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Abstract

This work compares Sensor-to-Global Fusion methods with existing Sensor-To-Sensor Fusion meth-
ods for applications in shared world modelling. Sensor-To-Sensor Fusion (e.g. Ellipsoidal Intersec-
tion and Covariance Intersection) fuses only new measurements at every time sample from sensors.
On the other hand, Sensor-to-Global Fusion methods (e.g. Information Matrix Fusion and Covari-
ance Intersection with Memory), fuses past fusion data with the new measurements. The scenario
discussed here simulates two automated vehicles (agents) estimating the states (relative position
and velocity) of a third vehicle (object) by fusing the locally obtained measurements with meas-
urements that are shared between the agents to obtain a better estimation of the object without
losing consistency. Both Sensor-To-Sensor Fusion and Sensor-to-Global Fusion need to consider
the common information between the prior estimates. Besides this, Sensor-to-Global Fusion would
also need to consider the correlation between the estimation from the sensor filters and the estim-
ation from the past in global track as both contain common past information. Most analysis of
fusion algorithms focus on synchronized sensors. However, this work will also look at the results
of fusion of sensors that are asynchronous/out-of-sequence and susceptible to failure (packet loss
during communication). Average Root Mean Square Error, Covariance and Consistency of the
fused estimates will be compared and the pros and cons of keeping track of past fusion data will
be studied.
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Chapter 1

Introduction

The future of automobiles is heading towards automated and cooperative driving that are aimed
at reducing accidents [19] and improving traffic flow [20]. Transferring the driving duties from
the driver to the vehicle requires the vehicle to make its own decisions. However, good decision
making is primarily supported by good knowledge of the environment. Though adding multiple
sensors to such vehicles would increase their perception of the environment, they are limited by
the field of view of these sensors. Another option would be to share the world model perceived by
each vehicle. This shared information can be combined with the information perceived by each
vehicle using its on-board sensors which would expand the knowledge of its environment. Also,
uncertainties of a sensors can be reduced and the effects of sensor/communication failure can be
attenuated.

1.1 Sensor Fusion

Autonomous driving vehicles rely heavily on sensors to perceive its surroundings. However, as
sensors have inherent uncertainties in determining the states of the target such as position, velocity
and acceleration, it would be wiser to observe an object using multiple sensors and combine the
obtained information from these sensors to better estimate the states of the object. This process
of combining measurements from multiple sensors for better state estimation of a tracked object
is called sensor fusion. Apart from possibly increasing the accuracy of the estimate, fusing sensor
data also increases robustness against sensors failure as multiple sensors are observing a single
object.

Sensor fusion can be divided into two main problems [1], track association and state estimation
problems. Each sensor outputs measurements such as distance and velocity of multiple objects in
its Field of View. Track association deals with assigning the measurements from different sensors
with a certain object in space. When the measurements from multiple sensors have been assigned
to each object, these measurements are fused to obtain the most accurate estimate. This is referred
to as state estimation.

This research will be limited to estimating the states (position and velocity in the longitudinal
and lateral direction) of a single tracked object after track association using information such as
the state estimates and error covariance estimates from each sensor.

Multi-Agent Sensor-to-Global Fusion in a Dynamic and Uncertain Environment 1



CHAPTER 1. INTRODUCTION

1.2 Problem Statement

The goal of the project is to study Sensor Fusion Algorithms suitable for Vehicle-to-Vehicle (V2V)
communication and analyse its performance in a given driving scenario. The performance of the
fusion algorithms will be analysed while simulating real life scenarios such as when the sensors
output measurements at different frequencies and in the presence of sensors failures (packet losses
during communication). The fused estimates will be checked for consistency (error between fused
estimate and ground truth is bounded) and should have lesser error and uncertainty than the prior
estimates (measurement from sensor).

1.3 Plan of Approach

As the goal was to study and analyse sensor fusion algorithm suitable for V2V communication
applications the following tasks were executed

• Study about sensor fusion, underlying concepts and assumptions required for the simulation
setup.

• Choose Sensor Fusion algorithms suitable for V2V Communication.

• Develop simulation testing tool to analyse sensor fusion algorithms.

• Evaluate and study performance of the chosen sensor fusion algorithms under different con-
ditions.

1.4 Report Structure

This internship report is structured as follows. Chapter 2 provides the background information
and previous study regarding sensor fusion techniques. Chapter 3 describes the simulation setup
used. It also describes the sensor fusion algorithms implemented and the evaluation methods
required to quantify the performance of the algorithms. The Results are presented in Chapter 4
after which the Conclusion and Recommendations is given in Chapter 5.

2 Multi-Agent Sensor-to-Global Fusion in a Dynamic and Uncertain Environment



Chapter 2

Background Information

2.1 Introduction

This chapter provides an overview of the sensor fusion techniques used in the industry. Fusing
of information from sensors requires understanding of certain underlying principles such as the
presence of common information in the measurements from the sensors and effects of synchronous
and asynchronous sensors on the fused estimates. These will also be covered in this chapter.
Moreover, the concept of consistency of estimate will be explained.

2.2 Track to Track Fusion

Figure 2.1: Track-to Track Fusion

In Track-to-Track Fusion (T2TF), the sensor feeds its measured information (e.g. distance, ve-
locity) to a central fusion algorithm after local processing to reduce noise using an estimator
(Figure. 2.1). The processed information from the sensor and filter is called a track. Assuming
only a single object is present (no track association problems) the fusion algorithm fuses mul-
tiple sensor tracks (local tracks) into a unified global track [2]. Considering underlined boldfaced
variables x are used for random quantities (eg.Normal distribution, x∼N(x̂,A)), where x̂ is the
state vector containing the means of position and velocity in the longitudinal(x) and lateral(y)
direction and covariance matrix is given as upper-case boldfaced A, the output of the local tracks ,
Track1 and Track2 [(xa∼N(x̂a,Pa) and (xb∼N(x̂b,Pb)] will be fused to obtained (xf∼N(x̂f ,Pf ).

As these tracks can be formed by any sensor given that the data from the sensors are the
state estimate and error covariance, T2TF is modular and flexible. The tracks by each sensor are
correlated to each other due to common information caused by same modelling assumptions, same
prior information or double counting of data. Fusion methods such as a Kalman Filter assume
that the information from the filters are not correlated. T2TF on the other hand accounts for this
correlation leading to better estimate of the fused data.

