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Chapter 1

Introduction

1.1 Background

The automotive industry is one of the largest users of industrial robots for manufacturing and
assembly of cars. There are however still some areas in the process of car manufacturing where
robots have not replaced human workers. One of these areas is the mounting of weatherstrip sealing
onto the car chassis. This is generally performed by skillful workers that apply the weatherstrips
manually, which means that the throughput of the entire manufacturing line is dependent on these
workers. For successful sealing, the weatherstrip must be accurately applied on a substrate with
contact forces that are high enough to guarantee good bonding. Both position and application force
performances are gained by the worker trough training and years of experience. Hence, the process
of weatherstrip application is very much sensitive to the availability of skilled workers which implies
that the quality of the end product may vary from worker to worker. To ensure uniform quality and
predictive throughput, the process of weatherstrip assembly should be automated by means of robots
that mount the weatherstrips onto the car chassis.

To achieve robotized sealing, besides a good understanding of the robotics, it is eminent that the
process of weatherstrip assembly itself is well understood and captured in the control design of the
robot.

1.2 Problem Description

The process of weatherstrip assembly as being currently performed by human workers involves the
positioning of the weatherstrip with respect to the substrate, aligning the weatherstrip with the edge
of the mounting surface while keeping the correct tension force in the weatherstrip, and applying
the correct force of contact between the weatherstrip and substrate. In Figure 1.1 the assembly of a
weatherstrip into a car door opening is shown. In this specific case the weatherstrip has a special
groove which slides over a dedicated flange in the car door opening. The weatherstrip needs to be
positioned correctly to slide over the flange, and the application force needs to be high enough to
correctly place the strip. An alternative assembly method is glueing the weatherstrip onto a substrate,
such as an edge of a sunroof panel. In that case, the worker needs to position the weatherstrip correctly
and apply the right mounting force for a given glue used to bond the weatherstrip onto the substrate.
In this project the case where the weatherstrip is glued to a (curved) substrate is investigated, while
the groove-flange system is not taken into consideration.

The problem of designing a robotic solution for automated weatherstrip sealing starts with the
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Assembly of a weatherstrip into a car door opening.

identification of the process of weatherstrip assembly. A model of that process is needed to correctly
predict the deformations in the weatherstrip during assembly and to correctly predict the application
force on the bottom of the weatherstrip during assembly. Moreover, it has to be investigated how the
rubber weatherstrip behaves under the application forces since rubber generally exhibits different
behavior than more common engineering materials such as metals, ceramics and fiber reinforced
composites. Therefore it is needed to qualify which rubber specific behaviors need to be captured
in a model of the weatherstrip and which effects can safely be ignored. A model of the weatherstrip
needs to be created in a suitable finite element software package capable of capturing all effects of
importance for the weatherstrip assembly process. Simulations with this finite element model have to
be performed to gain insight into the specific behavior of a rubber weatherstrip under application
loads. It is generally not straightforward to include a general finite element model into a robot
simulation, implemented, for instance, in the numerical software package Matlab. This means that
the finite element model of the weatherstrip has to be converted into a form which is compatible with
Matlab, moreover, it has to be compatible with the specific implementation of a robot in Matlab. A
robot suited for the task of weatherstrip assembly has to be chosen and implemented as a model in
Matlab. Both the robot model and the model of the weatherstrip have to be combined functionally to
be able to simulate the entire weatherstrip assembly process. Control laws for the robot motion and
for the force that the robot exerts onto the weatherstrip need to be developed, and the motion and
application force performances of the controlled system have to be evaluated.

Consequently, the goals of this project can be stated as follows:

� Investigate rubber behavior and different rubber models

� Decide which rubber model to use and which rubber specific effects to include in the finite
element model of the weatherstrip

� Create a finite element model of the weatherstrip

� Simulate the weatherstrip application process

� Create a model of the weatherstrip compatible with Matlab

� Design a 1 DOF force controller for the weatherstrip model, to evaluate its performance before
implementing it on a six degree of freedom robot

� Implement in Matlab a model of a robot suitable for weatherstrip assembly
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� Functionally combine models of the weatherstrip and the robot

� Design and implement control laws for the motion and application force of the robot

� Evaluate the performance of the robotized system

1.3 Thesis Outline

Chapter 2 is an overview of literature about robotic assembly and specific behaviors of rubber materials.
It shows which mathematical models are available to model the behavior of the rubber weatherstrips
and explains some of the more promising models in detail. Also some material effects specific
to rubber are explained there. This knowledge about modeling of rubber and specific effects is
needed to investigate the behavior of a weatherstrip and to create a model of the weatherstrip. In
Chapter 3 various models are implemented and simulations are performed to investigate which
properties of the rubber weatherstrip are of concern for the process of weatherstrip assembly. A
nonlinear finite element model is used to simulate the behavior of the weatherstrip under assembly
in Chapter 4. A linear finite element model is created and compared to the nonlinear model. This
linear finite element model is used in Chapter 5, which is devoted to creation of a linear state-space
model of the weatherstrip. In this chapter, the knowledge of rubber modeling, developed in previous
chapters is used to create a model which is compatible with Matlab. This means that a relatively high
dimensional finite element model of the weatherstrip, including non-linear material behavior, is used
as a basis for a lower order and computationally lighter linear state-space model which still captures
the most important properties of the weatherstrip. The design of the force control for the automated
sealing process is the topic of Chapter 6. Here, a hybrid impedance force controller is designed for
the one-dimensional case where the application force on the weatherstrip is controlled only in one
degree of freedom. The designed controller is analyzed in the frequency domain by inspection of
the characteristic transfer functions of the closed-loop system (e.g. sensitivity and complementary
sensitivity), but also by servo control simulations in the time domain. In Chapter 7 the dynamics of a
six degrees of freedom robot are modeled. Also, an inverse dynamics controller is designed which
linearizes the inherently non-linear robot dynamics. The control law described in Chapter 6 can then
be used to control the application force for this six degrees of freedom system. The performance of
the entire system is analyzed in time domain servo simulations.
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Chapter 2

Literature Overview

When designing a robot control scheme, for a robot applying weatherstrips to a surface, it is important
to have a reliable model of the process under control. This process includes the weatherstrip, the
surface, the interaction between these two, and finally the robot itself and its interaction with the
weatherstrip. In this chapter investigations are conducted into the rubber behavior and its robotized
assembly.

Since the automotive sector is on the forefront of automation with robotics, it is useful to investigate
if applications similar to the one investigated in this project are documented in literature, and to use
these as references.

Rubber behaves quite differently compared to more common engineering materials such as
metals, ceramics or fiber composites. Hence, it is necessary to investigate all effects inherent to rubber
materials and the corresponding models. Designing (dynamical) systems consisting of traditional
engineering materials such as metals, is a common task and, as such, most engineers have some
experience with it. They know from this experience what effects/behavior to expect, how to model it
and what they can safely disregard. They also have a ‘feel’ for good or bad results when simulating
such systems. In the case of applying rubber weatherstrips, this is different. In the domains of
dynamics and control, rubber is not commonly considered, resulting in less experience and ‘feel’ for
good or bad results. In this regard, it is wise to get a thorough understanding of the rubber material
and its behavior before trying to simulate it. Moreover, usable models and realistic experimental data
have to be researched in the existing literature. In this study the focus lies on EPDM rubber, since
most automotive weatherstrips are made of EPDM sponge and dense rubber.

2.1 Robotic Assembly

The automotive industry is one among the first industries that takes advantage of robotic technologies,
especially for assembly of various parts of a car and painting the car body. Some assembly techniques
used in the automotive industry are for instance, spot welding, arc welding, laser beam welding,
magnetic pulse welding, adhesive bonding, clinching and brazing [42]. All these techniques are used
to join two rigid (mostly metal) car parts to each other.

In [52] the authors state that while robotic automation has played a key role in certain aspects
of the car manufacturing process, such as welding, stamping, material handling and painting, final
assembly of a car is mostly human labor. The same article reports that the car manufacturing company
GM explores merits of an automatic robotic wheel and tire load system, which can attach a wheel
to the car autonomously. In that article, some challenging tasks for future robotic automation are
also mentioned, such as peg-in-hole assembly, contour match assembly, and surface match assembly.

5
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Peg-in-hole assembly is a widely studied subject (for instance [16, 61, 66]) and refers to the robotic
placement of one part into the hole of another part. According to [52], contour match assembly has
been rarely studied; this sort of assembly refers to mating of parts along a contour of another part,
for instance a weather strip along a car door. Surface match assembly refers to stacking 3D surfaces
together, such as a carpet placed onto the vehicle floor. This type of assembly is not yet studied
according to the article.

Figure 2.1: Assembly of a sunroof [29]

Mortimer [29] studied the modernization of UK car manufacturing and, in addition, gives some
other examples of robotic assembly in the automotive sector. Of most interest is the application of the
weatherstrip seal to the sunroof aperture in the car roof. This process is depicted in Figure 2.1. Here
the sunroof system has to be perfectly aligned with the roof of the car to minimize wind roar. The
weatherstrip seal is an integral part of this system and has to be perfectly aligned as well.

The machine depicted in Figure 2.1 applies the weatherstrip, places the sunroof and adjusts the
glass alignment of the sunroof. An apparent limitation of this machine is the inflexibility in handling
sunroofs of different shape.

While the aforementioned article [29] mentions automatic assembly of weatherstrips, the machine
used is a tailored solution for a specific type of sunroof. An arm-type robot placing the weatherstrip
would be a more flexible solution, since it may be reconfigured to assemble other type of sunroofs.

The topic of applying weatherstrip seals to automotive parts automatically with specialized ma-
chines or with more versatile robots is already described in patents, see for instance: [9, 39, 40, 41,
48]. These patents describe apparatus and methods for applying weatherstrips onto car door openings
and robots for installing the weatherstrips into car doors or sunroof openings. However, a complete
solution for automatic assembly of weatherstrips onto car parts does not seem to exist yet.

2.2 Rubber

Rubber exhibits material behavior that is quite different when compared to linear elastic materials,
such as steel and aluminum. Figure 2.2 shows a typical stress-strain response for a rubber material.
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The dotted line in this figure depicts the elastic response, which is nonlinear. The dashed line
represents the behavior under slow loading and shows hysteresis. The solid line depicts behavior
under fast loading and shows viscous friction effects.

In the next sections, the most common effects in rubber and ways to model them are discussed.
These effects are grouped into three main categories: nonlinear elasticity, visco-elasticity and inelastic
behavior.

Other useful resources to get a comprehensive review of the behavior and modeling of rubbers
are for instance [47, 37].

Figure 2.2: Typical rubber stress-strain response [47]

Some effects are purposely ignored because they are deemed to be of no importance to the
process of weatherstrip assembly or can simply be circumvented. These effects include among others
temperature dependency, ageing, chemical influences and moisture absorption.

2.2.1 Nonlinear Elasticity

The elastic stress-strain response of a rubber, as depicted with the dotted line in Figure 2.2, can
be nonlinear and may cover very large deformations. In literature about nonlinear elastic material
behavior, elongation is often characterized by the stretch ratio λ in stead of the strain ε used in linear
elastic materials, a definition of λ is given in (2.1). A typical nonlinear elastic stress-stretch response
of a hyperelastic material is shown in Figure 2.3. Materials that are characterized by such a large
deformation elastic behavior, are called hyper-elastic [15, 24, 50].

10 λ

σ

Figure 2.3: Typical nonlinear stretch-strain response

In Figure 2.3 the elongation factor is depicted by λ, and the stress is depicted by σ. An elongation
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factor of 1 means no elongation. A hyperelastic response often starts with a certain slope, then softens
(has a lower slope) at moderate elongation and stiffens (has a higher slope) at large elongations. These
materials often are much stiffer in compression (0< λ < 1) than in tension (λ > 1).
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Figure 2.4: Experimental data for uniaxial tension, pure shear and equi-biaxial tension experiments, from [55].

An example of hyperelastic behavior can be found in [55], and is depicted in Figure 2.4. Here
a vulcanized rubber specimen with a filler content of 8 % sulfur, is subjected to three experiments:
uniaxial tension, pure shear and equi-biaxial tension. On the vertical axis the first Piola Kirchhoff stress
is depicted, this is a measure for stress in the material which relates the force in the deformed state to
the area in the undeformed state [50]. The nonlinear behavior and the stiffening at high elongation is
clearly visible.

2.2.2 Nonlinear Elastic Models

Modeling nonlinear elastic or hyperelastic materials is more complicated than modeling linear elastic
materials and, as such, a lot of different methods to model this behavior exist. An overview of
different hyper-elastic models is given in [38, 50, 55], where [38, 55] also compare different models to
experimental data.

The equations given in this section are for one-dimensional models (along one geometric axis), but
the same principles hold for three-dimensions, where stress- and deformation tensors are used [15,
50].

Hyper-elastic behavior can be modeled with the use of the strain energy function W (λ) and the
stretch ratio λ. The latter is the ratio between the deformed length L and the original length L0:

λ=
L
L0

(2.1)

The strain energy function W (λ) is dependent on the stretch ratio and is used to calculate the stress
σ in the material:

σ =
dW
dλ
λ (2.2)
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The majority of strain energy functions are written in terms of the principal stretch ratios λ1,λ2,λ3,
the strain invariants I1, I2, I3 and the volume change factor J :

I1 = λ
2
1 +λ

2
2 +λ

2
3 (2.3)

I2 = λ
2
1λ

2
2 +λ

2
2λ

2
3 +λ

2
3λ

2
1 (2.4)

I3 = λ
2
1λ

2
2λ

2
3 (I3 = 1, for incompressible materials) (2.5)

J = λ1λ2λ3 (J = 1, for incompressible materials) (2.6)

Most dense rubber materials are incompressible, which means that they have no volume change
(J = 1) and their third strain invariant is equal to 1. Sponge rubbers, on the other hand, are
compressible and need to be modeled with strain energy functions that take volume change into
account.

In the next paragraphs, some hyper-elastic material models are considered.

Neo-Hookean

The Neo-Hookean [4, 15, 31, 50, 55] model is a one term model of the Rivlin type:

W = C10(I1 − 3) (2.7)

This is the simplest hyper-elastic model and has C10 as the only material parameter.
This model is successfully used to model the deformation of weatherstrips with complex geometry

in [56, 57, 58, 64]. Marckmann and Verron conclude that for small strain (up to 50 %), the Neo-
Hookean model should be chosen over all other models because it is able to predict material response
for different types of loading conditions [38].

Mooney-Rivlin

The Mooney-Rivlin [4, 15, 22, 31, 50, 55] model has two terms and two material parameters, C10 and
C01:

W = C10(I1 − 3) + C01(I2 − 3) (2.8)

This model can be used for strains up to 100 %, but it is not well suited for modeling compression
behavior [6].

This model is one of several ones used in [22] to model the static compression of an EPDM
weatherstrip seal shaped as a hollow tube. The authors of [22] find that an Arruda-Boyce model has
better agreement with their experimental data than a Mooney-Rivlin model.

James-Green-Simpson

The James-Green-Simpson model [50] is also a model of the Rivlin type, it has five material parameters
and can be used for strains up to 200 % [6]:

W = C10(I1 − 3) + C01(I2 − 3) + C11(I1 − 3)(I2 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3 (2.9)

In [2, 63] this model is used to simulate an EPDM weatherstrip with complex geometry under
compression loading with a finite element method. A comparison between a linear material model
and the James-Green-Simpson model reveals large differences in behavior (up to 200 %).
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Arruda-Boyce

The Arruda-Boyce model is also known as the eight-chain model [6, 4, 10, 55] and has two material
parameters, µ and λL:

W = µ
5
∑

i=1

Ci

λ2i−2
L

(I i
1 − 3i) (2.10)

The constants Ci are defined as [6, 10, 22]:

C1 =
1
2

, C2 =
1

20
, C3 =

11
1050

, C4 =
19

7050
, C5 =

519
673750

In [37] it is claimed that this model provides sufficient accuracy for multiple deformation modes
(tensile, compression, uniaxial, biaxial), when configured with standard tensile test data. The Arruda-
Boyce model is used to simulate the compression loads of an EPDM weatherstrip [22], and it shows
the best agreement with experimental data with respect to other used models.

Ogden

The Ogden model [4, 15, 22, 25, 50, 55] is based on the stretch ratios directly, and has two material
parameters per term, µi and αi :

W =
N
∑

i=1

µi

αi
(λαi

1 +λ
αi
2 +λ

αi
3 − 3) (2.11)

This model is applicable to strains of up to 700 % [6]. It is used in [18] to model the behavior of EPDM
rubber with different loading rates and it is used in [64] to model weatherstrips made of TPE and
EPDM rubber.

General Remarks on Nonlinear Elastic Models

It has to be noted that all material models have to be fitted to experimental data before they can be
used. A model is only usable if it can reproduce experimental data to a certain accuracy. Also, it is
desirable that a model has as few parameters as possible, which makes the fitting procedure easier.
Finally, an ideal model would be able to predict behavior outside the fitted data set. This is important
to realize, because for hyperelastic models this is almost never the case. To illustrate this, see Figure
2.5 from [55]. In this figure, on the left-hand side, an Ogden 3 parameter model is fitted to equi-biaxial
tension data (red line). Uniaxial tension and pure shear experiments are simulated with this model
and shown as black and blue lines, respectively. In the figure on the right-hand side, the model is fitted
to the pure shear data (blue line), and simulated for the uniaxial tension (black line) and equi-biaxial
tension (red line). From these figures it is clear that these fitted models represent the fitted data quite
good, but behave poorly for data outside the fitted set. This is the case for all models considered in
[55].

