
The University of Texas at Austin
Internship report

Department of Mechanical Engineering
Operations Research and Industrial Engineering

Optimal scheduling for a multiclass
queue with state dependent arrivals

Author:
H.C. Raaijmakers
idno. 0781195
DCno. DC 2017.032

Supervisor University of Texas at Austin:
Dr. J.J. Hasenbein

Supervisor Eindhoven University of Technology:
Prof. Dr. Ir. I.J.B.F. Adan

February 8, 2017

Internship Report Abstract

Acknowledgements

This report is the result of a three month internship at the University of Texas at Austin.
Three months is relatively short, yet I have found some interesting conclusions and I am
satisfied with the result. This project is in Operations Research and with a background in
primarily Mechanical Engineering, this was sometimes difficult for me. Though, it was a
great learning experience and there were always plenty of people around willing to help me.

Firstly, I would like to thank Dr. Hasenbein who supervised my research and was always
available for questions and willing to help. Also, thanks to some of his students for helping
me out and to The University of Texas at Austin in general, for making it possible for me to
come to the United States. And, thanks to Prof. Dr. Ir. Adan for setting up this connection
and the overseas support.

At last, I want to thank all the cool people I met during those three months, especially my
roommates from the Macro House who made me feel at home straight away. It was my first
time in the US and I did not think it was possible to do so many awesome things in just
three months. Austin is a great city, and I am definitely planning on coming back once.

The University of Texas at Austin

Internship Report Table of Contents

Table of Contents

1 Introduction 1

2 Model description 2

3 Markov Decision Process approach 3

3.1 Uniformization . 3

3.2 Discrete Time Markov Decision Process model setup 6

3.3 Conditions for equal average cost per stage 7

3.4 Computational solving methods . 7

4 Linear programming 10

4.1 Problem formulation . 10

4.2 Implementations . 11

4.3 Issues with numerical results . 11

4.4 Evaluation of performance . 15

5 Policy iteration 16

5.1 Optimality equations . 16

5.2 Policy iteration algorithm . 16

5.3 Modified policy iteration . 17

5.4 Implementation of algorithms . 18

6 Results I 20

7 Fluid model approach 22

7.1 Fluid dynamics . 22

7.2 Optimization problem . 22

7.3 Fluid model conclusions . 23

8 Verification by simulation 25

8.1 Simulation setup . 25

8.2 Hypothesis test . 26

9 Results II 27

10 Conclusions and recommendations 28

10.1 Conclusions . 28

10.2 Recommendations for further research . 28

The University of Texas at Austin

Internship Report Table of Contents

References 30

A Stationary distribution example problem 31

B MDP related scripts 32

B.1 MATLAB script: MDP Problem setup . 32

B.2 MATLAB script: MDP solver by Linear Programming 34

B.3 Python script: Pyomo model setup . 38

B.4 MATLAB script: MDP Policy Iteration Algorithm 43

B.5 MATLAB script: MDP Modified Policy Iteration 47

C MATLAB script: Fluid model optimization problem 52

D Simulation 55

D.1 MATLAB script: Simulation . 55

D.2 Simulation data . 58

The University of Texas at Austin

Internship Report Introduction

1 Introduction

In this report, a special type of queueing network is studied. Namely, one in which the arrival
rates depend on the type of product that is currently in service. This results in a matrix of
arrival rates, instead of a vector. In the system, two queues will form and a decision maker
has to decide which queue it is going to serve first. The goal of this report is to find an
optimal allocation policy for the decision maker so that the average total cost rate over the
infinite horizon is minimized.

For the ordinary case of this queueing network, in which the arrival rates are not dependent
on the product in service, the optimal scheduling policy has already been determined. This
was accomplished back in 1958 by W.E. Smith and is known as the cµ rule, or Smith’s rule
(Smith [8]). The cµ rule indicates that jobs should be prioritized according to the the value
of the holding cost times the processing rate, i.e., c · µ, where larger values of this quantity
receive higher priority. In this report it will be investigated whether this rule also applies to
a queueing network with state dependent arrivals.

At first, the queueing network under study will be described in detail and it will be modeled
as a Markov Decision Problem (MDP). The MDP model is solved using linear programming,
but because of some numerical issues another solving method, modified policy iteration, is
applied also. Subsequently, both methods and their results are compared and verified using
a fluid model approximation and a simulation. Using the verified results, a simple rule of
thumb that can be used in designing systems with state dependent arrivals is presented. At
last, the study is summarized and suggestions for further research are proposed.

The University of Texas at Austin 1

Internship Report Model description

2 Model description

The system that is examined has two job classes s = {1, 2} that are processed on a single
flexible server with exponentially distributed service times µ1 and µ2. The jobs arrive ac-
cording to a Poisson process, of which the arrival rates of the job classes depend on which
job class is currently in service. For two job classes, this results in a 2x2 arrival rate matrix
Λ. λij is the arrival rate of type i when type j is in service. For jobs that are in a queue,
holding costs of cs per unit time for a job of class s are incurred. The queueing network is
depicted in Figure 2.1.

Figure 2.1: Queueing network under study.

In order for the system to be stable, the traffic intensity or utilization should be less than
one. For the special case considered, this can be computed with the help of the matrix R
that can be computed with

Rij =
λij
µj
. (2.1)

The spectral radius of R is denoted as ρ(R), and for stability the following condition must
be met: ρ(R) ≤ 1 (Asmussen et al. [2]). Throughout this report it is assumed that the
parameters are chosen in a way that results in a stable system. The traffic intensity of the
system will be denoted by ρ.

Furthermore, it is assumed that the server is non-idling, meaning that there is always a
product in service. Even when both queues are empty there is virtually a product ‘in service’.
However, the situation in which the decision maker can choose to service a certain product
in order to decrease the arrival rate of one of the products, while in reality there are no
products in the queue, should be prevented. Therefore the extra variables λ10 and λ20 are
introduced as the arrival rates when both queues are empty. The obvious choice is to set
these parameters equal to the maximum arrival rate of their corresponding product types,
hence:

λ10 = max{λ11, λ12}
λ20 = max{λ21, λ22}.

(2.2)

If a job is finished, the decision maker decides which job class is served next. Preemptive
scheduling is allowed, which means that when a job with a higher priority than the job
currently in service arrives, it gets selected immediately. All jobs have a higher priority than
virtual jobs, so if a job arrives in an empty system it immediately enters service. Because all
service times are exponential, it does not matter whether it is assumed that an interrupted
job is continued later or simply starts over.

The University of Texas at Austin 2

Internship Report Markov Decision Process approach

3 Markov Decision Process approach

The decisions maker’s problem can be modeled via a Continuous Time Markov Decision
Process (CTMDP). This is because the transition probabilities depend on the type of product
in service. The fact that the Markov chain changes when the decision maker decides to service
the other job type makes it a Markov Decision Process.

The reason for modeling the problem as a MDP is that with this method it is possible, under
certain conditions, to find an optimal policy. A policy is a set of decision rules for each state,
for each epoch of time. The solution of the MDP model is thus extremely complete and
provides the decision maker with all information required.

In the continuous problem, the queue lengths at time t are depicted by Qs(t), with s = {1, 2}
corresponding to the type of products in the queue. Q1(t) and Q2(t) are non-negative and
the state space consists of all combinations of the two. The decision maker’s control action
is denoted by U(t) ∈ {u1, u2} corresponding to the allocation of a job to the server, of queue
1 or 2 respectively. Given an initial state (Q1

0, Q
2
0) the decision maker uses a policy π that

indicates the sequence of actions when there is a change of state. If the queue lengths depend
on a particular kind of policy, this is denoted by Qπs (t).

Since it is assumed that there is always a job in service, the initial state is at a moment
another job has just finished. It does not matter which product this is because the past
actions have no influence on the future actions in a Markov process.

Recall that the only costs are the holding costs per lot per unit of time c1 and c2 for job types
1 and 2. The objective is to minimize the total average cost rate over an infinite horizon.
This is described by

lim sup
t→∞

1

t
E(Q1

0,Q
2
0)

[∫ t

0
(c1Q

π
1 (s) + c2Q

π
2 (s))ds

]
(3.1)

for the initial state (Q1
0, Q

2
0) (Sisbot and Hasenbein [7]). The discounted cost case involving

the discount factor β is not of interest for the system considered here.

3.1 Uniformization

In a CTMDP the time interval between state transitions is exponentially distributed and
differs per transition. To be able to analyze the problem using MDP theory and computational
methods, the problem has to be converted to a Discrete Time Markov Decision Process
(DTMDP), in which the transition times are discrete and constant. This can be achieved
using a simple procedure called uniformization (Bertsekas [4]).

The state and control at any time t are denoted by x(t) and u(t) and will remain constant
between state transitions. The state and control after k transitions will be denoted by xk
and uk respectively. Correspondingly, the queue lengths will be denoted Qsk, with s = {1, 2}.
The system will thus be described in terms of states and state transitions. The state transi-
tions will be described by probabilities. If the system is in state i and control u is applied,
the next state will be j with probability pij(u), according to:

pij(u) = P (xk+1 = j|xk = i, uk = u) i, j ∈ S, u ∈ U(i). (3.2)

When a transition occurs in the continuous case, it means there has been an arrival in, or
service completion of, either product class 1 or 2. The arrival can always be of both classes,

The University of Texas at Austin 3

Internship Report Markov Decision Process approach

a service completion can naturally only occur if a product of that type is in service. The
total state space is thus a combination of all possible combinations of Q1 and Q2, or queue
lengths and is infinite if the queue buffers are unbounded.

When for example both queues are bounded at a maximum of holding N = 4 products, the
queue lengths can be: Qsk = {0, 1, 2, 3, 4} with s = {1, 2}. The number of states n is equal
to the total amount of combinations and is thus (N + 1)2 = 25. The matrix P that holds
all transition probabilities has dimensions 25x25 in this case. See Figure 3.1 for a graphical
representation of the state space for this example. Because of this structure, the size of the
state space increases very rapidly as N increases and the effort that is needed to solve the
MDP therefore also increases very rapidly. This effect is common for MDPs and it is known
as the curse of dimensionality.

Figure 3.1: State space with states i consisting of a combination of Q1 and Q2 for N = 4 and
n = 25.

The time interval between transitions is exponentially distributed with parameter νi(u). Us-
ing the system’s properties described in Section 2, the transition rates can be determined.
Their components are shown in Figure 3.2. The transition rate for each state is the sum of
all outgoing arrows. Moreover, the transition probability of going from state i to j under a
certain control is the transition rate component from i to j, divided by the total transition
rate out of state i, for that specific control.

It is assumed that the state and control stay constant in between transitions. If all transition
rates would be equal, the decision maker’s problem would be identical to a discrete time
MDP in which the transition times are fixed. This is because the length of the time interval
between transitions does not matter, since both the control and state and thus the costs are
constant in between transitions. In this case, only the average costs per state have to be
scaled to compensate for the effect of randomness.

Nonetheless, in the system under study the transition rates are not constant. To convert
these non-uniform transition rates to uniform transition rates a new uniform transition rate
ν is introduced with νi(u) ≤ ν for all i and u. For the system considered, ν is therefore set

The University of Texas at Austin 4

Internship Report Markov Decision Process approach

Figure 3.2: Components of transition rates for control u = u1.

to
ν = max{λ11 + λ21 + µ1, λ12 + λ22 + µ2} (3.3)

and the transition probabilities change according to

p̃ij(u) =

{
νi(u)
ν pij i 6= j

νi(u)
ν pii + 1− νi(u)

ν i = j.
(3.4)

This conversion basically creates the possibility of allowing fictitious transitions from a state
to itself. Leaving state i at rate νi(u) in the original process is statistically identical to leaving
state i at the faster rate ν, but with returning back to i with probability 1− νi(u)/v.

Identical to the situation in the CTMDP, in the DTMDP the transition probabilities depend
on the control that is applied. A graphical representation of the Markov chain which rep-
resents the system if control u = u1 is chosen, and thus a product of type 1 is in service is
shown in Figure 3.3. In this example the maximal transition rate ν = λ11 +λ21 +µ1 and the
arrival rates comply to λ10 = λ11 and λ20 = λ21. Because of this latter constraint, parts of
the numerator and denominator cancel each other out resulting in the short expressions of
Figure 3.3. It is used in this example to make the figure more readable.

At last the cost function needs to be scaled using the scaling factor 1/ν so that it represents
the cost rate per unit time. This results in the DTMDP cost function:

g̃(i) =
1

ν
(c1Q

1 + c2Q
2). (3.5)

The number of products Q1 and Q2 is only dependent on the state i, since no costs are
connected to choosing a certain control. The specific relation between the state i and queue

The University of Texas at Austin 5

Internship Report Markov Decision Process approach

Figure 3.3: Transition probabilities for control u = u1, ν = λ11+λ21+µ1, λ10 = λ11 and λ20 = λ21.

lengths Q1 and Q2 depends on the size of the state space. This is due to the grid structure
of the state space, which is depicted in Figure 3.1. In Section 3.4 an example of g̃(i) will be
given. For the remainder of this report p̃ and g̃ will be denoted by p and g.

3.2 Discrete Time Markov Decision Process model setup

Instead of at every time instant t the system can now be described at state xk after k state
transitions. The time index [0,∞) is now replaced by a countably infinite number of state
transitions.

Using (3.5) and the new transition probabilities a new discrete objective function can be
formulated. Each time the system is in state i and control u is applied, the expected cost is
g(i, u) and the system moves to state j with probability pij(u).

The objective is to minimize the average cost rate over all policies π = {φ0, φ1, . . .} with
φk(i) ∈ U(i) for all i and k, starting from an initial state x0:

Jπ(x0) = lim sup
N→∞

1

N
E

[
N−1∑
k=0

1

ν
(c1Q(1)πk + c2Q(2)πk)

]
, (3.6)

in which the sub- and superscripts π indicate the dependence on a certain policy. Q(1)πk and
Qπk(2) denote the queue lengths for job types 1 and 2, after transition k under policy π. Note
that the initial state x0 = (Q1

0, Q
2
0).

For most systems the optimal policy will be stationary, i.e., π = {φ, φ, . . .}, meaning that the
same function is used every time. For a stationary policy φ, the average cost of starting at

The University of Texas at Austin 6

Internship Report Markov Decision Process approach

x0 and applying φ is denoted by Jφ(x0). The stage cost, probability and average costs under
policy φ are denoted by

gφ =

g(1, φ(1))
...

g(n, φ(n))

 , Pφ =

p11(φ(1)) · · · p1n(φ(1))
...

pn1(φ(n)) · · · pnn(φ(n))

 , Jφ =

Jφ(1)
...

Jφ(n)

 . (3.7)

3.3 Conditions for equal average cost per stage

The objective is to find the policy that minimizes the average cost rate. It would be convenient
if this optimal average cost would be the same for all initial states and that it is stationary.
This is the case if the so-called Weak Accessibility (WA) condition holds for the system
(Bertsekas [4]).

State i is accessible from state j if there exists a stationary policy φ and an integer k such
that P (xk = j |x0 = i, φ) > 0. The WA condition holds if the set of states can be partitioned
into two subsets St and Sc such that all states in St are transient under every stationary
policy and that for every two states i and j in Sc, j is accessible from i.

If for the system considered, the entire state space S is considered to be Sc the WA condition
holds. This is true for every stationary policy, as long as control u1 is applied when Q2 = 0
and similarly u2 is applied when Q1 = 0. In this way state (Q1, Q2) = (0, 0) can always be
reached and because of the exponential arrival and processing times, all other states can also
always be reached from (0, 0). Thus the WA condition holds and it can be concluded that
the average cost is the same for all initial states and there exists an optimal stationary policy
that is unichain.

An unichain policy is a special type of policy for which the corresponding Markov chain has a
single recurrent class. If the WA condition holds, it is always possible to convert a stationary
policy into one that is unichain without affecting the average cost of any one chosen class of
recurrent states. This is helpful since it will make it easier to find an optimal solution using
numerical methods.

3.4 Computational solving methods

The MDP described has been solved by using linear programming (LP) and policy itera-
tion (PI). Both are well-known computational methods. Initially, only linear programming
was used to generate results. However, due to some inaccurate results as a consequence of
numerical errors policy iteration was also applied as a means of verification.

To be able to use the numerical methods the state space has to be truncated. Nonetheless,
if this number is chosen sufficiently high, useful results can be generated. Except for some
boundary effects along the truncation border, the numerical results should be valid. The
number of states after the truncation is denoted by n.

The input for both methods is the same and consists of the cost function g(i) and the
probability matrices pij(u) for u = {u1, u2}. The way in which these parameters are computed
will be described first. The problem setup is created using a user defined MATLAB function.
In this way, it can be called by the scripts of the different solving methods. The script can
be found in Appendix B.1.

