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Abstract

The goal of the project is to find an application of pattern generation in diffusive networks within
linear peristaltic pumping.

The most designs of linear peristaltic pumps have multiple actuation points which are driven by
a cam. The phase difference between the actuation points is fixed. The current state of the art
designs have multiple individually controlled actuators. Pattern generation in diffusive networks
can be used to create a control or reference signal for each individual actuator. For this setup it
is required that the following parameters of the network can be tuned or estimated:

� direction of the wave;

� phase difference between the output signals;

� the oscillation frequency of the wave;

� the amplitude of the wave.

Different network topologies are simulated and analyzed. From this study it follows that the uni-
directional ring network is the most suitable within application. By using an unidirectional ring,
the direction of the wave is in the same direction as the coupling is applied. Hence the direction
of the wave can be chosen independently from the initial conditions.

The number of nodes k within the unidirectional ring must be odd. When k is odd, the phase
difference between the output signal of node j and j + 2 and between the output signal of node 2
and k is 2π

k .

The oscillation frequency of the system can be predicted when the coupling strength is chosen
such that the closed loop linear system is close to the Hopf bifurcation.

The amplitude of the wave cannot be predicted, since it is depending on different parameters
such as the coupling strength and the dynamics of the individual nodes. However normalizing the
output and multiplying it with a gain factor will give the possibility to control the amplitude.

The shape of the generated wave-like pattern is mostly depending on the dynamics of the nodes.
The effect of pole and zero placement of the linear feedback part has been examined. However it
did not result in any design rules regarding shape of the wave.

The diffusive network used to control the linear peristaltic pump can be realized in two different
ways. The first option is to use a real-time simulator with hardware in the loop to create the
output or reference signal for the actuators. This option is the most suitable for prototyping, due
to the possibility to change the dynamics of the network easily. Changing the dynamics of the
nodes can be important for a study on the performance of a linear peristaltic pump.

When the required dynamics for an optimal performance are known, the network can be created
by using electronics. The nodes can be made by using an electrical circuit with one or more
feedback loops. The circuit of the actuator can be implemented within the dynamics of a single
node, creating a more sophisticated design suitable for industrial applications.
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Preface

When I received my bachelor in mechanical engineering at the Rotterdam University of applied
science I was not satisfied. I learned a lot about heavy offshore equipment, but I wanted to learn
more about robotics and control theory. Therefore I decided to go to Eindhoven University of
Technology, which is in the ”brainport” of the Netherlands, one of the leading technology regions.

Within my premaster, all my elective courses were related to robotics and control. Unfortunately I
could not do my premaster thesis within the Dynamics and Control or Control System Technology
research groups. However, now for my internship within my master program, it was possible to
do it within the Dynamics and Control research group. This was a great pleasure.

After a few meetings, Sasha Pogromsky had a very interesting subject for my internship where
theory and practice could meet. I really want to thank Sasha Pogromsky for giving me the op-
portunity to work on this interesting subject and his guidance during the internship. I hope this
report will be a good contribution to further work of Sasha Pogromsky and the Dynamics and
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I hope you enjoy your reading.
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1 INTRODUCTION

1 Introduction

Synchronization of coupled dynamical systems is an important field of research, because synchron-
ization is common in nature. Animals have good locomotor skills to move efficiently in complex
environments. Their neural networks produce rhythmic coordinated patterns to achieve the lo-
comotion. The interesting part is that the rhythmic coordinated patterns are caused without
any rhythmic input. Different studies have shown that for lamprey and leeches the central pat-
tern generators are distributed networks made of multiple coupled oscillatory centers. A review
on neurobiological observations concerning locomotor pattern generators with high-dimensional
rhythmic output signals while only receiving simple input signals, is made in the study of Ijspeert
[1]. This study also covers some applications of central pattern generators for locomotion control
in robotics. These examples are mainly complex nature like robotics like a salamander, snake or
even a humanoid.

Another promising application for central pattern generators out of the scope of Ijspeert, is linear
peristaltic pumping. Within nature the peristaltic motion is very common, for example peristaltic
motions are used in the intestine to propel food. The advantage of a peristaltic pump is that
the channel wall is the only part which makes contact with the fluid. Therefore it can be used to
transport acid which would normally affect the impeller of a pump. Furthermore it can be used for
applications with high requirements on hygienics. The wall of the channel could be easily cleaned
or replaced with respect to the parts of a centrifugal pump.

The neural network can be used to control different actuators used for the compression and/or
retraction of the (flexible) channel wall. By creating a wave-like motion with the actuators, the
fluid inside the tube will move in the direction of the wave. By using the neural network to control
the actuators, the design is easily scalable and adjustable since a decentralized controller can be
used.

When applying the neural network in an application it is important to guarantee a certain beha-
vior. In the study by Pogromsky et al. [2] the existence and stability in a network of diffusively
coupled identical dynamical systems is examined. The study provides criteria on stability where
subsystems without interconnections are globally asymptotically stable and the oscillatory beha-
vior is forced via diffusive coupling. These criteria will be used to design a network where stability
and oscillatory behavior can be guaranteed.

This report will first cover the current state of the art within peristaltic pumping. Than the
diffusive networks and their requirements will be discussed to create a pattern. Furthermore a
study on the effect of different network topologies on the output signal will be executed. After the
effect of the different network topologies is known, a study is performed on the effect of the node
dynamics on the output. With the knowledge about the possibilities to create different patterns,
two designs of a peristaltic pump and a controller are proposed. One design for prototyping and a
design which can be used in future applications. Furthermore an outlook of the project is given.

An application of pattern generation in diffusive networks:
The linear peristaltic pump
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2 CURRENT STATE OF THE ART IN LINEAR PERISTALTIC PUMPING

2 Current state of the art in linear peristaltic pumping

Trough the ages different types of linear peristaltic pumps are developed. Two different types of
designs can be distinguished, designs whether the phase difference between the actuation points
is fixed or it can be influenced.

2.1 Linear peristaltic pumps with a fixed phase difference between ac-
tuation points

The most peristaltic pumps with fixed phase actuation found in literature are patented, but a
common thing among this patents is the use of a camshaft. These designs can be split up into
two different types, where the camshaft is in direct contact with the tube and the designs where
an intermediate body is involved.

Figure 1: A design a of linear peristaltic pump
with a fixed phase difference between the actu-
ation points. The shaft (34) with the cams (67-
69) is directly connected to the channel (78)
[3].