Another example where different fitted models are compared is given in [64], where a Mooney-
Rivlin model is fitted to experimental data from an EPDM specimen with three different strain ranges:
10 %, 20 % and 30 %. Three simulations with these models are compared and shown in Figure 2.6.
In this figure, the top curve depicts the model fitted to data with a range of 10 % strain, and the bottom
curve is fitted to data with a 30 % strain range. The difference at a stretch of λ= 1 is more than 40 %.

The models of weatherstrip behavior in this project are used to predict the behavior of the
weatherstrip under certain loading conditions, while the models are based on experimental material
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Figure 2.5: Ogden 3 parameter model fitted to data [55]. Left: model is fitted to equi-biaxial tension data, right:
model is fitted to pure shear data.
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Figure 2.6: Comparison between Mooney-Rivlin models fitted to three different data sets [64]
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data extracted from a limited set of experiments and loading conditions. The above examples show
that besides a good material model, it is crucial to have experimental data that is expected to reasonably
represent the simulation that has to be performed.

2.2.3 Viscoelasticity

Besides the nonlinear elastic phenomena, rubbers also exhibits viscoelastic behavior. This behavior is
characterized by time dependency, due to which, the relation between stress and strain is a function
of loading rate.

An overview of some important viscoelastic effects are given in the following paragraphs. In
Section 2.2.4, some material models are discussed that incorporate these viscoelastic effects.

Relaxation

When a viscoelastic material is subject to a step change in strain, the stress also exhibits a sudden
jump but then decreases in time to a lower steady-state value. This effect is called (stress)-relaxation [7,
8, 12, 22, 24, 34, 50] and is depicted in Figure 2.7. On the left-hand side in this figure, the strain input

t

ε

t0 t1 t

σ

t0 t1

Figure 2.7: Stress relaxation to a strain-step input

is shown and on the right-hand side the resulting stress is depicted. After the initial spike in the stress,
when the strain is kept constant the stress decreases (relaxes) with time. A result of this is that only a
part of the deformation energy is stored as elastic energy which can be restored after deformation.
The resulting deformation energy is dissipated and can not be restored, this is the decaying part of
the stress curve in Figure 2.7.

An example of this behavior is given in [22], where a stress relaxation experiment on an EPDM
weatherstrip is conducted (the results are shown in Figure 2.8). Here, a small part of a weatherstrip is
indented 4 mm with an automatic indentation device and indentation force is measured. This force
relaxes more than 10 % over a period of 20 seconds. This indicates that the effect of stress-relaxation
makes it difficult to estimate the strain of the material given the stress and vice versa.

The result of the relaxation experiment shown in Figure 2.8 indicates that it is important to
investigate the effect of relaxation on automatic application of weatherstrips, which is the main topic
of this research project. Relaxation itself hinders the estimation of strain from force measurements
and, more importantly, relaxation is coupled to creep (see next section) which has to be minimized for
a satisfying result.
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Figure 2.8: Stress relaxation in an EPDM weatherstrip [22]

Creep

Another viscoelastic effect of rubbers is creep [24, 50], which is an increasing strain on a steady stress
state. This effect is depicted in Figure 2.9. Creep and stress-relaxation depend on the same mechanics
and, as such, are similar to each other.
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Figure 2.9: Creep behavior on stress-step input

While creep is often explained as increasing strain while the stress is kept steady, it can also have
the opposite effect. When a weatherstrip is placed around a contour with a certain strain and internal
stress, the material may start to creep and as a result the strain and internal stress decreases with
time. In the case of a weatherstrip applied around a closed contour, a gap gets formed as soon as
the material starts to creep. Figure 2.8 shows a weatherstrip which relaxes more than 10 %; this may
indicate that the creep in this weatherstrip could be of the same order and has to be investigated.
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Hysteresis and Damping

In Figures 2.7 and 2.9, relaxation and creep are shown that result from a step input in strain and
stress, respectively. When a viscoelastic material undergoes harmonic excitation, the response shows
hysteresis [24, 46, 50]. This hysteresis is a result of the same mechanics as relaxation and creep.
When a harmonic stress input is applied, the resulting strain lags behind and vice versa. An example
of this behavior is shown in Figure 2.10.

t

ε
σ

σ

ε

Figure 2.10: Hysteresis from sinusoidal stress input

In this figure, on the left-hand side, both stress and strain are plotted versus time, on the right-hand
side a hysteresis loop (stress versus strain) is plotted. The area within the closed curve is hysteresis
and amounts to the dissipated energy. This hysteresis is also called material damping, and is a result
of the out of phase behavior of the harmonic response. The amount of phase lag ζ between the input
stress and the output strain is a measure of the amount of hysteresis/damping; the higher the phase
lag, the wider the hysteresis loop is, and the damping is higher.

The process of placing a weatherstrip around a contour does not involve harmonic excitation, so
the hysteresis and damping due to harmonic excitation are not an important effect in this regard.

Rate-Dependent Response

When a viscoelastic material is subject to loading with a slow rate, it behaves differently compared
to a fast loading case; in other words, its response is rate dependent [7, 18, 43, 45, 50]. This is
exemplified in Figure 2.11 where lines are drawn for the instantaneous response σinst, the equilibrium
response σeq and the viscous response σvisc. The instantaneous response is the response that would
be measured when the material is loaded at an infinite rate. The equilibrium response on the other
hand would be measured when the material is infinitely slow loaded. An actual case, with a realistically
achievable loading rate, would be the viscous response line. This line can be anywhere in the shaded
area between the instantaneous and the equilibrium responses.

When an experiment (for instance, a tensile test) is carried out on a rubber specimen with a loading
rate that is high enough, the response initially moves along the instantaneous response line. When
the loading is stopped and the stress is kept at a constant level, the response will move horizontally
towards the equilibrium response; this is creep behavior. When strain would be kept constant the
response would move vertically downwards to the equilibrium line, this indicates relaxation.

Figure 2.11 indicates that the stiffness or modulus (σ/ε) of the material is dependent on the
loading rate, which in case of harmonic excitation leads to frequency dependency. A fast loading
results in a stiffer (higher modulus) response than a slow loading, so a higher frequency harmonic
excitation results in a stiffer harmonic response. For a phase lag between the input and output of a
harmonic excitation, such as shown in Figure 2.10, this is a little bit more complex. The phase lag ζ,
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Figure 2.11: Instantaneous, equilibrium and viscoelastic responses
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Figure 2.12: Dynamic modulus and damping

or hysteresis/damping, is low for low frequencies, grows for intermediate frequencies and decreases
again for high frequencies. This is shown in Figure 2.12.

It is already reasoned that in the process of assembling weatherstrips, harmonic effects are likely
not important. In [43], the authors investigate the frequency dependent stiffness of automotive
weatherstrip seals. One of their experimental results is shown in Figure 2.13. In this figure, the curve
labeled with 1 has the highest static deformation, while the curve labeled with 5 has the lowest static
deformation. In the case of low deformation level, the stiffness increases linearly with frequency
but only with a limited magnitude. This indicates that when a weatherstrip is excited within a small
frequency range, or even with a static loading rate, the frequency dependency is limited. For the
process of weatherstrip assembly, this means that it is safe to assume that the frequency dependent
behavior is of negligible.

The effects of loading rate on the stress-stretch behavior of EPDM rubber weatherstrips are
investigated in [18]. In Figure 2.14, the results of experiments with a low loading rate (0.4 s=1) are
compared to experiments with a high loading rate (2800 s=1 and 3200 s=1). First thing to notice is that
the slow loading curve shows a lot of hysteresis, but not of the kind discussed above. The hysteresis
encountered in this example is caused by the so called Mullins effect, a form of plastic deformation
treated in Section 2.2.5. For stretch ratios higher than 1.1, the low and high loading rate curves are
diverging, the high loading rate curve has a much higher stiffness than the low loading rate curve.
From this figure it can be concluded that for high stretch ratios the loading rate has an important
influence on the behavior of the material. For low stretch ratios the curves look quite similar, so this
effect is not as pronounced in that case. It has to be investigated if this effect has to be taken into
account for the weatherstrip assembly process.
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Figure 2.13: Dynamic stiffness [43]

Figure 2.14: Loading rate effects [18]
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2.2.4 Viscoelastic Models

Viscoelastic behavior is often modeled by means of lumped spring-damper models [8, 12, 22, 24,
43, 45, 46, 50]. Other models are the Prony series approach [12, 22, 25, 30, 46, 53], the fractional
derivative modeling [46, 49] and the modified power law [46].

Standard solid model

The simplest model which captures the creep and relaxation behavior is the standard solid model, de-
picted in Figure 2.15. This model involves a spring in parallel with a serial spring-damper combination,
and can be described with the following differential equation:

σ̇+
E
η
σ = (E + E∞)ε̇+

EE∞
η
ε (2.12)

E∞

η

E

ε, σ

Figure 2.15: Standard solid model

This model contains three material parameters, the stiffness at equilibrium condition E∞, the
extra stiffness E and the damper viscosity coefficient η. When this model is subject to a high loading
rate, the damper acts stiff and the overall stiffness of the model is governed by E∞ + E. When the
model is subject to a low loading rate, the damper yields with the same rate and the stiffness is purely
determined by E∞.
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εinst
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ε

Figure 2.16: Relaxation (left-hand side) and creep (right-hand side) determined by the standard solid model

In Figure 2.16, relaxation and creep that are modeled with the standard solid model are shown.
It shows that the model describes relaxation and creep with exponential functions of time. Time
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constants τr and τc are given by:

τr =
η

E
(2.13)

τc =
η

E∞
+
η

E
(2.14)

The total time dependent modulus of this model is given by:

E(t) = E∞ + Ee
−t
τr (2.15)

This model can also be used to model harmonic hysteresis and damping. However, it is not
suitable for modeling frequency dependent behavior, since the material parameters are constants
and not frequency dependent. Also, the creep and relaxation behaviors are determined by only one
specific time constant for each. This limits the validity of the model within a narrow frequency band.
Another serious limitation is that it is not capable of describing hyperelastic material behavior.

Generalized Maxwell model

To overcome the limitation of the standard solid model in terms of representing the relaxation and
creep with a single time constant, an extension is needed which includes more spring damper
combinations. This extension is called the generalized Maxwell model and is shown in Figure 2.17.
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Figure 2.17: Generalized Maxwell model

The time dependent modulus of this model is given by:

E(t) = E∞ +
m
∑

i=1

Eie
−t
τi (2.16)

τi =
ηi

Ei
(2.17)

This model describes relaxation, creep and harmonic hysteresis in a wide frequency range, but is
limited to linear viscoelastic behavior only.

Prony series

The Prony series approach [4, 25, 30, 46, 53] is a method which resembles the generalized Maxwell
model. It can represent multiple sets of parallel spring damper combinations, and has the advantage
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that it can also include hyperelasticity. The general form of this model is [30]:

g(t) = g∞ +
m
∑

i=1

gie
−t
τi (2.18)

where τi is a time constant, while g∞ and gi are constants that specify the contribution of the
equilibrium and the viscous responses, respectively. When applied to a simple linear viscoelastic
material, it can be rewritten to equation (2.16). It is also possible to include hyperelastic material
models into this form; an example for the Mooney-Rivlin model (equation (2.8)) would be:

W (t) = C10(t)(I1 − 3) + C01(t)(I2 − 3) (2.19)

C10(t) = C∞10 +
m
∑

i=1

C i
10e

−t
τi (2.20)

C01(t) = C∞01 +
m
∑

i=1

C i
01e

−t
τi (2.21)

Here the material parameters C10 and C01 are functions of time instead of constant coefficients for
the invariants I1 and I2 like in the original Mooney-Rivlin model of equation (2.8). The new material
parameters for this model are C∞10 and C∞01 for the equilibrium response, and C i

10 and C i
01 for the

viscous response. The latter two have to be determined for all m terms of the Prony series, where m
denotes the total number of spring damper combinations modeled. Each Prony series term represents
a standard solid model with certain time constants, so each extra term added is equivalent to adding
another spring-damper-spring combination to the model. This enables modeling the viscous behavior
over a wide frequency range.

Some finite element software packages used to model rubber material behavior use the Prony
series to append the computation of the material stress σ, which enables the combination of the
Prony series with an arbitrary hyperelastic model to create a visco-hyperelastic model:

P =

∫ t

0

�

α∞ +
m
∑

i=1

αie
− t−τ
τi

�

2
d

dτ
∂W
∂ C

dτ (2.22)

Here, P is the second Piola-Kirchhoff stress for the three dimensional case which is a stress measure
that relates forces in the undeformed state to areas in the undeformed state [50]. C is the right
Cauchy-Green deformation tensor, which is a measure of deformation [50], comparable to the stretch
ratio in (2.2).

In [22] the Prony series approach is used with an Arruda-Boyce hyperelastic model to describe the
dynamics of automotive weatherstrips with a finite element method. A stress relaxation experiment
is conducted to estimate the parameters for the Prony series, these parameters are used in a finite
element simulation of car door dynamics.

The Prony series approach can model relaxation, creep and harmonic hysteresis over a wide range
of frequencies with hyperelastic elasticity. This method is available in most finite element programs.
Because of this, it seems to be the best choice to model the weatherstrip assembly process.

Fractional derivatives and power law methods

In [46] the fractional derivative model and the power law method are mentioned. Both methods are
somewhat similar to the Prony series approach, but are not available in most standard finite element
programs which makes them less attractive.
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The fractional derivative model is given by:

σ+ b
dασ
dtα

= E0ε+ E1
dαε
dtα

(2.23)

where b, E0 and E1 are material parameters and 0≤ α≤ 1. For more information see [49].
The power law method is explained in [65] and is given by:

E(t) = Ee +
Eg − Ee

(1+ t/ρ)n
(2.24)

where Ee and Eg are material parameters, ρ is a relaxation time and n is a power.

2.2.5 Inelastic Behavior

Viscoelasticity is characterized by rate dependent energy loss (hysteresis), another effect often seen
in rubbers is hysteresis due to quasi-static loading and plastic deformation. The most prominent of
these inelastic effects are the Mullins effect and the Payne effect, both are explained below.

Mullins effect

When an unstretched rubber sample is loaded, its initial material parameters change due to the
loading. After a few loading cycles this behavior stabilizes, so the material parameters are constant
again. When the material is loaded to a higher stretch than before, the material parameters change
again. This softening behavior is known as the Mullins effect [13, 17, 18, 19, 21, 34, 44, 53]. Figure 2.18

εmaxε1 ε2 ε

σ

Figure 2.18: Typical Mullins behavior: first loading curve is depicted with the blue line, the second loading curve
is depicted with the dashed red line and the third loading curve is depicted with the dotted green line.

shows typical Mullins behavior, the blue line depicts the first loading and unloading to a maximum
strain of εmax. After the first loading curve there remains a small amount of strain (which is denoted
by ε1). The second loading curve (red line) traverses a new path, somewhere above the first unloading
curve to the same maximum strain εmax. The second unloading curve lies somewhat below the first
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unloading curve. This goes on until the loading curve stabilizes after 5 to 10 cycles. In the figure, the
third loading curve is subjected to a higher maximum strain compared to the first two loading curves.
After the point of previous maximum strain (denoted with εmax in Figure 2.18) the curve continues
the (projected) path of the first curve before it returned on its unloading curve.

The difference between the loading and unloading curves, and also the difference between
subsequent loading cases, is a form of softening. The material behaves less stiff in subsequent loading
cycles. This means that the material parameters are dependent on strain history. Also, the hysteresis
that occurs is not due to fast loading, and occurs even at steady state loading. The Mullins effect
is probably due to rearranging or damaging internal networks, but there seems to be no generally
accepted theory on the cause of this effect [21].

Another result of the Mullins effect is the strain set at zero stress after a complete loading cycle,
for instance ε1 in Figure 2.18, after the first loading cycle. In [18] the authors report that this strain set
is not recoverable, which is experimentally shown by leaving stretched specimen of EPDM rubber
unloaded for a week. However, [20] reports partial recovery for EPDM specimen after a 20 min
stress-free period.

Figure 2.19: Mullins effect measured by [18]

In Figure 2.19, the result of a stress-stretch experiment on EPDM rubber is shown; this experiment
is described in [18]. In the inset the loading curve is shown. The loading strain increases every three
cycles. By inspection of this figure, a few things can be observed. First, the behavior can become
severely nonlinear (for instance cycle 12). Secondly, the hysteresis can become quite big, especially
for ‘fresh’ loading curves that are subject to a new maximum strain. A third observation is that the
amount of hysteresis or softening seems to be larger for larger strains, that is, the loading curves look
‘fatter’ for higher maximum achieved strain. Finally, it can be seen that the strain set for the last cycle
is around 0.15 (λ= 1.15), which is almost 10 % of the maximum strain of ε= 2. For smaller loading
curves it is hard to read a reliable number.

The authors of [64] performed uniaxial and equi-biaxial tension tests on EPDM rubber, their
results are shown in Figure 2.20. These are the stabilized loading curves after five repetitions. In these
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figures it can be seen that in the zero stress state some strain remains; the residual strain or strain
set. In the uniaxial case, depicted on the left of Figure 2.20, the curve with the smallest maximum
strain (10 %) has a strain set of 1.7 %. This is 17 % of the maximum reached strain, indicating that
even for small strains this effect can be significant. For the equi-biaxial case, depicted on the right
of Figure 2.20, the results are similar. Here a residual strain set of 2 % remains from a maximum
reached strain of 10 %.