The output of both methods is also the same and consists of two parts: the optimal average

The University of Texas at Austin 7

Internship Report Markov Decision Process approach

costs per stage Ω and the optimal stationary policy φ, with Ω as a single value and φ as a
list of length n with the controls u1 or u2 that should be applied at each state. At the end of
each script, the optimal policy is converted back to the grid structure, so one can easily see
which control should be applied for each combination of queue lengths (Q1, Q2).

All programs were run on a laptop with an Intel Pentium i7 2.2 GHz processor, with 8 GB
RAM memory.

3.4.1 Probability matrices

As presented in Figure 3.1, the state i is a combination of the queue lengths Q1 and Q2.
Because of this, the shape of the grid and thus the physical meaning of a state changes if the
number of products N changes. Also, because the state space has to be truncated arrivals are
lost when the queue is ‘full’ and the transition rates of the states on the border of the square
grid have to be adjusted accordingly. In the program, all conversions happen automatically
if the number of products N is adjusted.

An example of the possible outgoing transitions and corresponding transition rate components
under a certain control for the state space of Figure 3.1 is depicted in Table 3.1. The transition
rate components in Table 3.1 are equal to those that are visible in Figure 3.2. All states that
are on the right and top border of the grid (States 5, 10, 15, 20, 21, 22, 23, 24 and 25) have
deviating transition rate components. This is a consequence of the truncation since there can
be no λ1 and λ2 arrivals for the right and top border, respectively.

Table 3.1: Transition rate components of possible outgoing transitions under controls u = {u1, u2}
for a state space truncated at N = 4 and n = 25.

i u1 u2

1 λ10, λ20 λ10, λ20
2, 3, 4 λ11, λ21, µ1 λ12, λ22
5 λ21, µ1 λ22
6, 11, 16 λ11, λ21 λ12, λ22, µ2
10, 15, 20 λ21, µ1 λ22, µ2
21 λ11 λ12, µ2
22, 23, 24 λ11, µ1 λ12, µ2
25 µ1 µ2
7, 8, 9, 12, 13, 14, 17, 18, 19 λ11, λ21, µ1 λ12, λ22, µ2

The total transition rate vi(u) for state i is the sum of the transition rate of all possible
outgoing transitions. Recall that the probability of going from state i to j under control
u is the transition rate component from state i to j under control u, divided by the total
transition rate vi(u) out of state i. This results in two nxn probability matrices P (u) for
u = {u1, u2}. The non-uniform transition probabilities are converted to uniform ones using
(3.4) of the uniformization procedure.

3.4.2 Cost function

The value of the uniform cost function g(i) depends on the size of the state space again, for
the same reason as in the section above. Its value at each state i is simply the sum of c1Q1

i

The University of Texas at Austin 8

Internship Report Markov Decision Process approach

and c2Q
2
i . The cost function is independent of the control action taken since there are no

costs connected to applying a certain control. In the MATLAB script, the cost function is
dependent on the control u and is therefore a two column matrix. Is was constructed this
way in order to make it possible to potentially add a cost for control. For the case considered,
the costs for both controls (the two columns) are simply equal. In Table 3.2 the non-uniform
cost function for an example with N = 4, c1 = 0.5 and c2 = 1 is shown. This is computed
according to (3.5), only without the scale conversion of 1/ν. Note that g(i) is a column
vector.

Table 3.2: Cost function g(i) for a state space truncated at N = 4 and n = 25, with c1 = 0.5 and
c2 = 1.

i g(i) Q1
i Q2

i

1 0 0 0
2 0.5 1 0
3 1 2 0
4 1.5 3 0
5 2 4 0
6 1 0 1
7 1.5 1 1
8 2 2 1
...

...
...

...
25 6 4 4

The University of Texas at Austin 9

Internship Report Linear programming

4 Linear programming

One way to computationally find the optimal policy for a MDP is by solving a linear pro-
gramming (LP) problem. This is very useful, since LP solvers are widely available. This
means that only two steps have to be completed. The problem has to be set up so that it
is suitable for the LP formulation and subsequently it has to be imported into an existing
solver.

Nonetheless, this does not guarantee functional results. In this section the LP setup is
described and its performance using multiple solvers is analyzed.

4.1 Problem formulation

The LP formulation that can be used to solve the problem setup of Section 3.4 is:

minimize
y(i,u)

n∑
i=1

∑
u∈U(i)

y(i, u)g(i, u)

subject to
∑
u∈U(i)

y(j, u)−
n∑
i=1

∑
u∈U(i)

y(i, u)pij(u) = 0 j = 1, . . . , n

n∑
i=1

∑
u∈U(i)

y(i, u) = 1

y(i, u) ≥ 0 i = 1, . . . , n, u ∈ U(i),

(4.1)

in which y(i, u) is the long run fraction of time that the system is in state i and control u
is chosen (Bello and Riano [3]). These are thus basically steady-state probabilities and they
are independent of the initial state for the same reasons that the long run average costs are
independent of the initial state, as described in Section 3.3. Note that g(i, u) reduces to g(i)
for the system under study.

Solving the LP yields several results. Firstly, there is the value of the objective function
that is minimized. This is the optimal average cost per stage Ω and it applies to each state
because the conditions for equal average cost per stage are met.

These conditions also imply that the transition probability matrix of every stationary policy
is irreducible, which means that there exists a deterministic decision rule instead of a ran-
domized one that can be used to find the optimal policy. The decision rule f(i, u) can be
found using

f(i, u) =
y(i, u)

Πi
i = 1, . . . , n, u ∈ U(i) (4.2)

where Πi is the stationary distribution according to

Πi =
∑
u∈U(i)

y(i, u) i = 1, . . . , n. (4.3)

Because there exists an optimal (deterministic) solution, for each state i only one of the
controls u ∈ U(i) has a value and the others are zero. This value is thus equal to the
stationary distribution and after dividing it by itself in (4.2), it equals 1. So, for every state
i there is one control u which has value 1. Therefore the set of f(i, u) for all states forms the
optimal stationary policy φ, that prescribes either control u1 or u2 for each state i.

The University of Texas at Austin 10

Internship Report Linear programming

4.2 Implementations

To be able to be certain about the validity of the numerical results the problem was im-
plemented and solved using several programs and solvers. The problem setup described in
Section 3.4 was implemented in the following LP solvers:

• MATLAB Optimization Toolbox;
• CPLEX for MATLAB Toolbox;
• CBC and CLPEX via NEOS implemented using Pyomo (Hart et al. [6] and Dolan [5]).

The MATLAB Optimization Toolbox offers a variety of LP solvers, including a dual-simplex
and a simplex method. The CPLEX for MATLAB Toolbox is a part of the IBM ILOG
CPLEX Optimization Studio which offers high-performance mathematical programming for
various optimization problems. Its integrated MATLAB function adapts the solver choice
based on the input parameters. Pyomo is a Python based, open-source optimization software
modeling program. It sets up the optimization problem and then uses an external solver to
solve it. NEOS is an online server that offers various solvers that Pyomo can use, for LPs
these are CPLEX and CBC. Only the CBC solver will be used since the CPLEX solver is
already available via the CPLEX for MATLAB Toolbox.

All solvers are implemented in the MATLAB script of Appendix B.2 and can be selected by
setting a parameter. If a Pyomo solver is chosen the problem is exported to a data file after
the setup and subsequently a command prompt that calls the Python script is opened via
MATLAB. When the solver is finished, the results are imported and processed by MATLAB
again. The Python script which is called is given in Appendix B.3.

4.3 Issues with numerical results

The implementation as described above for the queueing network under study does not pro-
duce flawless results. The defects in the results have multiple forms and causes and their
specifics are dependent on the type of solver and program that is selected. In this section,
the different types of numerical issues leading to these defects are described.

4.3.1 Infinitesimal numbers

In Figure 4.1 the result of a single MDP problem solved by different solvers for the parameters

Λ =

[
16 16

20 20

]
, M =

[
33

41

]
, C =

[
15

11

]
(4.4)

is shown. The parameters of this problem are set so that the arrivals are independent of the
service process. If this is the case, scheduling according to the cµ rule is optimal, hence for
this particular example product 1 should always be always be produced first.

Remarkable in all three figures is the yellow area and the several stray red squares. The
program appoints the yellow color if the control value for a state is Not a Number (NaN).
This happens to a state i, if y(i, u) = 0 for all U(i). In this case, the stationary distribution
is zero resulting in a division by zero in (4.2), which causes an error (or NaN). If the Markov
chain is irreducible, this is impossible. The probability of being in any state under the
stationary distribution can be small, but it is strictly positive.

The University of Texas at Austin 11

Internship Report Linear programming

(a) MATLAB dual simplex (b) CPLEX via MATLAB (c) CBC via Pyomo

Figure 4.1: Optimal policy results using three different solvers for a standard problem with non-
dependent arrival rates, according to (4.4.)

The problem is a combination of the constraint tolerances, with the way in which the LP is
formulated. Firstly, the values for y(i, u) in certain states become exceedingly small, while
they are used in the first constraint of (4.1). This constraint should only be satisfied if it is
exactly zero, yet the solver thinks it is satisfied when it is within the constraint tolerances.
Because of the fact that certain states have such very small values, their contribution to the
constraint remains within the constraint tolerances and is thus practically nonexistent.

Moreover, the non-negativity constraint can also be violated to within the margins of the
constraint tolerance. This results in some negative outcomes for y(i, u), which are obviously
incorrect. These erroneous values are again used in the constraints which results in more
erroneous outcomes for other states.

The constraint tolerances range from 1e-7 to 1e-12 for the different solvers, yet apparently
the values for y(i, u) are even smaller in certain states. There are several reasons for this,
which will be explained with the use of an example. Suppose all problem parameters are
equal, i.e., λ11 = λ12 = λ21 = λ22, µ1 = µ2 and c1 = c2, then the system is somewhat similar
to an M/M/1 queue. As mentioned in the beginning of this chapter, the sums of y(i, u) for
each state form the stationary distribution of the system. The stationary distribution of a
(non-truncated) M/M/1 queue is Πi = (1− ρ)ρi, with ρ as the utilization (Adan [1]).

Imagine a system where there is no truncation. Being in state (40,40) is equivalent to reaching
state 80 in the M/M/1 queue. However, in this case, state i = 80 is divided over all 80
combinations of queue lengths that sum up to 80. For a utilization or traffic intensity of 0.9,
a simple calculation of the stationary distribution, divided by 80 yields an average probability
of 2.7e-7. This is already fairly small, yet it is only the average. The greatest problem is that
it is far more likely that the system is in states close to the axis like (1,79), or (78,2) than
in states in the middle like (40,40). The combination of all middle states will be referred to
as the equal-queues-diagonal. The diagonals perpendicular to this diagonal, that cover all
states that sum up to a single amount will be referred to as summed-queue-diagonals. These
summed-queue-diagonals have peaks on their outer boundaries (close to the axes), rather
than that they are uniform. As a consequence, the values for the stationary distribution in
the center of these diagonals becomes overly small leading to untruthful results.

In Figure 4.2 this effect is illustrated. It displays the results of an implementation of the
parameters

Λij =

35 if ρ = 0.7, ∀ i, j
40 if ρ = 0.8, ∀ i, j
45 if ρ = 0.9, ∀ i, j

M =

[
100

100

]
, C =

[
10

10

]
, (4.5)

The University of Texas at Austin 12

Internship Report Linear programming

which correspond to the example described above, for three different traffic intensities. It
is clearly visible that the erroneous yellow states originate along the equal-queues-diagonal.
Furthermore, it is evident that the number of erroneous states is fewer if the traffic intensity of
the system increases. A sound result, since the probability of reaching a high state is smaller
for a lower traffic intensity resulting in overly small stationary distribution probabilities at
an earlier stage.

(a) ρ = 0.7 (b) ρ = 0.8 (c) ρ = 0.9

Figure 4.2: Optimal policy results for a problem with symmetrical parameters according to (4.5) for
three different traffic intensities using the CPLEX for MATLAB solver.

Besides the traffic intensity, the decision maker’s policy also has a major effect on the sta-
tionary distribution. In Figure 4.2 the distribution is reasonably symmetrical because the
parameters are too. However, because the decision maker has to pick either one of the two
products on the equal-queues-diagonal, the distribution is shifted to one of the axes. A graph-
ical representation of the stationary distribution and some more elaboration on the example
can be found in Appendix A. One can imagine that if the decision maker always chooses
the same product, its effect on the stationary distribution becomes quite substantial. This
explains the difference in the number of erroneous yellow squares between Figures 4.1 and 4.2.
Because the decision maker always chooses product 1, reaching states with a high number of
type 2 products is unlikely resulting in a large amount of erroneous squares on the right side
of the queue grid.

4.3.2 Parameter choice

The performance of programs that use Pyomo depends on the system parameters that are
selected. This is remarkable since the parameter choice should only have an effect on the
result itself, not on the quality of the result. Nonetheless, for the solvers called via Pyomo
this is the case. In Figure 4.3 the results of the Pyomo implementation for three slightly
different parameter sets are depicted. Figure 4.3c gives the correct results, except for the
erroneous upper part which is discussed above. Figures 4.3a and 4.3b on the other hand
display a completely incorrect result.

Figures 4.3a and 4.3b are extreme cases where the results are completely useless, however it
does prove the fact that certain solvers do not work for parameter sets that are ‘complex’.
Examples of complex parameter choices are sets in which for example the arrival rates are
identical or state dependent. It thus also includes sets of which the optimal policy cannot be
determined in a straightforward manner by using the cµ rule. Since complex cases like these
are exactly the focus of this study, not all LP solvers are fit for use.

The University of Texas at Austin 13

Internship Report Linear programming

(a) Λ =

[
20 20

10 20

]
(b) Λ =

[
20 20

20 20

]
(c) Λ =

[
20 20

19 19

]
Figure 4.3: Optimal policy results for a problem with µ1 = µ2 = 41, c1 = 10 and c2 = 12 and

varying Λ for the CBC solver via Pyomo.

4.3.3 Boundary effects

In Section 3.4.1 the effect of the truncation on the probability matrices is displayed. Obvi-
ously, this also has an effect on the solution of the MDP. Because of these boundary effects,
the results along the truncation border should be considered unreliable. Normally this is not
a problem since with a sufficiently large state space, the boundary states are only a small
fraction of the total and the results of the first couple of rows along the borders should simply
be neglected.

However, in the MDP model of the queueing system that is examined the boundary effects
appear to be extraordinary in size. In Figure 4.4 three MDP solutions of the queueing system
with dependent arrival rates for different state space sizes with input parameters

Λ =

[
20 20

10 20

]
, M =

[
41

41

]
, C =

[
10

12

]
, (4.6)

are displayed. According to the cµ rule, product two should always be produced first which
would result in a figure that is completely red except for the bottom row.

(a) N = 29 (b) N = 39 (c) N = 49

Figure 4.4: Optimal policy results for a problem with the parameter set of (4.6) and varying state
space size for the CPLEX for MATLAB solver.

Nonetheless, the figures indicate that this is not the case. When inspecting just one of the
three figures, one would expect that the optimal policy follows a certain threshold. However,
when looking at all three figures it is clear that the triangle marking the threshold changes
size as the state space changes side. The slope of the threshold is identical for every figure
and its endpoint is repeatedly at exactly 7 lots away from the truncation border on the Queue

The University of Texas at Austin 14

Internship Report Linear programming

1 axis. Based on this observation, it is likely to assume that boundary effects play a role
here. On the other hand, this would mean that the boundary effects cover the larger part of
the state space which is rather unusual. In Sections 5 and 6 this is discussed further.

4.4 Evaluation of performance

Using (CPLEX) linear programming to solve MDPs is really fast; solving the N = 39 system
of Figure 4.4c takes less than 4 seconds on the computer specified in Section 3.4. The
method is also relatively easy to apply because of the availability of existing solvers, yet for
the problem under study it is not flawless. The solver that shows the best overall performance
is the CPLEX implementation for MATLAB. It is very fast and because it selects the solver
algorithm that is best suitable for the problem’s structure and size, it works reasonably well
for all parameter choices and grid sizes. For this reason, the CPLEX for MATLAB solver is
used for all results obtained via the LP method for the remainder of this report.

Nevertheless, using the LP method for the queueing system that is examined still leads to a
number of problems. The errors due to the infinitesimal numbers can be reduced by pushing
the traffic intensity to a value close to 1 and by truncating the state space at a lower number.
Unfortunately, these measures have no discernible effect on the issues that are presumably
caused by the boundary effects.

Overall, there are too many issues with the LP results to consider them inherently trustwor-
thy. Therefore, alternative methods have to be used to verify the LP method’s results.

The University of Texas at Austin 15

Internship Report Policy iteration

5 Policy iteration

An efficient method to find the optimal policy of a MDP is using the policy iteration (PI)
algorithm. This algorithm generates a stationary policy at every iteration, which always
improves the objective function with respect to the previous policy. It is generally well-
known for converging to an optimal policy very fast. Before stating the policy iteration
algorithm itself, the principles on which it functions are explained (Bertsekas [4]).

