
On task specification and inverse kinematics

for a redundant surgical robot

for bone removal

Talha Ali Arslan

D&C 2016.004

Thesis

submitted in partial fulfilment of the requirements for the degree of

Master of Science
in Mechanical Engineering

in

Department of Mechanical Engineering
Eindhoven University of Technology

Coach: engr. Jordan Bos

Supervisors: dr. Alessandro Saccon
prof.dr. Henk Nijmeijer

Committee: prof.dr. Henk Nijmeijer
dr. Alessandro Saccon
engr. Jordan Bos
prof.dr. Herman P.J. Bruyninckx

January, 2016





i

Preface

This thesis is the outcome of my MSc study in Mechanical Engineering within the
Dynamics&Control Research Group in Eindhoven University of Technology (TU/e) in
Eindhoven, The Netherlands. The project started on March, 2015 and it was carried
out in the Robotics Lab.

I would like to thank my coach Jordan Bos, for all the discussions we had during
our meetings and through e-mails, for his suggestions and feedbacks which made me
understand and learn things faster. I would like to thank Dr. Saccon, for dealing with
me since the times before my internship last year which he also supervised, for always
being supportive, positive and communicative. I would like to thank prof. Nijmeijer for
his highly efficient supervision since the beginning of my study, for whenever I needed
an answer, a connection or a project, he provided a good one.

And finally, I would like to thank my parents, for their unconditional love and
support, which made these two and a half years invaluable for me, in other ways too.

Talha Ali Arslan
January, 2016





iii

Abstract

In this thesis, solutions to the problems of task specification and inverse kinematics
are developed for the surgical robot RoBoSculpt, which is designed to assist surgeons
and perform bone removal procedures around the human ear and the skull base. The
robot has eight degrees of freedom in total, which makes it inherently redundant. Its
non-standard kinematic model includes six revolute joints, a prismatic joint and a ro-
tary tool for milling and drilling. The initial seven degrees of freedom, excluding the
rotation of the rotary tool, are utilized and task augmentation is used to resolve the
redundancy. An additional constraint task is defined specifically for this robot, along
with end-effector position and orientation tasks. With the proposed task specification
method, task trajectories are generated such that a bone removal procedure can be per-
formed inside an approximation of an ear bone cavity, without any collisions between
the end-effector, its supporting link and the ear cavity. The inverse kinematics problem
is solved by inverting the first-order differential kinematics with augmented task space.
A standard differential inverse kinematics algorithm, which is computationally efficient
and free of representational singularities, is adopted and modified for augmented task
space approach. It can be used for both pre-defined tasks and real-time operations. Ad-
ditionally, the end-effector manipulability is analysed. With the analysis, the capacity of
the end-effector motion and the performance of the kinematic tracking can be assessed in
various configurations of the robot, such as throughout a given task or inside a specified
region of the robot workspace. Moreover, decisions on the workspace placement of the
patient with respect to the robot can be made, to ensure that the robot is operated in
configurations where high end-effector manipulability is maintained. Finally, since the
robot is currently at its design phase, the software tools have been extended to allow
making design modifications in the kinematic model and performing forward and inverse
kinematics simulations with visualization.





v

Contents

Preface i

Abstract iii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 7

2.1 Surgical Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Bone Removal Robots . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Inverse Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Closed-form Solutions . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Numerical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.4 Differential Inverse Kinematics . . . . . . . . . . . . . . . . . . . 10

2.2.5 Redundant Serial Manipulator Kinematics . . . . . . . . . . . . . 12

2.3 Singularity Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Singular Value Decomposition of a Jacobian matrix . . . . . . . 18

2.3.2 Manipulability Measures . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Robot Description 21

3.1 Robot Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Kinematic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Task Specification Solution and Results 25

4.1 Task Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Ear Volume Approximation . . . . . . . . . . . . . . . . . . . . . 25

4.1.2 End-effector Position Trajectory . . . . . . . . . . . . . . . . . . 27

4.1.3 End-effector Orientation Trajectory . . . . . . . . . . . . . . . . 28

4.1.4 Constrained Use of Prismatic Joint for Spherical Clearance . . . 38

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



vi Contents

5 Inverse Kinematics Solution and Results 45
5.1 Differential Inverse Kinematics Algorithm with Augmented Task Space . 45

5.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.2 First-order Differential Kinematics . . . . . . . . . . . . . . . . . 46
5.1.3 End-effector Position Error . . . . . . . . . . . . . . . . . . . . . 47
5.1.4 End-effector Orientation Error . . . . . . . . . . . . . . . . . . . 48
5.1.5 Desired End-effector Angular Velocity . . . . . . . . . . . . . . . 49
5.1.6 Additional Constraint Task Error . . . . . . . . . . . . . . . . . . 49
5.1.7 Overall Task-Space Error . . . . . . . . . . . . . . . . . . . . . . 50
5.1.8 Augmented Jacobian and the IK Algorithm . . . . . . . . . . . . 50

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Manipulability Analysis and Software Implementation Details 59
6.1 Manipulability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.1.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Software Implementation and Toolbox . . . . . . . . . . . . . . . . . . . 66
6.2.1 Toolbox Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Conclusion and Recommendations 69
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A End-effector Orientation Error 77

B Forward Kinematics 81
B.1 Rigid Body Rotations & Translations . . . . . . . . . . . . . . . . . . . . 81

B.1.1 Position and Orientation Representation . . . . . . . . . . . . . . 81
B.1.2 Homogeneous Transformations . . . . . . . . . . . . . . . . . . . 83

B.2 Denavit-Hartenberg Parametrization . . . . . . . . . . . . . . . . . . . . 84
B.3 Forward Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

C Additional Figures 87
C.1 Intra-collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

D Homogeneous Transformation and Jacobian Matrices 89
D.1 Homogeneous Transformation Matrix of the End-effector Frame of Ro-

BoSculpt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
D.2 Geometric Jacobian Matrix of the End-effector Frame of RoBoSculpt . 90



vii

List of Symbols

Symbol Description Unit
q Vector of joint displacements
x Vector of task variables
θ, φ, α Angular parameters [rad]
o0x0y0z0 Inertial reference coordinate frame
odxdydzd Desired end-effector coordinate frame

ojix
j
iy
j
i z
j
i Coordinates of frame oixiyizi expressed in frame ojxjyjzj

Rji Rotation matrix with unit vector coordinates of frame i with re-
spect to frame j

R0
d Desired orientation of the end effector frame w.r.t. reference frame

p0d Desired position of the end effector w.r.t. reference frame

T ji Homogeneous transformation matrix from jth to ith frame
Ai Homogeneous transformation matrix from i− 1th to ith frame

Ri−1
i Rotational transformation matrix from i− 1th to ith frame

oi−1
i Origin of ith frame w.r.t. i− 1th frame
vki,j Translational velocity of frame i with respect to frame j, repre-

sented in the coordinates of frame k
ωki,j Angular velocity of frame i with respect to frame j, represented

in the coordinates of frame k
J, JA, Jaug Geometric, analytical, augmented Jacobian matrices
rs Radius of the ear section plane [m]
rb Radius of the cone bottom (cavity opening) [m]
dcl The clearance of the tool (final link) from the cone edge [m]
kcl Length of the milling tool inside the ear [m]
scl Clearance between the origins of the ear section and the 6th frame [m]
h̄s Distance between cone base and cone section [m]
ccl Increment for the spherical clearance [m]

Notation Description
�i ith term of vector �
�j
i � belonging to ith frame expressed with respect to jth frame

�̇, �̈ First and second order derivatives of � with respect to time
�T ,�+ Transpose and Moore-Penrose pseudoinverse of �

Abbreviations Description
CT Computed tomography



viii Contents

2D, 3D Two dimensional, three dimensional
DOF(s) Degree(s) of freedom
CAD Computer-aided design
DH Denavit-Hartenberg
R,P Revolute joint, prismatic joint



ix

List of Figures

1.1 A visual model of the surgery environment with the robot and the patient
with both ear volumes depicted as irregular cone-like shapes (Source:
Jordan Bos, 2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Approximate dimensions (in mm) and shape of the ear volume with some
of the important ear structures (black) (Source: Jordan Bos, 2015) . . . 3

3.1 Robot CAD model viewed from side (Source: Jordan Bos, 2015) . . . . 21
3.2 Robot schematic with the DH parameters and frames . . . . . . . . . . 22

4.1 Approximate ear cone with different orientations. In part (a), the cone
section frame osxsyszs is aligned with the reference frame o0x0y0z0 by
rotation Rpre. In part (b) and part (c), following the rotation of Rpre, the
cone section frame is rotated by π/6 about its current x-axis and y-axis,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Illustration of the surgical robot and the approximate ear cone . . . . . 26
4.3 Illustration of a position trajectory spanning the cone section. On the

left, a trajectory is shown with fine spacing between each point and a
small number of layers, whereas on the right, one with coarse spacing
and a large number of layers is shown. . . . . . . . . . . . . . . . . . . . 27

4.4 A continuously differentiable position trajectory spanning the cone section 28
4.5 Clock-wise spiral continuous trajectory . . . . . . . . . . . . . . . . . . . 28
4.6 Representations of the cone section frame osxsyszs and the intermediate

frame od′′′xd′′′yd′′′zd′′′ in (a) and the end-effector frame o7x7y7z7 (in red,
green, blue) with RoBoSculpt and a virtual cone (red-green) as reference
for orientation in (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.7 Representation of rotations - Plot (a) shows the pre-rotation by Rpre
around xs to obtain the intermediate frame od′′′xd′′′yd′′′zd′′′ while Plot
(b) shows the initial rotation by the approach angle θ around zd′′′ to
obtain od′′xd′′yd′′zd′′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.8 Representation of the approach angle θ . . . . . . . . . . . . . . . . . . 31
4.9 Representation of rotations - Plot (a) shows the second rotation by the

inclination angle φ around xd′′ to obtain od′xd′yd′zd′ , while Plot (b) shows
the third rotation by the self-rotation angle α around zd′ to obtain the
desired end-effector frame odxdydzd . . . . . . . . . . . . . . . . . . . . . 31

4.10 Representation of the inclination angle φ . . . . . . . . . . . . . . . . . 32
4.11 Representation of the self-rotation angle α, for a desired pose of the end

effector frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.12 Illustration of cone section and tool axis projection onto it, where σx and

σy are functions of the desired end-effector position . . . . . . . . . . . . 33



x List of Figures

4.13 Illustrations of the choice of the approach angle θ, when θ is set to be 0
(a) and when it is chosen as in (4.5) (b), viewed from the top of the cone
section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.14 Illustrations of the choice of the inclination angle φ, when φ is set to be
zero in (a), constant in (b) and when it is chosen according to (4.7) in (c) 35

4.15 Cone edge clearance - Upper part of the conic cylinder is the cone opening,
through which the tool (in blue) enters to reach cone section surface at
the bottom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.16 Description of the spherical clearance volume (blue dome) around the ear
volume section in (a) and prismatic joint’s actuated part (blue) and base
(red), which is not allowed inside the spherical volume, in (b) . . . . . . 38

4.17 Constant spherical clearance of the 6th frame with its position trace (black) 40

4.18 Robot with ear volume approximation cone . . . . . . . . . . . . . . . . 40

4.19 Task 1 - The desired end-effector position and orientation trajectories on
cone section plane viewed from front in (a), from side in (b) and from top
in (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.20 Task 2 - The desired end-effector position and orientation trajectories on
cone section plane viewed from front in (a), from side in (b) and from top
in (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.21 Task 1 - The desired end-effector position trajectory plot (top), the de-
sired end-effector orientation trajectory plot (middle) and the prismatic
joint’s desired constraint displacement trajectory plot (bottom) vs. time 42

4.22 Task 2 - The desired end-effector position trajectory plot (top), the de-
sired end-effector orientation trajectory plot (middle) and the prismatic
joint’s desired constraint displacement trajectory plot (bottom) vs. time 43

5.1 Joint displacement, velocity and acceleration profiles from differential in-
verse kinematics for Task 1 . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Joint displacement, velocity and acceleration profiles from differential in-
verse kinematics for Task 2 . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Task 1 - The plots of tracking errors of end-effector position (top) and
orientation (bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Task 2 - The plots of tracking errors of end-effector position (top) and
orientation (bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Task 1 - End-effector position (top) and orientation (bottom) tracking
errors with no gains (open-loop) . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Task 1 - End-effector position (top) and orientation (bottom) tracking
errors with increased gains . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1 Manipulability analysis data with respect to µ1 is represented with a
colormap, where the robot is in the center and blue points surrounding
the data represent the orientation trace of the end-effector at each sample
(3D plot from side-view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Plot (a) shows the manipulability analysis with respect to µ1 while Plot
(b) shows the analysis with respect to µ2 (3D plot from side-view) . . . 61

6.3 Horizontal section of the 3D grid of the mean values of manipulability data 61

6.4 Filtered manipulability measure data with respect to end-effector position
and orientation range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



List of Figures xi

6.5 Manipulability analysis in a small volume - Sampling the Workspace
(with end-effector orientation reference (green line), obtained orientation
at each point (blue trace)) . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.6 Two ear volume placements where the lower-left cone is in the same place
as Task 1. The placement on lower left is denoted Test 1 (gray) and the
one on upper right is denoted Test 2 (red) (3D plot from side-view) . . . 64

6.7 Manipulability measure µ1 throughout a task with different placements
in the robot workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.8 A brief schematic of the software implementation in Matlab . . . . . . . 66

B.1 Representation of a rotation between frame o1x1y1 and o0x0y0 by θ . . . 82

C.1 RoBoSculpt with Links 2, 3 and 5 re-meshed with triangles . . . . . . . 87
C.2 A re-meshed robot part with vertex normal vectors . . . . . . . . . . . . 88





1

Chapter 1

Introduction

1.1 Motivation

The first time a robot was used in a surgical operation was in 1983 in Vancouver.
The robot was named Arthrobot and it helped in improving surface conformity and
accuracy of orientation of a hip joint replacement operation. Since then, surgical robots
have assisted more and more surgeons and helped improving the quality of healthcare.
Some important achievements which result from the use and assistance of surgical robots
in healthcare can be summarized as:

• Reducing the amount of invasiveness for a surgery, thus reducing the impacts on
and the recovery period of the patient,

• Reducing the duration of the operation,

• Allowing the surgeons to achieve high precision for complex movements at different
levels with ease, by various technologies such as tremor filtration, motion scaling
and force feedback.

Robots are used in various fields of surgery and it is fair to say that more advances
in the field of surgical robots are to come. One popular field of surgery for robots is
bone removal and reshaping. Since operating on bones requires more power, rigidity and
amount of work, specially designed or modified robots take the place of manual hand
tools to assist surgeons. Ear surgeries are special cases for the use of robotics for bone
removal, since to reach middle and inner ear, a portion of the ear temporal bone, which
contains critical and delicate structure, must be removed. These surgeries, which are
conventionally done manually by hand tools, require a clear visual and a high level of
precision while a high-speed rotary tool is being used. In this respect, use of a robotic
bone removal device, which is guided by 3D Computed Tomography (CT) images, has
the potential to improve the quality of surgery. Furthermore, it may be possible to
reduce the duration, overall costs and the necessary amount of invasiveness of bone
removal surgeries, which may minimize the impact on the patient. Bone removal at the
ear temporal bone and skull base are generally required for surgical procedures such
as tumor removal and implantation. The structure within the temporal bone such as
nerves that are linked to facial muscles, hearing, balance and taste, can be preserved if
less invasiveness, need for less visual access and high precision is achievable. A surgical
robot can use CT images to navigate towards the target under supervision of the surgeon,
while evading important structures. Hence, the surgeon does not solely have to rely on



2 Chapter 1. Introduction

visual access any more, which can increase safety and reduce invasiveness of surgery.
The accurate motions of the robot can increase precision of the bone milling task and
reduce the operation time, for example in the case of Cochlear implantations where the
install area of the implant and paths of the electrodes are carved out in the temporal
bone. Such a device can also be used in other areas of the body where bone milling and
restructuring are carried out, such as oral and maxillofacial surgery, orthopedics and
spinal surgery.

1.2 Problem Statement

A novel lightweight modular robotic arm with eight DOFs (degrees of freedom) has
been recently designed at the Department of Mechanical Engineering of the Eindhoven
University of Technology (TU/e). The design, which is proposed by Jordan Bos MSc, is
the first step towards the realization of a novel precision bone-machining robot to assist
surgeons in ear bone removal surgery (see the patent application details [1] for future
reference). It consists of an initial serial kinematic chain composed by six revolute joints
connecting five modular rotating units to a fixed base, terminated with a prismatic joint,
which is followed by a rotary tool at the end of the chain. Its CAD (Computer-aided
Design) model in a surgery environment with a patient is shown in Figure 1.1. The
rotary tool, which is the robot end-effector, is intended to perform drilling and milling
tasks on human ear temporal bone. Bone drilling is a cutting process where the rotating
tool tip is moved into the bone along the rotary tool axis to cut or enlarge a hole. Bone
milling is a machining process where the bone is fed to the rotating tool tip at an angle
with respect to the tool’s rotation axis (generally at a right angle) to remove bone along
the route of the tool tip.

Figure 1.1: A visual model of the surgery environment with the robot and the patient with both
ear volumes depicted as irregular cone-like shapes (Source: Jordan Bos, 2015)

As seen in Figure 1.2, the ear volume, where the surgical operation takes place,
can be seen as a somewhat irregular cone, with some of the delicate structures in the
middle ear. Depending on the type and required invasiveness of a surgery, structures
such as ear ossicles (sound wave vibration transfer), ear drum, semicircular canals (sense



1.2. Problem Statement 3

of balance and acceleration), cochlea (auditory sensing), cochlear nerves (auditory sense
transfer nerve), vestibular nerves (balance and acceleration sense transfer nerve) and
facial nerves (motor control of facial muscles) may be inside the operation volume.

Figure 1.2: Approximate dimensions (in mm) and shape of the ear volume with some of the
important ear structures (black) (Source: Jordan Bos, 2015)

With the robot design at hand [1], it is aimed to use the robot to assist the surgeon
in the bone removal process. During an operation, 3D images obtained from CT scans
are to be used to precisely remove and navigate through less important obstacles while
avoiding the important structures along the way to the target locations. With the
precision that can be achieved by using CT scans, the use of this robot can reduce
the amount of invasiveness throughout the surgery. This can reduce the impact of the
surgery on the patients afterwards, since there is a strong possibility of maintaining inner
ear functions such as senses of hearing, balance, taste and motor control of facial muscles,
which would otherwise require additional post-operations for recovery, if possible.

From a dynamics point of view, the robot has eight DOFs. However, the high-speed
rotation of the rotary tool is out of scope of this thesis, since the rotating unit’s rapidly
changing orientation is not relevant in setting an end-effector pose for the robot. Rather
than the orientation of the actual tool tip, the orientation of its axis of rotation is relevant
in setting an end-effector pose, from a kinematics point of view. When the high speed
motion of the rotary tool, which does not change the tool tip’s position, is not taken
into account, the initial seven DOFs are sufficient in finding, describing and setting an
end-effector pose. Hence, from this point onwards, the robot and its kinematics will be
described with seven DOFs.

To use RoBoSculpt in ear surgeries and to move its end-effector for precision milling
and drilling tasks, the inverse kinematics problem must be solved. Having seven DOFs,
RoBoSculpt is an inherently redundant manipulator since completely specifying the
end-effector frame position and orientation is not enough to get a unique set of joint
displacements. Additionally, a non-standard kinematic structure, which misses a typical
wrist present in most industrial manipulators with six DOFs, is proposed due to the



4 Chapter 1. Introduction

requirements on rigidity and dynamic performance for the tasks of bone milling and
drilling.

To ensure successful bone removal by RoBoSculpt, firstly, a solution to the inverse
kinematics problem must be developed for this inherently redundant manipulator. As
the robot is planned to also assist surgeons during surgery, the inverse kinematics so-
lution should be suitable for real-time use, which requires it to be computationally
efficient and reliable. Secondly, it is necessary to devise a strategy to define the desired
end-effector motions in terms of parameters that are meaningful for milling and drilling
procedures in concave surfaces and for avoiding contacts between the patient and the
robot parts other than with the end-effector only. Thirdly, to maintain the manipulabil-
ity of the end-effector at a high level throughout given tasks, manipulability measures
and singularities must be investigated in the robot’s workspace. In addition to focusing
on these main topics, the subject of intra-collisions between robot parts should also be
considered. Finally, since the robot is at its design phase, the software, which is to
be developed for testing task specification, generation, inverse kinematics solution and
manipulability analysis, should be modifiable and expandable to do design assessments
on the robot and its kinematic model.

