes a step.

• Phase12, phase period: T12 : t1 ≤ t < t2. The transition from posture P2 to P3: CM
decelerates back to zero velocity. The following leg makes a step. T = T11 = t0 ≤ t < t1.

• Phase 21, phase period:T21 : t2 ≤ t < t3. The transition from posture P3 to P4: CM
accelerates back to the mid-point between legs, T = T21 = t2 ≤ t < t3

• Phase22, phase period:T22 : t3 ≤ t < t4. The transition from posture P4 to P1: CM
decelerates back to it’s initial stepping posture P1, T = T22 = t3 ≤ t < t4.

Transitions T11 and T12 move the CM from the above the left (following)foot to the right
(leading) foot. This motion is defined as the first body swing motion, which is followed by T21

and T22, moving the CM back to the left foot which is defined as the second body swing motion,
as illustrated in figure 4.7.
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First body swing phase Second body swing phase

Inital CM

 offset

t1 t2 t3 t4

Figure 4.6: Illustration of the desired trajectory of the CM and subsequent ZMP for a single side step.
Lo is the initial distance between the supporting legs, Lstep is the stepping distance.

The motion trajectory of CM and phase times of these motions are derived next.

First swing phase

The initial CM velocity at the start of the gait is equal to zero, ẋ0 = 0. Notice that the solution to
equation (4.11), given an initial position also equals to zero: x(t)|x0=ẋ0=0 = 0. As such, the CM
needs to start with an initial offset with respect to the ZMP, x0 6= 0. This initial displacement is
expressed as a fraction, αi, of the total displacement, Si, of the CM at the end of the phase, at
time t =− t1, just before switching support. Therefore:

x(t0) = α1S1 (4.13)

x(t1) = S1 (4.14)

Due to symmetry in the motion, the CM at a moment of support transition,t = t1, should be
half way between the two extrema in the ZMP reference positions. The step in the ZMP can be
expressed as a distance between the ankle before the step (the initial stance distance), L0, plus
the stepping distance, LS :

x(−t1) = S1 =
1

2
step(ZMP )

=
1

2
(L0 + LS) (4.15)

For the first part of the initial swing phase, the motion of the CM can be described as:

x(t) = α1S1cosh(
t− t0
Tc

) t0 ≤ t < t1 (4.16)

ẋ(t) =
α1S1

Tc
sinh(

t− t0
Tc

) (4.17)
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To find the phase time, we fill in t = t1 into (4.16) to get :

x(t1) = S1 = α1S1cosh(
T11

Tc
) (4.18)

⇒ T11 = Tc ln(
1 +

√
1− α2

1

α1
) (4.19)

where T11 = t1 − t0, is the phase time period for this first part of the first single stance phase.
Equation (4.19) shows that as the body swing magnitude becomes small, (α→ 1) the period be-
comes shorter (T11 → 0), and visa versa. Also, as Tc =

√
zc/g, the period is directly proportional

the square root of the height of the center of mass (T11 ∝
√
zc).

At the moment of support transition, the ZMP jumps 2S1 in the direction of x, as defined
earlier. Therefore, just after switching the support, t =+ t1, the position of the CM wrt ZMP
becomes:

x+t1 = −S1 (4.20)

It is assumed that no energy is lost during the impact and the initial velocity at t =+ t1 is thus

ẋ+t1 = ẋ−t1 =
α1S1

Tc
sinh(

T11

Tc
) (4.21)

To find an expression for the phase time, we can fill in t = t2 into (4.12), and make the resulting
expression equal to zero, giving:

ẋ(t2) ≡ 0 =
xi
Tc

sinh(
t2 − t1
Tc

) + ẋ0cosh(
t2 − t1
Tc

)

0 = tanh(
T12

Tc
) +

Tcẋi
xi

⇒ T12

Tc
= arctanh(

−Tcẋi
xi

) (4.22)

where T12 = t2 − t1, the phase time period. By filling in the new initial conditions,xi and ẋi
into (4.20) and (4.21), we get

T12

Tc
= arctanh(α1sinh(

T11

Tc
)) (4.23)

Finally by expressing α1 in terms of T11, using (4.19), we get

T12

Tc
= arctanh(sech(

T11

Tc
)sinh(

T11

Tc
)) =

T11

Tc
⇒ T12 = T11 (4.24)

The result (4.24) seems trivial as the motion is obviously symmetric. From now on we use
T11 = T12 ≡ 1/2T1, where T1 is the time period of the first swing phase. Inserting the initial
conditions into 4.11 we get the desired CM trajectory for this phase:

x(t) = −S1cosh(
t− t1
Tc

) + S1α1sinh(
T1

2Tc
)sinh(

t− t1
Tc

) for t1 ≤ t < t2 (4.25)
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Second swing phase

For the second swing phase, the initial velocity condition is, as defined, equal to zero. As for the
initial position condition, xi, can be found by filling in t = t2, into (4.25) to give

x(t2) = −S1cosh(
1/2T1

Tc
) + S1α1sinh(

1/2T1

Tc
)sinh(

1/2T1

Tc
)

= −(cosh(
1/2T1

Tc
)− α1sinh2(

1/2T1

Tc
))S1

= −(α−1
1 − α1(α−2

1 − 1))S1 = −α1S1 (4.26)

where Tc and T1 are expressed in terms of α1 using (4.18). Although the motion direction is
reversed, the motion characteristics are similar to that of the first swing phase. Before the support
switches back to the previous leg, the biped needs to take another step in the same direction and
length as in the previous step. This means that the the ZMP makes a jump:

LStepSizeZMP = L0 + LS − LS = L0 (4.27)

The required end position of the CM, S2, is therefore:

S2 =
1

2
L0 (4.28)

As before, we can express the start position of the CM with respect to the ZMP as a fraction
of its total displacement, αi, which means that:

x(t3) = −α2S2 = −α1S1

⇒ α2 = α1
S1

S2
(4.29)

The phase time T21 = T22 ≡ 1/2T2, where T2 is the total phase time of the second swing phase,
can then easily be found by replacing α1 with α2 in equation (4.19):

T2 = Tc ln(
1 +

√
1− α2

2

α2
) (4.30)

Given a particular stance size, L0 and step size LS and the initial CM offset fraction, α1, the
complete CM trajectory for the sided step gate is now defined. This is illustrated in figure 4.7.
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Figure 4.7: The position and velocity of the robot’s CM with respect to the ZMP, when preforming an
ideal side stepping motion.

4.3.2 Sidestep gait as function of time

In the previous section it has been shown how to compute the total time for a side step, given the
stance and step size and initial CM offset for the supporting foot. From equation 4.19, it can be
seen that α and zc affect the phase time. It is required to arrive at a certain location within a
certain time. Given the target time and distance, Tt, and distance, Dt, and maximum step size,
Lmaxstep, the biped can easily compute the minimum number of equidistant steps, Ng :

Ng = d Dt

Lmaxstep
e

⇒ LS =
Dt

Ng
(4.31)

Next, the end time available could be expressed as a function of the CM motion phase times:

Tt = Tstart +Ng(T1 + T2)− T2 + Tend (4.32)

where T1and T2 are durations of the first and second body swing motions, Tstart and Tend
is the time taken for the biped to move from and back to the initial posture to the initial start
posture. After the final step the biped does not need to go back to its initial stepping posture, P1,
but can go straight to P0, as illustrated in figure 4.5, therefore T2 is subtracted from the total time.