5.1 Optimality equations

The objective function of (3.6) minimizes the total average cost rate, resulting in an opti-
mal average cost per stage, starting from a certain initial state. Because of the conditions
mentioned in Section 3.3 the average cost per stage is a common scalar, which is optimal,
the same for all stages and independent of the initial state. It will be denoted by Ω and is
defined as:

Ω = min
π
Jπ(i), i = 1, . . . , n. (5.1)

The optimal average cost can be found using a value iteration algorithm, that chooses the
best control over all controls based on the one step costs and all expected future costs. This
step is repeated multiple times. Under certain conditions, there exists a certain optimal value
that is a fixed point for the algorithm, which means that repeating the iteration step will yield
the same optimal value function. This is the case for the system considered and therefore

Ω + h(i) = min
u∈U(i)

[
g(i) +

n∑
j=1

pij(u)h(j)

]
i = 1, . . . , n (5.2)

can be written. This optimality equation is known as Bellman’s equation. The scalar h(i) is
the minimum, over all policies, of the expected cost to reach state n from i for the first time
and the cost that would be incurred if the cost per stage were equal to the average Ω. It can
be interpreted as the relative value function for each state.

Bellman’s equation states that Ω +h(i) remains the same if for all states i the control u that
minimizes the expression right of the equals sign is applied. The set of all controls for each
state that does this for step k, is φk and part of the policy π = {φ0, φ1, . . .}.
Since for the system under study there exists a unichain and stationary optimal policy, φk
will be the same at every step k, resulting in a single policy φ. The optimal average cost
corresponding to this policy is denoted by Ωφ. The same control is now applied to each state
on every iteration step and Bellman’s equation reduces to

Ωφ + h(i) = g(i) +

n∑
j=1

pij(φ(i))h(j) i = 1, ..., n. (5.3)

5.2 Policy iteration algorithm

The single-chain policy iteration algorithm is used, because every stationary policy encoun-
tered in the course of the algorithm is unichain. The algorithm has three steps, of which
steps 2 and 3 are repeated until the optimal policy is found. As mentioned before, this usu-
ally happens rather fast and only takes a handful of iterations. A policy iteration algorithm
written in MATLAB is attached in Appendix B.4.

The University of Texas at Austin 16

Internship Report Policy iteration

Step 1: Initialization

An initial stationary policy φ0 has to be guessed. The optimal policy for the regular case of
the problem studied is the cµ rule and thus this policy chosen is for φ0. Observe that in the
states in which either one of the queues is empty, the non-empty product is always served.
Otherwise, the Weak Accessibility condition is no longer met.

Step 2: Policy evaluation

For iteration step k, given the stationary policy φk, the corresponding average and differential
costs Ωk and hk(i) satisfying the system of equations

Ωk + hk(i) = g(i) +
n∑
j=1

pij(φ
k(i))hk(j) i = 1, ..., n, (5.4)

have to be computed. This is a system of n linear equations with n + 1 unknowns, namely
Ωφ, h(1), . . . , h(n), which has an infinite number of solutions. However, if a single degree of
freedom is fixed, the system has a unique solution. Therefore, a single component of h has to
be set to an arbitrary value, which can be, for example, zero. In the scripts provided, state

hk(1) = 0 (5.5)

is taken as the reference. The solution of this system can also be obtained iteratively. This
method is described in Section 5.3.

Step 3: Policy improvement

The next step is to find a new, improved policy φk+1 by applying the right-hand side of

g(i) +
n∑
j=1

pij(φ
k+1(i))hk(j) = min

u∈U(i)

[
g(i) +

n∑
j=1

pij(u)(j)

]
i = 1, . . . , n. (5.6)

If φk+1 = φk, the algorithm terminates; otherwise, it returns to Step 2 with φk+1 replacing
φk. If all generated policies are unichain and the above procedure is applied, the policy
iteration algorithm will terminate in a finite number of iterations and will produce an optimal
stationary policy.

5.3 Modified policy iteration

An alternative way of completing the policy evaluation step is by using another method called
relative value iteration (RVI), for the policy evaluation step. When the number of states is
large, this method is often preferred because solving a system of equations of the size of the
entire state space can be severely time-consuming.

Instead of solving the entire system for Ω and h, the value iteration algorithm is used. By
simply applying the current policy φk of policy iteration step k, for a number of iterations
l, the solution will converge to the h vector corresponding to the current policy. After every
value iteration l, the h vector can be found using

hl+1 = Tφh
l − (Tφh

l(1))e, (5.7)

The University of Texas at Austin 17

Internship Report Policy iteration

in which e is a vector of ones of the same size as h and Tφ is the result of the right-hand term
of (5.2) and is defined as

(Tφkh)(i) = g(i) +

n∑
j=1

pij(φ
k(i))h(j) i = 1, . . . , n. (5.8)

In this method, again h(1) is chosen as the reference state.

As l → ∞, the relative value function hl converges to hk corresponding to φk for policy
iteration step k. However, only a finite number of relative value iterations is required for the
policy iteration algorithm to be able to function, so the PI algorithm can already continue
to Step 3 before hl = hk. The number of iterations required depends on the size of the state
space.

There are two parameters that have to be set as stopping criteria for the relative value
iteration algorithm: the maximum number of RVI iterations, and the RVI tolerance level
which stops the algorithm if the difference between the previous and current iteration is less
than the tolerance. The two stopping criteria are always both active and they should be
tuned in accordance with the size of the state space. The number of RVI iterations required
increases as the state space increases. As the state space decreases, the RVI tolerance has to
become smaller too.

The PI algorithm in which RVI, as described above, is applied is called modified policy
iteration (MPI). In Appendix B.5 a MATLAB script that uses the MPI algorithm is given.

5.4 Implementation of algorithms

The results of three optimal policies obtained via the MPI algorithm are depicted in Figure
5.1. The input parameters used to generate Figures 5.1a, 5.1b and 5.1c are equal to those
used to generate Figures 4.1(a,b,c), 4.2a and 4.4b, respectively. Since both the LP and MPI
method are supposed to find the optimal policy, each MPI figure should be identical to its
counterpart obtained via the LP method.

(a) Normal case: (4.4) (b) Symmetrical: (4.5), ρ = 0.7 (c) Special case: (4.6)

Figure 5.1: Optimal policy results using three modified policy iteration for three different systems.

A clear difference of the MPI figures with the respect to the LP figures is the absence of
the erroneous yellow squares. As described in Section 4.3.1, these are caused by overly small
numbers. This difficulty is a result of the setup of the optimization problem, wherein the value
of the states (i.e., the squares) represent the steady state distribution, which becomes very
small. In the MPI algorithm however, the states simply represent the policy corresponding
to the iteration step and this problem is thus absent.

The University of Texas at Austin 18

Internship Report Policy iteration

Another problem that one encounters while using particular solvers of the LP model is that
it becomes unstable. The regular PI algorithm never has this problem. Apart from the
boundary effects, it always displays the correct result. Unfortunately, it cannot be used for
large state spaces (N ≥ ±40 on the computer specified in Section 3.4) because it requires
a lot of computing power. Naturally, it will still work on a high-performance computer,
yet is sensible to use the MPI algorithm instead because it is more efficient and therefore
significantly faster. The MPI algorithm also always works, as long as the parameters for the
relative value iteration are set correctly.

MPI works well, yet solving systems with a large maximal queue length can take rather long.
Solving the N = 39 system of Figure 5.1c takes approximately 7 minutes. The time it takes
to solve systems with even larger maximal queue lengths increases rapidly, as the state space
grows polynomially with respect to the maximal queue length. Also, more relative value
iterations are required as the difference between Ωk and Ωk+1 for adjacent policies becomes
smaller.

An advantage of regular PI is that unlike MPI, it gives the exact value for Ω. Nonetheless,
the objective is to find the optimal policy and (with the correct stopping criteria) MPI does
output this correctly. Considering the speed argument, MPI is thus a more suitable algorithm
for the system under study.

Nevertheless, the overly strong boundary effects remain as can be seen in Figure 5.1c. This
figure is exactly identical to Figure 4.4b of the LP method, which means that the boundary
effects are independent of the method of solving the MDP and are thus linked to the problem
setup.

The University of Texas at Austin 19

Internship Report Results I

6 Results I

The MDP model that is described in Section 3 has been solved using linear programming and
modified policy iteration as depicted in Sections 4 and 5, respectively. By using the same
input parameters for both methods and comparing the solutions it was verified that both
solvers give the same results, as long as the erroneous values are neglected. Moreover, by
applying the solvers on a regular queueing system and analytically computing the optimal
policy using the cµ rule, it can also be concluded that the correct answer is found (if again
the erroneous values are neglected). However, for certain parameter sets, including the set
of the system under study, the boundary effects are abnormally large. The results clearly
imply that the cµ rule is not optimal, yet it cannot be concluded with certainty because of
the large amount of erroneous values.

An overview of the conclusions drawn in the paragraph above is provided in Figures 6.1 to
6.4. In all figures, the left figure is the solution obtained via the LP method and the right
figure is the MPI solution. It is advisable to study the solution of both models because by
comparing the figures it is possible to determine which part is likely to be correct and which
part is definitely incorrect. For example, when examining both solutions of Figure 6.1 it
can easily be concluded that the right half of the solutions should not be trusted because of
the presence of erroneous values in the LP model. This would have been more difficult to
determine if only the MPI solution would be available.

Λ =

[
8 8

8 8

]
, C =

[
10.1

10

]
µ1 = µ2 = 20

c · µ =

{
202 for product 1
200 for product 2

Figure 6.1: MDP solutions by LP (left) and MPI (right) for a regular queueing system. According
to the cµ rule, product 1 should be produced first.

Λ =

[
8 8

8 8

]
, C =

[
10

10.1

]
µ1 = µ2 = 20

c · µ =

{
200 for product 1
202 for product 2

Figure 6.2: MDP solutions by LP (left) and MPI (right) for a regular queueing system. According
to the cµ rule, product 2 should be produced first.

The University of Texas at Austin 20

Internship Report Results I

Λ =

[
8 6

4 8

]
, C =

[
10.1

10

]
µ1 = µ2 = 20

c · µ =

{
202 for product 1
200 for product 2

Figure 6.3: MDP solutions by LP (left) and MPI (right) for a special queueing system. According
to the cµ rule, product 1 should be produced first.

Λ =

[
8 4

6 8

]
, C =

[
10

10.1

]
µ1 = µ2 = 20

c · µ =

{
200 for product 1
202 for product 2

Figure 6.4: MDP solutions by LP (left) and MPI (right) for a special queueing system. According
to the cµ rule, product 2 should be produced first.

In Table 6.1 the computing times that the scripts need to obtain the results are depicted. It is
clear that the (CPLEX) LP method is considerably faster than the MPI algorithm. Therefore,
when experimenting with parameter sets is advisable to make use of the LP method. Once
a useful result is obtained, it should be verified with the MPI algorithm.

Table 6.1: MDP solution computing times for different solving methods on a system with an Intel
Pentium i7 2.2 GHz processor, with 8 GB RAM memory.

Figure LP [s] MPI [s]
6.1 3.8 414.3
6.2 3.6 411.7
6.3 3.1 426.9
6.4 2.8 433.1

Especially the results displayed in Figures 6.3 and 6.4 are interesting. The reason for this
is that according to the MDP model, the cµ rule is not the optimal policy for these cases.
This is an interesting and unexpected result since the cµ rule does not depend on the arrival
rates. Because of this, and considering the difficulties with the MDP model it is sensible to
perform extra means of verification. In the following two sections, two different approaches
to verify the results that have been presented in this section are outlined.

The University of Texas at Austin 21

Internship Report Fluid model approach

7 Fluid model approach

This section functions as an extra means of verification of the results presented in Section 6.
The queueing network under study will be approximated by formulating it as a fluid model.
The fluid model is the deterministic equivalent of the queueing network described in Section
2, for which the arrival and service rates are now thus no longer exponential. The queueing
network can be viewed as two buckets of fluid, representing the two queues. Both buckets are
filled according to Λ and drained according to M . Naturally, only one bucket can be drained
at the time and the decision maker should determine which one. Since only stable systems
are considered, both buckets will eventually be empty and stay empty under any non-idling
policy. The fluid model only provides information until this zero point is reached and it is
therefore primarily useful for determining how to process large queue sizes.

7.1 Fluid dynamics

The fluid network will be described using a system of differential equations. For t ≥ 0, and
for job classes s = {1, 2}, the following quantities are defined: As(t) is the number of jobs
that have arrived in [0, t], Ts(t) is the cumulative time the server has spent on processing jobs
of class s in [0, t] and Ds(t) indicates the number of the server completions of type s jobs
in [0, t]. The queueing network process is defined by: X(t) = {Q(t), A(t), D(t), U(t)} (Sisbot
and Hasenbein [7]). For s = {1, 2} and t ≥ 0, the dynamics of the fluid model are defined by

Qs(t) = Qs(0) +As(t)−Ds(t)

As(t) =
[
λs1 λs2

] [T1(t)
T2(t)

]
Ds(t) = µsTs(t)

T (t) = T1(t) + T2(t) = t.

(7.1)

At each point in time the decision maker applies a control action U(t) ∈ {u1, u2} correspond-
ing to processing product 1 or 2, respectively. u1 and u2 can also be seen as the fraction of
time the corresponding control was active. Therefore, u1(t) + u2(t) ≤ 1 and they cannot be
negative. The rate of change of the queue lengths can be written in terms of the derivatives:

d

dt
Q1(t) = λ11 u

1(t) + λ12 u
2 − µ1 u1(t)

d

dt
Q2(t) = λ21 u

1(t) + λ22 u
2 − µ2 u2(t).

(7.2)

7.2 Optimization problem

By discretizing the fluid model into (small) intervals, the decision maker’s task can be modeled
as an optimization problem. The objective should obviously be to minimize the total holding
costs and the constraints have to be based on the system dynamics. This results in the

The University of Texas at Austin 22

Internship Report Fluid model approach

following linear programming problem:

find d =[u10, u
1
1, . . . , u

1
N , u

2
0, u

2
1 . . . , u

2
N

Q1
1, Q

1
2, . . . , Q

1
N−1, Q

2
1, Q

2
2, . . . , Q

2
N−1]

minimize
d

∆t

N−1∑
n=1

c1nQ
1
n + c2nQ

2
n

subject to Q1
n+1 = Q1

n + (λ11 − µ1)u1n∆t+ λ12u
2
n∆t n = 0, 1, . . . , N

Q2
n+1 = Q2

n + (λ22 − µ2)u2n∆t+ λ21u
1
n∆t n = 0, 1, . . . , N

u1n + u2n ≤ 1 n = 0, 1, . . . , N

u1n ≥ 0 n = 0, 1, . . . , N

u2n ≥ 0 n = 0, 1, . . . , N,

(7.3)

in which Q1
0 and Q2

0 are the initial fluid levels which are non-negative, Q1
N and Q2

N are the
final fluid levels and are equal to zero and c1 and c2 represent the holding costs for lots of
type 1 and 2. The number of equations that needs to be solved depends on the number of
increments N . The increment size depends on the total time T and is defined as ∆t = T/N .
T should be chosen sufficiently large, so that the fluid model has enough time to ‘drain’ and
reach zero. Also, N should be sufficiently large to ensure that the intervals are small enough.
In this model, λ0 is not included and therefore the model only works until both queues are
empty. The objective function and constraints are linear and the optimization problem can
thus be solved using linear programming. In Appendix C, a MATLAB script is provided that
sets up and solves the linear programming problem of (7.3).

7.3 Fluid model conclusions

In Figures 7.1 and 7.2 the results of the fluid model approximation are shown for two different
parameter sets. Within each figure, the left diagram shows the dynamics of the fluid levels
and the right figure shows the division of server time. Figure 7.1 is the fluid model of a
regular queueing network without dependent arrival rates. As expected, the products are
scheduled according to the cµ rule. However, in the second figure that represents a system
that does have state dependent arrival rates, the optimal policy according to the fluid model
is no longer in accordance with the cµ rule. It is clear that all server capacity is dedicated to
product two until this queue is empty. The model thus schedules products according to the
reversed cµ rule for this system.

Λ =

[
9 9

8 8

]
, C =

[
12

10

]
µ1 = µ2 = 20

c · µ =

{
240 for product 1
220 for product 2

Figure 7.1: Fluid model solution for a regular queueing system. According to the cµ rule, product 1
should be produced first.

The University of Texas at Austin 23

Internship Report Fluid model approach

Λ =

[
9 4

7 8

]
, C =

[
12

10

]
µ1 = µ2 = 20

c · µ =

{
240 for product 1
220 for product 2

Figure 7.2: Fluid model solution for a special queueing system. According to the cµ rule, product 1
should be produced first.