Figure 2.20: Stabilized loading curves (after five repetitions) for uniaxial tension tests (left), and equi-biaxial
tension tests (right) [64].

Another experiment on permanent strain set is performed in [23], where specimens of rubber
with different filling degree are submitted to cyclical loading and there permanent strain measured.
The results are shown in Figure 2.21. The bottom line depicts a rubber with a filler content of 1 phr,
the middle curve has a filler content of 20 phr, and the top curve has a filler content of 60 phr. The
authors note that a filler content of 1 phr has no effect on mechanical properties, and can therefore
be considered as unfilled. All loading cycles reach a maximum stretch of λ = 3. From this figure
it is clear that even for unfilled rubbers the permanent strain becomes significant. It also confirms
the findings from Figure 2.20 that small stretches result in relatively big permanent strain set; in
the order of magnitude of a few percent. This means that a rubber loaded to a certain extent and
thereafter unloaded to a zero stress state, can still be elongated a few percent.

This permanent strain set has serious implications to the weatherstrip assembly process; a re-
maining elongation of a weatherstrip may result in difficulties connecting the ends of the weatherstrip
around a closed contour. There does not seem to be consensus in literature whether this strain set is
(partly) recoverable or not, so creep resulting from this cannot be excluded.

Payne effect

Besides frequency dependent behavior when excited harmonically, a rubber does also exhibit am-
plitude dependent behavior. This effect is named the Payne effect [26, 33, 60]. In Figure 2.22
the modulus (σ/ε) and damping (ζ) are plotted against the (logarithmic) strain amplitude εA for a
harmonic excitation. Similar to the rate (frequency) dependent response shown in Figure 2.12, the
modulus and damping change over a wide range. According to [45] the amplitude dependent effects
in rubber are more prominent than frequency dependent effects.

While this amplitude dependent effect is considered to be important for a wide range of appli-
cations such as shock absorbers, in the case of non-harmonic excitation such as the assembly of
weatherstrips, it is assumed to be negligible.
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Figure 2.21: Permanent strain set after a number of loading cycles. Cycles 1 to 6 have a maximum stretch of
λm = 1.5, cycles 7 to 12 of λm = 2 and cycles 13 to 18 of λm = 3 [23].
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Figure 2.22: Typical Payne effect
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2.2.6 Inelastic Models

The authors of [21] give a comprehensive overview of models that capture the Mullins effect. They
classify two types of models: phenomenological and physically motivated models. It seems that no
model can be considered as the most prominent one. In principle, all models are fairly accurate
estimates. One of these models is used for modeling automotive weatherstrips [18] and is available
in the finite element program ANSYS [5]. This is the so called Ogden-Roxburgh model, which is
explained below.

The amplitude dependent Payne effect is assumed to be negligible for the process of weatherstrip
assembly, so only one model is investigated: the generalized elasto-plastic model.

Ogden-Roxburgh model

The Ogden-Roxburgh model [44] can only partly describe the Mullins effect. This model assumes
an idealized Mullins effect, which means that subsequent unloading and loading cycles traverse the
same path. In Figure 2.18 this would mean that the second loading curve would traverse the first
unloading curve in reverse. A second shortcoming of this model is the lack of permanent strain set,
since all curves computed using this model return to the origin.

The idea behind the model is to introduce a damage variable η which depends on loading history.
This damage variable is used to alter the energy function W (λ1,λ2) as defined by the used hyperelastic
material model (for instance the Mooney-Rivlin model defined in equation (2.8)), and define a pseudo-
energy function W (λ1,λ2,η). This pseudo-energy function differs from the original energy function
since it not only depends on the strain invariants I1, I2 and I3 or the stretches λ1, λ2 and λ3, but
also on the damage variable η. This damage variable can be used to lower the value of the pseudo
energy function, and as a result, mimic damage behavior. Here it is assumed that the material is
incompressible (λ1λ2λ3 = 1) and as a result, there are only two independent principal stretches. This
function is no longer a measure of stored energy, therefore the name pseudo-energy function:

W (λ1,λ2,η) = ηW̃ (λ1,λ2) +φ(η) (2.25)

where W̃ denotes a primary loading path (for instance the blue loading curve in Figure 2.18), without
damage. The damage variable η scales the original energy function W̃ and the damage function φ(η)
is a measure of energy used to damage the material. In the Ogden-Roxburgh model, the damage
function is defined as:

−∂ φ
∂ η
= merf−1(r(η− 1)) +Wm (2.26)

where m and r are material parameters, erf−1 is the inverse of the error function and Wm is the energy
attained at the maximum stretch of the original loading path. This results in the following definition
of the damage variable:

η= 1− 1
r

erf
�

1
m
(Wm − W̃ )

�

(2.27)

Similar to equation (2.2), the stress in a three dimensional case is then given by the second Piola-
Kirchhoff stress tensor P:

P = 2
∂W
∂ C

= 2η
∂ W̃
∂ C

(2.28)

where C is the right Cauchy-Green deformation tensor. So the damage variable η lowers the value of
the stress (second Piola-Kirchhoff stress tensor) at a certain strain (right Cauchy-Green deformation
tensor).
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Permanent Strain Set

While the aforementioned Ogden-Roxburgh model is capable of modeling some prominent features
of the Mullins effect in rubber and is included in the ANSYS finite element program, it is not capable
of reproducing the permanent strain set. Some other models that do include the permanent strain
set (for instance, the Dorfmann-Ogden model [23]), are not included in commercial finite element
programs and, as such, less desirable. In literature, there does not seem to exist a suitable model that
includes permanent strain set and is also included in finite element programs or otherwise easy to
implement.

0 0.1 0.2 0.3

0

0.01

0.02

0.03

0.04

Maximum reached nominal strain εmax [%]

R
es

id
u

al
St

ra
in
ε

re
s

[%
]

data
fit: 0.14εmax

Figure 2.23: Linear approximation of permanent strain set

A more pragmatic solution is needed to facilitate the inclusion of the permanent strain set in
rubber modeling. With this in mind, the data from the uniaxial experiment described in [64] and
depicted in Figure 2.20 on the left is used to fit a straight line which represents the residual strain
that remains after a certain maximum reached stretch. This linear fit and the data it is based upon is
depicted in Figure 2.23. The choice for the uniaxial experiment instead of the equi-biaxial experiment
is made because the uniaxial experiment is similar to the process of weatherstrip assembly. The
resulting fit is described by the following function:

εres = 0.14εmax (2.29)

where εres is the residual strain, remaining after unloading and εmax is the maximum reached nominal
strain during loading. A constraint of the fit is that the function starts in the origin, since a residual
strain cannot be nonzero when the specimen has not been loaded yet.

Elasto-Plastic Model

In [45] it is suggested to model the amplitude dependent behavior with Coulomb friction elements.
Together with spring elements, a setup similar to the generalized Maxwell model would result in an
elasto-plastic model, see Figure 2.24. Here the Coulomb friction coefficients are given by µ. This
model can also be used to describe hardening behavior [45, 50], but it is not used for modeling the
Mullins effect.
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Figure 2.24: Generalized elasto-plastic model

2.2.7 Choice of Material Models

In this chapter some important effects in rubber material are mentioned and models to simulate
these effects are given. In Chapter 3 simulations are performed to investigate the influence of the
effects mentioned in this chapter. Not all effects and models are useful for modeling the process of
weatherstrip assembly. In this section, choices are made with regard to which effects will have to be
modeled and which models will be used for the weatherstrip assembly process, for each of the three
main categories of material behavior (nonlinear elasticity, visco-elasticity and inelastic behavior).

Nonlinear Elastic Model

From the figures in Section 2.2.2 it is clear that it is necessary to include nonlinear behavior in
simulations of the weatherstripping process.

The James-Green-Simpson model [2, 63], the Arruda-Boyce model [22] and the Ogden model [18,
64] have been used to model EPDM weatherstrips. The Arruda-Boyce model is used in [22] to model
the compression of an EPDM weatherstrip seal, a Prony series approach is used to model relaxation
behavior. The Ogden model is used in [18] together with the Ogden-Roxburgh model to also include
the Mullins effect. The experiments (uniaxial tension) used in [18] to determine material parameters
are more in line with the weatherstrip assembly process studied in this project, than the compression
test used in [22].

Therefore the Ogden model together with the Ogden-Roxburgh model with accompanying material
parameters from [18] is chosen to be used in this study to model the nonlinear elastic behavior and
the Mullins effect.

Viscoelastic Model

The Prony series approach has the ability to model all viscoelastic effects mentioned in Section 2.2.3,
and is also included in the ANSYS finite element program. In [22] the Prony series approach is
used to model relaxation of an EPDM weatherstrip. The material parameters from the study can
be used to model relaxation in the weatherstrip assembly process. It is not possible to combine
these parameters with the Ogden model for nonlinear elasticity because they originate from a totally
different experiment (uniaxial tension of a solid specimen [18] versus radial compression of a hollow
tube [22]). The data is however usable for investigating the effects of relaxation on the weatherstrip
assembly process.

The Prony series approach is chosen to model viscoelastic behavior in Chapter 3.
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Inelastic Behavior Model

In Section 2.2.5 it is argued that the Mullins effect is important to consider in this study, while the
Payne effect may be disregarded. The Mullins effect can be partly modeled with the Ogden-Roxburgh
model and data from [18]. This is convenient since this model is also included in the nonlinear elastic
model. The remaining effect of permanent strain set can be modeled with the linear approximation
from Equation (2.29).

For the inelastic behavior, the Ogden-Roxburgh model is chosen to model the Mullins effect
together with the linear approximation from Equation (2.29).

2.3 Conclusions

In this chapter an investigation on robotic assembly is performed, it is concluded that robotized
sealing of automotive weatherstrips is not widely being used or reported in literature.

Furthermore the mechanical behavior of rubber materials is investigated and several effects
specific to rubber have been identified. Different models to describe these effects have been proposed
and a selection of which models to use is made; the nonlinear elastic behavior will be modeled with
the Ogden and the Ogden-Roxburgh model, the viscoelastic behavior will be modeled with the Prony
series approach and the inelastic behavior will be modeled with the Ogden-Roxburgh model together
with a linear approximation.
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Chapter 3

Rubber Modeling and Simulations

In this chapter, several simulations of rubber behavior are performed. The goal of these simulations
is to find out how different material models and material data influence the behavior of the simulated
experiments. Since there are a lot of different models reported in literature, it is reasonable to believe
that the choice for a certain model has a big influence on the simulation results.

3.1 Nonlinear Elasticity

3.1.1 Comparison of Nonlinear Models for a Uniaxial Tension Test

First a uniaxial tensile test is simulated using material models and material data found in literature. In
[22], five different material models with accompanying sets of material parameters are reported, and
are used to model the compression of weatherstrip seal made from sponge EDPM rubber. Three of
these models are used to simulate a uniaxial tension test, the results are depicted in Figure 3.1. While
the material parameters for the three models are fitted trough the same data in [22], they produce
quite different results. The nominal stress at maximum stretch is more than 2 times higher for the
Ogden model than for the Mooney-Rivlin model. This shows that the choice of the used model may
have a significant influence on the simulation results. In this specific case it becomes clear that these
models and parameters are not suitable to simulate stretch ratios above 1.5, they deviate too much
from each other to be reliable. The used material parameters and ANSYS APDL input listing can be
found in Appendix A.

Figure 3.2 shows the results of the same simulation, but with different material models. In this
case, dense EPDM rubber models and data are used from different sources. The first model used is a
3-term Ogden model fitted trough data from a uniaxial tension experiment in [18]. The second model
is a James-Green-Simpson model, used in [63]. The model parameters are determined by nonlinear
least-squares fitting of uniaxial and pure shear experimental data from Ford. The third model is also a
3-term Ogden model, reported in [64]. It is not clear if this data is a result of a uniaxial tension test or
an equi-biaxial tension test. The used material parameters and ANSYS APDL input listing can be
found in Appendix A.

From Figure 3.2 it can be concluded that in the case of material data and material models from
different sources, the difference in results is even bigger than in the case shown in Figure 3.1. This
leads to the conclusion that it is not wise to take material models and material data at face value;
it has to be assured that the material model and parameters are based on experimental data from
experiments similar to the problem at hand [28]. Because of this realization a project is started to
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Figure 3.1: Sponge rubber models, data from [22, Dikmen]
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Figure 3.2: Dense rubber models, data from [18, Cheng], [63, Wagner] and [64, Wang]
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experimentally investigate the material properties of weatherstrips used in the automotive industry
[59].

3.1.2 Linearizing at Small Stretch Ratio

For the process of weatherstrip assembly, it is not expected to encounter large stretch ratios over the
entire weatherstrip. A uniaxial simulation should therefore consider small stretch ratios. Moreover, for
small stretch ratios it may be possible to approximate the nonlinear behavior with a linear relationship
between stretch and stress. Figure 3.3 depicts a simulation of a uniaxial tension test with the same
material models and parameters as in Figure 3.2, but now for a small stretch ratio. The marked solid
lines represent linear approximations to the results of the nonlinear simulations. From this figure
it is clear that the Wagner model and the Wang model have an almost perfect linear representation
in this region. The linear fit for the Cheng model deviates somewhat from the nonlinear results,
but has still good agreement. This motivates the idea to use a linear material model to model the
rubber behavior at small stretches. A complicating factor is that this simulation is a simple uniaxial
tension test, while in the real application more complicated deformations will be encountered. The
stretch-stress behavior could still be highly nonlinear in that case.
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Figure 3.3: Linear fit results for a small stretch ratio, data from [18, Cheng], [63, Wagner] and [64, Wang]

3.1.3 Including Compression

Hyperelastic materials may behave stiffer in compression than in tension, and the process of weath-
erstrip assembly may include pressing the weatherstrip to a surface. This means it is important to
investigate the compresison behavior. The models used in the experiment depicted in Figure 3.3 are
not calibrated for compression, only for tension, so their validity in the compression region is not
guaranteed. Figure 3.4 depicts the results from a simulated compression and tension experiment.
Tension is included to show the difference between tension and compression. The figure shows that
all models tend to get stiffer for higher compression compared to the linear approximation of the
tension experiment. The Ogden model from the paper of Cheng [18] deviates the most from its linear
(tension) approximation. This indicates that care has to be taken when a linear approximation is used
and compression is involved.
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Figure 3.4: Uniaxial compression and tension, with fit results from uniaxial tension, data from [18, Cheng], [63,
Wagner] and [64, Wang]

3.1.4 Mullins Effect

To investigate if the Mullins effect is significant in the process of weatherstrip assembly, some
experiments are simulated. The first experiment is a recreation of an experiment detailed in [18].
Here the authors measured the nominal stress in a specimen that was uniaxially loaded and unloaded
in tension with four different stretch ratios. The experimental data and the simulation result are
depicted in Figure 3.5, the ANSYS APDL listing and material parameters can be found in Appendix
A.2. This figure shows that there is good agreement between experimental and simulation results. It
also shows that this model does not take into account the permanent strain set.
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Figure 3.5: Modeling the mullins effect, data from [18]

A simulation of the Mullins effect for a small stretch ratio is conducted and the results are depicted
in Figure 3.6. A simulation with a stretch ratio of 1.1 did not show any hysteresis, so a larger stretch
ratio was chosen to show the effect (albeit small). This figure shows that the Mullins effect is negligible
for small stretch ratios according to this model and material parameters. Therefor it is also concluded
that the permanent strain set, as part of the Mullins effect, is expected to be negligible. It has to be
noted that the model parameters are fitted to large stretch experimental data, so it may misrepresent
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the behavior for small stretch ratios. The linear approximation to the uniaxial tension experiment is
also shown in this figure and it shows good agreement to the simulation data for stretch ratios below
1.1.
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Figure 3.6: Modeling the mullins effect for a small stretch ratio

3.2 Viscoelasticity

3.2.1 Stretch Rate

An experiment to investigate the influence of loading rate effects is carried out in [18], as shown in
Figure 2.14. That figure indicates that the loading rate may have a big influence on the behavior of
the specimen, especially at high stretch ratios. For low stretch ratios, the curves seem to overlap each
other. The material data provided by [18] is used to simulate a uniaxial tension test with different
loading rates at low stretch ratios. The different loading rates are simulated by means of different
material parameters. As a consequence, the models are still just nonlinear-elastic, they do not inhibit
relaxation or creep behavior. The low loading rate simulation uses the same 3-term Ogden model and
data as seen in Figures 3.2, 3.3, 3.4, 3.5 and 3.6. The high loading rate simulation also uses a 3-term
Ogden model, of which the material parameters are given in Appendix A.3. The ANSYS APDL input
listing can also be found in Appendix A.3.

Figure 3.7 shows the result of the simulations for small stretch ratios. The figure indicates that for
low stretch ratios, the low and high loading rates produce quite similar results. Considering that the
low loading rate is impractically low whereas the high loading rate is unfeasibly high, a more realistic
value (in the case of weatherstrip assembly) would end up between the two extremes. A feasible
loading rate for the weatherstrip assembly process is estimated to be 0.1 s=1 to 1 s=1.