Equations (4.19) and (4.35) and (4.29) are used to express T1and T2 in terms of α1,an initial
stance, L0, stepping size Lstep and CM height, Zcm. After taking Tt to the right hand side of the
equation (4.32), this equation could be solved for α1 using a root finding algorithm, for a given
L0, Lstep, Ng, Zcm and Tt. The stepping speed could therefore be controlled by controlling α1.

Maximum step size and sidestepping velocity

Previous section described how to compute the gait parameters for a certain side stepping velocity,
given the maximum step size. This section proceeds further by estimating of the maximum step
size and velocity, that effectively determine the performance boundary on the side stepping gait.
To simplify the analysis, the stepping velocity is defined as:

vg =
LS
Tstep

(4.33)

Assuming LS is independent of Tg, equation (4.33) suggests that the velocity is maximized
when the stepping distance, LS is maximized and Tg is minimized. Length LS is geometrically
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bounded by the lengths of the legs, Lleg, width of the pelvis, Lplevis, the length spanned by the
inside of the feet Lfeet inside, and finally the maximum reach of the ankle joint, θmax, as illustrated
in figure 4.8.

Figure 4.8: Geometric parameters that bound the maximum step size. Parameters Lfoot inside and LS
represent the length stretching from the ankle to the inside of the foot and the step size respectively.
Parameters Lplevis and Lleg represent the width of the pelvis and the length of the stretched out leg.

Parameter θmax is the maximum rotation available in the ankle X joints.

Using straightforward trigonometry we can determine:

LSmax
= 2Llegsin(θmax) + Lplevis − 2Lfoot inside)

= 2 ∗ 0.65sin(25) + 0.155− 2 ∗ 0.065

= 0.45 [m] (4.34)

Note that LS = LSmax , which implies L0 = L0min = 2Lfoot inside. The configuration indicated
in figure 4.8 also fixes the height of the center of mass, zc = 0.59, computed using forward
kinematics. To minimize Tg we express it first as a function of αi and Tc:

min(Tg) = min(T1 + T2)

= min(2Tc ln(
1 +

√
1− α2

1

α1
) + 2Tc ln(

1 +
√

1− α2
2

α2
) (4.35)

Notice that as α2 is a fraction which we can use in equation (4.29) to bound α1:

α1 <
S2

S1
(4.36)

Using (4.15) and (4.28), we get

α1 <
L0

L0 + LS
(4.37)

Figure 4.9 shows the respective swing phase times when varying α1 from 0.001 to L0

L0+LS
. The

figure shows that phase time is the most sensitive when α approaches zero. This is expected as
α = 0 is a statically stable state and thus T (α = 0) = inf.

Applying the upper bound, α2 = 1 ⇒ α1 = L0

L0+LS
, implies that second swing phase switches

instantly back to the first, thus T2 = 0. Such a gait is illustrated in figure 4.10
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Figure 4.9: Sensitivity of the swing phase times and overall gait cycle time as function of α1, given a
maximum step size, LS = 0.45.
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For a given L0 and LS , we can now compute the minimum gait time:

Tg|maxα = T1|maxα1
= 2Tc ln(

1 +
√

1− L0

L0+LS

2

L0

L0+LS

)

= Tc ln(1 +
LS +

√
L2
S + 2L0LS
L0

) (4.38)

The equation can be simplified by expressing LS as LS = KsL0:

Tg|maxα = 2Tc ln(
L0 +KsL0 +

√
K2
sL

2
0 + 2KsL2

0

L0
)

= 2Tc ln(1 +Ks +
√
K2
s + 2Ks) (4.39)

Now we can also express the maximum gait velocity (given L0 and LS), as a function of Ks:

vg|maxα =
L0Ks

2Tc ln(1 +Ks +
√
K2
s + 2Ks)

(4.40)

The minimum phase time / maximum gait velocity as a function of the step size, (see equations
(4.39) and (4.40) are plotted in figure 4.11. The figure shows that the gate velocity is almost a
linear function of the step size for Ks > 1 which can also be seen from the phase time attending
towards a constant value. We can now see that theoretically the maximum side stepping velocity
equals vmax = 0.42ms−1, for L0 = L0min , LS = LSmax , α1 = L0

L0+LS
).

Correctness and feasibility of the result was checked and verified by extrapolating the best fit
line of measured data for human normal walking speed, versus step size of a normal person in [5].
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Figure 4.11: Plots showing the minimum gait cycle time (left) and maximum gait velocity (right)
(according to gait characteristic with α2 = 1 ) as function of the step size, LS = KsL0. Here

L0 = L0min = 0.13 is the initial leg separation distance.

By analysis performed so far, the maximum stepping speed is determined that guarantee
balance based on the cart-table model of the ZMP. However, the maximum stepping speed does
also depend on the actuation capabilities of the biped. The maximum joint torque which can be
applied by the biped actuates are limited by motor type and the available power from the biped’s
power supply. This will limit the achievable joint and subsequent CM acceleration therefore could
lead to instability. Another consideration is that there will always be modelling error between
the modelled inertial properties of the biped and the true inertial properties of the biped. As the
side step speed increases, the accelerations will increase and therefore also the significance of this
modelling error will increase.

4.4 Computation of joint trajectories

4.4.1 Introduction

Based on the knowledge developed in the previous section, we are able to derive a number of
trajectories in the task space of the robot,namely:

• The CM moves at a certain height, in order to simplify the ZMP equations, constraining
Z-DOF.

• The CM move in the X -Y plain in such a way that the ZMP remains at the ankle joint,
constraining X-, and Y-DOFs.
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• The position and orientation of the feet are known at the start / end of each motion phase.
Interpolating between these constrains 6 DOF.

There is no unique mapping from the task space to the joint space motion variables due to
their nonlinear relationship. In this section, the mapping problem is solved using the differential
kinematics relationship between the task space and the joint space robot variables, as described
in [52].

Inverse differential kinematics

Derivation of the inverse differential kinematic solution follows the following main steps:

Applying forward kinematics to express 12 by 1 column vector xc containing the task space
motion variables of the robot and expressing it a a function of the 12 by 1 column vector q
containing the robot joint space variables:

xc = f(q) (4.41)

where f is a 12 by 1 column vector function. Differentiating equation (4.41) with respect to
time gives:

ẋc =
∂xc
∂q

q̇ = J(q)q̇ (4.42)

where J(q) = ∂xc

∂q is known as the analytical Jacobian. By inverting the Jacobian, we can
compute the joint velocities:

q̇ = J(q)−1ẋc (4.43)

Finally, given an initial robot configuration, q(0), the joint motion trajectories can be deter-
mined by time-integration of equation (4.43):

q(t) =

∫ t

0

˙q(ζ)dζ + q(0) (4.44)

In practice, due to digital implementation of the robot control software, numerical integration
is carried out instead of the continuous one as given by (4.44). Euler integration method is the
simplest form of the numerical integration:

q(tk+1) = q̇(tk)∆t+ q(tk) + (4.45)

= J(tk)−1ẋ(tk)c∆t+ q(tk) (4.46)

Euler integration methods may suffer from numerical drift and therefore a feedback compen-
sation for this drift.