Even though the fluid model is only valid for long queues, the results do coincide with those
of Section 6 in which was stated that the cµ rule is not always optimal. By comparing
Figures 7.1 and 7.2 an explanation for this unexpected result can be found. The processing
rates of both examples are equal, yet in Figure 7.2 the queues are both empty significantly
faster. This is because, by clever allocating, the average arrival rate of the products is being
reduced. As a consequence, fewer products arrive so the queues are empty faster, reducing
the total holding costs. Even so, it should be noted that this also results in fewer products
being serviced. Consequently, the reduction in holding costs might be neutralized or even
surpassed by the losses in the throughput rate.

The University of Texas at Austin 24

Internship Report Verification by simulation

8 Verification by simulation

In this section, another means of verification is performed in order to be able to confirm
the unexpected results of Section 6. In that section, it is stated that according to the MDP
model, the cµ rule is not optimal for certain parameter sets of the queueing network with
state dependent arrivals, as opposed to the regular model where the cµ rule is always optimal.
A straightforward way of verifying that one policy outperforms another policy is by, firstly
simulating the queueing network under both policies, and subsequently using a hypothesis
test to affirm the results. In this section this procedure will be described.

8.1 Simulation setup

The queueing network was simulated for a sample size of nj = 50 (i.e., 50 independent
simulations) for both policies j ∈ {1, 2}, with policy 1 and 2 as the cµ and the reversed
cµ rule, respectively. Each simulation has a duration of 2000 hours divided into time steps
of 0.001 hours. This corresponds to a cumulative production of approximately 70000 lots
per simulation for parameter set (8.1). To compensate for potential warm up effects, the
first 100 hours (or 3500 lots) of the simulation data is not included in the processing. All
simulation samples are completely independent and generate their own Poisson arrival process
and exponential service times. The simulation was performed using the MATLAB script of
Appendix D.1. In the script, two simulations for the two policies run in parallel and thus a
sample for both policies is generated per simulation. However, they use random seeds and
are therefore completely independent of each other.

The system parameters are

Λ =

[
20 20

10 20

]
, M =

[
41

41

]
, Q0 =

[
1

1

]
, C =

[
10

12

]
(8.1)

and are identical for all simulations. Λ,M,Q0 and C indicate the arrival rates, processing
rates, initial queue lengths and holding costs, respectively.

The sample mean x̄j and sample variance s2j for j = {1, 2} for both policies are computed
with

x̄j =
1

nj

nj∑
i=1

xji j = 1, 2 (8.2)

s2j =
1

nj − 1

nj∑
i=1

(xji − x̄j)
2 j = 1, 2, (8.3)

using the average costs per hour of the samples.

The results are depicted in Table 8.1, with x̄j as the mean of the average costs per hour. In
this table, the confidence intervals are computed with Microsoft Excel using the Student’s
t-distribution based on a confidence level of 99%. Since the intervals are disjoint, the result
implies that the reversed cµ policy outperforms the cµ policy. In Section 8.2 this result
confirmed by a hypothesis test. The data set containing the average costs per hour of all
samples xj1, x

j
2, . . . , x

j
nj for j = {1, 2} is given in Appendix D.2.

The University of Texas at Austin 25

Internship Report Verification by simulation

Table 8.1: The mean, variance and 99% confidence intervals of average costs per hour of 50 samples
for the cµ and reversed cµ policy.

Policy j nj x̄j s2j x̄j confidence interval
cµ 1 50 79.64 32.40 [77.49; 81.80]

reversed cµ 2 50 72.83 21.09 [71.09; 74.57]

8.2 Hypothesis test

To make sure that the simulation results are statistically significant and not due to random
variation, a hypothesis test was carried out. The problem is one-tailed and the data consists
of two samples of independent and identically distributed random variables with unequal
variances. Therefore, the Welch’s t-test is a suitable method to perform the hypothesis test
(Watkins [9]). Because the goal is to find out if one policy is better than the other, it has
to be a one-tailed test. The significance level is set to α = 1%. If the p-value that is
obtained is smaller than α, the H0 hypothesis should be rejected. The hypothesis applies to
the parameter set of (8.1) and is set as follows:

H0: The cµ policy is better than the reversed cµ policy.
H1: The reversed cµ policy is better than the cµ policy.

Welch’s t-test is an adaption of the Student’s t-test and it defines the t-statistic according to:

t =
x̄1 − x̄2√
s21
n1

+
s22
n2

. (8.4)

The effective degrees of freedom ν can be computed using the Welch-Satterhwaite equation,
that is defined as:

ν =

(s21
n1

+
s22
n2

)2(
s21
n1

)2
n1−1 +

(
s22
n2

)2
n2−1

. (8.5)

The outcome of (8.5) is not an integer, therefore the final p-value has to be obtained by
interpolating the p-values of the adjacent integers. ν and t were computed using the data
of Table 8.1 and implemented in the right-tailed Student’s t-distribution of Microsoft Excel.
This resulted in a p-value of p = 1.28 · 10−9. Since p � 0.01, the H0 hypothesis is rejected
and it is concluded that based on the simulation results the reversed cµ rule performs better
than the cµ rule for the parameter set of (8.1). Accordingly, the cµ rule is not the optimal
policy for this parameter set.

The University of Texas at Austin 26

Internship Report Results II

9 Results II

In Section 6 it is stated that the cµ rule might not always be optimal. With the help of
Sections 7 and 8 this conjecture was established. The MDP and fluid models suggest that
in some cases the reversed cµ policy is optimal instead, yet no decisive argument can be
provided to validate this.

Nonetheless, the models can be used to determine when an alternative policy should be
considered. After analyzing a large number of solutions produced with the MDP models
discussed in this report, a very general rule of thumb could be defined as follows:

• If the ratios between state dependent arrival rates are asymmetric, i.e.,
λ11
λ22
6= λ12
λ21

;

• And the ratio of c · µ between products is larger than or approximately 0.75, i.e.,
min{c1µ1, c2µ2}
max{c1µ1, c2µ2}

' 0.75;

• Then it is likely that the cµ is not the optimal policy and one of the MDP models
should be used to verify this.

If one would have to design a decision maker for a queueing network with state dependent
arrival rates, this rule of thumb could be consulted to examine whether an alternative to the
cµ rule should be considered.

The University of Texas at Austin 27

Internship Report Conclusions and recommendations

10 Conclusions and recommendations

10.1 Conclusions

In this report, the optimal scheduling of a special type of queueing network is discussed. The
queueing network has been modeled as a Markov Decision Process. The major advantage of
this method is that because the system fulfills certain requirements, the solution of the MDP
model is an optimal policy. Moreover, the optimal policy is stationary, meaning that the
optimal routing action only depends on the state of the system and is independent of time.

The MDP model has been solved using the linear programming method and using the modi-
fied policy iteration algorithm. The LP method is significantly faster, but the MPI algorithm
has fewer errors in its result and it is therefore more reliable. It is remarkable that in both
models the boundary effects are abnormally large. An explanation for this effect has not
been found.

Nonetheless, it has been verified using both a fluid model approximation and a simulation
that the MDP models do produce correct results, apart from some erroneous values. Because
of the presence of errors, it is strongly advised to use both methods when solving a MDP. In
this way, by comparing the two figures it is possible to identify which parts of the solution
are incorrect and should be neglected.

With the help of the models, an exception on the cµ rule has been found. In a queueing system
with state dependent arrivals, for certain parameter sets, the reversed cµ rule performs better
than then the actual cµ rule. However, because of the numerical difficulties with the MDP
models it cannot be concluded with certainty that this is also the optimal policy. To assist
in the scheduling of this sort of special queueing networks a simple rule of thumb has been
composed, which is presented in Section 9. It is based on system parameters and indicates
whether it is likely or not that the cµ rule is not the optimal policy. The rule can be used to
determine if further examination using the MDP models is necessary.

At last, it should be noted that all conclusions mentioned above are based on the situation in
which the only costs involved are holding costs. By making clever use of the state dependent
arrivals, the arrival rate of one of the products is suppressed for a part of the time. Therefore
the total amount of products that is eventually produced is reduced, which negatively affects
the total revenue. The benefits in terms of holding costs might not compensate for the losses
in revenue. Based solely on this research, no conclusions can be drawn on the net benefit.

10.2 Recommendations for further research

A supplement to this report would be an explanation for the extraordinary size of the bound-
ary effects, which are caused by the truncation of the state space. If they could be prevented,
it would greatly improve the credibility and usability of the MDP models. In particular, the
MPI algorithm’s outcome would be improved, since the boundary effect is the only issue that
is encountered while using this method.

If a completely correct MDP solution for a state dependent system were to be found, the
uncertainty about the actual optimal policy will also be solved. This report suggests that
for certain parameter sets, the reversed cµ rule is optimal, yet it cannot be validated. With
a completely correct MDP solution, this can be validated and an alternative optimal policy
can be established. Another option would be to find the optimal policy analytically. The
numerical models could in this case serve as a means of verification for the results acquired

The University of Texas at Austin 28

Internship Report Conclusions and recommendations

analytically.

Moreover, the scope of this research could be extended by including a reward for producing
goods. As was mentioned in the conclusion, this study only focuses on the holding costs. By
including a reward for the amount of produced goods, it could be established whether the
reduction in holding costs compensates for the loss in revenue due to a decrease in production
quantity.

The University of Texas at Austin 29

Internship Report References

References

[1] Adan, I.J.B.F. (2003). Queuing Theory class, The M/M/1 system [Course outline docu-
ment]. Retrieved September 2016 from http://www.win.tue.nl/~iadan/que/h4.pdf.

[2] Asmussen, S., Ernst, P. and Hasenbein, J.J. (2016). Stability and Tail Asymptotics in a
Multiclass Queue with State Dependent Arrival Rates. arXiv:1609.03999v1 [math.PR]

[3] Bello B., and Riano G., (n.d.) Linear Programming solvers for Markov Decision
Processes. Retrieved September 2016 from http://www.sys.virginia.edu/sieds06/
papers/FMorningSession5.1.pdf

[4] Bertsekas, D.P. (2005). Dynamic Programming and Optimal Control (Third ed., Vol. 2).
Belmont, MA: Athena Scientific.

[5] Dolan, E. 2001. The NEOS Server 4.0 Administrative Guide. Technical Memorandum
ANL/MCS-TM-250, Mathematics and Computer Science Division, Argonne National
Laboratory.

[6] Hart, W. E., Laird, C., Watson J.P., and Woodruff, D.L.(2012). Pyomo-Optimization
Modeling in Python (Vol. 67.) Springer Science & Business Media.

[7] Sisbot, E.A. and Hasenbein J.J. (2016). Joint Routing and Scheduling Control in a Two-
class Network with a Flexible Server (Manuscript draft). Preprint, received August 2016.

[8] Smith, W.E. (1956). Various optimizers for single-stage production, Naval Research Lo-
gistics Quarterly 3 (pp. 59 - 66).

[9] Watkins, J.C.(n.d.). An Introduction to the Science of Statistics: From Theory to Imple-
mentation (Preliminary Edition). Retrieved October 2016 from http://math.arizona.
edu/~jwatkins/statbook.pdf

The University of Texas at Austin 30

http://www.win.tue.nl/~iadan/que/h4.pdf
http://www.sys.virginia.edu/sieds06/papers/FMorningSession5.1.pdf
http://www.sys.virginia.edu/sieds06/papers/FMorningSession5.1.pdf
http://math.arizona.edu/~jwatkins/statbook.pdf
http://math.arizona.edu/~jwatkins/statbook.pdf

Internship Report Stationary distribution example problem

A Stationary distribution example problem

This appendix focuses on the stationary distribution of a system with equal parameters. To
be specific, the system from (4.5) with a traffic intensity of ρ = 0.9 is examined. In Figure
A.1, the stationary distribution that was computed with (4.2) of this system is shown. The
higher values are, the darker their shade of green is. It is clear, that as depicted in Section
4.3.1 the values of the distribution along the summed-queue-diagonals increase as the states
approach the axes. Moreover, it is visible that the distribution is not completely symmetrical.
For this particular example, the decision maker services product 1 along the equal-queues-
diagonal (see Figure 4.2c) and therefore the distribution on the side of the Queue 2 axis is
higher.

Figure A.1: Stationary distribution of the parameter set of (4.5) with ρ = 0.9.

In Table A.1 the stationary distribution that is generated by the model is compared to one
of an M/M/1 queue. The model’s distribution is the sum of all values of the summed-queue-
diagonal of the corresponding n. The analytical distribution is computed with

Πn = (1− ρ)ρn. (A.1)

From Table A.1 can be read that the two distributions are nearly identical as expected.

Table A.1: Comparison of stationary distributions obtained analytically and numerically by the
MDP model.

n Analytical Π MDP LP result Π

0 0.1 0.101209013
1 0.09 0.091088112
2 0.081 0.081979301
3 0.0729 0.073781371
4 0.06561 0.066403234
5 0.059049 0.05976291
6 0.0531441 0.053786619
7 0.04782969 0.048407957
8 0.043046721 0.043567162

The University of Texas at Austin 31

Internship Report MDP related scripts

B MDP related scripts

B.1 MATLAB script: MDP Problem setup

1 % MDP_problem_setup.m | Han Raaijmakers | Oct 2016
2 % Function that uses import parameters to compute transition probabilities ,
3 % and perform uniformization.
4

5 % Inputs:
6 % N = Maximal queue length
7 % Lambda = Arrival rates matrix
8 % Lambda0 = Arrival rates when server is off vector
9 % Mu = Service rates vector

10 % C = Holding costs vector
11

12 % Outputs:
13 % p_d_u1 = probability matrix for control u = 1
14 % p_d_u2 = probability matrix for control u = 2
15 % g_d = stage cost matrix g
16

17 function [p_d_u1 ,p_d_u2 ,g_d ,g] = MDP_problem_setup(N,Lambda0 ,Lambda ,Mu,C)
18 %% CREATE MODEL STRUCTURE
19

20 Qcomb = (N+1) ^2; % Number of states (queue length combinations)
21 pos_a = (N+1)*N; % n.o. possible arrivals
22

23 % DEFINE TRANSTION RATES
24

25 % Define (continous) transition times
26 v_u1 = zeros(Qcomb ,1); % Column to store transition rates
27 v_u2 = zeros(Qcomb ,1); % Column to store transition rates
28

29 % control: u = 1
30 v_u1 (:,1) = Lambda (1,1)+Lambda (2,1)+Mu(1);
31 lb = 1; % left border Q1 = 0;
32 rb = N+1; % right border Q1 = max;
33 tb = 1; % top border Q2 = 0;
34 bb = Qcomb -N; % bottom border Q2 = max;
35

36 for i = 1:N+1
37 v_u1(lb) = v_u1(lb)-Mu(1);
38 lb = lb+N+1;
39 v_u1(rb) = v_u1(rb)-Lambda (1,1);
40 rb = rb+N+1;
41 v_u1(bb) = v_u1(bb)-Lambda (2,1);
42 bb = bb+1;
43 end
44

45 % control: u = 2
46 v_u2 (:,1) = Lambda (1,2)+Lambda (2,2)+Mu(2);
47 lb = 1; % left border Q1 = 0;
48 rb = N+1; % right border Q1 = max;
49 tb = 1; % top border Q2 = 0;
50 bb = Qcomb -N; % bottom border Q2 = max;
51

52 for i = 1:N+1
53 v_u2(tb) = v_u2(tb)-Mu(2);
54 tb = tb+1;
55 v_u2(rb) = v_u2(rb)-Lambda (1,2);
56 rb = rb+N+1;
57 v_u2(bb) = v_u2(bb)-Lambda (2,2);
58 bb = bb+1;
59 end
60

61 % Correct for state (0,0)
62 v_u1 (1) = Lambda0 (1) + Lambda0 (2);
63 v_u2 (1) = Lambda0 (1) + Lambda0 (2);
64

The University of Texas at Austin 32

Internship Report MDP related scripts

65 % Define the largest possible transition time
66 v = max(max(v_u1),max(v_u2));
67

68 % DEFINE CTMDP PROBABILITIES
69 t_c_u1 = zeros(Qcomb ,Qcomb); % Empty transition matrix u1
70 t_c_u2 = zeros(Qcomb ,Qcomb); % Empty transition matrix u2
71 p_c_u1 = zeros(Qcomb ,Qcomb); % Empty probability matrix u1
72 p_c_u2 = zeros(Qcomb ,Qcomb); % Empty probability matrix u2
73

74 % Loop for Lambda1 arrivals
75 j = 2; %Counter
76 for i = 1: pos_a+(N+1)
77 if mod(i,N+1) == 0
78 j = j+1;
79 continue
80 end
81 t_c_u1(i,j) = Lambda (1,1);
82 t_c_u2(i,j) = Lambda (1,2);
83 j = j+1;
84 end
85

86 % Loop for Lambda2 arrivals
87 j = N+2; %Counter
88 for i = 1: pos_a
89 t_c_u1(i,j) = Lambda (2,1);
90 t_c_u2(i,j) = Lambda (2,2);
91 j = j+1;
92 end
93

94 % Correct for state (0,0)
95 t_c_u1(1,N+2) = Lambda0 (2);
96 t_c_u1 (1,2) = Lambda0 (1);
97 t_c_u2(1,N+2) = Lambda0 (2);
98 t_c_u2 (1,2) = Lambda0 (1);
99

