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Summary

In this research a manufacturing line for hybrid electronics is investigated. After becoming fa-

miliar with the prototype design, the behaviour of the system is further observed. With the use

of a simulation model the estimated decision rules behind the control software are verified by

comparing it with the behaviour of the real life system. From this there could be concluded that

the current systems performance was poor, with only a 40% bottleneck machine usage. Besides

that, deadlocks could occur while processing multiple different product flows simultaneously.

Based on these insights, new system design rules are formulated, starting with the system archi-

tecture. When equipping the robot with a dual arm instead of a single arm the bottleneck machine

usage could be increased to 82%. For the other design variables (e.g. buffers, alignment, etc.),

design rules are formulated based on research and observations. The other important aspect of

the manufacturing line is the job scheduling. The job shop problem is characterized by multiple

different product flows with reentry, job transportation by robot, and the ability of applying pri-

ority to process steps. Two scheduling heuristics are studied: a greedy algorithm (GA) and the

shifting bottleneck heuristic (SBH). For the GA decision rules are dependent on the number of

products the robot is holding. The SBH is also adjusted to better perform for the particular job

shop problem.

The performance of the determined design rules are tested by simulating general use cases and

two real possible manufacturing line use cases. There is concluded that the SBH performs optimal

for a small number of products, with a large variance in product flows and deterministic process

times. For most use cases the SBH outperforms the GA in shortest makespan. However, the

advantage of the SBH over the GA disappears for use cases with a large number of products, with

a single process flow and process times that are multiples of each other. The performance of the

SBH deteriorates more rapidly, compared to the GA, when there is a variance in process times

or a machine drop out, and is therefore less robust. Another performance measure is the yield,

which shows the percentage of products of which the priority requirement is met, and therefore

the product equality. This requirement is always met for the GA, this is not the case for the

SBH. Dependent on the goal of the manufacturing line, there can be chosen between the shortest

makespan or the product equality.

In the future predictions of the system behaviour and performance can be made for both the

prototype as for the new designs with the use of the simulation models. Due to the research

application of the Micro Device Fab, a 10% makespan improvement is probably less important

than the product equality, and therefore the GA is more suitable.
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Chapter 1

Introduction

In this report we will model and analyze the Micro Device Fab system. First the topic will

be introduced, by explaining the Micro Device Fab and the techniques involved. Secondly, the

problem definition is defined and the research questions are formulated. Finally, the organization

of the report will be presented.

1.1 Micro Device Fab

DoMicro BV is a company founded after an innovative design idea by the University of St. Pe-

tersburg [7] and Meyer Burger [5]. This design is a new production technology system for hybrid

electronics. Hybrid electronics is the combination of printed components (batteries, displays, etc.)

and integrated semiconductor devices (sensors, chips (IC)) onto a substrate [12]. However, the

process capabilities of these technologies are still being explored. Nowadays, when a new hybrid

electronic device is developed in the lab, it is immediately scaled to mass production. During this

mass production achieving a good product yield is very difficult and reduces the time to market.

This can be prevented with the use of the Micro Device Fab during the research and development

phase. The Micro Device Fab is a complete manufacturing system for the development of raw

materials to products and it can be adapted to the needs of each customer. The manufacturing

system consists of multiple production tools, which are connected by a robot track. With the use

of a production sequence (flow) for each product, the robot track will move the substrates within

the system to the required process steps. This will mimic the eventual mass production and will

allow the developers to conduct experiments and increase the yield, which will reduce manufac-

turing costs and decrease the time to market. The system can also be used for the manufacturing

of small to medium product series. Due to the flexible design of the system, parallel production

of different products with a low volume can be realized. Figure 1.1 shows an example of a Micro

Device Fab.

The complete Micro Device Fab system is enclosed, which enables the creation of a clean room

environment inside the system. Therefore, no large clean room is needed, which will result in

reduced investments and no need for operators to wear the appropriate clean room clothing.

Micro fabrication processes

There are multiple micro fabrication processes that can be used in the Micro Device Fab. The main

process is the use of printed electronics, a possible flow will be further explained. Before printing
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CHAPTER 1. INTRODUCTION

Figure 1.1: Example of a Micro Device Fab of DoMicro BV.

on a substrate, the surface properties have to be modified with a plasma printer, to provide a

better bonding surface. Subsequently the printing can be started, which deposits droplets of a

solution with nano particles (silver, copper, etc.) on a substrate in a certain pattern [6]. After a

layer is printed, the dissolvent has to be evaporated in a hot plate, leaving only the nano particles.

To connect these nano particles to construct a printed circuit, photonic sintering is used, which

applies a low heat input by using an UV flash lamp[18]. On top of the finished printed circuit

an isolating layer is printed in the required pattern to disable conductivity between the printed

circuit and the next layer in certain areas. This isolating layer is then dried by using low power

sintering, and dependent on the design possibly another silver layer is printed, dried, and sintered.

On top of these created structures it is possible to bond a sensor or IC. A product example that

is created with the processes as mentioned above is the FlexSmell [4]. This is a smart food label,

which can monitor goods on, for example, their temperature as shown in Figure 1.2.

Figure 1.2: FlexSmell, smart food label which can be produced with the MicroDeviceFab

There are also wet chemistry processes. Examples of applications for these processes are mi-

crofluidic channels, or base structures of conductive and non conductive layers. First a coating

is deposited with the use of a spin coater, which is a rotating table that dispenses a fluid. This

2 Micro Device Fab system modeling
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coating is then dried in a hot plate, another layer can be coated or the coating can be exposed

to cure a pattern. The none cured pattern can then be developed, and if two layer were applied,

the layer below can be etched when immersed in a chemical solution [13]. This creates a pattern,

which can be repeated dependent on the required structure.

1.2 Problem definition

For the development of new Micro Device Fab systems, the system design rules and the product

scheduling need to be defined for achieving the best possible performance. The performance of a

system can be measured by four key indicators:

1. The total completion time of a batch of jobs (makespan),

2. The average time a job is in the system (flowtime),

3. The amount of time that the busiest machine (bottleneck machine) is used (utilization),

4. The percentage of correct products (yield).

As mentioned in the previous section, the first prototype of the Micro Device Fab has already been

developed. However, the behaviour, the routing which is generated by the scheduling decision

rules, and the performance of this prototype is unknown and therefore needs to be determined.

With this obtained knowledge of the current prototype, the different design parameters can be

explored for the creation of new Micro Device Fab systems. These design parameters include the

systems layout (mapping of the machines, design of the robots, buffers, etc.) and the product

scheduling. The resulting design rules can than be applied to use cases to test their performance

and robustness. The robustness can be tested by adding unexpected behaviour to the system, e.g.

machine failures, and variation in the production process, e.g. flows and process times. In this

research the following three research questions will be answered:

1. What is the design of the current system (prototype), how does the system behave (product

scheduling), and what is the performance of the system?

2. Is it possible, based on the insights from the current system, to formulate design rules for

the system layout and product scheduling?

3. What is the system performance when the decision rules mentioned above are applied to

use cases, and how robust is the product scheduling for unexpected system behaviour and

variation in production processes?

1.3 Report structure

In Chapter 2, the current prototype of the Micro Device Fab will be further explained, including

the design, the user interface, and the product scheduling. Based on these insights, in Chapter

3, general design rules for the system architecture and scheduling will be formulated for Micro

Device Fab systems. To determine the performance of these system design rules, these rules will

be implemented into use cases in Chapter 4. First a general use case will be formulated to test the

performance of the scheduling heuristics for a large number of different flows. Afterwards, real life

use cases for two possible Micro Device Fab systems will be simulated and the performance and

robustness of these systems will be tested. With these results, a conclusion can be drawn on the

design rules and recommendations are formulated.

Micro Device Fab system modeling 3





Chapter 2

MicroDeviceFab

The first prototype of this manufacturing system will be further explained, including the design,

the user interface, the product scheduling, and the observations.

2.1 Design

The first prototype consists of two robot tracks, which are connected by a conveyer belt. The

prototype is shown in Figure 2.1.

Figure 2.1: Set up of the current Prototype of the MicroDeviceFab

A schematic view of the MicroDeviceFab is shown in Figure 2.2. On the upper side of the conveyer

belt, the first robot track is located. This robot track is connected to a carrier (buffer), with 10

substrates positions, conveyer belt and two machines, the IP410 and LP50. The carrier supplies

substrates to the system, which can travel between the two robot tracks via the conveyer belt.

The IP410 is a inktjet printer and the LP50 is a plasma printer. Both these machines are equipped

with a computer in which recipes (pattern instructions) can be created. The second robot track,

which is located on the lower side of the conveyer, is connected to another carrier with 10 substrate

positions and the conveyer belt. Normally, this robot is also connected to multiple machines, which

is the hot and wet cluster, in which etching and layer deposition can be applied. However, in this
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prototype, these machines were not available and will not be included in the simulation model.

Also on each side of the conveyer belt, there is an alignment station, which is shown in Figure 2.3.

Carrier 2

Carrier 3

IP410 LP50

Robot

Robot

Conveyer

Align 2

Align 1

Figure 2.2: Schematic lay out
Figure 2.3: Alignment station

This alignment station consists of five pins on which the robot places the substrate two times to

align the substrate. A substrate is aligned before and after every process step. The main computer

is positioned on the right side of the conveyer belt at alignment station one. From this computer

the manufacturing system is controlled and production flows can be started.

MCS: User Interface

The user interface of the Micro Device Fab is shown in Figure 2.4.

Figure 2.4: User interface of the Micro Device Fab

The user interface and control software is a program called MCS (Machine Control Software) and

shows a schematic top view of all the systems in the Micro Device Fab. Robot 8 is the robot which

is described as the first robot on the upper side of the system, and robot 12 is the second robot.

In each carrier, the number and location of the substrates are shown, and when a substrate enters

the system, the substrates are visually moved to were they are located. How flows are created and

started is further explained in Appendix A.1.
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When production is started with the MCS, log files can be extracted from the program. In these

log files, the occupation of each machine is shown and the colour of the blocks in these log files

shows which product is occupying what machine, by having a different colour for each product.

The robot only shows a coloured block when a product is grabbed. A grey colour in the shows

the time that a product is waiting and is finished processing in the machines. An example of a log

file for the production of 3 products is shown in Figure 2.5. The flow shown in Figure 2.5 starts

in carrier 3, from which the substrates are retrieved by robot 12. Afterwards, the robot aligns

the substrate and deposits it onto the conveyer belt, which moves the substrate to robot 8. The

substrate is fetched by robot 8, gets aligned, and than transported to be processed in the LP50.

When finished, the substrate is removed from the machine by robot 8, again aligned, and moved

to the IP410. This is the final process step, after which the substrate is aligned and moved to

carrier 2.

