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Abstract

Air bearings are one of the key components in high precision systems and their function is to allow
relative motion with reduced friction and wear. Several instances in literature describe the model
of a journal bearing that is valid for large displacements. However, little is known on the modeling
of large displacement behavior of thrust air bearings. This study aims to develop and validate a
model that can be used to describe the large displacement behavior of thrust air bearings subjected
to a time dependent external force.
The Reynolds equation is used to model the thin lubrication film and this is coupled with a dynamic
model based on Newton’s second law to obtain the thrust air bearing model. The solution of this
model is obtained by first solving simplified versions of the model and subsequently increasing
the difficulty. Eventually a solution of the thrust air bearing model is found by using the finite
difference method and the Crank-Nicolson method.
Static measurements on an experimental setup show a large deviation of 5 µm compared with
the model. This is probably caused by difficulties encountered in measuring the gap height due
to bearing pad roughness, stiffness and tilt. Further there is an uncertainty due to an unknown
influence of bearing tilt on the load carrying capacity. The measured resonance in the frequency
response measurements coincides well. In this measurement it is seen that the fixtures holding
the displacement sensors are not stiff enough, causing a deterioration of the measurement signal
for certain frequencies. The measured maximum amplitude in the impulse response shows a small
error. It is tried to validate the step response but no good measurement results are obtained due
to an unwanted interaction between the hand of the experimenter and the air bearing setup.
The static load carrying capacity is compared with the results of an Ansys FEM model and
shows a good agreement. Comparison of the developed model with a model that uses interpolated
dynamic coefficients shows a small error in the maximum impulse response and is overall in a good
agreement.
Considering the uncertainty due to error sources in the experimental setup it may be concluded
that the developed model is able to describe the thrust air bearing gap height behavior. Further,
the difference between the developed model and the interpolated coefficients model shows a good
agreement for the analyses conducted in this study. Based on this results it may be concluded
that both models can be used to study the air bearing gap height behavior. A better validation
of the developed model can be obtained by investigating the influence of, or removing, the error
sources identified in the experimental setup.
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Chapter 1

Introduction

One of the key components in high precision systems are thrust air bearings. The main function
of air bearings is to enhance a relative motion and reduce friction between two solid surfaces [37].
The two solid surfaces are not in contact due to an air film that is maintaining a clearance between
them. If the air bearing is subjected to a temporarily external force it is important that the two
surfaces do not touch in order to maintain the smooth motion, the low friction and avoid damage
to the smooth bearing surfaces. Further, to guarantee sufficient accuracy of the high precision
system, it is desirable that the clearance between the two surfaces quickly recovers to the original
height. In order to guarantee that the clearance between the bearing surfaces is maintained for a
certain load, the dynamic behavior of the bearing gap height is modeled in the design process of
the air bearing.
A general approach to assess the dynamic behavior of air bearings subjected to external forces
is to compute the transient response with the use of the dynamic coefficients of the air bearing
based on the Reynolds equation for lubricant flow [9]. However, the dynamic coefficients are
obtained by linearizing the problem which means that the computed solution is only valid for
small displacements around the equilibrium clearance of the bearing. The change in gap height is
often larger than the valid region of this linear model. Therefore, this model is not appropriate to
assess if the bearing surfaces will touch.
Another modeling method that is used during the design process, is to use the dynamic coefficients
over a range of equilibrium gap heights. At the initial equilibrium gap height of a transient
simulation a valid set of dynamic coefficients is selected. If the gap height of the air bearing is
outside the valid region of that particular set of dynamic coefficients, dynamic coefficients belonging
to the newly calculated gap height are used [22]. A variant of this model is to interpolate the
computed dynamic coefficients to estimate a valid set of coefficients at every computed air bearing
height during the simulation. The main advantage of this model is that the computation time
of a transient air bearing clearance solution is fast compared to solving the non-linear Reynolds
equation [22]. A disadvantage is that still a simplified linear problem is used and a linearization
error will be made with this method compared to the non-linear problem. The most accurate
solution can be obtained by solving a model based on the non-linear Reynolds equation which
generally needs a longer computation time.
A model that uses multiple sets of dynamic coefficients to simulate the air bearing clearance for
large displacements has been intensively studied for journal air bearings [22], [23], [24]. Also,
much literature can be found on the modeling and solving of a non-linear model for journal air
bearings subjected to large displacements [17], [1]. However, little is known about the modeling of
thrust air bearings using the non-linear Reynolds equation and the large displacement gap height
behavior of these bearings. Furthermore, it is unknown how large the approximation error is of a
model that uses interpolated dynamic coefficients compared to a model that utilizes the non-linear
Reynolds equation. This leads to the following objectives for this thesis:

1. Develop a mathematical model to determine the time dependent bearing gap in the air
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bearing when the applied load changes from a steady-state to a time dependent load, using
the transient non-linear Reynolds equation for lubricant flow.

2. Extend the developed mathematical model with the effect of the inertia of the bearing parts
on their motion.

3. Validate the developed model experimentally for static loads, harmonic loads, impulsive
loads, and step loads.

4. Assess the accuracy of the approximation method that uses interpolated dynamic coefficients
for an impulsive load case by comparing the response with the response based on the full
non-linear model, see objectives 1 and 2.

This report has the following outline. Chapter 2 discusses air bearings in general, from classifi-
cation and application to modeling and stability assessment. Chapter 3 focuses on the derivation
of the thin film approximation to model the lubricant fluid film in a thrust bearing. The result-
ing equation is the well-known Reynolds equation often used in modeling lubrication problems.
This model is experimentally validated in chapter 5 for a static, a step and an impulse load
case including the frequency response. Chapter 6 correlates the results obtained by the presently
proposed non-linear air bearing model with those obtained by several other models, such as the
model that uses linearized dynamic bearing coefficients. Finally, in chapter 7, the conclusions and
recommendations are presented.

2 Dynamic behavior of thrust air bearings



Chapter 2

Air bearings

Air bearings are used in many applications, each with its own design. For the design of air bearings
different modeling techniques are used to determine the load carrying capacity and stability. This
chapter gives an overview of the air bearing applications and designs. Also an overview is given
of several air bearing modeling methods including the stability analyses. Finally, the air bearing
configuration that is investigated in this study is presented together with a global overview of the
developed simulation model. Appendix A presents the literature search used in this chapter.

2.1 Applications and design

Air bearings are part of the fluid film bearing family that uses gaseous, liquid, or solid lubrication
films. Fluid film bearings are used to allow a smooth relative motion between two solid surfaces
with reduced friction and wear [37]. This reduction in friction and wear is caused by the lubrication
layer between the two moving parts. If the lubrication layer is generated due to the relative
motion of the two bearing surfaces, then the bearing is called hydrodynamic. Hydrostatic bearings
however, use an external lubrication source to create a lubricant layer and can carry loads even if
the two bearing surfaces do not experience a relative motion.
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Figure 2.1: Schematic drawing of a hy-
drostatic thrust bearing.
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Figure 2.2: Schematic drawing of a hy-
drodynamic thrust bearing.

Hydrostatic thrust bearings are bearings that allow a translational motion while carrying a load.
Such a bearing has for example one or multiple supply holes that supplies the lubricant to the
bearing gap with pressure po, as shown in Figure 2.1. Due to the pressure difference between the
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orifice pressure po and the ambient pressure pa, a lubricant flow Q and pressure profile will exist
underneath the bearing. The increased pressure under the bearing pad exerts a force that provides
the bearing a load carrying capacity [28]. These types of bearings are often used in high precision
systems.
Slider bearings are hydrodynamic bearings that allow a in-plane translation and have a wedge
form as depicted in Figure 2.2. The wedge forces the lubricant into a small gap due to the relative
motion between the bearing surfaces. Because the lubricant is forced under the wedge an increased
pressure pw will occur that exerts a force on the slider [50]. This principle is applied in the design
of hard disk drives (HDD) read heads to ensure that the read head hovers above the hard disk [11]
[41] [16] [40]. Another hydrodynamic linear bearing is the squeeze film bearing. This type of air
bearing has a flexible bearing surface that can be actuated in a vibrating motion, which causes a
time averaged positive pressure along the bearing pad [25] [48] [39].
Journal bearings allow rotational motion and carry loads perpendicular to the rotational axis.
Hydrodynamic journal bearings consist of a circular bushing and shaft where the center axes of
these components are generally aligned with a small eccentricity ε as shown in Figure 2.3. Due
to the eccentricity, the bearing gap varies along the shaft circumference with the minimum gap in
the direction of the eccentricity. The relative motion between shaft and bushing pressurizes the
lubricant in the minimum gap causing a load carrying capable force [37]. These types of bearings
are for example used in micro gas turbines [20].
Hydrostatic journal bearings are used if hydrodynamic bearings are not able to support the load,
a precise radial position of the bearing is needed or to reduce bearing instabilities [43]. These
bearings have lubrication sources distributed along the circumference of the bearing surface as
shown in Figure 2.4 [1].
Figure 2.5 depicts several thrust air bearing design variations that increase the bearing stiffness
or load carrying capacity. Figure 2.5 (a) shows a thrust bearing with a conical bearing gap. This
conical gap gives a higher pressure in the bearing gap and an increase in load carrying capacity
and stiffness. Figure 2.5 (b) depicts a porous air bearing that has a porous surface underneath
the bearing that can be seen as a surface with an infinite number of orifices. This surface is able
to create stiffness in the bearing but also to increase the load carrying capacity because the air is
supplied all over the surface resulting in an higher pressure distribution.
Figure 2.5 (c) shows a thrust bearing with orifice and recesss. The orifice is responsible for the
creation of stiffness in the bearing because it makes the pressure under the orifice po a function of
the bearing gap hr. Stiffness is defined as a change in force over a change in distance

S =
dF

dz
=
dFab
dhr

(2.1)
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Figure 2.5: Load carrying capacity and stiffness enhancing air bearing design variations: (a)
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where S denotes stiffness, F a vertical force, z the vertical distance, Fab the vertical fluid force
subjected on the air bearing mass and, hr the bearing gap height of the bearing. If the height
of the air bearing gap changes, the pressure under the bearing pad does also change because of
the orifice, resulting in a different load capacity Fab. Hence, the orifice creates stiffness in the air
bearing. The recess can be used to allow for a large pressure under the air bearing resulting in an
increased load carrying capacity. Note that all of the above design variations can also be applied
on journal bearings.

2.2 Modeling
The first step in the design of an air bearing is the development of a mathematical model to
predict the bearing characteristics like load carrying capacity and stiffness. In this section first
the different mathematical model components are introduced. Second, a short overview is given
of solution techniques used in literature to find a solution of the equation(s) belonging to the
mathematical model.

2.2.1 Mathematical model
The mathematical model of the air bearing consists of two parts. The first part is the dynamic
model describing the motion of the moving mass of the air bearing. The dynamic model is
represented by the equation of motion of the air bearing, that is based on Newton’s second law∑

~F = M~̈xG (2.2)

where
∑ ~F denotes the net force acting on the mass M , ~xG is the position vector of the center of

mass G of the moving mass and¨denotes the second derivative with respect to time.
The second part models the fluid or lubrication film that can be represented by several models.
One of these models consist of the Navier-Stokes equation and the equation of continuity [47]. If
further a thin film is assumed, the Reynolds equation can be derived [13]

∇ · ρh
3

12µ
∇p = ∇ · ρh

2
~V +

∂ρh

∂t
(2.3)

where ρ is the fluid density, h the fluid film height, µ the fluid viscosity, p is the fluid pressure,
~V is the relative velocity of the two bearing surfaces with respect to each other and t denotes
time. Further, operator ∇ · (·) denotes the divergence operator and ∇(·) the gradient operator.
The Reynolds equation omits fluid inertia in the Navier-Stokes equation because of the thin film
assumption. This is elaborated further in chapter 3. Besides models based on the Navier-Stokes
equations also other mathematical models can be used to model fluid films. For example, the
linearized Boltzmann equation is used to model gas films because for ultra-thin films the flows
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cannot be considered as continuum flows [34]. Therefore, the linearized Boltzmann equation is
used in the modeling of hard disk drive sliders [11] [41]. Also, computer fluid dynamics techniques
(CFD) are used to model fluid films for air bearings [19].
In order to get the mathematical problem well-posed there is an equal number of unknowns and
equations needed. In (2.2), the net force

∑ ~F often consists of the known gravity force and the
unknown air bearing fluid film force Fab. The position vector ~xG is also unknown. The unknowns
in the Reynolds equation are the pressure p and fluid film height h. Because h is linked to ~xG
this is considered as one unknown. This results in three unknowns, Fab, ~xG, p, and two equations
(2.2) and (2.3). The third equation follows from the fluid film pressing against the bearing surface
resulting in

Fab =

∫
A

pdA (2.4)

where A denotes the fluid film area below the air bearing mass. This equation couples the Reynolds
equation to the dynamic model. Further, to solve the Reynolds equation (2.3), which is an elliptic
partial differential equation, boundary conditions on the pressure are needed [6]. The solution of
(2.2) and (2.3) requires also initial conditions.
A third part is needed in the air bearing model if the bearing contains a porous surface or orifice.
In the case of a porous surface, Darcy’s law is used to model the fluid mass flow through the
surface which is used to determine the pressure at the porous surface. This pressure is then used
as boundary condition in the solution of the Reynolds equation [5] [26]. For the modeling of an
orifice, Bernoulli’s equation for the mass flow through a hole is often used to compute the pressure
underneath the orifice [1]. Modified versions of this orifice model are also used that correspond
better to experimental observations, for example the orifice model by [14] or [38].

2.2.2 Numerical solution techniques
Different numerical integration techniques are used in literature to solve the equations of motion
(2.2). The techniques vary from an explicit Euler method [45], [17] to the fourth-order Runge-
Kuta method [25], [10]. An often used method to solve the Reynolds equation (2.3) is the finite
difference method (FDM), for example in [17] and [1]. Another often used numerical solution
method is the Finite Element Method (FEM) [10]. The solution techniques above can be used to
find a full numerical solution of the non-linear Reynolds equation. Another much used solution
method is based on linearization of the Reynolds equation by perturbation techniques. From the
linearized Reynolds equation, frequency and height dependent dynamic coefficients are determined
to assess the load carrying capacity and stability [9].

2.3 Stability
Air bearings are often equipped with conical gaps, recesses, or porous surfaces to increase the load
capacity and stiffness. A drawback of these bearings is that they can exhibit unstable behavior
referred to as pneumatic hammering. Pneumatic hammering is a self-excited vibration due to
compressibility of gas, slow pressure recovery, and bearing inertia [51]. This phenomenon occurs
if the air bearing gap contains a storage volume[15], as for example the recess in Figure 2.5 (c),
and the bearing is externally pressurized. Another instability phenomenon that is encountered in
journal bearings is whirl instability [15].
Stability is often assessed by applying a perturbation method on the Reynolds equation and
determining the frequency dependent complex dynamic stiffness

K(ω) = k(ω) + jωd(ω). (2.5)

Herein k(ω) is the stiffness coefficient, d(ω) is the damping coefficient with ω the angular frequency
and j identifies the imaginary unit. It is observed by analysis and experiments that if the static
damping d(0) is positive, it will remain positive for all frequencies and tends to zero for infinite fre-
quency [9]. This implies that any perturbation of the system will eventually damp out. If the static
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stiffness is negative it will first become positive for increasing frequency and then tend towards
zero for infinite frequency. For frequencies where the damping is negative pneumatic hammering
will occur. This stability assessment is only valid for small perturbations about the equilibrium
gap height because of the linearization executed using the perturbation method. Therefore, this
assessment has to be performed for many gap heights in the working range of the air bearing.
If also the dynamic behavior for large displacements has to be evaluated, a method proposed in
[22] can be applied. Herein the frequency dependent dynamic coefficients are used to model a
local linear fluid film force during a transient simulation. The dynamic coefficients at the starting
height of the air bearing are used to model the fluid film force. If the gap height gets to far away
from this local linearization, then there is switched to a closer linear fluid film force model and
the transient simulation is continued. Another option to assess the large displacement dynamic
behavior is to numerically solve the non-linear Reynolds equation for a certain load case. In
this way it is also possible to study the non-linear bearing characteristics using phase portraits,
bifurcation diagrams, and Poincaré diagrams [7].

2.4 Thrust bearing with orifice restriction
In this study, the dynamic behavior of a flat single hole orifice thrust air bearing subjected to a
vertical transient external force is investigated. Figure 2.6 shows this bearing schematically. It
is assumed that the bearing is axially symmetric with an outer radius of R2 and with an orifice
radius of R1. The mass of the bearing is equal to M . Air is supplied from the side of the bearing
with a pressure ps. The supplied air flows through the orifice and the pressure, just underneath the
orifice hole, drops to po. Subsequently, the air flows to the air bearing gap inlet at the R1 radius
with pressure pin from where it flows to the ambient air with pressure pa (ps > po ≥ pin > pa).
The height of the bearing gap is denoted by h and is assumed to be uniform along the bearing
surface.

view AA

R1R2

h

ps

popin

pa

OrificeFluid film

Inertia

A A

x

z

y

Supply air inlet

Figure 2.6: Schematic drawing of a flat single hole orifice thrust bearing.

The mathematical model of this bearing consists of three parts. First, the dynamics of the moving
bearing part with mass M is described by (2.2). Second, a model of the orifice restriction. As
pointed out in subsection 2.2.1, the orifice can be modeled by Bernoulli’s equation for mass flow
through a hole. However, [14] describes a modified equation to model the orifice that should better
match experimental observations. Both orifice models are investigated in this study. In this case,
the orifice is an essential component to create stiffness in the air bearing. This can be seen if the
static Reynolds equation is considered in Cartesian coordinates

∂

∂x

(
ρh3

12µ

∂p

∂x

)
+

∂

∂y

(
ρh3

12µ

∂p

∂y

)
= 0. (2.6)
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Because h is uniform it drops out of (2.6). This means that the pressure is independent of the gap
height h and therefore also the fluid film force Fab does not depend on h. Because the fluid film
force does not change with a change in height there is no stiffness following the definition in (2.1).
The orifice provides a relation between the height and the fluid film force resulting in a stiffness.
Last, the fluid film force is modeled by the Reynolds equation (2.3) and (2.4).

2.5 Summary
In this chapter an overview on the types of air bearings and applications was given. Further,
different types of models were given to model air bearings and the use of these model to assess
stability of air bearings. Finally, the air bearing under consideration, a axially symmetric flat single
hole orifice thrust air bearing, was presented. Also the components to model this air bearing were
present
In the upcoming chapters these model components will be further elaborated. In the next chapter,
a derivation of the Reynolds equation, one of the model components, will be presented and the
assumptions made in this derivation will be discussed. Hence, the conditions of the air bearing
will be discussed for which the developed mathematical model will be applicable.

8 Dynamic behavior of thrust air bearings



Chapter 3

Lubrication approximation of fluid
flow

The derivation of the thin film approximation for lubricant flow is presented in this chapter and is
based on the work of [37] and [13]. First the dominating terms in the Navier-Stokes equation for a
thin film flow are identified. Second, using these dominant terms the thin film approximation for
a lubricant flow is derived. The resulting equation is called the Reynolds equation after Osborn
Reynolds [30]. Third, the Reynolds equation is simplified for some special cases of fluid bearings.
Finally, a summary of the derived equations is given.

3.1 Navier-Stokes equation

The starting point is Cauchy’s equation of motion which can be obtained by applying Newton’s
second law on an infinitesimal fluid particle. This fluid particle is schematically drawn in Figure
3.1 and the balance of forces acting on it are

ρ
du

dt
∆V =∆Txx∆y∆z + ∆Tyx∆x∆z + ∆Tzx∆x∆y + ρfx∆V,

ρ
dv

dt
∆V =∆Txy∆y∆z + ∆Tyy∆x∆z + ∆Tzy∆x∆y + ρfy∆V,

ρ
dw

dt
∆V =∆Txz∆y∆z + ∆Tyz∆x∆z + ∆Tzz∆x∆y + ρfz∆V.

(3.1)

Here ρ is the fluid mass density, u, v, and w are the velocities of the fluid particle in the x, y, and z
direction, respectively. ∆V is the volume of the fluid particle and is equal to ∆V = ∆x∆y∆z. Tij
is the stress component of the fluid particle in the j direction acting on the plane perpendicular to
the i direction. ρfx∆V , ρfy∆V , and ρfz∆V are the fluid body forces in the x, y, and z direction
respectively. The operator d

dt (·) is the material derivative defined as

d

dt
(·) =

∂

∂t
(·) + u

∂

∂x
(·) + v

∂

∂y
(·) + w

∂

∂z
(·). (3.2)

The stress terms ∆Txx, ∆Tyx, and ∆Tzx in the first equation of (3.1) can be written as

∆Txx =
∂Txx
∂x

∆x, ∆Tyx =
∂Tyx
∂y

∆y, ∆Tzx =
∂Tzx
∂z

∆z. (3.3)

Analogously, the change in stress in the other two equations in (3.1) are also expressed in derivatives
of the components of the stress tensor. Substituting this in (3.1) and eliminating the common

Dynamic behavior of thrust air bearings 9
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y

z

x

Tzz

Tzx

Tzy

Tzz + ∆Tzz

Tzx + ∆Tzx

Tzy + ∆Tzy

Tyy

Tyx

Tyz

Tyy + ∆Tyy

Tyx + ∆Tyx

Tyz + ∆Tyz

Txx

Txy

Txz

Txx + ∆Txx

Txz + ∆Txz

Txy + ∆Txy

Figure 3.1: Surface stresses for a fluid particle.

term ∆V results in

ρ
du

dt
=
∂Txx
∂x

+
∂Tyx
∂y

+
∂Tzx
∂z

+ ρfx,

ρ
dv

dt
=
∂Txy
∂x

+
∂Tyy
∂y

+
∂Tzy
∂z

+ ρfy,

ρ
dw

dt
=
∂Txz
∂x

+
∂Tyz
∂y

+
∂Tzz
∂z

+ ρfz,

(3.4)

which is known as Cauchy’s equation of motion.
The Navier-Stokes equation is found by substituting the constitutive equation for an isotropic
Newtonian fluid into (3.4). This constitutive equation relating stresses to strain rates is defined
as [18]

Tij = −
(
p+

2

3
µ div(v)

)
δij + 2µeij (3.5)

where p is the pressure, µ is the shear viscosity of the fluid, v is the velocity vector, δij is the
Kronecker delta and the strain rate

eij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (3.6)

where vi is the ith element of the velocity vector v =
[
u v w

]T and xi is the ith element of
position vector x =

[
x y z

]T . Operator div(·) is the divergence operator and is in a Cartesian
coordinate system for the velocity vector defined as

div(v) =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
. (3.7)
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A fluid is called Newtonian if there is a linear relation between the viscous stress and strain rate.
Equation (3.5) can be written in matrix notation as

Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

 = −
(
p+

2

3
µdiv(v)

)
I + 2µ


∂u
∂x

1
2

(
∂u
∂y + ∂v

∂x

)
1
2

(
∂u
∂z + ∂w

∂x

)
1
2

(
∂u
∂y + ∂v

∂x

)
∂v
∂y

1
2

(
∂v
∂z + ∂w

∂y

)
1
2

(
∂u
∂z + ∂w

∂x

)
1
2

(
∂v
∂z + ∂w

∂y

)
∂w
∂z


(3.8)

where I denotes the identity matrix. Substitution of (3.8) in (3.4) yields the Navier-Stokes equation
in Cartesian coordinates for a Newtonian fluid

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
=− ∂p

∂x
− 2

3

∂

∂x
(µdiv(v)) + 2

∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ

(
∂u

∂y
+
∂v

∂x

))
+

∂

∂z

(
µ

(
∂u

∂z
+
∂w

∂x

))
+ ρfx

(3.9)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
=− ∂p

∂y
− 2

3

∂

∂y
(µdiv(v)) + 2

∂

∂y

(
µ
∂v

∂y

)
+

∂

∂x

(
µ

(
∂u

∂y
+
∂v

∂x

))
+

∂

∂z

(
µ

(
∂v

∂z
+
∂w

∂y

))
+ ρfy

(3.10)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
=− ∂p

∂z
− 2

3

∂

∂z
(µdiv(v)) + 2

∂

∂z

(
µ
∂w

∂z

)
+

∂

∂x

(
µ

(
∂u

∂z
+
∂w

∂x

))
+

∂

∂y

(
µ

(
∂v

∂z
+
∂w

∂y

))
+ ρfz

(3.11)

The terms on the left hand side describe the inertia effect of the fluid particle and the terms on
the right hand side describe the body force, pressure, and viscous effects. The above equations
expressing the balance of forces contain four unknowns: u, v, w, and p. In order to find these four
unknowns a fourth equation is needed which is the balance of mass, also known as the continuity
equation

∂ρ

∂t
+ div(ρv) = 0. (3.12)

The Navier-Stokes equations and the continuity equation are used to derive the Reynolds equation
for lubricant flow.
The dominant terms in the Navier-Stokes equations for a thin film flow can be derived by exploiting
the difference in length scales between the in-plane geometry and fluid film thickness for thin film
applications. The position variables are made dimensionless by using

x̄ =
x

x∗
; ȳ =

y

y∗
; z̄ =

z

z∗
, (3.13)

where x∗, y∗, and z∗ are the characteristics length scales. The dimensionless velocity components
are

ū =
u

u∗
; v̄ =

v

v∗
; w̄ =

w

w∗
, (3.14)

where u∗, v∗, and w∗ are the characteristics velocity scales. The quantities ρ, µ, p, and t are made
dimensionless by:

ρ̄ =
ρ

ρ∗
; µ̄ =

µ

µ∗
; p̄ =

p

p∗
=

z2
∗p

µ∗u∗x∗
; t̄ =

t

t∗
=
u∗
x∗
t, (3.15)
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where ρ∗ is the characteristic density and µ∗ the characteristic shear viscosity. Substitution of the
normalized parameters in (3.9) till (3.11) yields

ρ∗ρ̄

(
u2
∗
x∗

∂ū

∂t̄
+
u2
∗
x∗
ū
∂ū

∂x̄
+
v∗u∗
y∗

v̄
∂ū

∂ȳ
+
w∗u∗
z∗

w̄
∂ū

∂z̄

)
=− µ∗u∗x∗

z2
∗x∗

∂p̄

∂x̄

− 2

3

µ∗u∗
x2
∗

∂

∂x̄

(
µ̄

(
∂ū

∂x̄
+
x∗v∗
u∗y∗

∂v̄

∂ȳ
+
x∗w∗
u∗z∗

∂w̄

∂z̄

))
+ 2

µ∗u∗
x2
∗

∂

∂x̄

(
µ̄
∂ū

∂x̄

)
+
µ∗
y∗

∂

∂ȳ

(
µ̄

(
u∗
y∗

∂ū

∂ȳ
+
v∗
x∗

∂v̄

∂x̄

))
+
µ∗
z∗

∂

∂z̄

(
µ̄

(
u∗
z∗

∂ū

∂z̄
+
w∗
x∗

∂w̄

∂x̄

))
+ ρ∗ρ̄fx,

(3.16)

ρ∗ρ̄

(
v∗u∗
x∗

∂v̄

∂t̄
+
u∗v∗
x∗

ū
∂v̄

∂x̄
+
v2
∗
y∗
v̄
∂v̄

∂ȳ
+
w∗v∗
z∗

w̄
∂v̄

∂z̄

)
=− µ∗u∗x∗

z2
∗y∗

∂p̄

∂ȳ

− 2

3

µ∗v∗
y2
∗

∂

∂y∗

(
µ̄

(
y∗x∗
v∗u∗

∂ū

∂x̄
+
∂v̄

∂ȳ
+
y∗w∗
v∗z∗

∂w̄

∂z̄

))
+ 2

µ∗v∗
y2
∗

∂

∂ȳ

(
µ̄

(
∂v̄

∂ȳ

))
+
µ∗
x∗

∂

∂x̄

(
µ̄

(
u∗
y∗

∂ū

∂ȳ
+
v∗
x∗

∂v̄

∂x̄

))
+
µ∗
z∗

∂

∂z̄

(
µ̄

(
v∗
z∗

∂v̄

∂z̄
+
w∗
y∗

∂w̄

∂ȳ

))
+ ρ∗ρ̄fy,

(3.17)

ρ∗ρ̄

(
w∗u∗
x∗

∂w̄

∂t̄
+
u∗w∗
x∗

ū
∂w̄

∂x̄
+
v∗w∗
y∗

v̄
∂w̄

∂ȳ
+
w2
∗
z∗
w̄
∂w̄

∂z̄

)
=− µ∗u∗x∗

z3
∗

∂p̄

∂z̄

− 2

3

µ∗
z∗

∂

∂z̄

(
µ̄

(
u∗
x∗

∂ū

∂x̄
+
v∗
y∗

∂v̄

∂ȳ
+
w∗
z∗

∂w̄

∂z̄

))
+ 2

µ∗w∗
z2
∗

∂

∂z̄

(
µ̄
∂w̄

∂z̄

)
+
µ∗
x∗

∂

∂x̄

(
µ̄

(
u∗
z∗

∂ū

∂z̄
+
w∗
x∗

∂w̄

∂x̄

))
+
µ∗
y∗

∂

∂ȳ

(
µ̄

(
v∗
z∗

∂v̄

∂z̄
+
w∗
y∗

∂w̄

∂ȳ

))
+ ρ∗ρ̄fz.

(3.18)

Multiplying (3.16) by z2∗x∗
µ∗u∗x∗

and dividing by ρ̄ results in

ρ∗z
2
∗u∗

µ∗x∗

∂ū

∂t̄
+
ρ∗z

2
∗u∗

µ∗x∗
ū
∂ū

∂x̄
+
ρ∗z

2
∗v∗

µ∗y∗
v̄
∂ū

∂ȳ
+
ρ∗w∗z∗
µ∗

w̄
∂ū

∂z̄
=− 1

ρ̄

∂p̄

∂x̄
+
ρ∗z

2
∗

µ∗u∗
fx

− 2

3

(
z∗
x∗

)2
1

ρ̄

∂

∂x̄

(
µ̄

(
∂ū

∂x̄
+
x∗v∗
u∗y∗

∂v̄

∂ȳ
+
x∗w∗
u∗z∗

∂w̄

∂z̄

))
+ 2

(
z∗
x∗

)2
1

ρ̄

∂

∂x̄

(
µ̄
∂ū

∂x̄

)
+

(
z∗
y∗

)2
1

ρ̄

∂

∂ȳ

(
µ̄

(
∂ū

∂ȳ
+
v∗y∗
x∗u∗

∂v̄

∂x̄

))
+

1

ρ̄

∂

∂z̄

(
µ̄

(
∂ū

∂z̄
+
w∗z∗
x∗u∗

∂w̄

∂x̄

))
.