1.3 Contributions

The contributions of this thesis to the design and realization of the surgical robot
RoBoSculpt are as follows:

• A task specification strategy, which involves a parametrization to describe the
desired motion of the end-effector to mimic typical hand motions performed by
a surgeon during a manual bone removal procedure, is developed. The solution
includes a complete definition of the end-effector position, orientation and an ad-
ditional constraint task. Using geometrical approaches, firstly, the end-effector
orientation is described such that tasks can be generated to orientate the end-
effector in an approximate ear cone cavity without any collisions inside. Secondly,
the clearance problem, which is to keep the end-effector’s supporting link clear of
the patient, is decoupled from the end-effector task to the rest of the robot joints
by setting a constraint on the last joint which utilizes self-motions of the robot
and there is no redundancy any more.

• A solution to the inverse kinematics problem, which allows to compute joint tra-
jectories from a given task trajectory, incorporating task augmentation and redun-
dancy resolution by the additional constraint task from the task specification part
with a differential inverse kinematics algorithm, with accurate kinematic track-
ing and efficient computational performance to allow online use in real-time, is
developed.

• A method to analyse the robot manipulability is developed, to inspect less manip-
ulable regions of the robot workspace where instabilities and failures may occur,
and to help in making design choices for patient-robot positioning, the initial con-
figuration of joints and the robot kinematic model.

• Software tools in Matlab are developed, to evaluate the kinematic model, the de-
sign and the proposed solutions in a parametric way to be able to do redesign and



1.4. Outline 5

modifications in the model and workspace specifications, and test them accord-
ingly.

1.4 Outline

The outline of this thesis is as follows. In Chapter 2, a literature review on recent
surgical robots with purposes similar to RoBoSculpt and on solutions to inverse kine-
matics of serial manipulators is presented. In Chapter 3, the surgical robot RoBoSculpt
is described along with its kinematic model. In Chapter 4, the proposed task specifi-
cation method is described and corresponding task generation results are presented. In
Chapter 5, the proposed solution to the inverse kinematics problem is described and
corresponding inverse kinematics simulations and results are presented. In Chapter 6,
the proposed method of manipulability analysis with its results and the implementation
details of the software used for the simulations are presented. Finally, in Chapter 7,
conclusions are made and recommendations are given.





7

Chapter 2

Literature Review

2.1 Surgical Robots

Since mid-1980s, robots have been taking an active role in healthcare. The first
known surgical robot is the Arthrobot, which was used in 1983, for a hip arthroplasty
surgery [2]. Arthroplasty is an orthopaedic surgical procedure, during which the function
of a skeletal joint is restored by replacement, remodelling or realignment of bone struc-
tures. The robot was programmed with a pre-planned motion and mounted on the tip
of the femur bone at the hip, where it performed a carving out task to prepare the bone
cavity for a hip joint implant. Following Arthrobot was the use of the industrial robot
Unimation Puma 200 in stereotactic brain surgery in 1985 [3]. The surgery involved in-
sertion of a probe into the brain through a small hole on the skull of the patient, without
any visuals from inside the brain. The success of the operation relied on the surgeon’s
experience on choosing an initial trajectory and straight guiding of the probe into the
skull until the target location for the probe was reached. For these purposes, industrial
robots on the market were screened and Unimation PUMA 200 was found to be the best
suited one, due to being a programmable, computer controlled and versatile robot that
was designed for accurate and delicate tasks. Other robots followed these pioneers and
assisted surgeons in other procedures such as urological surgeries [4], endoscopy [5] and
laparoscopic surgeries. In the year 1998, two robotic surgical systems were introduced;
ZEUS by Computer Motion, Inc. and the da Vinci by Intuitive Surgical, Inc., which
were both consisting of a surgical control centre and a robotic arms unit. The current
state of the da Vinci Robotic Surgical System, which is one of the systems that is used
in various locations world-wide, allows the surgeon the control the robotic arms through
a master unit which allows motion scaling and tremor filtration, along with a magnified
3D vision. On the patient side, the robotic arms, which have seven degrees of freedom
including the surgical instruments attached, are inserted to the surgery area through
1-2 cm incisions which account for being minimally invasive. Use of such a surgical
system for minimally invasive robot-assisted surgeries results in decreased length of stay
in hospital after surgery and fewer complications in the majority of the cases [6].



8 Chapter 2. Literature Review

2.1.1 Bone Removal Robots

Surgical procedures involving bone removal require higher force interaction due to the
structure of the human bone. A robotic system which is used for bone removal requires
a structure with high stiffness and rigidity, such that deformations and deflections on
the robot parts and joints due to high forces on the end-effector are kept minimal, to
overcome high and variable force interaction and perform well during dynamic control.
This is reflected in some of the earlier robotic systems such as PUMA 260 [7], ACROBOT
[8] and ROBODOC [9] to have a large size. More recently, smaller robotic systems aimed
at bone removal such as Mbars [10], MARS [11], which can be mounted on the bone itself,
are developed [12]. Robots with larger sizes suffer from the fact that a movement that
may occur on the patient side requires the halt of the operation until a re-calibration
is done, which is why the bone that is operated on has to be fixed to the operation
table. Smaller, bone-mounted robots give more freedom in the movement sense, but
they require extra surgical procedures to attach the robot to the bone.

Robotic systems, which are controlled directly by movements of the surgeon as in
master-slave systems, are called semi-active. Using semi-active systems, surgeons make
use of the rigid structure and guiding mechanisms which eases the task of bone milling
in terms of precision and speed. Robotic systems which carry out pre-planned motions
autonomously are called active.

A recent study related to ear surgery, using a small sized, active and bone mounted
robot proposes the use of CT scans to manually pre-plan the bone removal task on the ear
temporal bone, which is then monitored by the surgeons throughout surgical procedure
[13]. The small sized robot, which is fixed to the skull during surgery, has four degrees of
freedom, which include three prismatic joints and a revolute joint. Trajectory planning
is done after the surgeons manually choose the target regions to be removed in the 3D
CT scans of the bone. The selected regions are voxellized and an algorithm is used,
which results in visiting all of the target voxels and coming back to the starting point.
To begin the surgical procedure, the robot is fixed to the patient and a CT scanning is
performed to align the pre-plan with the current placement of the patient with respect
to the robot.

Another recent study is related to a robot named RobOtol [14], which is a semi-active
robot operated by surgeons using a master unit. The robot has six degrees of freedom
and it is fixed in the operation environment. During operation, surgeons has complete
control on the movements of the robot and visual access is made available by using an
additional endoscopic unit. Although the robot is designed for removal of structures and
tissues other than the bone in ear surgery, its kinematic model and tool manipulation
inside the auditory canal are of interest.

2.2 Inverse Kinematics

Kinematics describes the motion of points and bodies relative to each other without
any consideration of the causes of motion. The kinematic model of a robot contains
information about how the motions of robot links are related to each other through the
configuration of robot joints. Having a kinematic model of a robot, one can find the
motion of the its end-effector resulting from the individual motions of its links by use of
its joints, which is so-called the forward kinematics (see Appendix B for more details).
The inverse kinematics, on the other hand, is related to the problem of finding the joint
configurations of a robot that satisfies the execution of a task at the end-effector level.



2.2. Inverse Kinematics 9

A joint configuration is described in the robot’s configuration space, whereas a task is
described in the robot’s task (or operational) space.

In this section, different methods to approach and solve the inverse kinematics prob-
lem of a serial chain manipulator are evaluated. Firstly, a brief overview is given for
forward and inverse kinematics. Secondly, the availability of a closed-form solution
through a geometric or an analytical approach is discussed in Section 2.2.2. Thirdly,
using differential methods to solve the inverse kinematics problem is discussed in Section
2.2.4. Following that, the concept of redundancy and redundancy resolution methods
are discussed in Section 2.2.5 and finally, the singularity problem, methods of doing a
manipulability analysis and manipulability measures are discussed in Section 2.3. Af-
terwards, a discussion on the reviewed topics is given.

2.2.1 Overview

The forward kinematics of a serial-chain manipulator gives the position and orienta-
tion of the end-effector frame relative to the base frame, with given joint displacements.
Denoting the end-effector task variables by the vector x, which is composed of the vari-
ables describing the position and orientation of the end-effector frame, and the joint
displacements by the vector q, the forward kinematics can be expressed as

x = f(q). (2.1)

The set of task variables x can include the position and orientation of the end-effector
and other variables that depend on joint displacement variables. Having a kinematic
model, the forward kinematics equation f(q) can be obtained through rigid body trans-
formations (see Appendix B), which contains trigonometric expressions and is therefore
a non-linear vector function.

In the cases that a robot is expected to execute a task, it is necessary to obtain the
set of joint variables q that results in a desired task xd, which is the inverse kinematics
problem that involves finding the inverse mapping between the joint and task variables,
if possible. Assuming that a solution exists (i.e. the task xd lies in the workspace of
the robot) and the forward kinematics equation f(·) is invertible, the inverse kinematics
solution can be expressed as

qd = f−1(xd), (2.2)

where xd and qd denote the desired task and joint variables which are mapped through
the inverse kinematics described by f−1(·). However, obtaining the inverse mapping
f−1(·) from the forward kinematics non-linear vector function f(·) is not trivial at all
even if it exists. Nevertheless, it is necessary to find the joint trajectories qd(t) over
time t, by any means available such as analytical, geometrical, differential or numerical
methods, if a robot is expected to perform given tasks described by xd(t).

2.2.2 Closed-form Solutions

Closed-form solutions are desirable since they can provide all of the possible solutions
to the inverse kinematics problem faster than numerical methods, assuming that there
exists at least a solution (i.e. the desired task is inside the workspace of the robot).
However, closed-form solutions are not easy to obtain and they are specific to the robot’s
kinematic model.



10 Chapter 2. Literature Review

Two sets of methods can be used to find a closed-form solution to the inverse kine-
matics problem; algebraic and geometric. Algebraic methods involve using relations
between the equations on the transformation matrix of the end-effector with respect to
the base. If possible, by using these relations, the equations result in the joint variables.
Geometric methods involve, if possible, decomposing the inverse kinematics problem into
planar sub-problems by relating the desired position and orientation to reduced sets of
joint variables. Both algebraic and geometric methods are suitable for non-redundant
systems and their complexity increases with the number of degrees of freedom. For a
six degrees of freedom serial chain manipulator, there exist a closed-form solution if the
two sufficient conditions below are satisfied [15]:

• Three consecutive revolute joints’ axes intersect at a certain point,

• Three consecutive revolute joints’ axes are parallel to each other.

These conditions allow the inverse kinematics problem to be decomposed into two sub-
problems of finding the joint variables for a desired orientation and position.

The mapping from joint variables to task variables becomes increasingly non-linear
as the number of degrees of freedom of a considered a manipulator is high. Thus, finding
the inverse mapping using algebraic or geometric methods can be too complex to han-
dle. Also, robots, which are functionally or mechanically redundant, have more degrees
of freedom than necessary to execute their tasks and therefore the inverse kinematics
problem of redundant manipulators has either infinitely many solutions or no solution.

2.2.3 Numerical Solutions

There are several approaches to tackle the problem of choosing a set of joint variables
when infinitely many solutions to the inverse kinematics problem exist. The iterative
methods include Newton-Raphson method [15], optimization approaches [16], resolved
motion rate control [17], interval analysis [18] and damped least-squares approach.

In the Newton-Raphson method, first-order approximation of the set of non-linear
equations is used. Based on an initial guess, the iterative algorithm searches for a solu-
tion until it converges within a set tolerance. This method is useful to find the starting
configuration of the robot for different tasks that require different initial configurations.

Although numerical solutions are not robot-specific, they are generally based on a
proper initial guess, they may not provide all possible solutions for some cases and they
are computationally demanding to do in real time.

2.2.4 Differential Inverse Kinematics

For redundant kinematic structures with a high number of degrees of freedom, the
solution to the inverse kinematics problem is not straightforward due to the highly
non-linear relationship between the joint and task space variables. Since the first-order
differential kinematics is a linear mapping between the joint and task velocity spaces, it
can be used to obtain the inverse kinematics solution numerically.

Let the set of joint variables which belong to the configuration space of a robot be

q = (q1, . . . , qn)T , (2.3)



2.2. Inverse Kinematics 11

where n is the number of degrees of freedom of the robot and qi with i ∈ {1, . . . , n}
denote the joint variable which is the relative displacement of body i with respect to
body i− 1 according to the joint characteristics.

Let the set of task variables which belong to the task space of a robot be

x = (x1, . . . , xm)T , (2.4)

where m is the number of degrees of freedom that the task is described by and each task
variable xi is one of the terms that describe the task. Generally, m = 6 holds where the
first three components in x describe the end-effector position and the last three describe
the end-effector orientation using three angular variables as a minimal representation of
orientation such as Euler angles. Such a task can be described as

x = [ox oy oz α β γ]T . (2.5)

The relationship between the robot configuration (2.3) and the task configuration
(2.4) in an appropriate space can be established at position, velocity and acceleration
levels. Recall that forward kinematics is described as

x = f(q), (2.6)

where f(·) is a non-linear vector function, mapping the joint configuration q to the task
configuration x.

The first-order differential kinematics is obtained by differentiating the forward kine-
matics (2.6) with respect to time as

ẋ = JA(q)q̇, (2.7)

where ẋ is the task space velocity, q̇ is the joint space velocity and JA(q) = ∂f
∂q is

the analytical Jacobian matrix with the dimensions m × n. Note that ẋ describes the
task space velocity which represents the rate of change in position and the parameters
from the minimal description of the orientation. Hence, it does not include directly the
angular velocities of the end effector, in which case the geometric Jacobian would be
used.

Similarly, one can also obtain the second-order differential kinematics as

ẍ = JA(q)q̈ + J̇A(q, q̇)q̇. (2.8)

The end-effector spatial velocity which contains the translational and angular veloc-
ities is

v =

(
ṗ
ω

)
6×1

, (2.9)

and the following transformation holds between the spatial velocity v and the rate of
change of the task variables ẋ

ẋ = T (x)v, (2.10)

where T (x) is the transformation matrix depending on the chosen angular representation
for the orientation.

The transformation matrix T (x) has the form



12 Chapter 2. Literature Review

T (x) =

(
I 0
0 Rmr

)
, (2.11)

where I is an 3 × 3 identity matrix since there is no transformation necessary between
first-order differential of positional variables andRmr is the matrix which relates the first-
order differential of the angular parameters to the angular velocity of the end effector,
depending on the adopted minimal representation of the orientation.

For a given manipulator, the mapping between the joint and task space velocities is
described as

v = J(q)q̇, (2.12)

where J(q) is the geometric Jacobian matrix with dimensions 6 × n which relates the
joint-space velocity directly to the end effector velocity. From (2.7), (2.10) and (2.12),
we can relate the geometric Jacobian matrix to the analytical Jacobian matrix as

JA(q) = T (x)J(q). (2.13)

By considering (2.10) and (2.12) with m = n = 6 (i.e., the Jacobian is a 6×6 square
matrix) and assuming that the Jacobian is invertible, the set of joint velocities which is
the solution to the first-order differential kinematics in (2.12), can be obtained as

q̇ = J−1(q)v, (2.14)

where v = T−1(x)ẋ is the spatial end-effector velocity, assuming that T (x) is invertible
(i.e. there is no representational singularity which causes rank deficiency in T (x)) and
J(q) is invertible (i.e. no kinematically singular configuration is reached).

With a given initial joint configuration q0 = q(0), the joint positions can be computed
by integrating computed velocities from (2.14) with given desired position xd(t) and
velocity trajectories vd(t) as

q(t) =

∫ t

0
J−1(q(τ))vd(τ) dτ + q0. (2.15)

This method of inverting the kinematics requires that the Jacobian is square and in-
vertible. However, in the case of redundant manipulators, the Jacobian is not square.
Additionally, kinematic and representational singularities should be taken into account.
Lastly, in theory, integration of the first-order inverse kinematics gives the joint profile
that executes the given task. However, in practice, errors result from numerical integra-
tion and a drift between the final and the desired end effector pose in task space takes
place. These issues are discussed in the next sections.

2.2.5 Redundant Serial Manipulator Kinematics

A kinematically redundant manipulator has more degrees of freedom than it is
strictly required to execute its task. The additional degrees of freedom provide a higher
level of dexterity, which can be used to avoid singularities, obstacles in the workspace
and joint limits. However, it also results in infinitely many solutions and the problem
of choosing one.

The redundancy of a manipulator depends on its given task. In three-dimensional
space, a manipulator task is generally described by the position and orientation of



2.2. Inverse Kinematics 13

the end-effector which requires six degrees of freedom. However, some tasks can also
be described using a subset of the generally required six degrees of freedom (e.g. to
position the end-effector without any constraints on its orientation or the given task).
In this regard, robotic manipulators with six or less degrees of freedom may or may not
be redundant, depending on the task given, whereas a manipulator with seven or more
degrees of freedom can be described as inherently redundant.

Although minimal complexity in design is a desirable factor since it reduces costs
and maintenance issues, redundant manipulators have greater dexterity which allow for
motions which would otherwise not be possible. These may include internal motions
which allow movement of the joints while the end-effector task does not undergo a
change. Additionally, the infinitely many solutions in the workspace of the robot allow
for obstacle, intra-collision and singularity avoidance while the same task is carried out.
However, it should be noted that with the given complexity of the system that allows
for high dexterity, kinematic singularities, joint limits and intra-collisions become more
crucial for safe operation and therefore must be considered in the robot motion planning.

Inverse Differential Kinematics for Redundant Manipulators

For redundant manipulators, the number of joint space variables exceeds the number
of the variables that describe the task (m < n). As a result, the Jacobian matrix of a
redundant manipulator is low-rectangular having more columns than rows and infinitely
many solutions exist as long as it is full rank (i.e., the manipulator is not at a singular
configuration). The first-order differential kinematics (2.7), which is a linear mapping
between the joint and task space velocities with the Jacobian as the coefficient matrix
[17], has the general solution that can be expressed for redundant manipulators as

q̇ = J+
A ẋ+ (I − J+

AJA)q̇0, (2.16)

where J+
A is the pseudo-inverse of the analytical Jacobian matrix and its dependency on

q is omitted for clarity. Also (I − J+
AJA) represents the null-space projection matrix of

JA and q̇0 is an arbitrary vector incorporating the infinitely many solutions that result
from redundancy. These are the so-called null-space velocities which result in internal
motions where the end-effector stays stationary in terms of its task, while the joints
move.

The pseudo-inverse of a matrix J , which is denoted by J+, satisfies the following
Moore-Penrose conditions [19]

JJ+J = J
J+JJ+ = J+

(JJ+)T = JJ+

(J+J)T = J+J

. (2.17)

When JA ∈ Rm×n is a low-rectangular matrix (m < n) and it has full rank (m indepen-
dent row vectors), its pseudo-inverse is defined as

J+
A = JTA (JAJ

T
A )−1. (2.18)

When the choice of the arbitrary vector is set to q̇0 = 0, (2.16) becomes

q̇ = J+
A ẋ, (2.19)

which provides the least-squares solution with minimum norm to (2.7).



14 Chapter 2. Literature Review

Equation (2.16) is a general solution to the inverse differential kinematics of a redun-
dant manipulator, which gives all least-squares solutions to the problem of minimizing
||ẋ − JAq̇||. Using the arbitrary vector q̇0 and the orthogonal projection into the null-
space of JA, solutions can be obtained in many different ways that result in different
joint velocities, while the task velocity is the same. Alternatively, the minimum norm
solution from (2.19) can also be chosen.

Optimization for Redundancy Resolution

When the Jacobian matrix is not square, the least squares solution to ẋ = JA(q)q̇ is

q̇ = J+
A (q)ẋ, (2.20)

where J+
A = JTA (JAJ

T
A )−1 (omitting the dependency on q for simplicity) is the pseudo-

inverse of the Jacobian matrix when it is low rectangular and full rank. In addition to
this solution, which gives a minimum norm result, the orthogonal projection matrix N0,
which is described as

N0 = (I − J+
A (q)JA(q)), (2.21)

can be used to exploit the underdetermined nature of the problem. Using (2.21), any
arbitrary vector q̇0 can be projected into the null space of JA(q) to include null-space
velocities in the solution without changing the resulting task-space velocity ẋ, as

q̇ = J+
A (q)ẋ+N0q̇0. (2.22)

This approach can also be used for acceleration (i.e., second-order differential kinematics
level) as

ẍ = JA(q)q̈ + J̇A(q, q̇)q̇, (2.23)

q̈ = J+
A (q)(ẍ− J̇A(q, q̇)q̇) +N0q̈0. (2.24)

Both (2.22) and (2.24) show that for given task velocity and acceleration profiles, in-
finitely many solutions to joint velocity and acceleration profiles exist. To choose a
solution among the infinitely many, the arbitrary vector can be defined according to
properly set criteria, which impose secondary tasks. However, it should be noted that
whether a minimum norm solution as in (2.20) or a general solution as in (2.22) is used,
the solution is still a local optimization and it does not ensure that a global velocity
or acceleration minimization is achieved. Therefore, criteria set with secondary tasks
in the general solution are not guaranteed along the whole task trajectory [20]. Below
are three different examples of utilizing the redundant degrees of freedom for different
purposes where the arbitrary vector q̇0 is defined [21] in the form

q̇0 = k0
∂H

∂q

T

, (2.25)

which results in the general solution as

q̇ = J+
A (q)ẋ+ k0(I − J+

A (q)JA(q))∇H(q), (2.26)

where k0 is a positive constant and H is an objective function that is secondary with
respect to the primary task of trajectory tracking. A measure, which is desired to



2.2. Inverse Kinematics 15

be maximized, is a proper choice for the objective function H, since the gradient of H
defines the direction of the solution, which is locally compatible to the primary objective
of trajectory tracking.