Align1

Align2

Conveyer 2

IP410 Inkjet

LP50 Plasma Tool

Robot 12

Robot 8

Conveyer 1

0 150 300 450 600 750 900 1050 1200

Figure 2.5: Example of a log file from the MCS program

For the flow shown in the log file, the bottleneck machine is the IP410. The utilization of this

machine is only 40 %. This is the result of the single armed robot, which can only transport

one substrate at a time, and the product scheduling. The product scheduling will be further

investigated in the next section.

2.2 Product Scheduling

The scheduling decision rules which coordinate the movement of the substrates through the system

are unknown, due to externally developed closed software. However, by observing the system,

certain aspects can be identified. The robot reacts to the state of the system. The system state

consists of the communicated information of available or busy machines/robots, and the location

and information of the substrates. The communication structure of the machines with the main

system is further described in Appendix A. When the machine of the first product step is available,

a new substrates is released into the system and moved to this machine. When a machine has

finished a process, it sends a message to the system. Then, when the machine for the next process

step is available, the robot retrieves the substrate and moves it to the next machine. If the next
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machine is located on the other robot track, the product is only placed on the conveyer when the

next machine is available. From this evaluation, the following decision rule can be derived:

• Substrates are released or moved in the system when the next machine is available.

To verify whether these decision rules are indeed correct, a simulation model is created in Chi

with these decision rules and the design of the current Micro Device Fab. For this model, the

handling times have to be determined by observing the Micro Device Fab, these results can be

found in Appendix B.2. The structure of the simulation model and the implementation of the

decision rules can be found in Appendix B.1. To verify the decision rules, the product flow in the

simulation model is compared to the product flow in the real life system. With the Micro Device

Fab, multiple experiments were conducted with the machines that were available. These machines

were the IP410 and LP50. The first flow that was tested was with carrier 3 as sender and carrier

2 as receiver. This flow exists of first moving the product from carrier 3 with robot 12 onto the

conveyer to robot 8, into the IP410, afterwards to the LP50, with process times of 170 seconds

and 50 seconds, and finally into carrier 2. In between every step, the substrate is aligned at the

alignment station. This resulted in Figure 2.6, which shows the time charts of the actual system

and the simulation model.

Align1

Align2

Conveyer 2

IP410 Inkjet

LP50 Plasma Tool

Robot 12

Robot 8

Conveyer 1

0 150 300 450 600 750 900 1050 1200

Align1

Align2

Conveyer

IP410 Inkjet

LP50 Plasma Tool

Robot 12

Robot 8

Actual system

Simulation model

Figure 2.6: Time chart comparison of the actual system and of the simulation model.

In the time chart of the actual system, both sides of the conveyer are viewed separately. These are

merged in the simulation time chart. The figure shows that the decision rules that were identified

8 Micro Device Fab system modeling
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are accurate for this use case, because they result in an almost identical time chart. Besides that,

the makespan of the two flows is identical. The same comparison has been executed for other

flows, which also resulted in almost equal time charts and identical makespan for the simulation

model and the actual system. From these observations, we can conclude that the decision rules

are accurate and most likely implemented.

Because the Micro Device Fab was not completed with all equipment, the additional feature of

applying priority to processing steps of substrates could not be tested in the real life system.

However, the MCS program does allow the possibility of running simulations in which priority to

process steps can be applied. This priority is applied to the hot plates. When creating a flow,

a maximal allowed time for extracting the substrates from the hot plates can be defined. While

observing the system behaviour when priority is applied, another decision rule is discovered:

• If there are multiple jobs in the hot plates, choose the job which has the least excess of the

maximal allowed time.

This results in job overtaking, and for the other jobs in the hot plates to stay there for a very

long time period. This would result in defect products due to the exceeded baking time. Besides

the previously described decision rules and the priority decision rule, no other decision rules have

been identified. This eventually results in the complete ”Greedy” algorithm which is used in the

MCS software.

2.3 Summary

Based on the observations of the Micro Device Fab system, the main troubles in the design and

scheduling that need to be solved can be summarized as follows.

Robot

By observing the time charts of the system, the utilization of the bottleneck machine was only

40%. These machines are expensive and therefore need to be operational as much as possible, and

should not be limited by the robot transportation times.

Conveyer

Inefficiency of transporting substrates via the conveyer belt from one robot track to the other.

Substrates have to wait until the next machine is available to travel onto the conveyer, which

results in an increased substrate flow time and a lower machine utilization.

Alignment station

Aligning is very time consuming, because the robot moves the substrate very slowly two times on

the alignment station and the alignment is executed between every process step. Besides that, the

required alignment accuracy of 100 micron is not achieved, due to the friction between the pins

and the substrate.

Deadlock

A deadlock occurs when a job in machine b has to be move to machine a, and the job in machine

a has to be move to machine b. These two jobs have to be exchanged, however, the robot only

has a single arm and no function to return a job to a buffer, and therefore a deadlock occurs.

Micro Device Fab system modeling 9





Chapter 3

System design

In the previous chapter we studied the prototype of the Micro Device Fab. Based on these insights,

general design rules for the system architecture and scheduling for Micro Device Fab like systems

can be formulated.

3.1 System Architecture

The system architecture will determine the redesign of the Micro Device Fab. The system ar-

chitecture consists of the robot design, the number of buffers, the buffer design, the alignment

station, the implementation of a conveyer, and the positioning of the machines. The current de-

signs of these components are shown in Figure 3.1. The design considerations and rules for all

these components for future systems will be further explained.

Figure 3.1: Prototype design of the robot, carrier, alignment and conveyor.

Robot

The current Micro Device Fab has a single armed robot, which means it can only carry one job at

a time. However, when a job is finished in a machine, and the robot is carrying a job that has to

enter that machine, it is impossible to exchange the jobs. Therefore, the effect of equipping the

robot with a dual arm, which allows job exchange, will be tested. To do so, the simulation model

Micro Device Fab system modeling 11
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that mimics the current systems behaviour and flow as described in Section 2.2 will be used. For

the dual armed robot, slight adjustments are made to allow the robot to handle two jobs. Figure

3.2 shows the time charts of a single armed robot and a dual armed robot.

0 150 300 450 600 750 900 1050 1200

Align1

Align2

Conveyer

IP410 Inkjet

LP50 Plasma Tool

Robot 12

Robot 8

Align1

Align2

Conveyer

IP410 Inkjet

LP50 Plasma Tool

Robot 12

Robot 8

0 150 300 450 600 750 900 1050 1200

Single armed robot

Dual armed robot

Figure 3.2: Upper time chart of the current system with a single armed robot, lower time chart

with a dual armed robot.

Figure 3.2 shows a significant improvement of the throughput and flow times. For the single armed

robot, 3 jobs are processed in 1200 time units, while for the dual armed robot 5 jobs are finished.

This results in an increase of utilization of the bottleneck machine from 40% to 82%. Hence, we

can conclude that a dual armed robot is a mandatory requirement for an efficient and productive

manufacturing system.
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CHAPTER 3. SYSTEM DESIGN

Buffers

The current system is equipped with two buffers, both connected to a different robot track with

space for 10 jobs as described in Section 2.1. For the jobs in each buffer, only one type of flow

can be selected, so manufacturing multiple types of jobs simultaneously is only possible when the

system has multiple buffers.

The required buffer size depends on the application. When a new manufacturing line is designed

with given product flows, this system can be simulated to estimate the resulting throughput of the

system. The buffer size should be sufficient to supply for an 8 hours shift. This results in a buffer

size of 8 times the throughput per hour. For the example shown in Figure 2.6, this would result

in a buffer size of 70. However, when more machines are connected to the system, the product

flows may be composed of more processes on different machines and with multiple machine visits,

which would decrease the throughput and hence the required buffer size.

Currently all jobs in a buffer have to be of the same type. However, it is requirement to be able to

manufacture multiple types of jobs simultaneously. A software adjustment should be made which

enables the operator to assign a type to each job. Besides that, it can occur that a job has to wait

between process steps. To increase machine availability, there should be a possibility to return a

job to a buffer, where it can wait for the next process step. This is also a software adjustment

that should be implemented.

An important issue that has be taken into consideration is the contamination of the substrates due

to substrate movement in the buffer. To prevent contamination there should always be a load and

unload buffer. From the load buffer, substrates are released into the system, this is done bottom

up, such that possible dust does not fall down on other substrates as can be seen in Figure 3.3.

Therefore, the finished substrates should not be returned to the load buffer, but to the unload

buffer. The unload buffer is loaded from top down to prevent dust falling onto the substrates

below. Besides the load and unload buffers, also a buffer for waiting between process steps has to

be added. This buffer should be equipped with enclosed substrate holders to prevent dust from

spreading due to the irregular collection of the substrates.

       Load bu�er      Unload bu�er             Temporary bu�er

get
put

Figure 3.3: Representation of a load, unload and temporary buffer.
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CHAPTER 3. SYSTEM DESIGN

Alignment

During the production in the Micro Device Fab, substrates are aligned after each process step.

However, it could be possible that the exchange between machines is within the required accuracy

of 100 micron, and therefore alignment would not be necessary. This should be experimentally

tested. If this appears to be true, only alignment after retrieving or returning a job to the buffer

is required. This would already decrease the robot transportation time, but to further decrease

the alignment time, the design described in Section 2.1 could be replaced by optical alignment.

This would decrease the alignment time to only a few seconds. Also the accuracy of the current

alignment station did not satisfy the 100 micron precision requirement, which would be satisfied

when optical alignment is used.

Conveyer

The conveyer which connects the two robot tracks was added due to configurational constraints

of the facility. For a new Micro Device Fab without these constraints, the conveyer would not be

an efficient addition, because only one way traffic is possible, and shifting of the substrate on the

conveyer while traveling has been observed. Therefore, connecting the robot tracks directly with a

two sided open carrier would be a more efficient option. However, if there are spacial restrictions,

an adjusted conveyer could be used. A possible adjustment would be to use two belts to allow two

way traffic, and a better grip on the substrate to prevent movement, for example by clamping the

substrate between pins.

Machines

The number and type of machines that are necessary for the creation of a new Micro Device Fab

depend on the applications. After determining the applications and necessary machines, a layout

can be created. Machines are placed in order of the product flows, but due to the high product

variation, this is not always possible. Machines that have a large number of multiple visits, e.g.

the hot plate, are placed in a central location in the manufacturing line.

Conclusion

From the evaluation of the prototype design and the redesigned architecture, the main differences

between the modules can be summarized as follows.
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Module Prototype design Redesign

Robot • Single armed • Dual armed

Buffers • Size: 10 jobs

• One type of buffer

• Size: throughput/hour

times 8 (duration shift)

• Three types of buffers

(load/ unload/ tempo-

rary)

Alignment • Five pin alignment

between every process

step

• Optical alignment

when necessary with an

accuracy of 100 micron

Conveyer • Single way traffic

• Substrate movement

• No conveyer

• Or two way traffic and

better substrate fixture

with pins

Machines • Wet cluster and dry

cluster

• No specific order

• Wet cluster and dry

cluster

• In order of most com-

mon flows

Table 3.1: Differences between the modules for the prototype design and the redesigned architec-

ture.