(3.19)

Multiplying (3.17) by z2∗y∗
µ∗u∗x∗

and dividing by ρ̄, assuming that x∗ ≈ y∗ and u∗ ≈ v∗ because of
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almost equivalent length scales, results in

ρ∗z
2
∗u∗

µ∗x∗

∂v̄

∂t̄
+
ρ∗z

2
∗u∗

µ∗x∗
ū
∂v̄

∂x̄
+
ρ∗z

2
∗v∗

µ∗y∗
v̄
∂v̄

∂ȳ
+
ρ∗w∗z∗
µ∗

w̄
∂v̄

∂z̄
=− 1

ρ̄

∂p̄

∂ȳ
+
ρ∗z

2
∗

µ∗u∗
fy

− 2

3

(
z∗
y∗

)2
1

ρ̄

∂

∂y∗

(
µ̄

(
y∗x∗
v∗u∗

∂ū

∂x̄
+
∂v̄

∂ȳ
+
y∗w∗
v∗z∗

∂w̄

∂z̄

))
+ 2

(
z∗
y∗

)2
1

ρ̄

∂

∂ȳ

(
µ̄

(
∂v̄

∂ȳ

))
+

(
z∗
x∗

)2
1

ρ̄

∂

∂x̄

(
µ̄

(
u∗x∗
y∗v∗

∂ū

∂ȳ
+
∂v̄

∂x̄

))
+

1

ρ̄

∂

∂z̄

(
µ̄

(
∂v̄

∂z̄
+
w∗z∗
y∗v∗

∂w̄

∂ȳ

))
.

(3.20)

Multiplying (3.18) by z3∗
µ∗u∗x∗

and dividing by ρ̄ yields

ρ∗w∗z
3
∗u∗

µ∗u∗x2
∗

∂w̄

∂t̄
+
ρ∗w∗z∗
µ∗

(
z∗
x∗

)2

ū
∂w̄

∂x̄
+
ρ∗w∗z∗
µ∗

(
z∗
x∗

)2

v̄
∂w̄

∂ȳ
+
ρ∗w

2
∗z

2
∗

µ∗u∗x∗
w̄
∂w̄

∂z̄
= −1

ρ̄

∂p̄

∂z̄
+

ρ∗z
3
∗

µ∗u∗x∗
fz

− 2

3

(
z∗
x∗

)2
1

ρ̄

∂

∂z̄

(
µ̄

(
∂ū

∂x̄
+
v∗x∗
y∗u∗

∂v̄

∂ȳ
+
w∗x∗
z∗y∗

∂w̄

∂z̄

))
+ 2

w∗z∗
u∗x∗

1

ρ̄

∂

∂z̄

(
µ̄
∂w̄

∂z̄

)
+
z∗
u∗

(
z∗
x∗

)2
1

ρ̄

∂

∂x̄

(
µ̄

(
u∗
z∗

∂ū

∂z̄
+
w∗
x∗

∂w̄

∂x̄

))
+
z∗
u∗

(
z∗
x∗

)2
1

ρ̄

∂

∂ȳ

(
µ̄

(
v∗
z∗

∂v̄

∂z̄
+
w∗
y∗

∂w̄

∂ȳ

))
.

(3.21)

In bearing applications the ratio between the film thickness and in-plane geometry is in general of
order

z∗
x∗
≈ z∗
y∗
≈ O(10−3). (3.22)

In (3.19) - (3.21) the term (
z∗
x∗

)2

(3.23)

often occurs, which is of order O(10−6). Therefore it is reasonable to assume that the terms

containing
(
z∗
x∗

)2

can be neglected. Note hereby that w∗
u∗

and w∗
v∗

are of the same order as z∗
x∗
.

Then the equations (3.19) - (3.21) become

ρ∗z
2
∗

µ∗t∗

∂ū

∂t̄
+
ρ∗z

2
∗u∗

µ∗x∗
ū
∂ū

∂x̄
+
ρ∗z

2
∗v∗

µ∗y∗
v̄
∂ū

∂ȳ
+
ρ∗w∗z∗
µ∗

w̄
∂ū

∂z̄
=− 1

ρ̄

∂p̄

∂x̄
+
ρ∗z

2
∗

µ∗u∗
fx

+
1

ρ̄

∂

∂z̄

(
µ̄
∂ū

∂z̄

)
,

(3.24)

ρ∗z
2
∗

µ∗t∗

∂v̄

∂t̄
+
ρ∗z

2
∗u∗

µ∗x∗
ū
∂v̄

∂x̄
+
ρ∗z

2
∗v∗

µ∗y∗
v̄
∂v̄

∂ȳ
+
ρ∗w∗z∗
µ∗

w̄
∂v̄

∂z̄
=− 1

ρ̄

∂p̄

∂ȳ
+
ρ∗z

2
∗

µ∗u∗
fy

+
1

ρ̄

∂

∂z̄

(
µ̄
∂v̄

∂z̄

)
,

(3.25)

0 = −1

ρ̄

∂p̄

∂z̄
+

ρ∗z
3
∗

µ∗u∗x∗
fz. (3.26)
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In subsection 3.1.1 it will be motivated that the left hand side of (3.24) - (3.26) can be neglected
because they are of order z∗

x∗
, resulting in

1

ρ̄

∂p̄

∂x̄
=

1

ρ̄

∂

∂z̄

(
µ̄
∂ū

∂z̄

)
+
ρ∗z

2
∗

µ∗u∗
fx, (3.27)

1

ρ̄

∂p̄

∂ȳ
=

1

ρ̄

∂

∂z̄

(
µ̄
∂v̄

∂z̄

)
+
ρ∗z

2
∗

µ∗u∗
fy, (3.28)

1

ρ̄

∂p̄

∂z̄
=

ρ∗z
3
∗

µ∗u∗x∗
fz. (3.29)

By neglecting the body forces and and writing equations (3.27) till (3.29) in dimensional form the
reduced version of the general Navier-Stokes equations is obtained as

∂p

∂x
=

∂

∂z

(
µ
∂u

∂z

)
(3.30)

∂p

∂y
=

∂

∂z

(
µ
∂v

∂z

)
(3.31)

∂p

∂z
= 0 (3.32)

3.1.1 Remarks
First of all note that (3.32) indicates that the pressure is constant across the film thickness.
Further, [18] states that for air "the linear relationship is found surprisingly accurate for most
applications" where the linear relationship between viscous stress and strain rate is meant. There-
fore, in this report, it is assumed that air is a Newtonian fluid and that the Navier-Stokes equations
(3.30) - (3.32) can be applied for air bearing applications.
The Reynolds number can be recognized in the inertia term on the left hand side of equations
(3.24) - (3.26), see e.g. [13]. The Reynolds number represents the ratio between the inertia forces
and the viscous forces and is defined as

Re =
ρ∗u∗x∗
µ∗

(3.33)

As mentioned in [13], the modified Reynolds number is often used in fluid film lubrication problems
which is defined in multiple directions as

Rx =
ρ∗u∗z

2
∗

µ∗x∗
, (3.34)

Ry =
ρ∗v∗z

2
∗

µ∗y∗
, (3.35)

and
Rz =

ρ∗w∗z∗
µ∗

. (3.36)

The squeeze number is defined as

σs =
ρ∗z

2
∗

µ∗t∗
. (3.37)

These terms can all be seen in the inertia terms of equations (3.24) till (3.26) and are assumed to
be of order z∗

x∗
. This means that the fluid inertia terms may be neglected. For the squeeze number

σs this can be seen by substituting t∗ = x∗
u∗

. The proof that Rz is of order z∗
x∗

follows from the
equation of continuity. If the parameters in (3.12) are made dimensionless this results in

ρ∗u∗
x∗

∂ρ̄

∂t̄
+
ρ∗u∗
x∗

∂ρ̄ū

∂x̄
+
ρ∗v∗
y∗

∂ρ̄v̄

∂ȳ
+
ρ∗w∗
z∗

∂ρ̄w̄

∂z̄
= 0. (3.38)
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This can be rewritten as
∂ρ̄

∂t̄
+
∂ρ̄ū

∂x̄
+
∂ρ̄v̄

∂ȳ
+
x∗w∗
u∗z∗

∂ρ̄w̄

∂z̄
= 0. (3.39)

In order for this equation to hold
w∗ =

z∗
x∗
u∗. (3.40)

Substituting (3.40) in (3.36) shows that Rz is of order z∗
x∗
.

In the case that a gas is used as lubricant, the ideal gas law has to be applied to normalize the
density based on the pressure. The ideal gas law is defined as

p∗ = ρ∗RsT (3.41)

where Rs is the specific gas constant and T the gas temperature. From (3.15) it follows that

p∗ =
µ∗u∗x∗
z2
∗

(3.42)

and thus
ρ∗ =

µ∗u∗x∗
z2
∗RsT

. (3.43)

If this density normalization factor is substituted in the equations (3.24) - (3.26), it is noticed that
the terms indicating the order of z∗x∗ disappear. However, the term 1

RsT
appears which is generally

of order O(10−4) and thus smaller then z∗
x∗
. Hence, it can be assumed that these terms are small

enough to be neglected.

3.2 Reynolds equation
The reduced Navier-Stokes equations (3.30) and (3.31) can be integrated twice with respect to z,
resulting in

u =
1

2µ

∂p

∂x
z2 +

1

µ
Az +B (3.44)

v =
1

2µ

∂p

∂y
z2 +

1

µ
Cz +D (3.45)

where and A, B, C, and D are integration constants. The following boundary conditions can be
used to determine the integration constants:

u = U0, v = V0 at z = 0,

u = Uh, v = Vh at z = h.
(3.46)

Substitution of the first set of boundary conditions in (3.44) and (3.45) gives

U0 = B (3.47)

and
V0 = D. (3.48)

Substitution of the second set of boundary conditions and (3.47) in (3.44) results in

Uh =
1

2µ

∂p

∂x
h2 +

1

µ
Ah+ U0 → A =

µ

h
(Uh − U0)− 1

2

∂p

∂x
h. (3.49)

Substitution of the second set of boundary conditions and (3.48) in (3.45) yields

Vh =
1

2µ

∂p

∂y
h2 +

1

µ
Ch+ V0 → C =

µ

h
(Vh − V0)− 1

2

∂p

∂y
h. (3.50)
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Substitution of the integration constants (3.49) and (3.47) in (3.44) results in

u =
1

2µ

∂p

∂x
z2 +

1

µ

(
µ

h
(Uh − U0)− 1

2

∂p

∂x
h

)
z + U0

=
1

2µ

∂p

∂x
(z2 − hz) +

(
1− z

h

)
U0 +

z

h
Uh.

(3.51)

Analogously, substituting (3.50) and (3.48) in (3.45) yields

v =
1

2µ

∂p

∂y
z2 +

1

µ

(
µ

h
(Vh − V0)− 1

2

∂p

∂y
h

)
z + V0

=
1

2µ

∂p

∂y

(
z2 − hz

)
+
(

1− z

h

)
V0 +

z

h
Vh.

(3.52)

The continuity equation (3.12) written in Cartesian coordinates is

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0. (3.53)

Equation (3.53) is integrated across the height z

ρw|h0 = ρ (Wh −W0) = −
∫ h

0

(
∂ρu

∂x

)
dz −

∫ h

0

(
∂ρv

∂y

)
dz −

∫ h

0

(
∂ρ

∂t

)
dz. (3.54)

where W0 is the velocity in the z direction at z = 0 and Wh is the velocity in the z direction at
z = h. It is assumed that these velocities are known. Substitution of (3.51) and (3.52) in (3.54)
yields

ρw|h0 =−
∫ h

0

(
∂

∂x

[
ρ

(
1

2µ

∂p

∂x
(z2 − hz) +

(
1− z

h

)
U0 +

z

h
Uh

)])
dz

−
∫ h

0

(
∂

∂y

[
ρ

(
1

2µ

∂p

∂y

(
z2 − hz

)
+
(

1− z

h

)
V0 +

z

h
Vh

)])
dz −

∫ h

0

(
∂ρ

∂t

)
dz.

(3.55)

By applying Leibnitz’s rule for differentiation under the integral sign

d

dx

∫ B

A

f(x, t)dt =

∫ B

A

∂f(x, t)

∂x
dt+ f(x,B)

dB

dx
− f(x,A)

dA

dx
, (3.56)

(3.55) can be rewritten as

ρw|h0 =− ∂

∂x

(∫ h

0

[
ρ

(
1

2µ

∂p

∂x
(z2 − hz) +

(
1− z

h

)
U0 +

z

h
Uh

)]
dz

)
+ ρUh

∂h

∂x

− ∂

∂y

(∫ h

0

[
ρ

(
1

2µ

∂p

∂y

(
z2 − hz

)
+
(

1− z

h

)
V0 +

z

h
Vh

)]
dz

)
+ ρVh

∂h

∂y

−
∫ h

0

(
∂ρ

∂t

)
dz.

(3.57)

Performing the integration on the right hand side yields

ρw|h0 =− ∂

∂x

(
−ρh

3

12µ

∂p

∂x

)
− ∂

∂x

(
ρh

2
U0

)
− ∂

∂x

(
ρh

2
Uh

)
+ ρUh

∂h

∂x

− ∂

∂y

(
−ρh

3

12µ

∂p

∂y

)
− ∂

∂y

(
ρh

2
V0

)
− ∂

∂y

(
ρh

2
Vh

)
+ ρVh

∂h

∂y

− h∂ρ
∂t
.

(3.58)
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Note that
ρw|h0 = ρ

dh

dt
. (3.59)

Then, (3.58) can be rewritten into the general Reynolds equation for lubrication:

∂

∂x

(
−ρh

3

12µ

∂p

∂x

)
+

∂

∂y

(
−ρh

3

12µ

∂p

∂y

)
=− ∂

∂x

(
ρh (U0 + Uh)

2

)
− ∂

∂y

(
ρh (V0 + Vh)

2

)
+ ρUh

∂h

∂x
+ ρVh

∂h

∂y
− h∂ρ

∂t
− ρdh

dt
.

(3.60)

This can be further simplified by using the definition of the material derivative (3.2) and applying
it to the dh

dt term, resulting in

dh

dt
=
∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
+ w

∂h

∂z
. (3.61)

Note that h is a function of x, y and t meaning that the last term in (3.61) can be omitted.
Further, for u and v at z = h it holds that u = Uh and v = Vh from which it follows that

dh

dt
=
∂h

∂t
+ Uh

∂h

∂x
+ Vh

∂h

∂y
. (3.62)

Substitution of (3.62) in (3.60) and using

∂ρh

∂t
= ρ

∂h

∂t
+ h

∂ρ

∂t
(3.63)

reduces (3.60) to

∂

∂x

(
ρh3

12µ

∂p

∂x

)
+

∂

∂y

(
ρh3

12µ

∂p

∂y

)
=

∂

∂x

(
ρh (U0 + Uh)

2

)
+

∂

∂y

(
ρh (V0 + Vh)

2

)
+
∂ρh

∂t
. (3.64)

The above equation is known as the Reynolds equation for lubrication in Cartesion coordinates.
The Reynolds equation for lubrication in coordinate-free from is

∇ · ρh
3

12µ
∇p = ∇ · ρh

2
V +

∂ρh

∂t
. (3.65)

3.3 Simplifications of the Reynolds equation
The Reynolds equation for lubrication (3.65) holds if the assumptions of a Newtonian fluid, the
difference in length scales between the fluid thickness and in-plane geometry, negligible inertia
and negligible body forces hold. If the two opposite fluid surfaces do not translate in the x and y
direction, meaning that V = 0, then the Reynolds equation reduces to

∇ · ρh
3

12µ
∇p =

∂ρh

∂t
. (3.66)

Further, if it is assumed that the fluid thickness and viscosity is uniform, meaning that h and µ
do not depend on the coordinates, the Reynolds equation is written as

∇ · ρ∇p =
12µ

h3

∂ρh

∂t
. (3.67)

For incompressible fluids the density ρ drops from the equation resulting in

∇ · ∇p =
12µ

h3

∂h

∂t
. (3.68)

If a static situation is considered the right hand side in (3.68) is equal to zero, hence

∇ · ∇p = 0. (3.69)

Dynamic behavior of thrust air bearings 17



CHAPTER 3. LUBRICATION APPROXIMATION OF FLUID FLOW

3.4 Reynolds equation for axial symmetric air bearings
For axially symmetric bearings the Reynolds equation has to be written in cylindrical coordinates.
Appendix B gives a procedure to transform the Reynolds equation for Cartesian coordinates
into cylindrical coordinates. The Reynolds equation in coordinate-free form can be written into
cylindrical coordinate form by applying the gradient and divergence for cylindrical coordinates
defined as

∇(·) =


∂(·)
∂r

1
r
∂(·)
∂θ

∂(·)
∂z

 (3.70)

and
∇ · (·) =

1

r

∂r(·)r
∂r

+
1

r

∂(·)θ
∂θ

+
∂(·)z
∂z

(3.71)

respectively [2]. Application ito (3.66) yields

1

r

∂

∂r

(
r
ρh3

12µ

∂p

∂r

)
+

1

r

∂

∂θ

(
ρh3

12µr

∂p

∂θ

)
+

∂

∂z

(
ρh3

12µ

∂p

∂z

)
=
∂ρh

∂t
(3.72)

Using (3.32) and the property that the air bearing is axially symmetric (3.72) is written as

1

r

∂

∂r

(
r
ρh3

12µ

∂p

∂r

)
=
∂ρh

∂t
. (3.73)

In the remainder of this report the simplified Reynolds equation (3.73) will be used to model the
air bearing fluid film.

3.5 Summary
The Reynolds equation is derived from the Navier-Stokes equation for a Newtonian fluid and the
equation of continuity by exploiting the difference in length-scales between the in-plane geometry
and fluid film thickness. Furthermore, it is assumed that the fluid inertia and body forces are
negligible. The general Reynolds equation in Cartesian coordinates reads

∂

∂x

(
ρh3

12µ

∂p

∂x

)
+

∂

∂y

(
ρh3

12µ

∂p

∂y

)
=

∂

∂x

(
ρh (U0 + Uh)

2

)
+

∂

∂y

(
ρh (V0 + Vh)

2

)
+
∂ρh

∂t
. (3.64)

If it is assumed that the bearing does not translate in the x or y direction and that the bearing is
axially symmetric (3.64) reduces to

1

r

∂

∂r

(
r
ρh3

12µ

∂p

∂r

)
=
∂ρh

∂t
. (3.74)

where cylindrical coordinates are used. It is assumed that the circular orifice bearing under
consideration has a uniform film thickness and viscosity. This means that (3.74) can be written
as

∂

∂r

(
rρ
∂p

∂r

)
=

12µr

h3

∂ρh

∂t
. (3.75)

If the fluid is incompressible the density ρ drops from the equation giving

∂

∂r

(
r
∂p

∂r

)
=

12µr

h3

∂h

∂t
. (3.76)

If furthermore a static situation is considered then the right hand side in (3.76) vanishes resulting
in

∂

∂r

(
r
∂p

∂r

)
= 0. (3.77)
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Table 3.1 gives all simplified versions of the Reynolds equations used in this report and the con-
ditions and assumptions under which these are valid.
In the next chapter, the derived Reynolds equation will be used to develop a thrust air bearing
model.

Table 3.1: Simplified versions of the Reynolds equation and the application conditions.

Equation Assumptions
- Newtonian fluid
- Negligible fluid inertia
- Negligible body forces
- x∗ >> z∗, y∗ >> z∗

∂
∂r

(
rρ∂p∂r

)
= 12µr

h3
∂ρh
∂t - U0 = Uh = V0 = Vh = 0

- µ = constant
- h = uniform

- Newtonian fluid
- Negligible fluid inertia
- Negligible body forces
- x∗ >> z∗, y∗ >> z∗

∂
∂r

(
r ∂p∂r

)
= 12µr

h3
∂h
∂t - U0 = Uh = V0 = Vh = 0

- µ = constant
- h = uniform
- ρ = constant(incompressibility)

- Newtonian fluid
- Negligible fluid inertia
- Negligible body forces
- x∗ >> z∗, y∗ >> z∗
- U0 = Uh = V0 = Vh = 0

∂
∂r

(
r ∂p∂r

)
= 0 - µ = constant

- h = uniform
- ρ = constant(incompressibility)
- ∂h
∂t = 0
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Chapter 4

Thrust air bearing model

As already mentioned in section 2.4, in this study a flat single hole orifice thrust air bearing is
considered. The model of a thrust air bearing contains basically three parts, the lubrication or
fluid film model, the orifice model, and the dynamic model of the supported solid. First the lu-
brication model is investigated which is represented by the Reynolds equation for lubrication that
was derived in the previous chapter. In order to simplify the lubrication model, first the Reynolds
equation for incompressible fluids is investigated before the compressible case is considered. After
investigation of these two cases the orifice restriction model is examined and added to the lubrica-
tion model. Finally, the incompressible lubrication model and the restriction model are combined
with the dynamic model of the supported solid to model the dynamics of the flat axial symmetric
thrust air bearing. Table 4.1 shows the parameter values used for mathematical analyses presented
in this chapter (if not stated otherwise). Some of these parameters are indicated in Figure 4.1.
Further, it is assumed that the initial velocity is zero.

Parameter symbol Value Unit Quantity

R1 2 · 10−4 m Orifice radius
R2 4 · 10−2 m Air bearing radius
ps 2 · 105 N/m2 Supply pressure
pin 2 · 105 N/m2 Air gap inlet pressure
pa 1 · 105 N/m2 Ambient pressure
T 293 K Temperature
µ 1.8205 · 10−5 kg/(ms) Viscosity
Rs 287 J/(kgK) Specific gas constant
κ 1.405 − Adiabatic expansion coefficient
M 5 kg Air bearing mass
g 9.81 m/s2 Gravitational constant

Table 4.1: Model parameter values used in simulations.
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view AA

R1R2

h

ps

popin

pa

A A

x
z

y

Supply air inlet

Figure 4.1: Schematic drawing of a flat single hole orifice thrust bearing.

4.1 Incompressible fluids
The incompressible lubrication model for axial symmetric thrust bearings is described by the
Reynolds equation for incompressible fluids

∂

∂r

(
r
∂p

∂r

)
=

12µr

h3

∂h

∂t
(4.1)

as was derived in chapter 3 (see (3.76)). First an analytic solution of this equation is sought.
Second, the finite difference method is discussed and used to obtain a numerical solution. Finally,
the analytical and numerical solutions are compared.

4.1.1 Analytical solution
The analytical solution of (4.1) is

p = ppart + phom (4.2)

where phom is the homogeneous solution and ppart the particular solution. The homogeneous
solution is the solution of the homogeneous incompressible Reynolds equation

∂

∂r

(
r
∂p

∂r

)
= 0. (4.3)

In order to solve (4.3) two boundary conditions are needed because the differential equation is
of order 2. It is assumed that the pressure at the bearing gap inlet is equal to the orifice outlet
(pin = po) and that the ambient pressure is pa. This results in the following boundary conditions

p = pin at r = R1,

p = pa at r = R2.
(4.4)

Integration of (4.3) yields

r
dp

dr
= A→ dp

dr
=

1

r
A (4.5)

where A is an integration constant. The pressure is solved from (4.5) and reads

p = ln(r)A+B (4.6)

where B is a second integration constant. Substitution of the first and second boundary condition
in (4.6) results in

pin = ln (R1)A+B, (4.7)

pa = ln (R2)A+B. (4.8)
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Solving (4.7) and (4.8) for A and B gives

A =
pin − pa

ln (R1/R2)
, B = pin − ln (R1)A. (4.9)

Substituting (4.9) in (4.6) gives the solution of (4.3), hence the pressure is

p = (pin − pa)
ln (r/R2)

ln (R1/R2)
+ pa. (4.10)

This equation can be made dimensionless and normalized by assuming

p = pinp̄, r = R2r̄, pa = 0. (4.11)

The solution can then be written as
p̄ =

ln(r̄)

ln (R1/R2)
(4.12)

which is equal to the result in [37], see equation (3.6).
With the pressure distribution known it is possible to calculate the load capacity W of the air
bearing. The load capacity consists of a load carrying part directly under the inlet hole

Wih = πR2
1pin (4.13)

and a part under the bearing surface which can be expressed as

Wabs =

∫ 2π

0

∫ R2

R1

(rp) drdφ = 2π

∫ R2

R1

(rp) dr. (4.14)

The ambient pressure acts on the top of the air bearing and provides a negative force on the
bearing

Wa = −πR2
2pa. (4.15)

This gives for the full load capacity

W = πR2
1pin − πR2

2pa + 2π

∫ R2

R1

(rp) dr. (4.16)

Substituting (4.10) into (4.16) and solving the integral results in the homogeneous load capacity

Whom = π (pin − pa)
R2

2 −R2
1

2 ln (R2/R1)
. (4.17)

Equation (4.17) is used to describe the static load capacity of an air bearing with an incompressible
lubricant film. After all, in the static case it holds that ∂h

∂t = 0.
A solution for p in the non-homogeneous equation (4.1) can be computed in a similar way. Again
the following boundary conditions are used.

p = pin at r = R1,

p = pa at r = R2.
(4.18)

Integrating (4.1) once with respect to r gives

r
∂p

∂r
=

6µr2

h3

∂h

∂t
+A→ ∂p

∂r
=

6µr

h3

∂h

∂t
+

1

r
A. (4.19)

Integrating twice yields

p =
3µr2

h3

∂h

∂t
+ ln(r)A+B. (4.20)
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Substitution of the first and second boundary condition in (4.20) results in

pin =
3µR2

1

h3

∂h

∂t
+ ln(R1)A+B, (4.21)

pa =
3µR2

2

h3

∂h

∂t
+ ln(R2)A+B. (4.22)

Solving (4.21) and (4.22) for A and B results in

A =
pin − pa

ln(R1/R2)
+

(R2
2 −R2

1)

ln(R1/R2)

3µ

h3

∂h

∂t
, (4.23)

B =
−(pin − pa) ln(R2)h3 + 3µR2

1 ln(R2)∂h∂t − 3µR2
2 ln(R1)∂h∂t

h3 ln(R1/R2)
+ pa. (4.24)

The pressure p follows from (4.20), after substituting (4.23) and (4.24) and reads

p =
3µr2

h3

∂h

∂t
+ ln(r)

(
pin − pa

ln(R1/R2)
+

(R2
2 −R2

1)

ln(R1/R2)

3µ

h3

∂h

∂t

)
+
−(pin − pa) ln(R2)h3 + 3µR2

1 ln(R2)∂h∂t − 3µR2
2 ln(R1)∂h∂t

h3 ln(R1/R2)
+ pa.

(4.25)

This can be rewritten as

p =
3µ

h3

∂h

∂t

(
r2 + ln(r)

(R2
2 −R2

1)

ln(R1/R2)
+
R2

1 ln(R2)−R2
2 ln(R1)

ln(R1/R2)

)
+ (pin − pa)

ln(r/R2)

ln(R1/R2)
+ pa, (4.26)

which is the fluid film pressure distribution for incompressible fluids. The last two terms in (4.26)
are equal to the homogeneous solution (4.10). Hence,

p = ppart(r, h,
∂h

∂t
) + phom(r) (4.27)

where

ppart =
3µ

h3

∂h

∂t

(
r2 + ln(r)

(R2
2 −R2

1)

ln(R1/R2)
+
R2

1 ln(R2)−R2
2 ln(R1)

ln(R1/R2)

)
(4.28)

and
phom = (pin − pa)

ln(r/R2)

ln(R1/R2)
+ pa. (4.29)

Substituting (4.26) in (4.16) and solving the integral results in the dynamic load capacity of an
air bearing with an incompressible lubricant film

W = C1
1

h3

∂h

∂t
+ C2 (4.30)

where

C1 = −1

2
3µπ

((
R4

2 −R4
1

)
+

(R2
2 −R2

1)2

ln(R1/R2)

)
(4.31)

and

C2 = Whom = π(pin − pa)
R2

2 −R2
1

2 ln(R2/R1)
. (4.32)

Note that C2 is equal to the (homogeneous) static load capacity (4.17).
The height h(t) as a function of time for an air bearing subjected to a constant external force
W = Fex starting from initial height h(0) = h0 is derived as follows. Rewriting (4.30) gives

(Fex − C2) dt = C1
1

h3
dh. (4.33)
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Integrating both sides with taking the initial conditions into account yields∫ t

0

(Fex − C2) dt =

∫ h(t)

h0

C1
1

h3
dh (4.34)

(Fex − C2) t = −C1
1

2

(
1

h(t)2
− 1

h2
0

)
. (4.35)

Solving (4.35) for h results in

h(t) = ±
√

1
1
h2
0
− 2

C1
(W − C2)t

. (4.36)

Assuming that the height cannot be negative gives

h(t) =

√
h2

0

1− h2
0

2
C1

(W − C2)t
. (4.37)

The analytic solutions described in (4.10), (4.17), (4.20), (4.30), and (4.37) are used to assess the
numerical solution that is derived in the next section.