Notice that that the considered biped contains 12 actuated joints, which is more 9 considered
DOFs in the robot task space trajectories, as described by equation (4.4.1). This gives us a
convenience to specify 3 more DOFs in the robot task space, in particular, we consider to specify
the desired orientation of the robot torso. The reason for this specific choice is that the cart-table
model of the ZMP derived in Appendix A neglects rotational moments. The orientation of the
body, having the largest mass moment of inertia, should therefore be kept constant along the
sidestepping trajectory to prevent generation of the moments that can cause differences between
the actual ZMP location and ZMP calculated using the car-table model. The forward kinematic
expressions (4.41) are derived in the next section.
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4.4.2 Forward kinematics expressions

As discussed in section (4.2.2) and Appendix A, the task space reference robot trajectory xc, con-
sists of the desired CM trajectory, the position and orientation trajectories of the swing foot, and
the orientation trajectory of the torso. This section explains how the so-called forward kinematic
expressions can be derived, expressing xc in terms of the joint space coordinates q as in equation
(4.41).

The inertial coordinate frame relative to which xc is expressed switches back and forth between
the feet. For a given base, the first steps for deriving the forward kinematics expression involve
assigning coordinate frames to the bodies:

• label the links L0 to L12, from the robot ground (base link) to the swing foot

• label the joints (from the base one nearest to the ground outwards): J1 to J12. Also label
equivalent points on the sole of the base and swing feet as J0 and J13 respectively.

• Add body fixed coordinate frames {Ψi} to Li at position of Ji for i = 1:12. Also add {Ψ0}
to L0

• label the joint angular displacements qBS =
[
q1 q2 ... q12

]T
Note that subscript ”BS”

stands for ”Base to Swing feet”.

• for each link, Li, we express the position of it’s CM and the origin of joint, Ji+1, in coordinates
frame: riCMi

, riJi+1
of the joint Ji.

Each time the base and swing points switch, parameters and variables used to describe the
new situation relate with the previous situation as follows:

• The new vector q̃ of the joint coordinates is related to the previous one, q as q̃BS =[
−q12 −q11 ... −q1

]T
• New body fixed vectors become: r̃iJi+1

= −riJi+1
and r̃iCMi

= riCMi
− riJi+1

,

The position and orientation of each link i, can now be described using a homogenous trans-
formation matrix:

Ai−1
i =

[
R(qi)

i−1
i oi−1

i

0 1

]
(4.47)

where oi−1
i denotes position of the origin of the body fixed frame {Ψi} with respect to {Ψi−1},

given by vector riJi+1
. R(qi)

i−1
i is the 3 by 3 rotation matrix discribing the orientation of body

fixed frame {Ψi} with respect to {Ψi−1} is the Concatenating the homogeneous transformation
matrixes, we can express the position and orientation of any coordinate frame,{Ψn} relative to
the inertial one {Ψ0} :

A0
n(q1, q2..qn) = A0

1(q1)A1
2(q2)...An−1

n (qn) (4.48)

It then follows that the homogeneous position of each body fixed vector P i =
[
pix piy piz 1

]T
,

can directly be expressed relative to the inertial frame as:

P 0 = A0
nP

i (4.49)

Relation (4.49) is then be used to express the position, of the CM and the swing foot relative
to the inertial frame as a function of q:
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xp =

[
pCM (q)
pswing(q)

]
=

[
Q(
∑12
i=0A

0
i (q1..qi)P

i
CMi

mi)/M
QA0

12(q)P 12
J13

]
(4.50)

where M =
∑12
i=0mi and Q is a selector matrix, selecting the first 3 elements from the homo-

geneous position vector:

Q =

1 0 0 0
0 1 0 0
0 0 1 0

 (4.51)

Next, the orientation of the torso and the swing foot are found by extracting the rotation
matrix R from the homogenous transformation matrix A0

i for i = 6 and 12 respectively. Since it
is not intuitive to interpret the orientation directly from a rotation matrix, roll pitch yaw angles,

φtorso =
[
αt βt γt

]T
and φswing =

[
αs βs γt

]T
, are determined from the rotation matrix,

as described in [52].
We now have expressions for all reference task space variables xo, as

xo =


pCM (q)
pswing(q)
φtorso(q)
φswing(q)

 =

[
xp
xφ

]
(4.52)

Where xp =
[
pCM (q) pswing(q)

]T
is a 6 by 1vector of the translational reference motions

of the CM and swing foot, and xφ =
[
φtorso(q) φswing(q)

]T
is a 6 by 1 vector of the reference

angular motions, expressed in terms of roll, pitch and yaw angles, of the torso and swing feet.

4.4.3 Inverse kinematics algorithm

To compute the analytical Jacobian, we need to find the time derivative for of the kinematic
relationship ( 4.41). The time derivative of the translational variables, xp, is easily found by
taking the partial derivative wrt q:

ẋp =
∂xp
∂q

q̇ = Jp(q)q̇ (4.53)

In the similar way we determine the time derivative for the orientation variable ẋφ :

ẋφ =
∂xφ
∂q

q̇ = Jφ(q)q̇ (4.54)

Putting equations (4.54) and (4.53) together we get:

ẋo =

[
ẋp
ẋφ

]
=

[
Jp(q)
Jφ(q)

]
q̇ = JA(q)q̇ (4.55)

where JA =
[
Jp(q) Jφ(q)

]T
, is known as the analytical Jacobian [48]. It is used in equation

(4.46) to compute q(tk+1):

q(tk+1) = q(tk) + J−1
A (q(tk))ẋo(tk)∆t (4.56)
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Computed joint velocity q̇c = J−1
A (q(tk))ẋo(tk) may not coincide with the true value q̇ which

satisfies equation (4.46) due to discrete-time Euler computation and numerical drift that may
therefore arise in the reconstruction of q. To compensate for the drift we consider a task space
error between the desired and the actual task space variables:

e = xd − xo (4.57)

Taking the time derivative of (4.57) we get:

ė = ẋd − ẋo
= ẋd − JA(q)q̇ (4.58)

Using a positive definite gain matrix K in the error feedback the error,e, we get

q̇ = J−1
A (ẋd +Ke) (4.59)

⇒ (ẋd − JAq̇) +Ke = 0 (4.60)

Hence, thanks to the feedback error mechanism applied in (4.58), we achieve asymptotically
stable linear error dynamics:

ė+Ke = 0 (4.61)

Using equation (4.59) and (4.56) the kinematic control algorithm was created, illustrated in
figure 4.12.