The exact design details are determined based on simulation results, when the product flow of the

system is known.
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3.2 Scheduling

For the creation of new Micro Device Fab systems, a good performing product scheduling algorithm

has to be developed. This algorithm should eventually determine the actions of the robot, resulting

in the routing of the jobs through the system. To do so first the job shop problem and optimization

problem will be described.

Problem description

First the Micro Device Fab design will be translated to a job shop scheduling problem. Figure 3.4

shows a schematic representation of the problem. The job shop exists of a group of m machines,

which have a capacity of one job. j jobs enter the system from an infinite buffer. Each job follows

a predetermined route of machine visits (flow). This order is fixed, but there can be different

types of jobs which have different flows. Jobs can only visit a machine one time during a flow.

Beforehand, the process times p(m, j) of each process step of job j on machine m are known. The

transportation time of the robot will be neglected and the machines do not have setup times.

Job 1

Job 2 Job 3

Machine 1

Machine 2

Machine 3

Figure 3.4: Schematic representation of the job shop problem, with m = 3 machines and j = 3

jobs.

Let Cmax denote the makespan of all jobs. The starting time of an operation of job j on machine

m is denoted as tmj , and pmj denotes the processing time of this operation. The flow of all jobs

can be represented using a disjunctive graph G as shown in Figure 3.5. This graph shows the

product flows, given by the process steps (m, j). Above each process step, the process time, pmj

is indicated. The process steps of a job are connected via conjunctive arcs following the product

flow. Node 0 is the source node, from which the first operation of each job starts. The ∗ node is

the sink node, in which the final operation of each job ends.

Figure 3.5: Disjunctive graph G of a possible product flow.

N represents the set of all operations (m, j), and the set A is defined as the pairs of operations
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constrained by process flow or routing, so the arcs in the disjunctive graph between operations.

Ek is the set of operations to be performed on machine k. The optimization problem can be

formulated as follows [14]:

minimize Cmax

subject to tkj − tmj ≥ pmj , ∀(m, j)⇒ (k, j) ∈ A

Cmax − tmj ≥ pmj , ∀(m, j) ∈ N

tmj − tml ≥ pml or tml − tmj ≥ pmj , ∀(m, l) and(m, j) ∈ Ek

tmj ≥ 0, ∀(m, j) ∈ N

(3.1)

This Jm||Cmax problem is NP-hard, which means it is very difficult to solve optimally using

typical mathematical programming solution techniques due to the ”or” condition in the constraints.

Therefore, heuristics are determined to find local optima. A common approach that is often used

in practice for job shop scheduling, is the use of dispatching rules. This entails that whenever a

machine becomes available, a job currently available is selected to be processes on this machine.

The advantage of dispatching rules, is easy implementation and short calculation times. However,

their inability of considering future effects, may result in a poor long term performance. Such

a dispatching rule was also found in Chapter 2 for the current scheduling algorithm. This was

found to be a greedy algorithm, which determines an action from the current state of the system

following predetermined decision rules. A greedy algorithm with newly determined decision rules

will also be considered as an option for the new Micro Device Fab system. Another possibility

is using an ant optimization technique for job shop scheduling [8]. This is a combination of the

greedy algorithm, which also uses the information of previous routes. The first job (ant) will travel

through the system following a greedy algorithm, which will result in good parts (small flow time)

and bad parts (long flow time). The good parts will be followed more often, which will eventually

converges to good solutions. For the Micro Device Fab, small batches of different types of jobs

will be manufactured, and therefore the self learning algorithm will be too slow. There are also

heuristics which use the information of the jobs and process times to determine the scheduling

beforehand. An example is Johnson’s Algorithm, which sorts the process steps of jobs by lowest

processing time first [15]. However, for a complex job shop, Johnson’s algorithm is too simple (e.g.

assuming one job routing) and will therefore not yield good results. Solving a job shop scheduling

problem by simulated annealing was proposed by [20]. Simulated annealing is a metaheuristic to

approximate global optimization in a large search space. This heuristic considers neighbouring

states and probabilistically decides between moving to this state or remaining in the same state,

this is repeated until the system reaches a state that is good enough for the application. The

simulation annealing in [20] only considers flows of machine permutations, while for the Micro

Device Fab, not all machines are always visited and multiple machine visits to one machine are

possible. Another heuristic is the shifting bottleneck heuristic, which schedules the machines one

by one in order of highest utilization first [2]. In each iteration the scheduling problem is solved for

one additional machine until all machines are scheduled. This heuristic can determine schedules

for job shops with a large number of machines and jobs with different flows, and therefore seems

to be a good match to schedule Micro Device Fab systems. Due to the good performance of the

SBH, it has been studied by many [16, 17, 19, 10]. However, the particular job shop problem of the

Micro Device Fab with a high product diversity, with multiple machine visits, priority processes,

and transportation times, seems to be a new application.
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3.2.1 Greedy algorithm

A greedy algorithm is an algorithm that chooses a local optimum following predetermined decision

rules. However, this does not always result in a global optimum. The constraints on which the

local optimum is found can be different for each problem. The decision rules to find the local

optimum are defined as follows:

• If a machine is free and a product has to visit this machine, the product is put into the

machine.

• The products are considered by lowest number first.

These decision rules will be applied to a simple example.

Example

The example exists of three machines and three jobs. Table 3.2 shows the machine sequence and

process times of the jobs on the different machines.

Jobs Machine sequence Processing Times

1 2, 3, 1 p1,1 = 4, p2,1 = 3, p3,1 = 2

2 2, 3, 1 p1,2 = 4, p2,2 = 3, p3,2 = 2

3 3, 2, 1 p1,3 = 5, p2,3 = 1, p3,3 = 2

Table 3.2: Machine sequence and process times for the three machines, three jobs example

With the defined decision rules, the greedy algorithm results in the time chart as shown in Figure

3.6.

 0     5     10   15            20

M1

M2

M3

Job 1 Job 2 Job 3

Figure 3.6: Time chart of the example scheduled by the greedy algorithm

The schedule resulting from the greedy algorithm results in a total makespan of 18 time units.
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3.2.2 Shifting Bottleneck Heuristic

The shifting bottleneck heuristic is a heuristic that aims at minimizing the total makespan [2],

which is relevant for the Micro Device Fab problem. As already mentioned before, the Jm||Cmax

problem is very difficult to solve using mathematical programming solution techniques due to the

”or” condition in the constraints. The shifting bottleneck heuristic decomposes the Jm||Cmax

problem into multiple instances of the 1|rj |Lmax problem [16]. The steps for this approach will be

further explained. To do so, let M be the set of all machines and M0 the set of machines which

have already been scheduled. Now the following steps are followed [10]:

Step 1: Set M0 = ∅
Step 2: Analyze each subproblem associated with the unscheduled machines k ∈M \M0.

Step 3: Identify the critical or bottleneck machine m from the set of unscheduled machines.

Step 4: Schedule the jobs on machine m by solving the subproblem, set M0 := M0 ∪ {m}.
Step 5: If applicable, reoptimize scheduled machines k ∈M0 by identifying and solving its

subproblem, taking into account the schedule of the latest scheduled machine. If

M0 = M then stop, else return to Step 2.

The execution of these steps, and the possible decisions variables within these steps will be further

explained by applying the shifting bottleneck heuristic to a simple example.

Step 2: Subproblem analysis

The same example as for the Greedy algorithm in Section 3.2.1 will be used for the shifting

bottleneck heuristic. First a disjunctive graph G, which was explained is Section 3.2, is constructed

as shown in Figure 3.7.

Figure 3.7: Disjunctive graph of the example in Table 3.2.

The interaction between subproblems can be captured by determining the release times rmj and

due dates dmj of each process step (m, j) by using longest path calculations in G. The variables

that need to be determined are:
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LB := lower bound, the current lowest possible value of the total makespan, which is

the longest path in G from source node 0 to sink node ∗.
rmj := release time, the earliest time process (m, j) can be started, which is the longest

path in G from source node 0 to process (m, j).

dmj := due date, the latest time process (m, j) has to be finished to not increase the

makespan, determined by subtracting the longest path in G from process (m, j)

to ∗ from the makespan.

CTmj := completion time, time that a process step is completed.

Tardmj := tardiness, the amount that the lower bound increases.

The completion time and tardiness are determined as follows:

CTmj = max(rmj , CTmjprev) + pmj (3.2)

Tardmj = CTmj − dmj (3.3)

The completion time results from starting time plus the process time. The starting time is either

the release time of the job or the completion time of the previously scheduled job on this machine.

When the tardiness results in a positive value the due date is passed, and the lower bound increases.

Step 3: Bottleneck selection

Different types of bottleneck machine selection criteria can be used, two possible criteria will be

further explained. The first is solving the single machine sub problem (machine scheduling) for

all non scheduled machines, the machine that results in the largest tardiness will be chosen as

bottleneck machine. This selection criteria will be used for the eventual more complicated use

cases. The second option is choosing the machine with the largest total operation process time as

the bottleneck machine. This selection criteria is a less precise measure but quick to determine,

and will therefore be used for this simple example. This results in the following total operation

process time for each machine:

M1 = 13, M2 = 7, M3 = 6 (3.4)

This results in a LB = 13, for bottleneck machine M1, and therefore M1 will be scheduled first.

The decision variables of the jobs on this machine are firstly determined and are shown in Table

3.3.

(1, j) J1 J2 J3

p1j 4 4 5

r1j 5 5 3

d1j 13 13 13

Table 3.3: Process time, release time and due date for the jobs on machine 1.

Step 4: Schedule the bottleneck machine

Now the machine subproblem has to be solved to find an ”as good as possible” schedule, this can

be realized by using a branch and bound method. This method works as follows: create all possible
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schedules that start with a different job, complete these schedules with the remaining jobs and

order these following a predetermined criteria. The starting job which creates the schedule with

the lowest tardiness will be set, afterwards, all possible jobs for the second step will be explored

and so on. This is continued until all jobs are set and the resulting schedule is the solution of the

machine subproblem. A possible criterium to order the unscheduled jobs is in order of earliest due

date first. This will also be applied to the simple example. The first three schedules that will be

tested start with job 1, 2 and 3 followed by the remaining jobs in order of earliest due date first.

This results in the order: (1, 2, 3), (2, 1, 3), and (3, 1, 2), the results are listed in Table 3.4.

Job J1 J2 J3 Job J2 J1 J3 Job J3 J1 J2

CT1j 9 13 18 CT1j 9 13 18 CT1j 8 12 16

d1j 13 13 13 d1j 13 13 13 d1j 13 13 13

Tard1j 0 0 5 Tard1j 0 0 5 Tard1j 0 0 3

Table 3.4: Completion time, due date and tardiness for the jobs on machine 1.