3.2.2 Relaxation

A second simulation is performed, this time with viscoelastic material parameters extracted from [45].
In that paper the authors perform experiments on various types of rubber and determine, among
others, the dynamic modulus and damping for each material. The material parameters for EPDM
rubber are extracted from this paper (see Appendix B) and used to simulate a relaxation experiment.
In Figure 3.8 the results of these simulations are shown. The left side of this figure shows stress
versus stretch ratio curves, the right side shows stress versus time curves. The model used (linear
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Figure 3.7: Uniaxial tension simulation with different stretch rates

Prony model) is a normal linear elastic material model combined with a three term Prony series for the
viscoelastic behavior. The first simulation is a step input in stretch ratio, to a stretch ratio of 1.1. The
next three simulations are ramped inputs with different loading rates, but all to the same stretch ratio
of 1.1. Interesting to note is the relatively high peak stress for the step input and the relatively low
steady state stress. The difference between these two values is the effect of relaxation and is in this
case very large. For lower, and more realistic, loading rates the stress peak is lower and the difference
between peak and steady state value is smaller. Also, the stress in this simulation is a magnitude
higher than the stress in similar experiments with a hyperelastic model such as the ones depicted in
Figures 3.3 and 3.7. This means that while the material used in both [45] and [18] is the same, different
experimental measuring methods result in different material parameters. Consequently, it is hard to
use the linear Prony model to investigate the effects of relaxation and creep because it produces stress
values that are incompatible with the ones obtained with the Cheng model.
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Figure 3.8: Uniaxial tension simulation with a 3-term Prony series viscoelastic model and different loading cases
to a stretch ratio of 1.1
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Unfortunately there are no viscoelastic parameters for the Ogden model of Cheng [18] or viscoelas-
tic experimental data available. One method to overcome this lack of data is to use viscoelastic data
from another source and combine this with the Ogden model of Cheng to create a hyperelastic Prony
model. In Figure 3.9 the results of the same simulations as depicted in Figure 3.8 but with a combined
3-term Ogden and 3-term Prony series visco-hyperelastic model are shown. It has to be noted that the
hyperelastic Prony model is a combination of two different sources and, as such, it is not possible to
test the reliability of this model. The material parameters and the ANSYS code listing for this model
can be found in Appendix A.4. It can, however, be noticed that the hyperelastic Prony model gives
stress results comparable to results shown in Figure 3.7 for the step input, but has very low steady
state values. The nature of the Prony series, as shown in equations (2.18) and (2.22), results in the
fact that it scales the stiffness of a material model down over time, from the instantaneous response
parameters towards the equilibrium response parameters, see Figure 2.11. The 3-term Ogden model
from Cheng is measured with a very low loading rate (0.004 s=1), so the steady state results from a
visco-hyperelastic model should be similar to the results of the Cheng hyperelastic model. This is
not the case for the hyperelastic Prony model, because of the nature of the Prony series as explained
above.
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Figure 3.9: Uniaxial tension simulation with a combined 3-term Prony series and 3-term Ogden visco-hyperelastic
model and different loading cases to a stretch ratio of 1.1

While it is clear that the hyperelastic Prony model and resulting simulation results as shown in
Figure 3.9 are not compatible with the results shown in Figure 3.7, there are some things to learn
from this model. The hyperelastic Prony model predicts that the relaxation effect is severe when the
material is loaded with a high loading rate. For slow loading rates, the effect of relaxation seems
relatively small. Moreover, it could be argued that this effect (and consequently, also the effect of
creep) can be safely ignored in the process of weatherstrip assembly, where loading rates would be
between 0.1 s=1 and 1 s=1.
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3.3 Conclusions

Simulations with different material models from different sources show that it is possible to use a
linear approximation of the nonlinear hyperelastic behavior for small stretch ratios, which are to be
expected in weatherstrip assembly. It is also shown that for small stretch ratios, the Mullins effect
hardly manifests itself, so it can be neglected. Relaxation and creep behavior have been shown to have
a large effect on the maximum stress in the material, however, this is only the case for fast loading.
In the case of weatherstrip assembly where the loading rate is assumed to be small, the effects of
relaxation and creep seem to be small enough to neglect. The simulation results in this chapter
support the idea to model the weatherstrip behavior with a linear elastic model; in the next chapter a
comparison is made between the nonlinear finite element model and a linear elastic model.



Chapter 4

Finite Element Model Simulations of
Weatherstrip Assembly

In this chapter finite element model simulations of the weatherstrip application process are performed.
The goal is to develop a linear elastic model which can be used as a state-space model in Matlab. This
means that hyperelasticity, inelastic behavior, relaxation and creep cannot be taken into account or
have to be approximated in the final Matlab model. In Chapter 3 it has already been argued that the
behavior of EPDM rubber can be approximated by a linear elastic material model. Effects of relaxation,
creep and inelastic behavior are assumed to be of no concern in the weatherstrip assembly process.
However, as can be seen in Figure 3.4, while the linearized models perform satisfactory in tension,
they do not perform as well in compression. In this chapter a comparison between hyperelastic and
linear elastic material models in the weatherstrip assembly process is made.

4.1 Weatherstrip Model

The process of weatherstrip assembly in reality involves quite long weatherstrips. In FEM models
modeling long geometries requires al lot of elements which negatively impact solution times or
even prohibits a solution. As argued in Chapter 3, the behavior of the EPDM rubber used in the
weatherstrip can be approximated by a linear elastic behavior within a small stretch range. This means
that it is not necessary to model the entire strip, but it is sufficient to model only the part of the strip
between the dispenser and the application point.

The geometry of the rubber weatherstrip used in this study is shown in Figure 4.1, where the
values of the measurements are given as:

Lx = 4mm width of strip

L y = 4mm half height of strip

Lz = 20mm length of strip

r1 = 4mm radius of rounded top of strip

rw = 10mm radius of applicator wheel

Lw = 8mm position of applicator wheel in z-direction

The hyperelastic material model used is the 3-term Ogden model from the paper of Cheng [18],
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Figure 4.1: Geometry of rubber weatherstrip and applicator wheel

the Ogden model is given by equation (2.11):

W =
N
∑

i=1

µi

αi
(λαi

1 +λ
αi
2 +λ

αi
3 − 3)

where the parameters are given in Table 4.1.

Table 4.1: Material parameters for 3-term Ogden hyperelastic model

parameter values
parameter 1 2 3

µi 7.45 × 102
=2.39 × 102

=3.03 × 10=1

αi =6.73 × 10=2
=2.13 × 10=1

=7.27

The linear elastic model is a linearization of the hyperelastic material, as shown in Figure 3.3, with
a stiffness of 3.46 MPa.

In the simulations detailed in subsequent sections, the model geometry and parameters as given
above are used, unless explicitly specified otherwise. It is also assumed that friction between the
applicator wheel and the top of the weatherstrip and friction between the bottom of the weatherstrip
and the substrate are of no concern. Appendix C describes a simulation where a comparison is made
between a model with friction and an model without friction. From this simulation it is concluded
that the friction effect can be disregarded in simulating the weatherstrip application process.

The ANSYS ADPL code used to produce the simulations in this chapter can be found in Appendix
A.5.

4.2 Application Pressure

A finite element simulation is performed to investigate the desired application pressure on the
weatherstrip for good adhesion. Double sided tape is used to bond the weatherstrip to the substrate,
these tapes typically need an application pressure of 100 kPa [1] for a strong bond. An application
force of 10 N is applied to the top of the weatherstrip with an applicator wheel, to achieve the desired
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bonding pressure at the bottom of the strip. Two different simulations are carried out, one with the
hyperelastic material as described in Chapter 4.1, and one with a linear elastic material.
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Figure 4.2: Stress distribution on bottom of weatherstrip: hyperelastic and linear model on the left and the
difference between these two models on the right.

In Figure 4.2 the resulting stress in global y-direction at the bottom of the weatherstrip is shown
for the two different material models. In the right figure the difference between these two simulations
is depicted. From the left figure it is apparent that both models predict an area (between about 6 mm
to 10 mm in the length of the strip, directly under the center of the applicator wheel) where the
pressure is high enough to result in a strong bond. Both models give a comparable stress distribution,
with only small differences between the two models (with a maximum of 8 kPa on a total of above
120 kPa). It has to be noted that the linear model has a coarser mesh than the hyperelastic model
(element edge size of 2 mm for the linear model, versus 1 mm for the hyperelastic model), which
partly explains the difference between these models. Figure 4.2 indicates that a linearization of the
hyperelastic model gives adequate results, when only taking stress distribution into account. Since
it is shown in Section 3.1.3 that the linear elastic model has better agreement with the nonlinear
hyperelastic model in the tension regime than in the compression regime, there is reason to assume
that the linear elastic model will achieve better results in the simulation shown in Figure 4.2 when it
is fitted to compression test data.

Figure 4.3 depicts the displacement in the global x-direction (sideways) on the bottom of the
weatherstrip as a result from the application pressure. On the left the results for the hyperelastic
and linear model are shown and on the right the difference between these two models is shown.
The maximum displacement in these figures is 0.04 mm which is negligible for the process of
weatherstrip assembly, so the quantitative results of this simulation are of little concern for this
process. These simulation results can be used, however, as a reference for the further development of
the finite element model into a linear state-space model.
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Figure 4.3: Displacement in x-direction on bottom of weatherstrip: hyperelastic and linear model on the left and
the difference between these two models on the right.

4.3 Conclusion

A comparison is made between a nonlinear hyperelastic model of the weatherstrip and a linear elastic
model of the weatherstrip. This comparison shows that the linear model can adequately represent the
behavior of the weatherstrip for the expected load case, and can be used as a starting point for the
creation of a linear state-space model of the weatherstrip.



Chapter 5

Linear State-Space Model

In the previous chapter finite element simulations of the weatherstrip behavior are performed with the
hyperelastic and linear material models. In this chapter the linear finite element model is converted
into a linear state-space model. The reason behind this is that a linear state-space model is well suited
for control design and servo control simulations in a numerical software package, such as Matlab
[36]. Moreover a linear state-space system can be used as a basis for a state observer to estimate
deformations in the rubber and interaction forces that are not directly measurable on the physical
system. Furthermore, the linear state-space model is reduced in order with model order reduction
techniques to make it computationally more efficient.

The process of creating a linear state-space model from an ANSYS FEM model is automated in
Matlab, that is, dedicated tools are developed in this project to perform the tasks that are described
in this chapter. The objective behind this is to automatize the process of generating a usable model
for control design and servo simulations, since for each different weatherstrip (different geometry
and material properties) a new FEM model needs to be created which, in turn, is used to create a
state-space model.

5.1 Importing Linear FEM Model into Matlab

Starting from a finite element analysis, which is performed in Chapter 4, there are generally two
possible methods to create a linear state-space system from the finite element model [27, 32]: the nodal
form method and the modal form method. The modal form is widely used in engineering practice but
has some drawbacks. The next paragraphs explain each form and why one is chosen over the other
one. Both methods start with a modal analysis in the ANSYS software (see Appendix A.6).

5.1.1 Modal Analysis in ANSYS

An n-DOF (degree of freedom) general second order dynamical system can be written as:

Mq̈ + Bq̇ + Kq = f (5.1)

where M , B and K are the n× n mass, damping and stiffness matrices, respectively, q denotes the
n× 1 nodal displacement vector and f is an n× 1 force vector. For a static finite element simulation
as the one described in Chapter 4, the stiffness matrix K is readily available, the mass matrix M can
easily be created when the density of the material is known, while the damping matrix B is generally
not known. For most modal analysis with lightly damped systems the damping matrix is omitted since
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it has little influence on the modal behavior. For the transient behavior, servo control simulations for
instance, B is needed to model the damping behavior of the process. Consequently the damping is
not considered during modal analysis, but it has to be included when the state-space system is created
in Section 5.3.

The undamped system can be used to compute the unforced response ( f = 0), a so called modal
analysis. In ANSYS software a modal analysis is performed for undamped systems of the following
form [5]:

Mq̈ + Kq = 0 (5.2)

For free vibrations of the system (5.2), of the form:

q = φ i cos(ωi t) (5.3)

where φ i (n× 1) is the ith eigenvector corresponding to the ith eigenvalue ωi of the system described
by (5.2), the system (5.2) can be re-written as:

(−Ω2M + K)Φ= 0 (5.4)

where Ω is an n× n diagonal matrix containing the eigenvalues:

Ω=









ω1 0
ω2

. . .
0 ωn









(5.5)

and Φ is an n× n matrix with eigenvectors. This eigenvalue problem can be solved quite efficiently in
most finite element programs.

5.1.2 Nodal Form

The nodal form is a method to create a state-space system from the finite element model (5.2):

ẋ n = Fnx n +Gnu

y = Hnx n + Dnu
(5.6)

Where x n = [q q̇]T is the 2n× 1 state vector, An is the 2n× 2n system matrix, Bn is the 2n×m input
matrix for m inputs, Cn is the l × 2n output matrix for l outputs, Dn is the l ×m feedthrough matrix,
and are given by:

Fn =
�

0 I
−M−1 K 0

�

, Gn =
�

0
M−1

�

Hn =
�

I 0
�

, Dn =
�

0
�

(5.7)

In the nodal form, these matrices are directly related to the mass and stiffness matrices M and K of
the ANSYS model (equation (5.2)), and do not depend on the results of the modal analysis. Using
ANSYS it is, however, needed to create the modal analysis, to be able to extract the mass and stiffness
matrices M and K , respectively. In most cases the number of inputs and outputs are lower than the
number of DOFs which means that the matrices Bn, Cn and Dn and the vectors u and y are not their
full size.
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5.1.3 Modal Form

The modal form method uses the eigenvalues and eigenvectors from the eigenvalue problem (5.4)
and is written as:

ẋ m = Fmx m +Gmu

y = Hmx m + Dmu
(5.8)

The state vector in this case is x m = [η η̇]T, where η is an n× 1 modal coordinate vector which has
no clear physical interpretation. The system matrices in (5.8) use the results of the modal analysis
and are given as:

Fm =
�

0 I
−Ω2 0

�

Gm =
�

0
Φ−1

�

Hm =
�

Φ 0
�

, Dm =
�

0
�

(5.9)

5.1.4 Comparison of the Nodal and Modal Forms

Both Nodal and Modal forms have advantages and disadvantages. The conveniences of the nodal form
are that it uses the mass and stiffness matrices directly, and since it is written in nodal coordinates it
is straightforward to add extra mass or stiffness to certain nodes as desired. The disadvantage of the
nodal form is the need to export the entire mass and stiffness matrix from the finite element program
to Matlab. These matrices can get quite big for models with thousands of nodes.

The modal form has as advantage that the finite element program can be used for the eigenvalue
computation and model reduction by taking the lowest modes into account only. A disadvantage is that
the modal coordinates have no clear physical interpretation, so adding extra mass or stiffness becomes
challenging. This generally means that the modal form is less flexible from a user perspective than
the nodal form, and thus the nodal form is used in this project.

5.1.5 Imported Model in Matlab

The nodal form of the state-space model is used in Matlab by importing the stiffness matrix K and
mass matrix M of a weatherstrip sample. Given the node locations, it is possible to visualize the
model of the weatherstrip within Matlab, as shown in Figure 5.1. Here, the dots at the corners of the

Figure 5.1: Imported mesh in Matlab
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shaded elements are the nodes of the model. In the nodal form, the displacement and velocity of these
nodes are the state coordinates of the state-space system. In the process of weatherstrip assembly,
an applicator wheel will put pressure on the top of the strip, while the bottom is constrained by the
substrate on which the strip is attached. An illustration of this process can be seen in Figure 4.1. To be
able to interact in this way with the state-space model, the top and bottom nodes of the weatherstrip
model are used for motion and force interactions with the environment (applicator and substrate).

5.1.6 Comparison Between the Linear Matlab Model and the ANSYS model

The quality of the state-space model of the weatherstrip depends on its ability to mimic the behavior
of the linear finite element model as described in Chapter 4. In the procedure to import the model
of the weatherstrip into Matlab, some bookkeeping of nodes, node locations and interaction forces
is needed which can introduce errors. It is therefore useful to check the correctness of the stiffness
and mass matrix in Matlab. A first check is the comparison of eigenvalues resulting from a modal
analysis as described in Section 5.1.1, when performed in ANSYS and Matlab. The result of this check
is that the eigenvalues are similar within 3 significant digits, which implies that both the mass and
stiffness matrices are imported correctly.

Before the state-space model is created from the imported mass and stiffness matrices, the stiffness
matrix can be used to perform a linear static simulation similar to the one shown in Figure 4.2, where
the stress on the bottom of the weatherstrip resulting from applicator pressure is simulated. If the
linear static simulation can reproduce the FEM result shown in Figure 4.2, that would verify the
correctness of the stiffness matrix and increase confidence into the linear state-space model build
upon this matrix. In this case, not only bookkeeping errors could occur during import of the stiffness
matrix and application of external forces, but also a different algorithm to apply forces and compute
stresses could be used. To put it more explicitly, within ANSYS an algorithm is present to simulate
contact between objects (for instance, contact between the applicator wheel and the weatherstrip),
which is not available in Matlab. Therefore it is needed to approximate this behavior and, as such,
some errors can be introduced.

In the static situation, the nodal accelerations are zero and from model (5.2) the stiffness matrix K
can be used to compute the nodal displacements q :

Kq = f (5.10)

where f is a vector with externally applied nodal forces. In the finite element simulation, as described
in Chapter 4 and Appendix A.5, a cylindric wheel is pressed onto the top of the weatherstrip and
interaction forces between the wheel and nodes of the weatherstrip are calculated. These reaction
forces are exported to Matlab and used as external nodal forces f .

In Figures 5.2 and 5.3 comparisons are made between the results from the linear finite element
model and from the stiffness matrix model. Figure 5.2 depicts the stress at the bottom of the strip,
and Figure 5.3 depicts the sideways displacement of the weatherstrip.