Multi-Agent Sensor-to-Global Fusion in a Dynamic and Uncertain Environment 3
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Track to track fusion can be of the two types, Sensor-to-Sensor (S2S) and Sensor-to-Global
(S2G) [4].

Figure 2.2: Sensor-to-Sensor Track Fusion

Sensor-to-Sensor track fusion (Figure(2.2)), also known as Track-to-Track Fusion without
memory, fuses sensor level tracks to form global level tracks at predefined cycles. In Figure.2.2,
sensor 1 and 2 output information at time ki − 1 and kj − 1 which are fused at time kf − 1.
However, this information is not used at time kf . As there is no memory of the previous time
samples, the track association and tracking errors are not propagated from one time step to the
next. However, if the sensors are observing the same object, cross-correlation can exist between
the sensor tracks due to common information.

Figure 2.3: Sensor-to-Global Track Fusion

Sensor-to- Global track fusion (Figure(2.3)) , also called Track-to-Track fusion with memory
maintains a global track over time by fusing sensor level tracks. In Figure.2.3, sensor 1 output
information at time ki − 1 which is fused to the global track at time kf − 3. This information
is used at time kf − 2 when fusing information from Sensor 2. However because of the memory,
common information in the global and local tracks give rise to correlation between the two as both
the global and local tracks carry the same past information. Moreover, past processing errors in
the system tracks can affect future fusion performances [4][5].

4 Multi-Agent Sensor-to-Global Fusion in a Dynamic and Uncertain Environment
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2.3 Correlated Estimates

The information from the sensors are said to be correlated to each other if they contain common
information. If the common information is not removed, it can be added more than once to the
final fused estimate leading to erroneous results. Some of the causes of correlation are as follows:-

xk+1 = Akxk + wk (2.1)

Underlined boldfaced variables x are used for random quantities, matrix is given as upper-case
boldfaced variables A and vectors as underlined variables x. Considering a Kalman filter model
as given by (2.1), with the same modelling assumptions (e.g. same process noise wk in the state
transition equation during prediction, (2.1)) when using Kalman Filters in each track gives rise to
common data in both the tracks.

Also, multiple parallel running Kalman Filters working on the same estimation problem give
rise to correlations when they are initialized with the same prior estimates.

Figure 2.4: A common cooperative world model where objects share information.

Another source of correlation which is relevant to cooperative driving is double counting of
sensor data. In the case as shown in Figure 2.4, let each vehicle observe a random distribution x.
The object D communicates its observation xD to agents B and C. The agents B and C combine
their observed states xB and xC respectively with that received from D. Now the information
transferred to A from both B and C contain observation of D which is unknown to A. The com-
mon information D causes correlation between information B and C [7].

Implementing S2GF gives rise to correlation between global track and the local tracks due to
same past information. This will be addressed in the coming sections.

Common fusing algorithms such as a Kalman Filter or fusing the two estimates into a common
Gaussian Distribution assumes the prior estimates to be uncorrelated (or conditionally independent
in case of using a Kalman filter) as the measurements are from different sensors. However, making
this assumption is not right [7].

2.3.1 Synchronous and Asynchronous Sensors Measurement

Sensors used in real world applications output measurements at different rates giving rise to
asynchrony. This is caused by the delay between the sensor actually observing the physical object
and the data arriving at the fusion centre.The time required for acquisition, pre-processing and
transferring the data to the fusion sensor adds up to cause the delay [8]. This could vary from
sensor to sensor resulting in a lack of synchrony between them. Asynchrony can also be caused
by the communication delay in wireless communication.

Multi-Agent Sensor-to-Global Fusion in a Dynamic and Uncertain Environment 5
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In case of asynchronous sensors,the measurements from each sensor can be aligned in time by
predicting their states to the arrival time at the fusion sensor [9]. However, predicting estimates
will increase the uncertainty[8].

2.3.2 Consistency of Estimate

The covariance matrix P containing information of the uncertainty of the states (eg. distance) in
both the x and y direction can be graphically represented as an ellipse using the formula given
below.

p : {xTP−1x = c} (2.2)

where c is a constant. The major and minor axis of the ellipse is equal to the standard divina-
tion σ long the the x and y axis or a multiple of the standard deviation depending on the value of c.

The ellipse indicates the region where the tracked objected is expected lie for a certain prob-
ability.

Figure 2.5: Consistent Estimate Figure 2.6: Inconsistent Estimate

In Figures 2.5 and 2.6, a sensor with local axis x and y tracks an object (red box). The sensor
measurement is ’d’ and the uncertainty is presented as a ellipse with major and minor axis of the
first standard deviation σx and σy. In the figure 2.5, the red object lies within the ellipse/ the
first standard deviation and is said to be consistent. However, in figure 2.6, the object lies outside
the ellipse and the measurement is said to by inconsistent.

2.4 Summary

This chapter introduced the concepts that will be useful in the following chapter such as Sensor-
to-sensor fusion and Sensor-to-Global fusion method which will be of help when choosing the
required sensor fusion algorithms. Also the concepts of Synchronous and Asynchronous sensors,
and correlated prior estimates will be used while creating the simulation setup. Lastly, the check
for consistency will be one of the methods used while analysing the sensor fusion methods.

6 Multi-Agent Sensor-to-Global Fusion in a Dynamic and Uncertain Environment



Chapter 3

Simulation Setup

3.1 Introduction

This chapter describes the experimental setup (simulation model) used to study the performance
of the fusion algorithms. As it is important to study the error between the actual states of the
vehicle and those estimated by the sensor (prior estimates) and the fusion algorithm (fused es-
timates), a simulation tool that generates the ground truth (actual state of the vehicle) was used.
Actual sensor data logged on a vehicle was not used as the ground truth would be unknown.

Based on the literature study in the previous chapter, the design approach is presented in
Section 3.2. A more detailed explanation of the individual components of the simulation setup is
described in sections following Section.3.2. The driving scenario used in the simulation is described
in Section3.3. Section3.4 describes the generation of the ground truth and the prior estimates from
sensors. This is followed by Section 3.5 which details the model used in Kalman filter along with
the values of the sensor and process noise used. Section 3.6 describes the sensor fusion algorithms
used. The last section describes the methods used to evaluate the performance of fusion algorithms.

3.2 Design Approach

The simulation setup is based on the study of sensor fusion and its underlying principles presented
in the previous chapter.