A simple design where the camshaft is dir-
ectly connected to the channel wall, is in pat-
ent [3]. The design is schematically shown
in Figure 1. Multiple cams are mounted
on the shaft. The cams are slightly twis-
ted with respect to each other such that they
are not completely compressing the channel at
the same time. Rotating the shaft will res-
ult in the cams pressing against the chan-
nel wall at different times causing a wave-
like motion. Since the cams are fixed to
the shaft, the phase difference between the
actuation points is also fixed. The fre-
quency of the waveform can be changed
by in- or decreasing the speed of the mo-
tor.

Other designs where the cams are directly press-
ing against the channel are very similar to this
design. A variation is in [4] and [5] where
the massive cams are replaced by eccentric-
ally mounted ball bearings to reduce the fric-
tion.

The other type of designs with fixed phase ac-
tuation are using intermediate bodies, which
are driven by cams. The advantage of
the intermediate bodies is that the face in
contact with the channel wall can be op-
timized for pumping. In patent [6, 7, 8,
9, 10] and article [11] are different designs
using intermediate bodies driven by cam-
shafts.

Another design using camshafts with intermediate bodies is in the design of the RTU concrete
mechanics laboratory [12]. Within this design a flexible tube goes through different chambers.
Each chamber is filled with a fluid or gas and can be compressed by using cylinders. The interme-
diate bodies (pistons) are used to compress the medium. Compressing the medium in the chamber
will result in compression of the channel (tube). By compressing the chambers after each other,
peristaltic pumping can be achieved. A visual representation of this design is given in Figure 2.

2 An application of pattern generation in diffusive networks:
The linear peristaltic pump



2 CURRENT STATE OF THE ART IN LINEAR PERISTALTIC PUMPING

Figure 2: A design of a linear peristaltic pump with pneumatic or hydraulic actuation [13].

The design in patent [14] differs from the previous designs. This design does not use a camshaft,
but gears instead. A shoe is connected via a link to a line of gears. One of the gears is driven
by an electric motor causing them all to rotate. The mounting position of the link on the gear
determines the phase difference between the shoes. In Figure 3, a schematic representation of the
design is given.

Figure 3: A linear peristaltic pump design where the shoes (40-56) are used to compress the
tube (37). The shoes linked (61-66) and driven by gears (70-67) which are all driven by one gear
connected to an electric motor (87) [14].

2.2 Linear peristaltic pumps with a variable phase difference between
actuation points

A characteristic of linear peristaltic pumps with a variable phase difference between the actuation
points is that they have multiple actuators which can be manipulated individually. By manipulat-
ing the actuators individually the phase difference between the actuators can be controlled. Since
there is a great diversity of actuators, many different designs are possible.

The design in patent [15] uses pneumatic cylinders. The end of each cylinder is connected to
a shoe which presses on the channel. The cylinder is either in or out, which makes the design
suitable for binary control.

The patented design from NASA [16] is also suitable for binary control. Separate series of electric-
ally conductive strips are overlying a microchannel, whose top surfaces are covered with electrically
insulating material. The channel is covered by an electrically conductive flexible membrane. When
no voltage is applied, the membrane is linear and lies over the channel. By applying a voltage
between strips and the membrane, the membrane is electrostatically pulled into the microchan-
nel. Alternating the applied voltage on the strips, a peristaltic motion of the membrane can be
achieved. An overview of the micropump is given in Figure 4 (on the next page).

An application of pattern generation in diffusive networks:
The linear peristaltic pump
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2 CURRENT STATE OF THE ART IN LINEAR PERISTALTIC PUMPING

Figure 4: The linear peristaltic micropump from NASA. By applying a voltage on the conductive
membrane (17) and the conductive strips (21), the membrane is pulled into the microchannel (13)
pressing the substrate away. Between the two conductive layers there is a electrically insulting
layer (23) [16].

A third design for binary control in literature can be found in the articles of Maddoui et al. [17]
and Lee et al. [18]. Within both articles linear peristaltic pumps are actuated with electromagnetic
actuators. In Figure 5 the design of Lee et al. [18] is shown. The design uses a parallel plate
actuator. The channel is between the fixed and movable electrode. The spring represents the
elasticity of the film. When applying a voltage to both electrodes in the right direction, the
movable electrode film will be attracted to the fixed electrode. Therefore the fluid displaced by
the plate will move away, but the direction of the fluid motion is unknown.

Figure 5: The structure of the parallel plate actuator [18].

2.3 Linear peristaltic pump controllers

The designs with variable phase differences are all using binary control strategies. The trajectory
of the actuator to their final position is not controlled. A signal is send to the actuator such that
it goes to their zero or end position. The direction of the medium by using binary control, can be
controlled by eliminating all other flow directions. In case of the peristaltic pump it is done by
holding the previous actuator down until the next one is also down. When there are more than 2
actuators, different actuating schemes are possible. In the paper of Lee et al. [18], four different
actuating schemes are presented and evaluated for a gas as fluid. The flow-rate of the fluid is
depending on the actuating scheme and actuating frequency. For certain cases the flow-rate can

4 An application of pattern generation in diffusive networks:
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2 CURRENT STATE OF THE ART IN LINEAR PERISTALTIC PUMPING

be easily approximated by using the volume displacement of the actuator.

The actuating scheme is a logical pattern of binary signals. Within the patent of NASA [16] a
controller is proposed which consist out of an oscillator and shift registers. The output of the shift
register is a clocked bit stream of 0’s and 1’s which apply no voltage or a voltage to the actu-
ators. Within this patent the actuation is not discussed, but it is assumable that the frequency
can be changed by changing the oscillator and the actuating scheme can be set in the shift registers.

Most designs mentioned in Chapter 2.2 are controlled binary by applying certain voltages to the
electromagnetic actuators. When using an analog control signal the trajectory of the actuators
can be controlled. By using an analog control signal a more natural way of peristaltic pumping
can be achieved such as in the intestines. However no analog controller for peristaltic pumps are
found in literature.

A possible method to control a peristaltic pump analog, is by creating multiple wave-like signals
with phase difference. The wave-like signals can be used as reference signal or direct input for the
actuators. A method to create wave-like patterns, where the nodes have a certain phase difference
is by using two oscillators. The output signals of the oscillators are connected to the ground and
to a potentiometer. The resulting signal U3 is a summation of both signals. It is required that
the oscillators must have the same frequency and be in anti-phase. The drawing of this electrical
circuit is in Figure 6.

Figure 6: Electrical circuit with two oscillators to create a signal U3 with a phase difference
between 0 and π.