Figure 4.12: Inverse kinematics algorithm. xd is the desired vector of operational space reference
trajectories: position of CM and swing foot, and the orientation of the torso and swing foot (expressed

in roll, pitch and yaw angles). FK(·) are forward kinematic expressions which compute the actual
operational space reference trajectories, xa, given the joint angles q. JA is the analytical jacobian,

JA = ∂xa
∂q

4.5 Evaluation of side stepping trajectory

4.5.1 Introduction

The inverse kinematics algorithm is examined by finding the joint trajectories for the following
arbitrarily chosen side stepping gait parameters:
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Symbol Description Value
Tgait Total stepping time 8 [s]
D Total stepping distance 0.2[m]
ZCM CM height 0.65[m]
T0 Start and stop time 1[s]
Lstep Step size 0.1 [m]

Table 4.1: Side stepping gait configuration parameters

Furthermore, the inverse kinematics algorithm is tested in a simulation of the multi-body
dynamics model of the walking robot in Matlab/Simulink/SimMechanics.

4.5.2 Inverse kinematic results

For the gait configurations described in table 4.1, the inverse kinematics algorithm computes the
joint trajectories shown in figures 4.13, 4.14, 4.15 and 4.16. These trajectories are then used to
compute trajectories of the CM and ZMP. As for ZMP, two models are considered: a simplified
cart-table one and the one based on the full inertial properties of the biped consisting of 12 leg
joints and the torso. The resulting CM and ZMP trajectories are shown in figure 4.17.

Figure 4.13: Joint motions in the left leg for a 2 step gait.
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Figure 4.14: Joint speeds in the left leg for a 2 step gait.

Figure 4.15: Joint motions in the right leg for a 2 step gait.
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Figure 4.16: Joint speeds in the right leg for a 2 step gait.
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Figure 4.17: CM and ZMP trajectories for a 2 step gait.
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Figure 4.18: CM and ZMP trajectories and limit values of the support polygon expressed in world
coordinates, for a 2 step gait. The figure shows that although the CM moves outside the support

polygon, the ZMP remains inside at all time

The joint positions and speeds are continuous functions of time, which is necessary to consider
the joint trajectories as feasible for the robot. Figure 4.17 shows that the CM accelerates and
decelerates as was expected. The figure also show that the first and last second the CM and ZMP
make motions with a sin - cosine velocity profiles,which is also demanded for the starting and the
stopping phase of the side stepping gait. It shows that in-between these phases, the ZMP remains
close to the origin (physically at the supporting ankle), which is as required and expected. By
comparing the true ZMP with its simplified cart-table model version, it can be seen that they are
both very close to each other. This suggests that it was possible to neglect the rotational moments
form the ZMP equations.

4.5.3 Dynamic simulation result

The 2 step gait trajectories computed using the inverse differential kinematic algorithm are then
loaded into the Matlanb/Simulink/SimMechanics dynamical model of the biped, which is illus-
trated in figure 4.19. In the dynamic simulation of the multi-body dynamics of the biped including
contact constraints with the ground, it is verified that the biped is able to perform the side steps
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without falling. The motor toques achieved in this simulation can be seen in figure 4.20. They
are an order on magnitude lower than the joint torques which were measured on the biped, which
indicates that the trajectory is feasible. The large difference is an indication that there might be
a lot of joint friction which is not included in the model. Another explanation is that the mea-
surement were taken while executing forward walking motion, a completely different trajectory.
Large torque spikes can be seen at the start of the simulation which are attributed to a slight
miss alignment with respect to the required steady state start position of the stiff spring damper
contact model ground contact model.

Figure 4.19: Screen shot of the animation generated by the SimMechanics model of the biped.
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Figure 4.20: Motor torques generated by the SimMechanics dynamical simulation of the biped
preforming a 2 step gait. The figure shows that the torques are bounded within a reasonable rage and

therefore feasible.

4.5.4 Conclusion

This chapter described an the requirements for the gait requirements for an optimal sidestep-
ping gait, namely that the ZMP remains under the a supporting foot at all times. Analyses of
sidestepping speed concluded that the speed was proportional to stepping length and for Tulp’s
dimensions the speed is theoretically limited 0.42m/s. An algorithm for computing the trajectories
was presented the trajectories for a 2 step sidestep were evaluated. Evaluation showed that the
ZMP remained inside the supporting polygon indication a stable locomotion. This was result was
supported by running a dynamical simulation using the model described in chapter 2, showing
that the biped model did not fall over while executing the motion. The order of magnitude of the
joint torques were less than these found by measuring the torques in Tulip, which could indicate
that the trajectories are feasible. This also might indicate that there is something missing from
the model, for example dominant joint friction.
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Chapter 5

Conclusions and recommendations

5.1 Conclusions

In this thesis, the bipedal locomotion is studied for the purpose of preforming stable side stepping
motion. The biped TUlip is considered as an experimental test-bed which is required to perform
stable side steps in a timely manner. From the literature study, it is found that despite a lot of
research on the bipeds, the main focus of the studies so far is on straightforward walking in the
robot sagittal plain. The side stepping in the coronal robot plain of motion is rarely addressed.
Furthermore, following the conclusions of Van Zutven et al. in [75] about limitations of 2D biped
modeling, it is decided to consider 3D modeling of the biped dynamics and design of the 3D side
stepping gait.

After carefully considering a number of simulation platforms, a 3D dynamical model is created
using Matlab. During the modelling process, it is found that modeling of the motor dynamics can
be avoided due to the high servo control bandwidth of the electrical motors with the corresponding
power amplifiers. An important aspect of the humanoid model is the ground contact model, which
is also considered in detail. Constraint and penalizing methods for contact models are considered
of which the penalizing method is chosen since it guarantees an unique solution for the foot contact
force as a function of time. The contact parameters, such as the contact stiness, are tuned such
as to achieve realistic contact forces within a reasonable simulation time. Finally, quality of the
model is evaluated by comparing the simulated joint torques and velocities with the corresponding
signals measured in experiments on TUlip, showing that the computed and measured torques are
of the same order of magnitude. The values, however, were different. This is possibly due to
modelled joint friction.

General biped locomotion stability is studied together with sidestepping step phases. It is
found that the dynamic balance could be maintained by ensuring that the zero moment point,
ZMP, remains inside the support polygon. For robustness of the balance, it is important to moni-
tor how far this ZMP is from the outer edges of the support polygon. To maximize the robustness
of the balance during the side stepping, the ZMP is required to remain at the position of the ankle
of the stand foot. This gait requirement has an additional advantage in that the ankle joint moves
passively, preserving electrical energy. Furthermore, it is found that the sidestepping speed could
be regulated by controlling the initial position of the center of mass at the start of the sidestepping
gait.

A framework for stable and timely sidesteps is presented. It consists of state-machines that
control the biped motion between 5 general posture states, in order to perform the sidestepping
walk. Depending on the desired stepping distance and available time, the gait parameters are
computed. These parameters are used to compute the joint trajectories required to achieve the 5
general postures by executing the side stepping gait.
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Analyses of the sidestepping velocity, according to the proposed motion pattern, shows that
the velocity would increase linearly with a step size. This means that the maximum side-stepping
velocity is therefore bounded by the maximum side step length of the biped. In that case, the
maximum sidestepping speed for TUlip is estimated to 0.42[m/s]. This conclusion is valuable, as it
can be used to quickly evaluate if it is feasible to reach a certain target position within a target time.