4.1.2 Numerical solution
A numerical solution of (4.1) can be found by using e.g. the finite difference method. In order to
find a solution the problem is split up. First, a numerical solution for the homogeneous problem
(4.3) with boundary conditions

p = pin at r = R1,

p = pa at r = R2

(4.38)

is computed. Second, the particular solution is computed by finding a numerical solution for (4.1)
with boundary conditions

p = 0 at r = R1,

p = 0 at r = R2.
(4.39)

Finite Difference Method

The following short introduction on the finite difference method is based on [6]. The derivative
du
dx of a function u = u(x) is defined as :

du

dx
(x) = lim

δ→0

u(x+ δ)− u(x)

δ
= lim
δ→0

u(x)− u(x− δ)
δ

= lim
δ→0

u(x+ 1
2δ)− u(x− 1

2δ)

δ
. (4.40)

The discretization follows from a Taylor expansion, which for u(x+ δ) at x is

u(x+ δ) = u(x) + δ
du

dx
(x) +

δ2

2!

d2u

dx2
(x) +

δ3

3!

d3u

dx3
(x) + . . . . (4.41)

This can be rewritten to
du

dx
(x) =

u(x+ δ)− u(x)

δ
+O(δ) (4.42)

where O(δn) denotes the local truncation error that contains terms of order n in δ. This is called
the "forward finite difference". For u(x− δ) the Taylor expansion becomes

u(x− δ) = u(x)− δ du
dx

(x) +
δ2

2!

d2u

dx2
(x)− δ3

3!

d3u

dx3
(x) + . . . (4.43)
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which can be rewritten to
du

dx
(x) =

u(x)− u(x− δ)
δ

+O(δ) (4.44)

and is called the "backward finite difference". The "central finite difference" is computed as
follows. Take the Talyor expansions of u(x+ 1

2δ) and u(x− 1
2δ) resulting in

u(x+
1

2
δ) = u(x) +

1

2
δ
du

dx
(x) +

( 1
2δ)

2

2!

d2u

dx2
(x) +

( 1
2δ)

3

3!

d3u

dx3
(x) + . . . (4.45)

u(x− 1

2
δ) = u(x)− 1

2
δ
du

dx
(x) +

( 1
2δ)

2

2!

d2u

dx2
(x)−

( 1
2δ)

3

3!

d3u

dx3
(x) + . . . (4.46)

Rewrite (4.45) and (4.46) gives

1

2

du

dx
(x) =

u(x+ 1
2δ)− u(x)

δ
−

1
4δ

2!

d2u

dx2
(x)−

1
8δ

2

3!

d3u

dx3
(x) + . . . (4.47)

1

2

du

dx
(x) =

u(x)− u(x− 1
2δ)

δ
+

1
4δ

2!

d2u

dx2
(x)−

1
8δ

2

3!

d3u

dx3
(x) + . . . (4.48)

Summing (4.47) and (4.48) yields

du

dx
(x) =

u(x+ 1
2δ)− u(x− 1

2δ)

δ
+O(δ2) (4.49)

Note that the truncation error O(δ2) of the central finite difference is one order higher than that
of the forward finite difference and the backward finite difference. An approximation of the second
derivative can be found by applying the central finite difference on the intermediate points resulting
in

d2u

dx2
=

du
dx (x+ 1

2δ)−
du
dx (x− 1

2δ)

δ
=

u(x+δ)−u(x)
δ − u(x)−u(x−δ)

δ

δ
=

=
u(x− δ)− 2u(x) + u(x+ δ)

δ2
+O(δ2).

(4.50)

r
0 1 i− 1 i i+ 1 I

pi

Figure 4.2: Spatial discrete grid of the radius r.

Homogeneous solution

A numerical solution for (4.3) is found by dividing the radius in a grid with I intermediate non-
equidistant intervals as shown in Figure 4.2. Herein pi = p(ri) is the pressure at grid point i with
radius ri. Equation (4.3) at grid point i can be written in finite difference form by applying the
central finite difference to the first derivative of (4.3) resulting in

1
1
2 (∆ri−1 + ∆ri)

[
r
∂p

∂r

∣∣∣∣
i+ 1

2

− r ∂p
∂r

∣∣∣∣
i− 1

2

]
= 0 (4.51)

where
∆ri−1 = ri − ri−1 ∆ri = ri+1 − ri. (4.52)
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Application of the central finite difference to the remaining derivatives yields

r
∂p

∂r

∣∣∣∣
i+ 1

2

=
1

2
(ri+1 + ri)

pi+1 − pi
∆ri

(4.53)

and

r
∂p

∂r

∣∣∣∣
i− 1

2

=
1

2
(ri + ri−1)

pi − pi−1

∆ri−1
. (4.54)

Substitution of (4.53) and (4.54) in (4.51) results in

1
1
2 (∆ri−1 + ∆ri)

[
1

2
(ri+1 + ri)

pi+1 − pi
∆ri

− 1

2
(ri + ri−1)

pi − pi−1

∆ri−1

]
= 0 (4.55)

which can be rewritten as

(ri+1 + ri)

(∆ri−1 + ∆ri) ∆ri
pi+1+

(
− (ri+1 + ri)

(∆ri−1 + ∆ri) ∆ri
− (ri + ri−1)

(∆ri−1 + ∆ri) ∆ri−1

)
pi+

(ri + ri−1)

(∆ri−1 + ∆ri) ∆ri−1
pi−1 = 0.

(4.56)
Or in short notation

ch1,ipi−1 + ch2,ipi + ch3,ipi+1 = 0. (4.57)

Taking the boundary conditions into account this can be written as the grid function

Rhom =


ch1,ipi+1 + ch2,ipi + ch3,ipi−1 = 0 ∀ i : R1 < ri < R2

pi − pin = 0 ∀ i : ri = R1

pi − pa = 0 ∀ i : ri = R2

. (4.58)

This can be written into the following matrix notation

Rhom p
hom

= chom. (4.59)

where

Rhom =



1
ch1,1 ch2,1 ch3,1

. . . . . . . . .
ch1,i ch2,i ch3,i

. . . . . . . . .
ch1,I−1 ch2,I−1 ch3,I−1

1


, p
hom

=



p0

p1

...
pi
...

pI−1

pI


, chom =



pin
0
...
0
...
0
pa


.

(4.60)
This set of linear equations can be solved with for example a Gaussian elimination method.
The static load capacity is computed by substituting the computed pressure distribution p

hom
into

(4.16). The integral in this equation is numerically calculated with the trapezoidal integration
method resulting in

Wnum = πR2
1pin − πR2

2pa + 2π

∫ R2

R1

(rp) dr

≈ πR2
1pin − πR2

2pa + 2π
1

2

I−1∑
i=0

[(ri+1 − ri) (ri+1phom,i+1 + riphom,i)] .

(4.61)
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r
1 i− 1 i i+ 1 I

t

1

j

J

0
0

ri− 1
2

ri+ 1
2

1
2 (∆ri−1 + ∆ri)

pi,j

Figure 4.3: Discrete grid of the air bearing radius r and time t.

Particular solution

Equation (4.1) contains besides the spatial derivative also a time derivative. Therefore the space
and time grid as shown in Figure 4.3 is considered. Herein pi,j = p(ri, tj) is the pressure at
grid point (i, j) with radius ri and on time tj . I and J denote the number of intermediate non-
equidistant intervals in the space and time direction, respectively. Further, ∆ri−1 = ri− ri−1 and
∆ri = ri+1 − ri.
For the derivation of the finite difference form of (4.1), the following form of the incompressible
Reynolds equation is used

1

r

∂

∂r

(
rh3 ∂p

∂r

)
= 12µ

∂h

∂t
. (4.62)

which is found by eliminating ρ from (3.74) and bringing µ to the right hand side with the
assumption of a uniform viscosity. Note that (4.62) can be rewritten as (4.1) with the assumption
of a uniform film thickness. By applying the spatial central finite difference at ri using the
intermediate points i± 1

2 , (4.62) is approximated by

1

ri

[
1

1
2 (∆ri−1 + ∆ri)

(
rh3 ∂p

∂r

∣∣∣∣
i+ 1

2

− rh3 ∂p

∂r

∣∣∣∣
i− 1

2

)]
=12µ

∂h

∂t
. (4.63)

Note that the time index j is omitted here for simplicity. Application of the central finite difference
on the intermediate points yields

rh3 ∂p

∂r

∣∣∣∣
i+ 1

2

=
1

2

(
rih

3
i + ri+1h

3
i+1

) pi+1 − pi
∆ri

∨
(

1

2
(ri+1 + ri)

)(
1

2
(hi+1 + hi)

)3
pi+1 − pi

∆ri

(4.64)
and

rh3 ∂p

∂r

∣∣∣∣
i− 1

2

=
1

2

(
ri−1h

3
i−1 + ri + h3

i

) pi − pi−1

∆ri−1
∨
(

1

2
(ri + ri−1)

)(
1

2
(hi + hi−1)

)3
pi − pi−1

∆ri−1
.

(4.65)
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As can be seen above, two methods can be used to evaluate the central finite difference on the
intermediate points. The two methods will be investigated later. Substituting (4.64) and (4.65)
in (4.63) results in

C3

(
C1
pi+1 − pi

∆ri
− C2

pi − pi−1

∆ri−1

)
= 12µ

∂h

∂t
(4.66)

where

C1 =
1

2

(
rih

3
i + ri+1h

3
i+1

)
∨
(

1

2
(ri+1 + ri)

)(
1

2
(hi+1 + hi)

)3

, (4.67)

C2 =
1

2

(
ri−1h

3
i−1 + ri + h3

i

)
∨
(

1

2
(ri + ri−1)

)(
1

2
(hi + hi−1)

)3

(4.68)

and
C3 =

1
1
2ri(∆ri−1 + ∆ri)

(4.69)

Rewriting (4.66) results in

C3C2

∆ri−1
pi−1 − C3

(
C2

∆ri−1
+

C1

∆ri

)
pi +

C3C1

∆ri
pi+1 = 12µ

∂h

∂t
(4.70)

The following grid function can now be defined

Rinc =


c1,ipi−1 + c2,ipi + c3,ipi+1 = 12µ∂h∂t ∀ i : R1 < ri < R2

pi = 0 ∀ i : ri = R1

pi = 0 ∀ i : ri = R2

(4.71)

where
c1,i =

C3C2

∆ri−1
, c2,i = −C3

(
C2

∆ri−1
+

C1

∆ri

)
, c3,i =

C3C1

∆ri
. (4.72)

In matrix notation this gives

Rpart,jppart,j = 12µ
∂h

∂t j
cpart (4.73)

where

Rpart,j



1
c1,2 c2,2 c3,2

. . . . . . . . .
c1,i c2,i c3,i

. . . . . . . . .
c1,I−1 c2,I−1 c3,I−1

1


, p
part,j

=



p1

p2

...
pi
...

pI−1

pI


, cpart =



0
1
...
1
...
1
0


(4.74)

and the time indices j are written again.

Numerical integration scheme

Figure 4.4 shows schematically the numerical procedure that is applied to find the numerical
solution of (4.1) for an air bearing subjected to a known transient external force Fex. Further, it
is assumed that the height h(t0) = h0 is known. The balance of forces acting on the bearing is
described by

Fex,j = Whom + Fpart,j (4.75)

where Fex,j is the externally applied load on time tj , Whom is the numerical static load capacity
in (4.61) and Fpart,j is the air bearing force contribution of the particular pressure distribution.

Dynamic behavior of thrust air bearings 29



CHAPTER 4. THRUST AIR BEARING MODEL

The homogeneous load capacity Whom is computed using (4.61) where p
hom

is found by solving
(4.59). Fpart,j follows from the trapezoidal integration of p

part,j

Fpart,j =

∫ 2π

0

∫ R2

R1

rp drdφ ≈ 2π
1

2

I−1∑
i=0

[(ri+1 − ri) (ri+1ppart,i+1,j + rippart,i,j)] . (4.76)

p
part,j

follows from solving
Rpart,j p

′
part,j

= 12µcpart (4.77)

where
p
part,j

= p′
part,j

∂h

∂tj
. (4.78)

Note that (4.77) follows from substituting (4.78) in (4.73). Substitution of (4.78) in (4.76) yields

Fpart,j =2π
1

2

I−1∑
i=0

[
(ri+1 − ri)

(
ri1+1p

′
part,i+1,j + ri1p

′
part,i,j

)] ∂h
∂tj

=F ′part,j
∂h

∂tj

(4.79)

Substituting (4.79) in (4.75) results in the following expression for ∂h
∂tj

∂h

∂t j
=
Fex,j −W
F ′part,j

(4.80)

Knowing ∂h
∂tj

, the height hj+1 can be determined for sufficiently small ∆t = tj+1 − tj by

hj+1 = hj +

∫ tj+1

tj

∂h

∂t
dt ≈ hj +

∂h

∂t

∣∣∣∣
j

∆tj . (4.81)

This integration method is called the first order forward Euler integration method [4]. hj+1 is
then the input for a new iteration at the next time step.
The pressure distribution at tj is computed by

p
j

= p
hom

+ p
part,j

= p
hom

+ p′
part,j

∂h

∂tj
. (4.82)

4.1.3 Analytical versus numerical solution
In this section the results for a general solution of the gap height h(t), for two different discretiza-
tion methods, and for a convergence analysis will be presented. For all the results an initial
height h0 = 50 · 10−6 m, pin = ps = 2 · 105 N/m2, M = 7 kg, and a constant external force of
Fex = Mg = 68.67 N is used. Further, the number of elements in the spatial and time direction
is I = 1000 and J = 1000, respectively. The remaining used parameter values are shown in Table
4.1.
Figure 4.5 shows a typical solution of h(t) by applying the numerical procedure as described in
the previous section for a linear and logarithmic time discretization and a logarithmic spatial
discretization. As can be seen, the height initially decreases fast and approaches 0 asymptotically.
Equation (4.30) shows that if W is larger than the static load capacity, then the lubrication film
force is proportional to the velocity. Because of the negative sign of C1 in (4.31) the bearing
force acts in the opposite direction of the velocity. It can be concluded that the fluid film acts
as a damper. Further, it can be seen that the numerical solution coincides well with the analytic
solution.
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IC: j = 0, h0, Fex

Compute Whom

Solve Rpart,j p
′
part,j

= 12µcpart for p′part,j , equation (4.77)

Compute F ′part,j , equation (4.79)

Compute ∂h
∂tj

=
Fex,j−Whom

F ′part,j
, equation (4.80)

Compute hj+1 = hj + ∂h
∂tj

∆tj , equation (4.81)

j = J?

Stop

j = j + 1

no
yes

Figure 4.4: Solution scheme for solving h(t) numerically for the incompressible Reynolds equation.
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Figure 4.6 shows the error between the numerical and analytic solutions. It is seen that the
error in the logarithmic grid is smaller than for the linear grid. The maximum error in the
logarithmic and linear grid compared with the analytic solution is respectively 5.7 ·10−8 m (0.3 %)
and 2.5 · 10−6 m (5 %). From the solution of the height in Figure 4.5 it is seen that the height
decreases fast initially. In order to sufficiently approximate this decrease in the numerical solution,
it is desired to apply a fine time grid. Because the logarithmic grid has a more dense grid initially,
the height is approximated better by the logarithmic grid than by the linear grid. The logarithmic
grid becomes less dense when time increases and this means that the linear grid approximates the
height better at larger times as can be seen in Figure 4.6. Hence, the application of a logarithmic
grid or linear grid depends on the solution of the height. It is also possible to construct for example
a hybrid grid between logarithmic or linear grids, or a grid with varying densities.
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Figure 4.5: Numerical solution of h(t) for
h0 = 50 · 10−6 m, Fex = 68.67 N, I = 1000,
J = 1000.

Figure 4.6: Error between analytic and nu-
meric height for h0 = 50 · 10−6 m, Fex =
68.67 N, I = 1000, J = 1000.

In the derivation of the finite difference discretization of the Reynolds equation two options emerged
for the coefficients C1 and C2 in (4.64) and (4.65), respectively. In order to investigate the difference
between option one (FD1) and option two (FD2) for C1 and C2, a dynamic simulation can be
conducted for each option with the parameter values mentioned in the beginning of this section.
Further, a logarithmic spatial discretization and a linear time discretization are used. Figure 4.7
shows the pressure distribution of the numerical solutions and the analytic solution. As can be
seen, the differences between FD1, FD2, and the analytic solution are not visible in this figure.
Therefore, Figure 4.8 shows the error between the numeric pressure distribution for option one
and two and the analytic solution in an attempt to identify a difference. Also in this figure no clear
differences are seen but it can be seen that the maximum error in the pressure is approximately
0.1 N/m2. To identify a difference between FD1 and FD2, Figure 4.9 shows the difference between
the errors in Figure 4.8. From this figure it can be seen that there is no clear advantage between
FD1 or FD2. For small and large radii option two has a smaller error than option one but in the
middle sector option one is smaller. For simplicity option one is used in the remainder of this
study.

In order to assess the numerical procedure a convergence analysis is performed to study if the
numerical procedure behaves as expected. The pressure distribution is discretized with the central
finite difference method resulting in a truncation error of O(δ2) (see (4.49)). If the number of
intermediate sections I doubles to 2I for a linear discretization, the distance between these points
halves resulting in O(( 1

2δ)
2) = 1

4O(δ2). Hence, the truncation error for 2I is four times smaller
compared with the truncation error for I.

Figure 4.10 shows the maximum relative error between the numeric and analytic solution as
function of the number of intermediate spatial intervals I for a linear spatial discretization and a
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Figure 4.7: Pressure distribution for Fex =
68.67 N, I = 1000, J = 1000.

Figure 4.8: Error between analytic and nu-
meric pressure for Fex = 68.67 N, I = 1000,
J = 1000.
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and FD2 (FD1 - FD2) for Fex = 68.67 N,
I = 1000, J = 1000.

Figure 4.10: Relative error in pressure as
function of I for h0 = 50 · 10−6 m, Fex =
68.67 N, J = 1000.

constant linear time discretization. Herein, the relative error is defined as

eI =
pI − pana
pana

(4.83)

where pI is the numerical pressure distribution with I intermediate spatial intervals and pana is
the analytic solution at the same spatial grid points as in pI . It is seen that the error decreases
with an increasing number of intermediate intervals I. This indicates that the numerical solution
is converging towards the analytic solution if the number of elements I is increased. Figure 4.11
shows the ratio between the subsequent relative maximum errors shown in Figure 4.10. As can
be seen, the error ratio converges to 4 if I is large enough, as expected. Figure 4.12 plots the
radius of the maximum error as function of I. From this figure it is clear that the location does
not change for large values of I.
The same assessment is performed for the Euler discretization in (4.81) and a constant linear
spatial discretization with I = 1000. According to Atkinson [4] the maximum error should at least
halve when the number of intermediate intervals doubles. Thus, if we define the relative error of
the numerical solution with J intermediate intervals at time instant t as

eJ(t) =
hJ(t)− hana(t)

hana(t)
, (4.84)
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Figure 4.11: Error ratio in pressure as func-
tion of I for h0 = 50 · 10−60 m, Fex =
68.67 N, J = 1000.

Figure 4.12: Maximum error location as
function of I for h0 = 50 · 10−6 m, Fex =
68.67 N, J = 1000.
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Figure 4.13: Relative error in height as func-
tion of J for h0 = 50·10−6 m, Fex = 68.67 N,
I = 1000.

Figure 4.14: Height error ratio as function
of J for h0 = 50 · 10−6 m, Fex = 68.67 N,
I = 1000.

then
||eJ(t)||∞
||e2J(t)||∞

≥ 2. (4.85)

Herein, hJ(t) denotes the numerical solution for J intermediate intervals at time t, hana is the
analytic solution at time t, and the vector e2J contains only the mutual spatial points of eJ . Figure
4.13 shows the relative maximum errors between the numeric and analytic solution in the height
as function of J . It is clearly seen that the relative error is decreasing if J increases. Figure 4.14
shows the ratio of the maximum errors. As can be seen, the ratio of the maximum errors converges
to 2 if J increases, as expected.

4.2 Compressible fluids
In the previous section, the incompressible Reynolds equation was considered. In the following, a
numerical solution method for the compressible Reynolds equation

1

r

∂

∂r

(
r
ρh3

12µ

∂p

∂r

)
=
∂ρh

∂t
, (4.86)
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is derived. If it is assumed that the viscosity is uniform and the fluid temperature is uniform and
constant in time, equation (4.86) can be rewritten as

1

r

∂

∂r

(
rh3 ∂p

2

∂r

)
= 24µ

∂ph

∂t
. (4.87)

Here, use is made of the ideal gas law
p = ρRsT (4.88)

and
∂p2

∂r
= 2p

∂p

∂r
. (4.89)

First a numerical solution method is derived. Then the difference between the compressible and
incompressible fluid film model is investigated. Furthermore, the convergence behavior of the
numerical method is assessed.

4.2.1 Numerical solution method
The finite difference method and first order backward Euler integration method are used again
to approximate the spatial derivative and time derivative, respectively. An elaboration on the
application of these methods for solving the compressible Reynolds equation as a function of time
is given below.
Application of the central finite difference on the spatial derivative at ri results in

1

ri

[
1

1
2 (∆ri−1 + ∆ri)

(
rh3 ∂p

2

∂r

∣∣∣∣
i+ 1

2

− rh3 ∂p
2

∂r

∣∣∣∣
i− 1

2

)]
= 24µ

∂ph

∂t
(4.90)

where ∆ri = ri+1 − ri and ∆ri−1 = ri − ri−1. Note that the discrete grid as shown in Figure 4.3
is used again and that the time indexes j are omitted for simplicity. The two remaining spatial
derivatives can be approximated by applying the central finite difference again, giving

rh3 ∂p
2

∂r

∣∣∣∣
i+ 1

2

=
1

2

(
rih

3
i + ri+1h

3
i+1

) p2
i+1 − p2

i

∆ri
∨
(

1

2
(ri+1 + ri)

)(
1

2
(hi+1 + hi)

)3 p2
i+1 − p2

i

∆ri

(4.91)
and

rh3 ∂p
2

∂r

∣∣∣∣
i− 1

2

=
1

2

(
ri−1h

3
i−1 + ri + h3

i

) p2
i − p2

i−1

∆ri−1
∨
(

1

2
(ri + ri−1)

)(
1

2
(hi + hi−1)

)3 p2
i − p2

i−1

∆ri−1
.

(4.92)
Note that for the bearing in Figure 4.1 it will hold that hi = h ∀ i (uniform height). For simplicity
only the first approximation in (4.91) and (4.92) is used. Substituting (4.91) and (4.92) in (4.90)
yields

C3

(
C1

p2
i+1 − p2

i

∆ri
− C2

p2
i − p2

i−1

∆ri−1

)
= 24µ

∂ph

∂t
(4.93)

Here
C1 =

1

2

(
rih

3
i + ri+1h

3
i+1

)
, (4.94)

C2 =
1

2

(
ri−1h

3
i−1 + rih

3
i

)
, (4.95)

and
C3 =

1
1
2ri (∆ri−1 + ∆ri)

. (4.96)

Equation (4.93) can be rewritten as

C3C2

∆ri−1
p2
i−1 − C3

(
C2

∆ri−1
+

C1

∆ri

)
p2
i +

C3C1

∆ri
p2
i+1 = 24µ

∂ph

∂t
(4.97)
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For simplicity this is written as

c1,ip
2
i−1 + c2,ip

2
i + c3,ip

2
i+1 = 24µ

∂ph

∂t
(4.98)

where

c1,i =
C3C2

∆ri−1
, c2,i = −C3

(
C2

∆ri−1
+

C1

∆ri

)
, c3,i =

C3C1

∆ri
. (4.99)

Application of the first order backward Euler integration method on the time derivative is used to
obtain an implicit notation of (4.98) with respect to time

c1,i,j+1p
2
i−1,j+1 + c2,i,j+1p

2
i,j+1 + c3,i,j+1p

2
i+1,j+1 = 24µ

pi,j+1hi,j+1 − pi,jhi,j
tj+1 − tj

. (4.100)

Combining (4.100) and the boundary conditions

p = pin at r = R1,

p = pa at r = R2

(4.101)

results in the following grid function in zero form
pi,j+1 − pin = 0 ∀ i : ri = R1

c1,i,j+1p
2
i−1,j+1 + c2,i,j+1p

2
i,j+1 + c3,i,j+1p

2
i+1,j+1 − 24µ

pi,j+1hi,j+1−pi,jhi,j
tj+1−tj = 0 ∀ i : R1 < ri < R2

pi,j+1 − pa = 0 ∀ i : ri = R2

.

(4.102)
This can be written as a non-linear system of equations

f
comp

(p
j+1

) =



p0,j+1 − pin
c1,1,j+1p

2
0,j+1 + c2,1,j+1p

2
1,j+1 + c3,1,j+1p

2
2,j+1 − 24µ

p1,j+1h1,j+1−p1,jh1,j

tj+1−tj
...

c1,I−1,j+1p
2
I−2,j+1 + c2,I−1,j+1p

2
I−1,j+1 + c3,I−1,j+1p

2
I,j+1 − 24µ

pI−1,j+1hI−1,j+1−pI−1,jhI−1,j

tj+1−tj
pI,j+1 − pa

 = 0.

(4.103)
Newton’s method can be used to find the root of (4.103) if hj and hj+1 are known. Hence, the
Jacobian of f

comp
is needed which is

Jcomp =


1

2c1,1p0 2c2,1p1 − 24η hi
tj+1−tj 2c3,1p2

. . . . . . . . .
2c1,I−1pI−2 2c2,I−1pI−1 − 24η hi

tj+1−tj 2c3,I−1pI
1

 .
(4.104)

Note that in (4.104) the index j + 1 is omitted. The first order backward Euler equation (4.103)
is solved with a regula falsi method.
The regula falsi method is implemented in the following solution procedure to compute the nu-
merical solution h(t) for a time dependent external force Fex(t) starting from an initial height
h(t0) = h0 with ∂ph

∂t = 0. Figure 4.15 gives a scheme for this procedure. Then, Newton’s method
is used to find a static pressure distribution p

0
from (4.103). Subsequently, the static load capacity

is computed using

Fab(p) = πR2
1pin − πR2

2pa + 2π
1

2

I−1∑
i=0

[(ri+1 − ri) (ri+1pi+1 + ripi)] (4.105)
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Set IC: t0 = 0, h0 = h(t0), ∂ph∂t = 0, j = 0

Determine p
0
with Newton’s

method (4.103) and compute
Fab,0 (4.105)

m = 1, h0
j+1 = hj , h

1
j+1 = 0.9hj

Solve f
comp

(hmj+1, hj , pj , p
m
j+1

) = 0 for pm
j+1

(4.103), fig (4.16)

Compute Fmab,j+1(pm
j+1

) (4.105)

Solve Fex,j+1 = amhm+1
j+1 + bm for hm+1

j+1 (4.108)

‖hm+1
j+1 − h

m
j+1‖ < ε

hj+1 = hm+1
j+1

tj+1 = tJ

Stop

j = j + 1

m = m+ 1

yes
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Variables
t : Time
hmj : Gap height vector
Fex,j : External force at tj
p
j

: Pressure distribution in r at tj
Fab : Air bearing force
am : = (Fmab,j+1 − F

m−1
ab,j+1)/(hmj+1 − h

m−1
j+1 )

bm : = Fmab,j+1 − amh
m
j+1

ε : Stop criterion for m iteration

Sub/Superscripts
j : Nodal value in time
m: Iteration number

Remarks
F 0
ab,j+1: Static load capacity
J : Last time node

Figure 4.15: Solution scheme for solving the height as function of time.

where p = p
0
. Then a height hmj+1 at the next time instant is guessed where m denotes the mth

guessed value for the time instant j + 1. For this guess a value of 0.9 times the height at the
previous time instant is used because it is expected that the height will monotonically decrease.

h1
j+1 = 0.9hj . (4.106)

In the first time step, h0, h
1
1 = 0.9h0 and p

0
are substituted in (4.103) and (4.104) and Newton’s

method is used to find the root p1
1
. Figure 4.16 gives the solution scheme for Newton’s method.

The force caused by p1
1
on the air bearing is computed with (4.105). The balance of forces states

that this force must be equal to the external applied force

Fex,j+1 = Fab,j+1(p
j+1

(hj+1)). (4.107)
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IC: hj+1, hj , pj

k = 1, set p1
j+1

Compute Jcomp(p
k
j+1

)

pk+1
j+1

= pk
j+1
−
[
Jcomp(p

k
j+1

)
]−1

f
comp

(pk
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Stop
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Figure 4.16: Solution scheme for Newton’s method.

Using the regula falsi method (4.107) is rewritten into

Fex,j+1 =
Fmab,j+1 − F

m−1
ab,j+1

hmj+1 − h
m−1
j+1

hm+1
j+1 + Fmab,j+1 −

Fmab,j+1 − F
m−1
ab,j+1

hmj+1 − h
m−1
j+1

hmj+1. (4.108)

Equation (4.108) is then used to compute a new guess for h1 namely h2
1. Herein, the previous

guess h0
1 = h0 and the current guess h1

1 = 0.9h0 are used as the boundaries in the regula falsi
method. The new guess is compared with the current guess. If the difference is too large a new
pressure distribution and air bearing force is computed with the new guess. This is iterated until
the difference between the new guess and current guess is small enough. If the difference is small
enough the last guess is accepted as the solution of h1. Then the above described process is
repeated for the next time instant where the first guess for the height is 0.9 times smaller than
the height at the previous time instant.