By changing the contribution of the oscillators by using the potentiometer, the phase of the output
signal can be controlled from 0 to π. A side effect is that the amplitude of the signal will also
change. However, in practice it is really hard to have two individual oscillators with exact the
same frequency and required phase difference. When the frequency is slightly off, this will result
in a wave form with extra peaks.

Therefore another possibility to create a phase difference between some signals is by applying a
filter. The filter can be designed such that the phase-difference and amplitude meat the require-
ments for a specific frequency. However changing the frequency of the oscillator will cause the
filters to create a signal with a different phase shift and amplitude.

Wave-like signals can also be generated by using Pulse Width Modulation (PWM) and applying
a passive low-pass filter which filters the higher PWM frequencies out of the signal. However the
reference signal for the PWM output must be generated somewhere.

An application of pattern generation in diffusive networks:
The linear peristaltic pump
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2 CURRENT STATE OF THE ART IN LINEAR PERISTALTIC PUMPING

A possible way to generate such a signal is by using a neural network. Such networks have multiple
outputs and can generate different patterns, therefore it is also called a central pattern generator.
The oscillation profile is related to the coupling matrix that specifies the network topology and
the coupling strength. The frequency, amplitudes and phases are essentially encoded in terms of
a pair of eigenvalue and eigenvector. This can be used to estimate the oscillation profile or to
design a central pattern generator [19]. A topology which creates a wave-like motion, is given in
the article of Pogromsky et al. [2]. The produced signals could be used as reference or actuation
signal for a linear peristaltic pump.

6 An application of pattern generation in diffusive networks:
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3 DIFFUSIVE NETWORKS

3 Diffusive networks

The goal is to control a linear peristaltic pump with a neural network as central pattern generator.
A diffusive cellular network will be used to develop a central pattern generator with the required
wave-like pattern as output.

3.1 Notations of a diffusive cellular network

A diffusive cellular network is a network composed of identical dynamical systems coupled through
diffusive coupling that cannot be decomposed into smaller disconnected networks. The k identical
system are of the form

ẋj = f(xj) +Buj , yj = Cxj (1)

where f is a smooth vector field, j = 1, . . . , k, xj ∈ Rn is the state, uj(t) ∈ Rm is the input and
yj(t) ∈ Rm is the output of j-th system. Here B and C are constant matrices of appropriate
dimension. The systems are coupled through mutual linear output coupling

uj = −γj1(yj − y1)− γj2(yj − y2)− . . .− γjk(yj − yk) (2)

with γij ≥ 0. Furthermore, it is assumed that matrix CB is a positive definite matrix. The
coupling matrix is defined as

Γ =


∑i=2
k γ1i −γ12 . . . −γ1k
−γ21

∑i=1,i6=2
k γ2i . . . −γ2k

...
...

. . .
...

γk1 −γk2 . . .
∑i=1
k−1 γ1i

 (3)

where the sum of all rows is zero. The network is called a diffusive cellular network when Γ is
symmetric and only has one zero eigenvalue. The k identical systems (1) in the network with
feedback (2) can be written as {

ẋ = F (x) + (Ik ⊗B)u

y = (Ik ⊗ C)x
(4)

with the feedback

u = −(Γ⊗ Im)y, (5)

where ⊗ stands for the Kronecker product, x = col(x1, . . . , xk), F (x) = col(f(x1), . . . , f(xk) ∈
Rkn, y = col(y1, . . . , yk) and u = col(u1, . . . , uk) ∈ Rkm.

3.2 Requirements on the diffusive network

To use the diffusive network as a central pattern generator two requirements are posed on the
network. To create a infinite long pattern it is necessary that a compact (sub)set is ultimately
bounded, but that the origin of this set is unstable such that it is oscillatory in the sense of
Yakubovich.

3.2.1 Asymptotic Stability

The paper of Pogromsky et al. [2] shows that a network of diffusively coupled identical systems
contains a globally asymptotically stable compact subset of the set ker(Ikn −Π⊗ In) when

i) The system (4, 5) is ultimately bounded

An application of pattern generation in diffusive networks:
The linear peristaltic pump
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3 DIFFUSIVE NETWORKS

ii) There exists a positive definite matrix P and positive ε such that for all x ∈ Rn the following
inequality

P
∂f(x)

∂x
+

(
∂f(x)

∂x

)>
P ≤ −εIn (6)

holds.

iii) There is a k × k permutation Π which commutes with Γ: ΠΓ = ΓΠ.

Let λ′ be the largest eigenvalue of Γ under the restriction that the corresponding eigenvector lies
in the range of (Ik−Π), then there exists a positive λ̄ such that if λ′ < λ̄ the set ker(Ikn−Π⊗ In)
contains a globally asymptotically stable compact subset.

The maximum value for γ, for which the system is stable can be computed by finding the smallest
λ of the following problem

(Ik −Π)>Γ(Ik −Π) ≤ λ(Ik −Π)>(Ik −Π). (7)

3.2.2 Oscillatory behaviour

The second requirement posed on the network is that the network is oscillatory in the sense of
Yakubovich. A system is oscillatory in the sense of Yakubovich if it is ultimately bounded and for
almost all initial conditions there is no limit limt→∞ y(t). According to the paper of Pogromsky
et al. [2], the following conditions must hold for the network in (1, 2) with

f(xj) = Axj −Bφ(zj). (8)

Furthermore all requirements of Chapter 3.2.1 must also hold.

i) The matrix A is Hurwitz, so there is a positive definite matrix P = P>, so that A>P+PA < 0.

ii) zj = Zxj , where Z> = PB with the matrix P as in i.

iii) φ is an odd smooth strictly increasing function with the following property:

∀C > 0 ∃σ > 0 ∀z > σ φ(z) > Cz. (9)

iv) Let Wy(s) be the transfer function of the linear part from uj to yj = Cx taking φ(zj) = 0:
Wy(s) = C(sI − A)−1B. Then Wy(s) is nondegenerate, it has relative degree one with even
number of zeros with positive real part and Wy(0) > 0.

v) Let Wz(s) be the transfer function Wz(s) = (sI −A)−1B. Then Wz(0) > 0.

Then there is a number λ̄ > 0 so that if the largest eigenvalue of Γ exceeds λ̄ then the network is
oscillatory in the sense of Yakubovich. When all conditions hold it is sufficient prove the instability
of the closed loop linear system

ξ̇ = (A− λBC)ξ, (10)

where ξ := Π⊗ Inx. Here λ̄ is the Hopf bifurcation point of (10), with λ the largest eigenvalue of
Γ.