Possible choices for the objective function H in (2.25) to impose secondary tasks are
[21],

• For joint limits, the secondary objective function H can be chosen as a perfor-
mance criteria defining the distance from joint limits based on the current joint
configuration, which must be maximized and which is defined as

H(q) = − 1

2n

n∑
i=1

(
qi − qi,mid

qi,max − qi,min

)2

, (2.27)

where n denotes the number of degrees of freedom, and qi, qi,min, qi,mid and qi,max
denote, at ith among n joints, the current joint position, the lower limit, the mid-
value and the upper limit for the joint displacement, respectively.

• For singularity avoidance, the secondary objective function H can be defined as
the manipulability measure

H(q) =
√
det(J(q)JT (q)), (2.28)

which vanishes as a singular configuration is reached and by maximizing it, singu-
larities may be avoided.

• For obstacle avoidance, the secondary objective function H can be defined as the
distance from an obstacle in the workspace as

H(q) = min
p,po
||p(q)− po||, (2.29)

where po is the position of a chosen point on the obstacle and p(q) is the position
of a generic point on the manipulator, and by maximizing the above quantity,
collisions with obstacles can be avoided.

Use of the arbitrary vector q0 is promising for the freedom it allows in setting sec-
ondary tasks such as joint limits avoidance and singularity avoidance. However, this is
only a local optimization. In fact, every form of the pseudo-inverse solution is locally
optimal. Even if a solution is found at a given time step, this does not ensure optimality
of the solution for the whole task trajectory. Alternatively, optimization at the second-
order differential kinematics level or global optimization can be utilized. However, the
selection of joint velocities in real time would not be computationally feasible, since any
change in the trajectory requires repetition of the optimization procedure for the whole
trajectory.

Task-Space Augmentation for Redundancy Resolution

To make use of the redundant degrees of freedom, the task at hand can be dimen-
sionally augmented by a proper number of degrees of freedom to include objectives in
addition to the end-effector task. As a result, a set of joint variables from the infinitely



16 Chapter 2. Literature Review

many solutions can be chosen which fulfill the end-effector task along with the added
objectives. Two approaches are the extended Jacobian [22, 23] and the augmented
Jacobian [24, 25].

Recall the direct forward kinematics and the first-order inverse differential kinematics

x = f(q), (2.30)

ẋ = JA(q)q̇, (2.31)

where q ∈ Rn and x ∈ Rm are the sets of joint and task space variables having the
specified dimensions, respectively.

Extended Jacobian Approach

In the extended Jacobian approach, the task vector is augmented by defining addi-
tional functional constraints along with the original task of the end-effector. Constraints
are obtained as follows. Let g(q) be a objective function to be optimized. When g(q) is
at an extreme (a minimum or a maximum, depending on how g(q) is defined; it can be
average joint torque which is to be minimized or a manipulability measure which is to
be maximized) for q = q0 under the constraint x0 = f(q0), the following holds [22]

∂g(q)

∂q

∣∣∣∣
q=q0

(I − JTA (q0)JA(q0)) = 0T , (2.32)

which yields a set of equations that are independent constraints. The set of constraint
equations have the dimension of the null space of JA, which is n−m, where n and m are
the number of DOF of the robot manipulator and the task, respectively. The constraint
equations can be written in vector form and be denoted by h(·) as

h(q0) =

(
∂g(q)

∂q

∣∣∣∣
q=q0

(I − JTA (q0)JA(q0))

)T
= 0. (2.33)

The condition in (2.33) can be incorporated with (2.30) setting that the motion starts
with x0 and q0 and the objective function g(q) is extremized (minimized or maximized,
depending on the choice of g(q)) at all times, as(

x(t)
0

)
=

(
f(q(t))
h(q(t))

)
, (2.34)

and by differentiating the above expression with respect to time

(
ẋ(t)

0

)
=

(
JA(q(t))
∂h(q(t))
∂q

)
q̇(t), (2.35)

where the extended Jacobian is obtained as

Jext =

(
JA(q)
∂h(q)
∂q

)
. (2.36)



2.2. Inverse Kinematics 17

If the initial configuration q0 is chosen such that it extremizes the objective function
g(q) and the square extended Jacobian is invertible provided that no singular configu-
ration is attained, the solution to the inverse kinematics at the first-order differential
level is obtained as

q̇ = J−1
ext

(
ẋ
0

)
, (2.37)

which can be integrated over time to obtain joint trajectories q(t) which track a task
trajectory x(t) while optimizing g(q(t)).

Augmented Jacobian Approach

In the augmented Jacobian approach, a constraint task xc with a proper dimension
is introduced to be fulfilled in addition to the original end-effector task x. The relation
between the constraint task vector xc and the joint variables q can be considered similar
to the direct forward kinematics equation as

xc = fc(q), (2.38)

where the constraint task has a dimension equal to the number of redundant degrees of
freedom (i.e. xc ∈ Rn−m). Its first-order differential with respect to time follows as

ẋc = Jc(q)q̇. (2.39)

With the addition of the constraint task as defined by its kinematics equation (2.38),
the task vector is augmented as

xaug =

(
x
xc

)
=

(
f(q)
fc(q)

)
. (2.40)

Then, the first-order differential kinematics follows as

ẋaug =

(
JA(q)
Jc(q)

)
q̇, (2.41)

where Jc =
∂xc
∂q

is the Jacobian of the constraint task. Hence, the augmented Jacobian

matrix is defined as

Jaug(q) =

(
JA(q)
Jc(q)

)
, (2.42)

which has the dimension n × n. By inverting the linear mapping between the joint
variables q and the augmented task variables xaug in ẋaug = Jaug(q)q̇, we obtain

q̇ = J−1
aug(q)ẋaug, (2.43)

where the solution q̇ satisfies both the end-effector task x and the constraint task xc,
given that the augmented Jacobian matrix Jaug(q) does not become singular. This makes
the choice of the constraint task critical. The inverse differential kinematics equation in
(2.43) can then be integrated over time to obtain joint trajectories q(t) which satisfy an
augmented task trajectory xaug(t).



18 Chapter 2. Literature Review

2.3 Singularity Problem

A robot configuration qs is singular if the Jacobian matrix JA(q) is rank deficient
at q = qs. From the first-order (2.7) and second-order differential kinematics (2.8), it is
straightforward to see that at a singular configuration, it is impossible to generate end
effector task velocities and accelerations in certain directions due to the rank deficiency.
From (2.13), it can be stated that a singularity might occur due to a loss of rank of the
transformation matrix T (x) and/or the geometric Jacobian matrix J(q). A singularity
from the transformation matrix T (x) is not directly related to the motion capability
of the manipulator since it depends on the adopted representation of the orientation
of the end-effector. This is why such a singularity is referred to as a representation
singularity. A singularity occurring from the geometric Jacobian matrix is due to the
joint configurations where the desired task velocities become infeasible for any joint
velocity command due to a loss of mobility. This is why such a singularity is referred to
as a kinematic singularity.

2.3.1 Singular Value Decomposition of a Jacobian matrix

To analyze the first-order differential kinematics (2.7), motion capabilities and pos-
sible singularities, singular value decomposition (SVD) can be used to determine the
rank of the Jacobian which can be decomposed as

J = UΣV T =
m∑
i=1

σiuiv
T
i , (2.44)

where U is the orthonormal m × m matrix of output singular vectors ui, V is the
orthonormal n×nmatrix of input singular vectors vi, Σ = (S 0) is a matrix of dimensions
m×n containing the singular values σi of the Jacobian matrix J at the diagonal entries
of the square m×m submatrix S.

2.3.2 Manipulability Measures

Since, at a singular configuration, one or more singular values approach to zero, a
number of manipulability measures can be defined. One measure, which is the so-called
Yoshikawa’s manipulability index [26], is defined as

µ1(q) =
√
det(J(q)JT (q)) = σ1σ2...σN , (2.45)

where N is the number of degrees of freedom. The singular values are ordered with
respect to decreasing values, where σ1 and σN denote the maximum and minimum
singular values, respectively.

Another manipulability measure, which is the inverse condition number measurement
[27], is defined as

µ2 =
1

cond(J)
=
σN
σ1
, (2.46)

which gives the ratio between the minimum and maximum singular values.
Since the minimum singular value approaching to zero is the critical condition, by

itself it can be defined as a manipulability measure as

µ3 = σ1. (2.47)



2.4. Discussion 19

2.4 Discussion

For a serial chain manipulator with seven DOFs, which is inherently redundant for
any end-effector task described in Euclidean space, inverting the forward kinematics to
get a closed-form solution is not possible, since infinitely many solutions to configuration
of the robot exist if the given task is inside the workspace of the robot. Hence, the
problem of finding all possible solutions, choosing one of them and doing this in real
time can be solved at the velocity level by inverting the first-order differential kinematics.

A possible option for inverse differential kinematics is to use optimization techniques,
which are based on set objectives to choose a solution among infinitely many, either
locally or globally for a given task trajectory. Optimization utilizes the self-motions of
the manipulator to optimize set objectives. However, optimization can be either locally,
which is more practical but does not guarantee an optimal solution for a given task
trajectory; or globally, which guarantees the optimal solution (if exists) throughout the
task trajectory but which is also not practical since any configuration or task changes
during operation would require solving the optimization problem again.

Another option for solving the inverse kinematics problem of a redundant manipu-
lator is to use redundancy resolution methods by task augmentation, where functional
constraints or additional tasks can be defined to augment the task space such that the
robot is not redundant any more. When the task space has the same dimension as
the configuration space of the robot, then the velocity kinematics, which is linear, can
be directly inverted to track a given task. However, there is no general solution for
the definition of a functional constraint or an additional task, which depend on the
specifications of the given task and the robot.

It will be seen in Chapter 4 that, specific to RoBoSculpt, a one dimensional task is
added to the task of end-effector pose. This is also specific to its task of bone removal
around the ear inside a cavity and required to avoid collisions, as it will be explained
in Section 4.1.4. Then, in Chapter 5, with the augmented task space, a standard in-
verse differential kinematics algorithm [21] will be adopted and modified to use with
augmented task space and augmented Jacobian, as explained in Section 5.1.





21

Chapter 3

Robot Description

3.1 Robot Description

3.1.1 Kinematic Model

RoBoSculpt is a serial chain manipulator with six revolute joints, one prismatic joint,
followed by a rotary unit for milling and drilling. After the base, five modular rotating
units are present. A side view of the robot model, which is attached to a surgery table,
is shown in Figure 3.1, where a preliminary location for an ear volume is also shown.

Figure 3.1: Robot CAD model viewed from side (Source: Jordan Bos, 2015)

The kinematic structure of the serial manipulator with seven DOFs can be seen in
Figure 3.2 (dimensions of the entities are not to scale),



22 Chapter 3. Robot Description

Figure 3.2: Robot schematic with the DH parameters and frames

According to the Denavit-Hartenberg (DH) convention [28], the homogeneous trans-
formation between two consecutive frames is defined from the four parameters (θi, di,
ai, αi) as follows

T i−1
i =


cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di
0 0 0 1

 , (3.1)

where

Ri−1
i =

cos θi − sin θi cosαi sin θi sinαi
sin θi cos θi cosαi − cos θi sinαi

0 sinαi cosαi

 , (3.2)

is the matrix defining the rotational transformation from frame i− 1 to i and

pi−1
i =

ai cos θi
ai sin θi
di

 , (3.3)

is the vector defining the position of frame i with respect to frame i− 1.



3.1. Robot Description 23

Link (i) θi (rad) di (m) ai (m) αi (rad)

1 q1 0.070 0 π/2

2 q2 0.070 0 −π/2
3 q3 0.075 0 −π/2
4 q4 0.070 0 −π/2
5 q5 0.070 0 π/2

6 q6 0.065 0 −π/2
7 0 q7 0 0

Table 3.1: Joint displacements (qi) and the scalar values of the constant DH parameters of
RoBoSculpt

As seen in the Table 3.1, for the joint variables q =
[
q1 ... qn

]T
where n = 7 is

the number of degrees freedom, it holds that qi = θi for revolute joints and qi = di for
prismatic joints.

As the homogeneous transformations between each pair of frames are with respect
to the axes of the local frame, the homogeneous transformation from the fixed frame to
the end effector frame can be computed recursively with right multiplication as [29]

T 0
7 = T 0

1 T
1
2 T

2
3 T

3
4 T

4
5 T

5
6 T

6
7 , (3.4)

where

T 0
7 =


r11 r12 r13 (p07)x
r21 r22 r23 (p07)y
r31 r32 r33 (p07)z
0 0 0 1

 , (3.5)

is the matrix defining the homogeneous transformation from the fixed frame to the
end-effector frame. It includes the matrix

R0
7 =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 , (3.6)

which defines the orientation of the end-effector frame, and the vector

p07 =

(p07)x
(p07)y
(p07)z

 , (3.7)

which gives the position of the end-effector frame origin. The homogeneous transforma-
tion and the geometric Jacobian matrices of the end-effector frame of RoBoSculpt are
given in Appendix D.





25

Chapter 4

Task Specification Solution and
Results

In this chapter, a solution to the problem of specifying end-effector tasks for Ro-
BoSculpt and the results from task trajectory generation with the proposed method
are presented. Firstly, the task specification solution is introduced in Section 4.1. It
includes the approximation of the ear volume for bone removal task in Section 4.1.1,
the definitions for desired end-effector position and orientation trajectories in Sections
4.1.2-4.1.3, and the definition for an additional constraint task to impose a clearance
between the ear volume and the robot in Section 4.1.4. Secondly, results regarding the
task trajectory generation are presented in Section 4.2. Finally, a discussion on the
proposed task specification method and obtained results is given in Section 4.3.

4.1 Task Specification

To perform a bone removal task with RoBoSculpt, a path for the end-effector to
follow must be generated, which is the input for the inverse kinematics problem to solve
for the joint trajectories to enable the execution of the task by the robot. As a starting
point, we propose to simplify the bone volume, which is to be milled out, to a section
of a cone. The bone removal will be assumed to occur on a layer, which can be chosen
at any depth inside the cone cavity. The edges of the cavity will also be considered for
decisions on the end-effector orientation and robot links’ (including the rotary tool and
its supporting links) clearance to avoid contacts.

4.1.1 Ear Volume Approximation

To approximate the ear volume which is the main object of the bone removal pro-
cedure, a parametrically defined cone shape is used. The process of bone milling is
assumed to start from the bottom of a cone (the opening) and go deeper layer by layer.
The parameters we use to define the geometrical shape, position and orientation of a
cone are the position of cone section frame origin os, the rotation matrix describing the
orientation of cone section frame xsyszs, cone section radius rs, cone bottom radius rb
and cone height hc. Additionally, when the cone is generated, its bottom is directed to-
wards the -z axis of the reference frame (o0x0y0z0) and an initial rotation by Rpre = Rx,π
is applied, where (Rx,π)3×3 is a matrix of rotation about x-axis by π (see Appendix B.1),
to align the cone section frame with the reference frame. Using these parameters, a de-



26 Chapter 4. Task Specification Solution and Results

sired ear volume approximation can be generated as a cone by computing the vertices of
the cone’s bottom, top and middle sections. Then, the obtained shape can be presented
using patch objects in Matlab, as seen in Figure 4.1, where the cone section frame axes
xs, ys and zs are represented by red, green and blue lines, respectively, on the cone
section origin os.

Figure 4.1: Approximate ear cone with different orientations. In part (a), the cone section frame
osxsyszs is aligned with the reference frame o0x0y0z0 by rotation Rpre. In part (b) and part (c),
following the rotation of Rpre, the cone section frame is rotated by π/6 about its current x-axis
and y-axis, respectively.

The approximate ear cone can also be placed in the workspace of the robot, as
seen in Figure 4.2, where the parameters describing the ear cone are chosen as, os =
(−0.1, 0, 0.1), Rs = Ry,π

6
Rpre, rs = 0.02 and hk = 0.06.

Figure 4.2: Illustration of the surgical robot and the approximate ear cone



4.1. Task Specification 27

4.1.2 End-effector Position Trajectory

We need to define a certain position trajectory, on the section of the cone, which
is described by its depth from the opening of the cone. One of the many options is
the side-to-side motion. Below are two generated point trajectory profiles, which are
described by the number of side-to-side motions (layers), step distance (in meters) along
layers and step angle (in radians) along arcs, between consecutive position trajectory
points. In Figure 4.3, on the left, an example with less layers as nlayer = 5 with fine
spacing of ∆step = 0.001m between each point can be seen and on the right, the point
trajectory is generated with a higher number of layers as nlayer = 20 but with coarse
spacing of ∆step = 0.002m between the points.

Figure 4.3: Illustration of a position trajectory spanning the cone section. On the left, a trajec-
tory is shown with fine spacing between each point and a small number of layers, whereas on
the right, one with coarse spacing and a large number of layers is shown.

It should be noted that a twice continuously differentiable end-effector position tra-
jectory results also in continuous velocity and acceleration profiles for the end-effector
and the robot joints, which is desired for dynamic control. Hence, the generated po-
sition trajectory for the end-effector must be at least twice continuously differentiable
with respect to time. A sample trajectory with up-and-down motion, which spans the
circular cone section, can be generated using simple trigonometric functions as

ox(t) =
2rst

T
− rs

oy(t) = sin(wtox(t))
(√

r2s − ox(t)2
)

oz(t) = 0

, (4.1)

where (ox, oy, oz) denotes the position of the end-effector with respect to the cone section
frame osxsyszs, t denotes time variable, T is the total duration of the motion and
ωt = ntπ/(2rs) sets the frequency of the side-to-side motion with nt denoting the number
of these turns. The generated trajectory is shown with the approximate ear cone in
Figure 4.4, with number of turns chosen as nt = 10, which is a preliminary choice for
testing and can be determined in the future based on specifications such as the feeding
width of the milling tool.



28 Chapter 4. Task Specification Solution and Results

Figure 4.4: A continuously differentiable position trajectory spanning the cone section

Other approaches to generate a position trajectory that spans the planar surface
of the cone section can also be formulated, such as a spiral shaped trajectory, as seen
in Figure 4.5, where radial and angular step distances and direction are chosen to be
∆radial ≈ 4 · 10−6m, ∆angular = 0.01 and clock-wise, respectively.

Figure 4.5: Clock-wise spiral continuous trajectory

At this stage, a twice (at least) continuously differentiable position trajectory would
be acceptable if it spans the section plane with set parameters, which can later be
modified for the specifications of the milling task, such as the diameter of the tool tip,
feed rate and width. In the next chapter, where the inverse kinematics solution will
be described and tested, the end-effector position trajectory as defined in (4.1) (also
shown in Figure 4.4) will be adopted, with an additional version, where the resulting
position trajectory will be rotated by π/2 about the cone section vertical axis. This
way, the desired position trajectory will require the end-effector of the robot to move
continuously, in an up-and-down motion in one case and a side-to-side motion in the
other.

4.1.3 End-effector Orientation Trajectory

Defining the end-effector orientation trajectory is more critical than the position
trajectory, since the task involves the milling of the inner section of the cone volume
while the execution of the task with the end-effector must be maintained collision-free
with respect to the surrounding surfaces.



4.1. Task Specification 29

To describe the orientation of a frame in Euclidean space completely, one needs at
least three parameters. In our case, we want to manipulate the robotic arm, such that we
set a desired position and orientation profile for the end-effector frame completely, which
requires at least six parameters; three for the position and three for the orientation.

The end-effector orientation is chosen as the orientation of the rotary tool’s axis
instead of the tool tip, which rotates rapidly during milling and drilling, making its an-
gular displacement irrelevant for kinematic task specification. Normally, two parameters
are sufficient to define an orientation of the end-effector (rotary tool’s axis), which would
result in a collision free path inside the cavity. However, a third parameter, which de-
scribes a rotation about the tool axis, is necessary for the accessibility of an end-effector
pose and for the amount of displacement required by the rest of the robot joints. Hence,
in the following section, we define a set of three parameters that are directly related to
the pose of the end-effector frame according to the task of bone removal in a manner
similar to orientation of a human wrist. Then, a geometric solution is formulated to
compute the desired angular parameters.