100 % Loop for u1 service completion
101 j = 2; %Counter
102 for i = 1: pos_a+(N+1)
103 if mod(i,N+1) == 0
104 j = j+1;
105 continue
106 end
107 t_c_u1(j,i) = Mu(1);
108 j = j+1;
109 end
110

111 % Loop for u2 service completion
112 j = N+2; %Counter
113 for i = 1: pos_a
114 t_c_u2(j,i) = Mu(2);
115 j = j+1;
116 end
117

118 % Convert arrival/competion matrices to probability matrices.
119 for i = 1: Qcomb
120 p_c_u1(i,:) = t_c_u1(i,:)./v_u1(i);
121 p_c_u2(i,:) = t_c_u2(i,:)./v_u2(i);
122 end
123

124 % CTDMP COST FUNCTION
125

126 g = zeros(Qcomb ,2); % Matrix to store costs
127 % Queue 1 costs
128 j = 1; % Counter
129 for i = 1:N+1
130 for k = 1:N
131 g(j+k,1) = C(1)*k;
132 end
133 j = j+N+1;
134 end

The University of Texas at Austin 33

Internship Report MDP related scripts

135

136 % Queue 2 costs
137 j = 1; % Counter
138 for i = 1:N+1
139 t = 1;
140 for k = N+1:N+1: pos_a
141 g(j+k,1) = g(j+k,1) + C(2)*t; % Include Q1 costs too
142 t = t+1;
143 end
144 j = j+1;
145 end
146 g(:,2) = g(:,1); % Costs are independent of control action
147

148 % APPLY UNIFORIMZATION TO CREATE DTMDP
149

150 % Cost function
151 g_d = g./v;
152

153 % Transition probabilities
154 p_d_u1 = zeros(size(p_c_u1));
155 p_d_u2 = zeros(size(p_c_u2));
156 for i = 1: Qcomb
157 for j = 1: Qcomb
158 if i == j
159 p_d_u1(i,j) = (v_u1(i)/v) * p_c_u1(i,i) + 1 - (v_u1(i)/v);
160 p_d_u2(i,j) = (v_u2(i)/v) * p_c_u2(i,i) + 1 - (v_u2(i)/v);
161 else
162 p_d_u1(i,j) = (v_u1(i)/v) * p_c_u1(i,j);
163 p_d_u2(i,j) = (v_u2(i)/v) * p_c_u2(i,j);
164 end
165 end
166 end
167

168 end

B.2 MATLAB script: MDP solver by Linear Programming

1 %% MDP_lp_solver.m | Han Raaijmakers | Oct 2016
2 % Sets up the problem as a Discrete time Markov Decision Process and uses
3 % Linear Programming to solve it. The LP solver can be called from the
4 % MATLAB Optimzation Toolbox , from the IBM CPLEX Optimization toolbox ,
5 % or from Pyomo.
6 % In the second case the problem is set up, processed in Python and
7 % imported again. This .m file and the pyomo_mdp_solver.py file must be
8 % in the same directory and this must be in the PATH for Python.
9

10 %clc;
11 clear all; close all;
12 disp(’Running the MDP LP solver , with idling.’);
13 fprintf(’\n’)
14

15 %% PARAMETERS
16 disp(’Setting up model ...’);
17 fprintf(’\n’)
18

19 % Program parameters
20 % Solver choice:
21 % 1 = MATLAB simplex
22 % 2 = MATLAB dual -simplex
23 % 3 = IBM CPLEX via Matlab(warning signs are because of options definition)
24 % 4 = CBC via Pyomo
25 % 5 = IBM CPLEX via Pyomo
26 solver = 3;
27

28 % Maximal buffer size (state space truncation)
29 N = 39;
30

31 % System parameters
32 % Dependent arrival rates [lots/hour]

The University of Texas at Austin 34

Internship Report MDP related scripts

33 Lambda = [20 20;
34 10 20];
35

36 % Arrival rates when server is off
37 Lambda0 (1) = max(Lambda (1,1),Lambda (1,2));
38 Lambda0 (2) = max(Lambda (2,1),Lambda (2,2));
39

40 % Processing rates [lots/hour]
41 Mu(1) = 42;
42 Mu(2) = 42;
43

44 % Holding costs [dollars/lot/hour]
45 C(1) = 10;
46 C(2) = 11;
47

48 % Stability check
49 m = inv(diag(Mu));
50 M = Lambda*m;
51 EIG = abs(eig(M));
52 if max(EIG) >= 1
53 msg = [’This choice of parameters does not guarantee stability ,’...
54 ’ please choose different parameters.’];
55 error(msg)
56 end
57

58 % Print theoretical results
59 max_EIG = max(EIG);
60 disp([’The traffic intensity , or spectral density of the system is: ’ ...
61 num2str(max_EIG)])
62 fprintf(’\n’)
63

64 muC_ratio = [C(1)*Mu(1);C(2)*Mu(2)];
65 Order = [1;2];
66 Order = [Order muC_ratio];
67 TO = flipud(sortrows(Order ,2));
68 disp([’First product according to c*mu rule is: ’ num2str(TO(1,1)) ...
69 ’ with c*mu = ’ num2str(TO(1,2))])
70 disp([’Second product according to c*mu rule is: ’ num2str(TO(2,1)) ...
71 ’ with c*mu = ’ num2str(TO(2,2))])
72 fprintf(’\n’)
73

74 ratio = TO(2,2) / TO(1,2);
75 disp([’Ratio between c*mu for number 2 and 1 is: ’ num2str(ratio)])
76 fprintf(’\n’)
77

78 %% CREATE MODEL STRUCTURE
79

80 Qcomb = (N+1) ^2; % Number of states (queue length combinations)
81 pos_a = (N+1)*N; % n.o. possible arrivals
82

83 % Call to problem setup function
84 [p_d_u1 ,p_d_u2 ,g_d ,g] = MDP_problem_setup(N,Lambda0 ,Lambda ,Mu,C);
85

86 %% FORMULATE LINEAR PROGRAM
87

88 % Parameters
89 % g_d = discrete time cost function
90 % p_d_u1 = discrete time probability matrix u1
91 % p_d_u1 = discrete time probability matrix u2
92

93 % Need to find:
94 % q(i,u): (N+1)^2x2 matrix with the optimal policy to chose for each state
95 % linprog output will be (N+1) ^2*2x1 vector
96

97 % OBJECTIVE FUNCTION
98

99 f = [g_d(:,1)’ g_d(:,2) ’];
100

101 % EQUALITY CONSTRAINTS
102 Aeq = zeros(Qcomb -1,2* Qcomb); % Empty matrix , except for last constraint

The University of Texas at Austin 35

Internship Report MDP related scripts

103

104 % Everything on the right of equals sign (probabilities)
105 for i = 1: Qcomb
106 for j = 1: Qcomb
107 Aeq(i,j) = -p_d_u1(j,i);
108 Aeq(i,j+Qcomb) = -p_d_u2(j,i);
109 end
110 Aeq(i,i) = Aeq(i,i)+1;
111 Aeq(i,i+Qcomb) = Aeq(i,i+Qcomb)+1;
112 end
113 beq = zeros(Qcomb ,1);
114

115 % Add final equality constraint
116 Aeq_f = zeros(1,Qcomb *2);
117 for i = 1: Qcomb
118 Aeq_f(1,i) = 1;
119 Aeq_f(1,i+Qcomb) = 1;
120 end
121 beq_f = 1;
122

123 Aeq = [Aeq;Aeq_f];
124 beq = [beq;beq_f];
125

126 % INEQUALITY CONSTRAINTS
127 A = [];
128 b = [];
129

130 % UPPER AND LOWER BOUNDS
131 % All larger than zero
132 lb = zeros(1,Qcomb *2);
133 ub = [];
134

135 %% EXECUTE LINEAR PROGRAM
136 t = cputime;
137 disp(’Setting up solver started ...’)
138 fprintf(’\n’)
139 x0=[];
140

141 if solver <= 3 % MATLAB solver
142 if solver == 1 % simplex
143 options = optimoptions(’linprog ’,’Algorithm ’,’simplex ’, ...
144 ’Display ’, ’Iter’,’MaxIter ’,1e6,’MaxTime ’ ,3600, ...
145 ’TolFun ’,1e-10,’TolCon ’,1e-9);
146 solver_name = char(’MATLAB simplex ’);
147 [q,fval ,exitflag ,output] = linprog(f,A,b,Aeq ,beq ,lb,ub ,x0,options);
148 elseif solver == 2 % dual -simplex
149 options = optimoptions(’linprog ’,’Algorithm ’,’dual -simplex ’, ...
150 ’Display ’, ’Iter’,’MaxIter ’,1e6,’MaxTime ’ ,3600,’TolFun ’, ...
151 1e-10,’TolCon ’,1e-9);
152 solver_name = char(’MATLAB dual -simplex ’);
153 [q,fval ,exitflag ,output] = linprog(f,A,b,Aeq ,beq ,lb,ub ,x0,options);
154 elseif solver == 3 % cplex
155 options = cplexoptimset(’cplex ’);
156 options.display=’iter’;
157 solver_name = char(’IBM CPLEX via MATLAB ’);
158 [q,fval ,exitflag] = cplexlp(f,A,b,Aeq ,beq ,lb,ub,x0 ,options);
159 end
160

161 % Write results to usuable c_frac format
162 c_frac = zeros(Qcomb ,2);
163 c_frac (:,1) = q(1: Qcomb);
164 c_frac (:,2) = q(Qcomb +1:2* Qcomb);
165

166 else % Pyomo solver
167

168 % Add empty rows and columns for headers
169 g_d = [zeros(size(g_d ,1) ,1) g_d];
170 g_d = [zeros(1,size(g_d ,2)); g_d];
171 p_d_u1 = [zeros(size(p_d_u1 ,1) ,1) p_d_u1];
172 p_d_u1 = [zeros(1,size(p_d_u1 ,2)); p_d_u1];

The University of Texas at Austin 36

Internship Report MDP related scripts

173 p_d_u2 = [zeros(size(p_d_u2 ,1) ,1) p_d_u2];
174 p_d_u2 = [zeros(1,size(p_d_u2 ,2)); p_d_u2];
175

176 % Fill rows with row and column numbers
177 g_d (2:end ,1) = [1: Qcomb]’;
178 p_d_u1 (2:end ,1) = [1: Qcomb]’;
179 p_d_u1 (1,2:end) = [1: Qcomb];
180 p_d_u2 (2:end ,1) = [1: Qcomb]’;
181 p_d_u2 (1,2:end) = [1: Qcomb];
182

183 % Write and export matrices to csv file format
184 csvwrite(’g.csv’,g_d);
185 csvwrite(’pu1.csv’,p_d_u1);
186 csvwrite(’pu2.csv’,p_d_u2);
187

188 disp(’Calling command prompt for Pyomo solver ...’)
189

190 if solver == 4 % CBC
191 % Call command prompt
192 command = [’pyomo solve --solver -manager=neos --solver=cbc’...
193 ’ pyomo_mdp_solver.py --summary ’];
194 [status ,cmdout] = system(command);
195 disp(cmdout)
196 solver_name = char(’CBC via Pyomo’);
197 elseif solver == 5 % CPLEX
198 % Call command prompt
199 command = [’pyomo solve --solver -manager=neos --solver=cplex’...
200 ’ pyomo_mdp_solver.py’];
201 [status ,cmdout] = system(command);
202 disp(cmdout)
203 solver_name = char(’IBM CPLEX via Pyomo ’);
204 end
205

206 % Import and transform data
207 q_data = csvread(’results.csv’);
208 c_frac_q1 = zeros(Qcomb ,2);
209 c_frac_q2 = zeros(Qcomb ,2);
210 c_frac_q1 (:,1) = q_data (1,1: Qcomb);
211 c_frac_q1 (:,2) = q_data (2,1: Qcomb);
212 c_frac_q2 (:,1) = q_data(1,Qcomb +1:2* Qcomb);
213 c_frac_q2 (:,2) = q_data(2,Qcomb +1:2* Qcomb);
214 % Sort indexes
215 c_frac_q1 = sortrows(c_frac_q1);
216 c_frac_q2 = sortrows(c_frac_q2);
217 % Convert to workable format
218 c_frac = [c_frac_q1 (:,2) c_frac_q2 (:,2)];
219

220 end
221

222 Solver_Time = cputime -t;
223 disp([’Solver process finished in ’ num2str(Solver_Time) ’ seconds.’]);
224 disp(’Setting up results ...’);
225 fprintf(’\n’)
226

227 %% ANALYZING RESUTLS
228

229 % Stationary Distribution
230 Y = zeros(Qcomb ,1);
231 for i = 1: Qcomb
232 Y(i) = c_frac(i,1)+c_frac(i,2);
233 end
234

235 % Deterministic rule
236 % Can be used because our MDP is irreducible
237 pi = zeros(Qcomb ,1);
238 for i = 1: Qcomb
239 pi(i,1) = c_frac(i,1)/Y(i);
240 pi(i,2) = c_frac(i,2)/Y(i);
241 end
242

The University of Texas at Austin 37

Internship Report MDP related scripts

243 % Generate control matrix in queue form
244 C1 = zeros(N+1,N+1);
245 C2 = zeros(N+1,N+1);
246 C1_frac = zeros(N+1,N+1);
247 C2_frac = zeros(N+1,N+1);
248 Q_dist = zeros(N+1,N+1);
249 g_dist = zeros(N+1,N+1);
250

251 for i = 1:N+1
252 % Optimal control
253 C1(i,:) = pi(1+(i-1)*(N+1):i*(N+1) ,1);
254 C2(i,:) = pi(1+(i-1)*(N+1):i*(N+1) ,2);
255 % Fractions
256 C1_frac(i,:) = c_frac (1+(i-1)*(N+1):i*(N+1) ,1);
257 C2_frac(i,:) = c_frac (1+(i-1)*(N+1):i*(N+1) ,2);
258 % Deterministic Distribution
259 Q_dist(i,:) = Y(1+(i-1)*(N+1):i*(N+1));
260 % Holding cost distribution
261 g_dist(i,:) = g(1+(i-1)*(N+1):i*(N+1) ,1);
262 end
263

264 %% PLOTTING RESULTS
265

266 % Control routing rule
267 figure
268 axis ([0 N+1 0 N+1]);
269 xlabel(’Queue 1’);
270 ylabel(’Queue 2’);
271 hold on
272 grid on
273 % Control 1
274 for i = 1:N+1
275 for j = 1:N+1
276 if C1(i,j) >= 0.99
277 plot(j,i,’sb’)
278 elseif isnan(C1(i,j)) % Error value due to truncation
279 plot(j,i,’sy’)
280 end
281 end
282 end
283 % Control 2
284 for i = 1:N+1
285 for j = 1:N+1
286 if C2(i,j) >= 0.99
287 plot(j,i,’sr’)
288 elseif isnan(C2(i,j))
289 plot(j,i,’sy’)
290 end
291 end
292 end
293 legend(’Service type 1’)
294 %title(solver_name)
295 shg
296

297 disp(’Program finished.’);

B.3 Python script: Pyomo model setup

1 # LP solver

2 # With modified constraints for faster building

3

4 # To execute, fun the following line in the command prompt:

5 # pyomo solve−−solver−manager=neos−−solver=cbc LPsolve_v4.py
6

7 from __future__ import division

8 from pyomo.environ import ∗

The University of Texas at Austin 38

Internship Report MDP related scripts

9

10 import pandas

11 import csv

12

13 # Import data

14 pu1 = pandas.read_csv(’pu1.csv’,sep = ’;’)

15 pu2 = pandas.read_csv(’pu2.csv’,sep = ’;’)

16 g = pandas.read_csv(’g.csv’,sep = ’;’)

17

18 # Add column headers

19 g.columns = [’state’,’u1’,’u2’]

20 col_name1 = pu1.columns[0]

21 pu1=pu1.rename(columns = {col_name1:’state’})

22 col_name2 = pu2.columns[0]

23 pu2=pu2.rename(columns = {col_name2:’state’})

24

25 model = AbstractModel()

26

27 model.S = Param(within=NonNegativeIntegers , initialize = len(g.index)) # n.o. states

28

29 # SETS

30 model.I = RangeSet(1, model.S) # States

31

32 # Create special sets for borders and non−borders of grid
33 # Excluding point (0,0), and other corner points

34 # NOTE: different N than in MATLAB (queue length + 1)

35 N = int(sqrt(len(g.index)))

36

37 # Top border

38 tb = range(2,N)

39 # Left border

40 lb = []

41 for i in range(2,N∗∗2−N):
42 if i%N == 1:

43 lb[len(lb):] = [i]

44 # Right border

45 rb = []

46 for i in range(N+1,N∗∗2):
47 if i%N == 0:

48 rb[len(rb):] = [i]