As cooperative driving is aimed at tackling complex situations, a highway driving scenario with
multiple vehicles accelerating in both the longitudinal direction and lateral direction is chosen for
the simulation. To describe the motion of the vehicles with respect to each other, sinusoidal signals
will represent the relative distance between the vehicles. A sinusoidal signal is chosen as it can be
easily differentiated without reaching a point of no differentiability to obtain other states of the
vehicles such as velocity and acceleration. A Kalman filter with a Constant Velocity Model was
chosen as the local estimator to reduce noise. A constant velocity model would be sufficient as an
object with large inertia cannot generate an acceleration large enough to change the position and
velocity over a very small time sample. Hence the acceleration [which will not be measured] would
be modelled as an uncertainty in position and velocity. The outputs from the Kalman filter would
be the mean and the covariance matrix which would be used as the inputs for the fusion algorithms.

The sensor fusion algorithms are classified here as memoryless methods (S2SF) and meth-
ods with memory (S2GF). The work done by N.J.G. Koenraad [21] focusses on memoryless fusion
methods and its performance in cooperative driving. However, memoryless methods are not robust
against sensor failure and packet losses during communication. The two S2S methods presented
here are Ellipsoidal Intersection (EI) and Covariance Intersection (CI). More robust fusion meth-

Multi-Agent Sensor-to-Global Fusion in a Dynamic and Uncertain Environment 7



CHAPTER 3. SIMULATION SETUP

ods with memory such as Information Matrix Fusion (IMF) and Covariance Intersection with
Memory (CIM) suitable for V2V communication would be presented in this chapter.These four
methods have been chosen as they all estimate the common information in the prior estimates
differently.

The performance of the fusion algorithms will be studied under an ideal situation and situ-
ations with sensor delays and communication failures.

3.3 Scenario Description

The scenario described here simulates a cooperative platoon formation of two agents on a highway,
with a third object in close vicinity to the two agents (Figure. 3.1). The third object is observed by
both the agents using their on-board sensors such as radar, camera etc. The world model (objects
perceived by the agents using the on-board sensors) is shared amongst the two agents. One of the
agents combines the measurement from the local sensor with those received from the other agent
to better estimate the position of the object. The on-board sensors are assumed to have the same
local estimator, a Kalman Filter giving rise to correlation between the prior estimates. The states
of the object tracked would be the relative position and velocity.

Figure 3.1: Scenario of highway platoon of agents (A1& A2) with obstacle (O1) on next lane

3.4 Generation of Ground Truth and Prior Estimates

The driving scenario depicted in Section.3.3 was modelled on MatLab/Simulink. The relative
states (position and velocity) between Agent1 and the Object is generated as a sinusoidal signal
[hence smooth changing velocity and position] (Figure.3.2). This is taken as the ground truth
measurements (actual distance) between the agent and object. To this signal, noise is added to
model it as a real world signal (Figure.3.3) and is passed through a Kalman Filter. The Kalman
Filter has a Constant Velocity Model as given by (3.3). This processed signal can be taken as the
first estimate [N(x̂a,Pa)] of the distance between Object and Agent1 as observed by Agent1.

8 Multi-Agent Sensor-to-Global Fusion in a Dynamic and Uncertain Environment
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Figure 3.2: Ground Truth - Relative
Distance between Agent1 and Object

0 10 20 30 40 50

Time [s]

-30

-20

-10

0

10

20

30

R
el

at
iv

e 
D

is
ta

nc
e 

[m
]

Longitudial Distance
Lateral Distance

Figure 3.3: Noisy Estimate - Relative
Distance between Agent1 and Object

Similarly, the relative states between Agent1 and Agent2 (N(x̂21, P21)) and, Object and Agent2
(N(x̂2o, P2o)) is generated. Using (3.1) the processed signals of the relative states of Object with
respect to Agent2 and relative state of Agent1 with respect to Agent2 is used to calculate the
relative states of Object with respect to Agent1 as observed by Agent2.

Pb = P2o + P21

x̂b = x̂2o − x̂21

(3.1)

This is taken as the second estimate N(x̂b,Pb). Both the estimates N(x̂a,Pa) and N(x̂b,Pb)
are of Object with respect to Agent 1. The estimates N(x̂a,Pa) and N(x̂b,Pb) are then fused
using one of the fusion algorithms to obtain position and velocity of Object with respect to Agent1
(N(x̂f ,Pf )-fused estimate).

Considering x̄ as the ground truth and x̂a as the prior estimate, the average error (difference
between ground truth and prior estimate, ea = |x̄− x̂a|) in position for a 100sec simulation is given
in table 3.1. It should be noted that this error can be reduced by changing the sensor (reducing the
noise). However, as the focus is on reducing the error by fusing the two prior estimates, decreasing
the magnitude of the errors from the sensors by reducing sensor noise should not be given much
attention.

ARMSE.10−2 x y Σ
ea 2.65 2.49 5.14
eb 1.06 4.50 5.56

Table 3.1: Average Root Mean Square Error-Position (Prior Estimates)

To make the simulation more realistic, measurements from one of the agents are delayed to
make the sensors asynchronous. Frequencies of sensors 1 and 2 if they are asynchronous would be
12.5Hz and 25Hz respectively. A prediction step then follows this delaying step to synchronize the
sensors which in turn would increase the uncertainty of the measurement. However, the prediction
step can be neglected to study the results of fusion without synchronization. To simulate sensor
failure due to loss of communication, the estimated values from the model will not be sent to the
fusion algorithm for a certain time duration. The failure will occur 10% of the time.

Multi-Agent Sensor-to-Global Fusion in a Dynamic and Uncertain Environment 9
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3.5 Constant Velocity Vehicle Model

The states of the target object observed by the sensors at time k are longitudinal and lateral
distance and velocities. They can be represented in a vector form as

xk = [xk, yk, ẋk, ẏk]T (3.2)

The model used in the Kalman Filter (as seen in Figure 2.1) for predicting the states at
time k + 1 is a constant velocity model (3.3), assuming only the position and velocity of tracked
object can be measured. As the acceleration is not measured it is unknown and uncertain. This
uncertainty is modelled as zero mean Gaussian Distributed process noise in position and velocity.

xk+1 =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

F

xk +


∆T 2

2 0 0 0

0 ∆T 2

2 0 0
0 0 ∆T 0
0 0 0 ∆T


︸ ︷︷ ︸

G

wk (3.3)

y
k

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

H

xk + vk (3.4)