3.3 The required extensions of the requirements on diffusive networks

Besides the symmetric coupling matrices it is possible to use an asymmetric coupling matrix.
By using an asymmetric coupling matrix, the coupling is applied in one direction instead of in
two directions. To use a network as central pattern generator it is required that the system is
oscillatory in the sense of Yakubovich. The prove of this oscillatory behavior can be divided in
three smaller problems. The two properties need to be proven to call the system oscillatory in the
sense of Yakubovich. With an additional third property, the uniqueness of the equilibrium point,
the analysis can be simplified.

8 An application of pattern generation in diffusive networks:
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3 DIFFUSIVE NETWORKS

Ultimate Boundedness

To show that the system solutions do not blow up, the system needs to be ultimately bounded.
This means that the system will converge to a certain subset as long as it is in a certain set.
Ultimate Boundedness can be proven by using a Lyapunov function

V (x) = x>Px (11)

where there is a number C such that V (x) > C implies that V̇ (x) < 0.

Uniqueness of the equilibrium point

Assume that the set for which the system is ultimately bounded contains (multiple) equilibrium
points. Suppose that all equilibria are unstable, than there is a possibility that the system is going
to oscillate. Uniqueness of the equilibrium point will simplify further analysis.

Unstable equilibrium points

The last requirement which need to be proven is the instability of the equilibrium point(s) for a
sufficiently large coupling strength. This instability will provide the last requirement to call the
system oscillatory in the sense of Yakubovich.

An application of pattern generation in diffusive networks:
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4 NETWORK TOPOLOGIES AND THEIR OUTPUT CHARACTERISTICS

4 Network topologies and their output characteristics

Within the previous chapter it is shown that a neural network can create an infinite long pattern
when fulfilling the conditions in 3.2.1 and 3.2.2. The pattern generated by the neural network
is depending on the subsystems and the diffusive coupling. Based on the theory in the previous
chapter, different types of coupling are possible and will be studied.

Within the article of Pogromsky et al. [2] an example is given. The example network fulfills all
conditions mentioned in the previous chapter and generates an infinite long pattern. The used
network topology is a ring of four diffusively coupled nodes, where the output of this network is
a wave-like pattern. The output signals of node 1 and 3 are in-phase; node 2 and 4 are in-phase;
and node 1 and 2 are in anti-phase.

Changing the network topology or using a different number of nodes will affect the output signals.
In this chapter the different topologies and their output characteristics are covered. For the
analysis of the different topologies, the following system is used

ẋj = Axj +B(uj − z3j ), j = 1, . . . , k, x(t) ∈ R3

zj = Zx, yj = Cx, u = −Γy
(12)

where

A =

 1 −1 1
1 0 0
−4 2 −3


B =

(
0 0 1

)>
, C =

(
0 0 1

)
, Z = B>C

and P is the solution of the following Lyapunov equation

A>P + PA = −I3.
This network is the same as the example in the article of Pogromsky et al. [2]. The given network
satisfies all mentioned conditions in 3.2.1 and 3.2.2.

The Hopf bifurcation of the closed loop system (10) depends on the largest eigenvalue of Γ. The
Hopf bifurcation for this system is

λ =
−1 +

√
13

2
(13)

where λ is the larges eigenvalue of Γ. The system is oscillatory in the sense of Yakubovich when

λ > −1+
√
13

2 . For the sake of simplicity all connections have the same coupling strength γ. Hence
the coupling matrix can be expressed as Γ = γ Γ0, where Γ0 contains all the information on the
topology. The system is oscillatory in the sense of Yakubovich when

γ ≥ a

λ
, a =

−1 +
√

13

2
,

where λ is the largest eigenvalue of Γ0. The coupling strength for all simulations is γ = 1.2 aλ
unless indicated otherwise. The script used for simulations of only one topology is in Appendix A,
the script used for simulations with combined topologies is in Appendix B. The custom functions
used in the simulation scripts are all in Appendix C.

4.1 Bidirectional ring network

The first network being analyzed is a bidirectional ring network with k nodes. A visual repres-
entation is given in Figure 7 (on the next page). Two different cases are distinguished, when k is
even and when k is odd. When k is even, the even numbered nodes are all in-phase and the odd
numbered nodes are also in-phase. The odd numbered nodes are in anti-phase with respect to the
even numbered nodes.

10 An application of pattern generation in diffusive networks:
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1

2k

k-1 3

γ

γ

γ

γ

γ

Figure 7: A bidirectional k node
ring network.

The network is simulated with MATLAB for k ∈
{4, 6, 10, 40, 200} and different initial conditions, where
xj(0) = 0, yj(0) 6= 0 and yj 6= yj+1. The simulation res-
ults are visualized by using animations showing the output
y. The higher the number of nodes, the longer it takes
to synchronizes, but the system will go the same periodic
solution for different initial conditions. However, the ini-
tial conditions affect the rate of convergence to the peri-
odic solution. The links to the animations of the periodic
solutions for different number of nodes are in Table 1. To
give more insight in the periodic solution, the output tra-
jectory of a bidirectional ring with 6 nodes is given in Fig-
ure 8a.

For a certain set of initial conditions it takes very long for the network to converge to the periodic
solution. Different patterns are generated before reaching the periodic solution. The links to the
animations on different time intervals with different patterns are in Table 2.

Table 1: Links to the animations and information of the periodic solutions of a bidirectional ring
network with even numbered nodes.

Nodes Animation link
4 https://youtu.be/FOOd-cIlsTk
6 https://youtu.be/JSOYBa6xl90
10 https://youtu.be/3twnQwErbgQ
40 https://youtu.be/xrZCEY0PciY
200 https://youtu.be/n-74adNt7hs

Table 2: Links to the animations of the different patterns in the bidirectional network with 200
nodes, before reaching the periodic solution.

Time interval Animation link
0 - 100 https://youtu.be/a4h3eWWvPxg

10000 - 10100 https://youtu.be/vM15DcQ4HQY
20000 - 20100 https://youtu.be/ur95se1P4m4
30000 - 30100 https://youtu.be/ZYUu5t2iQ1c
40000 - 40100 https://youtu.be/E8plar3-gdY
50000 - 50100 https://youtu.be/hDMZl0sALuY

The bidirectional ring network is also simulated for an odd number of nodes, k ∈ {3, 5, 9, 39, 199}.
The simulation shows that the system will also converge to a periodic solution. The periodic solu-
tion for a systems with an odd number of nodes differs form the periodic solution of a network
with an even number of nodes. Within a network with an even number of nodes, the nodes are
either in-phase or anti-phase (phase difference of 0 or π). However, within the network with an
odd number of nodes, the phase difference is equally shifted between certain the nodes. The phase
difference between yj , yj+2 and between yk−1, y1 is 2π

k . The links to the animations of the sim-
ulation results can be found in Table 3 (on the next page). To give a better insight, the output
trajectory of a bidirectional ring with 5 nodes is given in Figure 8b. The phase difference between
the nodes is computed by

ϕ = arccos

(
yj · yj+2

||yj ||||yj+2||

)
. (14)
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4 NETWORK TOPOLOGIES AND THEIR OUTPUT CHARACTERISTICS

Furthermore, the expected oscillation frequency on the bifurcation point of a bidirectional ring
network is 0.130Hz and the oscillation frequency obtained from the simulation with the fast Fourier
transform is 0.137Hz, for all networks. The output amplitude of the network differs slightly,
depending on the number of nodes.