49 # Bottom border

50 bb = range(N∗∗2−N+2,N∗∗2)
51 # Remaining states

52 mm = []

53 for i in range(N+1,N∗∗2−N):
54 if i%N != 0 and i%N != 1:

55 mm[len(mm):] = [i]

56

57 # DECISION VARIABLE

The University of Texas at Austin 39

Internship Report MDP related scripts

58 model.q1 = Var(model.I, domain=NonNegativeReals) # decision variable q1(i)

59 model.q2 = Var(model.I, domain=NonNegativeReals) # decision variable q2(i)

60

61 # Define summation function

62 def obj_expression(model):

63 return sum(

64 g[g.state == i].u1.values[0] ∗ model.q1[i]
65 + g[g.state == i].u2.values[0] ∗ model.q2[i]
66 for i in model.I

67)

68

69 # Define objective function

70 model.OBJ = Objective(rule=obj_expression)

71

72 def qsum_constraint_rule(model):

73 # return the expression for the constraint for i

74 return sum((model.q1[i] + model.q2[i])

75 for i in model.I

76) == 1

77

78 model.qsumConstraint = Constraint(rule=qsum_constraint_rule)

79

80 # Sum constraint for state (0,0) top left

81 def p_00_sum_constraint_rule(model):

82 return ((model.q1[1] + model.q2[1]) − (
83 model.q1[1]∗pu1[pu1.state==1][str(1)].values[0] +
84 model.q2[1]∗pu2[pu2.state==1][str(1)].values[0] +
85 model.q1[2]∗pu1[pu1.state==2][str(1)].values[0] +
86 model.q2[N+1]∗pu2[pu2.state==N+1][str(1)].values[0]) == 0)
87

88 model.p_00_sumConstraint = Constraint(rule=p_00_sum_constraint_rule)

89

90 # Sum contraint for top border states

91 def p_tb_sum_constraint_rule(model, j):

92 return ((model.q1[j] + model.q2[j]) − (
93 model.q1[j]∗pu1[pu1.state==j][str(j)].values[0] +
94 model.q2[j]∗pu2[pu2.state==j][str(j)].values[0] +
95 model.q1[j−1]∗pu1[pu1.state==j−1][str(j)].values[0] +
96 model.q2[j−1]∗pu2[pu2.state==j−1][str(j)].values[0] +
97 model.q1[j+1]∗pu1[pu1.state==j+1][str(j)].values[0] +
98 model.q2[j+N]∗pu2[pu2.state==j+N][str(j)].values[0]) == 0)
99

100 model.p_tb_sumConstraint = Constraint(tb, rule=p_tb_sum_constraint_rule)

101

102 # Sum constraint for state (N,0) (top right)

103 def p_N0_sum_constraint_rule(model):

104 return ((model.q1[N] + model.q2[N]) − (
105 model.q1[N]∗pu1[pu1.state==N][str(N)].values[0] +
106 model.q2[N]∗pu2[pu2.state==N][str(N)].values[0] +

The University of Texas at Austin 40

Internship Report MDP related scripts

107 model.q1[N−1]∗pu1[pu1.state==N−1][str(N)].values[0] +
108 model.q2[N−1]∗pu2[pu2.state==N−1][str(N)].values[0] +
109 model.q2[N+N]∗pu2[pu2.state==N+N][str(N)].values[0]) == 0)
110

111 model.p_N0_sumConstraint = Constraint(rule=p_N0_sum_constraint_rule)

112

113 # Sum contraint for left border states

114 def p_lb_sum_constraint_rule(model, j):

115 return ((model.q1[j] + model.q2[j]) − (
116 model.q1[j]∗pu1[pu1.state==j][str(j)].values[0] +
117 model.q2[j]∗pu2[pu2.state==j][str(j)].values[0] +
118 model.q1[j−N]∗pu1[pu1.state==j−N][str(j)].values[0] +
119 model.q2[j−N]∗pu2[pu2.state==j−N][str(j)].values[0] +
120 model.q1[j+1]∗pu1[pu1.state==j+1][str(j)].values[0] +
121 model.q2[j+N]∗pu2[pu2.state==j+N][str(j)].values[0]) == 0)
122

123 model.p_lb_sumConstraint = Constraint(lb, rule=p_lb_sum_constraint_rule)

124

125 # Sum contraint for right border states

126 def p_rb_sum_constraint_rule(model, j):

127 return ((model.q1[j] + model.q2[j]) − (
128 model.q1[j]∗pu1[pu1.state==j][str(j)].values[0] +
129 model.q2[j]∗pu2[pu2.state==j][str(j)].values[0] +
130 model.q1[j−N]∗pu1[pu1.state==j−N][str(j)].values[0] +
131 model.q2[j−N]∗pu2[pu2.state==j−N][str(j)].values[0] +
132 model.q1[j−1]∗pu1[pu1.state==j−1][str(j)].values[0] +
133 model.q2[j−1]∗pu1[pu1.state==j−1][str(j)].values[0] +
134 model.q2[j+N]∗pu2[pu2.state==j+N][str(j)].values[0]) == 0)
135

136 model.p_rb_sumConstraint = Constraint(rb, rule=p_rb_sum_constraint_rule)

137

138 # Sum contraint center states

139 def p_mm_sum_constraint_rule(model, j):

140 return ((model.q1[j] + model.q2[j]) − (
141 model.q1[j]∗pu1[pu1.state==j][str(j)].values[0] +
142 model.q2[j]∗pu2[pu2.state==j][str(j)].values[0] +
143 model.q1[j−1]∗pu1[pu1.state==j−1][str(j)].values[0] +
144 model.q2[j−1]∗pu1[pu1.state==j−1][str(j)].values[0] +
145 model.q1[j+1]∗pu1[pu1.state==j+1][str(j)].values[0] +
146 model.q2[j+N]∗pu2[pu2.state==j+N][str(j)].values[0] +
147 model.q1[j−N]∗pu2[pu2.state==j−N][str(j)].values[0] +
148 model.q2[j−N]∗pu2[pu2.state==j−N][str(j)].values[0]) == 0)
149

150 model.p_mm_sumConstraint = Constraint(mm, rule=p_mm_sum_constraint_rule)

151

152 # Sum constraint for state (0N) (bottom left)

153 def p_0N_sum_constraint_rule(model):

154 return ((model.q1[N∗∗2−N+1] + model.q2[N∗∗2−N+1]) − (
155 model.q1[N∗∗2−N+1]∗pu1[pu1.state==N∗∗2−N+1][str(N∗∗2−N+1)].values[0] +

The University of Texas at Austin 41

Internship Report MDP related scripts

156 model.q2[N∗∗2−N+1]∗pu2[pu2.state==N∗∗2−N+1][str(N∗∗2−N+1)].values[0] +
157 model.q1[N∗∗2−N+1−N]∗pu1[pu1.state==N∗∗2−N+1−N][str(N∗∗2−N+1)].values[0] +
158 model.q2[N∗∗2−N+1−N]∗pu2[pu2.state==N∗∗2−N+1−N][str(N∗∗2−N+1)].values[0] +
159 model.q1[N∗∗2−N+1+1]∗pu1[pu1.state==N∗∗2−N+1+1][str(N∗∗2−N+1)].values[0])
160 == 0)

161

162 model.p_0N_sumConstraint = Constraint(rule=p_0N_sum_constraint_rule)

163

164 # Sum constraint for state (NN) (bottom right)

165 def p_NN_sum_constraint_rule(model):

166 return ((model.q1[N∗∗2] + model.q2[N∗∗2])− (
167 model.q1[N∗∗2]∗pu1[pu1.state==N∗∗2][str(N∗∗2)].values[0] +
168 model.q2[N∗∗2]∗pu2[pu2.state==N∗∗2][str(N∗∗2)].values[0] +
169 model.q1[N∗∗2−N]∗pu1[pu1.state==N∗∗2−N][str(N∗∗2)].values[0] +
170 model.q2[N∗∗2−N]∗pu2[pu2.state==N∗∗2−N][str(N∗∗2)].values[0] +
171 model.q1[N∗∗2−1]∗pu1[pu1.state==N∗∗2−1][str(N∗∗2)].values[0] +
172 model.q2[N∗∗2−1]∗pu2[pu2.state==N∗∗2−1][str(N∗∗2)].values[0])
173 == 0)

174

175 model.p_NN_sumConstraint = Constraint(rule=p_NN_sum_constraint_rule)

176

177 # Sum contraint for bottom border states

178 def p_bb_sum_constraint_rule(model, j):

179 return ((model.q1[j] + model.q2[j]) − (
180 model.q1[j]∗pu1[pu1.state==j][str(j)].values[0] +
181 model.q2[j]∗pu2[pu2.state==j][str(j)].values[0] +
182 model.q1[j−N]∗pu1[pu1.state==j−N][str(j)].values[0] +
183 model.q2[j−N]∗pu2[pu2.state==j−N][str(j)].values[0] +
184 model.q1[j−1]∗pu1[pu1.state==j−1][str(j)].values[0] +
185 model.q2[j−1]∗pu2[pu2.state==j−1][str(j)].values[0] +
186 model.q1[j+1]∗pu1[pu1.state==j+1][str(j)].values[0]) == 0)
187

188 model.p_bb_sumConstraint = Constraint(bb, rule=p_bb_sum_constraint_rule)

189

190 # Storing results in a csv file

191 # SOURCE (adapted greatly though)

192 def pyomo_postprocess(options=None, instance=None,

193 results=None):

194

195 # Collect data

196 vars = set()

197 data = {}

198 f = {}

199 for i in range(len(results.solution)):

200 data[i] = {}

201 for var in results.solution[i].variable:

202 vars.add(var)

203 data[i][var] = \

204 results.solution[i].variable[var][’Value’]

The University of Texas at Austin 42

Internship Report MDP related scripts

205 f[i] = results.solution[i].objective[’OBJ’][’Value’]

206 #

207 # Write a CSV file, one row per solution.

208 # First column is function value, remaining columns

209 # are values of non−zero variables
210 #

211 rows = []

212 vars = list(vars)

213 vars.sort()

214 rows.append([’OBJ’]+vars)

215 for i in range(len (results.solution)):

216 row = [f[i]]

217 for var in vars:

218 row.append(data[i].get(var,None))

219 rows.append(row)

220

221 # Rewrite rows to a usuable format for MATLAB

222 # Remove objective:

223 del rows[0][0]

224 del rows[1][0]

225

226 # Remove q’s and brackets

227 rows_mat = rows

228 for i in range(0,2∗N∗∗2):
229 oldstr = rows[0][i]

230 end = len(oldstr)

231 newstr = oldstr[3:end−1]
232 rows_mat[0][i] = rows[0][i].replace(oldstr,newstr)

233

234 print "Creating results file results.csv"

235 with open("results.csv", "wb") as f:

236 writer = csv.writer(f, delimiter = ’,’)

237 writer.writerows(rows_mat)

B.4 MATLAB script: MDP Policy Iteration Algorithm

1 %% MDP_policy_iteration.m | Han Raaijmakers | Oct 2016
2

3 clc; clear all; close all;
4 disp(’Running the MDP policy iteration solver , with idling.’);
5 fprintf(’\n’)
6

7 %% PARAMETERS
8 disp(’Setting up model ...’);
9 fprintf(’\n’)

10

11 % Program parameters
12 % Maximal buffer size (state space truncation)
13 N = 19;
14 maxIter = 20; % Maximum number of iterations
15

16 % System parameters
17 % Dependent arrival rates [lots/hour]

The University of Texas at Austin 43

Internship Report MDP related scripts

18 Lambda = [8 8;
19 8 8];
20

21 % Arrival rates when server is off
22 Lambda0 (1) = max(Lambda (1,1),Lambda (1,2));
23 Lambda0 (2) = max(Lambda (2,1),Lambda (2,2));
24

25 % Processing rates [lots/hour]
26 Mu(1) = 17;
27 Mu(2) = 17;
28

29 % Holding costs [dollars/lot/hour]
30 C(1) = 10;
31 C(2) = 12;
32

33 % Stability check
34 m = inv(diag(Mu));
35 M = Lambda*m;
36 EIG = abs(eig(M));
37 if max(EIG) >= 1
38 msg = [’This choice of parameters does not guarantee stability ,’...
39 ’ please choose different parameters.’];
40 error(msg)
41 end
42

43 % Print theoretical results
44 max_EIG = max(EIG);
45 disp([’The traffic intensity , or spectral density of the system is: ’ ...
46 num2str(max_EIG)])
47 fprintf(’\n’)
48

49 muC_ratio = [C(1)*Mu(1);C(2)*Mu(2)];
50 Order = [1;2];
51 Order = [Order muC_ratio];
52 TO = flipud(sortrows(Order ,2));
53 disp([’First product according to c*mu rule is: ’ num2str(TO(1,1)) ...
54 ’ with c*mu = ’ num2str(TO(1,2))])
55 disp([’Second product according to c*mu rule is: ’ num2str(TO(2,1)) ...
56 ’ with c*mu = ’ num2str(TO(2,2))])
57 fprintf(’\n’)
58

59 ratio = TO(2,2) / TO(1,2);
60 disp([’Ratio between c*mu for number 2 and 1 is: ’ num2str(ratio)])
61 fprintf(’\n’)
62

63 %% CREATE MODEL STRUCTURE
64

65 Qcomb = (N+1) ^2; % Number of states (queue length combinations)
66 pos_a = (N+1)*N; % n.o. possible arrivals
67

68 % Call to problem setup function
69 [p_d_u1 ,p_d_u2 ,g_d ,g] = MDP_problem_setup(N,Lambda0 ,Lambda ,Mu,C);
70

71 %% POLICY ITERATION ALGORITHM
72 fprintf(’Starting policy iteration ... \n’);
73

74 % Initialize program variables
75 n = Qcomb; % Number of states
76 P = {p_d_u1 , p_d_u2 }; % Probability matrices
77

78 k = 1; % Iteration number. (0 = 1 in MATLAB)
79 mu = cell(1,maxIter); % Cell to store mu’s.
80 h_mu = cell(1,maxIter); % Cell to store J_mu ’s
81 O_mu = zeros(1,maxIter); % Array to store average costs
82

83 g_mu = zeros(n,1); % Cost vector g_mu (for current controls)
84 Th_muBE = zeros (2,2); % TJ_mu(... ,) Matrix to store B.E. outcomes
85 mu_new = zeros(n,1); % Array to store new u
86 h_mu_new = zeros(n,1); % Array to store TJmu (new Jmu)
87 e = ones(n,1); % Vector with ones

The University of Texas at Austin 44

Internship Report MDP related scripts

88

89 h = sym(’h’,[n 1]); % Symbolic vector with h’s
90 syms O; % Symbolic variable for Omega
91

92 t = cputime;
93 % STEP 1: Initialization
94 fprintf(’Step 1: Initialization ... \n’);
95

96 % Choose first policy according to cmu rule
97 mu0 = TO(1,1)*ones(n,1); % Initial control
98 % If one product is 0 it always optimal to service the other
99 bb = [1:N+1]; % State numbers of bottom border (Q2 = 0)

100 lb = []; % State numbers of left border (Q1 = 0)
101 for i = 2: Qcomb
102 if mod(i,N+1) == 1
103 lb = [lb i];
104 end
105 end
106 mu0(bb) = 1;
107 mu0(lb) = 2;
108 mu{1} = mu0; % Store in control list
109

110 % Take t=1 as a reference state and set h_mu_0 (1) = 0;
111 h_mu1 = 0;
112 h(1) = h_mu1;
113

114 while true
115 % STEP 2: Policy Evaluation
116 fprintf(’Step 2 (%d): Policy Evaluation ... \n’,k)
117

118 % Create transition probability matrix P_mu
119 P_mu = zeros(n,n);
120 for i = 1:n
121 for j = 1:n
122 P_mu(i,j) = P{mu{k}(i)}(i,j);
123 end
124 end
125

126 % Create cost vector g_mu
127 for i = 1:n
128 g_mu(i,1) = g_d(i,mu{k}(i));
129 end
130

131 eqn_sys = O*e + h == g_mu + P_mu*h; % System of equations
132 s = solve(eqn_sys); % Solve system of equaiotns
133 sol = struct2cell(s); % Change to usuable format.
134

135 Omu = sol {1};
136 O_mu(k) = Omu; % Store average cost
137

138 hmu = zeros(n,1);
139 hmu (1) = h_mu1;
140 for i = 2:n
141 hmu(i) = sol{i};
142 end
143

144 h_mu{k} = hmu; % Store h vector
145

146 % STEP 3: Policy Improvement
147 fprintf(’Step 3 (%d): Policy Improvement ... \n’,k)
148

149 for i = 1:n
150

151 % Compute summation parts of Bellman ’s Equation
152 sum_u1 = 0;
153 sum_u2 = 0;
154 for j = 1:n
155 sum_u1 = sum_u1 + p_d_u1(i,j)*hmu(j);
156 sum_u2 = sum_u2 + p_d_u2(i,j)*hmu(j);
157 end