The time step of the simulation ∆T is taken as 0.04s. xk is the states of the tracked object y
k

is
the measurement output of the state xk and, vk and wk are the zero mean Gaussian Distributed
measurement of sensor noise and process noise (acceleration) respectively. The covariance of
process noise w(k) and sensor noise v(k) for (3.3) is given as follows:-

cov(w1(k)) = W1 = diag(52, 12, 52, 12)

cov(w2a(k)) = W2a = diag(52, 12, 52, 12)

cov(w2b(k)) = W2b =
1

5
diag(52, 12, 52, 12)

cov(v1(k)) = V1 = diag(0.752, 0.752, 0.752, 0.752)

cov(v2a(k)) = V2a = diag(0.252, 1.252, 0.252, 1.252)

cov(v2b(k)) = V2b = diag(0.252, 1.252, 0.252, 1.252)

(3.5)

In (3.5), the matrix of cov(w(k)) and the matrix of cov(v(k)) are of the form diag(x, y, ẋ, ẏ).
W1 and V1 is noise associated with Agent1 observing Object, W2a and V2a is noise associated with
Agent2 observing Object, W2b and V2b is noise associated with Agent2 observing Agent1. W2b

is smaller as both agents try to maintain constant distance and velocity between the two. Also,
it can be assumed that the acceleration in the longitudinal direction (x) is greater than that in
the lateral direction (y) if the vehicle is driving on a highway. The values for the sensor noises
V1, V2a and V2b are obtained from data sheets of common automotive sensors and have different
magnitudes in different directions.
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CHAPTER 3. SIMULATION SETUP

3.6 Sensor Fusion Algorithms

The input for the fusion algorithms are the updated mean(x̂) and covariance matrix (P)of the prior
estimates from the Kalman Filters. The prior estimates from the Kalman Filter (xa∼N(x̂a,Pa)&
xb∼N(x̂b,Pb)) will be fused by the fusion algorithms to obtained (xf∼N(x̂f ,Pf ). Two Sensor-
to-Sensor fusion methods and two Sensor-to-Global are presented below.

3.6.1 Sensor to Sensor Fusion

Ellipsoidal Intersection (EI)

EI splits the prior estimates xa and xb into three pair-wise independent parts, one of which
(N(γ,Γ)) is common to the two prior estimates. It then combines the three parts using the
formula below.

PEIf = (P−1
a + P−1

b − Γ−1)

x̂EIf = Pf (P−1
a x̂a + P−1

b x̂b − Γ−1γ)
(3.6)

Any correlation between the prior estimates will be given by(N(γ,Γ)). Here γ and Γ are the
mutual mean and covariance. Γ is obtained such that the smallest Γ satisfies Pa � Γ and Pb � Γ.
This would ensure that the fused covariance matrix is lesser than the prior estimates (Pf � Pa
and Pf � Pb), as given in [16] . As this method always guarantees higher accuracy for the fused
estimates than the prior estimates, this method is considered though consistency is not guaranteed.

Covariance Intersection (CI)

Work done in [14] mathematically proves that CI guarantees consistency. Consider the prior
estimates N(x̂a,Pa) and N(x̂b,Pb) and ellipse drawn from Pa and Pb, the fused ellipse always
lies inside the intersection of the prior estimates for all value of Pab (correlation between prior
states). As Pab is unknown, CI finds an ellipse that tightly encloses the whole intersection region
using convex combination of the prior mean and covariance as given below.

PCIf = (ωP−1
a + (1− ω)P−1

b )−1

x̂CIf = Pf (ωP−1
a x̂a + (1− ω)P−1

b x̂b)
(3.7)

Where ω is a weighting coefficient computed by minimizing the objective function:

ω = arg min
ωε[0,1]

{det(ωP−1
a + (1− ω)P−1

a )} (3.8)

Either the least determinant or the least trace of the matrix could be minimized by solving
the optimization problem. Even if the correlation is unknown, any value of ω between [0,1] would
guaranty consistency unlike fusion using a Kalman Filter. However, the Covariance Intersection
method always considers estimates to be correlated and neglects possible independent informa-
tion. This results in the estimates being conservative (very high uncertainty) [15]. This could be
prevented by using methods such as Split-Covariance method.

3.6.2 Sensor to Global Fusion

Information Matrix Fusion (IMF)

The Information Matrix Fusion is based on the Information filter where the Information Matrix
(Inverse of Error Covariance) and Information Vector (state estimation) gives the amount of in-
formation carried by an observation. Unlike CI and EI, previous information is not discarded.
The underlying principle of IMF is to decorrelate the information between updated measurements
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from sensors and those predicted from the previous time step to obtain the new information for
each local track. This new information is then fused with the information in the global track.

Figure 3.4: IMF information flow diagram

Taking the inverse of covariance matrix P−1 gives information of the data in Fisher Information
Domain. In IMF (Figure. 3.4),{Z} ({Z} = P−1) denotes the information or set of measurements

in the local tracks after filtering. {Z} denotes predicted information and {Ẑ} denotes fused
information. Here, at time k− 1, sensors sends measurements yk−1

i and yk−1
j to the local tracks i

and j (White boxes) respectively. Considering track i, these measurements updates the predictions

{Zi}
k−2

0 as in Kalman filter. The output of a Kalman filter {Zi}k−1
0 at time k − 1 contains all

information of the local track from time 0 till k − 1. However, information {Zi}k−2
0 is also present

in the global track in {Zi, Zj}k−2
0 which has been predicted from the previous time sample and

hence needs to be removed before fusing to prevent it from adding it twice (3.9).The common
information from the output of the Kalman filter is removed by using the prediction {Zi}k−2

0 from
the Kalman filter to obtain new information {Zi}k−1

k−2 (decorrelation), which is sent to the global

track (Green box) where the new information {Zi}k−1
k−2 is fused with information in the global

track.

{Zf}k = {Zi, Zj}k−2
0 + {Zi}k−1

0

= {Zj}k−2
0 + {Zi}k−2

0 + {Zi}k−2
0 + {Zi}k−1

k−2

= {Zj}k−2
0 + 2 ∗ {Zi}k−2

0 + {Zi}k−1
k−2

(3.9)

We can then take {Z} = P−1 for the first equation in (3.10) and {Z} = P−1x̂ for the second
equation in (3.10). Considering (3.9), {Z}k0 −{Z}k−1

0 = P−1
(l,k|k) −P−1

(l,k|k−1) removes the common

information {Z}k−1
0 resulting in only {Z}kk−1 being sent for fusion. The fusion formula is given

as below.