4.2.2 Results

Figure 4.17 gives the static pressure distribution of the bearing under consideration for the com-
pressible and incompressible case for the parameter values in Table 4.1. It is clearly seen that the
static pressure distribution is higher for compressible fluids than for incompressible fluids. Due to
the compressibility, the mass density is not uniform in the radial direction and this effect cannot
be neglected. The mass density influence the pressure according to the ideal gas law (4.88). In the
compressible case the mass density is uniform and does not influence the pressure distribution.
The influence of the mass density results in an overall higher pressure for the compressible fluid
film. This difference is also seen in the static load capacity where the compressible load capacity
is approximately 72 N and the incompressible load capacity 55 N.
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Table 4.2: Maximum differences between iteratively computed relative pressure distributions in
Newton’s method.

m ||pk − pk−1||∞/pa [−]

1 8.579 · 10−2

2 2.487 · 10−3

3 2.14 · 10−6

4 1.124 · 10−12

Figure 4.18 plots the uniform height response for the compressible and incompressible case. In
this simulation the air bearing is subjected to a constant force of Fex = 200 N with an initial
height of h0 = 50 µm. As can be seen, the height for the compressible case decreases somewhat
faster than for the incompressible case.
Figure 4.19 shows the compressible pressure distribution just after the application of an external
force of Fex = 200 N at t = 1.3209 · 10−8 s and after 0.5 seconds. The pressure distribution at
t = 1.3209 · 10−8 s is increased by approximately 0.22 · 105 N/m2 compared with the compressible
static pressure distribution shown in Figure 4.17. The shape is similar except at the boundaries
where the boundary conditions have to be satisfied. This increase in pressure is probably caused
by the compressibility of the fluid. Because the gap height decreases very fast initially, this results
in a lower volume underneath the bearing. The decrease in volume results in an increase in the
density and by the ideal gas law in an increase in pressure. Due to the increased pressure, the air
underneath the bearing will start to flow out of the bearing clearance and the density of the fluid
underneath the bearing will drop again. Eventually, a steady state pressure distribution is formed
that is shown in Figure 4.19 at t = 0.5 seconds. For a more elaborate discussion on the initial
response of the air bearing see appendix C.2.
Figure 4.20 shows the convergence rate of Newton’s method for the computation of the static
pressure distribution with h0 = 50 µm. Herein, the relative differences for subsequent computed
pressure distributions is used. The numerical values are shown in Table 4.2. It is clearly seen that
the maximum difference between the iteratively computed relative pressure distributions decreases
quadratic, as expected [4].
Figure 4.21 plots the maximum difference between the dynamic height solutions h for the com-
pressible case using 2J and J time discretization points for different values of J (evaluating the
differences only on the J grid). The results are obtained using a logarithmic spatial grid with
I = 1000 and a linear time grid between the time points t = 0 s and t = 0.5 s. As can be
seen, the difference between the height solutions becomes smaller if the number of intermediate
time intervals J increases. Figure 4.22 depicts the ratios between the maximum difference of a
height solution with 2J and J where eJ = ||h2J − hJ ||∞. It can be seen that the ratio is equal to
approximately 2, as expected due to the first order backward Euler implementation.
Figure 4.23 shows the maximum difference between the numerical static compressible pressure
solutions for 2I and I for different values of I. The parameter values in Table 4.1 are again used
with a spatial linear grid. It can be seen that the errors between the pressure distributions decrease
if the number of intermediate intervals I increases. The rate at which the pressure distributions
converge is approximately 4 (quadratic convergence) if I is large enough. This is also seen in
Figure 4.22 where eJ = ||p

2J
− p

J
||∞. This is as expected because of the central finite difference

approximation of the spatial derivatives.
Based on the observations that the errors between the computed solutions decrease if the number
of elements in the spatial and time directions increases it can be concluded that the numerical
solution converges.
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Figure 4.17: Numerically computed static
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Figure 4.18: Numerically computed solution
of h(t) for compressible and incompressible
fluids for Fex = 200 N I = J = 1000.

Radius [m]

P
re
ss
u
re

[N
/
m

2
]

 

 

1

1.2

1.4

1.6

1.8

2

2.2

2.4
×105

0 0.5 1 1.5 2 2.5 3 3.5 4
×10− 2

t = 1.3209 · 10−8 s
t = 0.5 s

Iteration k [-]

||p
k
−

p
k
−
1
|| ∞

/
p
a
[−

]

10−15

10−10

10−5

100

1 2 3 4

Figure 4.19: Numerically computed pres-
sures for incompressible fluids with Fex =
200 N, I = J = 1000.

Figure 4.20: Convergence of Newton’s
method.
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Figure 4.24: Height error ratios as function
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4.3 Compressible fluids with orifice restrictor

The function of the orifice in the air bearing is to supply air and generate stiffness. Due to the
orifice the pressure underneath the orifice po changes as function of the air bearing gap height,
while the supply pressure remains constant. The orifice model and the air bearing fluid film model
are coupled by the mass flow through the air bearing. It is assumed that the mass flow through
the orifice is equal to the mass flow through the air bearing clearance. Two models for the orifice
mass flow are considered. First the mass flow through a hole based on Bernoulli’s law is considered
in subsection 4.3.1. Subsequently, an improved orifice mass flow model by Holster [14] is discussed
in subsection 4.3.2.

4.3.1 Orifice model by Bernoulli’s law

The mass flow in kg/s of a fluid through a hole based on the compressible Bernoulli equation [14]
can be described by

ṁ = Cd
Aeff√
RsT

φ(pb, pe) (4.109)

where

φ(pb, pe) =


pb

√
2κ
κ−1

((
pe
pb

) 2
κ −

(
pe
pb

)κ+1
κ

)
if pe

pb
≥
(

2
κ+1

) κ
κ−1

pb

(
2κ
κ+1

) 1
2
(

2
κ+1

) 1
κ−1

if pe
pb
<
(

2
κ+1

) κ
κ−1

. (4.110)

Herein, Cd is the dimensionless coefficient of discharge and Aeff is the cross sectional area of the
hole. Further, Rs is the specific gas constant, T is the fluid temperature, pb is the pressure at the
beginning of the hole, pe is the pressure at the end of the hole, and κ is the adiabatic expansion
coefficient (see also Figure 4.25). The piecewise boundary for κ = 1.405 is pe/pb = 0.53.

Equation (4.109) only holds for pe ≤ pb and positive mass flows ṁ > 0. The hole mass flow has to
be defined piecewise to also take negative mass flows into account for which holds pe ≥ pb. This
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pb pe

Hole Aeff

Figure 4.25: Schematical drawing of hole with two different pressures at beginning and end.

results in the following definition for φ

φ(pb, pe) =



pb

(
2κ
κ+1

) 1
2
(

2
κ+1

) 1
κ−1

if pe
pb
<
(

2
κ+1

) κ
κ−1

pb

√
2κ
κ−1

((
pe
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) 2
κ −

(
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)κ+1
κ

)
if
(

2
κ+1

) κ
κ−1 ≤ pe
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≤ 1

−pe

√
2κ
κ−1

((
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) 2
κ −

(
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pe

)κ+1
κ

)
if 1 < pe

pb
≤
(

2
κ+1

)− κ
κ−1

−pe
(

2κ
κ+1

) 1
2
(

2
κ+1

) 1
κ−1

if pe
pb
>
(

2
κ+1

)− κ
κ−1

. (4.111)

This equation is graphically shown in Figure 4.26. Herein, the dotted lines indicate the piecewise
boundaries between the four regimes. Equation (4.109) with (4.111) are used to model the mass
flow through the air bearing orifice.

!120

!100

!80

!60

!40

!20

0

20

40

0 0:5 1 1:5 2 2:5 3

pe=pb

_m

Figure 4.26: Graphical representation of the hole mass flow equation for Rs = 287 J/(kgK),
T = 293 K and κ = 1.405.

The mass flow at the air bearing gap edge on the orifice side can be computed with the use of the
continuity equation. The continuity equation is used in the derivation of the Reynolds equation
and follows from the law of conservation of mass stated here as [18]∫

V

∂ρ

∂t
dV = −

∫
A

ρu · dA. (4.112)

42 Dynamic behavior of thrust air bearings



CHAPTER 4. THRUST AIR BEARING MODEL

where u is the velocity vector and vector dA is defined as dA = ndA with n the unit outward
normal to the surface. This equation states that the rate at which the mass changes in a system
is equal to the rate at which mass enters the system through the boundaries. In the case of the
air bearing under consideration (see Figure 4.1) this can be restated as∫

V

∂ρ(r, t)

∂t
dV = −

∫ 2π

0

∫ h(t)

0

ρ(r, t)rur|R1
dzdθ +

∫ 2π

0

∫ h(t)

0

ρ(r, t)rur|R2
dzdθ, (4.113)

where ur is the fluid velocity in the radial direction. From the Navier-Stokes equation an expression
can be found for ur which was derived in (3.51) and is restated here as

ur =
1

2µ

∂p(r, t)

∂r
(z2 − hz), (4.114)

where it is assumed that the bearing does not move in the planar directions. Substitution of
(4.114) in (4.113) results in∫

V

∂ρ(r, t)

∂t
dV = −πh

3rρ(r, t)

6µ

∂p(r, t)

∂r

∣∣∣∣
R1

+
πh3rρ(r, t)

6µ

∂p(r, t)

∂r

∣∣∣∣
R2

. (4.115)

In order to compute the mass flows in the air bearing with the numerical method presented in
subsection 4.2.1, (4.115) has to be rewritten to the finite difference form resulting in∫

V

∂ρ(r, t)

∂t
dV = −πh

3R1(p0,j + p1,j)

12µRsT

p1,j − p0,j

r1 − r0
+
πh3R2(pI,j + pI−1,j)

12µRsT

pI,j − pI−1,j

rI − rI−1
. (4.116)

Here, use is made of the ideal gas law and pi,j and ri with i = 0, 1, . . . , I and j = 0, 1, . . . , J are
the pressures and radii underneath the air bearing with the grid defined in Figure 4.3. Note that
r0 = R1 and rI = R2. The orifice equation (4.109) can be coupled with the air bearing by setting
the mass flow of the orifice equal to the first term on the right hand side of (4.116), which is the
mass flow at the air bearing gap orifice boundary (at r = R1). Hence,

ṁgap = −πh
3R1(p0,j + p1,j)

12µRsT

p1,j − p0,j

r1 − r0
. (4.117)

This can be simplified to

ṁgap = − πh3R1

12µRsT (r1 − r0)

(
p2

1,j − p2
0,j

)
. (4.118)

In the previous sections 4.1 and 4.2, the inlet pressure of the air bearing gap pin was prescribed
as a boundary condition and the first entry of the pressure solution vector was p0 = pin. In the
following, p0 = pin is set equal to the pressure directly underneath the orifice po and the supply
pressure ps is prescribed, see also Figure 4.27. In order to couple the orifice to the air bearing
(4.109) as to be equal to (4.118). This can be written in zero notation as

ṁgap − ṁo = 0. (4.119)

Herein ṁo is described by (4.109) where pb = ps and pe = po. Further, the dimensionless discharge
coefficient Cd is set equal to the dimensionless discharge coefficient of the orifice Cd,o and it is
assumed that Cd,o = 0.8 as was done by Holster and Jacobs [14]. Surface Aeff = Agap = 2πR1h if
Agap < Ao or Aeff = Ao = πR2

1 if Agap > Ao, see Figure 4.27. The system of equations consisting
of (4.119) and (4.102) can be solved with Newton’s method. In that case po = pin = p0 is an
unknown and ps is prescribed. The same solution scheme as described in section 4.2 can be used
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ps

ṁo

po
pin, ṁgapAo = πR2

1

Agap = 2πR1h

Figure 4.27: Schematical drawing of air bearing with parameters assumed for the orifice model by
Bernoulli.

apart form the fact that the system of equations f
comp

and the Jacobian Jcomp have changed to

f
comp

(p
j+1

) =



ṁgap(p0,j+1, p1)− ṁor(ps, p0,j+1)

c1,1,j+1p
2
0,j+1 + c2,1,j+1p

2
1,j+1 + c3,1,j+1p

2
2,j+1 − 24µ

p1,j+1h1,j+1−p1,jh1,j

tj+1−tj
...

c1,I−1,j+1p
2
I−2,j+1 + c2,I−1,j+1p

2
I−1,j+1 + c3,I−1,j+1p

2
I,j+1 − 24µ

pI−1,j+1hI−1,j+1−pI−1,jhI−1,j

tj+1−tj
pI,j+1 − pa


(4.120)

and

Jcomp(pj+1
) =



∂ṁgap
∂p0

− ∂ṁo
∂p0

∂ṁgap
∂p1

2c1,2p1 2c2,2p2 − 24η
hj+1

tj+1−tj 2c3,2p3

. . . . . . . . .
2c1,I−1pI−2 2c2,I−1pI−1 − 24η

hj+1

tj+1−tj 2c3,I−1pI
1


j+1

.

(4.121)
Expressions for ∂ṁgap

∂p0
, ∂ṁo∂p0

, and ∂ṁgap
∂p1

are given in appendix C.3.

4.3.2 Improved orifice model
Holster and Jacobs [14] describe an improved orifice model based on experimental observations
of [27]. Figure 4.28 shows this description graphically. First the supply pressure drops from ps
to po because the air has to cross the orifice hole with area Ao = πR2

1 and discharge coefficient
Cd,o = 0.8. Then the pressure drops again from po to pth because the air crosses the air bearing
inlet gap with area Ain = 2πR1h and Cd,in = 0.9. According to [14] a pressure recovery takes
place just after the inlet of the air bearing gap described by the K factor

K =
po − pin
po − pth

. (4.122)

The factor K is empirically determined in [27] and can be computed using

K = 0.2 + 0.5
(

1− e− Re
1200

)2

. (4.123)

where Re is the Reynolds number described by

Re =
ṁin

πR1η
. (4.124)
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ps

ṁo

po
ṁin

pth, pin
ṁgap

Figure 4.28: Graphical representation of orifice restrictor according to Holster.
.

Figure 4.29 sketches this pressure change across the radius.
The pressure drops across the orifice and inlet gap are described by (4.109), where

ṁo = Cd,o
Ao√
RsT

φ(ps, po), (4.125)

ṁin = Cd,in
Ain√
RsT

φ(po, pth). (4.126)

The mass flows through the orifice and inlet gap have to be equal to the mass flow according to
the Reynolds equation at the orifice edge as defined in (4.118) which is restated here

ṁgap = −πh
3R1(p0 + p1)

12ηRsT

p1 − p0

r1 − r0
. (4.127)

Using (4.122), (4.123), (4.124), (4.125), (4.126), and (4.127) the unknown parameters po, pth,
pin, and ṁ can be determined. Because the unknown parameters are described implicitly in the
equations above, two functions are introduced

f1(po,j+1, pin,j+1) = ṁgap(pin)− ṁin(po, pth(po, pin)) = 0, (4.128)
f2(po,j+1, pin,j+1) = ṁgap(pin)− ṁo(po) = 0, (4.129)

as done in [14]. This can be written as a set of equations

f
o

=

[
f1(po, pin)
f2(po, pin)

]
= 0. (4.130)

This set of equations (4.130) can be solved together with (4.102). Again, the same solution scheme
as described in section 4.2 can be used. Herein, the system of equations f

comp
and the Jacobian

Jcomp have changed to

f
comp

(p
j+1

) =



f1(po, pin)
f2(po, pin)

c1,1,j+1p
2
0,j+1 + c2,1,j+1p

2
1,j+1 + c3,1,j+1p

2
2,j+1 − 24µ

p1,j+1h1,j+1−p1,jh1,j

tj+1−tj
...

c1,I−1,j+1p
2
I−2,j+1 + c2,I−1,j+1p

2
I−1,j+1 + c3,I−1,j+1p

2
I,j+1 − 24µ

pI−1,j+1hI−1,j+1−pI−1,jhI−1,j

tj+1−tj
pI,j+1 − pa


(4.131)
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and

Jcomp(pj+1
) =



∂f1
∂po

∂f1
∂p0

∂f1
∂p1

∂f2
∂po

∂f2
∂p0

∂f2
∂p1

2c1,1p0 2c2,1p1 − 24η
hj+1

tj+1−tj 2c3,1p2

. . . . . . . . .
2c1,I−1pI−2 2c2,I−1pI−1 − 24η

hj+1

tj+1−tj 2c3,I−1pI
1


j+1

.

(4.132)
The derivatives in f

o
are given in appendix C.3. Note that the pressure vector p has the following

form

p =


po

p0 = pin
p1

...
pI

 . (4.133)

r0 R1 R2

p

ps

po

pin

pth

pa

Figure 4.29: Pressure levels underneath the air bearing according to the orifice model of Holster
and Jacobs [14].

4.3.3 Numerical validation

Figure 4.30 shows the static load carrying capacity as function of the air bearing gap height for
the orifice model based on the Bernoulli equation and the model suggested by Holster and Jacobs
[14]. As can be seen, the load carrying capacity is higher for the orifice model by Holster for low
gap heights. For gap heights above approximately 45 · 10−6 m the Bernoulli orifice model shows
larger load carrying capacities.
Figure 4.31 plots the static mass flows of the air bearing. These are computed using (4.118). The
mass flow in the Holster orifice model is larger for gap heights below approximately 45 · 10−6 m.
For larger gap heights the Bernoulli orifice model has the largest mass flow. Both orifice models
will be experimentally validated in the next chapter. Because it is expected that the orifice model
by Holster will coincide better with the experimental results this orifice model is used in remainder
of this chapter.
Figure 4.32 depicts the height response of a bearing that is initially in a static position with an
external force of Fex = 49.05 N, and is then suddenly subjected to an external force of Fex = 70 N.
To obtain this result a logarithmic spatial and linear time grid is used with I = J = 1000. The
initial height is equal to h0 = 3.7 · 10−5 m. This corresponds to the height in Figure 4.30 at
approximately 49.05 N due to gravity. The height initially decreases fast and the velocity decreases
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Figure 4.30: Load capacity as function of
gap height.

Figure 4.31: Mass flow as function of gap
height.
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Figure 4.32: Height response with h0 = 3.7 ·
10−5 m and Fex = 70 N.

until a static height is reached of 2.1 · 10−5 m. Again, this corresponds with the results shown in
Figure 4.30.
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4.4 Complete air bearing model

In the previous sections, a solution method to solve the compressible Reynolds equation was
proposed in order to model the air bearing lubrication film. In this section, the lubrication film
model is combined with a dynamic model of the air bearing. First the dynamic model is described,
then a solution method is elaborated to solve the height as function of time for the dynamic model
coupled with the lubrication model. Finally, some numerical results are presented.

4.4.1 Dynamic air bearing model

Figure 4.33 schematically shows the dynamic model where the height coordinate is represented
by x. In this model, it is assumed that the air bearing can only translate perpendicular to the
bearing surface resulting in a one-dimensional model. The air bearing can be modeled as a rigid
mass that is subjected to the forces Fab(x, ẋ) and Fs(t). The force Fab(x, ẋ) is the force acting
on the air bearing due to the air lubrication and can be seen as a non-linear spring-damper. This
force is equal to the relative pressure distribution underneath the air bearing integrated over the
bearing surface area,

Fab(x, ẋ) = 2π

∫ R2

R1

[r (p(r, x, ẋ)− pa)] dr + πR2
1(pin − pa) (4.134)

where p(r, x, ẋ) follows from the Reynolds equation and pa is the ambient pressure. The force
Fs(t) contains the gravitational force Fg = Mg and the externally applied forces Fex(t)

Fs(t) = Mg + Fex(t) (4.135)

with M the mass of the air bearing and g the gravitational constant. This results in the following
equation of motion

Mẍ = Fab(x, ẋ)− Fs(t). (4.136)

This second order ordinary differential equation may be rewritten to a first order vector ordinary
differential equation

dx

dt
= ẋ =

[
x2

Fab(x1,x2)−Fs
M

]
=

[
v

Fab(x,v)−Fs
M

]
(4.137)

where the state x is defines as

x =

[
x1

x2

]
=

[
x
ẋ

]
=

[
x
v

]
. (4.138)

4.4.2 Dynamic and lubrication model solution

To obtain a complete dynamic model (4.137) and the fluid film model by (4.98), (4.130), and the
outer condition

pI − pa = 0, (4.139)

are coupled by the air bearing force (4.134). The time derivatives in these equations are solved
with the Crank-Nicolson method. This ensures second-order accuracy and unconditional stability
for the time integration process [4].
Applying the Crank-Nicolson integration scheme (Θ = 0.5) on (4.98) gives

pi,j+1xi,j+1 − pi,jxi,j −
∆t

24η
Θ
(
c1,i,j+1p

2
i−1,j+1 − c2,i,j+1p

2
i,j+1 + c3,i,j+1p

2
i+1,j+1

)
−

∆t

24η
(1−Θ)

(
c1,i,jp

2
i−1,j − c2,i,jp2

i,j + c3,i,jp
2
i+1,j

)
= 0 ∀i = 1, . . . , I − 1.

(4.140)

48 Dynamic behavior of thrust air bearings



CHAPTER 4. THRUST AIR BEARING MODEL
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Figure 4.33: Sketch of the assumed dynamic model and free body diagram (FBD).

Applying this scheme to (4.137) yields

F 1 =

[
v
x

]
j+1

−
[
v
x

]
j

−∆t

[
Θ
(
Fab((p))j+1−Fs,j+1

M

)
+ (1−Θ)

(
Fab((p))j−Fs,j

M

)
Θvj+1 + (1−Θ) vj

]
= 0. (4.141)

The air bearing force in (4.141) is computed numerically by

Fab = 2π
1

2

I−1∑
i=0

[(ri+1 − ri) (ri+1(pi+1 − pa) + ri(pi − pa))] + πR2
1(p0 − pa). (4.142)

Combining (4.141), (4.142), (4.130), (4.140), and (4.139) results in a system of non-linear algebraic
equations

F (y
j+1

, y
j
) =


F 1

F 2

F 3

F 4

 = 0 (4.143)

with

y
j

=



vj
xj
po,j
p0,j

p1,j

...
pI,j


. (4.144)

Herein F 1 is defined in (4.141) and

F 2 =

[
ṁgap(p0)− ṁin(po, p0)
ṁgap(p0)− ṁo(po)

]
=

[
fo1
fo2

]
, (4.145)

F 3 =

 F3,1

...
F3,I−1

 = pi,j+1xi,j+1 − pi,jxi,j −
∆t

24η
Θ
(
c1,i,j+1p

2
i−1,j+1 − c2,i,j+1p

2
i,j+1 + c3,i,j+1p

2
i+1,j+1

)
−

∆t

24η
(1−Θ)

(
c1,i,jp

2
i−1,j − c2,i,jp2

i,j + c3,i,jp
2
i+1,j

)
∀i = 1, 2, . . . , I − 1,

(4.146)
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and
F 4 = pI,j+1 − pa. (4.147)

Here, the Holster orifice model is used but the complete model based on the Bernoulli orifice model
is derived analogously.
The above set of equations can again be solved using Newton’s method in an iterative way. There-
fore, the Jacobian of (4.143) with respect to y

j+1
is needed which is defined here as

J =
∂F

∂y
j+1

=


J1

J2

J3

J4

 . (4.148)

The Jacobian with respect to y
j+1

for F 1 is

JT1 =



1 −∆tΘ
0 1
0 0

−∆tΘπ
M

(
(r1 − r0) r0 +R2

1

)
0

−∆tΘ
M

∂Fab
∂p1

0
...

...
−∆tΘ

M
∂Fab
∂pI−1

0

−∆tΘπ
M

(∑I−2
i=0 [−(ri+1 − ri)(ri+1 + ri)]− (rI − rI−1)rI−1 −R2

1

)
0


(4.149)

with

∂Fab
∂pi

= π(ri+1 − ri)ri + (ri − ri−1)ri = π(ri+1 − ri−1)ri ∀ i = 1, 2, . . . , I − 1. (4.150)

For F 2 the Jacobian with respect to y
j+1

is

J2 =

[
0 ∂fo1

∂xj+1

∂fo1
∂po

∂fo1
∂p0

∂fo1
∂p1

0

0 ∂fo2
∂xj+1

∂fo2
∂po

∂fo2
∂p0

∂fo2
∂p1

0

]
. (4.151)

Where

∂fo1
∂xj+1

=
∂ṁgap

∂xj+1
− ∂ṁin

∂xj+1
=
∂ṁgap

∂xj+1
− ∂ṁin

∂h
− ∂ṁin

∂pth

∂pth
∂K

∂K

∂ṁgap

∂ṁgap

∂xj+1
(4.152)

and
∂fo2
∂xj+1

=
∂ṁgap

∂xj+1
. (4.153)

The other derivatives in (4.151) can be found in section 4.3. For F 3 the Jacobian is

J3 =
[
0[(I−1)×1]

∂F 3

∂xj+1
0[(I−1)×1]

∂F 3

∂p
j+1

]
(4.154)

With

∂F3,i

∂xj+1
= pi,j+1−

∆tΘ

24η

(
∂c1,i,j+1

∂xj+1
p2
i−1,j+1 −

∂c2,i,j+1

∂xj+1
p2
i,j+1 +

∂c3,i,j+1

∂xj+1
p2
i+1,j+1

)
∀i = 1, . . . , I−1

(4.155)
Herein,

∂c1,i,j+1

∂xj+1
= 3x2

j+1

ri + ri+1

ri (ri+1 − ri−1) (ri+1 − ri)
, (4.156)
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Table 4.3: Maximum error between iteratively computed solutions in Newton’s method.

m ||yk − yk−1||∞/pa [−]

1 1.983 · 100

2 1.452 · 10−3

3 1.464 · 10−6

4 1.919 · 10−12

∂c3,i,j+1

∂xj+1
= 3x2

j+1

ri−1 + ri
ri (ri+1 − ri−1) (ri − ri−1)

, (4.157)

and
∂c2,i,j+1

∂xj+1
=
∂c1,i,j+1

∂xj+1
+
∂c3,i,j+1

∂xj+1
, (4.158)

if it is assumed that the bearing is flat (xi = xi+1 ∀i). Further,

∂F3,i

∂p
j+1

=[
0[1×(i−1)] 2∆tΘ

24η c1,i,jpi−1,j+1 xi,j+1 − 2∆tΘ
24η c2,i,jpi,j+1 2∆tΘ

24η c3,i,jpi+1,j+1 0[1×(I−1−i)]

]
∀i = 1, . . . , I − 1.

(4.159)

For F 4 the Jacobian is
J4 =

[
0[1×(I+3)] 1

]
. (4.160)

Applying Newton’s method to find a root of (4.143) results in the following iteration scheme

yk+1
j+1

= yk
j+1
− J(yk

j+1
)−1F (yk

j+1
) (4.161)

Where k denotes the kth iteration. The starting point of the time simulation is y
0
with v0 = 0, x0

a known height, and po,0 and p
0
the static pressure distribution determined as explained in section

4.3. After convergence of the iteration scheme (4.161), yk+1
j+1

is set equal to y
j
and the iteration

scheme is started again from k = 1 where y1
j+1

= y
j
. This is repeated until j + 1 = J .

4.4.3 Simulation results
Figure 4.34 shows the gap height response from the static height (Fex = Fg = Mg) if the air
bearing is suddenly subjected to an external force of Fex = 70 N. Both the full model result (the
complete air bearing model with inertia) and the lubricant film model (without inertia as derived
in chapter 4.3) are plotted. As can be seen, the full model height is initially decreasing less fast
than the fluid film model. This is due to the mass of the air bearing that first has to come in
motion. Eventually both models converge to the same static height.
Figure 4.35 plots the maximum error between Newton iteration solutions during the first time
step of the simulation result shown in Figure 4.34. The values of these errors are given in Table
4.3. The convergence rate is initially linear but becomes quadratic in the last iteration step, as
expected.
Figure 4.36 shows the maximum error between height solutions computed with J time elements
and 2J elements as function of J . For this error analysis a sinusoidal force is used with a frequency
of 5 Hz and amplitude of 5 N. As can be seen, the maximum error decreases if the number of
elements increases. Because of the Crank-Nicolson implementation for the time derivative it is
expected that if the number of elements is doubled the error decreases with a factor 4. Figure
4.37 plots the ratio between the error eJ = ||hJ − h2J ||∞ and e2J = ||h2J − h4J ||∞. Herein, this
behavior is clearly seen.
More simulation results such as the response to an impulse force and a sine-sweep are shown in
appendix C.4.

Dynamic behavior of thrust air bearings 51



CHAPTER 4. THRUST AIR BEARING MODEL

Time [s]

G
ap

h
ei
gh

t
[m

]

2

2.5

3

3.5

4
×10− 5

0 0.02 0.04 0.06 0.08 0.1
 

 
Full model
Fluid model

Iteration k [-]

||y
k
−

y
k
−
1
|| ∞

/
p
a

10−15

10−10

10−5

100

105

1 2 3 4

Figure 4.34: Solution of height for Fex =
70 N

Figure 4.35: Newton convergence in first
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4.5 Summary
First the lubricant film model for incompressible fluids was derived. For this, use was made of the
finite difference method for the spatial derivatives. In static situations, the emerging equations
were solved with the Gaussian elimination method. In dynamic situations, the time derivative
was approximated with the first order forward Euler method. It was observed that the lubricate
film acted as a damper. Second, a model for the incompressible lubricate film model was derived.
Herein, the time derivatives were approximated by a first order backward Euler method, because
of the unconditional stability, and solved with Newton’s method. Then, the lubricant film model
was extended with an orifice restrictor model to also include stiffness effects into the lubricate film
model. Finally, the lubricant film model and a solid dynamics model were combined to obtain a
complete dynamic model for the thrust air bearing. Here, the Crank-Nicolson method was used to
approximate the time derivative because of the unconditional stability and second order accuracy.
Further, all equations were simultaneously solved with Newton’s method. For every developed
model it was checked if the numerical methods implemented behaved as expected. In the next
chapter the developed complete dynamic air bearing model will be compared with experimental
data for different load cases and the results will be analyzed.
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Chapter 5

Experimental validation of air
bearing model

In the previous chapter and specifically section 4.4, a complete air bearing model was developed
that combines the Reynolds equation for lubrication with the dynamics of the air bearing model.
In this chapter, the results of this air bearing model are compared with experimental data. In
this way, the accuracy of the developed model can be assessed. First, the experimental setup is
presented in section 5.1. In section 5.2, the static load capacity and mass flow are validated. The
frequency response is investigated by comparing sine-sweep results of the model with frequency
response measurements in section 5.3. Impulsive force responses are compared in section 5.4 and
finally the responses of step forces are investigated in section 5.5.

Figure 5.1: Image of the experimental setup.

5.1 Experimental setup

Figure 5.1 shows an image of the used experimental setup. This setup is schematically shown in
Figure 5.2. The setup consists of a T-slot base table on which a large steel block is mounted. On
the steel block a Kistler 9061A force transducer is placed with on top of the force transducer the
bearing mount plate. On the mount plate the air bearing pad to be investigate is fixed with four
bolts. On the bearing pad a bearing counter surface is placed. One side of the counter surface
block is flat to make the creation of an air lubrication film possible between the counter surface
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Table 5.1: Assumed model parameters used in air bearing analysis.