From these figures it is clear that the stiffness matrix model shows good agreement with the linear
FEM model, which indicates that the stiffness matrix can be used to create a linear state-space model
of the weatherstrip.

5.2 Model Order Reduction with the Craig Bampton Method

In Section 5.1.2 it is shown that a linear state-space model can be created from the mass and stiffness
matrices M and K , respectively. In the case of a FEM model with n degrees of freedom, the state-space



5.2. MODEL ORDER REDUCTION WITH THE CRAIG BAMPTON METHOD 45

−4 −2 0 2 4
0

5

10

15

20

width x [mm]

le
n

gt
h

z
[m

m
]

y-stress

FEM
Matlab

−120

−100

−80

−60

−40

−20

y-
st

re
ss

[k
P

a]

−4 −2 0 2 4
0

5

10

15

20

width x [mm]

difference

−5

0

5

10

y-
st

re
ss

di
ff

er
en

ce
[k

P
a]

Figure 5.2: Stress distribution at the bottom of the weatherstrip: linear FEM and Matlab model on the left-hand
side and the difference between these two models on the right-hand side.
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Figure 5.3: Sideways displacement at the bottom of the weatherstrip: linear FEM and Matlab model on the
left-hand side and the difference between these two models on the right-hand side.
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model based on this FEM model has 2n states. It is computationally not advantageous to have a
state-space model with a large number of states, so reducing the order of the model is beneficial.

There are various methods to reduce a dynamical model, see [14] for an overview of possible
methods. The authors of [14] conclude that for a model that needs to adequately represent the
input-output behavior of a system, the balanced truncation method is preferred. However, this method
is limited to models of moderate size. The FEM model of the weatherstrip is of high dimension
(number of DOF ≈ 2000), and it may be necessary to use even bigger models in future investigations.
Therefore the balanced truncation method may be inadequate and a different method may be needed.

The mode displacement method described in [14] is well suited for large models, but it is focused on
the global dynamics of the model and not on the specific input-output behavior.

Taking these considerations into account, a two step method is chosen whereby the FEM model
is first reduced with the mode displacement method (specifically: Craig-Bampton) to a model of
moderate size, and as step two, it is reduced further with the balanced truncation method, taking into
account the input-output behavior of the model. Reference [32] provides an in depth explanation of
the Craig-Bampton reduction method. A short overview of this method is given below:

Consider a full system with n degrees of freedom:

Mq̈ + Bq̇ + Kq = f (5.11)

where M , B, K , q and f are defined as in (5.2). Damping matrix B can only be included for weakly
damped systems or for systems with proportional damping [32]. The vector q is partitioned into an
internal part q i and a boundary part qb. The interaction forces and boundary conditions have to act
on the boundary DOFs. This partitioning leads to the following system:

�

Mbb Mbi
M ib M ii

��

q̈b
q̈ i

�

+
�

Bbb Bbi
Bib Bii

��

q̇b
q̇ i

�

+
�

K bb K bi
K ib K ii

��

qb
q i

�

=
�

f b
f i

�

(5.12)

The internal part of this system is used to extract eigenvalues:
�−ω2M ii + K ii

�

φ = 0 (5.13)

From the ni solutions, only the first nk eigenvalues (ω1 ≤ω2 < . . .ωn) and eigenvectors are kept and
stored in the matrices Ωkk and Φik, respectively:

Ωkk =









ω1 0
ω2

. . .
0 ωn









(5.14)

Φik =
�

φ1, φ2, . . . φnk

�

(5.15)

The reduced mass matrix MCB, damping matrix BCB stiffness matrix KCB and force vector f CB now
become:

MCB =
�

MS
bb (Mbi − KT

ib K−1
ii M ii)Φik

sym. ΦT
ikM iiΦik

�

BCB =
�

BS
bb (Bbi − KT

ib K−1
ii Bii)Φik

sym. ΦT
ikBiiΦik

�

KCB =
�

KS
bb 0bk

sym. Ω2
kk

�

f CB =
�

f S
b

ΦT
ik f i

�

(5.16)
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where the matrices MS
bb, BS

bb, KS
bb and f S

b comprise the statically reduced parts and are given as
follows:

MS
bb = Mmm −Mbi K

−1
ii K ib − KT

ib K−1
ii M ib + KT

ib K−1
ii M ii K

−1
ii K ib

BS
bb = Bmm − Bbi K

−1
ii K ib − KT

ib K−1
ii Bib + KT

ib K−1
ii Bii K

−1
ii K ib

KS
bb = K bb − K bi K

−1
ii K ib

f S
b = f b − KT

ib K−1
ii f i

(5.17)

Next the reduced system can be formed:

MCB p̈ + BCB ṗ + KCBp = f CB (5.18)

where the vector p contains the set of reduced coordinates, and is related to the full set of coordinates
q via:

q =
�

Ibb 0bk
−K−1

ii K ib Φik

�

p = TCBp (5.19)

It is important to notice that when all external loads are applied to the boundary DOFs or equivalently,
when the boundary DOFs are chosen in such a way to include the DOFs that are loaded with external
forces, the reduced force vector becomes:

f CB =
�

f b
0

�

(5.20)

For the weatherstrip model as shown in Figure 5.1 the FEM model has approximately 2000 degrees
of freedom and this is reduced to 650 with a node displacement technique. The nodes on the top and
on the bottom of the strip are used as interface nodes in the Craig-Bampton reduction which means
that these nodes are present in the resulting reduced model (as explained in Section 5.1.5). All other
nodes are not taken into account in the reduced model, but their dynamical behavior is represented
by their modal contribution up to a selected frequency (2500 Hz in this case). The second reduction
step, the balanced truncation method, can only be performed when a state-space realization of the
system is available, which is the subject of Section 5.3.

5.2.1 Verification of the Craig-Bampton Reduced Model

The model reduced with the mode displacement method of Craig-Bampton should give similar results
as the full model in a static case [32], such as the case described in Section 4.2, where the applicator
wheel applies pressure on the top of the weatherstrip while the bottom of the strip is constrained. To
verify this, a simulation is performed similar to the simulation described in Section 5.1.6; in particular,
the results of the following simulation are presented:

KCBp = f CB (5.21)

In Figures 5.4 and 5.5 results of this simulation are shown. The resulting stress and displacement
at the bottom of the strip are almost exactly the same as the results with the full model, which confirms
that the Craig-Bampton reduction gives exact results for a static case. Moreover, a comparison between
the eigenvalues of the full model and the Craig-Bampton reduced model (see Appendix D) reveals
that the Craig-Bampton reduced model is within 1 % of the full model for all modes up to 1460 Hz,
and within 10 % for all modes up to 2400 Hz.
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Figure 5.4: Stress distribution at the bottom of the weatherstrip: full Matlab model and Craig-Bampton reduced
model on the left-hand side and the difference between these two models on the right-hand side.
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Figure 5.5: Sideways displacement at the bottom of the weatherstrip: full Matlab model and Craig-Bampton
reduced model on the left-hand side and the difference between these two models on the right-hand side.
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5.3 State-Space Model

The reduced system of (5.18) can be used to create a linear state-space system of the weatherstrip, as
described in Section 5.1.2, but now using the reduced stiffness, damping and mass matrices:

FCB =
�

0 I
−M−1

CB KCB −M−1
CBBCB

�

, GCB =
�

0
M−1

CB

�

HCB =
�

TCB 0
�

, DCB =
�

0
�

(5.22)

where TCB is the transformation matrix defined in (5.19). This results in the state-space system, using
the reduced coordinate vector x CB = [p ṗ ]T:

ẋ CB = FCBx CB +GCB f CB

yCB = HCBx CB + DCB f CB
(5.23)

The reduced damping matrix BCB which originates from the full damping matrix B has to be
included in the state-space system since that will be used for servo control simulations. The material
model that is used in Chapter 4 is based on measurement data from [18]. This data does not include
damping behavior, so a different source is used for the damping effects. In Chapter 3.2.2 and Appendix
B, data from [45] are used to simulate visco-elastic behavior. There a damping of d = 0.2 ≈ 2ξ is
found for a wide frequency range, this damping is implemented as proportional damping:

BCB = αMCB + βKCB (5.24)

with α= 60 and β = 3× 10−6.

5.3.1 Reduction with the Balanced Truncation Method

After the first step of reduction with the Craig-Bampton method in Section 5.2, the model is reduced
even further with the balanced truncation method. A short overview of the balanced truncation
method is given below, an in-depth review of this method can be found in [14].

Because the model of the weatherstrip is already reduced with the Craig-Bampton method, the
balanced truncation reduction starts with the Craig-Bampton reduced state-space system [35, 14]:

ẋ CB = FCBx CB +GCB f CB

yCB = HCBx CB + DCB f CB
(5.25)

This state-space system has a controllability Gramian W c and observability Gramian W o. The core
of the balanced truncation method is to compute a state transformation matrix TBR such that the
transformed controllability is equal to the transformed observability matrix:

W c,BR = TBRW cT
T
BR = W o,BR = TBRW oTT

BR (5.26)

These Gramians are diagonal and ordered such that the entries on the diagonal correspond to the
states that are increasingly difficult to observe and control. The state-space system can be transformed
without reduction into the so called balanced realization:

ẋ BR = FBRx BR+GBR f CB

y = HBRx BR+ DCB f CB
(5.27)
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with the following partitioning:

FBR = TBRFCBT−1
BR =

�

FBT F12
F21 F22

�

GBR = TBRGCB =
�

GBT
G2

�

HBR = HCBT−1
BR =

�

HBT H2

�

x BR = TBRx CB =
�

x BT
x 2

�

(5.28)

The reduced system can now be written as:

ẋ BT = FBTx BT +GBT f CB

yBT = HBTx BT + DCB f CB
(5.29)

Here only the states that contribute significantly to the input-output behavior of the system are
included, the other states are truncated. This has as consequence that the static gain of high frequency
modes is not present in the behavior of the reduced system. Simulations with the above model can
significantly deviate from the linear FEM model of Section 5.1.6. To overcome this issue, the so called
matched dc reduction method is used [27]. This method is an extension to the balanced truncation
method and uses the balanced realization of a system (5.27):

ẋ DC = FDCx DC +GDC f CB

yDC = HDCx DC + DDC f CB
(5.30)

where the system matrices are given as:

FDC =
�

FBT − F12F−1
22 F21

�

GDC =
�

GBT − F12F−1
22 G2

�

HDC =
�

HBT −H2F−1
22 F21

�

DDC =
�

DCB −H2F−1
22 G2

�

(5.31)

Here, the static contribution of the truncated modes is included in the system matrices of the reduced
system. Interesting to notice is that while the D matrices are empty (equal to zero) for the full system,
the Craig-Bampton reduced system and the balanced truncated system, the matched dc reduced
system has a nonzero D matrix.

The weatherstrip state-space model is reduced with this method in Matlab (balreal and modred
in Matlab) to a state-space model with 250 states. The nodes on the top of the weatherstrip are used as
the inputs and outputs for the balanced truncation method, while the bottom nodes are only used as
the outputs.

5.3.2 Verification of the Balanced Truncation Reduced Model

A simulation with the balanced truncation (matched dc) reduced model is performed, which is
comparable to the simulation described in Section 5.1.6; in particular an applicator wheel applies
pressure at the top of the weatherstrip while the bottom of the strip is constrained. In mathematical
terms, the system of (5.30) is simulated until the transient behavior dies out:

0= FDCx DC +GDC f CB

yDC = HDCx DC + DDC f CB
(5.32)
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The results are shown in Figures 5.6 and 5.7. These figures show that the balanced truncated
model shows good agreement with the full model for both the stress and the sideways displacement
at the bottom of the weatherstrip. Moreover, the natural frequencies of this reduced model have
perfect agreement with the Craig-Bampton reduced model (see Appendix D) and good agreement
with the full model up to 2400 Hz. It can be concluded that the state-space model first reduced with
the Craig-Bampton method and then further reduced with the balanced truncation method gives
statically satisfactory results and can be used for servo control simulations.
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Figure 5.6: Stress distribution at the bottom of the weatherstrip: full Matlab model and balanced truncation
reduced model on the left-hand side and the difference between these two models on the right-hand side.

5.4 Input and Output Mapping for Robot Interaction

The full weatherstrip model in Matlab (5.10) has all degrees of freedom available for interaction. The
reduced models (both Craig-Bampton and balanced truncation) only have their boundary nodes as
defined by (5.12) available for interaction. The boundary nodes chosen in this case are the nodes at the
bottom and the nodes at the top of the strip (see Figure 5.1). The nodes at the top will interact with the
end-effector of the robot in the servo simulations. The end-effector, however, has only six degrees of
freedom (x , y, z, Rx , R y , Rz) available to interact with the weatherstrip. As defined in Figure 5.1 two
main directions of interaction between the end-effector and the weatherstrip are y and z. Along the y
direction (height of the strip), the desired contact force between the weatherstrip and the substrate
has to be achieved. Hence, the robot end-effector has to supply force Fy to the applicator which
is in contact to the weatherstrip, such as to achieve the desired contact force. Since the applicator
needs to ensure the desired contact along the complete length of the strip, the end-effector has to
control motion of the applicator in the z direction. To be able to model interaction between the
end-effector and the weatherstrip in a realistic way, a mapping needs to be created between the force
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Figure 5.7: Sideways displacement at the bottom of the weatherstrip: full Matlab model and balanced truncation
reduced model on the left-hand side and the difference between these two models on the right-hand side.

Fy and z-motion of the end effector, on one hand, and the 100+ degrees of freedom at the top of the
weatherstrip, on another.

Within the ANSYS FEM software, sophisticated algorithms are present to model contact between
the bodies. These capabilities are used for the FEM simulations described in Chapter 4, where an
applicator wheel is pressed onto the top of the weatherstrip. ANSYS computes the area of contact
between the wheel and the strip and also computes the contact forces acting on the nodes of the strip.
These forces represent the force that the applicator wheel exerts on each node of the weatherstrip
model for a certain (Fy , z) configuration of the end-effector.

In Matlab, a two-dimensional Gauss curve is used to map the force Fy of the end-effector to forces
acting on the top nodes of the weatherstrip. It is fitted trough the ANSYS reaction forces as follows:

Fe(x , z, za) = d e−ax2−2bx(z−za)−c(z−za)2 (5.33)

where x is the location of a node in x direction, z is the location of a node in z direction, za is the
location of the applicator wheel in z direction and a, b, c, d are the constants used to shape the curve:

a = 0.424

b = 2.403× 10−6

c = 0.123

d = 2.604

(5.34)

These constants are determined by fitting the function (5.33) to the reaction forces calculated in
ANSYS. The resulting contact force for za = 8 is shown in Figure 5.8. The forces in this contour plot
sum to a total of 10 N, which is equal to the force on the applicator wheel as described in Section 4.2.
This force distribution can be linearly scaled to enable small deviations from the mean.
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Figure 5.8: Contact force at the top of the strip due to applicator pressure.

When the force is applied onto the weatherstrip with the distribution shown in Figure 5.8, the
resulting stress in the y-direction and displacement in the x -direction at the bottom of the weatherstrip
are shown in Figures 5.9 and 5.10, respectively. From these figures it is clear that the results are still
within a few percent difference compared with the full linear Matlab model. It can thus be concluded
that the linear balanced truncated reduced model together with the input force mapping shown in
Figure 5.8 can be used to represent the weatherstrip and applicator wheel in servo simulations.

5.5 Conclusion

In this chapter a linear state-space model of the weatherstrip is created, this linear state-space model
shows good agreement with the finite element model. Two model order reduction techniques are
used to reduce the number of states in the state-space model while keeping good agreement with
the original full model. An input and output mapping for force interaction is made to facilitate the
interaction between the applicator wheel and the weatherstrip in the next chapter.
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Figure 5.9: Stress distribution at the bottom of the weatherstrip: full Matlab model and balanced truncation
reduced model with input force mapping on the left-hand side and the difference between these two models on
the right-hand side.
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Figure 5.10: Displacement in x-direction at the bottom of the weatherstrip: full Matlab model and balanced
truncation reduced model with input force mapping on the left-hand side and the difference between these two
models on the right-hand side.



Chapter 6

Control Design for Automated Sealing

In the previous chapters, it is shown that to apply the weatherstrip correctly it is necessary to apply
the right amount of force onto the strip. The state-space model developed in Chapter 5 can be used to
investigate the stress and deformation at the bottom of the weatherstrip under a force distribution
applied on the top of the strip. In this chapter a controller is designed for the applicator wheel to
regulate the sealing force and motion for this device. In general, this controller has to regulate six
degrees of freedom, since the surface to mount the strip onto can be a three dimensional surface.
Regarding the six degrees of freedom, the force is controlled in the directions that are perpendicular
with respect to the mounting surface, while motion control takes place in the remaining directions. In
this project control design is performed in world space, that is, in Cartesian and angular coordinates.
Orthogonality of these coordinates allows for design of motion and force controllers for each DOF
independently. In this chapter, force control design is considered for one degree of freedom only. This
force controller will be incorporated into the motion/force controller for a robot with six degrees of
freedom in Chapter 7.

6.1 Hybrid Impedance Control

There exist a lot of different force control implementations in literature, an overview of some of these
algorithms can be found in [11]. There it is argued that impedance force control is suited for situations
where a motion trajectory needs to be followed before contact with the environment is made and
force control starts. Moreover, a hybrid impedance force control algorithm [54, 62] gives the designer the
opportunity to explicitly split the control design into a separate force and motion part. Hence, the
hybrid impedance force controller seems suitable to use in the process of weatherstrip application.