P−1
(g,k|k) = P−1

(g,k|k−1) + (P−1
(l,k|k) −P−1

(l,k|k−1))

P−1
(g,k|k)x̂(g,k|k) = P−1

(g,k|k−1)x̂(g,k|k−1) + (P−1
(l,k|k)x̂(l,k|k) −P−1

(l,k|k−1)x̂(l,k|k−1))
(3.10)

Where P−1
(g,k|k) is the inverse of the covariance matrix of the global fused estimate at time k

containing all information till time k. P−1
(g,k|k−1) is the inverse covariance matrix of the prediction
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of the global track made for time k using information till time k − 1. P−1
(l,k|k) is the inverse of the

updated covariance matrix of the local track l. P−1
(l,k|k−1) is the inverse covariance matrix of the

prediction of the local track l. x̂(g,k|k) is the fused global estimate. x̂(g,k|k−1) the predicted global
estimate . x̂(l,k|k) the local estimate at time k using information till k. x̂(l,k|k−1) is the prediction
at time k using information till k − 1.

Main Advantages

• Filtering any number of sensors at each time step by summing information matrix or vectors

• Initial guess for information matrix and vector need not be made. They can be taken as 0.

• Robust against sensor failure and packet loss/drop out

Disadvantages

• Less accurate when local sensors are asynchronous.

• Decorrelation requires previously fused sensor-level track to be saved

• Communication or storage of large amount of information.

Covariance Intersection with Memory (CIM)

Another suggested Sensor-to-Global Fusion algorithm is Covariance Intersection with Memory. It
is similar to the CI method mentioned in section 3.6.1. The equation is given below. Unlike CI,
it maintains a global track by fusing new data from the sensor. A drawback of CIM is that the
information from the local track is not decorrelated before fusing. This would then cause the error
to increase.

PCIMf = (ω1P
−1
g + ω2P

−1
a + ω3P

−1
b )−1

x̂CIMf = PCIMf (ω1P
−1
g x̂g + ω2P

−1
a x̂a + ω3P

−1
b x̂b)

Where ω1 + ω2 + ω3 = 1

(3.11)

The values of ω1, ω2, ω3 are obtained by solving a convex optimization problem to get a covari-
ance matrix PCIMf with the least determinant. This would ensure that ellipse formed by PCIMf

would encircle the interaction between the prior estimates and global estimates completely.

3.7 Limitations of Simulation Setup

It should be kept in mind that lower error in the prior estimate from the sensor can be obtained
by using sensors effected by lesser noise. However, as the aim is to obtain estimates with lesser
error by fusing two noisy signals from sensors, modelling the exact characteristics of a sensors (eg.
distance dependent error) was not required. Moreover, due to the same reason no effort was put
into actual verification of the generated signal with those from actual sensors.

Also, the only source of common information in the prior estimates is due to the Kalman
Filter. This is considered sufficient as adding another source of common information as presented
in Section2.3 will increase the amount of common information but will not change the outcome of
the results. It is only required to have common information in the prior estimates irrespective of
its magnitude.
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3.8 Evaluation Methods

The ground truth, prior estimates from the sensor and the fused estimates from the four fusion
algorithms were compared using the methods below.

3.8.1 Average Root Mean Square Error

Each simulation runs for 100s and the absolute errors (difference between ground truth and prior
estimate and ground truth and fused estimate) of the position and velocity in both the longitudinal
and lateral directions will be calculated. This will be plotted with the 95% confidence region which
is equal to 1.96 times the standard deviations obtained from the covariance matrix of each state.
The 95% region is the region where the probability of the error being less than 1.96 times the
standard deviation is 95% if the estimate is consistent. If the error lies outside this region for a large
part of the simulation, it could hint that the algorithm is inconsistent. However, as conclusions
cannot be drawn from a single simulation, results produced by several runs of the same test can be
combined to produce estimation errors without statistical inconsistencies. This is called the Monte
Carlo Simulation. 10000 Monte Carlo Simulation will be run to estimate the Root Mean Square
Error (RMSE) for the positions and velocities across all simulations at each time samples and
plotted with the 95% confidence region. The Average Root Mean Square Error (ARMSE) gives
the sum of the error of each state(position and velocity) for all time samples across all simulation.
A lower ARMSE value would imply the algorithm is good. The equations for RMSE and ARMSE
are given below.

RMSE(k) =

√√√√ 1

N

N∑
n=1

(x̂n(k)− x̄n(k))2 (3.12)

ARMSE(k) =
1

K

K∑
k=0

RMSE(k) (3.13)

Where N is the number of Monte Carlo simulations, K is the total time, x̂ can be either the
states of the prior estimates or fused estimates and x̄ is the ground truth.

3.8.2 Confidence/Covariance of Estimate

The fused estimate is a Gaussian distributed data (xf∼N(x̂f ,Pf )). The covariance Pf indicates
how uncertain (standard deviation) the fused estimate is. The covariance of the fused data should
be smaller than or equal to the prior data. This would indicate the fused result is more confident
(lesser uncertainty) than prior information. The smaller the covariance, the better the fusion
algorithm.

3.8.3 Consistency of Estimates

One of the important criteria is that the fused estimates given as (x̂f ,Pf ) ,should remain consistent
if the prior estimates are known to be consistent. The consistency of an estimate means the
covariance matrix of the error x̃ = |(x̂f − x̄)| over a large number of simulations (10000 Monte
Carlo simulations) should be smaller/bounded by the covariance matrix obtained by fusion (Pf )
at any time sample.

Pf − P̃ � 0 (3.14)

Where P̃ = E[x̃x̃T ] is the covariance of the error matrix.
(3.14) would ensure the object actually lies within the region estimated by the fused ellipsoid

drawn from the estimated covariance matrix Pf . The ellipse can be draw as the locus of the

14 Multi-Agent Sensor-to-Global Fusion in a Dynamic and Uncertain Environment



CHAPTER 3. SIMULATION SETUP

points given by (3.15) where c = 5.991 to obtain the major and minor axis equal to 1.96 times the
standard deviation.

p : {xTP−1
f x = c} (3.15)

3.8.4 Robustness

Sensors and wireless communication in connected vehicles are always susceptible to failure (due
to packet losses in communication) and hence its influence on the fusion algorithm should be
studied.Though using multiple sensors should make the system robust against failure of a sensor,
relying on a single sensor would then cause the error to increase as no fusion would take place, and
fusion of prior estimates is expected to give lesser error than the prior estimate. The full extent
of sensor failures can be studied only when all sensors fail at the same time. However, this is very
unlikely to happen. As stated earlier, in the simulation one of the sensors inputs would fail 10%
of the time. The response of fusion algorithms to failure would be studied in terms of ARMSE.