From these three schedules it can be concluded that a schedule starting with job 3 results in

the lowest tardiness. So the third job will be fixed in the schedule, and the remaining possible

schedules are created: (3, 1, 2) and (3, 2, 1). Both schedules result in a tardiness of 3, when two

schedules result in the same tardiness, the schedule with the lowest job number is chosen, therefore

the final schedule is (3, 1, 2). Now the graph in Figure 3.7 can be updated with the schedule of

M1 this results in the disjunctive graph shown in Figure 3.8.

Figure 3.8: Disjunctive graph of the example in Table 3.2 with the schedule of M1

The schedule of M1 resulted in a tardiness of 3, which increases the lower bound from LB = 13

to LB = 16. The next bottleneck machine that will be scheduled is M2. Similar as for M1, the

release times and due dates of the jobs on machine two will be determined and are shown in table

3.5.

(2, j) J1 J2 J3

p2j 3 3 1

r2j 0 0 2

d2j 6 10 3

Table 3.5: Process time, release time and due date for the jobs on machine 2.

Again three possible schedules are created and with these variables the tardiness of the different

schedules can be determined, which is shown in table 3.6.

Micro Device Fab system modeling 21



CHAPTER 3. SYSTEM DESIGN

Job J1 J3 J2 Job J2 J3 J1 Job J3 J1 J2

CT2j 3 4 7 CT2j 3 4 7 CT2j 3 6 9

d2j 6 3 10 d2j 10 3 6 d2j 3 6 10

Tard2j 0 1 0 Tard2j 0 1 1 Tard2j 0 0 0

Table 3.6: Completion time, due date and tardiness for the jobs on machine 2.

Because there is a schedule which results in a tardiness of zero, there can not be a better solution.

Therefore, schedule (3, 1, 2) is chosen for machine two, which will not increase the lower bound.

With this schedule the disjunctive graph is again updated, and shown in Figure 3.9.

Figure 3.9: Disjunctive graph of the example in Table 3.2 with the schedule of M1 and M2.

Finally, the schedule for machine three has to be determined. The lower bound is still LB = 16

and the release times and due dates of the jobs are shown in table 3.7.

(3, j) J1 J2 J3

p3j 2 2 2

r3j 6 9 0

d3j 8 12 2

Table 3.7: Process time, release time and due date for the jobs on machine 2.

Again three possible schedules are created and with these variables the tardiness of the different

schedules can be determined, which is shown in table 3.8.

Job J1 J3 J2 Job J2 J3 J1 Job J3 J1 J2

CT3j 8 10 12 CT3j 11 13 15 CT3j 2 8 11

d3j 8 2 12 d3j 12 2 8 d3j 2 8 12

Tard3j 0 8 0 Tard3j 0 11 7 Tard3j 0 0 0

Table 3.8: Completion time, due date and tardiness for the jobs on machine 3.

Again a schedule can be found which results in a tardiness of zero and therefore the schedule for

machine three becomes (3, 1, 2). This results in the final disjunctive graph shown in Figure 3.10.
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Figure 3.10: Disjunctive graph of the example in Table 3.2 with the schedule of M1, M2, and M3.

This results in a job shop scheduling with a makespan of 16, which is 2 time units shorter than for

the greedy algorithm. With the release times, process times, and machine schedules a time chart

as shown in Figure 3.11 can be generated.

 0     5     10   15            20

M1

M2

M3

Job 1 Job 2 Job 3

Figure 3.11: Time chart of the schedule derived from shifting bottleneck heuristic.

Step 5: Reoptimization

In the simple example no reoptimization was applied. However, this can improve the schedule

of the shifting bottleneck heuristic, especially for the scheduling of a large number of machines.

Reoptimization works as follows: when an additional machine is scheduled, all the previously

scheduled machines in M0 are rescheduled. The schedule of the machine from M0 that is being

rescheduled is removed, and a new schedule is computed taking into consideration the additional

machine and the other machines in M0. The new found schedule is than set, and the next machine

in M0 is rescheduled. This is done in order of the list M0, which is in order of bottleneck machine

first.
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3.3 System adjustments

The job shop problem described in Section 3.2 is a simple version of the real system. Now the job

shop problem will be expanded with a dual armed robot, job transportation times, multiple visits

of a job to a machine, and it should be possible to apply priority to a process step. There is only

one buffer, which is still assumed to be infinite and jobs can be put into this buffer between process

steps. The job shop problem consists of 4 jobs with multiple machine visits, a dual armed robot

with transportation times, and 3 machines. This results in an updated schematic representation

of the problem shown in Figure 3.12.

Job 1

Job 2 Job 3

Machine 1

Machine 2

Machine 3Job 4

Figure 3.12: Schematic representation of the expanded job shop problem.

Due to the possibility of having multiple machine visits. Process steps are now labeled as: (m, j, n),

with m the machine, j the job, n the number of times the job has visited the machine. Table 3.9

shows the flows and process times of the 4 job on the 3 machines.

Jobs Machine sequence Processing Times

1 1, 2, 3 p1,1,1 = 50, p2,1,1 = 150, p3,1,1 = 50

2 1, 2, 3 p1,2,1 = 50, p2,2,1 = 150, p3,2,1 = 50

3 2, 3, 2, 1 p2,3,1 = 50, p3,3,1 = 150, p2,3,2 = 100, p1,3,1 = 150

4 1, 3, 1, 2 p1,4,1 = 50, p3,4,1 = 150, p1,4,2 = 150, p2,4,1 = 100

Table 3.9: Job flow and process time for the 3 machines, 4 jobs with multiple machine visits

example

The previously described heuristics, greedy algorithm and shifting bottleneck heuristic, are modi-

fied and optimized for solving the expanded job shop problem. These adjustments will be further

explained in this section.
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3.3.1 Greedy algorithm

For the expanded job shop problem new decision rules for the greedy algorithm will be defined.

These decision rules are especially made for a dual armed robot, and are designed to better per-

form for this specific job shop problem. As determined in Section 3.1 the Micro Device Fab will

be equipped with a dual armed robot. There is one buffer, which is assumed to be infinite, with

a predefined number of jobs the flows of which are known. Below, the decision rules are defined,

which depend on the number of jobs the robot is carrying.

If the robot is carrying no jobs:

• If there is a job waiting in a machine which is finished, retrieve this job.

• Else, if there is a job waiting in the buffer of which the next machine is available or finished,

retrieve this job.

If the robot is carrying one job:

• If the next machine of the carrying job is available, move this job to the machine.

• Else, if the next machine for the carrying job is occupied, but the process in that machine

is finished, retrieve the finished job inside of the machine.

• Else, if there is a job finished and waiting in a machine, retrieve this job.

• Else, if there is a job waiting in the buffer of which the next machine is available, retrieve

this job.

If the robot is carrying two jobs:

• If the next machine of one of the carrying jobs is available, move that job to its next machine.

• Else, if for one of the carrying jobs, the job in the next machine is finished, then the other

carrying job is put in the buffer.

• Else, the first job the robot is carrying is put in the buffer.

To demonstrate the greedy algorithm with the redefined decision rules, the heuristic is applied

to the job shop problem as shown in Table 3.9. This is done by implementing these rules in a

simulation model, which consists of the 3 machines, 4 jobs, and a dual armed robot as explained

in the expanded job shop problem. Figure 3.13 shows the time chart that results from the sim-

ulation model with the greedy algorithm. The transportation times of the dual armed robot are

incorporated here. For this example it is assumed that the buffer is the home position of the robot,

to travel from the buffer to machine 1 is 0 time units (at the same location), from the buffer to

machine 2 is 5 time units, and from the buffer to machine 3 is 10 time units. The time to travel

between these machines, is the difference between their transportation time. When the robot has

arrived at the machine, the job has to be put into or removed from the machine, which takes

around 8 time units. Due to the system adjustments of Figure 3.12, which adds the dual armed

robot with transportation times, jobs are not immediately moved from the machine as was for the

simple problem of Figure 3.4. Therefore, a grey bar is shown when the process is already finished.
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Figure 3.13: Time chart of the greedy algorithm from a simulation model with the system adjust-

ments, applied to the job shop problem of Table 3.9.

Figure 3.13 shows the flows of the different jobs on the machines, when scheduled by the greedy

algorithm. The time between processes is increased due to the transportation times of the robot.

For this problem the greedy algorithm achieves a makespan of 925, and an utilization of around

60% for the bottleneck machine 2.

Another system adjustment that has to be taken into account is the ability of applying priority

to process steps. When a process step with priority is finished, this job should be retrieved as

quickly as possible. This means that the grey bar as shown in Figure 3.13 for a priority process

has to be as short as possible. To do so, after a priority step is finished, the job is added to a

priority list. This list is ordered by longest waiting time first. To apply priority, the decision rules

should be slightly adjusted. These additional priority rules always go before the standard rules, if

the priority list is non empty:

If the robot is carrying no jobs:

• Retrieve the first job on the priority list from its machine.

If the robot is carrying one job:

• Retrieve the first job on the priority list from its machine.

If the robot is carrying two jobs:

• If the next machine of one of the carrying jobs is available, move that job to its next machine.

• Else, if for one of the carrying jobs, the job in the next machine is finished, then the other

carrying job is put in the buffer.

• Else, the first job the robot is carrying is put in the buffer.

If the priority list is empty, the standard rules formulated at the beginning of this section are

followed. The result of the implementation of these priority rules will be demonstrated by applying

priority to the second process step of job 2. The time charts of the simulation results for the

problem without and with priority are compared in Figure 3.14.
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GA with priority for process step 2 of job 2
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Figure 3.14: Top time Chart, the greedy algorithm without priority, lower time chart, with priority

for process step 2 of job 3, for the job shop problem of Table 3.9.

Figure 3.14 shows that the grey bar of the second process step of job 2 is slightly smaller when the

process step is given priority. Because the job shop problem only consists of 3 machines and 4 jobs,

the workload of the robot is low. Therefore no long waiting periods are found, and only minor

improvements of the waiting time for the priority process is shown. Now this greedy algorithm is

ready to be applied to use case simulations.
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3.3.2 Shifting bottleneck heuristic

The scheduling problem encountered in the Micro Device Fab differs from the standard problem

solved by the shifting bottleneck heuristic, as shown in the beginning of this section. Related work

in the literature proposes modifications to the shifting bottleneck heuristic for complex job shops.

However, this research mostly focusses on re-entrant product flows and batching machines [16],

or setup times and prescribed customer due dates [17]. A similar job shop problem with product

flows with multiple machine visits has been investigated in [19], however they do not incorporate

priority processes and transportation times. To explain the adjustments of the shifting bottleneck

heuristic, the more complicated job shop problem of Table 3.9 will be used.

The changes that are added to the Shifting Bottleneck heuristic to cope with the system adjust-

ments and to improve the performance of the shifting bottleneck heuristic, will be discussed one

by one. These adjustment are separately applied to the standard Shifting Bottleneck heuristic.