Parameter symbol Value Unit Quantity

R1 2.5 · 10−4 m Orifice radius
R2 3 · 10−2 m Air bearing radius
ps T.B.D. N/m2 Supply pressure
pa 105 N/m2 Ambient pressure
T 293 K Temperature
µ 1.8205 · 10−5 kg/(ms) Viscosity
Rs 287 J/(kgK) Specific gas constant
κ 1.405 − Adiabatic expansion coefficient
M 1.1 kg Air bearing nominal mass
g 9.81 m/s2 Gravitational constant

and the bearing pad. The other side of the counter surface block is spherical with a large radius.
On top of this radius a concave bearing pad is placed which is rigidly fixed to a linear guide. The
concave bearing pad acts like an air lubricated pivot. This pivot corrects for tilt errors and ensures
a parallel gap between the air bearing pad and the flat counter surface. The linear guide where
the pivot is attached to, is air lubricated and contains a piston pressure chamber. The pressure in
this chamber can be increased to apply an extra load via the piston on the air bearing pad. Note
that the setup can be compared with the upside down version of the situation sketched in Figure
4.1. Hence, the air is supplied from underneath and the air bearing is statically mounted and the
counter surface is levitated.
Two Lion C7-C capacitive displacement sensors are placed with fixtures above the bearing counter
surface as shown in Figure 5.2 to measure the air bearing gap height. The fixtures are mounted
with magnets on the large steel block. Further, a Alicat Scientific M-10SLPM-D mass flow meter
and a Fluke 700PD7 pressure module are used to measure the fluid mass flow and pressure just
before the air bearing pad air outlet. For modal hammer experiments an Endevco model 2302-100
modal hammer is used.
Figure 5.3 shows a one-dimensional dynamical model of the experimental setup. In this model it
is assumed that the steel block can be seen as the rigid world. The load cell has a stiffness which
is used to measure the force between the rigid world and the bearing mount plate. However,
this stiffness is 1.4 · 1010 N/m and therefore the load cell link is seen as a rigid connection. Mcs

represents the counter surface mass and is equal to 0.55 kg. This mass is linked via the air bearing
lubrication layer to the rigid world. Mg is the mass of the linear guide and is linked by the pivot
lubrication layer to the counter surface. The mass of the linear guide Mg is equal to 0.55 kg. The
mass of the counter surface Mcs and of the guide Mg are used to preload the bearing and give
the bearing a nominal gap height for a certain supply pressure. The mass of the guide can be
increased, or the piston pressure chamber can be pressurized to adjust the nominal gap height.
For the dynamic experiments the pivot air bearing is deactivated just before the experiment. In
this way, the counter surface is able to correct for major tilt errors but the pivot lubrication film
is not participating in the dynamic measurements.
A flat thrust bearing pad is used with radius R2 = 30 mm and and orifice radius of R1 = 0.25 mm.
The experiments are conducted a conditioned room that ensures an almost constant temperature
and therefore it is assumed that the temperature remains constant at 293 K. Table 5.1 gives the
above described parameters and other assumed parameters used during the simulation of the air
bearing model.
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Figure 5.2: Schematic drawing of test setup. Figure 5.3: Dynamical model
sketch of experimental setup.

5.2 Static experiments

An important aspect in air bearing design is the static load carrying capacity of the bearing.
Therefore, the simulated static load carrying capacity, with the model described in section 4.3, is
validated in this experiment. The mass of the air bearing is increased toM = Mcs+Mg+Ma = 2 kg
to preload the bearing such that the measured gap heights are in range of the displacement sensors.
Herein, Ma is an additional mass of 0.9 kg placed on top of the guide. Because in this study only
one bearing pad is available and to validate the model for multiple situations, the static load
curve is measured for three different supply pressure cases, namely, ps = 4 bar, ps = 5 bar, and
ps = 6 bar.
Because the capacitive displacement sensors can only measure a relative position, a zero reference
position has to be determined. The zero position of the moving mass is determined by applying
a relatively high force of approximately 270 N with the piston integrated in the linear guide.
Then the capacitive displacement sensors are set to zero displacement for this height. This is
done without pressurizing the air bearing. In this way, it is tried to minimize offset between the
two displacement sensors due to tilt of the counter surface. After determining the zero reference
position the air bearing is pressurized.
Each measurement series is started by beginning at a force (load carrying capacity) of approx-
imately 20 N due to the weight of the moving part M . The resulting nominal air bearing gap
height is seen as the maximum gap height for this measurement series. Then the force is increased
with a small step by increasing the pressure in the piston pressure chamber. The moving mass is
held on the corresponding height long enough for dynamic effects to damp out before this height
is registered. This is repeated with sufficiently small force steps until the two bearing surfaces
touched each other. Then the force is decreased again with small steps until the maximum gap
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height is reached to make hysteresis effects visible. This sequence of measurements is performed
two times per supply pressure to assess the repeatability.
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Figure 5.4: Load capacity measurement re-
sults for an absolute supply pressure of 4
bar.
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Figure 5.5: Mass flow measurement results
for an absolute supply pressure of 4 bar.
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Figure 5.6: Load capacity measurement re-
sults for an absolute supply pressure of 5
bar.
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Figure 5.7: Mass flow measurement results
for an absolute supply pressure of 5 bar.

Figures 5.4, 5.6, and 5.8 show the measured and simulated load carrying capacity against the
nominal gap height for the three supply pressure cases. As can be seen, the measurement results
are 3-5 µm shifted to the left compared with the simulated data. This shift is also seen in Figures
5.5, 5.7, and 5.9 where the mass flow against the nominal gap height is shown. Here, the shift
is approximately 5-8 µm. Besides the shift, it is also noticed that the measured load carrying
capacity for small gap heights is lower than the load capacity predicted by the models. Further,
the maximum measured gap height is higher for 5 bar than for 4 bar, as expected. However, for
6 bar the maximum gap height seems equal to that of 5 bar. For these two measurements the
counter surface was out of range of the capacitive sensors and therefore the maximum measur-
able displacement of the sensors was measured. This has no effect on the lower air bearing gap
measurement results that are in range of the sensors.
Because the measurement data have a large offset in the displacement compared with the model
results, the roughness of the bearing pad surface is investigated. Figure 5.10 shows the roughness
measurements in different directions of the air bearing that are plotted over each other. The air
bearing profile is measured in 8 directions with a Bruker Dektak stylus profiler. Every measurement
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Figure 5.8: Load capacity measurement re-
sults for an absolute supply pressure of 6
bar.
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Figure 5.9: Mass flow measurement results
for an absolute supply pressure of 6 bar.
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Figure 5.10: Roughness measurement of air
bearing.

Displacement [µm]

F
o
rc
e
[N

]

0

50

100

150

200

250

300

−2 −1.5 −1 −0.5 0

Figure 5.11: Stiffness measurement of air
bearing pad (averaged over the two displace-
ment sensors).

is performed from the edge of the air bearing toward the center with intervals of 45◦. From these
measurements it can be seen that the slope of the air bearing surface is constant. However, peaks
with a height of approximately 2 µm can be detected. Inspection of the bearing pad surfaces
shows that the surfaces is grinded in only one direction. The peaks in the roughness measurement
originate from the measurements orthogonal to the grinding direction and are measured after
the execution of the measurements. This means the peaks are not flattened due to the contact
between the bearing pad and counter surface. Furthermore, the counter surface has a roughness
and profile error smaller than 0.1 µm and thus can be, relative to the bearing pad, considered
flat. This indicates that the air bearing has channels with a depth of approximately 2 µm that
also contribute in generating a lubrication film. Appendix D.2 gives more details on the measured
profiles.
An indication of tilt between the bearing surfaces is seen during the determination of the zero
reference position of the two displacement sensors. If the force on the air bearing pad is increased
from 20 N (due to the weight of the levitating mass) to 270 N, without pressurizing the air bearing,
there is a difference in the displacement between the two displacement sensors of approximately
3 µm. This difference between the two displacement sensors indicates a tilt between the two
bearing surfaces. The source of this tilt is unknown and needs further investigation. It could be
caused by errors in the assumed flat profile of the bearing pad or a not perpendicular application
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Figure 5.12: Schematic drawing of the effect of stiffness on the experimental setup.

of the piston force on the counter surface.
Furthermore, tilt between the bearing surfaces is seen if the bearing is pressurized. Besides the
above mentioned causes the bearing could also tilt due to a misalignment between the orifice hole
and the center of the counter surface. The displacement measured by the two sensors is averaged
to determine the displacement in the middle of the bearing. Due to the observed tilt, an error of
several micrometers is made with respect to the real zero height of the bearing.
Besides the tilt, the negative displacement observed if a force is applied on the not pressurized
bearing indicates that there is some mechanical stiffness in the setup. The used force of 270 N
is also used in experiments which makes this stiffness significant. Therefore, the stiffness was
measured to correct the measurement data for this stiffness. This makes it possible to compare
the trend seen in the measurement data with the model.
The stiffness is measured by not pressurizing the air bearing pad and letting the counter surface
rest on the bearing pad surface. By increasing the pressure in the piston pressure chamber,
the applied load on the bearing pad is increased and the displacement is measured with the
displacement sensors. This is done multiple times for and increasing and decreasing force. Figure
5.11 shows the averaged measured air bearing pad stiffness. Note that the force applied in this
figure is only caused by the piston in the setup and the bearing is preloaded with 1.1 · 9.81 N.
As can be seen, the height decreases for an increase in the force. If the gap height is measured
for a force of 270 N where the displacement sensors are set to zero, then the actual gap height is
measured. For lower forces the air bearing pad surface will translate upwards due to the stiffness
and the actual gap height is then smaller than measured. This is schematically shown in Figure
5.12.
From the above observations it is concluded that it is difficult to determine the real zero position
of the air bearing gap. The observed offset between the measured data and the model results in
figures 5.4 - 5.9 relates to this problem. Appendix E contains a sensitivity study to investigate if
a deviation in one of the input parameters of the model could cause such a difference. From this
analysis it follows that the maximum sensitivity error is in the order of 0.4 µm and the 5 µm shift
observed cannot be explained by this. Therefore, more research is needed to develop a reliable
method to measure the bearing gap height and zero position.
Further, it is noticed that the measured load capacity is significantly smaller for small gap heights
compared to the model. The cause of this is also unknown and needs more research. It might
be an effect due to tilt of the two bearing surfaces that becomes significant for small gap heights.
This tilt could cause that the supplied air travels via the way of the least resistance, which is in
this case the part of the air bearing surface where the distance between the two bearing surfaces
is the largest. For larger gap heights the load carrying capacity is smaller and this may cause that
on average the load capacity is smaller than expected for tilted air bearings. This tilt could be
caused by irregularities in the roughness and profile of the bearing pad. Also, the tilt could be
caused by an unknown misalignment of the orifice hole with respect to the bearing counter surface
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or a not perpendicular application of the piston force trough the pivot on the counter surface.
The developed one-dimensional model is not able to investigate tilt influences. Therefore, a two-
dimensional model of the air bearing pad could be developed that makes it possible to investigate
tilt and the influence of tilt on the load carrying capacity and stiffness.
From a practical point of view it is difficult to investigate the load capacity for small gap heights
because the stiffness of the air bearing decreases rapidly towards zero. If a small error in the
applied force is made, this will result in a relative large error in the measured displacement.
Besides, disturbances in the externally applied force can push the bearing gap height into a low
gap height region. Herein, there is insufficient stiffness to support the bearing and its load, resulting
in invalid measurements.

Height [m]

L
oa
d
ca
p
ac
it
y
[N
]

 

 

0

50

100

150

200

0 1 2 3 4 5
×10− 5

Measured
Holster
Bernoulli

Figure 5.13: Adjusted and shifted load ca-
pacity measurement results for an absolute
supply pressure of 4 bar
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Figure 5.14: Adjusted and shifted mass flow
measurement results for an absolute supply
pressure of 4 bar
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Figure 5.15: Adjusted and shifted load ca-
pacity measurement results for an absolute
supply pressure of 5 bar
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Figure 5.16: Adjusted and shifted mass flow
measurement results for an absolute supply
pressure of 5 bar

In order to compare the measurement data trend with the results of the two orifice models, the
measured data is compensated for the measured bearing pad stiffness. The bearing pad stiffness
error is adjusted by interpolating the displacement for the according force and adding it to the
measurement result. After that an approximate shift of 5 µm is seen between the experimental
and simulated data. In order to compare the trend in the data the experimental data is shifted
5 µm to the right. Figure 5.19 shows the relation between the adjusted and measured gap height
for the absolute supply pressure of 4 bar case. For other supply pressure cases the curve is similar.
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Figure 5.17: Adjusted and shifted load ca-
pacity measurement results for an absolute
supply pressure of 6 bar
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Figure 5.18: Adjusted and shifted mass flow
measurement results for an absolute supply
pressure of 6 bar
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Figures 5.13-5.18 shows the stiffness corrected and shifted measurement data.
Figure 5.13 shows the adjusted measured and modeled load capacity for a supply pressure of 4 bar.
As can be seen, the slope coincides better with the model of Holster than with the Bernoulli orifice
model for large gap heights. If the height decreases the measurement trend starts to deviate and
does not correspond with both orifice models. Based on the trend seen in the measurements it
may be concluded that the orifice model of Holster coincides best with the measurements.
Figure 5.14 shows the adjusted measured mass flow and the corresponding model data for 4 bar.
The measured trend shows a similarity with both orifice models. The difference between the two
orifice models is especially good noticeable for large gap heights. The slope of the measurement
data is in between the shapes predicted by both orifice models in this region and this makes it
difficult to make a statement on which model corresponds best. Furthermore, the discharged
coefficients in the orifice model is based on [14]. It might be that if a better approximation of
the discharge coefficient can be made, that one of the orifice models corresponds better to the
measurement data. This will also influence the error seen in the modeled stiffness of the load
carrying capacity plots.
Figures 5.15 and 5.17 show the adjusted measured load capacity and the simulated load capacities
for 5 bar and 6 bar, respectively. Figures 5.16 and 5.18 shows the same but now for the mass flow.
From these figures the same conclusion can be drawn as was done for the 4 bar case. Based on

60 Dynamic behavior of thrust air bearings



CHAPTER 5. EXPERIMENTAL VALIDATION OF AIR BEARING MODEL

the measured data trend for the load capacity it again may be concluded that the orifice model
by Holster coincides best with the measurement data. Therefore, the Holster air bearing model is
used in the remaining of this study.

5.3 Frequency response experiments

To investigate the gap height frequency response a modal hammer analysis is performed. The air
bearing is excited by hitting the levitated mass with a modal hammer in the downward direction.
Figure 5.2 shows the location of the modal hammer excitation. The modal hammer has a force
transducer in the tip that measures the applied force over time. The average excitation peak force
is approximately 10 N. The displacement sensors are used to simultaneously measure the gap
height displacement. This measurement is performed for two different masses, M = 3.6 kg and
M = 4.45 kg using the Ĥ1 estimator Ĥ1 = Ŝxy/Ŝxx, in which is averaged over 20 records for each
mass. The two different masses allow for a measurement on two different equilibrium heights. The
obtained signals are used to estimate the system frequency response with a rectangular window,
fnyquist = 50120 Hz and, ∆f = 1.56 Hz. A more elaborate description on the computation of the
frequency response from the measurement data can be found in Appendix D.
The frequency response of the nonlinear model is determined by simulating a sine-sweep. The force
input of the simulation is a sine with a frequency starting at 10 Hz with a amplitude of 0.1 N.
For this amplitude, the response behavior is almost linear. This sinusoidal force is applied until
the displacement response shows a steady-state output. The resulting amplitude is stored and
the frequency is increased with 5 Hz in the same simulation. Again, the simulation is continued
until a steady-state output is detected and the new response amplitude is stored. This is repeated
until a frequency of 1000 Hz is reached. The output amplitude is defined as xmax(t)−xmin(t)

2
where x(t) is the steady-state response of one period. Assuming linear behavior, to obtain the
magnitude-frequency response function the found response amplitudes are divided by the force
input amplitude of 0.1 N. The phase is determined by computing the phase difference between
the input sinusoid and the response sinusoid with the same frequency as the input sinusoid.
Figure 5.20 shows the frequency response of the measurement for the air bearing with the param-
eters given in Table 5.1 with a mass of 3.6 kg and a supply pressure of 4 bar of the measurement
and the model. As can be seen, the resonance observed at approximately 110 Hz is modeled quite
well. The the difference in amplitude is approximately 7 %. Also the simulated phase shows good
agreement with the measured phase.
Several resonance peaks are seen in the measurements that are not predicted by the model at
55 Hz, 65 Hz, and 85 Hz. These resonance peaks are caused by the movement of the displacement
sensors due to the excitation of the system with the hammer. This indicates that the fixtures
holding the displacement sensors are not stiff enough causing the resonances of these fixtures to
appear in the frequency response measurement. This is explained in more detail in Appendix D.
Further, a deviation of approximately 1.3 · 10−7m/N (20 %) in magnitude is noticed between the
simulated and the measured FRF for low frequencies. This difference is probably due to a static
stiffness of the test setup which is not captured by the model or due to the observed tilt between
the bearing surfaces.
Figure 5.21 shows the coherence of the FRF of the air bearing with M = 3.6 kg. The coherence
is about 1 until 300 Hz except for the frequencies where resonances are visible and at multiples of
the net frequency (50 Hz). The coherence deteriorates for frequencies larger than 300 Hz due to a
bad signal-to-noise ratio. Overall, the coherence is good in the frequency range of interest which
indicates that the behavior is linear.
Figure 5.23 shows the frequency response measurement for an air bearing with a mass of M =
4.45 kg and a supply pressure of 4 bar and the corresponding model sine-sweep result. As can be
seen the resonance at 115 Hz coincides well with the measurement. The error at this frequency is
0.25 · 10−7 m/N which is approximately 6 %. Again a difference is noticed in the FRF magnitude
for low frequencies of approximately 1 · 10−7 m/N. The resonance peaks due to the unmodeled
flexibility of the test setup are also visible again. Figure 5.22 shows a good coherence at the
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Figure 5.20: Frequency response measurement from the force at the air bearing mass to the gap
height for ps = 4 bar, M = 3.6 kg.
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Figure 5.21: Coherence of the frequency re-
sponse measurement from the force at the
air bearing mass to the gap height for ps =
4 bar, M = 3.6 kg.
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Figure 5.22: Coherence of frequency re-
sponse measurement from the force at the
air bearing mass to the gap height for ps =
4 bar, M = 4.45 kg.

resonance frequency and for low frequencies.
If Figure 5.23 is compared with Figure 5.20 it is noticed that the frequency of the resonance has
increased from 110 Hz to 115 Hz. For a linear system it is expected that the resonance frequency
should decrease because of an increase in mass. However, because the mass is increased the static
bearing height is decreased and from Figure 5.13 it can be seen that the stiffness increases if the
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Figure 5.23: Frequency response measurement from the force at the air bearing mass to the gap
height for ps = 4 bar, M = 4.45 kg.

load is changed from 36 N to 44.5 N. This increase in stiffness is probably higher than the decrease
in mass resulting in an increase in the resonance frequency. Appendix D.4 numerically confirms
this. In this Appendix, eigenfrequencies of the air bearing used in the experiments are computed
for the Holster orifice model and a supply pressure of ps = 4 bar for an air bearing mass of 3.6 kg
and 4.45 kg. This is done by computing the stiffness based on the computed load capacity shown
in Figure 5.4. It follows that the computed eigenfrequency for the bearing masses 3.6 kg and
4.45 kg are approximately 113 Hz and 119 Hz, respectively. These eigenfrequencies are of the
same order as the the observed resonances in Figures 5.20 and 5.23.

5.4 Impulse experiments

In this experiment, starting from a static equilibrium, the moving mass is subjected to an impulse
force by hitting the moving part of the setup with a modal hammer. The location of the hammer
excitation is again given in Figure 5.2. The air bearing has a moving mass of M = 3.6 kg or
M = 4.45 kg as preload. The moving part of the experimental setup is hit 20 times with a modal
hammer in the downward direction. The transient response from the displacement sensors and
modal hammer force are recorded. From the 20 measurements the average transient displacement
and force is determined. The measured force is used as excitation signal of the Holster air bearing
model.
Figure 5.24 shows the measured and simulated gap height response of the air bearing with M =
3.6 kg subjected to the measured impulsive force depicted in Figure 5.25. As can be seen, the
the equilibrium gap height between the modeled response and measurement differ approximately
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Figure 5.24: Impulse measurement results
for ps = 4 bar, M = 3.6 kg.

Time [s]

Im
p
u
ls
e
fo
rc
e
[N

]

0

2

4

6

8

10

0 1 2 3 4 5 6
×10− 2

Figure 5.25: Measured input impulse force
for ps = 4 bar, M = 3.6 kg.

6.5 µm. The observed difference is mainly due to the difficulty in determining the zero position of
the air bearing gap as was explained in section 5.2. Figure 5.24 shows also the modeled response
with a displacement shift of 6.5 µm (The gray dash-dotted line). The initial response of the
measurement is captured well in the model. The error between the minimal gap height of the
measurement and the shifted model is 0.16 µm. This is approximately 3 % of the maximum
amplitude of the response. The model starts to deviate from the measurement for t > 3 s. This is
due to the unmodeled resonance at 55 Hz and 65 Hz resonance in the displacement sensor fixtures.
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Figure 5.26: Impulse measurement results
for ps = 4 bar, M = 4.45 kg.
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Figure 5.27: Measured input impulse force
for ps = 4 bar, M = 4.45 kg.

Figure 5.26 shows the simulated and measured impulse response for a mass of M = 4.45 kg with
the measured force impulse depicted in Figure 5.27. It can be seen that due to the increased
mass the nominal gap height is decreased. The modeled gap height is again 6.5 µm higher than
the measured gap height. Shifting the model 6.5 µm down shows that the initial response of the
model coincides well with the measurement. The error in the maximum amplitude of the response
between the shifted model and the measurement is approximately 3 %. Also in this case the
model and measurement start to deviate for longer times due to the 55-65 Hz components in the
measurement.
The observed error of 3 % in the response magnitude is probably larger than measured. This
is because the resonances at 55 and 65 Hz will also contribute to the measured response. The
exact contribution is difficult to predict because the magnitudes of these frequency components
are determined by the force input and it is difficult to predict at which time these components
become dominant.

64 Dynamic behavior of thrust air bearings



CHAPTER 5. EXPERIMENTAL VALIDATION OF AIR BEARING MODEL

The time between the minimum gap height and the first peak is approximately 0.5 · 10−2 s. This
corresponds to a period time of 1 ·10−2 s and a frequency of approximately 100 Hz. This frequency
is of the same order as seen in the frequency response measurements, as expected.

5.5 Step experiments

The experiments to validate a step response due to a step load are performed as follows. The
zero position of the air bearing gap is first determined. Then the air bearing is pressurized with
a supply pressure of 4 bar. subsequently, the moving mass of the experimental setup is lifted
manually approximately 5 µm from the equilibrium position and then released. The response is
then recorded with the displacement sensors and this is repeated 20 times. The average lift height
is determined form the averaged response and used as initial condition for the model simulation.
Figure 5.28 shows the gap height response starting from the lifted position for a mass of M =
3.6 kg. As can be seen, the moving part of the air bearing returns back to an equilibrium position
after release. It is clearly seen that the measured response is heavily damped compared to the
modeled response. Based on the observations of the impulse response measurements it is expected
that the step response should show a similar response. From the impulse response and the modeled
step response the gap reaches the nominal gap height again within 0.05 seconds. It is imaginable
that the bearing cannot be perfectly released by hand within 0.05 seconds. As a result, the damped
response is possibly caused by friction between the hand of the experimenter and the air bearing.
Figure 5.29 plots the gap height difference for a mass of M = 4.45 kg. The same observation can
be made as for the M = 3.6 kg case. Based on these results it is useless to compare the model
response with the measurement because an invalid experimental method was used. It is suggested
to build a test setup that is able to release the moving mass quickly enough, or develop a setup
that is able to apply a step force on the bearing in order to validate the step response of the model.
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Figure 5.28: Step measurement results for
ps = 4 bar, M = 3.6 kg.
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Figure 5.29: Step measurement results for
ps = 4 bar, M = 4.45 kg.

5.6 Summary

Several experiments were conducted to validate the developed thrust air bearing model. First the
gap height as function of a static force was considered. Gap heights were measured which were
5 µm lower than predicted by the model. Further, the measured maximum load capacity was
significantly lower than predicted by the model. It was difficult to determine the zero reference
gap height during the experiments and therefor there is a large uncertainty in the measured
gap height. This is mainly caused by roughness of the bearing pad, unmodeled stiffness in the
experimental setup, and an observed tilt between the two bearing surfaces. The observed tilt can
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also be responsible for the deviation seen in the maximum load capacity between the model and
the measurements.
The frequency response measurements showed a good agreement with the sine-sweep results from
the model except for unmodeled setup resonances. The lowest modeled resonance frequency cor-
responded well with the measurements, with an error in the magnitude of the resonance peaks of
about 7 %. Also the measured phase behaved as expected.
After shifting, the maximum displacements as a result of an impulsive force input in the measured
and modeled air bearing responses showed a difference of approximately 3 %. This difference
is probably higher because the fixtures of the displacement sensors also start to move and this
deteriorates the measurement accuracy during the impulse.
The measured step response was qualitatively different compared to the step response predicted
by the model. This is probably caused by not quickly enough releasing the air bearing from the
initial position. The step response measurements can be improved by using a different releasing
method that is quick enough.
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Chapter 6

Comparison of models

The developed non-linear model in section 4.4 was validated with experimental results in the
previous chapter. In this chapter, this model and the model in section 4.3 are compared with
two other alternative air bearing models. The first model is based on an Ansys element that has
been developed by Philips to compute the static load capacity of air bearings. The second model
is based on the interpolated coefficients method where dynamic coefficients of the air bearing,
i.e. linear stiffness and damping coefficients, are retrieved from a database during the simulation.
The dynamic coefficients are computed with a FEM Sepran routine developed by Philips. More
information on this model can be found in appendix F. Section 6.1 compares the static load
capacity predicted by the developed model in section 4.3 and the Ansys model. In section 6.2, the
transient gap height response of an air bearing predicted by the developed model in section 4.4
and by the interpolated coefficients model are compared. In this chapter, the parameter values
mentioned in Table 6.1 are used.

Table 6.1: Model properties used in simulations.

Parameter symbol Value Unit Quantity

R1 2 · 10−4 m Orifice radius
R2 4 · 10−2 m Air bearing radius
ps 2 · 105 N/m2 Supply pressure
pa 105 N/m2 Ambient pressure
T 293 K Temperature
µ 1.8205 · 10−5 kg/(ms) Viscosity
Rs 287 J/(kgK) Specific gas constant
κ 1.405 − Adiabatic expansion coefficient
M 3.5 kg Air bearing mass (section 6.2)
g 9.81 m/s2 Gravitational constant (section 6.2)
I 1000 − Number of intermediate spatial intervals
J 1000 − Number of intermediate time intervals (section 6.2)
tend 0.035 s End time of simulation (section 6.2)

6.1 Static load carrying capacity comparison
Figure 6.1 shows the computed load curve of the air bearing with the Bernoulli orifice model, the
orifice model by Holster[14] and the Ansys model. As can be seen, the Bernoulli orifice model
deviates from the Ansys and Holster model. It is seen that the Holster orifice model coincides
well with the Ansys model, especially for gap heights below 50 µm. For the Ansys model it is
known that also the Holster orifice model is implemented, hence this is expected. Considering
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the complete height range, the RMS of the error in force between the Holster and Ansys model is
approximately 0.4 N.
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Figure 6.1: Air bearing load curve for Bernoulli orifice model, Holster orifice model, and Ansys
model.

6.2 Transient gap height comparison

A transient gap height response due to an impulsive force is calculated with the developed model, a
model that uses interpolated coefficients, and with a model linearized around the static equilibrium
point. Figure 6.3 shows the impulsive force as a function of time. For the results obtained in this
section the values F̂ = 100 N and tim = 0.01 s are used. Appendix F gives more information on the
computation of the solution with the interpolated coefficients model. The linearized model uses the
stiffness and damping coefficients that are computed at the initial static equilibrium height for the
weight Mg ≈ 35 N. The computation of these coefficients is also explained in appendix F. Figure
6.2 shows the impulse responses for the developed non-linear model, the interpolated coefficients
model, and the linearized model respectively. As can be seen, the height in the linearized model
is decreasing much further than in the non-linear model and the interpolated coefficients model.
The linearized model even predicts that the two bearing surfaces collide and penetrate which
is physically impossible. However, the results of the non-linear and the interpolated coefficients
model predict that the bearing surfaces will not touch. Furthermore, the initial gap height is
recovered after about 0.02 s of the start of the force impulse. This is faster than for the linearized
model. The response of the non-linear model and interpolated coefficients model almost coincide.
Both models predict that the maximum downward displacement is 29 µm. The difference between
these two models in the maximum downward displacement is 0.3 %. The overall RMS error
between the non-linear model and the interpolated coefficients model is 1.1 µm.
The computation times for the full non-linear model, interpolated coefficients model, and linearized
model are 208 s, 0.05 s and 0.05 s, respectively, for an Intel i7-3537U CPU. Hence, the interpolated
coefficients model is faster than the full non-linear model. However, the interpolated coefficients
model needs the dynamic coefficients to be computed in advance. For this specific simulation
case the computation time of the dynamic coefficients is approximately 2 hours. The dynamic
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coefficients are computed for a gap height of 2-50 µm with steps of 1 µm and for 70 frequencies
between 1 Hz and 5.6 · 107 Hz on each gap height. These dynamic coefficients can be reused if the
load case changes but need to be recomputed if one of the air bearing parameters changes. The
above computation time analysis suggests that the choice to use the full non-linear model or the
interpolated coefficients model depends on the number of load cases that need to be computed. If
a great number of load cases for one bearing configuration need to be computed, it is advised to
use the interpolated coefficients model. In other cases the full non-linear model is preferred. The
above computation times are specific for the impulisve load case under consideration and can vary
greatly for other load cases. Further, the computation time is depending on the time discretization
and spatial discretization of the problem. Hence, the computation time break even point between
the two models depends on the load case, bearing configuration, and discretization of the problem
and needs to be found by trail and error.
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Figure 6.2: Gap height response for air bearing model subjected to an impulse with F̂ = 100 N
and tim = 0.01 s.
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Chapter 7

Conclusions and recommendations

This study aims to develop and validate a thrust air bearing model that can predict the transient
behavior of the gap height if the bearing is subjected to a sudden change in load force. The
Reynolds equation has been used to model the lubrication film and is coupled to a dynamic solid
model to obtain a complete thrust air bearing model. Simulated gap height responses based on
this model have been compared with experimental data. Also, the gap height responses based on
the proposed model have been compared with responses based on an Ansys FEM model and with
responses based on a model that uses interpolated dynamic coefficients. The project objectives
mentioned in Chapter 1 are repeated below.