We also define a constraint on the actuation of the last joint (prismatic) based on
the pose of the end-effector, to ensure that the only part of the robot that comes close
in contact with the ear volume is the rotary tool tip, which is at the end-effector frame.
In other words, it is desired to keep the supporting link of the end-effector away from
the ear volume at a specified spherical clearance during the actuation of the prismatic
joint. The constrained motion of the prismatic joint utilizes the self-motions of the seven
DOFs robot and decouples the clearance problem from the end-effector to the rest of
the robot and augments the task space to the dimension of the robot DOF.

Parametrization

Figure 4.6: Representations of the cone section frame osxsyszs and the intermediate frame
od′′′xd′′′ yd′′′ zd′′′ in (a) and the end-effector frame o7x7y7z7 (in red, green, blue) with RoBoSculpt
and a virtual cone (red-green) as reference for orientation in (b)

We propose to parametrize the orientation of the end-effector based on an approach
angle θ, an inclination angle φ and a self-rotation angle α about the prismatic actuation
axis. To combine these angular parameters and obtain a desired orientation for the end-
effector frame, a constant pre-rotation and three consecutive rotations according to the



30 Chapter 4. Task Specification Solution and Results

angular parameters will be used. Initially, we start with the orientation of the cone
section, which is seen in Figure 4.7 (a). If we denote the rotation matrix describing
the orientation of the cone section as R0

s, then we can describe the orientation of the
end-effector resulting from the pre-rotation with Rpre and the rotations by θ,φ and α
on each current axes Z,X and Z respectively, as

(R0
7)d = R0

sRpreRz,θRx,φRz,α, (4.2)

which is similar to a ZXZ Euler angles parametrization with the addition of pre multipli-
cations with R0

s which is the constant rotation matrix describing the orientation of the
cone section frame and with Rpre, which is the constant rotation matrix corresponding
to the pre-rotation of π about xs axis for convention of the tool’s desired direction, as

Rpre = Rx,π, (4.3)

which is shown in Figure 4.7(a). With the obtained intermediate frame od′′′xd′′′yd′′′zd′′′

adopted, the end-effector would be pointing vertically downwards on the section with
its x-axis aligned with xs. The rotations by the angular parameters of θ,φ and α will be
applied on this frame. To relate these rotations to the robot, a virtual cone is depicted
in Figure 4.6(b) which will also be present in the next figures depicting the rotations.

Figure 4.7: Representation of rotations - Plot (a) shows the pre-rotation by Rpre around xs to
obtain the intermediate frame od′′′xd′′′ yd′′′ zd′′′ while Plot (b) shows the initial rotation by the
approach angle θ around zd′′′ to obtain od′′xd′′ yd′′ zd′′

After the pre-rotation Rpre = Rx,π, the frame is rotated by the approach angle θ,
with respect to its z-axis zd′′′ as seen in Figure 4.7(b). The approach angle θ, can be
seen as the angle from the positive y axis of the cone section frame to the projection of
the end effector frame’s z-axis (in the direction outwards from the tool tip) on the cone
section plane. In other words, from a top view (with respect to cone section), it is the
angle the milling tool makes relative to an imaginary line aligned with y-z axes of the
section to be milled, as depicted in Figure 4.8.



4.1. Task Specification 31

Figure 4.8: Representation of the approach angle θ

Figure 4.9: Representation of rotations - Plot (a) shows the second rotation by the inclination
angle φ around xd′′ to obtain od′xd′yd′zd′ , while Plot (b) shows the third rotation by the self-
rotation angle α around zd′ to obtain the desired end-effector frame odxdydzd

Following the rotation by θ, the obtained frame is rotated by the inclination angle
φ, with respect to its current x-axis xd′′ as seen in Figure 4.9(a). The inclination angle
φ, is the angle that the end-effector frame makes with normal of the cone section plane.
This relates to how the tool tip interacts with the surface that is milled, as depicted in
Figure 4.10.



32 Chapter 4. Task Specification Solution and Results

Figure 4.10: Representation of the inclination angle φ

Finally, the obtained frame is rotated about its current z-axis zd′ by the self-rotation
angle α, as seen in Figure 4.9(b). The self-rotation angle α, which is represented in
Figure 4.11, is the rotation of the end-effector frame about its z-axis. It has no effect
in task specification directly since its motion is equivalent to the motion of the drill,
on the task side. It also has no effect in collision avoidance for the last link with
the surrounding cone. However, the self-rotation angle α is important in setting an
achievable task configuration for the robot. By incorporating the approach angle and
the self-rotation angle together, the end-effector can direct to a point from a wider
approach angle, with less displacement for the overall robot joints.

Figure 4.11: Representation of the self-rotation angle α, for a desired pose of the end effector
frame



4.1. Task Specification 33

Choice of the parameters θ, φ and α

All three angular parameters are of equal importance to keep the robot clear of the
cone edges and to be able to execute a task at desired locations. The approach angle θ
is the angle formed between the y-axis of the section and the line obtained by projecting
the tool axis onto the cone section plane. A small θ would mean that the tool reaches
the desired area almost directly (seen from a top view), whereas a large θ would mean
that the tool would reach the section from its far sides, which would also create extra
kinematic challenges. Hence, it is desirable to keep θ within the interval (−π

2 ,
π
2 ).

Figure 4.12: Illustration of cone section and tool axis projection onto it, where σx and σy are
functions of the desired end-effector position

Since our aim is to avoid collision between the tool and side surfaces, we may plan
the tool’s approach angle based on the side it is closest to and its distance from the robot
side. In other words, as the tool operates on a position closer to one side, its approach
angle should keep the tool towards the other side such that the tool does not come close
to the edges as the tool tip approaches there. This can be solved geometrically based
on the position of the end-effector and the section parameters. A particular solution,
with its visualization given in Figure 4.12, for determining a desired approach angle θ
is to define a reference point, where the projection of the tool onto the section should
intersect. The geometric solution for the approach angle θ is defined as

θ = −
(

atan2 ( σy , σx )− π

2

)
, (4.4)

where the expression for the variables σx and σy is defined as

σx = 2(psd)x + (psd)x

(
(psd)x
rs

)2

+ (psd)x

(
(psd)y − rs

2rs

)2

σy = (psd)y + 2rs

, (4.5)

and atan2 is the four quadrant arctangent function defined as



34 Chapter 4. Task Specification Solution and Results

atan2 (cos(β), sin(β)) = β if β ∈ [−π, π]. (4.6)

Note that in (4.4), there is a minus sign, so that θ in the Figure 4.12 is computed,
where its direction of rotation is opposite to the zs axis (i.e. into the section plane).

In Figure 4.12, the projection line is drawn between the position of the end-effector
with respect to the cone section frame, described by ((psd)x, (p

s
d)y), and a virtual location,

set by the variables σx and σy, on the robot side of the section. If that virtual point
on the robot side is kept stationary, the tool’s projection would always cross there while
doing the side-to-side motion. However, there may be requirements for the inclination
angle, which may relate to the milling task, and setting an inclination angle φ while
setting a stationary point for the tool’s axis to cross may overdefine the task and cause
sharp movements. Hence, instead of keeping that point stationary, we choose to change
it as a reference for the approach angle based on the quadratic relations described in
(4.5). In Figure 4.13(a), the computed orientation trajectory trace of a task where the
approach angle θ is kept constant at 0, is given, whereas in Figure 4.13(b), θ is computed
according to (4.5). Note that the inclination angle φ and self-rotation angle α are kept
constant as φ = π/2 and α = 0.

Figure 4.13: Illustrations of the choice of the approach angle θ, when θ is set to be 0 (a) and
when it is chosen as in (4.5) (b), viewed from the top of the cone section

For the milling task, using the rotary tool with a large inclination angle φ, described
in Figure 4.10, is more efficient when spherical tips are used, which is related to the
feeding rate of the material (bone) to the rotating spherical tool tip. However, the
inclination angle should have a limit since the milling may also take place inside a
cavity and a large angle would result in collision of the rotary tool with the cavity edges.
In future applications, specifications of a milling task may require certain orientation
profiles, which is also discussed in Recommendations in Section 7.2. For now, there are
no strict requirements on this. Hence we focus on keeping the rotary tool clear of the
cone edges. To check if the choice of φ is collision free regarding the tool and the cone
edges, a method to check cone edge clearance is presented later in this section.



4.1. Task Specification 35

Choices for the inclination angle include setting it to zero, keeping it constant, or
changing it as a function of how close the end-effector gets to the part of the cone wall
in proximity of the robot. In Figure 4.14, the inclination angle is presented from a side
view to the cone section (robot assumed to be on left) and in (a), the case with φ = 0
is presented, where the orientation trace is seen to be perpendicular to the section. In
(b), φ is chosen to be constant as φ = π/8, taking into account that the chosen value
should be smaller than the angle between the section and cone wall. In (c), φ is chosen
according to a particular solution as given in (4.7) with φ̄ = π/4

φ = φ̄ tanh(
(psd)y + rs

0.5rs
), (4.7)

where φ̄ is the nominal inclination angle. This definition is an example form for φ,
which can be modified according to how the ear approximation is placed in the robot’s
workspace. This form basically results in an inclination angle around φ̄ at the side of
the section away from the robot and continuously gets smaller (i.e., the tool axis tends
to become orthogonal to the cone section) as the end-effector moves closer to the side
of the robot. These are modifiable options for the inclination angle φ, which should be
set according the specifications of a given task.

Figure 4.14: Illustrations of the choice of the inclination angle φ, when φ is set to be zero in (a),
constant in (b) and when it is chosen according to (4.7) in (c)

Finally, the self-rotation angle α, which is visualized in Figure 4.11, is to be defined.
Its importance is related to the robot parts before the prismatic joint. When α is
zero, the position of the frames before the end-effector and the prismatic joint changes
a lot to approach from different angles, whereas when it is self-rotated, this position
change is reduced and there is less kinematic challenge for the robot and less amount
of displacement necessary. The combination of the uses of θ and α should result in a
leaning motion, as when a human wrist would do rather than moving the elbow all the
way to achieve an approach angle. Hence, we want the self-rotation angle to rotate the
end-effector frame, such that its supporting links are kept towards the direction of the



36 Chapter 4. Task Specification Solution and Results

robot base. For these purposes, a suitable and simple choice for the self-rotation angle
α is

α = −θ, (4.8)

which reduces the positional change in the previous frames and counteracts what the
approach angle θ imposes on the robot.

Cone Edge Clearance Check

A geometrical description of the cone edge clearance denoted as dcl , which is the
shortest distance between the cone edge (sides of the cavity opening) and the location
o0c where the tool axis crosses the opening surface, is shown in Figure 4.15.

Figure 4.15: Cone edge clearance - Upper part of the conic cylinder is the cone opening, through
which the tool (in blue) enters to reach cone section surface at the bottom

We know the end-effector frame’s vertical coordinate vector z0d and origin o0d from the
desired end-effector orientation and position from the previous section, the cone section
frame origin o0s, the cone bottom frame (cavity opening) origin o0b , and its coordinate
frame vectors x0b and y0b from the definition of the cone. To compute the cone edge
clearance dcl, first we need to find the location o0c where the tool crosses the cavity
opening surface. Since oc is the intersection between the cavity opening surface which
is spanned by the vectors xb and yb, and the tool axis which is spanned by zd, the
geometric problem of finding o0c can be formulated as

o0d = o0b +mx0b + ny0b + kclz
0
d, (4.9)



4.1. Task Specification 37

where the multipliers m and n form the pair (m,n), which is the (x, y) position of where
the tool crosses the opening with respect to the frame obxbybzb (i.e. ((obc)x, (o

b
c)y) =

(m,n)). By regrouping the terms, the linear relation in (4.9) can be expressed as

o0d − o0b =
[
x0b y0b z0d

] mn
kcl

 (4.10)

Hence, we can calculate m, n and kcl from

mn
kcl

 =
[
x0b y0b z0d

]−1
(o0d − o0b). (4.11)

where it should be noted that the matrix
[
x0b y0b z0d

]
is not a rotation matrix; it is

obtained from the linear relation in (4.9). The pair (m,n) is actually sufficient to find
where the tool axis crosses the cavity opening, but the sign of kcl indicates the direction
of the crossing. Hence o0c can be expressed in two ways as

o0c = mx0b + ny0b , (4.12)

or

o0c = o0d − kclz0d. (4.13)

When kcl is positive, the tool exits the cavity opening in the direction −zd as it is the
case in Figure 4.15. When

[
x0b y0b z0d

]
is invertible, which means that the axis zd

crosses the plane that the cone opening is on, the multiplier kcl can be computed as in
(4.11). When it is singular or when kcl is found to be negative, it means that the tool
never crosses that plane (either parallel to the plane or in an opposite direction) and
the desired orientation must be changed.

After computing m,n and kcl with (4.11), we are left with the problem of finding dcl,
the cone edge clearance of the tool, simply as

dcl = rs − |o0b , o0c |, (4.14)

which is equivalent to

dcl = rs −
√
m2 + n2, (4.15)

where rs denotes the radius of the cone section and |o0b , o0c | denote the distance between
positions o0b and o0c = o0d − kclz0d.

With the computed cone edge clearance dcl, the generated end-effector position and
orientation trajectory can be inspected to verify that the tool axis intersects the plane
where the cone opening lies (

[
x0b y0b z0d

]
is invertible), exits in the correct direction

(kcl > 0) and from inside the opening surface (dcl > 0).



38 Chapter 4. Task Specification Solution and Results

4.1.4 Constrained Use of Prismatic Joint for Spherical Clearance

After generating the desired position and orientation trajectories for the end-effector
frame, we need to consider the frame of the prismatic joint’s base; because its distance
from the working area of the end-effector is critical to keep the supporting robot link
clear from the cone volume, as described in Figure 4.16. Since this clearance is directly
defined by the prismatic joint’s actuation, we can generate a constraint for it based on
the previously generated desired position and orientation profiles. We are free to define
the prismatic joint displacement without changing the desired end-effector position and
orientation, since there is an extra redundant degree of freedom which can be utilized.
By setting this constraint, the clearance problem is decoupled from the end-effector task
to the rest of the robot joints, making use of self motions of the robot, which does
not change the end-effector position and orientation. As a result of this constraint,
the overall task dimension will be augmented with an extra degree of freedom, which
is decoupled from the end-effector task, while the redundancy is resolved since the
dimensions of the overall task and robot DOF will be equal. This is also favourable for
the inverse kinematics solution specific for this robot, which will be explained in Section
5.1.

Figure 4.16: Description of the spherical clearance volume (blue dome) around the ear volume
section in (a) and prismatic joint’s actuated part (blue) and base (red), which is not allowed
inside the spherical volume, in (b)

The approach is to set a spherical clearance surface around the cone. The sphere’s
center is the cone section’s origin o0s. Hence, in any position or orientation along the
section, the length of the vector from the end-effector position o0d along its axis z0d in the
negative direction is calculated such that the resultant position of the prismatic joint’s
base frame o06 has a distance of a certain clearance length scl to the origin of the cone
section frame o0s.

Let o0d, z
0
d, q7 and o0s denote the desired position of the end effector, the vertical co-

ordinate vector of the end-effector frame (od, xd, yd, zd), the prismatic joint displacement
and the origin of the cone section frame, respectively. We define the clearance constraint
as



4.1. Task Specification 39

scl = |o0s, o06|, (4.16)

where o06 = o0d− q7z0d denote the position of the prismatic joint’s supporting link’s frame
origin. The right hand side of (4.16) is the norm of the distance between two points
which is

scl =
√

(o0d − q7z0d − o0s)T (o0d − q7z0d − o0s), (4.17)

scl =
√

(o0d − o0s)T (o0d − o0s)− 2q7(o0d − o0s)T z0d + (q7)2(z0d)T z0d, (4.18)

(z0d)T z0d(q7)
2 − 2(o0d − o0s)T z0dq7 + (o0d − o0s)T (o0d − o0s)− s2cl = 0. (4.19)

Clearly, there are two solutions for q7 in (4.19) since od will be inside the spherical
clearance surface defined by the distance scl, which can be set in terms of the cone’s
top radius, section depth and section radius. Based on the direction of the desired end-
effector frame’s z-axis zd, the desired displacement of the prismatic joint, (q7)d, that
satisfies the spherical clearance constraint can be written as

(q7)d =

√
4(z0d)T (o0d − o0s)(o0d − o0s)T z0d − 4(z0d)T z0d

(
(o0d − o0s)T (o0d − o0s)− s2cl

)
2(z0d)T z0d

+
2(o0d − o0s)T z0d

2(z0d)T z0d

.

(4.20)

Also, scl is set to be

scl =
√
r2b + h̄2s + ccl, (4.21)

where rb is the radius of the cone bottom (cavity opening), h̄s is the vertical distance
between the cone section and the cone opening and ccl is the additional clearance since√
r2b + h̄2s provides the distance from the origin of the cone section to any point on the

circle of the edge of the cone opening. Hence, ccl should be set to be a positive scalar.

This constraint generates a spherical surface around the cone section’s origin, not
to be penetrated by the prismatic joint’s base frame, as seen in Figure 4.17; where it
is shown that with different orientations and positions, the prismatic joint’s base, the
trace of which is depicted in black, is kept at a spherical surface clear from the cone
section origin. Note that only the distance between prismatic joint’s base frame and
cone section’s frame is kept constant; the prismatic joint’s actuation is still variable.



40 Chapter 4. Task Specification Solution and Results

Figure 4.17: Constant spherical clearance of the 6th frame with its position trace (black)

4.2 Results

To test the proposed method of task specification, Task 1 (see Figure 4.19) and Task 2
(see Figure 4.20) are generated with different end-effector position and orientation trajec-
tories, which are plotted in Figure 4.21 and in Figure 4.22, respectively. For both tasks,
the position of the section of the approximation cone is ps = (−0.15, 0, 0.15) and the
orientation of the cone section is described by the rotation matrix Rs = Ry,7π/18Rz,π/2,
as seen in Figure 4.18 with the robot.

Figure 4.18: Robot with ear volume approximation cone



4.2. Results 41

Figure 4.19: Task 1 - The desired end-effector position and orientation trajectories on cone
section plane viewed from front in (a), from side in (b) and from top in (c)

Figure 4.20: Task 2 - The desired end-effector position and orientation trajectories on cone
section plane viewed from front in (a), from side in (b) and from top in (c)



42 Chapter 4. Task Specification Solution and Results

Figure 4.21: Task 1 - The desired end-effector position trajectory plot (top), the desired end-
effector orientation trajectory plot (middle) and the prismatic joint’s desired constraint displace-
ment trajectory plot (bottom) vs. time

For Task 1, a continuous desired end-effector position trajectory, which is plotted in
Figure 4.21 (top), is chosen. The desired side-to-side motion of the end-effector, as seen
in Figure 4.19, has the orientation trajectory defined by the angular parameters θ (ap-
proach), φ (inclination) and α (self-rotation) which are plotted in Figure 4.21 (middle).
Note that the inclination angle φ is defined as given in (4.7) with the nominal inclination
angle φ̄ = π/6. Finally, the constraint task on the motion of the prismatic joint, which
ensures a spherical clearance around the cone, is plotted in Figure 4.21(bottom).



4.3. Discussion 43

Figure 4.22: Task 2 - The desired end-effector position trajectory plot (top), the desired end-
effector orientation trajectory plot (middle) and the prismatic joint’s desired constraint displace-
ment trajectory plot (bottom) vs. time

For Task 2, a continuous desired end-effector position trajectory, which is plotted in
Figure 4.22 (top), is chosen, which results in an up-and-down motion as seen in Figure
4.20. The orientation trajectory profile, which is described by the parameters θ, φ and
α, is plotted in Figure 4.22 (middle). Note that the inclination angle φ for Task 2 is
defined to be constant as φ = π/8. Finally, the constraint task on the prismatic joint
for spherical clearance, is plotted in Figure 4.22 (bottom).

4.3 Discussion

The proposed task specification method resulted in position and orientation trajec-
tories, which span a specified layer on an approximated ear cone, while the rotary tool
is kept clear from the edges of the cavity it enters. Additionally, the constraint task,



44 Chapter 4. Task Specification Solution and Results

which is specified on the last joint’s motion for spherical clearance around the ear area,
has been used.

With the addition of the constraint task, it is seen that while the end-effector frame
is at a desired position and orientation, the prismatic joint is at a specified value, which
keeps the supporting link of the end-effector away from the ear cone with a set clear-
ance. It should be noted that both the constraint task on the prismatic joint and the
orientation task variables depend on the position task. Hence, it is critical to define the
desired end-effector position trajectory continuously.