The behavior of the weatherstrip is assumed to be dominated by capacitive effects, that is, by its
stiffness. For the case of force control, the applicator wheel can be considered as a point mass mw
which moves in one degree of freedom, denoted by xw. The applicator wheel is in contact with the top
of the weatherstrip, whose position is denoted with xs and which has a stiffness of ks. This leads to
the following system:

mw ẍw + ks xs = u (6.1)

where, due to contact, xw = xs. The force Fe = ks xs is the contact force between the wheel and the top
of the strip, it is assumed that this force can be measured. The control force acting on the applicator
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is denoted by u. When the control force is chosen as:

u= mwax + af

ax =
1

md
(Fr − Fe)−

1
md

bd ẋw

where

af = Fe

(6.2)

with md and bd representing the desired mass and damping of the resulting system respectively, and
Fr the reference force, the resulting system can be written as:

mw ẍw + Fe =
mw

md
(Fr − Fe)−

mw

md
bd ẋw + Fe

md ẍw + bd ẋw = Fr − Fe

(6.3)

This controller has the effect that when the system is at equilibrium ( ẍw = 0 and ẋw = 0), the contact
force between the wheel and the top of the strip becomes equal to the reference force. On top of
that, the controlled system behaves like a second order system with the desired mass and damping
properties:

md ẍw + bd ẋw + ks xw = Fr (6.4)

since the external force is given by Fe = ks xw. This means that it is possible to set the desired behavior
in terms of natural frequency and damping, and achieve the desired contact force.

6.2 Performance of 1 DOF System

In this section it is explained how to tune the gains of the hybrid impedance control law (6.4). For
that purpose the block-diagram in Figure 6.1 is considered, where the block labeled P(s) describes
the applicator wheel and weatherstrip. The plant dynamics P(s) in Laplace domain is determined by
linearization of the weatherstrip model, including force interaction mapping, in Simulink.

1
md

mw P(s)

−bd

Fr e ax u
ẋw

Fe
−

Figure 6.1: Block-diagram of the controlled 1DOF system. The controlled process is located in P(s).

In Figure 6.2 Bode plots are shown for the plant, for the plant with velocity feedback and for the
open-loop gain. The open-loop gain in this case is the open loop from e to Fe in Figure 6.1. This
figure shows that the open-loop crossover frequency occurs at 25 Hz with a phase margin of 90°. This
relatively low crossover frequency is chosen to have enough robustness against parameter variations
and effects of nonlinear behavior of the six degrees of freedom robot.

Bode plots of the sensitivity and complementary sensitivity functions, defined as S = e
Fr

and

T = Fe
Fr

, respectively, are shown in Figure 6.3. By inspection of this figure, it can be noticed that
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the resulting controller enables tracking of the desired application force Fr up to 30 Hz, and a good
disturbance rejection up to 20 Hz. Also, the peak in the sensitivity plot S is well below 6 dB, which
indicates robustness to parameter variations and model inaccuracies.
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Figure 6.2: Bode diagram of the plant, plant with velocity feedback and the open loop gain, that is the plant with
velocity feedback and the gain for force control included

6.3 Implementation

To enable servo simulations of the system consisting of the applicator wheel and weatherstrip a
Simulink model is created. The weatherstrip is modeled with the balanced truncated state-space
system method described in Chapter 5. In this case the weatherstrip is not modeled as a completely
straight strip, since that would not pose a challenge for the control system. To make the control
problem more challenging the weatherstrip is modeled with a small bulge in the middle of the strip,
representing an unknown deformation of the substrate. In Figure 6.4 the displacements are shown of
the bottom and top nodes of the lengthwise cross section (the z− y plane at x = 0) of the weatherstrip
due to the deformation of the substrate. These deformations are given as a function of the strip length.
In Figure 6.5 the state-space model of the weatherstrip with bulge is shown. The node displacement
due to the substrate deformation is bigger at the bottom of the strip compared with the top of the strip.
This poses a challenge for the force controlled robot, since it now has to cope with a surface that is not
flat, and therefore, it has to change the height of the applicator wheel in order to maintain the desired
application force.

6.4 1 DOF Servo Simulation

A servo simulation of the one-degree of freedom system is performed that incorporates the moving
mass (applicator wheel), the weatherstrip state-space model, the interaction forces, and the motion/-
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Figure 6.5: Weatherstrip state-space model with bulge

force controller. The reference motion and force profiles for this simulation are shown in Figure 6.6;
here the total reference motion of the applicator in the z−direction (lengthwise) of the weatherstrip is
depicted in the topmost figure. The starting position is at 2 mm and the final position is at 38 mm.
The second figure depicts the reference cosine velocity profile and the third figure depicts the reference
acceleration profile. The bottom figure shows the reference force profile for the desired application
force.

The desired force of =10 N is the same as the application force used in the FEM simulations in
Chapter 4, and the Matlab simulations in Chapter 5.

The achieved contact force at the bottom of the weatherstrip in this simulation is shown in Figure
6.7. Here, the setpoint force is depicted in blue and the realized contact force is shown in red. It can
be seen that the maximum force error does not exceed 0.45 N, despite the presence of the bulge in
the weatherstrip. The control law of (7.7) does not include integral action, which explains why the
force error does not asymptotically converge to zero.

6.5 Conclusion

A force controller is designed for the 1-dimensional system including the linear state-space model
of the weatherstrip and the applicator wheel. This force controller has good robustness margins
and is able to track signals up to 20 Hz and to attenuate disturbances up to 30 Hz. A time domain
simulation with a challenging weatherstrip profile shows that the controller can achieve the desired
contact force within reasonable error bounds.
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Figure 6.7: Force setpoint and realized contact force on the bottom of the weatherstrip with respect to the
z-position of the applicator wheel.
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Chapter 7

Control Design and Simulation of
Robotized Sealing Process

7.1 Robot Kinematics

To investigate feasibility of the robotized sealing process, the ABB IRB 2400 robot is chosen. A
visualization of this robot can be found in Appendix E. This six degrees of freedom robot is typically
used in automotive applications and has appropriate dimensions, speed and reach to perform the
process of weatherstrip assembly. The dimensions of this robot are retrieved from the CAD files
supplied by ABB [3]. The Denavit-Hartenberg parameters for this robot are given in Table 7.1. These
parameters are used, together with the inertial parameters given in the next section, to create a
SimMechanics model of the robot.

Table 7.1: DH parameters for ABB IRB 2400 robot

Link θ d a α

1 θ1 0.615 0.1 − 1
2π

2 θ2 0 0.705 0
3 θ3 0 0.135 − 1

2π

4 θ4 0.755 0 1
2π

5 θ5 0 0 − 1
2π

6 θ6 0.085 0 0

7.2 Robot Dynamics

The mass and inertial parameters of the ABB IRB 2400 robot are computed from the CAD data [3] of
the robot, and can be found in Appendix E. These inertial parameters are used in the model of the
robot and also in the inverse dynamics control law which is described in section 7.3.1

The dynamics of the 6DOF robot can be written as follows [54, 62]:

M(q)q̈ +C(q , q̇ )q̇ + g (q) + J T (q)F e = τ (7.1)

where M is the 6× 6 inertia matrix, Cq̇ is the 6-dimensional vector of Coriolis and centripetal effects,
g is the 6× 1 vector of gravity effects, J T F e is the 6× 1 vector containing joint torques resulting from
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external forces and moments represented by the 6 vector F e. J is the 6× 6 Jacobian matrix of the
robot and τ is the 6× 1 vector of joint torques.

The vector F e describes the force that the robot applies to the applicator wheel; it is assumed that
F e can be measured. This force has also to be regulated during application of the weatherstrip to the
substrate.

7.3 Task Space Inverse Dynamics Control Law

To achieve the desired interaction force F e in the task space of the robot, the joint torques τ have to be
controlled. The control law for τ is developed in three steps; first an inverse dynamics controller is
designed in the joint space, then a conversion to the task space is performed, and finally an impedance
force controller is designed to regulate the interaction force.

7.3.1 Inverse Dynamics Controller

The inverse dynamics controller is designed to compensate for the nonlinearities in the robot dynamics
(7.1) such as to achive a so-called double integrator system. This is done by the following control law in
the space of joint torques:

τ = M(q)aq +C(q , q̇ )q̇ + g (q) + J T (q)F e (7.2)

Application of (7.2) to (7.1) leads to the system:

q̈ = aq (7.3)

where aq is the vector of control laws for the accelerations in the robot joints.
Joint accelerations are determined based on the reference motion of the applicator manipulated

by the robot arm together with the desired forces of interaction between the applicator and the
weatherstrip. This can be achieved by using the Jacobian J , which relates the task space velocities ẋ
to the joint velocities q̇ :

ẋ = J (q)q̇ (7.4)

From (7.4) the following relation is determined between task space accelerations and accelerations in
the robot joints:

ẍ = J (q)q̈ + J̇ (q)q̇ (7.5)

This relation can be used to compute the control in the joint space signals aq based on the correspond-
ing control signals for the task space accelerations ax:

aq = J−1(q)
�

ax − J̇ (q)q̇
	

(7.6)

7.3.2 Task Space Control Laws

In the task space the control law concerns elements of vector ax = [ax ay az aRx
aRy

aRz
]T . This vector

contains decoupled control laws for six degrees of freedom of the applicator manipulated by the robot
arm. In Section 5.4 and Chapter 6, it is argued that the motion of applicator handled by the robot
end-effector needs to be controlled in the x , z, Rx , R y , Rz directions, while the y-direction is force
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controlled. In the y-direction the hybrid impedance force control algorithm described in Chapter 6 is
used:

ay =
mw

md
(Fr − Fe)−

mw

md
bd ẏw (7.7)

where ay is the second element of ax, mw is the mass of the applicator wheel attached to the robot,
md and bd are the desired mass and damping of the resulting system respectively, Fr is the reference
application force, Fe is the measured interaction force and ẏw is the velocity of the applicator wheel in
the Cartesian y-direction.

The five end-effector motions can be controlled with standard PD feedback controllers using the
reference accelerations as the feedforward signals:

ac = kp(cref − c) + kd(ċref − ċ) (7.8)

for coordinates c = x , z, Rx , R y , Rz .

7.4 6DOF Servo Simulation

The robot described in Section 7.1 is implemented in SimMechanics and combined with the reduced
state-space weatherstrip model, force mapping and control laws, to enable servo simulations. A block
diagram of the simulated model is shown in Figure 7.1, where F ref, X ref and Ẋ ref are the reference
force and position signals respectively. The block labeled controller represents the implementation of
the control laws (7.7) and (7.8). The block labeled taskspace to jointspace represents the implementation
of (7.6), the block labeled inverse dynamics is the implementation of (7.2). The block labeled plant is
the implementation of the six degrees of freedom robot, the applicator wheel, the force interaction
mapping and the linear state-space model of the weatherstrip. The joint coordinates q and velocities
q̇ are fed back to the forward kinematics block to be used to compute the world space coordinates
and velocities denoted by X and Ẋ , respectively. The force F e,q is the interaction force measured in
end-effector coordinates, and is transformed into the force F e, which is defined in world coordinates.

Controller
taskspace to
jointspace

inverse
dynamics

plant

forward
kinematics

F ref, X ref, Ẋ ref ax aq
τ

q , q̇

F e,q

X , Ẋ , F e

Figure 7.1: Block diagram of the implementation of the servo simulation setup containing the control laws for
force and motion. The six degrees of freedom robot and the weatherstrip are represented by the plant block.

The weatherstrip has the same bulge as described in Section 6.3 and the reference motion and
force profiles for the applicator are the same as the ones described in Section 6.4. A servo simulation
of the robot system with force mapping and state-space weatherstrip model is performed, and the
resulting contact force can be seen in Figure 7.2. It can be seen that the achieved contact force is
similar to that of the one-dimensional case shown in Figure 6.7. The maximum force error does not
exceed 0.45 N, but due to the absence of integral action in the controller, the force error does not
asymptotically go to zero.
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Figure 7.2: Force setpoint and realized contact force on the bottom of the weatherstrip with respect to the
z-position of the applicator wheel.
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In Figure 7.3 three snapshots are shown of displacements of the middle nodes at the top of the
weatherstrip and of the contact forces at the bottom of the weatherstrip. These nodes are located in
the the z − y plane at x = 0. The nominal locations of the nodes are displayed the dashed line, which
correspond to the situation when no force is applied to the weatherstrip. Under the application force,
the nodes get displaced, which is displayed by the blue circles. It can be seen that while the applicator
wheel moves over the weatherstrip, the nodes get pressed down and the contact force at the bottom of
the weatherstrip increases.
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Figure 7.4: Stress distribution at the bottom of the weatherstrip: full Matlab model and servo simulated results
on the left hand side and the difference between these two simulations on the right hand side.

The stress in the y-direction at the bottom of the strip is shown in Figure 7.4 for the case when
the applicator wheel is located at z = 8 mm, this is the same situation as shown in Figure 5.2 and in
the subsequent figures showing the stress on the bottom of the weatherstrip. It can be seen that the
stress distribution in the servo simulation including a six degrees of freedom robot, force interaction
mapping and a reduced state-space model is similar to that of the full (static) Matlab simulation
(Figure 5.2). The only differences are related to the force error shown in Figure 7.2.

Displacement in the x -direction at the bottom of the weatherstrip is shown in Figure 7.5. This
figure shows the case where the applicator wheel is located at z = 8 mm. This figure confirms the
results shown in Figure 7.4, that is, the results of the servo simulation are similar to the results from
a static computation with the full Matlab model.

7.5 Conclusion

The six-degree of freedom robot is implemented in Simulink and an inverse dynamics control law is
implemented to be able to control the end-effector of the robot in the task space of the robot. The force
controller described in Chapter 6 is used in the task space directions that need to be force-controlled.
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Figure 7.5: Displacement in the x -direction at the bottom of the weatherstrip: full Matlab model and servo
simulated results on the left hand side and the difference between these two simulations on the right hand side.

In the other directions, PD controllers are used. A simulation of the force and motion controlled
robot interacting with the state-space model of the weatherstrip is performed and the results show
that the force controlled robot achieves the desired mounting force.



Chapter 8

Conclusions and Recommendations

8.1 Conclusion

In this project a model of a weatherstrip is made and used in conjunction with a model of a six
degrees of freedom robot to design a control law that regulates the motion and application force on
the weatherstrip. The goals of the project are stated in Section 1.2.

A literature study is performed to investigate different methods to quantify rubber behavior and
gain knowledge about behavior of rubber materials that are not exhibited by other commonly used
materials such as metals or ceramics. It is concluded that an Ogden hyperelastic model can be used to
create a model of the weatherstrip, since this model captures phenomena that are relevant for the
sealing task, such as a nonlinear stress-strain relationship, viscoelastic behavior and the Mullins effect.
It is found that there is not a good agreement between three material models found in the literature
for a simple uniaxial tension test.

A nonlinear finite element model is created and used to investigate how some effects present in
rubber may influence the process of weatherstrip assembly. These effects are the nonlinear behavior,
relaxation, creep and the Mullins effect. It is found that in the process of weatherstrip application
where the loading rate and the stretch rate are relatively low, creep, relaxation and the Mullins effect
can be disregarded. The effects of nonlinear behavior cannot be disregarded, since discrepancies are
found between results form a tension simulation and a compression simulation that are performed
in the scope of this project. For tension, it seems that a linear model can represent the behavior
of the weatherstrip accurately enough, while a compression simulation shows that the nonlinear
model predicts quite different results than the linear model. Unfortunately, the available models and
material data are created from tension experiments reported in literature, so these are less reliable
for compression simulations. This suggests that it would be instructive to experimentally verify
the material model and its parameters that are used in this project. Preliminary results of such an
experimental verification which is carried out in parallel to this project [59], show promising results,
however, these results are not integrated in this project because of different time lines between the
two projects.

Simulations with the finite element model of the weatherstrip show that a linear model has a good
agreement with the nonlinear model with respect to effects of deformation and stress at the bottom
of the weatherstrip. This indicates that a linear model can be used to capture the behavior of the
weatherstrip during assembly.

The linear finite element model is exported to Matlab, where a linear state-space model is created
from this finite element model. A model order reduction is performed on the state-space model to
reduce the order of the model from several thousands of states to 250 states. The reduced order
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state-space model is validated against the linear finite element model and good agreement is found.
A hybrid impedance force control law for the application force is designed for one degree of

freedom. This control law regulates the interaction force between the applicator wheel and the
weatherstrip and ensures that the desired mounting force is achieved. Evaluation of this controller
shows that the controlled system is robust against parameter variations and is able to track the desired
application force.

In Matlab, a six degrees of freedom robot is implemented including inertia properties from
CAD data from the robot manufacturer. This robot model is functionally combined with the linear
state-space model of the weatherstrip, including a force mapping which models the contact behavior
between the applicator wheel and the weatherstrip. A linearizing inverse dynamics controller is
implemented and combined with the hybrid impedance force controller designed for the 1DOF
system. Time domain servo control simulations show low position and force errors, which implied
that the controlled system performs satisfactory; the achieved application pressure and deformation at
the bottom of the weatherstrip are within acceptable bounds.

8.2 Recommendations

The models of the robot and weatherstrip that are used in this project are not capable of representing
the behavior of the weatherstrip making contact with the substrate. It is therefore recommended that
a simulation is performed in a finite element software package as to also simulate the behavior of
making contact with the substrate.