3.8.5 Computational Load

As the fusion algorithm would be applied to multiple tracked objects, they need to be quick and
simple to compute. The computation load will be measured in terms of time taken to compute
the fused algorithm using each of these methods. However these computation times are obtained
from MatLab and hence would not be optimal. They would be much lesser in an embedded
implementation.

3.8.6 Data Transfer Size

When applying these methods in fusing data received over wireless communication, it should be
kept in mind that the bandwidth of the communication is limited. Hence the information required
by fusion algorithms should be limited.

3.9 Summary

To study the performance of the fusion algorithms in the next chapter, a simulation tool was
setup in MatLab/Simulink. This setup can produce the ground truth of the states of the vehicles,
the prior estimates (containing common information) as the output of the sensors and the fused
estimates obtained from the sensor fusion algorithms. The sensor fusion algorithms chosen estimate
the common information differently, which would help in choosing the most suitable method for
V2V communication. Lastly, the evaluation methods presented would compare the prior estimates
from the sensors with those from the sensor fusion algorithm.
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Chapter 4

Simulation Results

Using the simulation setup presented in the previous chapter, the performance of the fusion al-
gorithms in fusing data from synchronous and asynchronous sensors have been presented here.
Also, the ability of the fusing algorithms to handle sensor failures (packet loss due to network
congestion) will be studied. The aim is to compare two S2S methods -Covariance Intersection
(CI) and Ellipsoidal Intersection(EI) with two S2G methods namely Information Matrix Fusion
(IMF) and Covariance Intersection with Memory (CIM). Previous work done be N.J.G Koenraad
compares EI and CI with Kalman Fusion and Gaussian in depth. Results from his work will be
stated here too.

4.1 Ideal Situation

The sensors in this analysis are all synchronized and do not fail (packet loss due to network
congestion). However, they have different uncertainties along longitudinal and lateral direction.

4.1.1 Average Root Mean Square Error
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Figure 4.1: RMSE-Logitudinal position of Agent1 w.r.t Object1

In Figure.4.1 the error between the ground truth in longitudinal distance and fused estimate in
longitudinal distance (ef = |x̄ − x̂f |) between the Agent1 and the Object obtained by fusing
the prior estimates using the fusion algorithms for one cycle of Monte Carlo simulation has been
plotted. Also, the 95% confidence region is plotted (dotted line). Though each cycle is for 100
sec., only 25 sec. of the simulation has been shown to ease reading.
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It can be seen clearly that the errors in estimating the longitudinal distance by fusion using
the methods CI, EI, IMF and CIM all lie within the 95% confidence region. This gives a hint that
the methods are consistent unlike the Gaussian Distribution method and Kalman Filter method
where the errors for a large part lie outside 95% confidence region.

ARMSE.10−2 x y Σ
ea 2.65 2.49 5.14
eb 1.06 4.50 5.56
eGf 2.70 3.65 6.35

eKALf 1.17 6.07 7.24

eCIf 0.80 2.53 3.33

eEIf 0.40 2.40 2.80

eIMF
f 0.69 1.98 2.67

eCIMf 0.80 2.60 3.40

Table 4.1: Average Root Mean Square
Error- Position

ARMSE.10−2 ẋ ẏ Σ
ea 4.87 4.04 8.91
eb 3.12 5.29 8.41
eGf 2.82 4.58 7.40

eKALf 3.48 6.43 9.91

eCIf 2.76 4.24 7.00

eEIf 2.05 4.02 6.07

eIMF
f 2.85 4.02 6.87

eCIMf 2.84 4.34 7.18

Table 4.2: Average Root Mean Square
Error- Velocity

To study the error further, the results obtained from 10000 Monte Carlo simulations are given
in tables 4.1 and 4.2. CI, EI, IMF and CIM all have errors (eCIf , eEIf , eIMF

f , eCIMf ) less than that
of the prior estimates (ea = |x̄− x̂a| and eb = |x̄− x̂b|). This clearly shows that the fused estimates
are better than the prior estimates from the sensor.

In terms of error in position (tables 4.1), IMF has the least error. This is because IMF makes
a prediction and updates this prediction using the new measurements from the sensors unlike S2S
methods which fuse only new measurements from the sensors. Also, IMF removes the common
information in the prior estimates from the local track and that from the global track due to
prediction. IMF however does poorly while fusing the velocity compared to EI as the effect of
the process noise (acceleration) on velocity(ẋ ∝ wk∆T ) is considerably higher than on position

(x ∝ wk
∆T 2

2 ,∆T = 0.04s). This is because IMF does not consider the common process noise in
the prior estimates resulting in greater error in case of estimating velocity.

From the tables( 4.1 and 4.2) it can be noted that CIM has error similar to that of CI but
higher even though it makes a prediction of the states like IMF. This is due to fact that CIM does
not decorrelate the new measurement from the predicted measurement in the Global track like
what IMF does, leading to the common information adding multiple times. CI does not have to
deal with this as it does not keep a track of the previous data.

4.1.2 Covariance of Estimates

The uncertainty of the fused estimates can be studied from the covariance given in tables 4.3 and
4.4. The covariance of the fused estimates of CI (covCIf ), EI (covEIf ), IMF (covIMF

f ) and CIM

(covCIMf ) are smaller than that by prior estimate (cova and covb). Hence the performance of the
above methods are better than the prior as smaller the covariance, more certain the estimates
would be.