Since the desired translational and angular velocities of the end-effector are to be used
in the inverse kinematics part in Chapter 5, it is better to define them at task trajectory
generation phase rather than using numerical differentiation during inverse kinematics
simulations (see Section 5.2). In the presented results, the translational velocity profile
was defined as a function of time, whereas the angular velocity profile was obtained
through an orientation error description in axis-angle representation. Hence, it should
be noted that the angular velocity profile depends on small simulation step time during
task trajectory generation and small angular difference between each consecutive desired
end-effector orientations. The rate of change in the desired orientation depends on the
position of the end-effector with respect to the cone section. Therefore, the angular
velocity profile is also dependent on the translational velocity profile of the end-effector.
In addition to spanning the whole section during milling, the speed of this operation is
also important. By defining both translational velocity and acceleration profiles, limits
can be imposed on the operation of the robot regarding actuator’s limits, milling tool’s
feed rate and other phases.



45

Chapter 5

Inverse Kinematics Solution and
Results

In this chapter, firstly, a solution to the inverse kinematics problem is described in
Section 5.1. Secondly, the joint trajectory generation results using the inverse kinematics
algorithm are presented in Section 5.2. Finally, a discussion on the obtained results is
given in Section 5.3.

5.1 Differential Inverse Kinematics Algorithm with Aug-
mented Task Space

5.1.1 Overview

In this section, the inverse kinematics algorithm for a seven degrees of freedom serial
manipulator is presented. Being inherently redundant as a result of having seven degrees
of freedom, the surgical robot RoBoSculpt’s kinematic model does not allow finding a
geometric solution to the inverse kinematic problem in closed-form. Even if the prismatic
joint would be fixed, the remaining 6R kinematic chain does not allow decomposition of
the inverse kinematics problem into separate position and orientation parts. As a result
of the indeterministic nature of the problem, the inverse kinematics of the seven DOFs
kinematic chain requires a method of choosing a desired solution among other possible
solutions, in addition to finding a joint configuration that is mapped to a desired task
via the forward kinematics.

First, it is necessary to be able to find the set of possible solutions. Since the
forward kinematics is highly non-linear, there is no general method to solve for the
joint variables which is also not specific for a given kinematic model. Fortunately,
the mapping between the joint and task velocity variables is linear and a standard
option is to invert, if possible, the first-order differential kinematics to solve for the
velocities of the joint variables, which then can be integrated over time to give the
desired solution to the inverse kinematics problem. The availability and the reliability
of the solutions at the velocity level can also be investigated easily, concerning the
existence of multiple solutions and kinematic singularities. Secondly, since the robot is
inherently redundant, a way of choosing the set of joint configurations from multiple
options must be devised. For this purpose, in addition to the task of attaining a desired
end-effector pose, which includes the position and orientation tasks described by a total
of six DOFs, an additional constraint task of one DOF is introduced. The description of



46 Chapter 5. Inverse Kinematics Solution and Results

this additional task is given in Section 4.1.4. By having an additional task, the dimension
of the task space is augmented such that it is equal to the dimension of the joint space
and the solution to the linear mapping of the first-order differential of the joint and
task space variables is unique, unless a kinematic singularity is reached which disallows
end-effector motion in certain directions. Regarding the inverse kinematics algorithm,
it is assumed that no kinematic singularities will be reached. However, singularities are
present in the workspace of the robot, and a method to analyse the manipulability of
the end-effector throughout the given tasks will be explained in Chapter 6 (see Section
6.1), which can help in the decision of where and how, in the workspace of the robot,
the tasks need to be done.

The algorithm adopts the representation of orientation error from [21], which makes
the computation of the geometric Jacobian sufficient to find the joint velocity profile
for a given trajectory in the task-space. Since the computation of the analytical Jaco-
bian, which has a higher order of complexity than the geometric Jacobian, is avoided,
the solution is computationally more efficient. Additionally, since the axis-angle repre-
sentation is used to find the orientation error, the algorithm is free of representational
singularities.

The inverse differential kinematics algorithm for a system with seven DOFs is ob-
tained by augmenting the task-space with the addition of a constrained functional task,
which is explained in Section 4.1.4. Hence, the redundant degree of freedom is utilized
and the Jacobian is augmented to a square matrix which is invertible unless the manip-
ulator takes a configuration that results in a kinematic singularity. A method to analyse
the manipulability of the end-effector beforehand, for given tasks or selected regions in
its workspace or configuration space will be introduced in Section 6.1.

5.1.2 First-order Differential Kinematics

Recall the forward kinematics equation, relating the joint configuration q to the task
space variables x via a non-linear vector function f(q) as

x = f(q), (5.1)

and its first-order differential

ẋ = J(q)q̇, (5.2)

which is the linear mapping between the joint and task space velocities via the Jacobian
matrix J(q). The solution to the above expression, assuming that the Jacobian J(q) is
a square and invertible matrix, is

q̇ = J−1(q)ẋ. (5.3)

To find the joint velocity profile q(t), the above expression can be integrated over
time to give

q(t) =

∫ t

0
J−1(q(τ))ẋd(τ)dτ + q0, (5.4)

where ẋd(t) is the time derivative of the desired task trajectory xd(t). If the initial
joint configuration q0 = q(t) is known, the joint trajectory q(t) that moves the end
effector from its initial pose x(0) along the desired trajectory xd(t) can be found from



5.1. Differential Inverse Kinematics Algorithm with Augmented Task Space 47

(5.4), theoretically. However, in practice, to integrate (5.3), numerical methods such as
first-order Euler are used in discrete-time, as

q(tk+1) = q(tk) + J−1(q(tk))ẋd(tk)∆t, (5.5)

where ẋd(tk) can be determined either by numerical differentiation of xd(tk) at tk or by
defining xd(tk) to be continuously differentiable and by obtaining a functional expression
for its time derivative (see (5.34)). The solution in (5.5) suffers from numerical errors
where the resulting end-effector task variables x(t) drift away from the desired task
trajectory xd(t). The resulting numerical errors can be avoided by defining an error
in the task space variables, since the current state of the task space variable at each
time step is known, and the numerical integration loop can be closed by using the task
space error as feedback. The task space error, which is the error between the desired
task variables xd(t) and the attained task variables x(t) = f(q(t)) can be expressed as
(omitting the dependency on time variable t for simplicity)

e = xd − x, (5.6)

and its time derivative

ė = ẋd − ẋ, (5.7)

where ẋ can be substituted from the first-order differential kinematics (5.2) as

J(q)q̇ = ẋd − ė. (5.8)

Based on this scheme, the solution to the first-order differential inverse kinematics
becomes, assuming that the Jacobian is square and invertible

q̇ = J−1(q)(ẋd − ė), (5.9)

and by choosing the error dynamics as

ė = −Ke, (5.10)

where K is a diagonal, positive definite matrix, it leads to the solution of both the
first-order differential inverse kinematics and trajectory tracking, as

q̇ = J−1(q)(ẋd +Ke), (5.11)

where the error in the task space variables converges to zero with a rate depending on
the eigenvalues of the gain matrix K. The error variables for end-effector position and
orientation and the constraint task are to be defined, along with desired end-effector
velocity and augmentation of the Jacobian, which are explained next.

5.1.3 End-effector Position Error

The description of the error for the position part is straightforward and is defined as

ep = p0d − p0ee, (5.12)

where p0d and p0ee denote the desired position and the current position of the end effector,
respectively, with respect to the reference frame. The position error’s time derivative is

ėp = ṗ0d,0 − ṗ0ee,0. (5.13)



48 Chapter 5. Inverse Kinematics Solution and Results

5.1.4 End-effector Orientation Error

The orientation error however, depends on the representation used to describe the
orientation of the end effector frame. If the Euler angles representation is chosen, the
orientation error can be defined as

eo = φd − φee, (5.14)

where φee denote the set of Euler angles, which describe the orientation of the end-
effector frame. The rotation matrix, which describes the orientation, can be obtained
directly from the forward kinematics. However, the inverse operation of finding the Eu-
ler angles from that orientation or the joint configuration is computationally expensive
as it requires the use of inverse trigonometric formulas. It is also subject to representa-
tional singularities. Computing the orientation error in real time requires more effort,
in addition to that for the computation of the analytical Jacobian matrix. Fortunately,
another representation of the orientation error (see, e.g., [21]) can be set such that the
error in orientation can be obtained using only the rotational matrices of the desired and
current end-effector orientations. The orientation error is obtained using the axis-angle
representation, which is free of representational singularities.

Let the rotation matrix describing the desired orientation be

R0
d = [x0d y

0
d z

0
d], (5.15)

and the current orientation of the end effector be

R0
ee(q) = [x0ee(q) y

0
ee(q) z

0
ee(q)]. (5.16)

The error between the two frames’ orientations which are described by the above
rotational matrices, can be defined as

eo = r sin(ϑ), (5.17)

where r and ϑ are the axis and angle variables, respectively, that describe the rotation
needed to align both frames as (omitting the dependency of R0

ee on q)

R(ϑ, r) = R0
d(R

0
ee)

T , (5.18)

which means, if R0
ee is rotated by R(ϑ, r) (i.e. by the angle of ϑ around the axis r), R0

d

is obtained.
An approximation of eo can be found as (see Appendix A for details)

eo = −1

2

(
x0ee × x0d + y0ee × y0d + z0ee × z0d

)
, (5.19)

and its time derivative is

ėo = LTω0
d,0 − Lω0

ee,0 , (5.20)

where

L = −1

2

(
S(x0d)S(x0ee) + S(y0d)S(y0ee) + S(z0d)S(z0ee)

)
, (5.21)

and ω0
d,0 and ω0

ee,0 denote the desired and current end-effector frames’ angular velocities
with respect to the reference frame, represented in the coordinates of the reference frame,
respectively.



5.1. Differential Inverse Kinematics Algorithm with Augmented Task Space 49

5.1.5 Desired End-effector Angular Velocity

The angular velocity ω0
ee,0 can be obtained by using the geometric Jacobian, but

the desired angular velocity ω0
d,0 is not that straightforward to compute. Since the

desired orientation of the end-effector is described by the set of angles θ, α and φ (see
Section 4.1.3) which is equivalent to an Euler-angle representation, the desired angular
velocity corresponding to tracking these angular parameters cannot be obtained by direct
differentiation. However, since the rotation matrices describing the desired orientation
at each time step are obtained using the parameters θ,α and φ, Rodrigues’ formula
(A.11) can be exploited similarly to the derivation of the orientation error (5.19) along
with a small angle approximation. The desired angular velocity corresponding to the
rotation between consecutive orientations described by rotational matrices in a given
time step is calculated by the following approach.

Recalling the derivation in Appendix A, let the rotation matrix R(r, θ) describe the
rotation which aligns the rotational matrix describing the desired orientation Rd at time
tk with the one at time tk+1 as

R(r, θ) = R0
d(tk+1)(R

0
d(tk))

T , (5.22)

where r is the axis of rotation and θ is the angle of rotation. The duration of this
rotation is ∆t = tk+1 − tk. Hence the angular velocity is

ω0
d,0 =

θ

∆t
r. (5.23)

Substituting the expression for r from (A.21) in Appendix A into (5.23), we get

ω0
d,0 =

θ

2∆t sin θ

cd(tk+1) · bd(tk)− bd(tk+1) · cd(tk)
ad(tk+1) · cd(tk)− cd(tk+1) · ad(tk)
bd(tk+1) · ad(tk)− ad(tk+1) · bd(tk)

 , (5.24)

where ad(ti), bd(ti) and cd(ti) denote the row vectors of R0
d(ti). By using the small angle

approximation sin θ ≈ θ, since the angle of rotation between desired orientations at
consecutive time steps is assumed to be small, the desired angular velocity is obtained
as

ω0
d,0 =

1

2∆t

cd(tk+1) · bd(tk)− bd(tk+1) · cd(tk)
ad(tk+1) · cd(tk)− cd(tk+1) · ad(tk)
bd(tk+1) · ad(tk)− ad(tk+1) · bd(tk)

 , (5.25)

or, in terms of the column vectors xd(ti), yd(ti) and zd(ti) of R0
d(ti), the above expression

is equivalent to (see Appendix A, (A.23) and (A.27))

ω0
d,0 =

1

2∆t
(xd(tk)× xd(tk+1) + yd(tk)× yd(tk+1) + zd(tk)× zd(tk+1)) . (5.26)

5.1.6 Additional Constraint Task Error

The description of the error in the additional constraint task for the displacement of
the prismatic joint is defined as

epris = (q7)d − q7, (5.27)



50 Chapter 5. Inverse Kinematics Solution and Results

where (q7)d, which is defined in (4.20), denotes the desired displacement of the prismatic
joint and q7 denotes the current displacement of the prismatic joint. The time derivative
of the displacement error is obtained as

ėpris = (q̇7)d − q̇7. (5.28)

5.1.7 Overall Task-Space Error

The overall error in a given task is obtained by combining (5.12), (5.19) and (5.27)
as

e =

 ep
eo
epris

 =

 p0d − p0ee
−1

2 (nee × sd + see × nd + aee × ad)
(q7)d − q7

 , (5.29)

and its first-order differential as

ė =

 ėp
ėo
ėpris

 =

 ṗ0d,0 − ṗ0ee,0
LTω0

d,0 − Lω0
ee,0

(q̇7)d − q̇7

 =

 ṗ0d,0
LTω0

d,0

(q̇7)d

−
 ṗ0ee,0
Lω0

ee,0

q̇7

 . (5.30)

5.1.8 Augmented Jacobian and the IK Algorithm

To include the additional task of the prismatic joint for the spherical clearance, as
explained in Section 4.1.4 , the geometric Jacobian matrix J(q) is augmented with the
Jacobian of the prismatic joint task which is

Jpris = [0 0 0 0 0 0 1], (5.31)

and the resulting augmented Jacobian is

Jaug =

 Jp
Jo
Jpris

 ∈ R7×7, (5.32)

which relates the joint space displacement and velocity to the task space velocity of the
manipulator as

ẋ = v =

[
v0ee,0
v6pris,6

]
=

ṗ0ee,0ω0
ee,0

q̇7

 =

Jp(q)Jo(q)
Jpris

 q̇ = Jaug(q)q̇, (5.33)

where v0ee,0 denotes the spatial velocity vector containing the translational velocity ṗ0ee,0
and the angular velocity ω0

ee,0 of the end-effector frame with respect to the reference

frame and v6pris,6 denotes the scalar velocity of the prismatic joint’s displacement.
Additionally, the set of desired task variables can be brought together as

ẋd =

 ṗ0d,0ω0
d,0

(q̇7)d

 , (5.34)

where the desired end-effector translational velocity ṗ0d,0 is obtained from the functional
derivative of the desired end-effector position trajectory described in Section 4.1.2, the
desired end-effector angular velocity ω0

d,0 is obtained as described in Section 5.1.5 and
the desired velocity of the displacement of the prismatic joint (q̇7)d is obtained from
numerical differentiation of (q7)d which is described in Section 4.1.4.



5.1. Differential Inverse Kinematics Algorithm with Augmented Task Space 51

Substituting (5.33) into (5.30), the time derivative of the task error can be written
as

ė =

 ėp
ėo
ėpris

 =

 ṗ0d,0 − Jp(q)q̇
LTω0

d,0 − LJo(q)q̇
(q̇7)d − q̇7

 =

 ṗ0d,0
LTω0

d,0

(q̇7)d

−
I3×3 0 0

0 L3×3 0
0 0 1

 Jaug(q)q̇, (5.35)

and by choosing the error dynamics ė as

ė =

 ėp
ėo
ėpris

 =

Kp 0 0
0 Ko 0
0 0 Kpris

 ep
eo
epris

 , (5.36)

where Kp ∈ R3×3 and Ko ∈ R3×3 are positive definite and diagonal gain matrices and
Kpris is a positive scalar gain, the expression below is obtained

Jaug(q)q̇ =

 ṗ0d,0 +Kpep
L−1(LTω0

d,0 +Koeo)

(q̇7)d +Kprisepris

 . (5.37)

Note that the augmented Jacobian Jaug(q) ∈ R7×7 is a square matrix and it is invertible
unless a kinematically singular joint configuration is attained. Hence, the solution is
obtained as

q̇ = J−1
aug(q)

 ṗ0d,0 +Kpep
L−1(LTω0

d,0 +Koeo)

(q̇7)d +Kprisepris

 . (5.38)

By using the axis angle representation for the approximation of the orientation error,
usage of the geometric Jacobian is sufficient in the inverse kinematics computations. This
makes the algorithm simpler and faster, because the computation of analytical Jacobian
is not required and representation singularities are not present. By augmenting the task
space, the Jacobian matrix is made square, with the additional constrained motion task
on the prismatic joint’s displacement to make sure that the structures before the last link
do not contact the ear volume and its surroundings, by defining a spherical clearance.
Assuming that the Jacobian is invertible and provided that appropriate gain matrices
on the errors are chosen for an appropriate sampling time, the joint trajectories can be
obtained to track a desired task trajectory with minimal errors, which are mainly due
to numerical integration.

To implement the differential inverse kinematics algorithm described in (5.38), nu-
merical integration in discrete time is used to obtain the joint trajectories as

q(tk+1) = q(tk) + J−1
aug(q(tk))

 ṗ0d,0(tk) +Kpep(q(tk))

L−1(LTω0
d,0(tk) +Koeo(q(tk)))

(q̇7)d(tk) +Kprisepris(q(tk))

∆t, (5.39)

where ∆t is the sampling time. At each simulation step, the forward kinematics and the
geometric Jacobian are computed. Desired task and error variables are used. Desired
task variables include the end-effector velocity ṗ0d,0(tk), the end-effector angular velocity

ω0
d,0(tk) and the prismatic joint’s velocity q̇7. Error variables include the end-effector

position error ep(q(tk)), the end-effector orientation error eo(q(tk)) and the prismatic
joint’s displacement error epris(q(tk)).



52 Chapter 5. Inverse Kinematics Solution and Results

5.2 Results

To test the algorithm from Section 5.1.8, Task 1 (see Figure 4.19) and Task 2 (see
Figure 4.20), which are generated in Section 4.2, are used. Their end-effector position
and orientation trajectories are plotted in Figure 4.21 (Task 1) and in Figure 4.22 (Task
2).

Figure 5.1: Joint displacement, velocity and acceleration profiles from differential inverse kine-
matics for Task 1

For Task 1 (see Figure 4.21, in Section 4.2), which is defined for a duration of 60
seconds, the differential inverse kinematics algorithm is used at 800 Hz (time step of 1.25
ms) to compute joint trajectories that correspond to the desired task trajectories. In
Figure 5.1, the resulting joint displacements (top), velocities (middle) and accelerations
(bottom) are plotted. The total duration of the computations is around 11.8 seconds,
which correspond to a duration of approximately 0.25 ms per simulation step. The al-
gorithm uses gain variables on the tracking errors of position, orientation and constraint
tasks. These gains are set to be unity as Kpos = I3×3, Kori = I3×3 and Kpris = 1.
The plots provide information on joint displacement ranges, absolute maximum of joint



5.2. Results 53

velocities and accelerations, which are required to track and complete the given task.

Figure 5.2: Joint displacement, velocity and acceleration profiles from differential inverse kine-
matics for Task 2

For Task 2 (see Figure 4.22, in Section 4.2), which is defined for a duration of 30
seconds, the differential inverse kinematics algorithm is used at 2 kHz (time step of
0.5 ms). In Figure 5.2, the resulting joint displacements (top), velocities (middle) and
accelerations (bottom) are plotted, where the ranges of joint displacements, absolute
maximum of joint velocities and accelerations required for the given task can be seen.
The total duration of the computations is around 14.8 seconds, which correspond to a
duration of approximately 0.25 ms per simulation step. The gains on errors are set to
be unity as Kpos = I3×3, Kori = I3×3 and Kpris = 1.



54 Chapter 5. Inverse Kinematics Solution and Results

Figure 5.3: Task 1 - The plots of tracking errors of end-effector position (top) and orientation
(bottom)

Figure 5.4: Task 2 - The plots of tracking errors of end-effector position (top) and orientation
(bottom)

With unity gains on the errors in the kinematic tracking, the errors in position and
orientation for Task 1 and Task 2 are given in Figure 5.3 and Figure 5.4, respectively. For
the end-effector position, error norms for both tasks are below 5·10−6 m. For end-effector
orientation, error norms for both tasks are below 3·10−5 rad. These errors are mainly due
to numerical integration and approximations used in calculating the orientation error
and setting the desired angular velocity of the end-effector at each time step. Note that



5.2. Results 55

the tracking for the constraint task on the prismatic joint is not given since it is zero due
to the definition of the augmented Jacobian. To demonstrate the effect of using different
gains on kinematic tracking, results for Task 1 with Kpos = Kori = 03×3 (open-loop)
and Kpos = Kori = 100I3×3 are given in Figure 5.5 and Figure 5.6, respectively.

Figure 5.5: Task 1 - End-effector position (top) and orientation (bottom) tracking errors with
no gains (open-loop)

Figure 5.6: Task 1 - End-effector position (top) and orientation (bottom) tracking errors with
increased gains

In Figure 5.5, it is seen that in open-loop, the algorithm tracks Task 1 with position



56 Chapter 5. Inverse Kinematics Solution and Results

and orientation error norms less than 10−4m and 4 · 10−4rad, respectively. However, it
should be noted that these errors correspond to the errors which accumulate until the
end of the simulation (drift phenomenon) since there is no feedback on the errors and
they would increase if the simulation duration is increased.