Table 3: Links to the animations of the periodic solutions of a bidirectional ring network with odd
numbered nodes.

Nodes Animation link
3 https://youtu.be/pyVYzhaHqoA
5 https://youtu.be/tfNdjuuEOlU
9 https://youtu.be/YC3iqh5yuTk
15 https://youtu.be/tXfsHMnJQ3w
39 https://youtu.be/EtX50axxzG4
199 https://youtu.be/pWemkUb6gIw
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Figure 8: The output trajectory for a network with 6 nodes (a) and 5 nodes (b) connected in
a bidirectional ring. When the number of nodes is even, the nodes are either in phase or in
anti-phase. For an odd number of nodes, the phase is shifted equally between the nodes.

4.2 Bidirectional line network

The second network which is examined is a bidirectional line network. The hypothesis is that the
line network will behave the same as an infinite long bidirectional ring network. Hence the network
will converge to a periodic solution, where the nodes are close to the in-phase and anti-phase mode
for all k.

Simulations of the network show that for small k the periodic solution of the bidirectional line
network is almost the same as the periodic solution of the bidirectional ring. The difference with
the bidirectional ring network is that the ouptut amplitudes of the first and last nodes are much
smaller. The amplitude of the other nodes is close to the output amplitudes of the bidirectional
ring network.

For higher numbers of k the network goes to the same periodic solution as the bidirectional net-
work, but converges much slower. A plot of the output trajectory for t ∈ [10000, 10020] with k = 6
is in Figure 9. Here it can be seen that the trajectory is close to the in-phase and anti-phase mode.
When time increases, the trajectory converges to the in-phase and anti-phase periodic solution.
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4 NETWORK TOPOLOGIES AND THEIR OUTPUT CHARACTERISTICS

For very high numbers of k the network converges so slow that it cannot be confirmed by using
simulations that the system reaches the in-phase and anti-phase mode. Due to the large number
of data for the larger simulation times the computer runs into memory problems. However, it is
very assumable since the observed patterns obtained after a certain time t are very similar to the
patterns generated in the bidirectional network before reaching the periodic solution. The links
to the animations of the simulation results are in Table 4.

The expected oscillation frequency on the bifurcation point of the bidirectional line is also 0.130Hz.
The oscillation frequency obtained form the simulations is 0.137Hz. These frequencies are the same
as in the bidirectional ring network.
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Figure 9: The output trajectory of the bidirectional line network for t ∈ [10000, 10020] and k = 6.

Table 4: Links to the animations of the periodic solutions of a bidirectional line network.

Nodes Animation link
3 https://youtu.be/TCAmTqY9Ch8
4 https://youtu.be/cUjHOf2nkoA
5 https://youtu.be/XkcOWgZ8Ufk
6 https://youtu.be/-kN 1k3vJx0
9 https://youtu.be/XMJS92r2GRc
10 https://youtu.be/YEH-wIf0cf0
15 https://youtu.be/JJufssCbRbI
39 https://youtu.be/UEh4hUKUTHo
40 https://youtu.be/fH9-nYawP7M
199 https://youtu.be/fF71aUk1g2E
200 https://youtu.be/z8YLGuHMjWA
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4.3 Unidirectional ring network
1

2k

k-1 3

γ

γ

γ

γ

γ

Figure 10: An unidirectional k
node ring network, where the
coupling direction of the nodes is
called right.

Within the bidirectional ring and line network a wave-
form is generated, but the direction of the wave is de-
pending on the initial conditions. A possible way to in-
fluence this behavior is by changing the coupling within
the network. The coupling between nodes can be changed
into a one sided connection (see Figure 10). The direc-
tion in which the nodes in Figure 10 are coupled is called
right.

By applying this kind of coupling, the network is not a cellular
network anymore. The coupling matrix Γ0 is not symmetric
and also has complex eigenvalues. Therefore the theorems
proposed by Pogromsky et al. [2] do not hold, hence the sys-
tem cannot be guaranteed to be stable or oscillatory. However
it can be proven that the origin is unstable. Due to the complex eigenvalues of Γ0 the simulations
are performed close to the bifurcation point with γ = 1.2

Re(λ)a.

The simulations of the unidirectional ring network gives the expected results. A unidirectional
ring network with an even number of nodes, has the same periodic solutions as the bidirectional
ring network (see Figure 11). When changing the unidirectional network to an odd number of
nodes, the phase difference is divided equally and the direction of the wave is the desired direction.
The direction of the wave can be changed by changing the direction of the coupling (taking the
transposed of the coupling matrix Γ0).
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Figure 11: The output trajectory for a network with 6 nodes (a) and 5 nodes (b) connected in
an unidirectional ring. When the number of nodes is even, the nodes are either in phase or in
anti-phase. For an odd number of nodes, the phase is shifted equally between the nodes. The
results are the same as in a bidirectional ring network.

The simulation results are in Table 5. The simulation for k = 199 did not reach its periodic solu-
tion within t = 10000. Hence, the system will converge slower to the periodic solution than the
bidirectional ring network. However after t = 50000 the system has reaches its periodic solution
and the phase difference between certain nodes is 2π

k .

The expected oscillation frequency of the unidirectional ring is 0.131Hz and the oscillation fre-
quency within the simulation is 0.137Hz for even number of k, which is the same as within the bid-
irectional ring. For odd numbers of k the oscillation frequency differs. For k = 3, fsim = 0.122Hz,
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k ∈ {5, 9, 15}, fsim = 0.130Hz and k ∈ {39, 199} gives fsim = 0.137Hz. For an odd number of
nodes k, the output amplitude changes slightly. This is not the case for even numbers of nodes k.

Table 5: Links to the animations of the periodic solutions of an unidirectional line network.