The first adjustment improves the performance of more complicated product flows with multiple

machine visits by redetermining the release time.Afterwards an adjustment that optimizes the or-

der in which schedules are created is proposed. Followed by a decision rule adjustment to reduce

the time between process steps of a job, this decision rule is applied when multiple schedules with

the same makespan are found. Another adjustment for the Micro Device Fab, is the possibility of

applying priority to a process step, which means that when this process step with priority is fin-

ished, the job should be retrieved as quickly as possible. This priority rule is also incorporated by

creating a decision rule for when multiple schedules with the same makespan are found. The final

adjustment is to take the transportation times into account. These adjustments will be further

discussed in more detail.

Multiple machine visits and Release time update

In the Micro Device Fab it is possible that products visit one machine multiple times during a

flow. The implementation of multiple machine visits in the shifting bottleneck heuristic will be

explained via the job shop example introduced in Table 3.9. To implement this into the shifting

bottleneck heuristic the process steps need to be defined as: (m, j, n), with m the machine, j the

job, and n the number of times the job has visited the machine. This adjustment is necessary such

that the different processes of a job on one machine can be identified, because the order of these

processes is fixed and must be met. The disjunctive graph for this job shop problem is shown in

Figure 3.15.

To schedule this flow, the bottleneck machine will be scheduled first, which is the machine with

the largest total operation process time. This results in bottleneck machine 2 with a lower bound

of LB = 550. Similar as for the shifting bottleneck heuristic of the previous section for single

machine visits, the release time, and due dates for each process are determined and are shown in

Table 3.10.

(2, j, n) J2,1,1 J2,2,1 J2,3,1 J2,4,1 J2,3,2

p2jn 150 150 50 100 100

r2jn 50 50 0 350 200

d2jn 500 500 150 550 400

Table 3.10: Process times, release times and due dates for the jobs on machine 2.
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Figure 3.15: Disjunctive graph of product flows with multiple machine visits.

Now the completion time and tardiness can be determined for the different schedules. These

schedules are created by setting one job, and the other jobs follow by order of earliest due date

first as explained in Section 3.2.2. Table 3.11 shows the values for the schedules with set job 1:

(1, 3, 3, 2, 4), and for set job 3: (3, 3, 1, 2, 4).

Job J2,1,1 J2,3,1 J2,3,2 J2,2,1 J2,4,1 Job J2,3,1 J2,3,2 J2,1,1 J2,2,1 J2,4,1

p2jn 150 50 100 150 100 p2jn 50 100 150 150 100

r2jn 50 0 200 50 350 r2jn 0 200 50 50 350

CT2jn 200 250 350 500 600 CT2jn 50 300 450 600 700

d2jn 500 150 400 500 550 d2jn 150 400 500 500 550

Tard2jn 0 100 0 0 50 Tard2jn 0 0 0 100 150

Table 3.11: Completion times, and tardiness for two schedules on machine 2.

The schedule (1, 3, 3, 2, 4) results in a tardiness of 100 time units, and the schedule (3, 3, 1, 2, 4)

results in a tardiness of 150 time units. From this, the conclusion could be drawn that the optimal

schedule starts with job 1. However, this is not the case, because if a job visits a machine multiple

times, the release time of the second visit is dependent on the completion time of the previous

visit. This is due to the fixed flow, after the first process step of job 3 on machine 2 is finished

(J2,3,1), the job first has to visit machine 3, before it can return to machine 2 (J2,3,2). For the

first schedule, the completion time of J2,3,1 is 250, and the process time of the next process step

on machine 3 is 150, this would mean that the earliest time that process J2,3,2 can be released is

400. In Section 3.2.2 this problem was not encountered, because jobs could only visit a machine

once. Therefore, the release time of processes of which the job has already visited the same

machine should be redetermined when scheduled. This property for multiple machine visits was

also identified in [19]. As explained, this results in an increased release time for job J2,3,2 from

200 to 400. This adjustment results in the updated completion times and resulting tardiness as

shown in Table 3.12.

By updating the release time, schedule (1, 3, 3, 2, 4) now results in a tardiness of 200 time units.

From this a new conclusion can be drawn, which is that the optimal schedule should start with

product 3 instead of product 1.

However, the change of release time due to the previously scheduled processes can also occur due
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Job J2,1,1 J2,3,1 J2,3,2 J2,2,1 J2,4,1 Job J2,3,1 J2,3,2 J2,1,1 J2,2,1 J2,4,1

p2jn 150 50 100 150 100 p2jn 50 100 150 150 100

r2jn 50 0 400 50 350 r2jn 0 200 50 50 350

CT2jn 200 250 500 650 750 CT2jn 50 300 450 600 700

d2jn 500 150 400 500 550 d2jn 150 400 500 500 550

Tard2jn 0 100 100 150 200 Tard2jn 0 0 0 100 150

Table 3.12: Completion times, and tardiness for two schedules with updated release times on

machine 2.

to constraints of the already scheduled machines. This will be explained based on a simple example

with 3 jobs and 2 machines shown in Figure 3.16, with the flow of the jobs shown in the legend. If

machine 1 is already scheduled with the following job order: (1, 2, 3), as shown in the time chart

in Figure 3.16.

 0     5     10   15            20

M1
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Job 1:   (1,1)         (2,1) Job 2: (1,2)        (2,2)   Job 3:  (2,3)        (1,3)
     2            4                         2                 4     5                 1

Figure 3.16: Time chart of 3 job flows for 2 machines with machine 1 scheduled.

The release time of job 1 and 2 on machine 2 is zero, and the release time of job 3 on machine 2

is 15. However, if the processes on machine 2 would be schedule in the following order: (2, 1, 3)

the release time of job 3 would increase to 17, due to the shift of the processes on machine 1, as

shown in Figure 3.17.
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Job 1:   (1,1)         (2,1) Job 2: (1,2)        (2,2)   Job 3:  (2,3)        (1,3)
     2            4                         2                 4     5                 1

Figure 3.17: Time chart of 3 job flows for 2 machines with machine 1 and 2 scheduled.

These two schedules would never result after solving the one machine subproblems, because sched-

ule (3, 1, 2) for machine 1, and schedule (1, 2, 3) for machine 2, would result in a lower tardiness.

However, for more complicated job shop problems it can occur that due to an incorrect release

time the wrong schedule is chosen. These shifts in the release times can be neglected, but could

possibly decrease the performance of the heuristic, because a less constrained problem is solved

[3]. If we do want to take these shifts into account there are two options. Either delayed prece-

dence constraints can be defined [9], which takes all constraints that could effect the release times

into account. Or the release time, which is the longest path from the source node to the process,
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is recalculated when a process is scheduled. The latter solution is chosen. This means that the

conjunctive arcs of the previously scheduled processes on a machine (dashed arcs as in Figure 3.8),

are already taken into account for determining the release time of the following process, and so

on. The due date of a process is not affected by the previously scheduled processes, because the

due date is dependent on the longest path of the process to the sink node.

To show the effect of updating the release times while scheduling, both the schedules resulting

from the SBH without updated release time, and with the updated release time are shown in

Figure 3.18 for the multiple machine visit example of Table 3.9.
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Updated release time 

Figure 3.18: Upper time chart shows the SBH schedule without updating the release time, and

the lower time chart shows the SBH schedule which does update the release time for the example

of Table 3.9.

Figure 3.18 shows that the SBH that does update the release time achieves a makespan of 50 time

units shorter and an utilization of around 85% for bottleneck machine 2. While the non adjusted

SBH results in an utilization of around 80%. This release time update adjustment is already

incorporated in the SBH to which the other upcoming adjustments will be applied.

Scheduling order

As mentioned in Section 3.2.2 the possible schedules for solving the one machine subproblem are

created by setting the first job followed by the unscheduled jobs in order of earliest due date first.

However, this can sometimes results in a suboptimal solution.

For example, when looking at the created scheduling order (3, 3, 1, 2, 4) in Table 3.11. The due

date of process J2,3,2 is 400, and therefore earlier then for process J2,1,1, which is 500 and thus the
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rule of the earliest due date first is followed. However, the release time of process J2,1,1 is earlier

than for process J2,3,2. If process J2,1,1 would be scheduled before process J2,3,2, it could start at

50 (max(CT2,3,1, r2,1,1)), and would be finished at 200. This would not influence the starting time

of process J2,3,2, because the release time of this process is 200. This schedule (3, 1, 3, 2, 4), would

result in a tardiness of zero as shown in Table 3.13.

Job J2,3,1 J2,1,1 J2,3,2 J2,2,1 J2,4,1

p2jn 50 150 100 150 100

r2jn 0 50 200 50 350

CT2jn 50 200 300 450 550

d2jn 150 500 400 500 550

Tard2jn 0 0 0 0 0

Table 3.13: Completion times, and tardiness for the new scheduling order on machine 2.

Therefore, the criteria for ordering the unscheduled jobs is adjusted as follows; if process a is set,

and the order of process b and c has to be determined, process b can be scheduled before process

c if:

• the due date of process b is earlier (db < dc), and it is impossible for process c to be finished

before the release time of process b (rb < max(CTa, rc) + pc).

• process b can be finished before process c can start (rc > max(CTa, rb) + pb)

This allows a tighter schedule and therefore a better solution compared to the earliest due date

first strategy, as was shown in Table 3.13.

Reduce time between process steps

The handler can not hold a job for a long time, because both arms are needed for job exchanges.

Therefore, the scheduling heuristic should try to schedule the process steps of a job as close as

possible following each other, to avoid unnecessary handling times. To accomplish this, the time

between process steps of a job is used as a decision variable. To measure this, a new variable is

created, the quick follow up due date (QFUd). This variable is described as follows:

QFUd(m, j, n) = r(mprev, j, nprev) + p(mprev, j, nprev) + p(m, j, n) (3.5)

with

QFUd(m, j, n) := quick follow up due date on machine m, of job j, the nth time the

job visits the machine;

p(m, j, n) := process time on machine m, of job j, the nth time the job visits the

machine;

r(mprev, j, nprev) := release time of the previous process step of job j, which was on ma-

chine mprev, and was the nprevth time the job visited the machine,

p(mprev, j, nprev) := process time of the previous process step of job j, which was on

machine mprev, and was the nprevth time the job visited the machine.

This implies that the quick follow up due date of a process, is equal to the completion time if this

process step would be executed directly after the previous process step of its flow. The difference
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between the actual completion time and the QFUd results in the time between the process steps

of a job flow. To reduce the time between process steps, this difference is used as a decision

variable. When the bottleneck machine is scheduled, the schedule with the lowest tardiness is

always chosen. However, when multiple schedules result in the same lowest tardiness, the schedule

with the lowest total time between process steps is chosen. The effect of this rule on the schedule,

for the example of Figure 3.15, is shown in Figure 3.19.
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Figure 3.19: Upper time chart shows the schedule of the none reduced in between time SBH and

the lower time chart shows the schedule of the adjusted SBH with reduced in between times for

the example of Figure 3.15.

Figure 3.19 shows that the adjusted SBH results in a better follow up of job process steps. The

sum of the time between all process steps of each job reduces from 550 to 350 time units.