In Figure 5.6, the gains are increased to 100 and it is seen that there is a reduction in
both position and orientation error norms, relative to the previous cases with no gains
and unity gains (see Figure 5.3). Furthermore, when the relatively high errors (2 · 10−7

m) at the start and finish of the task are ignored, the position error norm throughout the
task is smaller than 5 ·10−8 m. Relatively high error norm values, which are still smaller
than 2 · 10−7 m, at the start and finish of the task are probably due to the task velocity
definition and the approximations used in defining the orientation error and desired
angular velocity of the end-effector. The optimal values for the gains depend on the
desired minimum error threshold, numerical limits and the frequency of the simulation,
which also depends on the time-resolution of the desired task. As the chosen frequency
is higher, the time step is smaller and the gains can be increased. Each frequency has
a limit gain value above which tracking of the desired task results in unstable mapping
between the task and joint variables. If a tracking is unsatisfactory, meaning the error
in position and orientation tracking are above a set threshold, then the resolution of the
task and the gains can be increased.

5.3 Discussion

With two tasks that are defined using two different routing approaches, the inverse
kinematics algorithm has been tested and joint trajectories corresponding to the tasks
have been obtained. Numerical errors are also expected due to drift phenomena, which
is a result of using numerical integration. Since the algorithm uses gains on the task
variable errors as feedback, closed-loop cases with different gains and an open-loop case
are tested. The results show that with a feedback on task errors (position, orientation
and constraint on prismatic joint) using a unit gain, a position error profile below 5·10−6

m (both tasks) and an orientation error profile below 3·10−5 rad (Task 1) and 5·10−6 rad
(Task 2) are present throughout the specified task. These have been further decreased
by increasing the gains to 100 which resulted in a position error norm for Task 1 below
2 · 10−7m and an orientation error norm below 5 · 10−7 rad. Also in the case with no
gains in open-loop for Task 1, a position error norm below 10−4 m and an orientation
error norm below 4 · 10−4 rad are present throughout the task (for 60 seconds), which
of course would accumulate if the simulation duration is increased. Nevertheless, the
level of tracking error suggests that, even in open-loop during kinematic tracking at
the velocity level, errors due to numerical integration accumulate slowly if the desired
translational and angular velocity profiles are defined properly. It should also be noted
that the algorithm starts from an initial joint configuration to follow a given task. Hence
an initial joint configuration, which results in the initial task configuration of a given
task, must be chosen. To achieve this, either the given task can be extended to start
from the initial configuration of the robot or the joint configuration at the start of the
given task can be computed using the same algorithm before the actual task execution.

Overall, the differential inverse kinematics algorithm with the augmented task space
is capable of tracking a given task and computing the associated joint variables with
acceptable errors for the bone milling task. Additionally, the algorithm takes around
0.24 ms per simulation step, where the computation of forward kinematics, geometric



5.3. Discussion 57

Jacobian and augmented Jacobian’s inverse takes place. The computational speed of
the algorithm and its implementation suggests that it can used in tracking an online
task trajectory input in real time at frequencies up to 4 kHz.





59

Chapter 6

Manipulability Analysis and
Software Implementation Details

6.1 Manipulability Analysis

Manipulability is the ability of a manipulator to move its end-effector, including its
position and orientation, at a given joint configuration. It is reflected on the efficiency
of robot motion and its functionality, since doing the same end-effector motion at a
configuration with a higher end-effector manipulability results in a smaller displacement
(i.e. effort) of the joints. In other words, for the same amount of allowed change in joint
displacements, the robot has a higher capacity of changing its end-effector pose when
it has a higher manipulability. As given in Section 2.3.2, there are different measures
related to the manipulability of a robot end-effector. In this section, we want to analyse
the robot’s end-effector manipulability in its workspace, to evaluate a given task in terms
of the manipulability measure throughout the task and to make choices on initial robot
configuration and robot-patient placement; in order to avoid less manipulable workspace
regions.

For the analysis of manipulability of the end-effector in the robot workspace, a
sampling method is used. It involves computing forward kinematics for random joint
configurations, which are chosen with a uniform probability distribution, inside a chosen
range for joint displacements. The sampling is done for a certain number of trials and
a manipulability measure for each sample is computed. By setting a range of motion
for each joint, the manipulability analysis can be performed in the neighbourhood of a
certain configuration in the robot’s joint space. For the manipulability measure, below
are two possible choices,

µ1 =
√

detJJT = σ1 . . . σn, (6.1)

which is the so-called Yoshikawa’s manipulability index [26] and

µ2 =
1

cond(J)
=
σn
σ1
, (6.2)

which is the inverse condition number measurement [27], where σi ∈ {σ1 , ... , σn} denote,
from minimum to maximum, the singular values of the Jacobian matrix J .

Using a large range of random displacements for the joints results in a visual seen
in Figure 6.1, which is not easy to comprehend. The outer blue points represent the
orientation trace of the end-effector at each sampled position. In the center, obtained



60 Chapter 6. Manipulability Analysis and Software Implementation Details

end-effector positions are represented with a colormap according to their measure of
manipulability.

Figure 6.1: Manipulability analysis data with respect to µ1 is represented with a colormap,
where the robot is in the center and blue points surrounding the data represent the orientation
trace of the end-effector at each sample (3D plot from side-view)

The complexity of this result is due to the fact that, the non-unique mapping be-
tween the joint space and the task space allows for multiple configurations with different
manipulability measures at the same or close locations. Therefore, a smaller range of
joint displacements for a preliminary test to compare the manipulability measures is
chosen as

qmid = [0
π

4

π

2

−π
2

π

4

π

2
40.10−3]

∆q = [
π

5

π

4

π

10

π

10

π

4

π

10
40.10−3]

. (6.3)

As a result, the volume of the workspace spanned by the robot is reduced, but the
distribution of the measurements gives an improved insight on the manipulability of
the chosen range of joint displacements since the manipulability measure is more dis-
tinguishable, as seen in Figure 6.2. By its definition in (6.1), µ1 takes into account all
the singular values of the Jacobian and it is proportional to the volume of the manip-
ulability ellipsoid, whereas the analysis with µ2, which is given in (6.2), considers only
the maximum and minimum singular values which can be deceiving since it is related
to their ratio but not the real values. Hence µ1 will be adopted for the manipulability
analysis.

To evaluate the sampled portion of the workspace, two methods can be used. Firstly,
a grid can be generated based on the data, to investigate a section of the sampled
volume. To generate gridded data from the manipulability data, the point cloud of the
manipulability analysis is filtered by setting a 3D mesh with adjustable resolution and
collecting the mean value of manipulability in that volume. Alternative to obtaining the
mean value in each volume, the minimum value of the manipulability measure can also be



6.1. Manipulability Analysis 61

Figure 6.2: Plot (a) shows the manipulability analysis with respect to µ1 while Plot (b) shows
the analysis with respect to µ2 (3D plot from side-view)

used for analysis. An example of this approach can be seen in Figure 6.3, where the data
represented in Figure 6.2 (a) is gridded with respect to mean values of manipulability
to obtain a section representation at z = 0.1m level, with a grid resolution of 0.005m.

Figure 6.3: Horizontal section of the 3D grid of the mean values of manipulability data

Secondly, instead of gridding the initial data, manipulability measures can directly be fil-
tered with respect to end-effector position and orientation at each configuration. Instead
of sections, small volumes can be investigated and since orientation is also taken into ac-



62 Chapter 6. Manipulability Analysis and Software Implementation Details

count, the resulting data can give clear insights. To show this, the initial manipulability
data which is plotted in Figure 6.2, is filtered with respect to conditions on end-effector
position as −0.15 < (oee)x < −0.05, −0.03 < (oee)y < 0.03 and 0.1 < (oee)z < 0.25
and an angular difference (from axis-angle representation) of 0.5rad with respect to a
reference orientation Rref = Ry,π/2Rz,π/2Rx,π (green line), as shown in Figure 6.4.

Figure 6.4: Filtered manipulability measure data with respect to end-effector position and ori-
entation range

6.1.1 Results

In the manipulability analysis, the joint configuration of the robot is spanned with
a uniform distribution on a defined range for each joint. Singular value decomposition
of the augmented Jacobian is performed to compute the manipulability measure given
in (6.1) in Section 6.1.

Sampling the Workspace and Filtering Manipulability Data

The middle values and the range of motion for a sample test are set as

qmid = [0
π

4

π

2

−π
2

π

4

π

2
40.10−3]

∆q = [
3π

10

4π

10

3π

10

3π

10

4π

10

3π

10
40.10−3]

. (6.4)



6.1. Manipulability Analysis 63

Without any filtering for the position and orientation of the end-effector, which is
obtained during the distribution according to the joint ranges in (6.4), the manipulability
measure data are obtained as 106 data points within a computation duration around
140 seconds. Selectively choosing the manipulability measure data from 106 samples,
according to the end-effector’s position and orientation at each particular configuration
results in a volume as shown in Figure 6.5.

Figure 6.5: Manipulability analysis in a small volume - Sampling the Workspace (with end-
effector orientation reference (green line), obtained orientation at each point (blue trace))

As seen in Figure 6.5, by selecting end-effector configurations which are close to a
certain reference orientation (green line)

Rref = Ry,1.745Rz,π/2Rx,π , (6.5)

by 0.5 rad and in a range of position as

−0.125 < (oee)x < 0.075
−0.03 < (oee)y < 0.03
0.075 < (oee)z < 0.275

, (6.6)

the resulting end-effector manipulability data have a recognizable distribution for that
selection.



64 Chapter 6. Manipulability Analysis and Software Implementation Details

Comparison of Task Placements

The measurements on end-effector manipulability can be used as follows. Consider
the two different placements for the ear volume approximation depicted in Figure 6.6,

Figure 6.6: Two ear volume placements where the lower-left cone is in the same place as Task
1. The placement on lower left is denoted Test 1 (gray) and the one on upper right is denoted
Test 2 (red) (3D plot from side-view)

where left (gray) and right (red) cones represent the two different locations for Task 1,
which is defined in the task trajectory generation part in Section 4.2 and used in the
inverse kinematics simulations in Section 5.2. The two different placements in Figure 6.6
will be referred to as Test 1 (gray) and Test 2 (red). The measured data in Figure 6.6
show a decrease in the manipulability measure for Test 2 compared to Test 1. To validate
this throughout the task, the singular value data and the manipulability measures from
the inverse kinematics simulation during execution of these similar tasks at two locations
are recorded. The end-effector manipulability throughout the task for both placements
is shown in the upper plot in Figure 6.7. It is seen that throughout the task execution,
the manipulability of the end-effector is greater in Test 1 compared Test 2, as expected.
Lower manipulability measure implies that greater joint displacements are necessary to
manipulate the end-effector. In fact, it is seen in the lower plot of Figure 6.7 that in
the case of lower manipulability, the norm of joint velocities increased throughout the
task. This implies also an increase in accelerations of the joints which is not desired for
dynamic control.



6.1. Manipulability Analysis 65

Figure 6.7: Manipulability measure µ1 throughout a task with different placements in the robot
workspace

Manipulability analysis helps in determining how the target object to be milled must
be placed in the workspace of the robot. When a task is defined, range of the desired
motion of the end-effector for that task is obtained. The same task can be tested for
end-effector manipulability and kinematic tracking performance at various poses in the
robot’s workspace by changing the position and orientation of the target object. Since
end-effector task includes the position and orientation completely, the range of desired
motion in terms of position and orientation can be used in the manipulability analysis
to determine the workspace regions, which have a higher end-effector manipulability
throughout the task. As shown by the previous case, higher manipulability results in
less effort for the actuators in terms of total displacement, velocity and acceleration of
the joints.

6.1.2 Discussion

The manipulability analysis is done with an example case of choosing different ear
cone locations in the robot’s workspace. The analysis allows to investigate regions in
the workspace of the robot for better manipulability in comparison to other regions.
This can help in the decision on how to place an object to be milled, in terms of its
position and orientation, such that the robot can execute tasks on the object with higher
manipulability. In the given example, it is shown that the performance of the kinematic
tracking through inverse differential kinematics can be improved in terms of the overall
displacement, velocity and accelerations of the joints, by choosing a region with higher
end-effector manipulability.



66 Chapter 6. Manipulability Analysis and Software Implementation Details

6.2 Software Implementation and Toolbox

A brief software structure schematic is given in Figure 6.8. The setup phase is to
be performed initially and once, unless the kinematic model of the robot is changed. In
this phase, symbolic expressions of the forward kinematics and the geometric Jacobian
are calculated. From these symbolic expressions, C files, which will be compiled later,
are generated automatically. By using Mex files in the simulation part to compute the
forward kinematics and the Jacobian, one step of the algorithm reduced from 0.135 to
0.00035 seconds, which is around 385 times faster. In the simulation phase, the task
generation part computes the desired task trajectories. Then, in the inverse kinematics
part, the joint variables, which result in the end-effector tracking of the desired task
trajectories, are computed. Finally, the results are shown and the motion of the robot
is visualized.

Figure 6.8: A brief schematic of the software implementation in Matlab



6.2. Software Implementation and Toolbox 67

6.2.1 Toolbox Setup

In the setup part, the parameters of the kinematic model of the robot are set by the
user. From the kinematic model, the forward kinematics and the geometric jacobian of
the manipulator are computed symbolically. The computation times are around 2.5 and
2.7 seconds, respectively. The values of the parametric variables are substituted in the
symbolic expressions, which are then converted into C code format. The C codes are
generated automatically by the function ModArm generateMex and they are compiled
to generate Mex executable files that are accessible from the Matlab command line to
compute the homogeneous transformation matrices and the geometric Jacobian based on
a given joint configuration. The setup phase is finished after the Mex files are generated.

The setup routine needs to be run when a parameter defining the robot kinematic
model or its reference pose with respect to the fixed frame is changed. Using an auto-
mated C code implementation in this phase is advantageous over using symbolic expres-
sions for its computational efficiency. This way, the DH parameters, number of degrees
of freedom, joint order and world to base transformation, which defines the position and
orientation of the base of the robot, can be modified. Automatically generated Mex
files for serial manipulators with different models can be stored for future use as Mex
functions, which are accessible from MATLAB command line directly.

6.2.2 Simulation

In the simulation phase, parameters, which are related to the task specification, the
inverse kinematics algorithm, the simulation and visualization, are defined. Firstly, the
desired task task trajectories are generated. Then, the joint trajectories corresponding to
the desired task are computed in the inverse kinematics part. Finally, the resulting task
execution is visualized and results such as joint displacements, velocities, accelerations,
the desired task trajectories, errors in task trajectory tracking, singular values of the
Jacobian and manipulability measure throughout the task are plotted.

For the inverse kinematics, it is necessary to compute forward kinematics and the
Jacobian at each step where the joint configuration is changed. Doing each computation
symbolically within one step of the simulation has a computational duration around
0.135 seconds. When the Mex functions, which are generated in the setup phase only
once, are used instead of symbolic expressions, the duration for a simulation step is
reduced to 0.24 ms. As a result, a simulation with a time span of 0 to 2 seconds at
100 Hz which has 200 algorithm steps in total, takes around 27 seconds when symbolic
expressions are used, whereas the same simulation takes only about 0.05 seconds with
the implementation of Mex functions. A simulation step duration of approximately
0.24 ms for inverse kinematics suggests that a real time use of the current state of this
software can be suitable for operation frequencies around 4000 Hz (0.25 ms per step),
to compute joint velocities to track a desired task.





69

Chapter 7

Conclusion and
Recommendations

7.1 Conclusion

In this thesis, solutions to both the task specification and the inverse kinematics
problems have been developed for the surgical bone removal robot RoBoSculpt.

With the proposed task specification method, desired task trajectories, which de-
scribe end-effector position, orientation and a constraint task on the prismatic joint, are
generated for bone removal on a section of a conical approximation of a human ear.
By the desired task trajectories, a section of the ear cone is routed by the end-effector,
while its orientation is chosen, such that the rotary tool is clear from the walls of the
cavity. Prismatic joint, which actuates the rotary tool, is also taken into account and
its displacement is geometrically constrained to keep the supporting link clear from the
ear to avoid collisions. As a result, the clearance problem is decoupled into one for the
end-effector orientation, to avoid collision with the cavity walls, and one for the pris-
matic joint, to keep the end-effector’s supporting link clear from the whole cavity. By
introducing the one dimensional constraint task, the task space is augmented to have
seven dimensions and as a result, the robot operation is not redundant any more.

A standard inverse differential kinematics algorithm is adopted and modified to
incorporate augmented task space with augmented Jacobian. Using the algorithm, the
inverse differential kinematics is integrated over time while the numerical errors are
accounted for, using task space error feedback, and the task trajectories are tracked
at the velocity level. Computed joint trajectories for sample tasks show a kinematic
tracking of the desired task with a position error less than 5 µm (5 · 10−6 m) and an
orientation error less than 3 ·10−5 rad, which are due to the numerical integration in the
algorithm and the approximations in calculating the end-effector orientation error and
in setting the desired angular velocity of the end-effector at each time step. It is shown
that these errors can be reduced further by setting higher gains on kinematic tracking
errors. Additionally, the algorithm is computationally efficient with a duration around
0.24 ms for each step, which allows its use with an online task input at frequencies upto
approximately 4 kHz.

The end-effector manipulability is analysed in the robot workspace and throughout
given tasks. The manipulability data is obtained by sampling the robot workspace
with random joint displacements within specified ranges. During the collection, the
manipulability data is filtered with respect to the end-effector position and orientation



70 Chapter 7. Conclusion and Recommendations

at each configuration, to analyse the end-effector manipulability for specified regions
of both its position and orientation. It is shown that performing a kinematic task at
different locations with respect to the robot, with overall difference in the end-effector
manipulability affects the performance of task execution. A task placement with higher
manipulability imposes less effort for the actuators in terms of overall velocity of the
joints. Hence, it can be desirable to use the manipulability analysis to investigate a
given task trajectory for the end-effector manipulability and to make changes in the
given task’s location with respect to the robot, in order to avoid regions with lower
manipulability.

Additionally, with the software tools developed during this project, design modifi-
cations can be made on the kinematic model. Modified models can be checked through
forward and inverse kinematics tests and visualizations. Modified workspaces can be
investigated with the manipulability analysis. Kinematic performance assessments can
also be made, through task generation and inverse kinematics tests for any given task,
which will hopefully be useful in future projects related to RoBoSculpt.

7.2 Recommendations

There are a number of possible improvements for future applications regarding the
task specification and inverse kinematics solution for RoBoSculpt.

• The current task specification method is based on a conical approximation of
an ear volume and a layer of bone to be milled is approximated as a circular
section orthogonal to the cone axis. In a real operation, the shape of the chosen
layer to be milled can have an irregular shape. Hence, the end-effector position
trajectory generation can be extended to produce position profiles which span
irregularly shaped sections of a bone volume to be milled out. In this case, the
generation of the orientation trajectory, which guarantees collision-free motion,
would become more complex, because of the irregularly shaped cavity. Hence,
rather than a geometric solution, the orientation trajectory generation can be
made with an iterative approach, since it might not be possible to find a closed-
form expression for the orientation. Following a given position trajectory through
an iterative algorithm, the orientation trajectory profile can be optimized to result
in a continuous and collision-free motion. The optimization can be performed
with respect to quality indices such as the cone-edge clearance. Additionally, if
the current conical approximation is to be used in practice, then the proposed
geometric solution can also be adopted in an optimization routine. Cost functions
can be set on criteria such as edge clearance and ranges of angles of approach
and inclination, and as a result, an optimal orientation trajectory profile can be
generated. Currently, this is done manually and if collisions are detected, the user
iteratively changes coefficients in the descriptions of the angular parameters which
describe the orientation.

• For simple milling tasks (e.g. on planar surfaces), it can be desirable to operate
with less number of joints of the robot, for precision, power consumption and rigid-
ity, since the mechanical design of RoBoSculpt has the capability of locking the
joints mechanically and the use of less joints would result in smaller accumulation
of errors such as the ones from quantization and low-level control. To mill or drill
on an open planar surface with no edges that could otherwise limit the motion, use



7.2. Recommendations 71

of the last three joints (RRP) can be sufficient while the other joints are mechan-
ically locked. For these kind of practical cases, both the task specification part
and inverse kinematics algorithm can be extended to include options on changing
the degrees of freedom involved in task definition and robot actuation.

• Currently, the manipulability analysis is manually done by choosing ranges of joint
motion and filtering the measured manipulability data by user-defined ranges of
end-effector position and orientation. The analysis method can be extended to be
partly automated by devising a routine which searches for the best configuration of
the task placement with given limits on the joints. Gridding the workspace with the
manipulability measure as explained in this thesis can also help in speeding up and
simplifying the process. However, it should be noted that detection of singularities
is not guaranteed since the method consists of sampling the workspace of the robot
with random joint displacements (with uniform probability distribution on a set
range). Hence, a high number of samples should be taken to sample the workspace
with the joint displacement ranges (set by the user) as much as possible to increase
the statistical reliability of the manipulability data.