Nodes Animation link
3 https://youtu.be/EnEly9GvRGU
4 https://youtu.be/lYjUfX7hQNE
5 https://youtu.be/gQjUVRveZ4c
6 https://youtu.be/gdCEHRUDZ3Q
9 https://youtu.be/19H341hU11I
10 https://youtu.be/kLAq3hWV5Ck
15 https://youtu.be/Es AzCl3SLY
39 https://youtu.be/vXtBTStNl2I
40 https://youtu.be/8IOf7lsvAz8
199 https://youtu.be/G6Cg6ICvGyI
200 https://youtu.be/WCvh0lfKUpQ

4.4 Unidirectional line network

The unidirectional line network also has an asymmetric coupling matrix with complex eigenvalues.
Simulations on this network were also performed and gave a surprising outcome. The phase
difference between all the odd nodes is ≈ 2π

6.7 , the phase difference between the even nodes is also
≈ 2π

6.7 and the phase difference between the nodes k − 1 and 1 nodes varies. Furthermore, the
amplitude of the output signal is twice as big as in the other networks.
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Figure 12: The output trajectory for a network with 6 nodes (a) and 5 nodes (b) connected in an
unidirectional line. There is almost no difference between an even or odd number of nodes.

The expected oscillation frequency is 0.133Hz. The oscillation frequency obtained from the sim-
ulations is 0.137Hz, which is the same as in the original bidirectional ring network. The links to
the animations of the simulations are in Table 6, the output trajectory is shown in Figure 12.
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Table 6: Links to the animations of the periodic solutions of an unidirectional line network.

Nodes Animation link
3 https://youtu.be/9bLbzpF5BCw
4 https://youtu.be/EDrTis DecQ
5 https://youtu.be/-0K9KHbHjHA
6 https://youtu.be/cpRSE82oLlw
9 https://youtu.be/liX6Ktm-8U0
10 https://youtu.be/PPFRMRF0Rqo
15 https://youtu.be/934GzzPRb88
39 https://youtu.be/iaomMRtIuZ4
40 https://youtu.be/knNXxgWb660
199 https://youtu.be/kRdb2x0FTEc
200 https://youtu.be/t2brf9TLOTc

4.5 Combining different network topologies

The above networks can be combined to create bigger and more complex networks. For example,
multiple unidirectional ring networks can be coupled in a bidirectional line, see Figure 13.

1|1

1|2

1|3

1|k
2|k

2|1

3|k

2|3

2|2

3|3

3|2

3|1

q|3

q|k

q|1

q|2

Figure 13: An unidirectional ring network with k-nodes substituted in a bidirectional line network
with q repetitions.

When coupling the networks, the hypothesis is that the combined network takes the characteristic
of the original network in the direction it is applied. For example an unidirectional ring network
with an odd number of nodes k should create a wave-like pattern in the desired direction. The
phase difference between the nodes i|j and i|j + 2 in the ring should be shifted equally as in the
regular unidirectional ring network with an odd number of nodes. Multiple unidirectional rings
can be connected to each other as a bidirectional line. The direction where the bidirectional line
is created is the direction where the nodes i|j and i + 1|j should be in anti-phase and the nodes
i|j and i+ 2|j in-phase.

Simulations of four unidirectional ring networks with k ∈ {5, 9, 15, 19} which are coupled in
a bidirectional ring are executed. The links tot the animations of the simulation results can be
found in Table 7. A representation for six unidirectional ring networks with 5 nodes is in figure 14.
Comparing the systems on the vertical axis shows that they are in-phase. While comparing the
systems on the horizontal axis it can be seen that they are in anti-phase.
Here it can be seen that the network output is as expected, which can be seen most clearly in
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Table 7: Links to the animations of a combined network topology with four unidirectional rings
with k nodes connected as a bidirectional ring.

Nodes in Unidirectional Ring Animation link
5 https://youtu.be/X-8KTaSv7cM
9 https://youtu.be/EDwjBJ8ceKg
15 https://youtu.be/JOn3fBPURjs
19 https://youtu.be/xU 3Lukod9I

the animation with 19 nodes. Note that the amplitude of the output is four times larger than the
output of the original unidirectional ring.

The same is done for four unidirectional ring with 19 nodes in a bidirectional line. The animation
of the simulation can be found at https://youtu.be/BS- jt aYrA. The animation shows that the
network does not provide the expected behavior. However, a part of the wave-like pattern can
be distinguished within the animation. It is very assumable that the network has not reached its
periodic solution yet. Unfortunately the computer runs into memory problems when simulating
for a larger time interval.

Systems with an odd number of repetitions are also simulated, these simulations takes a lot more
computer memory. Therefore smaller numbers of k must be used for these simulations. The
animation of the simulation for a system with three repetitions of a unidirectional ring with 5
nodes, coupled as bidirectional ring is at https://youtu.be/yqCW 4krkTw. The animation for 5
repetitions is at https://youtu.be/yqCW 4krkTw. Here it can be seen that the phase difference
between i|j and i|j + 2 is 2π

5 and the phase difference between i|j and i + 2|j is also 2π
5 when

k = 5.
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Figure 14: Six unidirectional ring networks with 5 nodes coupled in a bidirectional ring. Vertically
the systems are in phase and looking horizontal shows that the systems are in anti-phase.
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5 Dynamics of the nodes and their influences on the output

In the previous chapter the effect of the network topologies on the output is discussed. Besides the
topology of the network, the dynamics of the nodes can also influence the output. In Chapter 3.2
the requirements on the dynamics are listed. The conditions are easily fulfilled when the dynamics
of a node has a certain structure. The used structure to describe the dynamics of the nodes is in
(12) with

A =

 a −b 1
1 0 0
−e f −g

 , B =

0
0
1

 , C =
(
0 0 1

)
, Z = B>P

where P is a positive definite matrix and the solution to A>P + PA = −I3. The corresponding
transfer function from uj to yj is

Wy(s) =
s2 − as+ b

s3 + (e− a)s2 + (b+ c− ae)s+ be− d . (15)

With use of this equation, the poles and zeros can be placed anywhere to investigate the influence
on the output signal. The focus of the analysis will be on the amplitude and the shape of the output
signal with respect to the pole and zero placement. The oscillation frequency is not interesting
because the simulations will be performed close to the bifurcation point. Therefore the oscillation
frequency of the network is close to the largest imaginary value of the eigenvalues of the closed
loop system as described in (10). The oscillation frequency can be scaled by multiplying the A
and B matrix with a certain factor α, since

det (λI − α(A− λ′BC)) =

det

(
λ

α
I − (A− λ′BC)

)
=

det
(
λ̄− (A− λ′BC)

)
= 0

(16)

where λ′ is the largest eigenvalue of Γ and λ̄ is the new scaled eigenvalue. Hence the oscillation
frequency is scaled with a factor α and can be arbitrary placed without changing the poles or zeros.