To evaluate the algorithm for calculation of the sidestepping gait, the joint trajectories are
computed for a 2 side step gait. The resulting joint rotations and velocities are found to be
continuous in time. The achieved ZMP motion is simulated using a 3D dynamical model of Tulip.
In the simulations, the ZMP remains inside the supporting polygon, which is a sufficient condition
for the biped to remain dynamically balanced.

5.2 Recommendations

In order to support the assumption that the large difference found between the experimentally
determined and simulated joint torques are related to friction, it is recommended to measure the
friction in the joints and add joint friction to the dynamical model to see if this in fact explains
the difference

As the side stepping algorithm is only tested in simulation, experimental validation of these
results is highly recommended. To make the gait generation algorithm more robust to modelling
uncertainties, it is advised enhance it by an ZMP feedback, such as in the framework presented
by Napoleon et al in [34].

The sidestepping algorithm is evaluated for one particular side stepping gait speed only. It
would be interesting to investigate what would happen with the bipeds dynamic balance when
the required sidestepping speed increase up to and beyond the theoretical maximum. While
increasing the sidestepping speed, the biped’s higher order dynamics are more excited and thus
bigger deviations to the simplified balance model are expected. This investigation would give an
indication of how robust the sidestepping motion pattern is with respect to the increases stepping
velocity. In addition it is recommended to investigate the affect of the computed joint torques.
This is an indication of whether or not the computed side setting motions are feasible.
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Appendix A

Linear Inverted pendulum model

The linear inverted pendulum model, [20], simulates a biped in SS phase. The biped is modeled
as having point mass at the end of a massless rod which is attached to the origin resembling the
ankle position. The massless rod is actuated with a prismatic joint allowing elongation r and two
rotational joints allowing rotations, θr and θp, about the x an y axis, as shown in figure A.1.

Figure A.1: LIPM

τ =
[
τr τp r

]T
is the column are the generalized forces associated with the generalized

coordinates q =
[
θr θp r

]T
. The cartesian position of the mass, p =

[
x y z

]T
can be

expressed in terms of q:

p =

xy
z

 =

 rsinθp
−rsinθr
rD

 (A.1)

Where D =
√

1− sin2θp − sin2θr. The inertial and gravity forces m~a and m~g are acting on the

point mass. Applying Newton’s formulation of the Equation of motion, we get

~F = m~a+m~g (A.2)
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Where ~F is the reaction force on the mechanism. Taking the partial deferential of p wrt q, J = ∂p
∂q ,

we can compute the joint torques required to keep the system in equilibrium:

τ = JT ~F (A.3)

Where

J =
∂p

∂q
=


∂x
∂θr

∂x
∂θp

∂x
∂r

∂y
∂θr

∂y
∂θp

∂y
∂r

∂z
∂θr

∂z
∂θp

∂z
∂r

 =

 0 rcosθp sinθp
−rcosθr 0 −sinθr
−rsinθrcosθr

D
−rsinθpcosθp

D D

 (A.4)

Rearranging and inserting A.2, we can write

τ = JT ~F (A.5)

= JT (m~a+m~g) (A.6)

⇒ mJT~a = τ −mJT~g (A.7)

mJT

ẍÿ
z̈

 =

τrτp
f

−mJT
 0

0
−mg

 (A.8)

m

 0 −rcosθr
−rsinθrcosθr

D

rcosθp 0
−rsinθpcosθp

D
sinθp −sinθr D

ẍÿ
z̈

 =

τrτp
f

−mg
−rsinθrcosθr

D
−rsinθpcosθp

D
D

 (A.9)

Multiplying the first and second rows though by D
cosθr

and D
cosθp

and using the kinematic

relations A.1, we get

m

 0 −rD −rsinθr
rD 0 −rsinθp

sinθp −sinθr D

ẍÿ
z̈

 =

 D
cosθr

τr
D

cosθp
τp

f

−mg
−rsinθr−rsinθp

D

 (A.10)

m

 0 −z y
z 0 x

sinθp −sinθr D

ẍÿ
z̈

 =

 D
cosθr

τr
D

cosθp
τp

f

−mg
 y
−x
D

 (A.11)

The dynamical equations describing the inverted pendulum in the x-y plain are therefore

myz̈ −mzÿ =
D

cosθr
τr +mgy (A.12)

mxz̈ +mzẍ =
D

cosθp
τp −mgx (A.13)

In order to simply equations A.12 and A.13, the CM motion is constrained to the plain with

normal vector n =
[
kx ky zc

]T
, where kx and ky are chosen equal to zero. Note that the

equations have also been shown to simplify in the case where walking on a slope of stairs is
requred (kx 6= 0,ky 6= 0) [21]. Also input liberalization is applied, placing input torques τr and τp
virtual input ux = D

cosθr
τr and uy = D

cosθp
τp, such that

ÿ =
g

zc
y − 1

mzc
ux (A.14)

ẍ =
g

zc
y +

1

mzc
uy (A.15)

In conclusion, input liberalization and constraining the motion in x-y plain were used to derive
equations A.14 and A.14, independent linear equations which describe the motion of the inverted
pendulum.
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CM - ZMP relation

Considering another point, P, on the support polygon, the contact of the pendulum with the ground

will produces a reaction force ~R and moment Mp at point P. The moment, MO =
[
τx τyτz

]T
produced by the ground reaction force, ~R, will be equal to:

MO = MP + ~OP × ~R (A.16)

If point P is the ZMP of the system, then ~OP =
[
xzmp yzmp zzmp

]T
, Mp = 0, therefore

MO =

τxτy
τz

 =

xzmpyzmp
zzmp

× ~R (A.17)

The reaction force ~R must be equal to

~R = m~a+m~g (A.18)

= m

 ẍ
ÿ

z̈ + g

 (A.19)

Substituting into A.17 and setting zzmp = 0, because the ZMP lies on the ground plane, we
get τxτy

τz

 = m

xzmpyzmp
0

×
 ẍ

ÿ
z̈ + g

 = m

 yzmp(z̈ + g)
−xzmp(z̈ + g)
xzmpÿ − yzmpẍ

 (A.20)

⇒ xzmp = − τy
m(z̈ + g)

(A.21)

yzmp =
τx

m(z̈ + g)
(A.22)

As the motion of the CM will be constrained to the horizontal plain intersecting the z = zc (a
requirement for simplifying the A.12 and A.13 equations), equations A.23 and A.24 become simply:

xzmp = − τy
mg

(A.23)

yzmp =
τx
mg

(A.24)

It is interesting to note that in the absence of lateral accelerations, (ẍ = ÿ = 0), equations
A.14 and A.15 reduce to A.23 and A.24, proving that in such a case the ZMP is equal the the
floor projection of the CM.

Substituting the A.23 and A.24 into the equations of CM motion, A.14 and A.15 we finally get
the ZMP equations:

xzmp = x− zc
g
ẍ (A.25)

yzmp = y − zc
g
ÿ (A.26)
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Appendix B

Power Processing Unit

B.1 Overview

Batteries which provide power to the motors do so in fixed form, namely with constant voltage.
To modify the power to the motor, connections to the batteries (at ports A and B in figure B.1)
are switched on and off at high speeds. Due to induction characteristics of the motor armature,
the reaction of the current to this high frequency switching is buffered and can be effectively
assumed to be a function of the average voltage at the ports. The Power Processing Unit, PPU,
is responsible for the high frequency switching, effectively amplifying a reference signal, vc, by a
constant, KPWM as shown the figure.