• The kinematic model and modular structure of RoBoSclupt also brings up the
possibility of intra-collisions between the robot parts. There are possible ways to
check for intra-collisions and it is recommended that this issue is further investi-
gated and implemented for the task planning of RoBoSculpt in future projects.
One possible method is to encapsulate each moving part with a custom ellipsoid
and checking for algebraic conditions for ellipsoids’ separation or overlapping by
using their characteristic polynomials. Note that this method is conservative since
ellipsoids are used to approximate the robot parts. Additionally, this method can
also be used to measure the distance to an intra-collision, which is the closest dis-
tance between robot parts that could collide with each other. As a result, it can be
useful in real-time operation where it can be desirable to detect intra-collision pos-
sibilities before they actually occur. A second option is to use triangular meshes of
the robot parts and check for collisions from the vertices of each triangular surface.
This method is less conservative, but it can be also computationally demanding
and it does not measure the distance to an intra-collision. Hence, it is suitable
for task planning rather than real-time use. Another direction, which needs to be
investigated, is to use the normal vectors of triangular meshes vertices of the parts.
In Appendix C.1, Figures C.1-C.2 show triangular re-mesh from one of the parts’
.stl files and vertex normal vectors. Using the vertex position data and normal
vector directions, regions of the parts with collision possibility can be filtered with
respect to their position and orientation. Then, the distance in filtered vectors’
direction, which result in intersection with the vertices on the other side, can be
computed.

• Finally, the software can be simplified (e.g. to become a library of functions to
allow easy prototyping and testing of algorithms) and generalized for open public
use for fast simulations of forward and inverse kinematics of serial manipulators
with various DOFs.





73

Bibliography

[1] J. Bos, “Modular robotic device for precision surgical bone removal and other ap-
plications,” Patent Application Number US 62/253 575, 2015.

[2] J. H. Dirckx, M.D., “Robotic surgery,” The SUM Program Obstetrics/Gynecology
Advanced Medical Transcription Unit, 2011, health Professions Institute.

[3] Y. Kwoh, J. Hou, E. Jonckheere, and S. Hayati, “A robot with improved absolute
positioning accuracy for ct guided stereotactic brain surgery,” IEEE Transactions
On Biomedical Engineering, vol. 35, no. 2, pp. 153–160, 1988.

[4] S. Harris, F. Arambula-Cosio, Q. Mei, R. Hibberd, B. Davies, J. Wickham,
M. Nathan, and B. Kundu, “The probot - and active robot for prostate resection,”
Journal of Engineering in Medicine, vol. 211, no. 4, pp. 317–325, 1991.

[5] Y. Wang and K. Laby, “Automated endoscope system optimal positioning,” Patent
US 5 657 429, 08 12, 1997.

[6] H. Yu, N. Hevelone, S. Lipsitz, K. Kowalczyk, and J. Hu, “Use, costs and compar-
ative effectiveness of robotic assisted, laparoscopic and open urological surgery,”
The Journal of Urology, vol. 187, pp. 1392–1399, 2012.

[7] F. Matsen, J. Garbini, J. Sidles, B. Pratt, D. Baumgarten, and R. Kaiura, “Robot
assistance in orthopaedic surgery: a proof of principle using distal femoral arthro-
plasty,” Clin. Orthop., no. 296, pp. 178–186, 1993.

[8] S. Delp, S. Stulberg, B. Davies, F. Picard, and F. Leitner, “Computer assisted knee
replacement,” Clin. Orthop., no. 49, p. 354, 1998.

[9] M. Borner, U. Wiesel, and W. Ditzen, “Clinical experiences with robodoc and the
duracon total knee,” Navigation and Robotics in Total Joint and Spine Surgery,
vol. Springer Verlag, no. 296, pp. 362–366, 2004.

[10] A. Wolf, B. Jaramaz, B. Lisien, and A. DiGioia, “Mbars: mini bone-attached
robotic system for joint arthroplasty,” International Journal of Medical Robotics
and Computer Aided Surgery, no. 1, pp. 101–121, 2005.

[11] M. Shoham, M. Burman, E. Zehavi, L. Joskowicz, E. Batkilin, and Y. Kunicher,
“Bone-mounted miniature robot for surgical procedures: concept and clinical ap-
plications,” IEEE Trans. Rob. and Autom., vol. 19, pp. 893–901, 2003.

[12] M. Berardoni, “A computer aided cutting guide positioner to improve bone-cutting
precision in total knee arthroplasty,” Proceedings of the 3rd annual meeting of the
International Society for Computer-Assisted Orthopaedic Surgery, pp. 28–29, 2003.



74 Bibliography

[13] N. Dillon, R. Balachandran, J. Fitzpatrick, M. Siebold, R. Labadie, G. Wanna,
T. Withrow, and R. Webster, “A compact, bone-attached robot for mastoidec-
tomy,” Journal of Medical Devices, vol. 9, no. 031003, 2015.

[14] M. Mirour, Y. Nguyen, J. Szewczyk, S. Mazalaigue, E. Ferrary, O. Sterkers, and
A. Grayeli, “Robotol: From design to evaluation of a robot for middle ear surgery,”
IEEE/RSJ 2010 Int. Conf. on Intelligent Robots and Systems, pp. 850–856, 2010.

[15] D. Pieper, The Kinematics of Manipulators Under Computer Control. Ph.D. Dis-
sertation, Department of Mechanical Engineering, Stanford University, Stanford,
CA, 1968.

[16] J. Zhao and N. Badler, “Inverse kinematics positioning using nonlinear program-
ming for highly articulated figures,” Trans. Comput. Graph., vol. 13, no. 4, pp.
313–336, 1994.

[17] D. E. Whitney, “Resolved motion rate control of manipulators and human prosthe-
ses,” IEEE Transactions on Man-Machine Systems, vol. 10, pp. 47–63, 1969.

[18] R. S. Rao, A. Asaithambi, and S. K. Agrawal, “Inverse kinematic solution of robot
manipulators using interval analysis,” ASME Journal of Mechanical Design, vol.
120, no. 1, pp. 147–150, 1998.

[19] A. Ben-Israel and T. Greville, Generalized Inverses: Theory and Applications. Wi-
ley, New York, 1974.

[20] J. Baillieul, J. Hollerbach, and R. Brockett, “Programming and control of kinemat-
ically redundant manipulators,” 23th IEEE Conf. Decis. Contr., vol. Las Vegas,
pp. 768–774, 1984.

[21] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics Modelling, Planning
and Control. Springer, 2009.

[22] J. Baillieul, “Kinematic programming alternatives for redundant manipulators,”
IEEE Int. Conf. Robot. Autom., vol. St. Louis, pp. 722–728, 1985.

[23] P. Chang, “A closed-form solution for inverse kinematics of robot manipulators
with redundancy,” IEEE J. Robot. Autom., vol. 3, pp. 393–403, 1987.

[24] L. Sciavicco and B. Siciliano, “A solution algorithm to the inverse kinematics prob-
lem for redundant manipulators,” IEEE Journal of Robotics and Automation, vol. 4,
pp. 403–410, 1988.

[25] O. Egeland, “Task-space tracking with redundant manipulators,” IEEE J. Robot.
Autom., vol. 3, pp. 471–475, 1987.

[26] T. Yoshikawa, “Manipulability of robotic mechanisms,” The International Journal
of Robotic Research, vol. 4, no. 2, pp. 3–9, 1985.

[27] M. Togai, “An application of the singular value decomposition to manipulability and
sensitivity of industrial robots,” SIAM Journal on Algebraic and Discrete Methods,
vol. 7, no. 2, pp. 315–320, 1986.

[28] J. Denavit and R. Hartenberg, “A kinematic notation for lower-pair mechanisms
based on matrices,” J. Appl. Mech., vol. 22, pp. 215–221, 1955.



Bibliography 75

[29] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control.
Wiley, 2006.





77

Appendix A

End-effector Orientation Error

Recall the derivation of the representation of a rotation of a rigid body as a matrix
exponential, by considering the velocity q̇ of a point q when it is rotated about an axis
r with constant unit angular velocity at time t

q̇(t) = r × q(t). (A.1)

The cross product above can also be represented as

q̇(t) = r × q(t) = S(r)q(t), (A.2)

where S(r) denotes the skew-symmetric matrix which is defined as

S(r) =

 0 −r3 r2
r3 0 −r1
−r2 r1 0

 . (A.3)

Being a time-invariant linear differential equation, (A.2) can be integrated to give

q(t) = eS(r)tq0, (A.4)

where q0 = q(0) is the initial position of the point q and eS(r)t is the matrix exponential
given by

eS(r)t = I + S(r)t+
(S(r)t)2

2!
+

(S(r)t)3

3!
+ . . . . (A.5)

Hence it follows that a rotation about an axis r by unit velocity and an amount of time
θ (i.e. with the resulting displacement θ) can be represented as

R(r, θ) = eS(r)θ. (A.6)

Being an infinite series, the exponential representation of a rotation in (A.5) is not
desirable from a computational point of view. Fortunately, a closed-form expression can
be obtained using the following properties of skew-symmetric matrices.

Lemma A.3.1:

Given S(r) ∈ so(3) where so(n) = {S ∈ Rn×n : ST = −S}, the following relations
are true,



78 Appendix A. End-effector Orientation Error

S(r)2 = rrT − ||r||2I , (A.7)

S(r)3 = −||r||2S(r) , (A.8)

and the higher powers of S(r) can be calculated recursively.

Using the relations in Lemma A.3.1 and taking r to be a unit-vector ||r|| = 1, the
following expression

eS(r)θ = I + S(r)θ +
θ2

2!
S(r)2 +

θ3

3!
S(r)3 + . . . , (A.9)

becomes

eS(r)t = I +

(
θ − θ3

3!
+
θ5

5!
− . . .

)
S(r) +

(
θ2

2!
− θ4

4!
+
θ6

6!
− . . .

)
S(r)2, (A.10)

where the infinite series can be replaced by the equivalent trigonometric expressions to
give

eS(r)t = I + S(r) sin θ + S(r)2(1− cos θ), (A.11)

which is the so-called Rodrigues’ formula.

Definition for the orientation error

Using the axis angle representation, the rotation needed to align a given orientation
with a desired one can be expressed in two terms; r which is the axis of rotation and
the angle θ which is the amount of angular displacement needed about r, as

R(r, θ) = R0
d(R

0
ee(q))

T , (A.12)

where q is the vector of joint displacement variables,

R0
d =

x0d y0d z0d

 =

 a0d
b0d
c0d

 , (A.13)

is the rotation matrix describing the desired orientation of the end-effector frame with
respect to the reference frame, expressed by its column vectors (x0d, y

0
d, z

0
d) and row

vectors (a0d, b
0
d, c

0
d) and

R0
ee(q) =

x0ee(q) y0ee(q) z0ee(q)

 =

 a0ee(q)
b0ee(q)
c0ee(q)

 , (A.14)

is the rotation matrix describing the orientation of the end-effector frame obtained using
the joint variables q, expressed by its column vectors (x0ee(q), y

0
ee(q), z

0
ee(q)) and row

vectors (a0ee(q), b
0
ee(q), c

0
ee(q)). The dependency on q will be omitted for clarity.

Using Rodrigues’ formula (A.11), (A.12) can be rewritten as

I + S(r) sin θ + S(r)2(1− cos θ) = R0
d(R

0
ee)

T (q). (A.15)



79

Denoting cθ = cos θ, sθ = sin θ and vθ = 1− cos θ and expressing the right-hand side in
terms of the row vectors of Rd and Ree, the expression above becomes

 r21vθ + cθ r1r2vθ − r3sθ r1r3vθ + r2sθ
r1r2vθ + r3sθ r22vθ + cθ r2r3vθ − r1sθ
r1r3vθ − r2sθ r2r3vθ + r1sθ r23vθ + cθ

 =

a0d · a0ee a0d · b0ee a0d · c0ee
b0d · a0ee b0d · b0ee b0d · c0ee
c0d · a0ee c0d · b0ee c0d · c0ee

 ,
(A.16)

where (a0ee, b
0
ee, c

0
ee) and (a0d, b

0
d, c

0
d) are the row vectors of R0

ee and R0
d, respectively.

Taking the sum of diagonal terms on both sides (A.16)

(r21 + r22 + r23)vθ + 3cθ = a0d · a0ee + b0d · b0ee + c0d · c0ee, (A.17)

with ||r|| = 1 and vθ = 1− cθ, it becomes

1 + 2 cos θ = trace(R0
d(R

0
ee)

T ). (A.18)

Hence the solution for the angle θ is obtained as

θ = cos−1

(
trace(R0

d(R
0
ee)

T )− 1

2

)
, (A.19)

which gives θ ± 2πn and −θ ± 2πn as possible solutions.
By equating the off-diagonal terms in (A.16)

c0d · b0ee − b0d · c0ee = 2r1sθ
a0d · c0ee − c0d · a0ee = 2r2sθ
b0d · a0ee − a0d · b0ee = 2r3sθ

, (A.20)

and assuming θ 6= 0, the vector r which represents the axis of rotation, is obtained as

r =
1

2sθ

c0d · b0ee − b0d · c0eea0d · c0ee − c0d · a0ee
b0d · a0ee − a0d · b0ee

 . (A.21)

Now that the terms r and θ which define the rotation to align an end-effector frame
with a desired frame, are obtained, the orientation error based on these terms can be
defined as

eo = r sin θ. (A.22)

Substituting the expression for r in (A.21) into (A.22)

eo =
1

2

c0d · b0ee − b0d · c0eea0d · c0ee − c0d · a0ee
b0d · a0ee − a0d · b0ee

 . (A.23)

Expanding the dot products between the row vectors, rewriting in terms of the column
vectors of R0

d and R0
ee

eo =
1

2

(x0d)3(x
0
ee)2 + (y0d)3(y

0
ee)2 + (z0d)3(z

0
ee)2 − (x0d)2(x

0
ee)3 − (y0d)2(y

0
ee)3 − (z0d)2(z

0
ee)3

(x0d)1(x
0
ee)3 + (y0d)1(y

0
ee)3 + (z0d)1(z

0
ee)3 − (x0d)3(x

0
ee)1 − (y0d)3(y

0
ee)1 − (z0d)3(z

0
ee)1

(x0d)2(x
0
ee)1 + (y0d)2(y

0
ee)1 + (z0d)2(z

0
ee)1 − (x0d)1(x

0
ee)2 − (y0d)1(y

0
ee)2 − (z0d)1(z

0
ee)2

 ,
(A.24)



80 Appendix A. End-effector Orientation Error

and regrouping the terms, the following is obtained

eo =
1

2

( (x0d)3(x
0
ee)2 − (x0d)2(x

0
ee)3

(x0d)1(x
0
ee)3 − (x0d)3(x

0
ee)1

(x0d)2(x
0
ee)1 − (x0d)1(x

0
ee)2

+

(y0d)3(y
0
ee)2 − (y0d)2(y

0
ee)3

(y0d)1(y
0
ee)3 − (y0d)3(y

0
ee)1

(y0d)2(y
0
ee)1 − (y0d)1(y

0
ee)2


+

(z0d)3(z
0
ee)2 − (z0d)2(z

0
ee)3

(z0d)1(z
0
ee)3 − (z0d)3(z

0
ee)1

(z0d)2(z
0
ee)1 − (z0d)1(z

0
ee)2

) . (A.25)

Recalling the definition of cross product of two vectors a, b ∈ R3 which is given as

a× b =

a2b3 − a3b2a3b1 − a1b3
a1b2 − a2b1

 ,
it is seen that (A.25) is equivalent to

eo = −1

2

(
x0d × x0ee + y0d × y0ee + z0d × z0ee

)
, (A.26)

which can also be written, by using the vector cross product property a× b = −(b× a),
as

eo =
1

2

(
x0ee × x0d + y0ee × y0d + z0ee × z0d

)
. (A.27)

This approach is used in Section 5.1.4 and Section 5.1.5 to formulate the orientation
error and the desired angular velocity of the end-effector frame, respectively.



81

Appendix B

Forward Kinematics

In this section, a brief summary is given for rigid body motions and coordinate vector
transformations in the context of forward kinematics. See [29] for more details.

B.1 Rigid Body Rotations & Translations

In robotics, it is often necessary to represent the relative position and orientation of
a rigid body with respect to another. To do this, coordinate frames are attached to each
rigid body, while there is also a fixed reference frame. Geometric relations can then be
specified between moving rigid bodies.

B.1.1 Position and Orientation Representation

Every coordinate frame attached to a rigid body, consists of an origin o and two or
three orthogonal axes as xy or xyz, which describe position and orientation for two or
three dimensional spaces, respectively.

A location of a point in three dimensional space, which is a geometric entity, can be
denoted as p, while the coordinate vector which describe the position of p with respect to
a coordinate frame oixiyizi is denoted as pi. Similary, the origin of the coordinate frame
oixiyizi, denoted by oi, can be described as a coordinate vector with respect to another
frame ojxjyjzj as oji , which represents the position of the origin of frame oixiyizi with
respect to the frame ojxjyjzj .

The notation, which is used to assign coordinates to points, also applies to vectors,
to describe the velocity of a point with respect to different coordinate frames.

In addition to describing the position of a moving body with respect to another
frame, the relative orientation is also described, using representation of rotations. The
orientation of a frame can be specified by using the coordinate vectors of its axes with
respect to another frame. Hence, to describe to orientation of frame o1x1y1z1 with
respect to the frame o0x0y0z0, the matrix

R0
1 = [x01 y

0
1 z

0
1 ] , (B.1)

can be used, where x01, y
0
1 and z01 are the coordinates of the unit vectors x1, y1 and z1

in the frame o0x0y0z0, respectively. Such a matrix, which is formed of orthogonal unit
vectors, is called a rotation matrix and has the properties

RT = R−1, (B.2)



82 Appendix B. Forward Kinematics

detR = 1, (B.3)

and all such n× n matrices belong to the Special Orthogonal group, denoted as

R ∈ SO(n), (B.4)

where n is typically two or three in the context of rotations in Euclidean space.

For two dimensions, a rotation by θ of frame o1x1y1 with respect to frame o0x0y0 is
simply described as

R0
1 =

[
cos θ − sin θ
sin θ cos θ

]
, (B.5)

since

x01 =

[
cos θ
sin θ

]
y01 =

[
− sin θ
cos θ

] , (B.6)

as shown in Figure B.1.

Figure B.1: Representation of a rotation between frame o1x1y1 and o0x0y0 by θ

Alternatively, the rotation matrix R1
0 can obtained by the projections of the axes of

frame o1x1y1 to the axes of frame o0x0y0 using dot product, as

R1
0 =

[
x1 · x0 y1 · x0
x1 · y0 y1 · y0

]
, (B.7)

since

x01 =

[
x1 · x0
x1 · y0

]
y01 =

[
y1 · x0
y1 · y0

] . (B.8)

For the three dimensional case, a rotation matrix between the two frames can similary
be obtained as



B.1. Rigid Body Rotations & Translations 83

R1
0 =

x1 · x0 y1 · x0 z1 · x0
x1 · y0 y1 · y0 z1 · y0
x1 · z0 y1 · z0 z1 · z0

 , (B.9)

By the vector projections with dot product, basic rotations in three dimensions about
each coordinate axis can be described as

Rx,θ =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , (B.10)

for a simple rotation about x-axis by θ

Ry,θ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , (B.11)

for a simple rotation about y-axis by θ and

Rz,θ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , (B.12)

for a simple rotation about z-axis by θ between two frames.

In addition to describing relative orientations of a pair of frame, rotation matrices
can also be used for rotational transformation of coordinate vectors, such as the position
of a point. To describe the position of a point p0, which is expressed with respect to
frame o0x0y0z0, in the coordinates of a different frame o1x1y1z1, the following relation
can be used

p1 = R1
0p

0, (B.13)

where R1
0 represents the orientation of frame o0x0y0z0 with respect to frame o1x1y1z1.

Similarly, rotation matrices can be used to transform the coordinates of a point on a
local frame, which goes under a rotation with respect to a reference frame.

B.1.2 Homogeneous Transformations

Rotations and translations can be combined into transformation matrices, which are
called homogeneous transformations. A rotation with respect to one of the principal
axes and a translation can be described by a homogeneous transformation matrix as

H =

[
R d
0 1

]
, (B.14)

where R and d denotes a rotational transformation matrix and a translation vector,
which together describe the motion of one frame expressed in the coordinates of another
frame.