1. Develop a mathematical model to determine the time dependent bearing gap in the air
bearing when the applied load changes from a steady-state to a time dependent load, using
the transient non-linear Reynolds equation for lubricant flow.

2. Extend the developed mathematical model with the effect of the inertia of the bearing parts
on their motion.

3. Validate the developed model experimentally for static loads, harmonic loads, impulsive
loads, and step loads.

4. Assess the accuracy of the approximation method that uses interpolated dynamic coefficients
for an impulsive load case by comparing the response with the response based on the full
non-linear model, see objectives 1 and 2.

First, the conclusions from the present study will be presented. Subsequently, recommendations
for future studies will be given.

7.1 Conclusions
A thrust air bearing model has been developed that is able to model the transient behavior of the
air bearing gap height. The model consists of a lubricant film model, represented by the Reynolds
equation, and the equations of motion for the solid bearing parts. The spatial and time derivatives
have been approximated by finite differences. Discretization errors in the calculated gap heights
have been assessed and behaved as expected. Hence, the implementations of the numerical solution
methods are assumed to be correct.
Load carrying capacity experiments of an thrust air bearing have been performed in which the gap
heights resulting from loads have been measured. Measured gap heights are approximately 5 µm
smaller than predicted by the model. This difference may be explained by the fact that it is difficult
to determine a reference position for the zero gap height. Possible causes are the roughness of the
bearing pad surface, a not modeled stiffness in the experimental setup, and tilt between the two
bearing surfaces. Despite the observed differences, the trends seen in the load curve measurement
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correlated well with the model results. Further, the measured maximum load capacity at small
gap heights is smaller than the model result. The exact reason for this is unknown, but a possible
cause is the observed tilt in the experimental setup. With the presently developed simulation
model it is not possible to determine the effect of tilt on the load carrying capacity of the thrust
bearing. Another possible cause is the relative large roughness of the bearing pad which may have
a significant effect on the load capacity for small gap heights.
Frequency response measurements have been compared with sine-sweep results from the model.
Some unmodeled frequencies have been seen in the measurements and it has been found that
these were caused by movement of the fixtures holding the displacement sensors. Apart from
the unmodeled frequencies, the measured frequency response coincides well with the frequency
response of the model.
Also, the modeled maximum displacement due to an impulsive force agrees well with the measure-
ment. After longer periods of time the measured and modeled impulse response do not coincide
due to the experimentally observed frequency components that are caused by the lack of stiffness
in the displacement sensor fixtures. The actual difference in the maximum displacement between
the model and experimental setup may be larger than observed because of these frequency com-
ponents.
Comparison of the step response measurements and simulation results shows that the transient
behavior does not coincide. Most likely, the attempt to apply a neat step load in the experiment
failed. The moving air bearing part is lifted out of the equilibrium position by hand and then
released. During this release the gap height response is presumably damped due to interaction
between the hand of the experimenter and the moving bearing part.
The static model results have been compared with the model results from an Ansys model where
the orifice model is also based on the work of Holster [14]. The static responses are almost similar,
indicating that the static part of the developed models has been implemented correctly.
Further, transient responses based on the developed air bearing model have been compared with
those obtained by a model that uses interpolated dynamic coefficients, using the same impulsive
force. For this analysis, the difference between the transient response results obtained by the
developed model and the interpolated coefficient model are very small. This difference is much
smaller than the difference between the results obtained from the measurements and the developed
simulation model. Therefore, based on this result, it is concluded that the interpolated coefficients
model can be used to study the thrust bearing gap height behavior. Because the difference between
the full non-linear model and the interpolated coefficients model is small, the choice for one of these
models may depend on the computation time. In that case the choice between one of these models
depends on the load case, the number of load cases to be computed, the air bearing parameters,
and the discretization of the problem.
Despite the differences between the model results and the experimental results it can be concluded
that the developed complete non-linear model is able to predict the thrust air bearing gap behavior
for a given time dependent force input. All the major differences seen may be caused by error
sources in the experimental setup or in the measurement method. In order to obtain a better
validation, more experimental research is needed on these error sources.

7.2 Recommendations

The static load carrying capacity measurement data shows a large difference with the model
predictions. This is probably caused by difficulties that were encountered during the experiments
to determine a reliable zero reference gap height. It is recommended to develop a measurement
method that is able to find a reliable zero reference. In this way, the measurements can be made
more accurate and a more reliable model validation can be conducted. Furthermore, a tilt is
observed between the two bearing surfaces during the measurements and it was seen that the
bearing pad surface was relative rough. The influence of this tilt and roughness on the load
capacity is unknown and can possibly explain the difference seen in the maximum load capacity.
Therefore, it is recommended to develop and analyze a model that includes tilt and roughness
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effects in the bearing surfaces Alternatively, it is recommended to polish the bearing surfaces such
that the influence of the surface roughness decreases during the measurements.
The values of the discharge coefficients in the orifice models are based on observations of Holster
[14]. The simulated mass flow and load carrying capacity may correspond better to the measure-
ment data if a more valid approximation is made of these discharge coefficients. Therefore, it is
recommended to investigate if the discharge coefficients can be approximated better.
The frequency response measurements show that the fixtures supporting the displacement sensors
are vibrating significantly and affected the transient measurements. It is unknown how large
the influence of these vibrations is for other dynamic load situations, e.g. the influence on the
maximum impulse response. It is recommended to investigate this by repeating the experiments
with stiff fixtures for the sensors.
The measured transient response did not coincide with the simulated response for the case of step
loading. This is probably caused by unavoidable interaction between the hand of the experimenter
and the air bearing. The step loading experiments can be improved if a method is found that
releases the moving bearing part fast enough.

Dynamic behavior of thrust air bearings 73





Bibliography

[1] Dal A. and Karac̨ay T. On dynamics of an externally pressurized air bearing with high values
of clearance: Effect of mass flow rate. Proceedings of the World Congress on Engineering
2014, 2, 2014.

[2] R.A. Adams. Calculus: A complete course. Pearson Addison Wesley, 2006.

[3] Mishra A.K. Dynamic behaviour of aerostatic rectangular thrust bearings. Wear, 63:219–229,
1980.

[4] Kendall E. Atkinson. An introdution to numerical analysis. John Wiley & Sons, 1978. ISBN:
0-471-02985-8.

[5] Majumdar B.C. Dynamic characteristics of aerostatic thrust bearings with porous inserts.
Journal Mechanical Engineering Science, 22(2):55–58, 1980.

[6] Cuvelier C., Segal A., and Steenhoven A.A. van. Finite Element Methods and Navier-Stokes
Equations. D.Reidel Publishing Company, 1986. ISBN: 90-277-2148-3.

[7] Wang C. Bifurcation and nonlinear dynamic analysis of united gas-lubricated bearing system.
Computers and Mathematics with Applications, 64:279–738, 2012.

[8] Kraker B. de. A Numerical - Experimental Approach in Structural Dynamics. Shaker Pub-
lishing, 2013.

[9] Al-Bender F. On the modelling of the dynamic characteristics of aerostatic bearing films:
From stability analysis to active compensation. Precision Engineering, 33:117–126, 2009.

[10] Lin G., Aoyama T., and Inasaki I. A computer simulation method for dynamic and stability
analyses of air bearings. Wear, 126(307-319), 1988.

[11] Chen G.S. and Chang J.Y. Chaos in nonlinear dynamics of air bearing slider in contact.
Microsystem Technologies, 20:1739–1744, 2014.

[12] Yabe H. and Mori H. Tanahashi H. A study on characteristics of externally pressurized gas
thrust bearings with surface-restriction compensation. Bulletin of the JSME, 25(207):1451–
1456, 1982.

[13] Bernard J . Hamrock, Steven R . Schmid, , and Bo O . Jacobson. Fundamentals of Fluid
Film Lubrication. CRC Press, 2004. ISBN: 978-0-8247-5371-9.

[14] P.L. Holster and J.A.H. Jacobs. Theoretical analysis and experimental verification on the
static properties of externally pressurized air-bearing pads with load compensation. Tribology
international, 20(5):276–289, October 1987.

[15] Powel J.W. A review of progress in gas lubrication. Review of Physics in Technology, 1(2):96–
129, 1970.

Dynamic behavior of thrust air bearings 75



BIBLIOGRAPHY

[16] White J.W. and Ponnaganti V. Non-linear air bearing dynamics of a six degrees of freedom
magnetic recording slider with head-disk contact/impact. IEEE Transaction on Magnetics,
24(6):2757–2759, 1988.

[17] Czolczynski K., Brzeski L., and Kazimierski Z. High stiffness gas journal bearing under the
step force. Wear, 167(1):49–58, 1993.

[18] P.K. Kundu and I.M. Cohen. Fluid Mechanics. Academic Press, second edition edition, 2002.

[19] Wei L. and Ruibo Y. Jing L. Computational fluid dynamics of aerostatic bearings with the
finite volume method. 2011 IEEE 5th International Conference on Robotics, Automation and
Mechatronics (RAM), pages 270–274, 2011.

[20] Liu L.X. and Spakovszky Z.S. Effects of bearing stiffness anisotropy on hydrostatic mirco gas
journal bearing dynamic behavior. Journal of Engineering for Gas Turbines and Power, 129,
2007.

[21] Chandra M., Malik M., and Sinhasan R. Gas bearings part i: Dynamic analysis and solution
method. Wear, 88:255–268, 1983.

[22] Hassini M. and Arghir M. A simplified nonlinear transient analysis method for gas bearings.
Journal of tribology, 134:011704, 2012.

[23] Hassini M. and Arghir M. A new approach for the stability analysis of rtors supported by
gas bearings. Journal of Engineering for Gas Turbines and Power, 136:022504, 2014.

[24] Hassini M. and Arghir M. A simplified and consistent nonlinear transient analysis method
for gas bearing: Extenson to flexible rotors. Journal of Engineering for Gas Turbines and
Power, 137:092502, 2015.

[25] Mahajan M., Jackson R., and Flowers G. Experimental and analytical investigation of a
dynamic gas squeeze film bearing including asperity contct effects. Tribology Transactions,
51:57–67, 2008.

[26] Majumder M.C. and Majumder B.C. Non-linear transient analysis for an extrnally pressurized
porous gas journal bearing. Wear, 132(139-150), 1989.

[27] J.T. McCabe, H.G. Elrod, S. Carfagno, and R. Colsher. Summary of investigations of entrance
effects of circular gas bearings. Gas Bearing Symposium, Southampton, April 1969.

[28] Bhat N., Kumar S., Tan W., Narasimhan R., and Low T.C. Performance of inherently
compensated flat pad aerostatic bearings subject to dynamic perturbation forces. Precision
Engineering, 36:399–407, 2012.

[29] Rao N.S. and Majumdar B.C. An approximate method for the calculation of dynamic stiffness
and damping coefficients of externally pressurized porous gas journal bearings. Wear, 61:375–
379, 1980.

[30] Reynolds O. On the theory of lubrication and its application to mr. beauchamp tower’s ex-
periments, including an experimental determination of the viscosity of olive oil. Philosophical
Transactions of the Royal Society of London, pages 157–235, 1886.

[31] Milovanova O.B., Cheking O.N., and Dyshl M.S. Dynamic characteristics of air bearings.
Translated from Prikladnaya Mekhanika, 18(9):84–89, 1982.

[32] Matta P., Arghir M., and Bonneau O. Experimental analysis of cylindrical air-bearing dy-
namic coefficients. Tribology Transactions, 53:329–339, 2010.

[33] Zhicheng P., Shugo W., Qingming L., and Wei C. Theoretical and experimental study of the
dynamic transient characteristics of a hydrostatic bearing. Wear, 160:27–31, 1993.

76 Dynamic behavior of thrust air bearings



BIBLIOGRAPHY

[34] Fukui S. and Kanenko R. Analysis of ultra-thin gas film lubrication based on the linearized
boltzmann equation. JSME International Journal, 30(286):1660–1666, 1987.

[35] Yoshimoto S. Static and dynamic characteristics of aerostatic circular porous thrust bearings
(effect of the shape of the air supply area). Journal of Tribology, 123:501–508, 2001.

[36] Yoshimoto S., Tamura J., and Nakamura T. Dynamict tilt characteristics of aerostatic rectan-
gular double-pad thrust bearings with compound restrictors. Tribology International, 32:731–
738, 1999.

[37] Andras Z. Szeri. Fluid film lubrication: theory and design. Cambridge University Press, 1998.
ISBN: 0-521-48100-7.

[38] Waumans T., Al-Bender F., and Reynaerts D. A semi-analytical method for the solution of
entrance flow effects in inherently restricted earostatic bearings. In Proceedings of GT2008
ASME Turbo Expo 2008: Power for Land, Sea and Air, 2008.

[39] Stolarski T.A. Numerical modeling and experimental verification of compressible squeeze film
pressure. Tribology international, 43:356–360, 2010.

[40] Witelski T.P. Dynamics of air bearing sliders. Physics of fluids, 10(3):698–708, 1998.

[41] Hua W., Yu S., Zhou W., and Myo K.S. A fast implicit algorithm for time-dependent dynamic
simulations of air bearing sliders. Journal of Tribology, 134:031901, 2012.

[42] Shapiro W. and Colsher R. Implementation of time-transient and step-jump dynamic analyses
of gas-lubricated bearings. Journal of Lubrication Technology, 1970.

[43] Gross W.A., Matsch L.A., Castelli V., Eshel A., Vohr J.H., and Wildmann M. Fluid film
lubrication. John Wiley & Sons, New York, 1980.

[44] Choir W.C., Shin Y.H., and Choi C.W. Influences of the restrictor design parameter and
opterating conditions of aerostatic bearings on its dynamic characteristics. JSME Interna-
tional Journal Series C, 2001.

[45] Smith W.R. Computational results of a dynamic simulation of the conforming shell gas
journal bearing. Tribology International, 30:151–162, 1997.

[46] Chen X. and Ye Y. Influences of the restrictor design parameter and opterating conditions
of aerostatic bearings on its dynamic characteristics. 2009 IEEE/ASME International Con-
ference on Advanced Intelligent Mechatronics, pages 516–521, 2009.

[47] Haruyama Y., Moir A., Mori H., Mikami F., and Aikawa H. Effects of gas inertia forces
on dynamic characteristics of externally pressurized gas-lubricated thrust bearings. JSME
International Journal Series III, 32(2):303–307, 1989.

[48] Ono Y., Yoshimoto S., and Miyatake M. Impulse-load dynamics of squeeze filme gas bearings
for a linear motion guide. Journal of Tribology, 131:041706, 2009.

[49] Otsu Y., Miyatake M., and Yoshimoto S. Dynamic characteristics of aerostatic porous journal
bearings with a surface-restricted layer. Journal of Tribology, 133(011701), 2011.

[50] Yap Y.K. A galerking finite element scheme for the rectangular gas-lubricated slider bearing
- the transient case. Wear, 105:109–122, 1985.

[51] Ye Y.X., Chen X.D., Hu Y.T., and Luo X. Effects of recess shapes on pneumatic hammering
in aerostatic bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal
of Engineering Tribolgoy, 224(3):231–237, 2010.

Dynamic behavior of thrust air bearings 77





Appendix A

Literature search

A.1 Introduction
In high precision system equipment often air bearings are used to support movable parts (stages)
of the machine. If for some reason a temporarily external force is applied to the movable part of
the high precision machine, the air bearing functions as a squeeze damper. The distance between
the surfaces of the air bearing decreases and air is squeezed out of the bearing gap. The squeeze
motion results in a reaction force by the air on the bearing surfaces and hence the load carrying
capacity of the air bearing increases. Depending on the magnitude of the temporarily external
force, the movable part of the air bearing is accelerated towards the other bearing surface. The
extra load carrying capacity generated by the squeeze motion determines whether the bearing
surfaces will touch each other and damage the bearing surfaces. An air bearing design must be
such that the bearing surfaces never touch each other. Furthermore, the time needed for the air
bearing system to regain a steady state (settling time) must be small for the accuracy of the high
precision machine.
This literature review attempts to give answer to the following question: What models are used in
literature to model gas bearings that are valid for large displacements.
It is preferable that the gas bearing model is applied on a dynamical model and that the bearing
is a cylindrical thrust gas bearing. These criteria were not used in the literature review because
they would restrict the literature search to much. The following inclusion criteria were used to
obtain a set of selected articles:

• The bearing under consideration must be a gas bearing.

• Linearized models are excluded.

• The study is presented in English.

A.2 Data Collection
The databases used to search for literature are:

• Focus (Database of Eindhoven Univesity of Technology),

• Web of Science,

• Scopus.

Because a dynamical model is preferably sought the following search terms were initially used
(Air OR Gas OR Aerostatic*) AND Bearing* AND Dynamic*. This resulted in 211 hits
in Focus, 381 in Scopus and 240 in Web of Science. The found hits were removed from duplicates
and 28 hits were selected based on title and abstract. After scanning the papers the search
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terms were adapted in order to obtain more papers about the transient behavior of gas bearings
resulting in the following search terms (Air OR Gas OR Aerostatic*) AND Bearing* AND
(transient OR "large displacement"*. These search terms were used in Web of Science and
Scopus resulting in 392 hits in Scopus and 283 hits in Web of Science. After removing duplicates
586 hits remained. From these hits the title and abstract were scanned and this resulted in 8
additional papers. This brings the total selection of papers on 36.

A.3 Data evaluation

Table A.1 gives an overview of the used bearings, governing equations to describe them, solution
method to solve the governing equation, if the dynamic coefficients were computed and if there
was obtained a full solution.
Air bearing are first of all classified in hydrodynamic and hydrostatic. Hydrodynamic bearings are
bearings that generate a lubrication layer due to the relative motion of the two bearing surfaces.
If the two bearing surfaces do not move with respect to each other there is also no lubrication
layer and no load capacity. Hydrostatic bearings however, use an external lubrication source to
create a lubrication layer and can carry loads even if the two bearing surface do not experience
relative motion.
Most air bearing types can be hydrostatic or hydrodynamic. Thrust bearings are hydrostatic
bearings that make a linear motion while carrying a load. Such a bearing has one or multiple
supply holes that supplies the lubricant to the bearing gap with pressure por, as shown in figure
A.1. Due to the pressure difference between the orifice pressure por and the ambient pressure pa,
a lubricate flow Q and pressure profile will exist. The increased pressure under the bearing pad
exerts a force that makes it possible for the bearing to carry a load. In this literature search 11
studies were found that analyze this type of bearing. Herein 8 studies analyzed circular shaped
bearings and 3 studies investigated rectangular bearings. Sliders are hydrodynamic linear bearings
that have a wedge form as depicted in figure A.2. The wedge forces the lubricant into a small gap
due to the relative motion between the bearing surfaces. Because the lubricant is forced under
the wedge an increased pressure pw will occur that exerts a force on the slider. This principle is
applied in the design of hard disk drives (HDD) read heads to ensure that the read head hovers
above the hard disk. 5 studies with this type of bearing were found. Another hydrodynamic linear
bearing is the squeeze film bearing. This type of air bearing has a flexible bearing surface that can
be actuated in a vibrating motion, creating a positive pressure across the bearing pad. 3 studies
treat this type of bearing. In two instances the squeeze film bearing was rectangular and in the
other circular.
Journal bearings allow rotational motion and carry load perpendicular to the rotational axis. Hy-
drodynamic journal bearings consist of a circular bushing and shaft where the center axis of these
components are generally aligned with a small eccentricity ε as shown in figure A.3. Due to the
eccentricity the lubrication height varies across the shaft circumference with the minimum height
in the direction of the eccentricity. The relative motion between shaft and bushing pressurizes the
lubricant in the minimum gap height causing a load carrying capable force. Hydrostatic journal
bearings are used if hydrodynamic bearings are not able to support the load, a precise radial posi-
tion of the bearing is need or to reduce instabilities [43]. These bearings have lubrication sources
distributed across the circumference of the bearing as shown in figure A.4. A total of 15 studies
were found that investigated journal bearings. In one study they investigated an air mount which
is not within the scope of this study. In another paper a general study to air bearings performed
by finding a solution of the Reynolds equation for lubrication. This is classified as general under
Type in table A.1.
The governing equations to model an air bearing is derived in two parts, The lubrication film
model and the dynamical model. The lubrication film models the pressure distribution in the
bearing and this is used as input for the dynamical model. The dynamical model models the
displacement of the air bearing masses. The Reynolds equation is most used in the modeling of
the lubrication film. This partial differential equation is encountered 26 times. The Reynolds
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Figure A.1: Schematic drawing of a hy-
drostatic thrust bearing.
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Figure A.2: Schematic drawing of a hy-
drodynamic thrust bearing.
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Figure A.3: Schematic drawing of a hy-
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Figure A.4: Schematic drawing of a hy-
drodynamic journal bearing.
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equation was first derived by Osborne Reynolds in 1886 to model thin lubrication films. In 2
instances the Linearized Boltzmann equation is used. In 1 paper the Navier-Stokes equations,
equation of continuity and the ideal gas law is used to model the thin film with fluid inertia forces
[47]. These are omitted in the Reynolds equation. [20] only uses the dynamic model with stiffness
coefficients derived from a lubrication film model. It is not mentioned which equation governs this
lubrication model. [32] describes a test setup for journal bearings and does not model the bearing
at all. [31] models and air mount and is not further investigated. [49] and [36] use the equation
of continuity and resistance network method (RNM) to model the lubrication film. [19] uses the
continuity equation, momentum equation and energy equation to model the lubrication film. It is
not clear what lubrication model [33] used.
All lubrication models were described by partial differential equations. Different methods were
encountered to solve these equations. The most used method in this literature search was the
small perturbation method that was used 10 times. This method was used to find the height and
frequency dependent dynamic coefficients, stiffness and damping. In 8 cases the finite difference
method was used to find a numerical solution and 6 times the finite element method (FEM).
Other methods that were encountered are the finite volume method (FVM) and modified averaging
approach (MAA). Also computation fluid dynamics (CFD) is used to solve the governing equations.
An interesting approach is proposed by Hassini [22]. In this study linear approximations of the
frequency and height dependent stiffness and damping coefficients were used to model a journal
bearing for large displacements. Every linear approximation is valid for certain bearing height
region. If the bearing leaves this region, there is switched to a new linear approximation that is
valid.
This study is interested in the dynamic behavior of a single orifice compensated thrust bearing
for large displacements. The solution of such problem is often referred to as the full solution in
literature. 14 papers were found that modeled the full solution. In 6 cases the finite difference
method was used. Three papers by Hassini [22] [23] [24] use his method. Further 2 times the
FEM and one times the FVM were used. The other two methods are unknown where one is the
time-transient analysis mentioned by [42]. None of the papers described above model the full
solution of a single orifice compensated thrust bearing. Most full solutions were found for journal
bearings.

Table A.1: Properties of found literature

Reference Type Shape Governing
equation

Solution
method

Dynamic
coeffi-
cients

Full
solu-
tion

Al-Bender
2009 [9]

thrust circular Reynolds Equation Small per-
turbation

yes no

Bhat 2012
[28]

thrust rectangular Reynolds Equation FEM yes no

Chandra
1983 [21]

journal circular Reynolds Equation FEM yes no

Chen 2009
[46]

thrust circular Reynolds Equation Small per-
turbation

yes no

Chen 2014
[11]

HDD
slider

rectangular Linearized Boltz-
mann Equation

FEM no no

Choi 2001
[44]

journal hemi-
spherical

Reynolds Equation FDM no no

Czolczynski
1993 [17]

journal circular Reynolds Equation FDM no yes

Dal 2014 [1] journal circular Reynolds Equation FDM no yes
Haruyama
1989 [47]

thrust circular Navier-Stokes and
ideal gas law

MAA yes no
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Table A.1: (continued)

Reference Type Shape governing
equation

Solution
method

Dynamic
coeffi-
cients

Full
solu-
tion

Hassini 2012
[22]

journal circular Reynolds Equation Hassini-
method

no yes

Hassini 2014
[23]

journal circular Reynolds Equation Hassini-
method

no yes

Hassini 2015
[24]

journal circular Reynolds Equation Hassini-
method

no yes

Hua 2012
[41]

HDD
slider

rectangular Linearized Boltz-
mann Equation

FVM no yes

Lin 1988 [10] General N/A Reynolds Equation FEM no yes
Liu 2007 [20] journal circular Equations of mo-

tion
unknown yes no

Mahajan
2008 [25]

squeeze
film

circular Reynolds Equation FDM no yes

Majumdar
1980 [5]

thrust circular Reynolds Equation Small per-
turbation

yes no

Majumder
1989 [26]

journal circular Reynolds Equation FDM no yes

Matta 2010
[32]

journal circular Experimental Experiment yes no

Milovanova
1982 [31]

air mount N/A N/A N/A N/A N/A

Mishra 1980
[3]

thrust rectangular Reynolds Equation Small per-
turbation

yes no

Ono 2009
[48]

squeeze
film

rectangular Reynolds Equation FDM yes yes

Otsu 2011
[49]

journal circular Equation of conti-
nuity+RNM

Small per-
turbation

yes no

Rao 1980
[29]

journal circular Reynolds Equation Small per-
turbation

yes no

Shapiro 1970
[42]

journal circular Reynolds Equation Time-
transient

yes yes

Smith 1997
[45]

journal circular Reynolds Equation FEM no yes

Stolarski
2010 [39]

squeeze
film

rectangular Reynolds Equation FDM no no

Wang 2012
[7]

journal circular Reynolds Equation FDM no yes

Wei 2011 [19] thrust circular Equation of conti-
nuity

CFD yes no

White 1988
[16]

HDD
slider

rectangular Reynolds Equation unkown no yes

Witelski
1998 [40]

HDD
slider

rectangular Reynolds Equation Small per-
turbation

yes no

Yabe 1982
[12]

thrust circular Reynolds Equation Small per-
turbation

yes no

Yap 1985
[50]

slider rectangular Reynolds Equation FEM no no
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Table A.1: (continued)

Reference Type Shape governing
equation

Solution
method

Dynamic
coeffi-
cients

Full
solu-
tion

Yoshimoto
1999 [36]

thrust rectangular Equation of conti-
nuity+RNM

Small per-
turbation

yes no

Yoshimoto
2001 [35]

thrust circular Reynolds Equation Small per-
turbation

yes no

Zhicheng
1993 [33]

thrust circular unkown FRF lin-
earization

no no
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Table A.2: Overview of found literature

Reference Bearing type Goal Method Result
Al-Bender 2009 [9] Nominally flat, cir-

cular, centrally fed
air bearing pad.

Overview of meth-
ods to model dy-
namic characteris-
tics of aerostatic
films (chapter 3).
How to use these
models for dynamic
stability analysis.
How to use these
models for active
dynamic compensa-
tion.

âĂĲStatic char-
acteristics, load
capacity, stiffness
and mass flow are
obtained from the
Reynolds equation
in the viscous flow
part of the film
together with the
feed and entrance
flow problems
[2-4].âĂİ
âĂĲThe time de-
pendent flow prob-
lem has to be solved
to obtain the dy-
namic pressure and
hence the dynamic
force.âĂİ Overview
of possible methods
to do this are given.
A mathemati-
cal formulation
of the linearized
time-dependent
Reynolds equation
is given and exper-
imentally verified.
This mathematical
problem is solved
by converting
the problem in
two initial-value
problems, forward
integration and us-
ing superposition.
The air film is mod-
eled as a non-linear
spring-damper
element with a
dynamic stiffness.
This model is used
to assess stability.
The purposed mod-
els are used to de-
sign and verify an
air bearing active
compensation sys-
tem.

The linearized
time-dependent
Reynolds equa-
tion shows a good
agreement with the
experimental data.
The models pur-
posed in this paper
can be used for
the design of air
bearings. The pur-
posed model based
on small amplitude
perturbations can
be used to design
an active control
system to improve
the dynamic stiff-
ness characteristics.
The methods pur-
posed can easily
be extended to
other types of air
bearings.
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Table A.2: (continued)

Reference Bearing type Goal Method Result
Bhat 2012 [28] Inherently compen-

sated orifice based
rectangular flat pad
air bearings.

Analyse static and
dynamic character-
istics of inherently
compensated orifice
based flat pad air
bearing systems.

Steady state char-
acteristics are stud-
ied with the use of
the Reynolds equa-
tions and the mass
conservation equa-
tion for incompress-
ible flow.
Dynamic charac-
teristics are studied
using the same
equations but then
for compressible
flow. With the
dynamical model
the effect on the
frequency depen-
dent stiffness and
damping is inves-
tigated for varying
orifice diameter,
supply pressure,
gap height, amount
of perturbation and
L/B ratio.
A test setup is
used to verify the
theoretical load ca-
pacity and pressure
distribution with
experimental data.

The theoretical
data coincides
well with the
experimental data.
The dynamic char-
acteristic noticed
for varying air
bearing parameters
investigated in this
study can be used
to design stable
inherently compen-
sated air bearings
under perturbation
forces.

Chandra 1983 [21] Circular journal
bearings and lobed
journal bearings.

Gives a dynamic
analysis and solu-
tion scheme to ob-
tain dynamic char-
acteristics of an air
bearing.

The Reynolds
equation for a gas
bearing are pre-
sented and FEM
is used to solve
pressure distribu-
tion from these
equations. This is
used to find the
frequency depen-
dent stiffness and
damping.