Switch- mode 

converter

Motor

Vref
PWM-IC

Pole 

- A

Pole 

- B

vc

Pulse - Width 

Modulation

Figure B.1: Overview of the PPU

In order to gain incite in the open loop gains of the system as well as detecting any undesired
dynamical effect the PPU may introduce to the overall system, the basic operations of the the
PPU have been studied in this section.

B.2 Pulse - Width Modulation

For clarity, it is best to start with a simplified model of the PPU whereby only one switching pole
is present, as shown in figure B.2(a).

The PPU can be split up into 2 parts, namely the pulse-width modulation and switch mode
converter part. The latter is responsible of the bi-positional switching, depending on the binary
signal q(t). The former takes the control signal, vc,A(t), and compares this to a triangular trigger

signal, vtri(t), of amplitude V̂tri and switching frequency fs. Output, q(t), then depends on the
switching rule:
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Figure B.2: A) Simplified block diagram of the PPU with one switching pole B) Output signals as a
function of a particular input signal vAN

vc,A < vtri → q = 0

vc,A > vtri → q = 1

The voltage at pole-A , vAN = Vbq(t), is cut into pulses with width dATs, where the duty-ratio,
dA, is a fraction of the switch time, Ts = 1/fs. Hence

v̄AN = dAVd (B.1)

The relationship is best described by example as shown in figure B.2(b). From inspection we
see that changing the control voltage, vc,A by 2V̂tri changes the duty-ratio by unity, thus describing
the relationship:

∆dA
∆vc,A

=
1

2V̂tri
(B.2)

This allows us the express the linear relationship between duty-ratio and control voltage:

dA =
1

2V̂tri
vc,A +Offset (−V̂tri ≤ vc,A ≤ V̂tri) (B.3)

Substituting values of an operating point, (for example vc,A = V̂tri → dA = 1), we get
Offset = 1/2 Inserting equation B.3 in B.1, we get a relationship for the motor voltage, vAN as
a function of the control signal, vc,A

v̄AN =
Vd
2

+
Vd

2V̂tri
vc,A (B.4)

The switching function for the other pole (pole-B in figure B.1), works similarly to that for pole
- A, however the controle voltage, vc,B is set to the negative of vc,A. Assigning a general control
input values, vc to vc,A, we can express the duty-ratios and subsequent average pole voltages as:

dA =
1

2
+

1

2V̂tri
vc → v̄AN (t) =

Vd
2

+
Vd

2V̂tri
vc(t) (B.5)

dB =
1

2
− 1

2V̂tri
vc → v̄BN (t) =

Vd
2

+
Vd

2V̂tri
vc(t) (B.6)
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At the output terminal, the output voltage is the difference between the pole output voltage,
therefor

v̄AB = v̄AN − v̄BN (B.7)

=
Vd

V̂tri
vc(t) (B.8)

= kPWMvc(t) (B.9)

Where kPWM = Vd

V̂tri
, is the constant v̄AB/vc amplifier gain.
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Appendix C

appendix Modeling kinematics

DH parameters:

Li Link Description ai [m] di[m] α [rad] θi [rad] qoffset

1 virtual link 0 q1 π/2 0 0
2 virtual link 0 q2 π/2 π/2 0
3 virtual link 0 q3 π/2 π/2 0
4 virtual link 0 0 π/2 q4 π/2
5 virtual link 0 0 π/2 q5 π/2
6 Right foot 0 0 π/2 q6 −π/2
7 right ankle L1 0 π/2 q7 π/2
8 right lower leg L2 0 0 q8 0
9 right upper leg L3 0 0 q9 0
10 right lower hip L4 −L6 −π/2 q10 0
11 right upper hip 0 0 −π/2 q11 π/2
12 torso L7 0 π q12 0
13 left upper hip 0 0 −π/2 q13 π
14 left lower hip L4 0 −π/2 q14 π/2
15 left upper leg L3 L6 0 q15 0
16 left lower leg L2 0 0 q16 0
17 left ankle L1 0 π/2 q17 0
18 left foot 0 0 0 q18 0

Contact Points, CP, in link coordinate frame:

CPi Description Right Foot, r
¯
6
RCPi

Left Foot, r
¯
18
LCPi

1 Outside toe [ L12; −L10; −L8 ] [ L10; L12; L8 ]
2 Inside toe [ −L11; −L10; −L8 ] [ L10; −L11; L8 ]
3 Inside heel [ −L11; −L10; L9 ] [ L10; −L11; −L9 ]
4 Outside heel [ L12; −L10; L9 ] [ L10; L12; −L9 ]
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Link inertial properties: Mass, Inertia, and Center of mass (CM) of link,Li, in link
coordinate frame, {i}:

Li Description Mi Iii r
¯
i
CM

6 right foot 0.366 (Rw6)T Iw6 R
w6 [ −L10/2; 0; L8/2 ]

7 right ankle 0.614 (Rw7)T Iw7 R
w7 [ −L1/2; 0; 0 ]

8 right lower leg 0.315 (Rw8)T Iw8 R
w8 [ −L2/2; 0; 0 ]

9 right upper leg 2.141 (Rw9)T Iw9 R
w9 [ −L3/2; 0; 0 ]

10 right lower hip 0.614 (Rw10)T Iw10R
w10 [ −L4; L6; 0 ]

11 right upper hip 0.614 (Rw11)T Iw11R
w11 [ 0; 0; −L5/2 ]

12 torso 8.594 (Rw12)T Iw12R
w12 [ −L7/2; 0; L5 + 0.17 ]

13 left upper hip M11 (Rw13)T Iw11R
w13 [ 0; −L5/2; 0 ]

14 left lower hip M10 (Rw14)T Iw10R
w14 [ 0; 0; 0 ]

15 left upper leg M9 (Rw15)T Iw9 R
w15 [ −L3/2; 0; 0 ]

16 left lower leg M8 (Rw16)T Iw8 R
w16 [ −L2/2; 0; 0 ]

17 left ankle M7 (Rw17)T Iw7 R
w17 [ −L1/2; 0; 0 ]

18 left foot M6 (Rw18)T Iw6 R
w18 [ L10/2; 0; L8/2 ]

Rotation matrix from link to world coordinate frame, Rwi, in zero pose, q
¯z

= 0
¯
:

Li Link name Rwi(qz)
6 right foot [ 0 0 -1 ; -1 0 0 ; 0 1 0 ]
7 right ankle [ 0 -1 0 ; 0 0 -1 ; 1 0 0 ]
8 right lower leg [ 0 -1 0 ; 0 0 -1 ; 1 0 0 ]
9 right upper leg [ 0 -1 0 ; 0 0 -1 ; 1 0 0 ]
10 right lower hip [ 0 0 -1 ; 0 1 0 ; -1 0 0 ]
11 right upper hip [ 0 1 0 ; 1 0 0 ; 0 0 -1 ]
12 torso [ 0 -1 0 ; 1 0 0 ; 0 0 1 ]
13 left upper hip [ 0 0 1 ; -1 0 0 ; 0 -1 0 ]
14 left lower hip [ 0 -1 0 ; 0 0 1 ; -1 0 0 ]
15 left upper leg [ 0 -1 0 ; 0 0 1 ; -1 0 0 ]
16 left lower leg [ 0 -1 0 ; 0 0 1 ; -1 0 0 ]
17 left ankle [ 0 0 1 ; 0 1 0 ; -1 0 0 ]
18 left foot [ 0 0 1 ; 0 1 0 ; -1 0 0 ]

C.1 Simulation error sensitivity to inertial matrix condition
number

The EOM, (3.7) can be expressed as a set of linear equations, Mx = b, where M is the inertia
matrix, x are joint the accelerations and b = τ −C−F . It can be easily shown that the sensitivity
with respect to a perturbation E in A, is directly related to the condition number of M. Let y be
the solution of

(M + E)y = b (C.1)

⇒M−1(M + E)y = M−1b (C.2)

y +M−1Ey = x (C.3)

y − x = M−1Ey (C.4)

‖y − x‖/‖y‖ ≤ ‖M−1E‖ (C.5)

‖y − x‖/‖y‖ ≤ ε‖M‖‖M−1‖ (C.6)

‖y − x‖/‖y‖ ≤ εκ(M) (C.7)

Where ε is the relative error in A, ε = ‖E‖/‖A‖, and κ(M) is the condition number of M,
κ(M) = ‖M‖‖M−1‖.
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C.2 Constraint Method

Hard contact has a non-penetrating condition which requires that

h ≥ 0. (C.8)

Forces that impose this constraint λ, are equally one sided, acting to prevent penetration but to
not separation, therefore:

λ ≥ 0 (C.9)

Briefly simplifying the model of tulip to just one body for clarity, we can define that 4 distinct
states, shown in figure C.2, which system will always find itself in. When h(q) > 0, state 1; there is
no contact and (3.7) remains unchanged. State 2; h(q) = 0 and ḣ < 0, occurs just before impact,
time t−. Newton’s second law of motion states that the rate of change in momentum is equal to
applied force, F = Ṗ = mv̇. Therefore the bodies will clearly penetrate at the next time instant,
t+, unless an impuls, S, is applied, where S is

S =

∫
∆t→0

F (t)dt = m∆v = m(v(t+)− v(t−). (C.10)

For the case of Tulip, the mass m is the multibody mass matrix M. Also notice that taking the
time derivative of the gap expression, h(q), we get the expression for the relative velocity, and
using Newton law of restitution [50] can be used to find relative velocities of colliding bodies before
and after collision:

h(q)

dt
= WT q̇ (C.11)

⇒WT q̇− = eWT q̇+ (C.12)

Where WT = ∂h
∂q and q̇−,q̇+ are the relative velocities just before and after after impact.

Combining Newton’s impact law, with the conservation of momentum and applying the La-
grange multiplier theorem, [64], we get the impact equations:[

M −M
WT 0

] [
q̇+

q̇−

]
=

[
Wλ
−eT q̇−

]
(C.13)

C.2.1 Integration

At certain moments during the simulation, known as a switch points, a change in the system
dynamics will occur when a constraint becomes active or inactive, or when an impact occurs. The
integration would therefore have to stop and and restart with a different state and/or model. This
start stop characteristic is illustrated in Figure C.3, showing the flow of the integration.

Checking for these switch points, referred to as collision detection, needs to be doen frequently
and ideally when found the integration proces needs revers and find the moment of the switch point
to an even higher degree of accuracies. In Matlab this can be achieved by passing the collision
detection function as an argument of the integration routine. As the integration process is now
not only a function of the EOM and time, the integration is often referred to as event-driven
integration. This event driven method is necessary due to the changes in the internal structure of
the dynamics equations at so called switch moments.

The stop-start behavior of event-driven integration can considerably slow down the simulation.
An even bigger problem arises if partially elastic collisions, rather than inelastic collision (e=0),
are considered. This is best explained by examining the behavior of a bouncing ball. Each time
the ball collides with the ground it will lose a fraction of its energy and it’s resulting speed will
approach zero. As the time span between collisions depends on this speed, this too approaches
zero and therefore the number of collisions over time approaches infinity.
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This problem can be avoided using so called time-stepping integration schemes [13, 53]. The
fundamentals of this approach were pioneered by Moreau [33] who formulated unilateral contact
forces as set valued force laws which were used to describe the dynamics as measure differential
inclusion problems. This integration method works on the integral of the contact forces during a
given time step, not with the forces themselves which makes the method insensitive to the exact
moment of impact. The method treats the state of the system as constant during the complete
time interval. A drawback is that the numerical accuracies of such integration (for example using
Moreau’s midpoint method [24]) is low. This can be improved using a variable step size strategy
[54].
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Figure C.1: Schematic view of the kinematic model of TUlip with associated DH coordinate frames.
(joint directions defined as in Tulip?)
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Figure C.3: Flowchart showing event driven integration used to simulate purely sticking friction
behavior.
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Appendix D

Simple 2D model

In this appendix, manual construction of symbolic equations of motion was analyzed using a 3
body model of an actuated leg in 2D. The leg model has an actuated ankle and knee joint and is
free to move in 2D space. This simple model, shown in figure D.1, was used to better understand
the complexity of the problem and help decide whether or not a multibody simulation software
should be used. The Denavit-Hartenberg, DH, convention was used to describe the system.

x0

y0

g

Figure D.1: Parameters of simple leg model.

D.1 Lagrange Equations

To derive the EOM we start with start with D’Alembert’s principle for the virtual work of applied
forces, Fi, and inertial forces on a three dimensional accelerating system of n particles, i, whose
motion is consistent with its constraints,

δW =

n∑
i=1

(Fi −miai) · δri = 0 (D.1)

=

n∑
i=1

Fi · δri −
n∑
i=1

miai · δri = 0 (D.2)

where

• W is the virtual work;
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• δri is the virtual displacement consistent with the constraints;

• mi and ai are the mass and acceleration of particle i;

• n total number of particles in the system.