The rubber model used in this project is taken from the literature, and may not be a good character-
ization of the rubber material actually used. Experiments on weatherstrip specimens described in [59]
show promising results in matching the adopted rubber model and actual weatherstrip behavior. It is
advised that the material parameters extracted from these experiments are used to create a new finite
element model and linear state-space model. Also, with these updated models that better describe the
experimental behavior of weatherstrips, the control design can be optimized.

It is advised to perform an experiment where the applicator wheel is fitted with a force sensor
and pressed onto the weatherstrip. The bottom of the weatherstrip could be mounted on a pressure
sensing pad to measure the actual stress at the bottom of the strip. The linear state-space model and
the force interaction mapping could be validated in this experiment.

To validate the force controller of the robot, the robot should be fitted with a force sensor between
the last link of the robot and the applicator wheel. The robot should follow a predefined motion and
force setpoint trajectories over a substrate of a known high stiffness. The results of this experiment
could be used to evaluate performance of the robot force control.

In this project the mounting force that is needed for good adhesion of the weatherstrip onto the
substrate is taken from the literature. It is not known how accurate this mounting force needs to
be achieved for good adhesion, or how the minimum mounting force is influenced by the substrate
material. It is recommended that an experiment is carried out to find the minimum force needed to
realize a sufficient bonding between the weatherstrip and the substrate.

To mount the weatherstrip onto the substrate it is important to use the desired mounting force,
however, it is also important that the weatherstrip is correctly aligned with the edges of the substrate
surface. This requires position control of the applicator wheel and weatherstrip, but equally important,
it also requires that the orientation of the weatherstrip is controlled such that it follows the (curved)
edge of the substrate. Manually, this is achieved by positioning the free end of the weatherstrip along
the edge of the weatherstrip, and using a certain tension force to keep the weatherstrip from bending
under gravitational loads. A model should be designed which can capture the position and orientation
of the weatherstrip under gravity and tension, this model should be validated by experiments and
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be used to design a device that can automatically perform the task of orienting the weatherstrip and
keeping the right amount of tension.

Lastly, it is recommended that a tool is designed to be used on the robot for mounting the
weatherstrip onto a substrate. In addition, a tool has to be designed that supplies the robot with the
weatherstrip. In this project it is assumed that the weatherstrip is available on the applicator wheel,
but in reality a tool is needed to place it there.
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Appendix A

ANSYS APDL Input Listings

A.1 Comparison of Different Nonlinear Models

In section 3.1 a comparison between different rubber material models is performed using a simulation
of a uniaxial tension test. The listing below shows the ANSYS APDL code to run these simulations,
Table A.1 depicts the used material parameters. The definitions of the material models can be found
in Section 2.2.2.

Table A.1: Material parameters

model parameter parameter values
1 2 3

Arruda-Boyce µ 3.34 × 10=2

Dikmen [22] λL 9.74 × 10=1

Mooney-Rivlin C10 1.22 × 10=1

Dikmen [22] C01 =2.91 × 10=2

Ogden µ 5.24× 10=2

Dikmen [22] α 5.08
Ogden µi 7.45 × 102

=2.39 × 102
=3.03 × 10=1

Cheng [18] αi =6.73 × 10=2
=2.13 × 10=1

=7.27
James-Green-Simpson C10 9.33 × 10=2

Wagner [63] C01 9.02× 10=2

C20 6.37 × 10=3

C11 6.23 × 10=3

C30 3.32 × 10=4

Ogden µi 4.40× 10=1 1.14 3.14
Wang [64] αi 2.09× 10=7 3.90 3.30 × 10=6

0 !@ ==============================
!@ --- Header ---
!@ ==============================
!! Time-stamp: <Thu Jan 8 10:20:50 2015>
!! ANSYS VERSION: 150

5 !! NOTE: Comparison between different material models for rubber

/COM %%% Element Definitions

73
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/PREP7
ET,1,solid186 ! 3d, 20 node

10

/COM %%% Geometry
Lz=10 ! Length of specimen
Lx=7.5 ! Width of specimen
Ly=1.6 ! Height of specimen

15 EpMax = 1 ! Maximum nominal Strain
DzMax = Lz*EpMax ! Maximum displacement
A0 = Lx*Ly ! Original cross sectional area
BLOCK,0,Lx,0,Ly,0,Lz ! Specimen

20 /COM %%% Materials
!@@@ -- 1: OGDEN: Cheng & Chen paper --
TB,HYPE,1,1,3,OGDE ! Ogden material
TBTEMP,0
TBDATA,1,744.9711,-0.0673,-239.0485,-0.2128,-0.3031,-7.2684 !Material data from Cheng & Chen paper

25

!@@@ -- 2:James-Green-Simpson, Stenti & Wagner papers --
TB,HYPE,2,1,9,Mooney ! 9-term Mooney-Rivlin material (James-Green-Simpson)
TBTEMP,0
TBDATA,1,0.0932811,0.0902353,0.0063716,0.0062266,0,0.0003316 !Material data from Stenti and Wagner

30

!@@@ -- 3: 3-term Ogden,Wang & Lee --
TB,HYPE,3,1,3,Ogden ! 3-term Ogden
TBTEMP,0
TBDATA,1,0.4402,2.093e-5,1.139,3.898,3.1415,3.295e-6 !Material data from Wang, Lee (30% EPDM)

35

!@@@ -- 4: 2-term Mooney-Rivlin, Dikmen --
TB,HYPE,4,1,2,Mooney
TBTEMP,0
TBDATA,1,0.1220719,-0.029116 ! Material data from Dikmen

40

!@@@ -- 5: Arruda-Boyce, Dikmen
TB,HYPE,5,1,3,Boyce ! Arruda-Boyce
TBTEMP,0
TBDATA,1,0.033379,0.9736532 ! Dikmen

45

!@@@ -- 6: 1-term Ogden, Dikmen
TB,HYPE,6,1,1,Ogden ! 1-term Ogden
TBTEMP,0
TBDATA,1,0.0524,5.0802 ! Ogden, from Dikmen

50

/COM %%% Meshing
MSHKEY,1 ! 1: mapped meshing,2: mapped if possible
MSHAPE,0,3d ! 0: quads/hex 1:tri/tets, dimensions: 2d/3d
ElemLength = Ly/3 ! Desired element edge length

55 ESIZE,ElemLength ! element edge length
MAT,6 ! Select material
VMESH,all ! Mesh all volumes

/COM %%% Boundary Conditions
60 NSEL,s,loc,z,0 ! nodes at z=0

D,all,uz,0 ! constrain in z-dir
NSEL,r,loc,x,0 ! nodes at z=0 & x=0
D,all,ux,0 ! Constrain also in x dir
NSEL,all ! Select all nodes

65 NSEL,s,loc,z,0 ! select z=0 nodes
NSEL,r,loc,y,0 ! nodes at z=0 & y=0
D,all,uy,0 ! Constrain in y dir
NSEL,all
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70 /COM %%% Displacements
NSEL,s,loc,z,Lz ! nodes at z=Lz
D,all,uz,DzMax ! Displacement load
NSEL,all

75 /COM %%% Solution
/SOLU
ALLSEL
SOLCONTROL,on ! optimised nonlinear solution defaults
N1=15 ! No of substeps for the first one

80 N2=50 ! maximum No of substeps
N3=10 ! minimum No of substeps
NSUBST,N1,N2,N3
OUTRES,all,all
ANTYPE,static ! static simulation

85 NLGEOM,on
AUTOTS,on
SOLVE

/COM %%% Output
90 /POST26

NUMVAR,200 ! maximum No of variables, 1 is always time

/COM %%% Get nodal results
NSEL,s,loc,z,Lz ! Nodes at end

95 NSEL,r,loc,x,Lx ! Nodes at end and side
NSEL,r,loc,y,Ly ! Node at top side end

*GET,nodnum,node,,num,max ! Get number of node at top side end

/COM %%% First order results
100 NSOL,2,nodnum,U,Z,UZ_edge ! Z displacement

NSOL,3,nodnum,U,X,UX_edge ! X displacement
NSOL,4,nodnum,U,Y,UY_edge ! Y displacement
ANSOL,5,nodnum,S,Z,ZStress ! Stress in z-direction: Sz

105 /COM %%% Static Values
FILLDATA,11,,,,Lz ! orig Z location of node
FILLDATA,12,,,,Lx ! orig X location of node
FILLDATA,13,,,,Ly ! orig Y location of node
FILLDATA,14,,,,A0 ! Original Area : A0

110

/COM %%% First order Calculations
ADD,21,2,11,,Lz2 ! New Z location (length)
ADD,22,3,12,,Lx2 ! New X location (width)
ADD,23,4,13,,Ly2 ! New Y location (height)

115

/COM %%% Second order Calculations
QUOT,31,21,11,,Stretch ! Stretch: Lambda=L1/L0
PROD,32,22,23,,AR ! real Area: A

120 /COM %%% Third order Calculations
PROD,41,5,32,,ZForceAr ! Force in Z direction with real Area: FZA

/COM %%% Fourth order Calculations
QUOT,51,41,14,,NomStress ! Nominal stress (based on orig A0)

125

/COM %%% PLOTTEN
XVAR,31 ! Stretch on x-axis
/AXLAB,X,Stretch ! Set X-axis label
/AXLAB,Y,Nominal Stress ! Set Y-axis label

130 PLVAR,51
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/COM %%% Save output to file

*GET,Size,VARI,,NSETS ! No of datapoints

*DIM,Time,array,Size
135 *DIM,Stretch,array,Size

*DIM,NomStress,array,Size
VGET,Time(1),1 ! put time into array
VGET,Stretch(1),31 ! put stretch into array
VGET,NomStress(1),51 ! put Nominal Stress into array

140 !! - export arrays -

*CREATE,tmp,mac

*CFOPEN,sim,txt
Strg=’Time Stretch NomStress’

*VWRITE,Strg
145 %S

*VWRITE,Time(1), Stretch(1), NomStress(1)
%G %G %G

*CFCLOS

*END
150 *LIST,tmp,mac

/INPUT,tmp,mac

*LIST,sim,txt

A.2 Mullins Effect

The ANSYS APDL listing for the simulation shown in Section 3.1.4 is shown below. A 3-term Ogden
model is used, as defined in equation (2.11). The Mullins effect is modeled using the Ogden-Roxburgh
model where the damage variable is given by equation (2.27). The material parameters used are given
in Table A.2.

Table A.2: Material parameters for 3-term Ogden model with Mullins effect

parameter values
parameter 1 2 3

µi 7.45 × 102
=2.39 × 102

=3.03 × 10=1

αi =6.73 × 10=2
=2.13 × 10=1

=7.27
m 9.77 × 10=1

r 2.06

The ANSYS APDL input listing for the Mullins effect simulation is almost identical to the listing
in Section A.1, only the differences are shown (material and load case definition):

0 /COM %%% Materials
!@@@ -- 1: OGDEN: Cheng & Chen paper --
TB,HYPE,1,1,3,OGDE
TBTEMP,0
TBDATA,,744.9711,-0.0673,-239.0485,-0.2128,-0.3031,-7.2684

5 TBDATA,,0,0,0,,,
! Mullins effect (pseudo elastic: pse2)
TB,CDM,1,,3,pse2
TBDATA,1,2.062,0.9773,0

10 /COM %%% Displacement Loads
dz1=5
dz2=10
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dz3=15
dz4=20

15

/COM %%% Load cases
/COM %%% Load case 1
NSEL,s,loc,z,Lz
D,all,UZ,dz1

20 NSEL,all
SOLVE

NSEL,s,loc,z,Lz
D,all,UZ,0

25 NSEL,all
SOLVE

/COM %%% Load case 2
NSEL,s,loc,z,Lz

30 D,all,UZ,dz2
NSEL,all
SOLVE

NSEL,s,loc,z,Lz
35 D,all,UZ,0

NSEL,all
SOLVE

/COM %%% Load case 3
40 NSEL,s,loc,z,Lz

D,all,UZ,dz3
NSEL,all
SOLVE

45 NSEL,s,loc,z,Lz
D,all,UZ,0
NSEL,all
SOLVE

50 /COM %%% Load case 4
NSEL,s,loc,z,Lz
D,all,UZ,dz4
NSEL,all
SOLVE

55

NSEL,s,loc,z,Lz
D,all,UZ,0
NSEL,all
SOLVE

A.3 Stretch Rate

The material data for the 3-term Ogden model used in the simulation of the influence of stretch rate
is given in Table A.3.

The ANSYS APDL input listing for the stretch rate simulation is almost identical to the listing in
Section A.1, the differences are shown below:

0 /COM %%% Materials
!@@@ -- 1: Low Rate: 0.004/s - OGDEN: Cheng & Chen paper --
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Table A.3: Material parameters for 3-term Ogden model for low and high stretch rates

parameter values
parameter 1 2 3

low rate µi 7.45 × 102
=2.39 × 102

=3.03 × 10=1

0.004 s=1 αi =6.73 × 10=2
=2.13 × 10=1

=7.27
high rate µi 1.89× 102

=1.06× 103
=4.99× 10=2

3000 s=1 αi =5.28× 10=1
=9.55 × 10=2

=1.19 × 101

TB,HYPE,1,1,3,OGDE !Ogden material
TBTEMP,0
TBDATA,1,744.9711,-0.0673,-239.0485,-0.2128,-0.3031,-7.2684

5 !@@@ -- 1: High Rate: 3000/s - OGDEN: Cheng & Chen paper --
TB,HYPE,2,1,3,OGDE
TBTEMP,0
TBDATA,1,188.6373,-0.5281,-1061.0986,-0.09549,-0.049922,-11.9074

A.4 Visco-Hyperelastic Model

The material data for the combined 3-term Ogden and 3-term Prony series model used in the relaxation
simulation in Section 3.2.2 is given in Table A.4.

Table A.4: Material parameters for the combined 3-term Ogden and 3-term Prony series model for visco-
hyperelastic behavior

parameter values
parameter 1 2 3

Ogden µi 7.45 × 102
=2.39 × 102

=3.03 × 10=1

αi =6.73 × 10=2
=2.13 × 10=1

=7.27
Prony series τi 8 × 10=2 1 × 10=2 1 × 10=3

αi 1.47 × 10=1 1.47 × 10=1 3.10 × 10=1

The ANSYS APDL input listing for the relaxation simulation is almost identical to the listing in
Section A.1, the differences are shown below:

0 /COM %%% Materials
!@@@ Material parameters
!@@@ -- 1: OGDEN: Cheng & Chen paper --
TB,HYPE,1,1,3,OGDE ! Ogden material
TBTEMP,0

5 TBDATA,1,744.9711,-0.0673,-239.0485,-0.2128,-0.3031,-7.2684 !Material data from Cheng & Chen paper

!@@@ -- 2: Visco elastic behavior:
tau1 = 80.0000e-003 ! Time constants
tau2 = 10.0000e-003

10 tau3 = 1.0000e-003
alpha1 = 146.8744e-003
alpha2 = 147.4608e-003
alpha3 = 310.2230e-003

15 !@@@ -- 3: Material data input
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!@@@ Prony series, from Olsson paper
TB,PRONY,1,1,3,shear
TBTEMP,0
TBDATA,1,alpha1,tau1,alpha2,tau2,alpha3,tau3

A.5 Weatherstrip Simulation

The code listing below shows the ANSYS APDL code used to simulate the weatherstrip assembly
process as shown in Chapter 4. In the material definition section it is possible to select linear or
nonlinear material by commenting and uncommenting the right parts of the code.