The University of Texas at Austin 45

Internship Report MDP related scripts

158

159 % Compute Bellman ’s Equation
160 Th_muBE(i,1) = g_d(i,1) + sum_u1; %u1
161 Th_muBE(i,2) = g_d(i,2) + sum_u2; %u2
162

163 % Find minimizing controls
164 [m,id] = min(Th_muBE(i,:));
165 mu_new(i) = id;
166 h_mu_new(i) = m;
167 end
168 % Check if optimal policy is found: Jmu(k) = TJmu(k)
169 if mu{k} == mu_new
170 mu_star = mu_new;
171 h_star = hmu;
172 O_star = Omu;
173 break
174 end
175

176 % If not , return to step 2 and use current mu.
177 mu{k+1} = mu_new;
178

179 % Go to second iterion
180 k = k + 1;
181

182 % Show error if iteration limit is reached
183 if k == maxIter +1
184 msg = ’Iteration limit reached. Optimal policy is not found.’;
185 error(msg);
186 end
187 end
188

189 disp(’Policy Iteration succesfull.’)
190 Stime = cputime -t;
191 fprintf(’Optimal policy was found in %d iterations and %2.1f seconds \n’...
192 ,k,Stime)
193

194 %% ANALYZING RESULTS
195

196 fprintf(’The average total cost Omega is: %5.4f \n’,double(O_star))
197

198 % Create control matrices with NaN , to make errors visible
199 pi = NaN(Qcomb ,2);
200

201 % Optimal control
202 for i = 1: Qcomb
203 if mu_star(i) == 1
204 pi(i,1) = 1;
205 pi(i,2) = 0;
206 elseif mu_star(i) == 2
207 pi(i,1) = 0;
208 pi(i,2) = 1;
209 end
210 end
211

212 C1 = zeros(N+1,N+1);
213 C2 = zeros(N+1,N+1);
214 % Transform to grid setup
215 for i = 1:N+1
216 C1(i,:) = pi(1+(i-1)*(N+1):i*(N+1) ,1);
217 C2(i,:) = pi(1+(i-1)*(N+1):i*(N+1) ,2);
218 end
219

220 %% PLOTTING RESULTS
221

222 % Control routing rule
223 figure
224 axis ([0 N+1 0 N+1]);
225 xlabel(’Queue 1’);
226 ylabel(’Queue 2’);
227 hold on

The University of Texas at Austin 46

Internship Report MDP related scripts

228 grid on
229 % Control 1
230 for i = 1:N+1
231 for j = 1:N+1
232 if C1(i,j) >= 0.99
233 plot(j,i,’sb’)
234 elseif isnan(C1(i,j)) % Error value due to truncation
235 plot(j,i,’sy’)
236 end
237 end
238 end
239 % Control 2
240 for i = 1:N+1
241 for j = 1:N+1
242 if C2(i,j) >= 0.99
243 plot(j,i,’sr’)
244 elseif isnan(C2(i,j))
245 plot(j,i,’sy’)
246 end
247 end
248 end
249 legend(’Service type 1’)
250 title(’Policy Iteration ’)
251 shg
252

253 disp(’Program finished.’);

B.5 MATLAB script: MDP Modified Policy Iteration

1 %% MDP_policy_iteration.m | Han Raaijmakers | Oct 2016
2

3 clear all; %clc; %close all;
4 disp(’Running the MDP modified policy iteration solver , with idling ’);
5 fprintf(’\n’)
6

7 %% PARAMETERS
8 disp(’Setting up model ...’);
9 fprintf(’\n’)

10

11 % Program parameters
12 % Maximal buffer size (state space truncation)
13 N = 39;
14 maxIter = 20; % Maximum number of iterations
15 VI_max = 1500; % Maximum relative value iterations to find h_mu
16 VI_tol = 1e-15; % Tolerance for stopping value iterations to find h_mu
17

18 % System parameters
19 % Dependent arrival rates [lots/hour]
20 Lambda = [20 20;
21 10 20];
22

23 % Arrival rates when server is off
24 Lambda0 (1) = max(Lambda (1,1),Lambda (1,2));
25 Lambda0 (2) = max(Lambda (2,1),Lambda (2,2));
26

27 % Processing rates [lots/hour]
28 Mu(1) = 41;
29 Mu(2) = 41;
30

31 % Holding costs [dollars/lot/hour]
32 C(1) = 10;
33 C(2) = 12;
34

35 % Stability check | SEE PAPER
36 m = inv(diag(Mu));
37 M = Lambda*m;
38 EIG = abs(eig(M));
39 if max(EIG) >= 1
40 msg = [’This choice of parameters does not guarantee stability ,’...

The University of Texas at Austin 47

Internship Report MDP related scripts

41 ’ please choose different parameters.’];
42 error(msg)
43 end
44

45 % Print theoretical results
46 max_EIG = max(EIG);
47 disp([’The traffic intensity , or spectral density of the system is: ’ ...
48 num2str(max_EIG)])
49 fprintf(’\n’)
50

51 muC_ratio = [C(1)*Mu(1);C(2)*Mu(2)];
52 Order = [1;2];
53 Order = [Order muC_ratio];
54 TO = flipud(sortrows(Order ,2));
55 disp([’First product according to c*mu rule is: ’ num2str(TO(1,1)) ...
56 ’ with c*mu = ’ num2str(TO(1,2))])
57 disp([’Second product according to c*mu rule is: ’ num2str(TO(2,1)) ...
58 ’ with c*mu = ’ num2str(TO(2,2))])
59 fprintf(’\n’)
60

61 ratio = TO(2,2) / TO(1,2);
62 disp([’Ratio between c*mu for number 2 and 1 is: ’ num2str(ratio)])
63 fprintf(’\n’)
64

65 %% CREATE MODEL STRUCTURE
66

67 Qcomb = (N+1) ^2; % Number of states (queue length combinations)
68 pos_a = (N+1)*N; % n.o. possible arrivals
69

70 % Call to problem setup function
71 [p_d_u1 ,p_d_u2 ,g_d] = MDP_problem_setup(N,Lambda0 ,Lambda ,Mu ,C);
72

73 %% POLICY ITERATION ALGORITHM
74 fprintf(’Starting policy iteration ... \n’);
75

76 % Initialize program variables
77 n = Qcomb; % Number of states
78 P = {p_d_u1 , p_d_u2 }; % Probability matrices
79

80 k = 1; % Iteration number. (0 = 1 in MATLAB)
81 mu = cell(1,maxIter); % Cell to store mu’s.
82 h_mu = cell(1,maxIter); % Cell to store J_mu ’s
83 O_mu = zeros(1,maxIter); % Array to store average costs
84

85 g_mu = zeros(n,1); % Cost vector g_mu (for current controls)
86 Th_muBE = zeros (2,2); % TJ_mu(... ,) Matrix to store B.E. outcomes
87 mu_new = zeros(n,1); % Array to store new u
88 h_mu_new = zeros(n,1); % Array to store TJmu (new Jmu)
89 e = ones(n,1); % Vector with ones
90

91 h_vi = zeros(Qcomb ,VI_max); % Matrix to store VI steps
92 h_vi_new = zeros(n,1); % Array h’s for VI
93 Th_vi_old = zeros(n,1); % Array to store Th ’s
94 Th = zeros (2,2); % Matrix to store TH for VI
95

96 t = cputime;
97 % STEP 1: Initialization
98 fprintf(’Step 1: Initialization ... \n’);
99

100 % Choose first policy according to cmu rule
101 mu0 = TO(1,1)*ones(n,1); % Initial control
102 % If one product is 0 it always optimal to service the other
103 bb = [1:N+1]; % State numbers of bottom border (Q2 = 0)
104 lb = []; % State numbers of left border (Q1 = 0)
105 for i = 2: Qcomb
106 if mod(i,N+1) == 1
107 lb = [lb i];
108 end
109 end
110 mu0(bb) = 1;

The University of Texas at Austin 48

Internship Report MDP related scripts

111 mu0(lb) = 2;
112 mu{1} = mu0; % Store in control list
113

114 % Take t=1 as a reference state and set h_mu_0 (1) = 0. Initialize the h
115 % vector for the relative value iteration to 1: Qcomb (except for state 1)
116 h_vi_int = [1: Qcomb]’;
117 h_vi_int (1) = 0;
118

119 while true
120 % STEP 2: Policy Evaluation
121 fprintf(’Step 2 (%d): Policy Evaluation ... \n’,k)
122

123 % Create transition probability matrix P_mu
124 P_mu = zeros(n,n);
125 for i = 1:n
126 for j = 1:n
127 P_mu(i,j) = P{mu{k}(i)}(i,j);
128 end
129 end
130

131 % Create cost vector g_mu
132 for i = 1:n
133 g_mu(i,1) = g_d(i,mu{k}(i));
134 end
135

136 % Use relative value iteration instead of solving the system
137 % of equations
138 h_vi (:,1) = h_vi_int;
139

140 for l = 2: VI_max +1;
141 for i = 1:n
142

143 % Compute summation parts of Bellman ’s Equation
144 sum_u1 = 0;
145 sum_u2 = 0;
146 for j = 1:n
147 sum_u1 = sum_u1 + p_d_u1(i,j)*h_vi(j,l-1);
148 sum_u2 = sum_u2 + p_d_u2(i,j)*h_vi(j,l-1);
149 end
150

151 % Compute Bellman ’s Equation
152 Th(i,1) = g_d(i,1) + sum_u1; %u1
153 Th(i,2) = g_d(i,2) + sum_u2; %u2
154

155 % Find minimizing controls
156 [m,id] = min(Th(i,:));
157 Th_vi_old(i) = m;
158 end
159 % Use the minimum values to apply Th another time
160 h_vi_new = Th_vi_old - Th_vi_old (1)*e;
161

162 h_vi(:,l) = h_vi_new;
163

164 % Stop iterating if tolerance is met
165 VI_diff = max(abs(h_vi(:,l) - h_vi(:,l-1)));
166 if VI_diff <= VI_tol
167 break
168 end
169 end
170

171 hmu = h_vi(:,end);
172 h_mu{k} = hmu; % Store h vector
173

174 % Compute Omega using hmu
175 Omu = (g_mu + P_mu*hmu - hmu);
176 Omu = Omu(1);
177 O_mu(k) = Omu;
178

179 % STEP 3: Policy Improvement
180 fprintf(’Step 3 (%d): Policy Improvement ... \n’,k)

The University of Texas at Austin 49

Internship Report MDP related scripts

181

182 for i = 1:n
183

184 % Compute summation parts of Bellman ’s Equation
185 sum_u1 = 0;
186 sum_u2 = 0;
187 for j = 1:n
188 sum_u1 = sum_u1 + p_d_u1(i,j)*hmu(j);
189 sum_u2 = sum_u2 + p_d_u2(i,j)*hmu(j);
190 end
191

192 % Compute Bellman ’s Equation
193 Th_muBE(i,1) = g_d(i,1) + sum_u1; %u1
194 Th_muBE(i,2) = g_d(i,2) + sum_u2; %u2
195

196 % Find minimizing controls
197 [m,id] = min(Th_muBE(i,:));
198 mu_new(i) = id;
199 h_mu_new(i) = m;
200 end
201 % Check if optimal policy is found: Jmu(k) = TJmu(k)
202 if mu{k} == mu_new
203 mu_star = mu_new;
204 h_star = hmu;
205 O_star = Omu;
206 break
207 end
208

209 % If not , return to step 2 and use current mu.
210 mu{k+1} = mu_new;
211

212 % Go to second iterion
213 k = k + 1;
214

215 % Show error if iteration limit is reached
216 if k == maxIter +1
217 msg = ’Iteration limit reached. Optimal policy is not found.’;
218 error(msg);
219 end
220 end
221

222 disp(’Policy Iteration succesfull.’)
223 Stime = cputime -t;
224 fprintf(’Optimal policy was found in %d iterations and %2.1f seconds \n’...
225 ,k,Stime)
226

227 %% ANALYZING RESULTS
228

229 fprintf(’The average total cost Omega is: %5.4f \n’,double(O_star))
230

231 % Create control matrices with NaN , to make errors visible
232 pi = NaN(Qcomb ,2);
233

234 % Optimal control
235 for i = 1: Qcomb
236 if mu_star(i) == 1
237 pi(i,1) = 1;
238 pi(i,2) = 0;
239 elseif mu_star(i) == 2
240 pi(i,1) = 0;
241 pi(i,2) = 1;
242 end
243 end
244

245 C1 = zeros(N+1,N+1);
246 C2 = zeros(N+1,N+1);
247 % Transform to grid setup
248 for i = 1:N+1
249 C1(i,:) = pi(1+(i-1)*(N+1):i*(N+1) ,1);
250 C2(i,:) = pi(1+(i-1)*(N+1):i*(N+1) ,2);

The University of Texas at Austin 50

Internship Report MDP related scripts

251 end
252

253 %% PLOTTING RESULTS
254

255 % Control routing rule
256 figure
257 axis ([0 N+1 0 N+1]);
258 xlabel(’Queue 1’);
259 ylabel(’Queue 2’);
260 hold on
261 grid on
262 % Control 1
263 for i = 1:N+1
264 for j = 1:N+1
265 if C1(i,j) >= 0.99
266 plot(j,i,’sb’)
267 elseif isnan(C1(i,j)) % Error value due to truncation
268 plot(j,i,’sy’)
269 end
270 end
271 end
272 % Control 2
273 for i = 1:N+1
274 for j = 1:N+1
275 if C2(i,j) >= 0.99
276 plot(j,i,’sr’)
277 elseif isnan(C2(i,j))
278 plot(j,i,’sy’)
279 end
280 end
281 end
282 legend(’Service type 1’)
283 shg
284

285 disp(’Program finished.’);

The University of Texas at Austin 51

Internship Report MATLAB script: Fluid model optimization problem

C MATLAB script: Fluid model optimization problem

1 % Fluid_LP.m | Han Raaijmakers | Sep 2016
2 % Approximates the problem as a fluid model and solves it using Linear
3 % Progamming
4

5 clear all; clc; close all;
6 disp(’Running the fluid model approximation.’);
7 fprintf(’\n’)
8

9 %% PARAMETERS
10

11 % Program
12 T = 25; % time interval
13 N = 500; % determines number of increments
14

15 % System parameters
16 % Initial queue lengths
17 Q_0 (1) = 30; % Product 1
18 Q_0 (2) = 40; % Product 2
19

20 % Dependent arrival rates [lots/hour]
21 Lambda = [45 45;
22 45 45];
23

24 % Arrival rates when server is off
25 Lambda0 (1) = max(Lambda (1,1),Lambda (1,2));
26 Lambda0 (2) = max(Lambda (2,1),Lambda (2,2));
27

28 % Processing rates [lots/hour]
29 Mu(1) = 100;
30 Mu(2) = 100;
31

32 % Holding costs [dollars/lot/hour]
33 C(1) = 10;
34 C(2) = 12;
35

36 % Stability check | SEE PAPER
37 m = inv(diag(Mu));
38 M = Lambda*m;
39 EIG = abs(eig(M));
40 if max(EIG) >= 1
41 msg = [’This choice of parameters does not guarantee stability ,’...
42 ’ please choose different parameters.’];
43 error(msg)
44 end
45

46 % Print theoretical results
47 max_EIG = max(EIG);
48 disp([’The traffic intensity , or spectral density of the system is: ’ ...
49 num2str(max_EIG)])
50 fprintf(’\n’)
51

52 muC_ratio = [C(1)*Mu(1);C(2)*Mu(2)];
53 Order = [1;2];
54 Order = [Order muC_ratio];
55 TO = flipud(sortrows(Order ,2));
56 disp([’First product according to c*mu rule is: ’ num2str(TO(1,1)) ...
57 ’ with c*mu = ’ num2str(TO(1,2))])
58 disp([’Second product according to c*mu rule is: ’ num2str(TO(2,1)) ...
59 ’ with c*mu = ’ num2str(TO(2,2))])
60 fprintf(’\n’)
61

62 ratio = TO(2,2) / TO(1,2);
63 disp([’Ratio between c*mu for number 2 and 1 is: ’ num2str(ratio)])
64 fprintf(’\n’)
65

66 % Final queue lengths
67 Q1f = 0;

The University of Texas at Austin 52

Internship Report MATLAB script: Fluid model optimization problem

68 Q2f = 0;
69

70 %% FORMULATE LINEAR PROGRAM
71

72 % Time increment
73 dt = T/N;
74

75 % Linear objective function
76 f = zeros (1,2*N + 2*(N-1));
77 for n = 1:N-1
78 f(2*N+n) = C(1)*dt;
79 f(2*N+(N-1)+n) = C(2)*dt;
80 end
81

82 % Linear equality constraints
83 Aeq = zeros(N*2,2*N + 2*(N-1));
84 beq = zeros(N*2,1);
85