For the system under consideration (figure D.1), the position each particle can clearly be
expressed as a function of 5 independant generalized coordinates qi:

r1 = r1(q1, q2, . . . , q5)
r2 = r2(q1, q2, . . . , q5)

...
rn = rn(q1, q2, . . . , q5)

(D.3)

The virtual displacement δri can thusly be described as

δri =

m=5∑
j=1

∂ri
∂qj

δqj (D.4)

Next we define the generalized forces, Qj , as:

Qj =

n∑
i=1

Fi ·
∂ri
∂qj

(D.5)

Substituting D.9 and D.4 into D.2 we get:

δW =

m=5∑
j=1

Qjδqj −
m=5∑
j=1

n∑
i=1

miai ·
∂ri
∂qj

δqj = 0 (D.6)

m=5∑
j=1

Qjδqj −
m=5∑
j=1

(
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj

)
δqj = 0 (D.7)

Where the inertial forces in D.6 have been expressed as a function of the kinetic energy, T. As D.7
holds for arbitrary ∂qj , we can write:

Qj =
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
(D.8)

The final step is to separate the applied forces into conservative and non-conservative terms:
Fi = Fcj + Fncj . Substituting this into D.9, we get

Qj =

n∑
i=1

Fci ·
∂ri
∂qj

+

n∑
i=1

Fnci ·
∂ri
∂qj

(D.9)

= Qcj +Qncj (D.10)

Where Qcj =
∑n
i=1 Fci · ∂ri∂qj

and Qncj =
∑n
i=1 Fnci · ∂ri∂qj

, are defined as the conservative and non-

conservative generalized forces. Conservative forces Fci can be represented by a scalar potential
field, V (in this example, a gravitational field, V = −mi~g · ~ri), thus:

Fci = −∇V ⇒ Gj = −
n∑
i=1

∇V · ∂ri
∂qj

= −∂V
∂qj

(D.11)

The EOM are derived using the lagrange equation D.12, which combines conservation of mo-
mentum with conservation of energy.
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d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= τ (D.12)

Where q are a set of generalised coordinates, τ is the vector of generalized applied forces and L,
called Lagrangian, is equal to the kinetic T, minus the potential V, energy: L = T − V . Therefor
we can write:

d

dt

(
∂T

∂q̇

)
− ∂T

∂q
+
∂V

∂q
= τ (D.13)

D.2 Denavit-Hartenberg approach

For the example model, the standard DH formulism leads to the coordinate frames shown in table
D.1 and figure D.2

Li Link Description ai [m] di[m] α [rad] θi [rad]
1 virtual link 0 0 π/2 q1

2 virtual link 0 q2 −π/2 0
3 upper leg l1 0 0 q3

4 lower leg l2 0 0 q4

5 foot l3 0 0 q5

Table D.1: DH - parameters of leg model

x2

x0

y0

x1

x3

x4

x5y3

y2

y4

y5

z1

Figure D.2: Coordinates of simple leg model, assigned using DH convention.

For every link/joint pair the homogenous coordinate transformation from the previous coordi-
nate system to the next coordinate system is described as

Inserting the DH parameters, table D.1, to 3.1, we get the homogenous transformations: A0
1(q1),

A1
2(q2),..., A4

5(q5). The Homogenous transformation of the body fixed coordinate frames,~ei+20, wrt
the inertial frame, ~e0, are then found: T 0

3 = A0
1A

1
2A

2
3, T 0

4 = T 0
3A

3
4 and T 0

5 = T 0
4A

4
5. These relations

can be used to express the positions of the center of masses wrt O0, p0
ci, for bodies i = 1 : 3:
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[
p0
ci

1

]
= T 0

2+i(q1, q2..qi+2)

[
p2+i
ci

1 C

]
(D.14)

= T 0
2+i(q1, q2..qi+2)


ci − li

0
0
1

 (D.15)

=

 R0
i+2(q1, q2..qi+2) o0

i+2(q1, q2..qi+2)

0 0 0 1



ci − li

0
0
1

 (D.16)

⇒ p0
ci = R0

i+2(q1, q2..qi+2)

ci − li0
0

+ o0
i+2(q1, q2..qi+2) (D.17)

Differentiating p0
ci and using the addition proportie of angular velocity [51], we find Jcvi, Jcωi,

the linear and angular velocity jacobian at the center of mass for bodies i:

Jcvi =
[
Jv1 Jv2 Jv3 Jv4 Jv5

]
(D.18)

Jcwi =
[
Jw1 Jw2 Jw3 Jv4 Jv5

]
, (D.19)

with

Jvj =


z0
j−1 × (p0

ci − o0
j−1) for revolute joint j (D.20)

z0
j−1 for prismatic joint j (D.21)

0 if j > i (D.22)

and

Jwj =

{
z0
j−1 for revolute joint j (D.23)

0 for prismatic joint j or if j > i (D.24)
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Appendix E

Contact model parameters

The table ?? contains the properties of the contacting bodies which were used in the computation
of the contact dynamics.
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Material Young’s Poisson’s Radius Coefficient of Coefficient of
Material modulus, E [N/m] ratio, υ [-] R [m] restitution, er [-] friction, µ [-]
Rubber 5.0e7 0.50 7.5e-3 - -

Concrete 3.0e10 0.20 ∞ - -
Rubber/Concrete - - - 0.80 1

Table E.1: Properties of the contacting bodies used in the computation of the contact dynamics
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Appendix F

Simulink model

The systems and subsystems which build up the robot system in Simulink will be shown here.
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Rigid Body and 
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Figure F.1: Simulink model of robot system
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Figure F.2: Motor model subsystem
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Figure F.3: SimMechanics Multibody and contact model subsystem
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Appendix G

Measurements

To verify the model, the simulated and measured robot motor torques needed to be compared,
given a particular reference trajectory. There were some issues generating the joint reference
trajectories and measuring the joint torques which are described here.

G.1 Reference Trajectory generation

The algorithm which computed the joint reference trajectories is a function of 4 variables, namely
step distance and size as well as the so called swing and stands phase time. Swing time refers
to the time span allocated for the motion that the biped is supported by one foot. The stance
time refers to the time span allocated to the motion when both feet support the biped. An initial
attempt at reconstructing the trajectory generating algorithm implemented on Tulip, using the
Matlab algorithm with this same variables 1 shows significant deviation to the trajectory which
was computed on Tulip, as illustrated in figure G.1.

To investigate where the difference was coming from, forward kinematics of the biped were
computed using the measured reference trajectory. Subsequent plots revealed that, the trajectory
computed on the biped moved the biped as if it were going up stairs. This led to the conclusion
that the gait algorithm implemented on Tulip was a tuned version of the original gait to help
compensate for steady state errors due gravity forces. To make a meaningful comparison between
model and robot the reference trajectories needed to be the same therefore the measured reference
trajectory was interpolated and used in the simulation.

G.2 Torque measurements

There were no torque sensors on the motors so these were derived from a control signal to the
motor, namely the signal labeled ’pwm’in figure G.2. As the figure shows, these are integer values
between ±1024, which relates to ±τmax. From this the motor torque, τm can be computed as:

τm = pwm
Imax
1024

Km (G.1)

As the messa board source code was not available, to check that the single beging measured
was infact the ’pwm’ as represented in figure G.2, the values for the right side of the robot (see
figure XXX) were checked to make sure that they were indead bounded by ±1024, as shown in
figure G.3.

Figure G.3 shows that the control signal approaches the bounds for the ankle X joint, indicating
large position errors at this joint. This makes physical sense as during the execution of the

1The values used were: 0.35m ,0.1m, 2sec and 3sec for the step distance, step size, swing time and stands time
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Figure G.1: Reference trajectories computed by the algorithm implemented on tulip (in C++) and
those computed by a Matlab algorithm

experiments the biped was given assistance to keep its balance during the walking gait. This
assistance was provided by applying counter forces to the torso thus effectively applying large
moments about this joint.
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