FEM solution
scheme.
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Table A.2: (continued)

Reference Bearing type Goal Method Result
Chen 2009 [46] Annual aerostatic

bearing.
Load capacity, stiff-
ness and damping
are studied numer-
ical.

Reynolds equation
is used to numeri-
cally calculate the
load capacity, stiff-
ness and damping.
Also small pertur-
bation of the gap
height is used to
numerically com-
pute FRFâĂŹs.
Variation of the gas
supply pressure,
air-gap clearance,
orifice diameter,
orifice height and
chamber depth is
considered.

Numerical model
coincides well with
experimental data.
It is concluded
that the influence
of the gas supply
pressure, air-gap
clearance and ori-
fice diameter to the
dynamical perfor-
mance is greater
than that of orifice
height and chamber
depth.

Chen 2014 [11] Air bearing slider
for hard disk drive

Characterization
of nonlinear dy-
namic properties
based on numerical
simulation.

The linearized
Boltzmann equa-
tion is used to
compute the bear-
ing force. This
equation is solved
with FEM. Also a
probability model
is added to simulate
surface roughness.

It is found that sys-
tem response ex-
hibit chaos features
under certain con-
ditions.

Choi 2001 [44] Self-acting spiral
grooved hemispher-
ical air bearing.

Studies the effects
of out-of-sphericity
errors on the ra-
dial stiffness of the
bearing.

Steady-state
Reynolds equa-
tion is used and
numerically solved
with the finite
difference method.
The linear equa-
tions were solved
using TDMA (Tri-
Diagonal Matrix
Algorithm) and
circular TDMA.

It is conclude that
out-of-sphericity
errors can increase
the stiffness due to
a decrease in the
air gap clearance
and a increased in
pressure.

Czolczynski 1993
[17]

Gas journal bear-
ing.

Describe transient
behavior after step
load of gas journal
bearing and assess
stability.

Reynolds equation
is used to deter-
mine the pressure
and is solved by
rewriting to the
finite difference
form and applying
the alternating
direction implicit
scheme (ADI).

Eccentricity Error
plots versus time
were obtained for
the gas journal
bearing.
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Table A.2: (continued)

Reference Bearing type Goal Method Result
Dal 2014 [1] Aerostatic journal

bearing.
Studies the effect
on the dynamics of
the bearing with an
increased clearance.

The Reynolds equa-
tion modified with
a mass flow term
is fully solved with
the use of alter-
nating direction im-
plicit scheme. The
computed force is
substituted in the
equations of motion
of the bearing rotor
to obtain a full so-
lution of the shaft
motions.

Increasing the num-
ber of orifices, sup-
ply pressure and
orifice diameter in-
creases the load ca-
pacity and stiffness.

Haruyama 1989 [47] Externally pres-
surized, gas-
lubricated, circular
thrust bearing.

The dynamic per-
formance of the air
bearing is analysed
with the use of a
modified averaging
approach.

The reduced
Navier-Stokes
equations, equation
of continuity and
ideal gas law are
used to determine
the dynamic stiff-
ness and damping
coefficient. The
main difference
is that the used
Navier-Stokes
equation is able
to take the in-
fluence of fluid
inertia forces into
account (which are
neglected in the
Reynolds equa-
tion). A modified
averaging method
is used to solve
the above men-
tioned equations.
A small harmonic
vibration of the
air-gap clearance
was assumed.

It was concluded
that the conven-
tional averaging
approach gives
a good approxi-
mation and that
the âĂĲfirst-order
solution of the per-
turbation method
becomes inaccurate
as the unsteadiness
becomes highâĂİ.
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Table A.2: (continued)

Reference Bearing type Goal Method Result
Hassini 2012 [22] Gas journal bear-

ing.
Develop a method
that is faster than
solving the full
Reynolds equa-
tion to simulate
large displacement
eccentricities of a
journal gas bearing.

Describes a method
that uses the
frequency and
eccentricity de-
pendent dynamic
coefficients to solve
subsequent sets of
linear equations to
describe large dis-
placements. This
method should be
faster than solving
the full Reynolds
equations.

The proposed
method solves the
eccentricity of a
gas journal bearing
with enough accu-
racy compared with
the full Reynolds
solution. The
simulation time
with this method is
halved. However,
if characteristic
parameters of the
bearing change
new dynamic co-
efficients have to
be determined
which increases the
simulation time.

Hassini 2014 [23] Gas journal bear-
ing.

Develop a method
to assess the stabil-
ity of the air bear-
ing model proposed
in [22].

The poles follow-
ing from a linear
model obtained
from the frequency
and eccentricity
dependent dynamic
coefficients are
determined. These
poles are used to
obtain Campbell
diagrams that
takes the variation
of the dynamic
coefficients with
the excitation
frequency into
account.

The proposed sta-
bility assessment
method is com-
pared with the
stability analysis
of a full Reynols
equation solution
and it is concluded
that the proposed
method is appro-
priate for stability
assessments.

Hassini 2015 [24] Gas journal bear-
ing.

Elaborate how the
proposed method of
previous papers can
be applied to a mul-
tiple degrees of free-
dom system.

See comments on
Hassini 2012 [22].

The proposed
method can be
used to model com-
plex gas bearing
systems.
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Table A.2: (continued)

Reference Bearing type Goal Method Result
Hua 2012 [41] Air bearing hard

disk drive slider
Development of an
implicit algorithm
for the dynamic
simulations based
on the Finite Vol-
ume Method for air
bearing sliders.

The time-
dependent lin-
earized Boltzmann
equation is solved
with the use of
the Finite Volume
Method and the
Crank-Nicolson
integration scheme.

The algorithm
shows a good nu-
merical accuracy,
robust convergence
and high speed.

Lin 1988 [10] Air bearings in gen-
eral.

Proposal of FEM to
analyze the stabil-
ity and dynamics of
air bearings

A modified
Reynolds equa-
tion is solved with
the use of the
Finite Element
Method. How the
Finite Element
Method is applied
is explained in
some detail. Also
a scheme is given
to simulate a step
response.

It is concluded that
the proposed Finite
Element Method
solution can be
used to analyze
the dynamics and
stability of various
air bearings.

Liu 2007 [20] Axial-flow hydro-
static micro gas
bearing.

Investigate the im-
pact of anisotropic
in the hydrostatic
stiffness on the
dynamic behavior
of the bearing.
Further describe
the physical mecha-
nisms and describe
performance and
design implications.

A full mechanical
analysis is made
of this kind of air
bearing. The hy-
drostatic dynamics
were extracted
from previous
work. Also, no in-
formation is given
on which numerical
methods were used
to solve the non-
linear mechanical
equations.

From the analysis
it is concluded that
an anisotropic hy-
drostatic stiffness
can extend the
stable operating
range and the sta-
ble operation speed
can be increased by
a factor 5.
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Table A.2: (continued)

Reference Bearing type Goal Method Result
Mahajan 2008 [25] Circular squeeze

film bearing.
Study the dy-
namic behavior
of a squeeze film
bearing.

The Reynolds
equation is used
to determine the
pressure which is
solved with the
Finite Difference
method. This is
substituted in the
equations of motion
of the bearing and
those are solved
with the Runge-
Kutta method.
The equations of
motion contains
the force due to the
pressure, gravity
and asperity forces.

A dynamical model
of a squeeze film
air bearing is devel-
oped with asperity
contacts. The ex-
perimental results
do not match the
theoretical model
quantitatively be-
cause it is not
possible to model
the experimental
setup perfectly.
Qualitatively the
results show a good
agreement with the
numerical results.

Majumdar 1980 [5] Circular thrust
bearing with
porous restrictor.

Investigate if a cir-
cular thrust bear-
ing with a par-
tial porous restric-
tor can be used
in dynamic condi-
tions.

Combining
Reynolds equa-
tion with equation
of mass conser-
vation. This last
equation is used
to find a relation
between pressure
and height to make
it possible to obtain
a stiffness. The
Reynolds equation
is linearized with
the use of harmonic
variations. The
obtained partial
differential equa-
tion is solved with
the finite difference
method. Finally
the dynamic stiff-
ness and damping
ratio is obtained.

It is concluded
that a higher
supply pressure
improves the static
load and stiffness
but decreases the
damping. Stiffness
and damping show
a small decrease
with an increase
in porosity. It is
concluded that
the found results
coincide with the
results of con-
ventional circular
aerostatic thrust
bearing.
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Table A.2: (continued)

Reference Bearing type Goal Method Result
Majumder 1989
[26]

Porous gas journal
bearing.

Study stability with
non-linear transient
method.

Reynolds equa-
tion together with
continuity equa-
tion for porous
layers is solved
with the Finite
Difference Method
and the Successibe
Over-Relaxation
scheme.

Eccentricity plots
were obtained
for certain initial
conditions.

Matta 2010 [32] Aerodynamic jour-
nal bearing.

Design test rig to
determine experi-
mentally the static
and dynamic char-
acteristics of an
journal air bearing.

Not further investi-
gated. Not inter-
esting for present
study. Maybe in fu-
ture if a test rig has
to be developed.

Asynchronous stiff-
ness and damping
coefficients are
identified. All
modal frequencies
of the test rig
should be avoided.
The experimental
data coincides well
with theory. Direct
coefficients are
larger than theory.

Milovanova 1982
[31]

Structural air bear-
ing

Report about an air
mount and not an
air bearing. This
paper is further ex-
cluded

- -
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Table A.2: (continued)

Reference Bearing type Goal Method Result
Mishra 1980 [3] Aerostatic rectan-

gular thrust air
bearing with 4
supply holes.

To make a theo-
retical analysis to
predict the stiffness
and damping coeffi-
cients.

The Reynolds
equation is used as
governing equation.
Linearized with
small perturbation
theory. With the
mass conservation
equation a first
estimate is made
of the pressure un-
derneath the orifice
restrictor. With
the use of the Finite
Difference Method
and Successive
Over-Relaxation
scheme the differ-
ential equations
are solved. The
computed pressure
is used to calculate
the load capacity
and this is used to
determine the stiff-
ness and damping
coefficients.

Different character-
istics of the stiffness
and damping are
given as function
of the squeezenum-
ber, dimensionless
restrictor parame-
ter , feed parameter
and pressure.

Ono 2009 [48] Rectangular
squeeze film gas
bearing.

Develop numerical
vibration model of
the linear motion
guide
Investigate the dy-
namic behaviour of
the guide numer-
ically and experi-
mentally under im-
pulse load
Elaborate on the
dynamic charac-
teristics of squeeze
film gas bearings.

Reynolds equation
is used to calcu-
late the pressure
under the air bear-
ing with the Finite
Difference Method.
A dynamic model
of linear guide in
vertical direction is
made and solved
with the use of the
Euler method.

If the bearing clear-
ance is decreased
the impulse re-
sponse of the linear
guide becomes
more oscillatory.
The table position
gradually recovers
to its initial posi-
tion after a large
decrease in bearing
clearance due to an
impulse load.
Dynamic stiffness is
different from static
and is ten times
larger.
The numerical
model can predict
well the dynamic
behavior of the
linear guide.
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Table A.2: (continued)

Reference Bearing type Goal Method Result
Otsu 2011 [49] Aerostatic porous

journal bearings.
The dynamic char-
acteristics of an
aerostatic porous
journal bearing
is investigated
numerically and
experimentally for
a porous layer of
graphite and metal.

DarcyâĂŹs law is
used to compute
the mass flow
through the porous
layer. The pressure
distribution was
computed with
the equation of
continuity and
resistance network
method. These Dif-
ferential Equations
were solved nu-
merically with the
Finite Difference
Method.

The maximum
static stiffness
can be obtained
with this type of
bearing. This type
of bearing gener-
ally increases the
dynamic stiffness
and damping coeffi-
cients. This is seen
both in numerical
calculations as
in experiments.
The numerical
method used is
accurate in predi-
cating the dynamic
characteristics.

Rao 1980 [29] Porous gas journal
bearings.

Describe method
to compute the
dynamic stiff-
ness and damping
coefficients of ex-
ternally pressurized
porous gas journal
bearings.

DarcyâĂŹs law is
used to compute
the mass flow
through the porous
layer. Reynolds
equation is used to
compute the pres-
sure underneath
the bearing and
small perturbation
method is applied
to eliminate the
time-dependent
terms. Finite Dif-
ference Method is
eventually applied
to compute the
pressure. Dynamic
load is computed
and stiffness and
damping are de-
rived from this.

Stiffness increases
with squeeze num-
ber and damping
decreases fast.
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Table A.2: (continued)

Reference Bearing type Goal Method Result
Shapiro 1970 [42] Gas journal hydro-

dynamic bearing.
Compare the time-
transient and step-
jump method to
test stability of gas
bearings.

Time-transient:
solving Reynolds
equation with
dynamic model
with Finite Differ-
ence Method and
forward integra-
tion. Step-jump:
Linearization of
Reynolds equation
and add small per-
turbation to assess
stability.

Time-transient
method provides
the most informa-
tion on the bearing
behaviour but is
less economical
while step-jump
method is economi-
cal but only usable
to assess stability.

Smith 1997 [45] Shell gas journal
bearing.

Study the stability
of a shell gas jour-
nal bearing.

Equations of mo-
tion are derived.
Reynolds equation
is used to compute
the pressure force
component. These
equations are
solved numerically
with FEM and
Newton’s Method.

Three factors limit
the operation of
such a bearing.
Dynamic instabil-
ities, violation of
minimum clearance
and component
separations of the
bearing.

Stolarski 2010 [39] Rectangular
squeeze film gas
bearing.

Investiage the tran-
sient film pressure
of this bearing.

Reynolds equation
is used to model
the film pressure
and written in the
implicit the Finite
Difference Form.
The equation was
solved with the
Newton-Raphson
method and the
over-relaxation
technique.

The pressure solu-
tions show a good
agreement with
CFD results for
small amplitude vi-
brations. Measured
pressure profiles
were smaller than
theoretically pre-
dicted.

Wang 2012 [7] United gas-
lubricated bearing.

Study of bifurca-
tion and nonlinear
behavior with nu-
merical methods

Three numerical
methods are used
and compared. 1.
Successive over re-
lation and FDM 2.
Differential trans-
formation method
and FDM 3.
Small perturbation
method Numerical
results are used to
construct power
spectra, Poincare
maps and bifurca-
tion diagrams.

SOV&FDM and
DTM&FDM co-
incide up to 4
decimal points.
The purposed nu-
merical method
DTM&FDM nu-
merical method
shows a good
agreement with
analytic solutions.

Dynamic behavior of thrust air bearings 95



APPENDIX A. LITERATURE SEARCH

Table A.2: (continued)

Reference Bearing type Goal Method Result
Wei 2011 [19] Circular thrust air

bearing.
Study the air flow
in the air bearing
lubrication film.

A combination
of computational
fluid dynamics and
the finite volume
method is applied
to solve the Par-
tial differential
equations that
describe the air
bearing. The PDE
is derived from
the equation of
mass, energy, state
and momentum
conservation.

The most interest-
ing result is the
load vs gap height
curve that is ob-
tained. This is for
a static situation.
No transient effects
were taken in ac-
count.

White 1988 [16] Hard disk drive
slider air bearing.

Develop theoretical
and computational
model for dynamic
air bearing simula-
tion.

Equations of mo-
tion of slider are
derived. The in-
fluence of the air
bearing is modeled
with the use of the
Reynolds equation.
A Runge-Kutta
scheme is used
for integrating
the equations of
motion. Then the
Reynolds equation
is solved and the
slider position is
recomputed.

A model is pre-
sented but not veri-
fied in any way.

Witelski 1998 [40] Hard disk drive
slider air bearing.

presented analytic
solutions for the full
dynamics of a one-
dimensional slider
bearing.

Equations of mo-
tion for the one
dimensional slider
bearing are derived
with the use of a
mechanical model
and the Reynolds
equation. These
are linearized to
study the stabil-
ity of the slider
bearing.

It is shown that
convective influ-
ence can produce
flow-induced damp-
ing and instability
with a non-trivial
parameter depen-
dence. It is shown
that there are many
coexisting stable
finite amplitude
limit cycles for
slider oscillations.
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Table A.2: (continued)

Reference Bearing type Goal Method Result
Yabe 1982 [12] Externally pressur-

ized circular thrust
gas bearing with
surface restriction

Find expressions
for the dynamic
stiffness and damp-
ing coefficient
for two types of
bearing models.

The surface restric-
tor consists of ra-
dial grooves. Di-
viding the bearing
surface in 3 parts,
inlet, grooved part,
flat part.
Modal A uses the
Reynolds equation
for an equivalent
recessed bearing
and neglects the
circumferential flow
in the flat part of
the bearing surface.
The pressure in this
region is averaged.

The experimen-
tal results were
compared with
the theoretical
ones and showed a
âĂĲcomparatively
good qualitative
and quantitative
agreement for bear-
ing stiffnessâĂİ
and a âĂĲfairly
good agreement for
damping coefficien-
tâĂİ.

Yap 1985 [50] Rectangular gas
slider bearing

Present a finite
element method
for the computa-
tion of pressures
and load-bearing
characteristics
of gas-lubricated
slider bearings.

Reynolds equation
is solved with FEM.

No clear conclusion
is given. Only nu-
merical results.

Yoshimoto 1999
[36]

Aerostatic rectan-
gular double-pad
thrust bearing
with compound
restrictor.

Determine the dy-
namic stiffness and
damping coefficient
for tilt motion for
this type of bearing,
theoretical and ex-
perimental.

Resistance network
method is used
to obtain the nu-
merical dynamic
tilt characteristics.
Details about this
method are not
given. From what
can be seen it
seems that it is a
combination of the
Reynolds equation
and finite difference
method results in
an equation con-
taining the pressure
and bearing clear-
ance. Further the
small perturbations
method is applied
to obtain an ex-
pression for the
dynamic tilt stiff-
ness and damping
coefficients.

Double row bear-
ings have a higher
static and dynamic
tilt stiffness than
single row bearings
Increased groove
depth reduced
the damping co-
efficient at the
optimum bearing
clearance for static
tilt stiffness.
The squeeze effect
has a major ef-
fect on the dynamic
characteristics, pri-
marily at smaller
bearing gaps.
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Table A.2: (continued)

Reference Bearing type Goal Method Result
Yoshimoto 2001
[35]

Aerostatic circu-
lar thrust porous
thrust bearing.

Investigate the
influence of two
methods to supply
the porous layer of
air on the dynamic
characteristics.

Uses the Reynolds
equation and Dar-
cyâĂŹs law. Finite
Difference method
is used to solve this
and small perturba-
tion method is used
to find the dynamic
characteristics.

Static stiffness in-
creases if the supply
area increases.
Various characteri-
sations of influences
of design parame-
ters on the dynamic
characteristics were
obtained.

Zhicheng 1993 [33] hydrostatic circular
thrust bearing.

Investigate the
transient char-
acteristics of a
hydrostatic bearing
subjected to a step
load.

The paper makes
not clear which
method is used to
model the lubri-
cation film. The
equations of mo-
tion of the bearing
are transferred
to the frequency
domain in order to
assess the transient
behavior.

sensitive oil supply
line should be as
short as possible.
If the initial gap
height decreases
the maximum dis-
placement response
decreases but
the settling time
becomes longer.
The dynamic vis-
cosity of oil effects
the duration of the
transient behavior
but not the max-
imum displacement
response.
The maximum air
bearing loud can be
increased by using a
higher supply pres-
sure.
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Appendix B

Coordinate transformation of
Reynolds equation

To illustrate how the Reynolds equation for lubrication is written in cylindrical coordinates the
simplified equation

∂

∂x

(
∂p

∂x

)
+

∂

∂y

(
∂p

∂y

)
= 0 (B.1)

is considered. The method described can also be applied to the general Reynolds equation or
simplification thereof to transform that equation into cylindrical coordinates.
The following relations between the Cartesian (x, y) and cylindrical (r, φ) coordinates are used:

x = r cosφ,

y = r sinφ,

r =
√
x2 + y2,

φ = arctan 2(x, y).

For the first derivative of p to x holds

∂p

∂x
=
∂p

∂r

∂r

∂x
+
∂p

∂φ

∂φ

∂x
(B.2)

with the above relations between the coordinates, the coordinate derivatives are

∂r

∂x
=

x√
x2 + y2

=
x

r
= cos(φ), (B.3)

∂φ

∂x
= − y

x2 + y2
= − y

r2
= − sin(φ)

r
. (B.4)

Substitution of (B.3) and (B.4) in (B.2) this results in

∂p

∂x
= cos(φ)

∂p

∂r
− 1

r
sin(φ)

∂p

∂φ
. (B.5)
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The second derivative will then become

∂

∂x

(
cos(φ)

∂p

∂r
− 1

r
sin(φ)

∂p

∂φ

)
(B.6)

= cos(φ)
∂

∂r

(
cos(φ)

∂p

∂r
− 1

r
sin(φ)

∂p

∂φ

)
− 1

r
sin(φ)

∂

∂φ

(
cos(φ)

∂p

∂r
− 1

r
sin(φ)

∂p

∂φ

)
(B.7)

= cos(φ)

(
cos(φ)

∂2p

∂r2
+

1

r2
sin(φ)

∂p

∂φ
− 1

r
sin(φ)

∂2p

∂r∂φ

)
(B.8)

− 1

r
sin(φ)

(
− sin(φ)

∂p

∂r
+ cos(φ)

∂2p

∂φ∂r
− 1

r
cos(φ)

∂p

∂φ
− 1

r
sin(φ)

∂2p

∂φ2

)
. (B.9)

The same process is applied to the y derivative

∂p

∂y
=
∂p

∂r

∂r

∂y
+
∂p

∂φ

∂φ

∂y
. (B.10)

The coordinate derivatives are

∂r

∂y
=

y√
x2 + y2

=
y

r
= sin(φ), (B.11)

∂φ

∂y
=

x

x2 + y2
=

x

r2
=

1

r
cos(φ). (B.12)

And thus
∂p

∂y
= sin(φ)

∂p

∂r
+

1

r
cos(φ)

∂p

∂φ
. (B.13)

The second derivative then becomes

∂2p

∂y2
=

∂

∂y

(
sin(φ)

∂p

∂r
+

1

r
cos(φ)

∂p

∂φ

)
(B.14)

= sin(φ)
∂

∂r

(
sin(φ)

∂p

∂r
+

1

r
cos(φ)

∂p

∂φ

)
+

1

r
cos(φ)

∂

∂φ

(
sin(φ)

∂p

∂r
+

1

r
cos(φ)

∂p

∂φ

)
(B.15)

= sin(φ)

(
sin(φ)

∂2p

∂r2
− 1

r2
cos(φ)

∂p

∂φ
+

1

r
cos(φ)

∂2p

∂r∂φ

)
(B.16)

+
1

r
cos(φ)

(
cos(φ)

∂p

∂r
+ sin(φ)

∂2p

∂φ∂r
− 1

r
sin(φ)

∂p

∂φ
+

1

r
cos(φ)

∂2p

∂φ2

)
. (B.17)

Substituting both second derivatives in (B.1) results in

∂2p

∂x2
+
∂2p

∂y2
=
∂2p

∂r2
+

1

r

∂p

∂r
+

1

r2

∂2p

∂φ2
. (B.18)

If it is assumed that p is constant in φ, hence if an axial symmetric fluid bearing is considered,
(B.18) reduces to

∂2p

∂x2
+
∂2p

∂y2
=
∂2p

∂r2
+

1

r

∂p

∂r
= 0. (B.19)

This can be rewritten as:
r

r

∂2p

∂r2
+

1

r

∂r

∂r

∂p

∂r
=

1

r

d

dr

(
r
dp

dr

)
= 0. (B.20)

The Reynolds equation in for an axial symmetric fluid bearing is thus

1

r

d

dr

(
r
dp

dr

)
= 0. (B.21)
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Appendix C

Additional modeling results

C.1 Incompressible fluids without orifice restriction
Figure C.1 shows the height h(t) for the numeric and analytic solution for a initial height h0 =
50 · 10−6 m and an external force of Fex = 300 N . It is seen that the height decreases much
faster compared with the same simulation for Fex = 68.67 N as figure 4.5 shows. Figure C.2
shows the according pressure distribution. As can be seen, the pressure first increases to above
the supply pressure before it drops to the ambient pressure at the outer boundary. The fluid is in
this situation squeezed out of the air bearing gap and streams even back into the supply line.
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Figure C.1: Numeric solution of h(t) for h0 = 50 · 10−6 m, Fex = 300 N , I = 1000, J = 1000.
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Figure C.2: Numeric solution of p(r) for h0 = 50 · 10−6 m, Fex = 300 N , I = 1000.

C.2 Compressible fluids
Figure C.3 shows the gap height response for the compressible and incompressible model for an
external force 20 N larger than the static load capacity. In Figure 4.17 it can be seen that the
static pressure distributions is not equal for the compressible and incompressible case. Hence, the
static load capacity is also different. The load capacity for the incompressible and compressible
case, for bearing under consideration is 55 N and 72 N , respectively. This means that in figure
C.3 the external force is respectively 75 N and 92 N for the incompressible and compressible case.
This 20 N step was applied gradually over 1 · 10−6 s as can be seen in figure C.4. In figure C.3
it can be seen that the height decrease between the two models coincide well. However, if the
gap height response is observed during the application of the step force a relative large difference
between the compressible and incompressible case is seen. This is shown by figure C.5. The initial
rapid decrease in height for the compressible case is caused by compressibility of the fluid.
This can also be seen in the discretized Reynolds equation used and repeated here as

∇ ·
(
ρh3

12µ
∇p
)

=
pj+1hj+1 − pjhj

∆t
(C.1)

where j denotes the current time instant. The pressure p is directly coupled to the external
applied force due to the force balance. This means that the pressure increases directly if the force
is increased. The left hand side is the divergence of the mass flow which can be assumed finite. If
∆t is small enough and the pressure makes a relative large step this means that the height also
has to make a step in order to let (C.1) hold. Physically, this means that due to the step in the
force the pressure increases and therefore also the density due to the compressibility. Because the
fluid is not flowing yet directly after the impulse, the mass of the fluid underneath the bearing is
preserved and the density can only increase by a decrease of the volume and thus a rapid decrease
of the height. After the compression the fluid starts to flow out of the bearing gap and the height
decreases at a less fast rate.
If the incompressible Reynolds equation is considered, repeated here as

∇ ·
(
h3

12µ
∇p
)

=
hj+1 − hj

∆t
, (C.2)

then can be seen that the height is not linked to the pressure and a more steady height decrease
will be seen after a step in the pressure.
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Figure C.3: Gap height response from h0 =
50·10−6 m for compressible and incompress-
ible case.

Figure C.4: Step force input Fex = 75 N

Time [s]

H
ei
gh

t
[m

]

4.8

4.85

4.9

4.95

5

5.05
×10− 5

0 1 2 3 4 5
×10− 6

Compressible
Incompressible

Figure C.5: Gap height response from h0 =
50·10−6 m for compressible and incompress-
ible case until t = 5 · 10−6 s.
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C.3 Compressible fluids with orifice restrictor
In section 4.3 several equations to describe the mass flows in the air bearing are given. These
are combined with the Reynolds equation and solved with Newton’s method. To apply Newton’s
method the derivative of these equations has also to be known. These derivatives are given below.
The partial derivatives with respect to ∂ṁ

∂pe
and ∂ṁ

∂pb
of (4.109) are computed as follows. First

A =
2κ

κ− 1

((
pe
pb

) 2
κ

−
(
pe
pb

)κ+1
κ

)
(C.3)

is defined to shorten notation. The derivative of A with respect to pe is

∂A

∂pe
=

2κ

κ− 1

(
2

κpb

(
pe
pb

) 2−κ
κ

− κ+ 1

κpb

(
pe
pb

) 1
κ

)
. (C.4)

The derivative of A with respect to pb is

∂A

∂pb
=

∂

∂pb

(
2κ

κ− 1

((
pb
pe

)− 2
κ

−
(
pb
pe

)−κ+1
κ

))

=
2κ

κ− 1

(
− 2

κpe

(
pb
pe

)− 2+κ
κ

+
κ+ 1

κpe

(
pb
pe

)− 2κ+1
κ

) (C.5)

If
(

2
κ+1

) κ
κ−1 ≤ pe

pb
≤ 1, then

∂ṁ

∂pe
=
CdAeffpb√

RsT

1

2
√
A

∂A

∂pe
(C.6)

and
∂ṁ

∂pb
=
CdAeff√
RsT

√
A+

CdAeff√
RsT

pb
1

2
√
A

∂A

∂pb
. (C.7)

The same can be done for negative mass flows. Let

B =
2κ

κ− 1

((
pb
pe

) 2
κ

−
(
pb
pe

)κ+1
κ

)
(C.8)

then

∂B

∂pe
=

∂

∂pe

(
2κ

κ− 1

((
pe
pb

)− 2
κ

−
(
pe
pb

)−κ+1
κ

))

=
2κ

κ− 1

(
− 2

κpb

(
pe
pb

)− 2+κ
κ

+
κ+ 1

κpb

(
pe
pb

)− 2κ+1
κ

) (C.9)

and
∂B
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If 1 < pe
pb
≤
(

2
κ+1

)− κ
κ−1

, then

∂ṁ
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= −CdAeff√

RsT

√
B − Aeff√
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√
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∂pe
(C.11)

and
∂ṁ

∂pb
= −CdAeff√

RsT
pe

1

2
√
B

∂B

∂pb
. (C.12)
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This results in the following piecewise derivatives
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The derivatives of (4.118) with respect to p0,j and p1,j are

∂ṁgap

∂p0
=

πh3R1

6ηRsT (r1 − r0)
p0 (C.15)

and
∂ṁgap

∂p1
= − πh3R1

6ηRsT (r1 − r0)
p1. (C.16)

The derivatives needed for Newton’s method of (4.128) and (4.129) are derived as follows. Equation
(4.128) is also a function of pth. This parameter can be eliminated by substituting (4.122) in (4.128)
with K according to (4.123) and Re as defined in 4.124 with ṁin = ṁgap The jacobian of the set
of equations (4.128) and (4.129) is equal to

Jo(pin, po) =

[
∂f1
∂po

∂f1
∂pin

∂f1
∂pin+1

∂f2
∂po

∂f2
∂pin

∂f2
∂pin+1

]
(C.17)

Herein
∂f1

∂po
= −∂ṁin(po, pth(po, pin))

∂po
= −∂ṁin

∂po
− ∂ṁin

∂pth

∂pth
∂po

(C.18)

with

pth = po −
(po − pin)

K(pin)
(C.19)

and

∂pth
∂po

= 1−K−1. (C.20)

∂f1

∂pin
=
ṁgap(pin)

∂pin
− ∂ṁin

∂pth

∂pth
∂pin

(C.21)

where

∂pth
∂pin

= K−1 +
(po − pin)

K2

∂K(ṁgap(pin, pib+1))

∂pin
(C.22)

= K−1 +
(po − pin)

K2

∂K(ṁgap)

∂ṁgap

∂ṁgap

∂pin
(C.23)
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with
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∂f2

∂po
= −∂ṁo

∂po
. (C.25)

∂f2

∂pin
=
∂ṁgap

∂pin
. (C.26)

If these equations are combined with the finite difference form of the Reynolds equation also the
derivative with respect to pin+1 has to be calculated. The derivative of f1 with respect to pin+1 is

∂f1

∂pin+1
=
∂ṁgap

∂pin+1
− ∂ṁin

∂pth

∂pth
∂pin+1

, (C.27)

where
∂pth
∂pin+1

=
(po − pin)

K2

∂K(ṁgap)

∂ṁgap

∂ṁgap

∂pin+1
(C.28)

and for f2 this is
∂f2

∂pin+1
=
∂ṁgap

∂pin+1
. (C.29)

Note that for ∂ṁin
∂po

, ∂ṁin∂pth
, ∂ṁgap∂pin

, ∂ṁo∂po
and ∂ṁo

∂pin
, (C.13) and (C.14) can be used.