86 % n = 0
87 % Equality 1:
88 Aeq(1,1) = (Mu(1)-Lambda (1,1))*dt;
89 Aeq(1,N+1) = -Lambda (1,2)*dt;
90 Aeq(1,2*N+1) = 1;
91 beq (1) = Q_0(1);
92

93 % Equality 2:
94 Aeq(2,1) = (-Lambda (2,1))*dt;
95 Aeq(2,N+1) = (Mu(2)-Lambda (2,2))*dt;
96 Aeq(2,2*N+(N-1) +1) = 1;
97 beq (2) = Q_0(2);
98

99 % n = N
100 % Equality 1
101 Aeq(3,N) = (Mu(1)-Lambda (1,1))*dt;
102 Aeq(3,2*N) = (-Lambda (1,2))*dt;
103 Aeq(3,2*N+(N-1)) = -1;
104 beq (3) = Q1f;
105

106 % Equality 2
107 Aeq(4,N) = (-Lambda (1,2))*dt;
108 Aeq(4,2*N) = (Mu(2)-Lambda (2,1))*dt;
109 Aeq(4,2*N+2*(N-1)) = -1;
110 beq (4) = Q2f;
111

112 % n = 1 ... N - 1
113 j = 4;
114 for n = 1:N-2
115 j = j+1;
116 % Equality 1:
117 Aeq(j,n) = (Mu(1)-Lambda (1,1))*dt;
118 Aeq(j,N+n) = (-Lambda (1,2))*dt;
119 Aeq(j,2*N+n) = -1;
120 Aeq(j,2*N+n+1) = 1;
121 beq(j) = 0;
122

123 j = j+1;
124 % Equality 2:
125 Aeq(j,n) = (-Lambda (2,1))*dt;
126 Aeq(j,N+n) = (Mu(2)-Lambda (2,2))*dt;
127 Aeq(j,2*N+(N-1)+n) = -1;
128 Aeq(j,2*N+(N-1)+n+1) = 1;
129 beq(j) = 0;
130 end
131

132 % Linear inequality constraints
133 A = zeros(N-1,2*N+2*(N-1));
134 b = zeros(N-1,1);
135

136 for n = 1:N-1
137 A(n,n) = 1; A(n,N+n) = 1; b(n) = 1;

The University of Texas at Austin 53

Internship Report MATLAB script: Fluid model optimization problem

138 end
139

140 % Lower and upper bounds
141 lb = zeros (1,2*N + 2*(N-1));
142 ub = [];
143

144 %% EXECUTE LINEAR PROGRAM
145

146 x0 = [];
147 options = []; optimset(’Display ’,’Iter’);
148 [dqp , fval , exitflag , output , lambda] = ...
149 linprog(f,A,b,Aeq ,beq ,lb,ub,x0 ,options);
150

151 %% PLOTTING RESULTS
152 timeQ = 0:dt:T;
153 timeC = 0:dt:T-dt;
154

155 control (1,:) = dqp(1:N)’;
156 control (2,:) = dqp(N+1:2*N)’;
157

158 Q = zeros(2,N+1);
159 Q(1,1) = Q_0 (1);
160 Q(1,2:N) = dqp(2*N+1:2*N+(N-1));
161 Q(1,N+1) = Q1f;
162 Q(2,1) = Q_0 (2);
163 Q(2,2:N) = dqp(2*N+(N-1) +1:2*N+2*(N-1));
164 Q(2,N+1) = Q2f;
165

166 % % Plot controls
167 figure
168 plot(timeC ,control (1,:));
169 hold on
170 grid on
171 plot(timeC ,control (2,:));
172 xlabel(’Time [hours]’)
173 ylabel(’Fraction of server time [-]’)
174 legend(’u_1’,’u_2’)
175 axis ([0 T-1 -0.1 1.1])
176

177 % Plot Queues
178 figure
179 plot(timeQ ,Q(1,:));
180 hold on
181 grid on
182 plot(timeQ ,Q(2,:));
183 xlabel(’Time [hours]’)
184 ylabel(’Queue lengths [lots]’)
185 legend(’q_1’,’q_2’)
186 xlim ([0 T-1])
187 shg

The University of Texas at Austin 54

Internship Report Simulation

D Simulation

D.1 MATLAB script: Simulation

1 % Simulation.m | Han Raaijmakers | Oct 2016
2 % Simulates arrivals according to Poisson process and exponential service
3 % times. Simultanously runs two paralles simulations , for a system
4 % following the cmu policy and a system following the reversed cmu policy.
5 % Both systems use the same exponential arrivals and service times.
6 % pol1 = cmu policy
7 % pol2 = reversed cmu policy
8

9 clear all; clc; close all
10 disp(’Running the simulation.’);
11 fprintf(’\n’)
12

13 %% PARAMETERS
14

15 % Simulation
16 simrep = 10; % Times to repeat simulation
17 samp = 0.001; % Simulation time sample length [hour]
18 simlen = 1000; % Simulation length [hours]
19 time = 0:samp:simlen; % Time vector
20 tlen = simlen/samp +1; % Time vector length
21

22 % System parameters
23 % Initial queue lengths
24 Q_0 (1) = 1; % Product 1
25 Q_0 (2) = 1; % Product 2
26

27 % Dependent arrival rates [lots/hour]
28 Lambda = [20 20;
29 20 20];
30

31 % Arrival rates when server is off
32 Lambda0 (1) = max(Lambda (1,1),Lambda (1,2));
33 Lambda0 (2) = max(Lambda (2,1),Lambda (2,2));
34

35 % Processing rates [lots/hour]
36 Mu(1) = 50;
37 Mu(2) = 50;
38

39 % Holding costs [dollars/lot/hour]
40 C(1) = 10;
41 C(2) = 12;
42

43 % Stability check
44 m = inv(diag(Mu));
45 M = Lambda*m;
46 EIG = abs(eig(M));
47 if max(EIG) >= 1
48 msg = [’This choice of parameters does not guarantee stability ,’...
49 ’ please choose different parameters.’];
50 error(msg);
51 end
52

53 % Print theoretical results
54 max_EIG = max(EIG);
55 disp([’The traffic intensity , or spectral density of the system is: ’ ...
56 num2str(max_EIG)])
57 fprintf(’\n’)
58

59 muC_ratio = [C(1)*Mu(1);C(2)*Mu(2)];
60 Order = [1;2];
61 Order = [Order muC_ratio];
62 TO = flipud(sortrows(Order ,2));
63 disp([’First product according to c*mu rule is: ’ num2str(TO(1,1)) ...
64 ’ with c*mu = ’ num2str(TO(1,2))])

The University of Texas at Austin 55

Internship Report Simulation

65 disp([’Second product according to c*mu rule is: ’ num2str(TO(2,1)) ...
66 ’ with c*mu = ’ num2str(TO(2,2))])
67 fprintf(’\n’)
68

69 ratio = TO(2,2) / TO(1,2);
70 disp([’Ratio between c*mu for number 2 and 1 is: ’ num2str(ratio)])
71 fprintf(’\n’)
72

73 %% SIMULATION
74

75 L = Lambda .*samp; % Scale lambda to simulation parameters
76 L0 = Lambda0*samp;
77 Mu_inv = 1./Mu; % Inverse of Mu
78

79 arr = zeros(2,tlen); % Matrix to store arrivals
80 Q_pol1 = zeros(2,tlen); % Matrix representing queue length for cmu
81 Q_pol2 = zeros(2,tlen); % Matrix representing queue length for cmu rev
82 Q_pol1 (:,1) = Q_0(:); % Initialize intial queue lengths
83 Q_pol2 (:,1) = Q_0(:); % Initialize intial queue lengths
84

85 Q_pol1_arr = zeros(2,tlen);
86 Q_pol2_arr = zeros(2,tlen);
87 Q_pol1_proc_times = [];
88 Q_pol2_proc_times = [];
89

90 % Product server statusses
91 server_pol1 = 3; % 1 = product #1, 2 = product #3, 3 = idle
92 server_pol2 = 3; % 1 = product #1, 2 = product #3, 3 = idle
93 To = TO(:,1);
94

95 TC_pol1 = zeros(1,simrep);
96 TC_pol2 = zeros(1,simrep);
97 AC_pol1 = zeros(1,simrep);
98 AC_pol2 = zeros(1,simrep);
99

100 cmu = To(1); % Priority product
101 rev = To(2); % Non Priority products
102 disp(’Simulating ...’)
103 fprintf(’\n’)
104 for r = 1: simrep
105

106 fprintf(’Simulation repetition number %d ... \n’,r)
107

108 c = 2; % Counter
109 serv_t_pol1 = 0; % Current production time remaining pol1 simulation
110 serv_t_pol2 = 0; % Current production time remaining pol2 simulation
111

112 % Start simulation
113 for t = 0:samp:simlen -samp
114

115 if serv_t_pol1 <= 0 % No product being serviced in pol1 sim
116 server_pol1 = 3;
117 serv_t_pol1 = 0;
118 end
119

120 if serv_t_pol2 <= 0 % No product being serviced in pol2 sim
121 server_pol2 = 3;
122 serv_t_pol2 = 0;
123 end
124

125 % Simulate queue lengths pol1 simulation queue
126 if server_pol1 == 1
127 Q_pol1(1,c) = Q_pol1(1,c-1) + poissrnd(L(1,1));
128 Q_pol1(2,c) = Q_pol1(2,c-1) + poissrnd(L(2,1));
129 elseif server_pol1 == 2
130 Q_pol1(1,c) = Q_pol1(1,c-1) + poissrnd(L(1,2));
131 Q_pol1(2,c) = Q_pol1(2,c-1) + poissrnd(L(2,2));
132 else % server_cmu == 0
133 Q_pol1(1,c) = Q_pol1(1,c-1) + poissrnd(L0(1));
134 Q_pol1(2,c) = Q_pol1(2,c-1) + poissrnd(L0(2));

The University of Texas at Austin 56

Internship Report Simulation

135 end
136 Q_pol1_arr (:,c) = Q_pol1(:,c) - Q_pol1(:,c-1);
137

138 % Simulate queue lengths pol2 simulation queue
139 if server_pol2 == 1
140 Q_pol2(1,c) = Q_pol2(1,c-1) + poissrnd(L(1,1));
141 Q_pol2(2,c) = Q_pol2(2,c-1) + poissrnd(L(2,1));
142 elseif server_pol2 == 2
143 Q_pol2(1,c) = Q_pol2(1,c-1) + poissrnd(L(1,2));
144 Q_pol2(2,c) = Q_pol2(2,c-1) + poissrnd(L(2,2));
145 else % server_rev == 0
146 Q_pol2(1,c) = Q_pol2(1,c-1) + poissrnd(L0(1));
147 Q_pol2(2,c) = Q_pol2(2,c-1) + poissrnd(L0(2));
148 end
149 Q_pol2_arr (:,c) = Q_pol2(:,c) - Q_pol2(:,c-1);
150

151 % Production process for pol1 simulation
152 if server_pol1 == 3 % Server is idle
153 num1 = size(Q_pol1_proc_times ,2); % N.o. products so far
154 if Q_pol1(cmu ,c) >= 1 % If queue of cmu product is non -empty
155 % Simulate processing time cmu prod and adapt server time
156 serv_t_pol1 = exprnd(Mu_inv(cmu));
157 Q_pol1_proc_times(cmu ,num1 +1) = serv_t_pol1;
158 % Decrease qeueu length for cmu product
159 Q_pol1(cmu ,c) = Q_pol1(cmu ,c) -1;
160 % Set server status to cmu producttype in service
161 server_pol1 = cmu;
162 elseif Q_pol1(rev ,c) >= 1 % Otherwise , non -preffered product
163 % Simulate processing time rev prod and adapt server time
164 serv_t_pol1 = exprnd(Mu_inv(rev));
165 Q_pol1_proc_times(rev ,num1 +1) = serv_t_pol1;
166 % Decrease qeueu length for rev product
167 Q_pol1(rev ,c) = Q_pol1(rev ,c) -1;
168 % Set server status to rev producttype in service
169 server_pol1 = rev;
170 end
171 else % Server is busy
172 serv_t_pol1 = serv_t_pol1 - samp;
173 end
174 % Production process for pol1 simulation
175 if server_pol2 == 3 % Server is idle
176 num2 = size(Q_pol2_proc_times ,2);
177 if Q_pol2(rev ,c) >= 1 % If queue of rev product is non -empty
178 % Simulate processing time cmu prod and adapt server time
179 serv_t_pol2 = exprnd(Mu_inv(rev));
180 Q_pol2_proc_times(rev ,num2 +1) = serv_t_pol2;
181 % Decrease qeueu length for rev product
182 Q_pol2(rev ,c) = Q_pol2(rev ,c) -1;
183 % Set server status to rev producttype in service
184 server_pol2 = rev;
185 elseif Q_pol2(cmu ,c) >= 1 % Otherwise , non -preffered product
186 % Simulate processing time cmu prod and adapt server time
187 serv_t_pol2 = exprnd(Mu_inv(cmu));
188 Q_pol2_proc_times(cmu ,num2 +1) = serv_t_pol2;
189 % Decrease qeueu length for cmu product
190 Q_pol2(cmu ,c) = Q_pol2(cmu ,c) -1;
191 % Set server status to cmu producttype in service
192 server_pol2 = cmu;
193 end
194 else % Server is busy
195 serv_t_pol2 = serv_t_pol2 - samp;
196 end
197

198 c = c+1;
199 end
200

201 % Compensate for potential warmup effects
202 wa = 0.1* simlen/samp; % Warmup part
203 Q_pol1 (:,1:wa) = []; % Remove data
204 Q_pol2 (:,1:wa) = []; % Remove data

The University of Texas at Austin 57

Internship Report Simulation

205

206 % Compute total costs
207 TC_pol1(r) = sum(Q_pol1 (1,:))*(C(1)*samp)+sum(Q_pol1 (2,:))*(C(2)*samp);
208 TC_pol2(r) = sum(Q_pol2 (1,:))*(C(1)*samp)+sum(Q_pol2 (2,:))*(C(2)*samp);
209 % Compute average costs (with warmup compsensation)
210 AC_pol1(r) = TC_pol1(r) / (simlen *0.9);
211 AC_pol2(r) = TC_pol2(r) / (simlen *0.9);
212

213 AC_pol1(r)
214 AC_pol2(r)
215

216 end
217 %% ANALYSING RESULTS
218

219 TC_pol1_tot = mean(TC_pol1);
220 TC_pol2_tot = mean(TC_pol2);
221 AC_pol1_tot = mean(AC_pol1);
222 AC_pol2_tot = mean(AC_pol2);
223

224 disp(’Simulation finished.’)

D.2 Simulation data

Table D.1: Data of the simulation of Section 8.

cµ rule reversed cµ rule cµ rule reversed cµ rule
83.4770 74.6631 70.7400 72.1367
81.6131 75.7797 85.9604 75.8423
69.4295 74.7288 70.9150 76.1848
86.8315 74.4690 82.7101 65.5119
78.5912 75.3627 81.8061 71.8850
76.2929 79.7004 72.8445 65.9974
73.7698 72.1215 72.1818 71.6089
76.5062 69.5098 80.8815 79.1500
79.1054 82.7101 73.6964 76.6413
76.5827 63.9633 84.7544 66.6709
85.8150 68.3516 82.0449 69.1907
78.4075 72.7985 74.3098 71.5728
85.5104 71.6426 83.4139 77.6172
86.1381 72.8920 74.9184 70.3047
81.7674 76.0661 93.1936 69.3288
77.0449 72.3111 74.2567 73.4967
82.1949 64.0299 81.2642 78.6775
83.2562 86.6245 81.1230 72.0988
88.8806 73.5087 91.3310 76.7744
87.6032 73.5429 73.0385 69.7879
76.4996 70.9625 71.6928 70.1336
78.4517 68.0835 79.6479 71.4596
75.9483 64.7376 83.2388 69.7172
81.1621 74.8025 76.9335 75.5910
83.6956 73.6976 70.6536 77.0532

The University of Texas at Austin 58

	Introduction
	Model description
	Markov Decision Process approach
	Uniformization
	Discrete Time Markov Decision Process model setup
	Conditions for equal average cost per stage
	Computational solving methods

	Linear programming
	Problem formulation
	Implementations
	Issues with numerical results
	Evaluation of performance

	Policy iteration
	Optimality equations
	Policy iteration algorithm
	Modified policy iteration
	Implementation of algorithms

	Results I
	Fluid model approach
	Fluid dynamics
	Optimization problem
	Fluid model conclusions

	Verification by simulation
	Simulation setup
	Hypothesis test

	Results II
	Conclusions and recommendations
	Conclusions
	Recommendations for further research

	References
	Stationary distribution example problem
	MDP related scripts
	MATLAB script: MDP Problem setup
	MATLAB script: MDP solver by Linear Programming
	Python script: Pyomo model setup
	MATLAB script: MDP Policy Iteration Algorithm
	MATLAB script: MDP Modified Policy Iteration

	MATLAB script: Fluid model optimization problem
	Simulation
	MATLAB script: Simulation
	Simulation data