For the analysis the poles will be placed in the open left half plane, therefore the A matrix
is Hurwitz and the required conditions are fulfilled. By placing the zeros in the open right
half plane, all conditions of Chapter 3.2 are satisfied, including the conditions on Wz(s). Here
Wz(s) = Z(sI −A)−1B is the linear part from uj to zj .

When placing the poles and zeros, four different cases can be distinguished. The first case is
real valued poles and real valued zeros; the second case is real valued poles and complex valued
zeros; third case is complex valued poles and real valued zeros; finally the fourth case is complex
valued poles and complex valued zeros. For all cases the influences on the output is studied. To
have a good comparison the coupling strength γ is chosen to be γ = 1.2 aλ , where λ is the largest
eigenvalue of Γ0 and a is the Hopf bifurcation point for the closed loop system as described in
(10). The network used for the analyses is a bidirectional ring network with 5 nodes.

5.1 Real valued poles and real valued zeros

The first case is where both, the poles and the zeros, only have a real part. First all poles are placed
on −1 and the zeros will be changed. The placement of the zeros and the corresponding amplitude
of the waveform are in Table 8 as well as the references to the figure numbers. The reference signal
is the signal where both zeros are located at 1 (see Figure 15). The other waveforms are shown in
Figure 16.
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5 DYNAMICS OF THE NODES AND THEIR INFLUENCES ON THE OUTPUT

Table 8: The effects of different real valued zeros on the amplitude and their figure number.

Poles Zeros |y| Figure
−1, −1, −1 1, 1 0.7186 15
−1, −1, −1 2, 2 0.1016 16a
−1, −1, −1 3, 3 0.02035 16b
−1, −1, −1 1/2, 1/2 0.7848 16c
−1, −1, −1 1/4, 1/4 0.3837 16d
−1, −1, −1 1, 3 0.1411 16e
−1, −1, −1 1, 1/4 0.1411 16f
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Figure 15: Reference waveform with all poles of Wy(s) on −1 and the zeros on 1.

It can be seen that the placement of the poles influences the amplitude and the sharpness of the
waveform. Larger valued zeros imply smoother waveforms and smaller amplitudes.

Now the effect of the poles can be studied. In Table 9 the placement of the poles and their influence
on the amplitude can be found, as well as the references to the figure numbers. In Figure 17 the
other waveforms are shown.

Table 9: The effects of different real valued poles on the amplitude and their figure number.

Poles Zeros |y| Figure
−1, −1, −1 1, 1 0.7186 15
−2, −2, −2 1, 1 22.11 17a
−3, −3, −3 1, 1 81.96 17b

−1/2, −1/2, −1/2 1, 1 0.009711 17c
−1/4, −1/4, −1/4 1, 1 0.0001234 17d
−1, −1, −3 1, 1 6.086 17e
−1, −1, −1/4 1, 1 0.04832 17f

Larger values for the poles create larger amplitudes, furthermore the waveform is smoother with
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Figure 16: The effect of the zero placement on the waveform.
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Figure 17: The effect of the pole placement on the waveform.

respect to the ones where the zeros were changed. This can be clearly seen when comparing the
waveforms in Figure 16d and Figure 17d. Hence the real values of poles and zeros influences the
amplitude of the wave-form and the sharpness of the shape.

5.2 Real valued poles and complex valued zeros

Since it is known what kind of effect the real values have on the output of the network, the next
step is to investigate the effect of complex zeros on the output. The poles and real value of the

20 An application of pattern generation in diffusive networks:
The linear peristaltic pump



5 DYNAMICS OF THE NODES AND THEIR INFLUENCES ON THE OUTPUT

zeros is constant while the complex value is changed. The results are in Table 10 and in Figure 18.

Table 10: The effects of different complex valued zeros on the amplitude and their figure number.

Poles Zeros |y| Figure
−1, −1, −1 1, 1 0.7186 18a
−1, −1, −1 1± 1j 0.3273 18b
−1, −1, −1 1± 2j 0.0536 18c
−1, −1, −1 1± 3j 0.009528 18d
−1, −1, −1 1± 1

2j 0.5911 18e
−1, −1, −1 1± 1

4j 0.62456 18f
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Figure 18: The effect of complex valued zeros on the waveform.

Increasing the complex part of the poles gives a smaller amplitude, but does not have a great
effect on the shape of the output.

5.3 Complex valued poles and real valued zeros

The only thing left to study is the effects of the complex poles. The results are in Table 11 and in
Figure 19.

Table 11: The effects of different complex valued zeros on the amplitude and their figure number.

Poles Zeros |y| Figure
−1, −1, −1 1, 1 0.7186 19a
−1, −1± j 1, 1 1.783 19b
−1, −1± 10j 1, 1 38.92 19c
−1, −1± 20j 1, 1 94.08 19d
−1, −1± 1

2j 1, 1 0.9529 19e
−1, −1± 1

4j 1, 1 0.7377 19f
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Figure 19: The effect of complex valued zeros on the waveform.

It can be seen that for high imaginary values the top of the waveform shows an additional peak.
From the Fourier transform it is clearly visible that for higher imaginary values there are more
sinusoidal frequencies in the signal than before. For smaller imaginary values, no difference can
be observed within the waveform or the Fourier transform.

5.4 Complex valued poles and complex valued zeros

Simulations with complex poles and complex zeros did at first sight not show any new or unexpec-
ted behavior. Earlier it was observed that complex zeros do not have an observable influence on
the waveform. When combining complex poles and complex valued zeros, the waveform is mostly
the same as with only complex poles. However a major difference is observed when the real part
of the poles and zeros is small and the imaginary part of the poles is large. An example of such a
waveform is given in Figure 20a where the poles are placed on − 1

2 and − 1
2 ± 5j and the zeros on

1
2 ± j.

When creating an even bigger difference between the real and imaginary values of the poles (poles
on − 1

4 , − 1
4 ± 10j and zeros on 1

4 ± j), the system does not fully synchronizes (see Figure 20b).
Three different waveforms are observed and two times there are two nodes which have the same
waveform and are in phase.

When both zeros and poles are complex, the real part of the poles and zeros is small and the
complex part of the poles is large, strange waveforms can appear and the desired synchronization
can be lost.