C.4 Full air bearing model
In this section, some additional simulation results are shown that were obtained with the full air
bearing model.
Figure C.6 shows the gap height response for the air bearing subjected to a temporary increased
force. The force on the air bearing is initially Fs = Mg = 49.05 N due to gravity. At t = 0 s the
force is increased to Fs = 150 N and decreased again at t = 0.025 s to Fs = 49.05 N . As can
be seen, the gap height decreases from the initial static height until the increased force is reduced
again. After that, the height is recovering to the initial position. The non-linear character of this
model is clearly visible in the response. The shape of the decreasing trajectory is different from
the increasing trajectory. This indicates that the superposition property does not hold. Further,
it is clearly seen that the ’eigenfrequency’ changes if the gap height changes.
Figure C.7 shows several frequency sine-sweep results for different amplitudes and increasing and
decreasing frequencies. The air bearing model was statically loaded by a gravitational force of
Mg = 49.05 N and additionally subjected to a static external sinusoidal force with am amplitude
of A N and a frequency between 10 Hz and 1000 Hz. Each simulation was started with the
sinusoidal force frequency at 10 Hz or 1000 Hz. Initially, there was simulated long enough until
the steady-state amplitude was reached. Then, the steady-state height amplitude was registered
and the frequency was increased or decreased in the same simulation. This was repeated until the
maximum or minimum frequency was reached. The frequency step changes for low frequencies
were smaller than for large frequencies because it was expected that the height amplitude response
changed more for low frequencies. The steady-state amplitude was defined as xmax(t)−xmin(t)

2 where
x only consists of the one steady-state period. As can be seen the shape of the amplitude-frequency
response changes if the sinusoidal force increases. In the case of A = 25 N even a small resonance
peak occurs.
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Figure C.6: Gap height response of bearing subjected to temporary increased force with amplitude
of 150 N and a duration of 0.025 s for an air bearing with mass M = 5 kg.
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Figure C.7: Frequency sine-sweep results for M = 5 kg (h0 = 36.6 µm).
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Figure C.8: Frequency response bode diagram derived from sine-sweep results for M = 5 kg
(h0 = 36.6 µm).

If linear theory is applied and it is assumed that the steady-state height response consist only of
a sinusoid with amplitude xmax(t)−xmin(t)

2 and inputted excitation frequency, a frequency response
bode diagram can be derived. Figure C.8 shows this bode diagram where the magnitude is
xmax(t)−xmin(t)

2A and the phase is the phase difference between the sinusoidal input frequency and
the corresponding sinusoidal output.
As can be seen, the magnitude and phase remain constant for small amplitudes up to 0.3 N . For
large amplitudes the magnitude starts to gradually change and for the extreme case of 25 N even
a resonance peaks occurs. The phase seems to decrease with an increase in the magnitude. This
indicates that the system response becomes more delayed compared to the input for large input
amplitudes. The effects seen in the amplitude-frequency response is indicates that the system
behaves non-linear for large displacements, as expected.
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Appendix D

Additional experimental results

In this appendix a more elaborated description of the experimental setup is given. Further, a
broader description on the frequency response results is given.

D.1 Experimental setup
Figure 5.2 shows the used experimental setup schematically. The setup consist of a T-sloted base
table where on top a large steel block is mounted. On the steel block a Kistler 9061A force
transducer is placed with on top of the force transducer the bearing mount plate (see table D.1 for
specifications). The air bearing pad to be investigated is mounted with four bolts on the bearing
mount plate. The bearing pad is depicted in figure D.1. On the bearing pad a bearing counter
surface is placed (see figure D.2). One side of the counter surface block is flat to make the creation
of an air lubrication film possible between the counter surface and the bearing pad. The other side
of the bearing pad has a large radius. On top of this radius a concave bearing pad is placed which
is rigidly fixed to a linear guide. The concave bearing pad creates an air lubrication film between
the guide and the counter surface and acts like an air lubricated pivot. The supply lubrication
holes of the pivot bearing pad are visible in figure D.3. The pivot corrects for tilt errors and
ensures a parallel gap between the air bearing pad and the flat counter surface. The linear guide
is air lubricated and contains a piston pressure chamber. The pressure in this chamber can be
increased to apply an extra load via a piston on the air bearing pad. Figures D.4 and D.5 show
the linear guide and the piston pressure chamber respectively. A total picture of the experimental
setup is shown in figure D.6.
Two Lion C7-C capacitive displacement sensors are placed with fixtures above the bearing counter
surface as shown in figure ?? to measure the air bearing gap height (see table D.2) for specifica-
tions). The fixtures are mounted with magnets on the large steel block. Further, a Alicat Scientific
M-10SLPM-D mass flow meter (table D.3) and a Fluke 700PD7 (table D.4) pressure module are
used to measure the fluid mass flow and pressure. For modal hammer experiments an Endevco
model 2302-100 modal hammer (table D.5) is used.
Figure 5.3 shows a one-dimensional dynamical model of the test setup. In this model it is assumed
that the steel block can be seen as the rigid world. The load cell has a stiffness which is used
to measure the force between the rigid world and the bearing mount plate but this stiffness is
1.4 · 1010[N/m] and therefore the load cell link is seen as a rigid connection. Mcs represents the
counter surface mass and is equal to 0.55 kg. This mass is linked via the air bearing lubrication
layer to the rigid world. Mg is the mass of the linear guide and is linked by the pivot lubrication
layer to the counter surface. Mg is equal to 0.55 kg. The mass of the counter surface Mcs and
of the guide Mg are used to preload the bearing and give the bearing a nominal gap height for a
certain supply pressure. The mass of the guide can be increased, or the piston pressure chamber
can be pressurized to adjust the nominal gap height.
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Counter surface
Large radius

Figure D.1: Bearing pad mounted on
mountingplate

Figure D.2: Bearing counter surface.

Figure D.3: Concave pivot bearing pad. Figure D.4: Linear guide with pivot bearing pad.
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Figure D.5: Inside of linear guide support. Figure D.6: Picture of test setup.
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Table D.1: Manufacture data of Kistler 9061A force transducer.

Property Value Unit

Range 0-200 kN
Calibrated partial range 0-20 kN
Overload 240 kN
Max. Bending moment ≤ ±830 Nm
Rigidity ≈ 14 kN/µm
Capacity ≈ 148 pF
Weight 160 g
Sensitivity ≈ −4.3 pC/N
Threshold ≤ 0.01 N
Operating temperature range -196-200 ◦C
Linearity ≤ ±1 % FSO
Hysteresis < 0.5 % FSO
Insulation resistance ≥ 10 TΩ
Temperature coefficient -0.02 %/◦C

Table D.2: Manufacture data of Lion C7-C capacitive displacement sensor.

Property Value Unit

Range 75-125 µm
Resolution 3.5 nm RMS
Sensor diameter 1.7 mm
Maximum error 0.5 % F.S.
Bandwidth 20 kHz

Table D.3: Manufacture data of Alicat Scientific M-10SLPM-D mass flow meter.

Property Value Unit

Accuracy ± (0.8% of Reading + 0.2% of Full Scale)
Repeatability ± 0.2 % F.S.
Operating Range 1 to 100 % F.S.
Operating Temperature -10 to +50 ◦C
Zero shift 0.02 % F.S. / ◦C / Atm.
Span shift 0.02 & F.S. / ◦C / Atm.
Humidity Range 0 - 100 %
Measurable Flow Rate 128 % F.S.
Maximum Pressure 145 PSIG

Table D.4: Manufacture data of Fluke 700PD7 pressure module.

Property Value Unit

Range 1 - 14 Bar
Total Uncertainty 0.07 % F.S.
Temperature range 0-50 ◦C
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Table D.5: Manufacture data of modal hammer 2302-100.

Property Value Unit

Range 220 N
Sensitivity 22.7 mV/N
Maximum force 4448 N
Resonance frequency 50 kHz
Frequency range 8 kHz
Head mass 100 grams
Head diameter 19 mm
Impact tip diameter 6.4 mm
DC output bias 9-10 V dc
Output impedance <100 Ohms
Full scale output ±5 V
Supply voltage 18-24 V dc
Supply current 2-10 mA
Temperature range -55 - 125 ◦C
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D.2 Airbearing surface roughness measurement
Figures D.8 till D.15 shows the measured roughness in 8 different directions. Figure D.7 shows
schematically these directions on the air bearing surface. The mean of each measurement is located
at height zero. The large spike and standard deviation in figure D.12 is due to the measurement
over the air bearing inlet hole.
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Figure D.7: Air bearing surface with grinding direction.

Displacement [mm]

H
ei
gh

t
[µ
m
]

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0 5 10 15 20 25 30

Displacement [mm]

H
ei
gh

t
[µ
m
]

−1

−0.5

0

0.5

1

0 5 10 15 20 25 30

Figure D.8: Surface roughness measurement
in direction 1 with standard deviation of σ =
0.32 µm2.

Figure D.9: Surface roughness measurement
in direction 2 with standard deviation of σ =
0.32 µm2.
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Figure D.10: Surface roughness measure-
ment in direction 3 with standard deviation
of σ = 0.54 µm2.

Figure D.11: Surface roughness measure-
ment in direction 4 with standard deviation
of σ = 0.33 µm2.
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Figure D.12: Surface roughness measure-
ment in direction 5 with standard deviation
of σ = 2 µm2.

Figure D.13: Surface roughness measure-
ment in direction 6 with standard deviation
of σ = 0.34 µm2.
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Figure D.14: Surface roughness measure-
ment in direction 7 with standard deviation
of σ = 0.49 µm2.

Figure D.15: Surface roughness measure-
ment in direction 8 with standard deviation
of σ = 0.33 µm2.
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D.3 Frequency response measurements
To investigate the gap height response to an input force in the frequency domain a modal hammer
analysis was performed. The air bearing was excited by hitting the levitated mass with a model
hammer, that has a force transducer mounted on the tip. This way, a time response from the force
is obtained. The displacement sensors were used to simultaneously obtain a time response for the
gap height. The sampling frequency was set to 102400 Hz and the Nyquist frequency is thus 51200
Hz. Each excitation of the levitating mass with the modal hammer is seen as one measurement
sample and 20 samples were taken. Each sample had a duration of T = 0.64s resulting in a
frequency resolution of 1/0.64 = 1.5625Hz. The impulse was applied at 0.064 s of the sample.
This prevents the effect of signal leakage. The high sampling frequency prevents aliasing.
The discrete time samples x[k] were transformed into the frequency domain with the use of the
Fast Fourier Transform algorithm in MATLAB defined as

X[n] =
N−1∑
k=0

x[k]W kn n = 0, 1, . . . , N − 1. (D.1)

Herein W = e(−2πi)/N , where N is the number of equal inter distant intervals of x[k] [8]. The unit
of X[n] is [x]/Hz. The estimator of the auto power spectral density is defines as

Ŝxx[n] =
1

NT

N∑
k−1

X∗k[n]Xk[n] (D.2)

Where N = 20 is the number of measurement samples, X∗k[n] is the complex conjugate of Xk[n].
The estimator of the cross power spectral density is defined as

Ŝxy[n] =
1

NT

N∑
k−1

X∗k[n]Y k[n] (D.3)

where Y k is another measurement sample. A estimation of the frequency response function Ĥxy

from the hammer force to the displacement output was computed by using the H1 estimator

Ĥxy =
Ŝxy

Ŝxx
. (D.4)

Herein, X was the Fourier transformed hammer force signal and Y the Fourier transformed dis-
placement signal. The coherence is computed as follows

γ2
xy =

|Sxy|2

SxxSyy
. (D.5)

If the coherence is close to one this indicates that there is a strong linear relation between the
input and the output [8].
The frequency response function from the model was obtained by simulating a sine-sweep. The
force input of the simulation was a sine with a frequency starting at 10 Hz until 1000 Hz with
steps of 5 Hz and a amplitude of 0.1 N . Each frequency was simulated until the displacement
showed a steady-state output. Then the harmonic displacement amplitude was stored and, in
the same transient simulation, the frequency was increased with 5 Hz. This was done for all
frequencies. The displacement amplitudes were divided by the sine amplitude resulting in the
frequency response of the model.
Figure D.16 shows the frequency response of the measurement for the air bearing of table 5.1 with
a mass of 3.6 kg and a supply pressure of 4 bar of the measurement and the model. It is seen that
the increase in magnitude seen in the model data coincides well with the measurement data. The
frequency of this increased magnitude is approximately 110 Hz. Besides the modeled magnitude
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increase also several resonance peaks are seen in the measurements that are not modeled at 55 Hz,
65 Hz and 85 Hz. Further, a small deviation of approximately 1.3 · 10−7[m/N ] in magnitude is
noticed between the model and the measurements for low frequencies. This difference is probably
due to a different static stiffness for the test setup and the model.
Figure D.17 plots the coherence of the measurement shown in figure D.16. As can be seen the
coherence is equal to one at the location of the resonance at 110 Hz indicating that the measure-
ment is reliable in this area. For high frequencies the coherence drops towards zero because of a
bad signal to noise ratio. Below 110 Hz some drops in the coherence are seen indicating that the
displacement output is not caused by the force input, or it is a non-linear effect. This is also seen
in the coherence at the non-modeled resonance frequencies of 55 Hz, 65 Hz and 85 Hz.
To investigate if these peaks could be caused by non-linear effects in the air bearing a sine-sweep
was modeled with a relative large amplitude of 20N . The results of this sine-sweep is also shown in
figure D.17. It is seen that the magnitude indeed increases at 55 Hz and 65 Hz but the increased
magnitude at 110 Hz shifts to 100 Hz. This makes it improbable that the resonances observed at
55 Hz and 65 Hz exist due to non-linear effects.
The displacement sensors were placed above the bearing counter surface with two fixtures. The
fixtures were again mounted on the large steel block (see figure ??). On each fixture a acceleration
sensor was placed next to the displacement sensor. Then the same measurements were performed
with the modal hammer. Figure D.19 shows the frequency response of the modal hammer force
to both fixture accelerations. It can be seen that the displacement sensors accelerate at 55 Hz,
65 Hz and 85 Hz. These are the same frequencies as the non-modeled resonances seen in figure
D.16. It can be concluded that these resonance are caused by the moving displacement sensors
and not due to movement of the bearing counter surface at these frequencies.
Figure D.20 shows the frequency response measurement for an air bearing with a mass of M =
4.45 kg and a supply pressure of 4 bar and the corresponding model sine-sweep result. As can be
seen the increased magnitude coincides well with the measurement. The error at the maximum
magnitude value is 0.25 · 10−7 m/N . Again a difference is noticed in the magnitude for low
frequencies of approximately 1 · 10−7 m/N . The resonance peaks due to the movement of the
displacement sensors are also visible. The coherence shown in figure D.21 is equal to 1 at the
increased magnitude and for low frequencies.
If figure D.20 is compared with D.16 it is noticed that the frequency of the increased magnitude has
increased from 110 Hz to 115 Hz. for a linear system it is expected that the resonance frequency
should decrease because of an increase in mass. However, because the mass has increased the
static bearing height has decreased and from figure 5.13 it can be seen that the stiffness increased
if the load is changed from 36 N to 44.5 N . This change in stiffness is higher than the change in
mass resulting in an increase in the resonance frequency.

D.3.1 Additional frequency response measurement
The suggestion that the large resonance below the air bearing resonance were originating from
the fixtures followed from a observation in a preliminary measurement. Figure D.22 shows the
frequency response result with the hammer force as input and the displacement as output. As
can be seen, two non-modeled resonances are visible at approximately 55 Hz and 65 Hz. The
coherence, shown in figure D.23, only drops at the location of these resonance peaks and for higher
frequencies. But, it is one at the location of the resonance peaks and at low frequencies. Figure
D.25 shows the frequency response measurement of the hammer force to the acceleration of the
counter surface. The resonances at 55 Hz and 65 Hz noticed in D.22 are not present in this
measurement. Thus, these resonances are not present in the counter surface. This indicates that
the displacement sensors are exhibiting this resonance.
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Figure D.16: Frequency response measurement from the force at the air bearing mass to the gap
height for ps = 4 bar, M = 3.6 kg.
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Figure D.17: Coherence of the frequency re-
sponse measurement from the force at the
air bearing mass to the gap height for ps =
4 bar, M = 3.6 kg.
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Figure D.18: Coherence of the frequency re-
sponse measurement from the force at the
air bearing mass to the acceleration of the
fixtures.
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Figure D.19: Frequency response measurement from the force at the air bearing mass to the
acceleration of the fixtures.
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Figure D.20: Frequency response measurement from the force at the air bearing mass to the gap
height for ps = 4 bar, M = 4.45 kg.
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Figure D.21: Coherence of frequency re-
sponse measurement from the force at the
air bearing mass to the gap height for ps =
4 bar, M = 4.45 kg.
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Figure D.22: Preliminary frequency response measurement from the force at the air bearing mass
to the gap height for ps = 4 bar, M = 3.6 kg.
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Figure D.23: Coherence of the preliminary
frequency response measurement from the
force at the air bearing mass to the gap
height for ps = 4 bar, M = 3.6 kg.
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Figure D.24: Coherence of the preliminary
frequency response measurement from the
force at the air bearing mass to the acceler-
ation of the counter surface for ps = 4 bar,
M = 3.6 kg.
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Figure D.25: Preliminary frequency response measurement from the force at the air bearing mass
to the acceleration of the counter surface for ps = 4 bar, M = 3.6 kg.
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D.4 Eigenfrequency computation
Using the computed load capacity, the height dependent stiffness can be estimated. Together with
the known mass an estimate of the eigenfrequency is made and this is compared with the harmonic
results.
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Figure D.26: Simulated stiffness of the air bearing used in the experiments with the Holster orifice
model and a supply pressure of ps = 4 bar.

Figure D.26 shows the computed stiffness of the air bearing under consideration based on the
Holster orifice model and a supply pressure of 4 bar. From Figure 5.4 it follows that the equilibrium
gap height for a bearing mass of 3.6 kg and 4.45 kg is 3.6 · 10−5 m and 3.2 · 10−5 m, respectively.
Figure D.26 gives the according stiffness then as approximately 1.8 · 106 N/m and 2.5 · 106 N/m,
respectively. The eigenfrequency is computed using

f =
1

2π

√
S

M
(D.6)

where S denotes the stiffness and M the moving air bearing mass. Using (D.6) gives, for the air
bearing under consideration with the two different masses of 3.6 kg and 4.45 kg, an eigenfrequency
of 113 Hz and 119 Hz, respectively.
If the system behaved linear, it is expected that the eigenfrequency will decrease if the mass
increases. However, because in this example the stiffness increases because the gap height de-
creases due to the increased mass, the effect of the increased stiffness is larger than that of the
increased mass. This results in an increased eigenfrequency as computed and seen in the harmonic
experiments.
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Sensitivity study

In the static load results it is seen that the measurement results are approximately 5 µm lower
than the model results and that the trend of the measurements is changing at low gap heights.
To investigate if this could be caused by variations of the air bearing parameters the sensitivity
of the height at a certain load level is investigated for the different air bearing parameters. The
case of a supply pressure of 4 bar is used and it is assumed that the air bearing is loaded with
an external force of Fex = 120 N because this is the force where the measurement trend starts to
deviate from the model. The parameters investigated together with the nominal values are shown
in table E.1. With these parameters the equilibrium height of the air bearing according to the
model is 17.65 µm, while a height of approximately 12 µm was measured.
Figures E.1 till E.10 show the computed equilibrium heights for values of the investigated param-
eters that are varied plus and minus 10 % from the nominal values. The computed equilibrium
height varies much, more than ±0.5 µm, for the orifice radius R1, air bearing radius R2, supply
pressure ps and ambient pressure pa. It should be considered that the air bearing radius R2

was determined with an accuracy of ±0.1 · 10−3 m while the radius is measured as ±3 · 10−3 m.
According to figure E.2 this measurement inaccuracy results in a maximum height variation of
±0.04 µm and therefore it is unlikely that an variation in the air bearing radius will have a major
contribution to the deviation seen between the model and the measurements. The same holds for
the supply pressure ps and the ambient pressure pa. Considering figures E.3 and E.4 the sensitiv-
ity of these parameters is relatively large but the actual value of these pressures was determined
within an accuracy of ±0.02 bar resulting in a height deviation smaller than ±0.2 µm. The orifice
radius R1 was hard to measure due to the out-of-roundness of the hole and the tapering of the
edge resulting in a measurement accuracy of ±0.1 · 10−3 m and according to figure E.1 in a height
variation of ±0.4 µm.
Even tough the deviations for the supply pressure, ambient pressure and orifice radius are larger
than that of the air bearing radius, none of the computed deviations is large enough to justify
the 5 µm seen between the measurements and the model. This indicates that the deviation seen
has another source. However, if this major error source can be traced and eliminated, then the
sub micrometer deviations remaining could be justified due to parameter deviations between the
model and the air bearing used in the experiments.
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Table E.1: Parameters investigated in sensitivity study.

Parameter symbol Value Unit Quantity

R1 2.5 · 10−4 m Orifice radius
R2 3 · 10−2 m Air bearing radius
ps 4 · 105 N/m2 Supply pressure
pa 105 N/m2 Ambient pressure
T 293 K Temperature
µ 1.8205 · 10−5 kg/(ms) Viscosity
Rs 287 J/(kgK) Specific gas constant
κ 1.405 − Adiabatic expansion coefficient
Cin 0.9 − Discharge coefficient at bearing gap inlet
Cor 0.8 − Discharge coefficient of orifice
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Figure E.1: Height as function of R1 for
Fex = 120 N .

Figure E.2: Height as function of R2 for
Fex = 120 N .
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Figure E.3: Height as function of ps for
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Figure E.4: Height as function of pa for
Fex = 120 N .
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Figure E.6: Height as function of η for Fex =
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Appendix F

Interpolated coefficients method

An often used method to assess the dynamic stability of air bearings is to compute the frequency
and gap height dependent stiffness and damping coefficients. If the these coefficients are known
for a certain gap height the dynamic stability can be assessed by assessing the sign of the damping
[9]. For a full assessment the dynamic coefficients have to be computed for multiple gap heights in
the working range of the bearing. If these dynamic coefficients in the work range are know, they
can be used to compute a transient trajectory of the gap height. In the following the method to
compute this transient trajectory is briefly elaborated.

F.1 Transient gap height simulation
The dynamic coefficients of the air bearing for a certain gap height are obtained by assuming a
harmonic variation on the pressure and height in the Reynolds equation. The Reynolds equation
is then linearized and solved. This results in a static pressure distribution P0 and a dynamic
pressure distribution often denoted by P1. The static or dynamic load capacity is computed by
integrating the corresponding pressure along the bearing area:

Wq =

∫
A

PqdA, q = {1, 2}. (F.1)

The frequency dependent dynamic stiffness consist of a real and imaginary part

W1(ω)

h
= K(ω) = S(ω) + jωB(ω). (F.2)

where S(ω) is the stiffness coefficient and B(ω) the damping coefficient.
Figure F.1 and F.2 shows the stiffness and damping coefficients computed with the above described
method with the parameters presented in table F.1. To obtain these results the above described
method is applied in a FEM Sepran routine developed by Philips.
The total bearing force of the linearized Reynolds equation is

Wtot = W0 +W1

(
dh

dt
, h

)
. (F.3)

This can be rewritten to

Wtot =W0 +W1

=W0 +K(ω)h

=W0 + S(0, h) · h+

(
B(ω, h)− S(ω, h)− S(0, h)

ω
j

)
dh

dt
,

=Ws(h) +Wdv

(
dh

dt
, h, ω

)
.

(F.4)
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Figure F.1: Frequency dependent stiffness
for h = 25 µm.
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Figure F.2: Frequency dependent damping
for h = 25 µm.

Table F.1: Model quantity values used in simulations.

Parameter symbol Value Unit Quantity

R1 2 · 10−4 m Orifice radius
R2 4 · 10−2 m Air bearing radius
ps 2 · 105 N/m2 Supply pressure
pa 105 N/m2 Ambient pressure
T 293 K Temperature
µ 1.8205 · 10−5 kg/(ms) Viscosity
Rs 287 J/(kgK) Specific gas constant
κ 1.405 − Adiabatic expansion coefficient
M 3.5 kg Air bearing mass
g 9.81 m/s2 Gravitational constant
I 1000 − Number of intermediate spatial intervals
J 1000 − Number of intermediate time intervals
tend 0.035 s End time of simulation

where
Ws(h) = W0 + S(0, h) · h (F.5)

and
Wdv

(
dh

dt
, h, ω

)
=

(
B(ω, h)− S(ω, h)− S(0, h)

ω
j

)
dh

dt
. (F.6)

Wdv can be approximated by a first order model given as

Wdv,a =

 B(0, h)

1 + B(0,h)
S(∞,h)−S(0,h)s

 dh

dt
. (F.7)

This can be written as a first order differential equation

dWdv,a

dt

B(0, h)

S(∞, h)− S(0, h)
+Wdv,a = B(0, h)

dh

dt
(F.8)

B(0, h), S(0, h) and S(∞, h) are the asymptotic values of the curves as for example shown in
figures F.1 and F.2. These are determined for several gap heights in the working range of the
air bearing. Figures F.3 till F.5 show the computed gap height dependent coefficients and load
capacity for different gap heights for the air bearing under consideration in this chapter.
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Figure F.3: Height dependent damping co-
efficient.
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Figure F.4: Height dependent stiffness coef-
ficient difference.
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Figure F.5: Height dependent load capacity.

The following air bearing model can now be defined

M
d2h

dt2
= Wtot,a + Fgravity + Fexternal, (F.9)

where

Wtot,a = Ws(h) +Wdv,a

(
dh

dt
, h, ω

)
, (F.10)

Fgravity = Mg (F.11)

and
Fexternal = f(t). (F.12)

Equation (F.9) is solved with a forward integration method resulting in a solution for the gap
height h(t). In this study the tool MATLAB Simulink was used. Herein the computed coefficients
and load capacity as shown in figures F.3 till F.5 were stored in lookup tables and the data was
interpolated to obtain the desired height dependent coefficients during the simulation in MATLAB
Simulink.

F.2 Simulation results
In this section the simulation results of the non-linear model, linear model and the model with
interpolated coefficients are compared. The linear model uses the dynamic coefficients of the initial
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height and these are not adapted if the gap height changes. Figure F.7 shows the force "impulse"
defined for this simulation with amplitude F̂ and duration tim. Other model parameters are
presented in table F.1.
Figure F.6 shows the gap height response for the air bearing subjected to an impulse with F̂ = 15 N
and duration tim = 0.01 s. As can be seen the interpolated coefficients model coincides well with
the developed non-linear model. The initial height between the interpolated coefficients model
and the non-linear model has an error of 0, 3 µm. The dynamic coefficients were determined with
the use of an air bearing model developed by Philips that uses the method described above. This
difference in initial height is probably caused by different assumptions and numerical techniques
between the models. Because of this difference in initial height the error between the maximum
response amplitudes is considered. This is defined as the distance form the initial height until
the minimum value of the height response. The error in the maximum amplitude between these
two models is 0.34 µm. This is approximately 4 % of the maximum response amplitude. The
error in the maximum response amplitude between the non-linear and the linear model is approx-
imately 1.2 µm. This is a factor four larger than the error between the non-linear model and the
interpolated coefficients method.
Figure F.8 plots the height response for the air bearing subjected to an impulse with F̂ = 100 N
and duration tim = 0.01 s. As can be seen, the gap height of the linear model becomes negative.
In practice this would mean that the two bearing surfaces would collide. However, the gap height
response of the non-linear model an interpolated coefficients method has a minimum gap height
of 17 µm. Further, the error in the maximum amplitude response is 0.1 µm which is about 0.3 %.
Based on these results it can be concluded that the linear model deviates much from the non-linear
model, especially for large displacements as expected. The interpolated coefficients model shows
a good correspondence with the non-linear model. In the obtained results it is seen that the error
in the maximum amplitude response for the impulse forces modeled is smaller than 4 %. Further,
the simulations imply that the air bearing considered is able to withstand impulse force larger
than the maximum load capacity. This would not be concluded if only the linear model was used.
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Figure F.6: Gap height response for air bearing model subjected to an impulse with F̂ = 15 N
and tim = 0.01 s.
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Figure F.7: Force impulse with amplitude F̂ and duration tim.
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Figure F.8: Gap height response for air bearing model subjected to an impulse with F̂ = 100 N
and tim = 0.01 s.
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