Priority

For certain process steps, jobs can not remain in a machine for a longer time period than the

process time. For these process steps applying priority should be possible. When a process step

with priority is finished, this job should be retrieved from the machine as quickly as possible. To

ensure that the scheduling heuristic assigns this priority, the time between a process step with

priority and the next process step of the same job should be added as a scheduling decision rule.

Similar as for the reduced time between process steps adjustments. To determine this priority

time, different priority types are formulated: if a process step itself has priority, the priority type

is 1, if the previous process step has priority, the priority type is 2, and if both the process step

itself and the previous process step has priority, the priority type is 3. This results in the following

priority time (PrioT ) definition:
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PrioT (m, j, n) =



r(mnext, j, nnext)− CT (m, j, n), if Type(m, j, n) = 1

CT (m, j, n)− p(m, j, n)− CT (mprev, j, nprev) if Type(m, j, n) = 2

r(mnext, j, nnext)− p(m, j, n)−
CT (mprev, j, nprev) if Type(m, j, n) = 3

0, otherwise

When a process step is of type 1, the process should be finished at the time the next process step

starts, to have a direct follow up. If the process step is of type 2, the starting time of this process

step (CT minus p) should be equal to the finishing time of the previous priority process step. If

a process step is of type 3, both requirements of type 1 and 2 should by satisfied. The sum of the

PrioT of all priority process steps of each job results in the total priority time and is also used

as a decision variable. When the bottleneck machine is scheduled, the schedule with the lowest

tardiness is always chosen, however, when multiple schedules result in the same lowest tardiness the

schedule with the lowest time between priority process steps is chosen. These adjustments result in

the ability of taking priority of process steps into account. Figure 3.20 shows the schedule without

priority and the schedule when priority is assigned to process step 2 of job 1 for the example of

Figure 3.15.
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Figure 3.20: Upper time chart shows the schedule of the SBH without priority, and the lower time

chart shows the schedule of the SBH with priority on process step 2 of job 1 for the example of

Figure 3.15.

Figure 3.20 shows that process step 2 of job 1 is given priority, without increasing the makespan.

If applying priority would increase the makespan, the priority will not be applied, because for our

optimization problem as mentioned in Section 3.2 the makespan has to be minimized. Besides
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that, there is a possibility of jobs being moved to a temporary buffer as mentioned in Section 3.1,

this would allow a job after a priority process to be moved to the temporary buffer when the next

process does not directly follow up. However, this does increase the transportation time. The

option of moving a job to the temporary buffer and taking the transportation time into account

will be further discussed in the next section.

Transportation times

In reality the machines are spread across the robot track, and the transportation time of the robot

depends on the schedule. First the robot has to move to the location of the job and afterwards the

job has to be moved to the next location. The real life transportation time of a location is given by

the time the robot has to travel from the homing position to this location, as mentioned in Section

3.3.1. For this example it is assumed that the buffer is at the home position of the robot, to travel

from the buffer to machine 1 is 0 time units (at the same location), from the buffer to machine

2 is 5 time units, and from the buffer to machine 3 is 10 time units. The time to travel between

these machines, is the difference between their transportation time. When the robot arrives at

a machine, the job has to be put into or removed from the machine, which takes around 8 time

units. The transportation time between the process steps of a job are known, however, while

scheduling the machines it is not known if these process steps follow up on each other. Besides

that, a lot of different scenarios are possible in the real life system, a job can be moved to the

temporary buffer, and the robot can be carrying zero, one or two jobs, which results in different

transportation times. This exact behaviour is very difficult to predict, even though the real life

system follows the machine schedules of the shifting bottleneck heuristic, how these jobs get at

their location is however determined by robot decision rules. These decision rules follow the job

list created by the schedules of the shifting bottleneck heuristic. This job list represents the order

in which the jobs have to be moved to the next machine. The job that has to be moved, is called

the scheduled job. When the scheduled job is moved to the next process, the next job on the job

list becomes the scheduled job. The same priority list as for the greedy algorithm is created, to

ensure that products are quickly retrieved after a priority process step. The robot decision rules

are as follows:

• If the priority list is larger then zero, retrieve the first job.

• If the scheduled job is in the buffer, retrieve this job.

• Else, if the scheduled job is being carried:

– if the next machine is available, put this job in the machine.

– if the next machine is occupied, and the robot has one arm free, retrieve the job that

is in the machine.

• Else, if the scheduled job is not being carried:

– if the job list is not finished, and the carrying job is not the scheduled job, put the

carrying job to the buffer.

– if the job list is finished, put the carrying job to the buffer.

– if the robot has one arm free, and the scheduled job is finished in a machine, retrieve

the scheduled job from its machine.

– if the robot has one arm free, and the final process of a job is finished, retrieve the job
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Due to the difficult nature of this transportation time, an average transportation time is added

to each process step. By comparing the schedules of the SBH without and with transportation

times, the importance of taking the transportation times into account can be shown. To do so, a

new scheduling problem is defined. This new problem is defined because the difference in schedule

occurs when one machine has to handle more processes than the other machines, and then becomes

the bottleneck machine when transportation times are added to these processes. The disjunctive

graph of the 2 machine, 4 jobs scheduling problem is shown in Figure 3.21.

Figure 3.21: Disjunctive graph of the 2 machine, 4 jobs scheduling problem.

When no transportation times are added to this problem, machine 2 is the bottleneck machine

with a total process time of 810, followed by machine 1 with a total process time of 780. The

transportation time to the buffer is 0, to machine 1 is 5, and to machine 2 is 10. This results in an

average transportation time to a location of 5 and the time of putting or extracting a job from a

machine is 8. The sum of these values is added twice to the transportation time, because a job has

to be moved before and after a process. With a transportation time of 26 and an average process

time of around 115, the transportation time has a large effect on the makespan, which simplifies

the demonstration of taking the process times into account. However, for real life systems the

process times are larger, which will be shown in the next chapter. When a transportation time of

26 is added to all process steps, machine 1 becomes the bottleneck machine with a total process

time of 988, followed by machine 2 with a total process time of 966. Due to the different order

of machine scheduling, the resulting schedules are different, both time charts are shown in Figure

3.22.

When both schedules are used as input for the simulation model, the difference in performance can

be measured. A simulation model is created with the 2 machines, 4 jobs problem and transporta-

tion times as mentioned above. From the schedule determined by the shifting bottleneck heuristic

a product list is created, which represents the order in which the products have to be moved to

the next machine. For the movements of the robot the decision rules as mentioned above will be

used. Figure 3.23 shows the results of the simulation model for the schedule without and with

transportation times.The makespan of the schedule that neglects the transportation time results

in a makespan of 1130, while the schedule that did include the transportation time results in a

makespan of 1103. This shows that taking the transportation times into account does result in

a better solution. When the results of Figure 3.23 are compared to the results of Figure 3.22,

there can be seen that the expected makespan of the schedule with transportation times is almost

equal to the result of the simulation model. This shows that the approximation of adding an

average transportation to the process times seems reasonable for the determination of schedules,

and makespan prediction. By adding all these system adjustments to the SBH, and using reopti-

mization in step 5 of the heuristic as mentioned in Section 3.2.2. The heuristic is complete and

36 Micro Device Fab system modeling



CHAPTER 3. SYSTEM DESIGN

ready to be applied to use case simulations.

0 200 400 600 800 1000

Machine 1

Machine 2

0 200 400 600 800

Machine 1

Machine 2

Job 1

Job 2

Job 3

Job 4

Without transportation times

With transportation times

Figure 3.22: Time charts of the scheduling problem of Figure 3.21 with and without transportation

times added to the process times.
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Figure 3.23: Time charts of the simulated scheduling problem of Figure 3.21 with and without

transportation times added to the process times.
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Results

To determine the performance of the system design rules formulated in the previous chapter,

these will be implemented into use cases. First a general use case will be formulated to test the

performance of the heuristics for a large number of different flows. Afterwards, real life use case

for two possible Micro Device Fab systems will be simulated and the performance and robustness

of these systems will be tested.

4.1 General use cases

The performance of the greedy algorithm, and the shifting bottleneck heuristic will be compared by

solving a general use case. An imaginary scheduling problem is formulated. This problem consists

of 3 types of products and 5 machines, the process times of each process step are generated by

a uniform distribution between 50 and 500 time units. The product flow of the three types of

products are defined as follows:

Type 1 : 3, 4, 5, 2, 4

Type 2 : 1, 3, 4, 5, 2, 5

Type 3 : 4, 2, 1, 3, 1

Priority is applied to all processes on machine 3. Ten different sets of process times for all process

steps are created, to which both heuristics are applied for different experiments. The transporta-

tion times are as follows: 0 seconds to the carrier, 2 seconds to machine 1, 2 seconds to machine

2, 4 seconds to machine 3, 4 seconds to machine 4, and 6 seconds to machine 5, the time to put

or grab a product takes 8 seconds. For the shifting bottleneck heuristic, this results in an average

transportation time of 22 seconds that will be added to all process times.

The first experiment is for the scheduling of 3 products of each type. This results in an average

difference of the makespan between the SBH and GA of 14%, which is shown in Table 4.1. We

note that 4% improvement resulted from the reduced time between process steps adjustment as

mentioned in Section 3.3.2. However, the flow time of the jobs is 5% higher for the SBH. The yield,

which is the amount of products for which the priority requirement is met, is around 8% lower

for the SBH. When this experiment is increased to 10 products of each type, the performance

of the SBH is only 10% better. This can be explained, due to the difference between the real

transportation time and the estimated transportation time which is added to each process time
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for the scheduling of the SBH as explained in Section 3.3.2, the further the horizon the larger

this deviation becomes. Another experiment that is conducted, consists of only products of one

type, when 9 products of type 2 are simulated, this results in only a 1 % better makespan for the

SBH. When 30 products of one type are simulated, there is no difference in makespan between

the two heuristics. When there is only one type of product flow, there is no possibility for smart

scheduling of different product types together, and therefore the SBH loses its advantage. In the

final experiment the process times are rounded to the nearest hundred for the 3 products of each

type use case. This resulted in a 10% better performance, which is 4% less than for the non

rounded process times. When the process times are rounded, this results in a higher common

denominator for the process times, and thus a larger chance of process steps accidentally following

up on each other, which increases the performance of the GA.

Experiment Performance measure Difference GA and SBH

3 products of each type

Makespan (%) 14,0

Flowtime (%) -5,6

Yield (%) -7.8

10 products of each type

Makespan (%) 9,5

Flowtime (%) -19,0

Yield (%) -7,6

9 products of type 2

Makespan(%) 0,9

Flowtime (%) -14,0

Yield (%) -2,2

30 products of type 2

Makespan (%) -0,2

Flowtime (%) -22,0

Yield (%) -6,3

3 products of each type with

rounded process times

Makespan (%) 10, 0

Flowtime (%) -14,0

Yield (%) -11,0

Table 4.1: Mean performance measure comparison for 10 general use cases of the GA and SBH

for different experiments.