Both the CI methods are conservative (larger covariance) as both assume that the information
from the sensors are completely correlated to each other and have no independent part. On the
other hand, the KF method assumes the information sources, namely the prediction from previous
step and the two estimates xa and xb are conditionally independent of each other resulting in
very small covariance. However, IMF does not consider common information between the sensor
measurements if process noise is low but accounts for the correlation between predicted values and
the sensor estimates and hence it results in a covariance value which lies in between that of KF
and CI. It can be noted out of the four methods proposed, IMF has the least covariance, resulting
in more certain estimates.
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.10−2 x y Σ
cova 7.68 3.65 11.33
covb 1.80 10.27 12.07
covGf 1.35 2.68 4.03

covKALf 0.30 0.21 0.51

covCIf 3.28 4.72 8.00

covEIf 2.40 3.65 6.05

covIMF
f 2.30 3.26 5.56

covCIMf 4.04 4.92 8.96

Table 4.3: Covariance- Position

.10−2 ẋ ẏ Σ
cova 53.21 5.48 58.69
covb 49.32 11.84 61.16
covGf 23.38 3.74 27.12

covKALf 7.72 0.65 8.37

covCIf 46.77 6.79 53.56

covEIf 41.09 5.48 46.57

covIMF
f 34.37 5.63 40.00

covCIMf 44.83 6.38 51.21

Table 4.4: Covariance- Velocity

4.1.3 Check for Consistency

Comparing Figures 4.2 till 4.7, we can study the consistency of each of the method (in estimating
position). As defined in Section 3.8.3, the covariance of the error between the estimated value x̂
and true value x̄ should be bounded by the covariance matrix P of x̂. Figures 4.2 ,4.4 and 4.6
is the plot of the ellipse formed by the covariance matrix of the fused estimates and figures 4.3,
4.5 and 4.7 plots the ellipse formed by the True covariance which is the covariance of the error
between the ground truth and prior or fused estimate (cov(|x̄− x̂|)) that can be obtained from the
spread of 10000 samples. If the latter ellipse is smaller than the former, it confirms the algorithm
is consistent and that the object tracked would actually lie within the estimated covariance ellipse.
Both these sets of plots have mean of the distribution at 0 and prior estimates as E(0, P̃a) and
E(0, P̃b).

Knowing this, it can be observed from the figures below that the two prior estimates xa and
xb are consistent. Clearly KF and Gaussian Distribution methods (Figures 4.2 and 4.3) do not
meet the consistency criteria as their true covariance is larger than the estimated covariance. CI
and CIM are consistent as both have their estimated covariance larger than the true covariances
(Figures 4.4 and 4.5 ). But in case of IMF and EI the ellipses appear to be of the same size (Figures
4.6 and 4.7 ). To check for consistency, (3.14) (P− P̃ � 0) is used to check if the resulting matrix
is positive definite indicating it is consistent. This confirms EI and IMF are consistent too.
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Figure 4.2: Estimated Covariance-KAL&Gaus
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Figure 4.3: True Covariance-KAL&Gaus
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Figure 4.7: True Error Covariance- EI&IMF

4.2 Asynchronous Sensors/Out of Sequence

In section 4.1 it was assumed that the sensors were operating at the same frequency and meas-
urements arrived in sequence. However, in real world applications, the sensors work at different
frequencies as the local information is obtained and updated at different time samples [10]. This
would result in a non-ideal situation for IMF as IMF works best when the communication is at
full rate (estimates are communicated and fused after each observation and update time). Hence
it is crucial to study effects of asynchronous sensors on the fused result.

In this simulation, one of the sensors was running at a lower frequency. The fusion algorithms
would receive delayed information from one of the sensors. From tables 4.5 and 4.6 it can
be observed that the IMF error has increased considerably with respect to the other methods
(CI,EI,CIM). This confirms that IMF preforms best only at full rate communication.
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ARMSE.10−2 x y Σ
ea 20.02 12.49 32.51
eb 13.35 30.41 43.76
eGf 28.16 26.96 55.12

eKALf 12.36 11.93 24.29

eCIf 11.77 11.65 23.42

eEIf 13.40 12.47 25.87

eIMF
f 15.42 13.27 28.69

eCIMf 12.85 11.65 24.50

Table 4.5: Average Root Mean Square
Error- Position

ARMSE.10−2 ẋ ẏ Σ
ea 29.51 11.01 40.52
eb 25.83 16.25 42.08
eGf 19.35 11.11 30.46

eKALf 13.78 10.36 24.14

eCIf 18.53 10.31 28.84

eEIf 25.91 11.40 37.31

eIMF
f 31.49 11.96 43.42

eCIMf 19.06 10.38 29.44

Table 4.6: Average Root Mean Square
Error- Velocity

4.3 Synchronizing using Prediction

Though synchronous sensors are hard to achieve, data to the fusion centre can be made to arrive at
the same time by using a prediction model as given in Appendix 7.2. However, this would result in
higher uncertainties which could result in an non-ideal situation for IMF leading to higher errors.
Hence it is important to study the how predictions can effect the fusion results especially on IMF.

In this case the sensors are synchronized by predicting the measurements to the time of arrival
at the fusion centre, making the communication full rate. Table 4.7 gives the error of the different
fusion algorithms. Error in estimating position using IMF method is within the range of other
fusion algorithms. This shows that it is essential that asynchronous or out of sequence sensor be
synchronized before fusing in the case of IMF. However, it can be observed that the errors for all
fusion algorithms have increased with respect to those obtained by fusing synchronous sensors.

ARMSE.10−2 x y Σ
ea 2.55 3.19 5.74
eb 0.39 3.88 4.28
eGf 2.15 3.68 5.84

eKALf 0.80 4.22 5.03

eCIf 0.45 3.45 3.90

eEIf 0.39 3.19 3.58

eIMF
f 0.60 2.65 3.25

eCIMf 0.64 3.55 4.19

Table 4.7: Average Root Mean Square
Error- Position

.10−2 x y Σ
cova 12.65 4.65 17.30
covb 2.38 13.46 15.84
covGf 1.99 3.45 5.45

covKALf 0.57 0.44 1.02

covCIf 3.33 8.03 11.36

covEIf 2.37 4.65 7.02

covIMF
f 2.65 3.23 5.57

covCIMf 4.32 6.18 10.58

Table 4.8: Covariance-Position

4.4 Robustness

The previous three simulations did not include failure of sensors due to packet loss in communic-
ation. As stated in Section 3.8.4, it is important to study effects of sensor and communication
failure.