0 /COM %%% File name
fname =’Wheel_Force_Frict’
/FILNAME,fname,on ! Set jobname

!@@@ -- Units
5 /UNITS,mpa ! indicate unit system

/COM %%% Element Definitions
/PREP7
R,1 ! Real constant set for rubber

10 ET,1,solid185 ! 3d, 8 node

/COM %%% Geometry
!@@@ -- Define constants
Lz = 20 ! Length of specimen

15 Lx = 4 ! Width of specimen
Ly = 4 ! Height of specimen
R1 = Ly ! Radius of circular bulb on top of strip
Rw = 10 ! Radius wheel
Lw = 2*(Lx+1) ! Length wheel (must be longer than strip)

20 Pxw = Lx+1 ! Position of wheel in x-direction (width of strip)
Pzw = 2*Lx ! Position of wheel in z-direction (length of strip)
Gapw = 0 ! Gap between strip and wheel
Pyw = Ly+R1+Rw+Gapw ! Position of wheel in y-direction (height of strip)
Fw = 10 ! Force on wheel

25

!@@@ -- 1: Rubber
BLOCK,-Lx,Lx,0,Ly,0,Lz ! Specimen
CYL4,0,Ly,R1,0,,180,Lz ! Circular bulb on top of strip
VADD,all ! Add all volumes together

30 VSEL,s,loc,x,0,Lx ! Select Rubber Block, to create component
CM,RubberStrip,volu ! Create volume component: RubberStrip
ALLSEL

!@@@ -- 2: Bottom Strip
35 ASEL,s,loc,y,0 ! Select bottom of strip

CM,BottomStrip,area ! Create component
ALLSEL

!@@@@ -- Unify areas on back and front of strip for sweep meshing
40 ASEL,s,loc,z,0 ! Select back face of strip

AADD,all ! Create single area

*GET,BackAreaNum,area,,num,min ! Number of area for sweep mesh
ALLSEL
ASEL,s,loc,z,Lz ! Select front face of strip

45 AADD,all ! Create single area
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*GET,FrontAreaNum,area,,num,min ! Number of area for sweep mesh
ALLSEL

!@@@ -- Rigid Floor
50 K,,-Lx-1,0,-1

K,,Lx+1,0,-1
K,,Lx+1,0,Lz+1
K,,-Lx-1,0,Lz+1

*GET,BottomKPnum,kp,,num,max ! Get maximum Keypoint
55 A,BottomKPnum-3,BottomKPnum-2,BottomKPnum-1,BottomKPnum ! Generate Area

KSEL,s,kp,,BottomKPnum
LSLK,s,0
ASLL,s,0 ! Select floor
CM,Floor,area ! Create component

60 ALLSEL

/COM %%% Materials
!@@@ -- 1: Low Rate: 0.004/s - OGDEN: Cheng & Chen paper --
TB,HYPE,1,1,3,OGDE ! Ogden material

65 TBTEMP,0
TBDATA,1,744.9711,-0.0673,-239.0485,-0.2128,-0.3031,-7.2684
MPTEMP,1,0
MPDATA,mu,1,,3.5 ! Static friction coefficient
!! !@@@ -- Linear Material

70 !! MPTEMP,1,0
!! MPDATA,ex,1,,3.46 ! E-modulus (fit) [N/mm^2]
!! MPDATA,prxy,1,,0.4999 ! Poisson’s ratio (incompressible)
!! MPDATA,dens,1,,1.08e-6 ! From Freudenberg EPDM datasheet (1.08 g/cm3)
!! MPDATA,mu,1,,0 ! Static friction coefficient

75

/COM %%% Meshing
!@@@ -- 1: Rubber strip
MSHKEY,0 ! 1: mapped meshing,2: mapped if possible
MSHAPE,0,3d ! 0: quads/hex 1:tri/tets, dimensions: 2d/3d

80 ElemLength = Lx/4 ! Desired element edge length
ESIZE,ElemLength ! element edge length
MAT,1 ! Select material
REAL,1 ! Real constant set
CMSEL,s,RubberStrip ! Select rubber strip

85 VSWEEP,all,BackAreaNum,FrontAreaNum ! Mesh all volumes
ALLSEL

/COM %%% Boundary Conditions
NSEL,s,loc,z,0 ! nodes at z=0

90 D,all,uz,0 ! constrain in z-dir
NSEL,s,loc,z,0 ! select z=0 nodes
NSEL,r,loc,y,0 ! nodes at z=0 & y=0
D,all,uy,0 ! Constrain in y dir
NSEL,all

95 NSEL,s,loc,z,0 ! Nodes at z=0
NSEL,r,loc,x,0 ! Nodes at x=0
D,all,ux,0 ! Constrain in x-dir
ALLSEL

100 /COM %%% Element Definitions
/PREP7
!@@@ -- Contact

*GET,et,etyp,,num,max ! get maximum element type
Contact = et+1 ! Element number for contact

105 Target = Contact+1 ! Target element number
R,Contact ! Real constant set
ET,Contact,conta173 ! 3D Contact element
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ET,Target,targe170 ! 3D Target element
!@@@ -- Keyoptions

110 KEYOPT,Contact,5,1 ! Set keyopt 5 to close the gap

!@@@ -- Contact 2
Contact2 = Target+1
Target2 = Contact2+1

115 R,Contact2
ET,Contact2,conta173
ET,Target2,targe170

!@@@@ -- Top area of rubber strip for contact meshing
120 ASEL,s,loc,y,Ly,Ly+R1 ! Select areas within top part of strip

ASEL,r,loc,z,1e-4,Lz-1e-4 ! Only select top face
CM,TopStrip,area ! Area component
ALLSEL

125 !@@@ -- 2: Wheel
WPOFFS,-Pxw
WPROTA,0,0,90 ! Rotate working plane
CYL4,-Pzw,Pyw,Rw,240,,300,Lw ! Cylinder (x,y,radius1,theta1,radius2,theta2,length)
VSEL,s,loc,y,Pyw-Rw,Pyw,,1 ! Select wheel only (volumes and below)

130 ASEL,r,loc,y,Pyw-Rw,Pyw-Rw/1.5 ! Select cylinder faces
CM,Wheel,area ! Create Area component: Wheel
ALLSEL
WPCSYS,1,0 ! Align working plane with global coordinate system

135 !@@@ -- : Rigid Wheel and contact
MSHAPE,0,2d ! 2D quad meshing
ESIZE,ElemLength ! desired element length
TYPE,Contact ! Element type: Contact
REAL,Contact ! Real Constant set

140

!@@@@ -- Contact on rubber strip
CMSEL,s,TopStrip ! Select top area
NSLA,s,1 ! Select nodes in area
ESURF ! Create surface Contact elements

145 ALLSEL

!@@@@ -- Target on cylinder surface
TYPE,Target ! Set target elements
CMSEL,s,Wheel ! Select bottom surface of wheel

150 MSHKEY,0
TSHAP,quad ! Target shape: 4 node quadrilateral
AMESH,all ! Mesh surface
ALLSEL

155 !@@@@ -- Pilot node
TSHAP,pilo ! Set Pilot node
CMSEL,s,Wheel ! Select wheel
LSLA,s ! Select lines in wheel
KSLL,s ! Select keypoints on lines

160 *GET,PilotKP,kp,,num,min ! Number of a keypoint
KMESH,PilotKP ! Mesh pilot node
ALLSEL

!@@@ Bottom strip contact
165 MSHAPE,0,2d

ESIZE,ElemLength
TYPE,Contact2
REAL,Contact2
!@@@@ Bottom Strip
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170 CMSEL,s,BottomStrip ! Select bottom of strip
NSLA,s,1 ! Select nodes in bottom
ESURF ! Create surface contact
ALLSEL
!@@@@ Floor

175 TYPE,Target2
CMSEL,s,Floor ! Select floor area
MSHKEY,0
TSHAP,quad
AMESH,all

180 NSLA,s,1 ! Select all nodes within this area
ESLN,s
ESURF,,reverse
ALLSEL

185 !@@@ Constrain Wheel
KSEL,s,kp,,PilotKP ! Select pilot keypoint
NSLK,s ! Select pilot node
D,all,ux,0,,,,uz,rotx,roty,rotz ! Constrain pilot node
ALLSEL

190

/COM %%% Solution
/SOLU
ALLSEL
SOLCONTROL,on ! optimised nonlinear solution defaults

195 OUTRES,basic,all ! Results to write
ANTYPE,static ! static simulation
NLGEOM,on ! on for hyperelastic, off for linear elastic

!@@@ -- 1: First load step: wheel pressure: Force
200 KSEL,s,kp,,PilotKP

NSLK,s ! Select node connected to pilot node
F,all,FY,-Fw ! Compression Force due to wheel
ALLSEL
NSUBST,25,50,10 ! Substeps

205 SOLVE

A.6 Modal Analysis in ANSYS

In ANSYS a modal analysis can be carried out to find the eigenmodes and eigenvectors of a linear
model; a model with linear material parameters and approximately linear (small) displacements. To
be able to export the stiffness and mass matrices of a system to a text file, is is needed to set up a
model analysis and then export the generated system matrices. In the listing below the APDL code to
do this is shown.

0 !@@@@ -- Write out node mapping
CMSEL,s,RubberStrip ! Select strip only
NSLV,s,1 ! Select nodes in strip
ESLN,s ! Select elements in strip
EWRITE,’Lin_SI_elem’,’list’ ! output element list

5 NWRITE,’Lin_SI_node’,’list’ ! output node list
ALLSEL

!! @ ==============================
!! @ --- Solution ---

10 !! @ ==============================
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/COM %%% Solution
!@@@ -- modal analysis: constraint modes and constraint mass and stiffness matrices
/SOLU
ANTYPE,modal

15 MODOPT,lanb,20,0,1e4 ! method,No of modes,freqB,freqE
MXPAND
SOLVE
FINISH

20 !@ ==============================
!@ --- Output Frequencies ---
!@ ==============================
/COM %%% Put natural frequencies in file
/POST1 ! Postprocessor

25 /OUTPUT,’Lin_SI_Freqlist’,’txt’
SET,list ! Put results in file
/OUTPUT

!@ ==============================
30 !@ --- Output to MODAL Matrices ---

!@ ==============================
/AUX2
FILE,fname,’full’ ! Set filename of FULL file
HBMAT,’Lin_SI_STIFF_free’,’matrix’,,ASCII,stiff,yes,yes ! output stiffness matrix and mapping file

35 HBMAT,’Lin_SI_MASS_free’,’matrix’,,ASCII,mass,yes ! output mass matrix
FINISH
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Appendix B

Fitting Viscoelastic Parameters

The authors of [45] performed dynamical experiments on different types of rubber, the results of the
experiment on EPDM rubber is shown in Figure B.1. Here the dotted line with the diamond markings
represents an experiment with an excitation amplitude of 6.7 %. While the authors of this paper also
fitted a material model to this experimental data, this model is unfortunately not usable in this context.
Therefore it is needed to create a custom fit for the Prony series described in Section 2.2.4

Figure B.1: Dynamic shear modulus and damping for EPDM rubber, the dotted lines depict experimental data
and the solid lines depict a material model. The different markings represent data from experiments with
different excitation amplitudes [45].

The data from the experiment with an excitation amplitude of 6.7 % is extracted from the figure,
to be used for curve fitting. This data is chosen over the other sources because it has the highest
excitation amplitude in this set.

The dynamic modulus and damping extracted from Figure B.1 can be used to fit a Prony series
viscoelastic model. The general form of a Prony series viscoelastic model is given by Equation 2.18:

g(t) = g∞ +
m
∑

i=1

gie
−t
τi

In this model, time constants τi and moduli g∞ and gi need to be determined. In this case, this can

85
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be done by using the Laplace transform of the storage and loss modulus [46]:

G′(ω) = G∞ +
m
∑

i=1

ω2τ2
i Gi

ω2τ2
i + 1

(B.1)

G′′(ω) =
m
∑

i=1

ωτiGi

ω2τ2
i + 1

(B.2)

Where the storage and loss moduli are given by [50]:

G∗ = G′ + iG′′ (B.3)

G∗ = Gdyn + eiδ (B.4)

d = sin(δ) (B.5)

Here, the dynamic modulus Gdyn and damping d are extracted from Figure B.1.
Values for G∞ and Gi in equations (B.1) and (B.2) are fitted to the extracted storage and loss

moduli G′ and G′′ respectively with a nonnegative least-squares procedure. A range of frequencies ω
corresponding to Figure B.1, and chosen values for the time constants τi are used in this procedure.
This results in the parameters shown in Table B.1:

Table B.1: Prony series parameters

time constant τi [s] modulus Gi [MPa] relative modulus αi [-]
8.0× 10=2 3.383 1.469× 10=1

1.0× 10=2 3.397 1.475 × 10=1

1.0× 10=3 7.145 3.102 × 10=1

∞ 9.108 3.954 × 10=1

The row in Table B.1 with a time constant of∞ corresponds to the equilibrium modulus G∞. In
the third column, the relative moduli αi are given, they are defined by:

αi =
Gi

G0
(B.6)

G0 = G∞ +
m
∑

i=1

Gi (B.7)

The resulting curves for the dynamic modulus and damping, depending on frequency are depicted
in Figure B.2. From this figure it can be seen that the fitted parameters result in a satisfactory
approximation of the measured data.

The parameters for the relative moduli αi in Table B.1 can be used in ANSYS to create a viscoelastic
model or a visco-hyperelastic model. A viscoelastic model in ANSYS is modeled in the same way as
the prony series viscoelastic model of Equation (2.18):

G(t) = G0

�

α∞ +
m
∑

i=1

αie
−t
τi

�

(B.8)

The visco-hyperelastic model from equation (2.22) can be used together with the αi values to
combine the visco-elastic behavior with a hyperelastic material model:

P =

∫ t

0

�

α∞ +
m
∑

i=1

αie
− t−τ
τi

�

2
d

dτ
∂W
∂ C

dτ
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Figure B.2: Dynamic modulus and damping, for measured [45] and fitted data
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Appendix C

Friction Simulation

When applying the weatherstrip to the substrate, friction will occur between the bottom of the
weatherstrip and the substrate due to normal forces from the applicator wheel. In ANSYS this friction
is incorporated with a Coulomb friction model:

τlim = µP + b (C.1)

where τlim is the maximum shear stress before slippage occurs, µ is the friction coefficient, P is the
normal contact pressure and b is a static cohesion which is not used in these simulations. For the
friction coefficient between EPDM rubber and glass a value of 3.5[-] is used [51].

Figure C.1 shows the stress in the global y-direction on the bottom of the weatherstrip. This is the
stress needed to bond the weatherstrip to the substrate, for a good bond this stress needs to exceed
100 kPa. In the left figure, the results of the simulation with friction are shown, the middle figure
shows the results of a simulation without friction and the right figure shows the difference between
the two simulations. In both simulations the stress in the bottom is high enough to guarantee a
good bond. From the right figure it can be seen that the difference in stress is small in a large area
directly under the applicator wheel (around 8 mm in the length direction), and becomes higher near
the edges. From these figures the conclusion can be drawn that for the stress on the bottom of the
weatherstrip the inclusion of friction in the model does not have an adverse effect, so on the basis of
this simulation, it is not needed to include friction in the model.

In Figure C.2 the displacement in global x-direction (width) is shown for a simulation with
(left) and without (middle) friction. The right figure shows the difference between the two simu-
lations. The left figure shows that the friction between the weatherstrip and the substrate severely
impacts the displacement on the bottom. The simulation with friction predicts a maximum displace-
ment of 6× 10=4 mm, whereas the simulation without friction shows a maximum displacement of
3× 10=2 mm. The large difference between the two simulations would indicate that friction is an
important phenomenon in this process, however, the total displacement without friction is already so
small that it permits disregarding the friction effect altogether.
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Figure C.1: Stress in global y-direction on bottom of weatherstrip simulated with a hyperelastic material model.
Friction between bottom of strip and substrate on the left, no friction in the middle and the difference on the
right.
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Appendix D

Compare Eigenvalues of Reduction
Methods

The natural frequencies of the full model, as described in Section 5.1.6 are compared with the natural
frequencies of the Craig-Bampton reduced model (described in Section 5.2) and with the balanced
truncation reduced model (described in Section 5.3.1). The results of this comparison can be seen
in Table D.1, here the first column shows the mode number, the second column shows the natural
frequency of that mode for the full model. The third column shows the relative natural frequency of
the Craig-Bampton reduced model with respect to the full model. The last column shows the relative
natural frequency of the balanced truncation reduced model with respect to the full model.

It can be concluded from this table that all models show good agreement for modes below 2400 Hz.
It can be concluded that these models therefore can be used for servo simulations of the weatherstrip
assembly process.
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Table D.1: Eigenvalues for different reduced models

mode number fi full model [Hz] full/CB [-] full/BT [-]
1 42.35 1.000 1.000
2 214.53 1.000 1.000
3 352.82 1.000 1.000
4 456.80 1.000 1.000
5 757.28 1.000 1.000
6 1021.30 0.998 0.998
7 1141.70 0.999 0.999
8 1462.50 0.996 0.996
9 1532.90 0.966 0.966

10 1581.60 0.994 0.994
11 1609.80 0.996 0.996
12 1663.80 0.980 0.980
13 1747.40 0.987 0.987
14 1836.10 0.941 0.941
15 1921.40 0.959 0.959
16 1946.90 0.955 0.955
17 1992.20 0.959 0.959
18 2064.40 0.942 0.942
19 2079.00 0.909 0.909
20 2132.80 0.924 0.924
21 2208.80 0.920 0.920
22 2333.00 0.915 0.915
23 2391.90 0.922 0.922
24 2478.30 0.886 0.886
25 2479.60 0.883 0.883
26 2490.20 0.793 0.793
27 2524.50 0.785 0.785
28 2681.40 0.810 0.810
29 2682.00 0.786 0.786
30 2798.60 0.796 0.796



Appendix E

Robot Parameters

The SimMechanics visualisation of the ABB IRB 2400 robot used in this project is shown in Figure
E.1. The inertial parameters of the robot are given in Table E.1

Figure E.1: ABB IRB 2400 Robot
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Table E.1: ABB IRB 2400 parameters

link parameter parameter values
1 m [kg] 150

r [m] =0.070 0.17 0.019
I [kg m2] 7.6 1.0 0.30

1.0 5.8 =0.10
0.30 =0.10 5

2 m [kg] 47
r [m] =0.38 0.037 =0.0027
I [kg m2] 0.38 0.094 0.0027

0.094 2.0 =0.025
0.0027 =0.025 2.1

3 m [kg] 40
r [m] =0.019 0.010 =0.0011
I [kg m2] 0.93 =0.010 =0.053

=0.010 0.91 0.011
=0.053 0.011 0.32

4 m [kg] 18
r [m] 0.000 30 =0.20 0.0010
I [kg m2] 0.52 =0.000 38 =4.3× 10=5

=0.000 38 0.044 =0.0036
=4.3× 10=5

=0.0036 0.51
5 m [kg] 0.97

r [m] 0.000 96 4× 10=7
=0.000 19

I [kg m2] 0.000 85 0 6.9× 10=6

0 0.0014 =2.8× 10=8

6.9× 10=6
=2.8× 10=8 0.000 91

6 m [kg] 0.57
r [m] =9.1× 10=5

=9× 10=7
=0.047

I [kg m2] 0.000 47 0 10.0× 10=7

0 0.000 47 0
10.0× 10=7 0 6.2× 10=5
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