84 Appendix B. Forward Kinematics

B.2 Denavit-Hartenberg Parametrization

According to the DH convention [28], the homogeneous transformation between two
consecutive frames, from i−1th to ith, is defined by four parameters θi, di, ai and αi, as

T i−1
i =


cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di
0 0 0 1

 , (B.15)

where, the first 3× 3 diagonal element

Ri−1
i =

cos θi − sin θi cosαi sin θi sinαi
sin θi cos θi cosαi − cos θi sinαi

0 sinαi cosαi

 , (B.16)

is the matrix defining the rotational transformation from frame i− 1 to i and

pi−1
i =

ai cos θi
ai sin θi
di

 , (B.17)

is the vector defining the position of frame i with respect to frame i− 1.

For the joint variables q =
[
q1 ... qn

]T
where n is the number of degrees of freedom,

it holds that for i ∈ {1, . . . , n}, qi = θi for revolute joints and qi = di for prismatic joints.

B.3 Forward Kinematics

As the homogeneous transformations between each pair of frames are with respect
to the axes of the current local frame, the homogeneous transformation from the fixed
frame to the end effector frame can be computed recursively with right multiplication
as [29]

T 0
n = T 0

1 . . . T
i−1
i . . . Tn−1

n , (B.18)

where

T 0
n =


r11 r12 r13 (o0n)x
r21 r22 r23 (o0n)y
r31 r32 r33 (o0n)z
0 0 0 1

 , (B.19)

is the matrix defining the homogeneous transformation from the fixed reference frame
to the end-effector frame. It includes the matrix

R0
n =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 =

x0n y0n z0n

 , (B.20)

defining the orientation of the end-effector frame described by the axes x0ny
0
nz

0
n, and the

vector



B.3. Forward Kinematics 85

o0n =

(o0n)x
(o0n)y
(o0n)z

 , (B.21)

which gives the position of the end-effector frame origin.
By using a functional expression of T 0

n , the end-effector position o0n and orientation
x0ny

0
nz

0
n can be obtained for a given configuration for the joint variables q.





87

Appendix C

Additional Figures

C.1 Intra-collisions

For the recommendations on intra-collision avoidance given in Section 7.2, Figure
C.1 and C.2 are presented in this section. In Figure C.1, links 2,3 and 5 are shown with
triangular re-meshes. In Figure C.2, one of the parts with a triangular re-mesh is shown
with the vertex normal vectors, which are mentioned in Section 7.2.

Figure C.1: RoBoSculpt with Links 2, 3 and 5 re-meshed with triangles



88 Appendix C. Additional Figures

Figure C.2: A re-meshed robot part with vertex normal vectors



89

Appendix D

Homogeneous Transformation
and Jacobian Matrices

D.1 Homogeneous Transformation Matrix of the End-effector
Frame of RoBoSculpt

T 0
7 =


r11 r12 r13 (o07)x
r21 r22 r23 (o07)y
r31 r32 r33 (o07)y
0 0 0 1

 , (D.1)

where

r11 = −c6(c5(c4(s1s3 − c1c2c3)− c1s2s4)− s5(c3s1 + c1c2s3))
+s6(s4(s1s3 − c1c2c3) + c1c4s2) ,

r21 = c6(c5(c4(c1s3 + c2c3s1) + s1s2s4)− s5(c1c3 − c2s1s3))
−s6(s4(c1s3 + c2c3s1)− c4s1s2) ,

r31 = −c6(c5(c2s4 − c3c4s2)− s2s3s5)− s6(c2c4 + c3s2s4) ,

(D.2)

r12 = s5(c4(s1s3 − c1c2c3)− c1s2s4) + c5(c3s1 + c1c2s3) ,
r22 = −s5(c4(c1s3 + c2c3s1) + s1s2s4)− c5(c1c3 − c2s1s3) ,
r32 = s5(c2s4 − c3c4s2) + c5s2s3 ,

(D.3)

r13 = s6(c5(c4(s1s3 − c1c2c3)− c1s2s4)− s5(c3s1 + c1c2s3))
+c6(s4(s1s3 − c1c2c3) + c1c4s2) ,

r23 = −s6(c5(c4(c1s3 + c2c3s1) + s1s2s4)− s5(c1c3 − c2s1s3))
−c6(s4(c1s3 + c2c3s1)− c4s1s2) ,

r33 = s6(c5(c2s4 − c3c4s2)− s2s3s5)− c6(c2c4 + c3s2s4) ,

(D.4)



90 Appendix D. Homogeneous Transformation and Jacobian Matrices

xo
0
7 = q7

(
s6(c5(c4(s1s3 − c1c2c3)− c1s2s4)− s5(c3s1 + c1c2s3))
+ c6(s4(s1s3 − c1c2c3) + c1c4s2)

)
−d6(s5(c4(s1s3 − c1c2c3)− c1s2s4) + c5(c3s1 + c1c2s3))
+d5(s4(s1s3 − c1c2c3) + c1c4s2)− d4(c3s1 + c1c2s3)
−c1d3s2 + d2s1 ,

yo
0
7 = −q7

(
s6(c5(c4(c1s3 + c2c3s1) + s1s2s4)− s5(c1c3 − c2s1s3))

+ c6(s4(c1s3 + c2c3s1)− c4s1s2)
)

+d6(s5(c4(c1s3 + c2c3s1) + s1s2s4) + c5(c1c3 − c2s1s3))− d3s1s2
−d5(s4(c1s3 + c2c3s1)− c4s1s2)− c1d2 + d4(c1c3 − c2s1s3) ,

zo
0
7 = q7(s6(c5(c2s4 − c3c4s2)− s2s3s5)− c6(c2c4 + c3s2s4))

−d6(s5(c2s4 − c3c4s2) + c5s2s3)− d5(c2c4 + c3s2s4)
+d1 + c2d3 − d4s2s3 ,

(D.5)

where qi, di, ai and αi are the joint variables and the DH parameters from Table 3.1 in
Section 3.1.1 and si and ci are abbreviations for sin qi and cos qi, respectively.

D.2 Geometric Jacobian Matrix of the End-effector Frame
of RoBoSculpt

J =

[
Jv
Jω

]
, (D.6)

(Jv)1,1 = c1d2 + d5 (s4 (c1s3 + c2c3s1)− c4s1s2) + d3s1s2 − d4 (c1c3 − c2s1s3)
−d6

(
s5 (c4 (c1s3 + c2c3s1) + s1s2s4) + c5 (c1c3 − c2s1s3)

)
+q7

(
s6
(
c5 (c4 (c1s3 + c2c3s1) + s1s2s4)− s5 (c1c3 − c2s1s3)

)
+ c6 (s4 (c1s3 + c2c3s1)− c4s1s2)

) ,

(D.7)

(Jv)2,1 = −d6 (s5 (c4 (s1s3 − c1c2c3)− c1s2s4) + c5 (c3s1 + c1c2s3))
+d2s1 + d5 (s4 (s1s3 − c1c2c3) + c1c4s2)− d4 (c3s1 + c1c2s3)− c1d3s2
q7

(
s6 (c5 (c4 (s1s3 − c1c2c3)− c1s2s4)− s5 (c3s1 + c1c2s3))

+ c6 (s4 (s1s3 − c1c2c3) + c1c4s2)
) ,

(D.8)

(Jv)3,1 = 0 , (D.9)

(Jv)1,2 = c1

(
d6 (s5 (c2s4 − c3c4s2) + c5s2s3)− c2d3 + d5 (c2c4 + c3s2s4)

− q7 (s6 (c5 (c2s4 − c3c4s2)− s2s3s5)− c6 (c2c4 + c3s2s4)) + d4s2s3

)
,

(D.10)



D.2. Geometric Jacobian Matrix of the End-effector Frame of RoBoSculpt 91

(Jv)2,2 = s1

(
d6 (s5 (c2s4 − c3c4s2) + c5s2s3)− c2d3 + d5 (c2c4 + c3s2s4)

− q7 (s6 (c5 (c2s4 − c3c4s2)− s2s3s5)− c6 (c2c4 + c3s2s4)) + d4s2s3

)
,

(D.11)

(Jv)3,2 = −
(
c21 + s21

) (
d3s2 + c2d4s3 − c4d5s2 − c4c6q7s2 − d6s2s4s5 + c2c3d5s4

+ c2c5d6s3 − c2c3c4d6s5 + c2c3c6q7s4 + c2q7s3s5s6

+ c5q7s2s4s6 + c2c3c4c5q7s6

) ,

(D.12)

(Jv)1,3 = c2

(
− d6 (s5 (c4 (c1s3 + c2c3s1) + s1s2s4) + c5 (c1c3 − c2s1s3)) + d3s1s2

+ d5 (s4 (c1s3 + c2c3s1)− c4s1s2)− d4 (c1c3 − c2s1s3)
+ q7

(
s6 (c5 (c4 (c1s3 + c2c3s1) + s1s2s4)− s5 (c1c3 − c2s1s3))

+ c6 (s4 (c1s3 + c2c3s1)− c4s1s2)
))

+s1s2

(
d6 (s5 (c2s4 − c3c4s2) + c5s2s3)− c2d3 + d5 (c2c4 + c3s2s4)

− q7
(
s6 (c5 (c2s4 − c3c4s2)− s2s3s5)− c6 (c2c4 + c3s2s4)

)
+ d4s2s3

)
,

(D.13)

(Jv)2,3 = −c2
(
d6 (s5 (c4 (s1s3 − c1c2c3)− c1s2s4) + c5 (c3s1 + c1c2s3))

− q7
(
s6
(
c5 (c4 (s1s3 − c1c2c3)− c1s2s4)− s5 (c3s1 + c1c2s3)

)
+ c6 (s4 (s1s3 − c1c2c3) + c1c4s2)

)
− d5 (s4 (s1s3 − c1c2c3) + c1c4s2) + d4 (c3s1 + c1c2s3) + c1d3s2

)
−c1s2

(
d6 (s5 (c2s4 − c3c4s2) + c5s2s3)− c2d3 + d5 (c2c4 + c3s2s4)

− q7
(
s6 (c5 (c2s4 − c3c4s2)− s2s3s5)− c6 (c2c4 + c3s2s4)

)
+ d4s2s3

)
,

(D.14)

(Jv)3,3 = −s2
(
c21 + s21

) (
c3d4 + c3c5d6 − d5s3s4 + c4d6s3s5 − c6q7s3s4
+ c3q7s5s6 − c4c5q7s3s6

) , (D.15)



92 Appendix D. Homogeneous Transformation and Jacobian Matrices

(Jv)1,4 = −
(
− q7

(
s6 (c5 (c2s4 − c3c4s2)− s2s3s5)− c6 (c2c4 + c3s2s4)

)
+ d6 (s5 (c2s4 − c3c4s2) + c5s2s3) + d5 (c2c4 + c3s2s4)

+ d4s2s3

)
(c1c3 − c2s1s3)

−s2s3
(
q7

(
s6
(
c5 (c4 (c1s3 + c2c3s1) + s1s2s4)− s5 (c1c3 − c2s1s3)

)
+ c6 (s4 (c1s3 + c2c3s1)− c4s1s2)

)
− d6

(
s5 (c4 (c1s3 + c2c3s1) + s1s2s4) + c5 (c1c3 − c2s1s3)

)
+ d5 (s4 (c1s3 + c2c3s1)− c4s1s2)− d4 (c1c3 − c2s1s3)

)
,

(D.16)

(Jv)2,4 = −
(
d6 (s5 (c2s4 − c3c4s2) + c5s2s3) + d5 (c2c4 + c3s2s4)

− q7
(
s6 (c5 (c2s4 − c3c4s2)− s2s3s5)− c6 (c2c4 + c3s2s4)

)
+ d4s2s3

)
(c3s1 + c1c2s3)

−s2s3
(
q7

(
s6
(
c5 (c4 (s1s3 − c1c2c3)− c1s2s4)− s5 (c3s1 + c1c2s3)

)
+ c6 (s4 (s1s3 − c1c2c3) + c1c4s2)

)
− d6

(
s5 (c4 (s1s3 − c1c2c3)− c1s2s4) + c5 (c3s1 + c1c2s3)

)
+ d5 (s4 (s1s3 − c1c2c3) + c1c4s2)− d4 (c3s1 + c1c2s3)

)
,

(D.17)

(Jv)3,4 =
(
c21 + s21

) (
c2c

2
3d5s4 + c2d5s

2
3s4 − c3c4d5s2 − c3c4c6q7s2 − c3d6s2s4s5

− c2c23c4d6s5 + c2c
2
3c6q7s4 − c2c4d6s23s5 + c2c6q7s

2
3s4

+ c2c
2
3c4c5q7s6 + c2c4c5q7s

2
3s6 + c3c5q7s2s4s6

) ,

(D.18)

(Jv)1,5 =
(
− q7

(
s6 (c5 (c2s4 − c3c4s2)− s2s3s5)− c6 (c2c4 + c3s2s4)

)
+ d6 (s5 (c2s4 − c3c4s2) + c5s2s3)

+ d5 (c2c4 + c3s2s4)
)

(s4 (c1s3 + c2c3s1)− c4s1s2)

−
(
− d6 (s5 (c4 (c1s3 + c2c3s1) + s1s2s4) + c5 (c1c3 − c2s1s3))

+ q7

(
s6 (c5 (c4 (c1s3 + c2c3s1) + s1s2s4)− s5 (c1c3 − c2s1s3))

+ c6 (s4 (c1s3 + c2c3s1)− c4s1s2)
)

+ d5 (s4 (c1s3 + c2c3s1)− c4s1s2)
)

(c2c4 + c3s2s4)

, (D.19)



D.2. Geometric Jacobian Matrix of the End-effector Frame of RoBoSculpt 93

(Jv)2,5 =
(
− q7

(
s6 (c5 (c2s4 − c3c4s2)− s2s3s5)− c6 (c2c4 + c3s2s4)

)
+ d6 (s5 (c2s4 − c3c4s2) + c5s2s3)

+ d5 (c2c4 + c3s2s4)
)

(s4 (s1s3 − c1c2c3) + c1c4s2)

−
(
q7

(
s6 (c5 (c4 (s1s3 − c1c2c3)− c1s2s4)− s5 (c3s1 + c1c2s3))

+ c6 (s4 (s1s3 − c1c2c3) + c1c4s2)
)

− d6
(
s5 (c4 (s1s3 − c1c2c3)− c1s2s4) + c5 (c3s1 + c1c2s3)

)
+ d5 (s4 (s1s3 − c1c2c3) + c1c4s2)

)
(c2c4 + c3s2s4)

, (D.20)

(Jv)3,5 = −
(
c21 + s21

) (
c2c

2
3c5d6s4 − c3c4c5d6s2 + c2c5d6s

2
3s4 − c24d6s2s3s5

− d6s2s3s24s5 + c2c
2
3q7s4s5s6 + c24c5q7s2s3s6

+ c2q7s
2
3s4s5s6 + c5q7s2s3s

2
4s6 − c3c4q7s2s5s6

) , (D.21)

(Jv)1,6 =

(
− q7

(
s6 (c5 (c4 (c1s3 + c2c3s1) + s1s2s4)− s5 (c1c3 − c2s1s3))

+ c6 (s4 (c1s3 + c2c3s1)− c4s1s2)
)

+ d6
(
s5 (c4 (c1s3 + c2c3s1) + s1s2s4)

+ c5 (c1c3 − c2s1s3)
))

(s5 (c2s4 − c3c4s2) + c5s2s3)

−
(
− q7 (s6 (c5 (c2s4 − c3c4s2)− s2s3s5)− c6 (c2c4 + c3s2s4))

+ d6 (s5 (c2s4 − c3c4s2) + c5s2s3)
)(
s5 (c4 (c1s3 + c2c3s1) + s1s2s4)

+ c5 (c1c3 − c2s1s3)
)
,

,

(D.22)

(Jv)2,6 = −
(
− d6

(
s5 (c4 (s1s3 − c1c2c3)− c1s2s4) + c5 (c3s1 + c1c2s3)

)
+ q7

(
s6 (c5 (c4 (s1s3 − c1c2c3)− c1s2s4)− s5 (c3s1 + c1c2s3))

+ c6 (s4 (s1s3 − c1c2c3) + c1c4s2)
))

(s5 (c2s4 − c3c4s2) + c5s2s3)

−
(
− q7 (s6 (c5 (c2s4 − c3c4s2)− s2s3s5)− c6 (c2c4 + c3s2s4))

+ d6 (s5 (c2s4 − c3c4s2) + c5s2s3)

)(
s5 (c4 (s1s3 − c1c2c3)− c1s2s4)

+ c5 (c3s1 + c1c2s3)
)

,

(D.23)



94 Appendix D. Homogeneous Transformation and Jacobian Matrices

(Jv)3,6 = q7
(
c21 + s21

) (
c2s6c

2
3c4c

2
5 + c2s6c

2
3c4s

2
5 + c2c6c

2
3c5s4 − c6s2c3c4c5

+ s2s6c3c
2
5s4 + s2s6c3s4s

2
5 − c6s2c24s3s5 + c2s6c4c

2
5s

2
3

+ c2s6c4s
2
3s

2
5 + c2c6c5s

2
3s4 − c6s2s3s24s5

) ,

(D.24)

(Jv)1,7 = s6
(
c5 (c4 (s1s3 − c1c2c3)− c1s2s4)− s5 (c3s1 + c1c2s3)

)
+c6 (s4 (s1s3 − c1c2c3) + c1c4s2) , (D.25)

(Jv)2,7 = −s6 (c5 (c4 (c1s3 + c2c3s1) + s1s2s4)− s5 (c1c3 − c2s1s3))
− c6 (s4 (c1s3 + c2c3s1)− c4s1s2) , (D.26)

(Jv)3,7 = s6 (c5 (c2s4 − c3c4s2)− s2s3s5)− c6 (c2c4 + c3s2s4) , (D.27)

(Jω)1,1 = 0,
(Jω)2,1 = 0,
(Jω)3,1 = 1,
(Jω)1,2 = s1,
(Jω)2,2 = −c1,
(Jω)3,2 = 0,
(Jω)1,3 = −c1s2,
(Jω)2,3 = −s1s2,
(Jω)3,3 = c2,
(Jω)1,4 = −c3s1 − c1c2s3,
(Jω)2,4 = c1c3 − c2s1s3,
(Jω)3,4 = −s2s3,
(Jω)1,5 = s4 (s1s3 − c1c2c3) + c1c4s2,
(Jω)2,5 = c4s1s2 − s4 (c1s3 + c2c3s1) ,
(Jω)3,5 = −c2c4 − c3s2s4,
(Jω)1,6 = −s5 (c4 (s1s3 − c1c2c3)− c1s2s4)− c5 (c3s1 + c1c2s3) ,
(Jω)2,6 = s5 (c4 (c1s3 + c2c3s1) + s1s2s4) + c5 (c1c3 − c2s1s3) ,
(Jω)3,6 = −s5 (c2s4 − c3c4s2)− c5s2s3,
(Jω)1,7 = 0,
(Jω)2,7 = 0,
(Jω)3,7 = 0,

(D.28)

where qi, di, ai and αi are the joint variables and the DH parameters from Table 3.1 in
Section 3.1.1 and si and ci are abbreviations for sin qi and cos qi, respectively.


	Preface
	Abstract
	Introduction
	Motivation
	Problem Statement
	Contributions
	Outline

	Literature Review
	Surgical Robots
	Bone Removal Robots

	Inverse Kinematics
	Overview
	Closed-form Solutions
	Numerical Solutions
	Differential Inverse Kinematics
	Redundant Serial Manipulator Kinematics

	Singularity Problem
	Singular Value Decomposition of a Jacobian matrix
	Manipulability Measures

	Discussion

	Robot Description
	Robot Description
	Kinematic Model


	Task Specification Solution and Results
	Task Specification
	Ear Volume Approximation
	End-effector Position Trajectory
	End-effector Orientation Trajectory
	Constrained Use of Prismatic Joint for Spherical Clearance

	Results
	Discussion

	Inverse Kinematics Solution and Results
	Differential Inverse Kinematics Algorithm with Augmented Task Space
	Overview
	First-order Differential Kinematics
	End-effector Position Error
	End-effector Orientation Error
	Desired End-effector Angular Velocity 
	Additional Constraint Task Error
	Overall Task-Space Error
	Augmented Jacobian and the IK Algorithm

	Results
	Discussion

	Manipulability Analysis and Software Implementation Details
	Manipulability Analysis
	Results
	Discussion

	Software Implementation and Toolbox
	Toolbox Setup
	Simulation


	Conclusion and Recommendations
	Conclusion
	Recommendations

	End-effector Orientation Error
	Forward Kinematics
	Rigid Body Rotations & Translations
	Position and Orientation Representation
	Homogeneous Transformations

	Denavit-Hartenberg Parametrization
	Forward Kinematics

	Additional Figures
	Intra-collisions

	Homogeneous Transformation and Jacobian Matrices
	Homogeneous Transformation Matrix of the End-effector Frame of RoBoSculpt
	Geometric Jacobian Matrix of the End-effector Frame of RoBoSculpt 