IMF and CIM are Sensor to Global T2TF methods which retain past measurements as global
tracks. If there is a loss of data, these global tracks are predicted to next time sample. EI and CI
however fuse only current data and do not keep track of past measurements. In case it does not
receive measurement, no fused estimates can be obtained. This could lead to large errors. Table
4.9 validates this claim. Both CIM and IMF which maintain global tracks preform better than EI
and CI as their errors are smaller.
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ARMSE.10−2 x y ẋ ẏ Σ
ea 65.76 40.98 11.95 7.948 126.65
eb 1.168 4.49 3.50 7.38 16.56
eGf 3.31 4.32 3.40 6.84 17.88

eKALf 1.43 4.91 3.68 7.67 17.70

eCIf 1.17 3.32 3.31 6.54 14.36

eEIf 1.17 3.29 3.55 6.39 14.39

eIMF
f 1.23 2.67 3.62 6.05 13.59

eCIMf 1.16 3.07 3.23 6.37 13.84

Table 4.9: Average Root Mean Square Error- Position (with sensor failure)

4.5 Computational Time

Table4.10 compares the computation time required by each method. IMF seems to have the the
least time compared to CI, EI and CIM as IMF only requires to invert the matrix and carry out
simple mathematical operations such as addition and subtraction to find the fused estimates. EI
uses eigen value decomposition and CI solves an optimization problem to find the fused estimates
causing them to use more time. CI with memory solves two optimization problems to determine
ω1, ω2 and ω3 to find the fused estimate.

Method time
Gaus 1.61.10−4s
Kal 2.31.10−4s
CI 8.76.10−4s
EI 7.66.10−4s
IMF 2.58.10−4s
CIM 11.14.10−4s

Table 4.10: Time Required for Compu-
tation

Method DataSize(kiloBytes/sec)
Gaus 4
Kal 4
CI 4
EI 4
IMF 8
CIM 4

Table 4.11: Size of Data Transmitted

4.6 Amount of Data Transferred

The four states given in (3.2) will be considered.
CI, EI and CIM all require only the updated state estimate(4X1 vector) and the covariance

matrix (4X4 Matrix) of the tracked object from the Kalman Filter of each sensor track to carry
out fusion. However, IMF requires even the predicted state estimates and covariance matrix from
the Kalman filter for decorrelation before fusing. Hence another set of 4X1 vector and 4X4 matrix
would need to be communicated.

The calculation of the predicted states and covariance matrix can be carried out in the fusion
centre too. However, the covariance of the process noise (4x4 matrix) would then need to be
communicated to predict the covariance matrix as given in Appendix (7.1). Moreover, if the
process noise is high, IMF requires the information such as Kalman Gains to decorrelate spatially
before fusing. This is a major drawback of the IMF.

Assuming the data type is Double, each matrix is of size 128 Bytes and each vector is of size
32 Bytes. If the system is runnung at 25Hz, then per second the amount of data needed to be
communicated is given in table 4.11
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Conclusions and
Recommendations

5.1 Conclusion

The main goal of the project was to study the performance of sensor fusion methods that keep
track of past fusion data (e.g. IMF and CIM) and compare them with methods that do not main-
tain past data (e.g. EI and CI). From the simulation, it can be concluded that IMF produces the
best results when the process noise is very low. This is because it can predict what the states at
the next time sample is and fuse it with the new measurement unlike S2S methods which rely only
on new measurements from the sensors. However IMF performs only 4% better than the next best
fusion method, EI.

IMF performs poorly when the process noise is high as in the case of estimation of velocity. We
can also conclude from comparing CIM with the other methods that, if previous data is retained
in the global track for fusing, the new estimates should be decorrelated using its prediction before
fusing to prevent increase in error.

IMF also performs poorly when the sensors are not synchronized. However adding a simple
prediction model to synchronize the tracks improves its performance even if the uncertainty in-
crease due the prediction. In terms of consistency, both IMF and CIM are consistent as proven in
the simulations.

One of the major advantages IMF and CIM that is proven in the simulation is that they are
more robust to communication failures (such as packet loss due to network congestion) than EI
and CI as the former two maintain past fusion data which can be used to predict the possible
fused estimate when one of the sensors or communication from it fails.

Compared to the other sensor fusion methods such as EI, CI and CIM, IMF needs more in-
formation (two times to by exact) to carry out decorrelation of common information before fusion.
This is not favourable when the mode of communication is wireless.

Considering only a small increase in performance compared to EI, IMF or any other fusion
method that maintains past measurements (S2GF) may not be the best choice when communic-
ation bandwidth is limited as twice the amount of information would need to be transmitted to
carry out decorrelation.

Multi-Agent Sensor-to-Global Fusion in a Dynamic and Uncertain Environment 23



CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS

5.2 Recommendation

This project compares four sensor fusion methods in detail. Of these four, one of the methods,
Information Fusion Method (IMF) has other variations than the one presented here. The presen-
ted version requires both the predicted and updated state estimates and error covariances from
the Kalman filter to be transmitted. This is a major drawback of this method. [1] presents a
method called Decentralized Minimum Information Method that can estimate the predicted state
and covariance hence reducing the amount of information required to be transferred. This method
can be considered for further researched for sensor fusion application in V2V communication.

In scenarios such as overtaking or lane change, the vehicle will most likely not be travelling at
a constant velocity and hence a constant acceleration model is preferred over a constant velocity
model as used in this project. As seen in [1], sensor fusion results may vary when using constant
velocity model and constant acceleration model. Also, if a non-linear model is used, the model
can be linearised form by Taylor approximation [1].
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Chapter 7

Appendix

7.1 Gaussian Distribution

Figure 7.1: Gaussian Distribution of a sensor measurement as observed by a vehicle.Point A is d
away from the vehicle and σmax and σmin are the uncertainties in the x and y axis of the vehicle.

Information from sensors (such as position and velocity of object) will be modelled as a Gaussian
distribution (x∼N((x̂),P)) which contains a mean x̂ (most likely estimate) and covariance matrix
P (uncertainty of the estimate). The Gaussian distribution is a continues probability distribution
function that gives the distribution (variance) of the data about its mean. Larger the variance,
more the uncertainty. This is perfect to represent noisy sensor measurement such as distance
as the true measurement is unknown due to noise. In Figure 7.1, point A is d away from the
vehicle and σx and σy are the uncertainties in the x and y axis respectively of the vehicle frame
of reference.

7.2 Prediction Model

x(k|k−1) = Ax(k−1|k−1)

P(k|k−1) = AP(k−1|k−1)A
T + Q(k)

(7.1)

The sensor measurements are synchronized in time by prediction using the equations given in
(7.1). Here x(k|k−1) and P(k|k−1) represent the state and covariance matrix predicted to time k
using information until time k − 1, A is the state transformation matrix in the constant velocity
model as given in Equation, x(k−1|k−1) and P(k−1|k−1) represent the previously fused state vector
and covariance matrix at time k−1 containing information until time k−1 and Q(k) is the process
noise covariance matrix at time k .
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