Another parameter that has to be taken into account is the computational time of the SBH.

Experiments are conducted, and the number of processes seems to be the dominant factor for

influencing the computational time. This seems logic, since the the number of disjunctive arcs,

and possible scheduling orders are directly dependent on the number of processes. So there is found

that the limiting behaviour for the computational time behaves as O(P 3), with P the number of

processes. Now that the general performance of the heuristics is determined, these can now be

applied to two possible use cases for the Micro Device Fab.
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4.2 Real life use cases

Real life use cases for two possible Micro Device Fab systems will be simulated and the performance

and robustness of these systems will be tested. The first use case is a manufacturing line for the

fabrication of OLED’s, with only one type of products. The second use case is a Micro Device

Fab like system, for the production of multiple types of products simultaneously.

4.2.1 OLED manufacturing line

As mentioned before, the OLED manufacturing line will be developed for one type of product.

This enables the possibility of designing the line for this particular product flow. An OLED is an

organic led, which can be created with wet chemistry processes and printed electronics on flexible

substrates to create flexible displays as shown in Figure 4.1.

Figure 4.1: OLED flexible display.

The creation of an OLED structure consists of two flows, the first is to create the base layer and

the second is to finish the product. Figure 4.2 shows the machine visits and estimated process

times to create the base layer.

Hot plate 2 Metal sputtering Coater

Hot Plate 3 Developer Etcher Stripper Coater Exposure

3 2.5 5 5 2 2

Cleaner Hot Plate 1 Coater Hot Plate 2 Exposure Hot Plate 3

Developer Etcher Stripper

2.5 5 2 3 2 3

2.5 5 5 5 10 2

Exposure

2 2.5 3

Developer Hot Plate 1

Figure 4.2: Product flow of the base layer for OLED
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The flow starts with a preprocessed glass plate with an ITO (indium tin oxide) layer, which is a

conductive layer. When a substrate enters the system, it first has to be cleaned and afterwards the

production processes can be started. The hot plate processes require priority, and the substrates

need to be retrieved within 60 seconds after the process time is finished. With this flow information,

the first part of the manufacturing line for the processing of the base layer can be designed. Figure

4.3 shows the design created from the process flow.

Load /
temp 
carrier

CleanerCoater

Hot plates ExposureEtcher Developer

StripperMetal 
sputtering

Unload 
carrier

         8        6       4     2   

         8        6       4     2   

0
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Figure 4.3: Design of the manufacturing line for the first product flow of the base layer for OLED.

The machines that follow up on each other are located as close as possible together. The hot

plate procedure is a repeatedly occurring process and is therefore placed in the center of the line,

and the robot is equipped with two arms. There are multiple hot plates, which are stashed above

each other. On the right side there is an input buffer and a temporary buffer, and on the left

side the output buffer. The size of these buffers is still infinite, because the size is dependent on

the throughput of the system. The transportation times from the load/temporary carrier to the

machines are shown by the numbers at the machines in Figure 4.3. The time to put or grab a

product takes 8 seconds, this is assumed for all use cases. For the shifting bottleneck heuristic,

this results in an average transportation time of 26 seconds that will be added to all process times.

Now the second part of the process can be investigated. Figure 4.4 shows the process flow and

estimated process times for the finalization of the OLED.

Base Layer Plasma treatment IP410.1 Hot Plate 1 IP410.2 Hot Plate 1

IP410.3 Hot Plate 1 Load Lock VTE unit CVD Organic Printer

CVD Organic Printer CVD Organic Printer CVD Load Lock

2 2 4 2 4

2 4 5 5 5 6

5 6 5 6 5 3

Figure 4.4: Product flow of the final layer for OLED.
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For this flow also only the hot plates require priority. From this flow again a manufacturing line

can be designed, which is shown in Figure 4.5.
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Figure 4.5: Design of the manufacturing line for the second product flow of the final layer for

OLED.

The design of the second flow is slightly more complicated due to some processes that have to be

performed in vacuum. Again the machines that follow up on each other are located as close as

possible together. Products need to go into a vacuum lock to move to the vacuum cluster. For the

real design, this vacuum cluster is equipped with a robot. However, in the simulations there is not

a vacuum cluster robot, and it will be assumed that the main robot can move into the vacuum

cluster. The transportation times from the load carrier to the machines are shown by the numbers

at the machines in Figure 4.5. For the shifting bottleneck heuristic, this results in an average

transportation time of 27 seconds that will be added to all process times. The two manufacturing

lines for the base layer and final layer can be combined by making the unload carrier of the base

layer the load carrier of the final layer. Figure 4.6 shows the complete OLED manufacturing line.
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Figure 4.6: Design of the manufacturing line for the complete production of OLEDs.
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The load and unload stations are now combined. This requires a special design which can move

the products with a finished base layer to the other side of the manufacturing line. This could be

accomplished with a carousel of carriers. After a carrier is completely filled, the carrousel turns,

the next robot can retrieve the products with the base layer, and the first robot has again an

empty carrier. The two parts of the manufacturing line are simulated separately, because for the

real system the products do not immediately move to the other track, but start after a complete

batch is finished.

4.2.2 Micro Device Fab

The second use case has the same concept as the Micro Device Fab, which is a manufacturing

line for the production of different types of products. The design of the line can therefore not

be optimized for one product flow. However, some processes almost always follow up on each

other. For example, coating, hot plate, exposure, hot plate, developer, etcher and stripper, which

are all processes from the wet cluster. By discussing the required machines and processes to be

able to develop most products with a technology expert, the necessary machines are added to the

manufacturing line. Figure 4.7 shows the new design of the Micro Device Fab concept.
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Figure 4.7: Design of the manufacturing line for the Micro Device Fab concept.

The transportation times from the load carrier to the machines are shown by the numbers at the

machines in Figure 4.7. For the shifting bottleneck heuristic, this results in an average transporta-

tion time of 27 seconds for the left robot track, and 25 seconds for the right robot track, that

will be added to all process times. Because the exact products that will be manufactured in the

Micro Device Fab are unknown, some estimated flows are designed from real life examples. The

first flow represents a similar flow as for the production of an OLED and is shown in Figure 4.8.

The double dash shows the transition from the right side of the track to the left side.
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Hot plate 2 Plasma treatment IP410.1
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Figure 4.8: First flow for the production of OLED like structures.

The second flow is based on the production of the FlexSmell, this is a smart food label that was

explained in the Introduction. Figure 4.9 shows a possible flow for the production of the FlexSmell.

Plasma treatment IP410.1 Hot Plate 2 Nova Centrix IP410.2 Hot Plate 3

IP410.3 Hot Plate 1 AFC Amicra
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2 3 4

Figure 4.9: Second flow for the production of FlexSmell like structures.

The third flow is for the production of a Lab on Chip, which is a micro fluidic channel system

connected to a chip. A lab on chip functions as a small laboratory in which chemical analysis can

be performed, e.g. a bloodtest. The production flow of a Lab on Chip is shown in Figure 4.10.

Etcher Stripper Hot Plate 4

Plasma treatment IP410.1 Hot Plate 3 Nova Centrix AFC Amicra

1 2.5 4 2 3

Cleaner Hot Plate 4 Coater Hot Plate 1 Coater Hot Plate 3

Exposure Hot Plate 3 Developer

2.5 5 2 3 2 2

2 3 2.5 5 5 5

Figure 4.10: Third flow for the production of a Lab on Chip like structure.

Now that the lay out and flows of the different use cases are known, these can be implemented

into the simulation models. The two parts of the manufacturing line are also simulated separately,

because for the real system the products do not immediately move to the other track, but start

after a complete batch is finished.
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4.2.3 Results

Simulations are conducted with the above mentioned use cases. For each use case the following

experiments are conducted to compare the performance of the two heuristics:

• for deterministic process times.

• for variable process times, with a coefficient of variation of 0.11, and 0.29.

• for machine failure, the bottleneck machine stops once for 10, and 20 minutes

For the experiments with variable process times, during simulation the process time is determined

by taking a sample of a gamma distribution with a mean of the deterministic process time. Due

to this variability, the results are an average of multiple simulations for a reliable solution within

the 95% interval. For the machine failures, the bottleneck machine is stopped once during a

predetermined process on that machine. The performance of a system is measured by four key

indicators: the total completion time of a batch of jobs (makespan), the average time a job is in

the system (flowtime), the amount of time that the busiest machine (bottleneck machine) is used

(utilization), and the percentage of correct products (yield). Table 4.2 shows the performance

of the greedy algorithm (GA) and shifting bottleneck heuristic (SBH) for each use case and the

different experiments. For the OLED use case the makespan is shown for creating 15 products,

which are all of the same type. For the Micro Device Fab 7 jobs of the OLED type, 8 jobs of the

lab on chip type, and 15 jobs of the flexsmell type are created, so 30 jobs in total. Both sides of the

robot tracks of the manufacturing lines are simulated separately, because for the real system the

products do not immediately move to the other track, but start after a complete batch is finished

The main performance indicator is the makespan. The results of the makespan show that for

deterministic process times, the SBH outperforms the GA for all use cases. For the first OLED

use case the SBH performs almost 6% better, in the second OLED use case the difference is 2%.

For the first use case of the Micro Device Fab, the SBH performs even 13 % better, but for the

second use case only a 4% difference is achieved. Hence, we can conclude that the difference in

performance is highly dependent on the flows and process times. Most process times used for

these use cases are multiples of each other, which enables the greedy algorithm to have a tighter

follow up of products on a machine by ”accident”. This results in a smaller difference between the

two heuristics compared to the results of Section 4.1. For the experiments with variable process

times there can be seen that the performance of the SBH decreases quicker than for the GA,

when cv = 0.11 the makespan becomes almost equal for both heuristics, but with a variance of

cv = 0.29 the GA outperforms the SBH. This difference is expected, since the SBH computes an

optimal schedule for deterministic process times in advance, and the GA reacts to the behaviour

of the system. For the experiments with a machine failure of 10 and 20 minutes, the difference in

makespan between the SBH and GA remains almost the same. When there is a machine failure,

the makespan of the SBH increases with the failure time, because the predetermined scheduling

does not adjust and therefore has to wait until the scheduled job is finished and can continue. The

GA improves slightly compared to the SBH, because the GA continues with the processing on the

other machines, but cannot gain much because the processes on the failed bottleneck machine still

have to be performed.
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Now the other performance indicators will be further reviewed. No clear difference can be found

between the flowtimes of the two heuristics. For both heuristics the flowtime increases when the

process time variation is increased and when there is a machine failure. The utilization of the

bottleneck machine is a directly related to the makespan, and therefore shows the same results as

for the makespan. The yield shows the percentage of priority products that have been retrieved

within the required time of 60 seconds after a priority process step is finished. This requirement

is always met for the GA, this is not the case for the SBH. The amount of incorrect products

in the SBH increases for variable process times and remains the same or increases for machine

failure. Dependent on the importance of this rule being satisfied, there can be chosen between the

shortened makespan or the product equality.

4.3 Summary

From the experiments the performance of the design rules and behaviour of the scheduling could

be investigated, the following insights were found:

• The SBH performs optimal for a small number of products, with a large variance in product

flow and deterministic process times.

• The advantage of the SBH over the GA disappeared for use cases with a large number of

products, with a single process flow and process times that are multiples of each other.

• The performance of the SBH decreases more, compared to the GA, when there is a variance

in process times or a machine drop out, and is therefore less robust.
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Conclusion

After investigating the prototype of the Micro Device Fab, we concluded that the current system

performance was poor. There was only a 40% bottleneck machine usage, and deadlocks could

occur while processing multiple different product flows simultaneously. With this knowledge, new

system design rules could be formulated, starting with the system architecture. When equipping

the robot with a dual arm instead of a single arm, the bottleneck machine usage could be in-

creased to 82%. For the other design variables (e.g. buffers, alignment, etc.), design rules were

formulated based on research and observations. For the scheduling of the jobs, two options, the

greedy algorithm (GA) and the shifting bottleneck heuristic (SBH), were investigated. These two

heuristics were adjusted to the job shop problem of the Micro Device Fab, which has multiple

types of flows simultaneously, multiple machine visits to the same machine, robot transportation

times, and priority.

Afterwards, the determined design rules were applied to use cases to evaluate their performance.

This showed that the SBH performs optimal for a small number of products, with a large vari-

ance in product flow and deterministic process times. This resulted in an average 14% smaller

makespan for the SBH compared to the GA, of which 4% is achieved by a newly developed ad-

justment in the SBH that decreases time between process steps. However, for use cases with a

large number of products, with a single process flow, and process times that are multiples of each

other, the advantage of the SBH over the GA disappeared. The robustness of the GA was found

to be better than for the SBH, because the performance of the SBH decreased more rapidly when

a variance in process times or a machine drop out was applied. For all experiments the SBH has a

larger or equal flow time, and a smaller or equal yield compared to the GA. This yield represents

the number of correct products, and thus if the yield is lower the product equality is lower. The

utilization of the bottleneck machine is directly related to the makespan, and therefore shows the

same results. Dependent on the importance of each performance measure, there can be chosen

between the shortened makespan, flow time, or the product equality.

With the use of simulation the performance has been measured, and has shown large improvements

in system performance compared to the prototype. With the developed design rules new Micro

Device Fab systems can be created. In the future, predictions of the system behaviour and

performance can be made for both the prototype as for new designs with the use of simulation

models. The two scheduling heuristics both showed a good performance, the SBH did outperform

the GA for deterministic process times, however, does not cope well with system variations and

has a lower yield.
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Further research and Recommendations

To improve the SBH, the schedule could be recalculated during the product processing, this would

improve the performance for long runs and system variations. Therefore, we can not conclude

what the evidently optimal heuristic is for Micro Device Fab systems, because this depends on the

application and the importance of the product equality. However, due to the research application

of the Micro Device Fab, a 10% makespan improvement is probably less important than the

product equality, and therefore the GA seems more suitable. Another application for the SBH

could be the smart scheduling of machine clusters, which are complicated flows with a smaller

number of machines, which require a high machine utilization. Eventually, a heuristic should be

incorporated into the real control software, which can be implemented into the newly designed

Micro Device Fab systems.
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Appendix A

Operational and system structure

Production is managed in three main sections, the Enterprise Resource Planning (ERP), the

Manufacturing Execution Systems (MES), and the process control. The ERP exists of all the

financial, marketing and resource operations. MES exists of namely manufacturing strategies,

manufacturing planning and control systems and information technology. The process control is

the control of the production line and the operators. MES is the intermediate step between the

Enterprise Resource Planning (ERP) system, and the Device control systems, which is shown in

Figure A.1 [11].

Figure A.1: Production structure.

A.1 Device Control system structure

The robot track and the machines communicate with the MCS via a protocol developed by So-

lar Semi. Besides that, to ensure compatibility between the communication of the machines and

MCS with the MES system, a standard protocol is used. This is SECS/GEM (Generic Model for

Communications and Control of Manufacturing Equipment) [1], which is developed for the Semi-

conductor industry and is used in the Micro Device Fab. This connectivity standard describes

how equipment shall communicate with a MES, such that for example measurement data can be
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collected, variables can be changed and flows for products can be selected. However, this option is

not yet implemented, because there is no MES yet and therefore flows are still selected in the MCS.

As was shown in the previous section production is constructed into three sections: Enterprise Re-

source Planning (ERP), manufacturing execution system (MES), and the Device control systems.

For the MicroDeviceFab first there has to be determined how far the Device control system is de-

veloped and what is needed to function properly. The parts of the Device Control system that are

found relevant for the MicroDeviceFab will be discussed on how much these are developed already.

This investigation resulted in a schematic structure of the different devices and the connections

between these devices. Figure A.2 shows the Micro Device Fab structure that was found.

Figure A.2: Process control structure and connection to the MES.

The structure exists of the MCR software, in which flows can be defined, these flows can be loaded

into the control and interface software MCS, which was mentioned before. The MCS is again

connected to the two different robot tracks, conveyer, non Solar Semi machines and a PLC which

is connected to the Solar Semi machines. The communication of the conveyer, machines and

PLC follows the protocol defined by Solar Semi. The two robot tracks communicate via ethernet,

however, the protocol that is used is unknown. Currently, there is no MES, but if this would be

constructed a data connection should be generated between the MES and the MCS. The MCS

can not be connected to the MES directly, therefore a protocol translator should be implemented

in between.

When a carrier is reset, by lifting the carrier and triggering the sensor, a product flow can be

started. First the user has to specify whether the carrier is sender or receiver, so if it sends the

substrates into the system or if it receives substrates from the system. Afterwards, the number

of substrates in the carrier have to be entered. To this complete batch of substrates a sequence

of process steps (flow) can be assigned, which is chosen from a list of flows, how these flows are

created will be explained in the next paragraph. In each flow it is described whether the carrier

is both the sender and the receiver or only the sender. If the carrier is only the sender, the other

carrier should be called the receiver and only one type of flow is possible. If the carrier is both the
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sender and the receiver, it is possible to start two different types of flows from the two different

carriers.

With the program MCR, the product flows can be created. In these flows the process steps of a

product are described, e.g.: LP50 recipe 2, IP410 recipe 1, LP50 recipe 1, finish. A recipe exist

of a pattern and properties, which are saved and created on the computer of the specific machine.

These computers are all connected to the main computer, which allows the possibility of choosing

a recipe from a list of recipes for each machine to define a flow. After a flow is described, the flow

characteristics are described, e.g. the filling strategy of the carrier (sender/receiver). After a flow

is finished it can be saved in the MCR and can then be loaded into the MCS.
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Simulation model current software

A simulation model will be created in Chi to verify the determined decision rules of the current

Micro Device Fab.

B.1 Model structure

First the structure of the system will be described. A schematic view of the system that will be

modeled is shown in Figure B.1. The numbers refer to the different parts of the system, which

eventually will be used to create flows.

Carrier 2

Carrier 3

IP410 LP50

Robot

Robot

Conveyer2

0

1

34
5

6

7

8

Align 2

Align 1

Figure B.1: Schematic view of the system.

The model exists of two robots or handlers, which can transport substrates through the system,

a conveyer belt to connect the two robot tracks, two alignment locations at either side of the belt

and two machines. This system can be translated into a simulation model by dividing the system

parts in different processes which can be connected to each other with channels. This structure is

schematically described in Figure B.2.
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G

B1

B2

H1

H1

B1

B2

H1

H2

MB

M1

M2

C

Figure B.2: Structure of the processes and channels of the simulation model.

Figure B.2 shows the different processes and their connection through channels. It starts with

the generator (G), which sends the specified products to the carriers, or also called buffers (B1

and B2). Because there are two buffers the generator has two channels through which products

can be send. In the model a product list is defined, in which for each buffer a list of products

and their type is described. The generator will keep sending products until all products in the

product list are send. The buffers can receive products from the generator and add them to a

list. When this list is non empty a message is send to the controller (C) and a product can be

send to one of the handlers (H1 and H2). The handlers receive from the controller the product

number that they have to move. When this number is received it can retrieve the product at either

a buffer or a machine (M1 or M2). If the product is received from the buffer, first the handler

has to move to the buffer, afterwards, the handler moves to the alignment station and aligns the

product and finally the product is moved to the next machine. This is similar for products that

are received from machines. Products carried by the handler can be moved to machines, however,

this will only happen when the controller sends this message to the handler. The machines also

send messages to the controller, such that the state of the machines is known. The two handlers

can also exchange products, this can be done via the conveyer belt (MB), which is modeled as a

machine.

Controller

The controller controls the system and decides the movements of the handlers and therefore

the product flow. The controller receives the status of the buffers and the machines, such that

it is known which machines are available and what products need to be processed. With this

information the controller should decide what product should be served. The goal of the model

is to mimic the current scheduling. Therefore, the decision rules that were identified for the real

system are used:

• Substrates are put or moved in the system when the next machine is available, which allows

parallel processing.

• There is one exception: when a product has to move from one robot track to the other via
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the conveyer, the substrate can only be moved to the conveyer when the next machine is

available, due to the conveyer being one directional.

These decision rules are implemented into the controller of the simulation model and are key in

deciding which product should be served. The products in each buffer are served following the

first come first serve rule, because the current system only allows one type of flow for all products

in the same buffer.

To decide which product should be served, the controller requires some information. The first

option is to request information from the buffer, this information is the product that is waiting

in the buffer. The second option is to request information of the machines at the beginning and

after a product is finished. The information of the states of the machines and buffers is saved in

a list. If there is a zero at the location of the machine number in the list, than the machine is

available. The state of the processes together with the decision rules results in the controller that

should mimic the real control software, which will be verified.

B.2 Handling and Process times

For the eventual modeling of the Micro Device Fab the handling and process times have to be

determined. The handling times of the substrates can be determined by observing the Micro

Device Fab, which includes: the handling times of the robot, the process time of the alignment

procedure, and the transportation time of the conveyer belt. The process time of the machines

depends on the kind of job that has to be performed, and is therefore variable. Table B.1 shows

the handling times that were identified.
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APPENDIX B. SIMULATION MODEL CURRENT SOFTWARE

Action Time [sec] Remarks

Handler 8: move from init to carrier 0 Carrier at init position

Handler 8: move from init to alignment 6

Handler 8: move from alignment to LP50 4

Handler 8: move from alignment to IP410 8

Handler 12: move from init to carrier 0 Carrier at init position

Handler 12: move from init to alignment 0 Alignment at init position

Handler 12: move from init to belt 0 Is incorporated in the belt time

Time of putting or taking out a substrate from

a machine, the belt or carrier

8

Move belt from align 1 to align 2 9

Time of aligning 28

Table B.1: Transportation times
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