22 An application of pattern generation in diffusive networks:
The linear peristaltic pump



5 DYNAMICS OF THE NODES AND THEIR INFLUENCES ON THE OUTPUT

t

0 2 4 6 8 10 12 14 16 18 20

y

-15

-10

-5

0

5

10

15

(a)

t

0 2 4 6 8 10 12 14 16 18 20

y

-8

-6

-4

-2

0

2

4

6

8

Node 1
Node 2
Node 3
Node 4
Node 5

(b)

Figure 20: Waveforms created where poles have a small real part and a large imaginary part.
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6 PROPOSED PUMP DESIGN OF A LINEAR PERISTALTIC PUMP

6 Proposed pump design of a linear peristaltic pump

To apply a central pattern generator on a linear peristaltic pump as a controller for the peristaltic
motion, a design is required. Within Chapter 2 the current state of linear peristaltic pumps is
covered. Most of the current designs have a fixed phase difference between the actuation points
and only one control input for changing the frequency of the peristaltic motion. However a central
pattern generator has multiple output signals and can generate different waveforms and phase dif-
ference between the nodes. Therefore the linear peristaltic pump needs to have multiple individual
actuation points on the channel.

Within Chapter 2 also some pumps with variable phase difference between the actuation points
are covered. Those pumps have multiple actuators which can be controlled individually, but they
are either in or out. A square waveform is introduced in to the system and the flow-rate can be
approximated by using the volume displacement of an actuator. The advantage of the central pat-
tern generator is that it creates smoother waveforms, which can mimic a more natural peristaltic
motion.

It is not yet known which kind of waveform creates the most optimal peristaltic motion. Therefore
two different designs will be proposed. The first design is a prototype where different waveforms
can be tested and verified with theory. The second design will be more focused on industrial
applications, where the dynamics for the waveform is known.

6.1 The central pattern generator

The linear peristaltic pump is controlled by a central pattern generator and generates either the
control or reference signal. The required dynamics of the central pattern generator are not known
(yet). The desired waveform and therefore dynamics can depend on a different parameters, such
as the fluid and the channel dimensions. To study the desired waveform, the prototype of the
linear peristaltic pump needs to be versatile. The dynamics of the network can be realized on two
manners, namely by hardware or via software.

The dynamics of a node can be created by using an electric circuit with feedback loops. It is as-
sumable that there is a possibility to change the dynamics slightly, however lager changes require
a new circuit.

Another possibility to create the dynamics of the network is by using a real-time simulator. The
real-time simulation will compute the output of the dynamical system at the same time as it would
take the real physical system to obtain the value. The computed output signal can be created
by using hardware. This is called hardware-in-the-loop (HIL) real-time simulation. According
to [20] there is a great variety of different real-time simulators, but only a few are capable of
simulating large systems. The other real-time simulators are suitable for small systems or can
be used as a real-time controller. The focus of the article is on real-time simulations of power
systems, which contains discrete time events. Therefore it is not fully representable for simulating
a central pattern generator, however it gives insight in the existence of real-time simulations and
their possibilities. Hence there are real-time simulators available with hardware connectivity, but
there are only a few real-time simulators available to simulate larger systems.

The real-time simulator can simulate every possible network as long as the computing power of the
simulator is sufficient. However real-time simulators are more expensive than an electrical circuit
on a printed circuit board (PCB). Larger networks also require more computational power, there-
fore the price of a real-time simulator will increase. When using a PCB it only cost an additional
PCB, which is assumed to be cheaper.
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Therefore the most suitable option for the prototype is a real-time simulator with hardware in the
loop to test different dynamics. For the more industrial linear peristaltic pump an individually
designed PCB creating the desired dynamics is advised, the driver for the actuator could also be
directly implemented in the PCB.

6.2 The actuators

The purpose of the central pattern generator is to create an actuator input or reference signal such
that peristaltic pumping is achieved. The peristaltic motion can be created by using individually
controlled actuators to deform the channel wall. Within different studies [21, 22, 23] on peristaltic
motion, the dynamics of the fluid are expressed as an function of the local pressure or channel
height. Assumed is that the required pressure or deformation profile is known and the central
pattern generator creates the corresponding signal. The actuators need to create the given profile
by applying a force on the channel wall.

A Lorentz actuator has a linear relation between their current and force, therefore they could be
suitable for the job. They are also available in many different sizes which is a great advantage,
since the dimensions of the pump are not known yet. The Lorentz actuator can be driven by using
Pulse Width Modulation (PWM) since their inner circuit, a coil and a resistor (RL-circuit), acts
as a low-pass filter

I(s)

V (s)
=

1

Ls+R
. (17)

With L the inductance in Henry, R the resistance in Ohm, I(s) the current in Ampere and V (s)
the electric potential in Volt. The low-pass filter, filters the higher harmonics (ω >> R/L) out of
the signal and only the average value remains. Furthermore the position of the Lorentz actuator
can be measured to create a closed loop feedback controller, but due to the linear dynamics it is
often controlled open-loop.

The mechanical part of the differential equation describing a Lorentz actuator with mass m, viscous
damping b and stiffness k, driven by a magnetic force F (t) = B`i(t) which depends on the current
i(t). Is given by

mẍ+ bẋ+ kx = B`i(t), (18)

where B is the strength of the magnetic field and ` the effective wire length through the magnetic
field. The electrical part including back EMF can be described by

L
di

dt
(t) +Ri(t) = V −B`ẋ (19)

with inductance L and resistance R. Combing those equations and taking the Laplace transform
gives

X(s)

V (s)
=

B`

mLs3 + (bL+mR)s2 + (kL+ bR+ (B`)2)s+ kR
(20)

The Lorentz actuator itself is thus a third order differential equation and could be used (partially)
to created the desired node dynamics. However the transfer function has three poles and no zeros,
the zeros could be added by using a feedback loop.

6.3 The channel

The connection between the actuators and the channel is of high importance, since it determines
the pressure or deformation profile of the channel. In Figure 21 two different connection types are
shown. The first connection (see Figure 21a) is as in [17, 18], where a large part of the channel
is compressed by the actuators. These system are mostly controlled by turning the actuators on
or off, therefore the flow rate can be approximated by using the volume displacement and the
switching frequency. The second connection type (see Figure 21b) has the advantage that the
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displacement of the wall behaves more like a smooth function. With this setup the shape of the
channel can be controlled with higher precision. Within literature it is also more common to study
the peristaltic motions by using a smooth curved profile. Therefore it is recommended to use the
connection type from Figure 21b, such that the performance can be predicted and confirmed with
theory.

(a) (b)

Figure 21: Two different connection types from the actuator (gray) to the channel wall (red).

The analysis of peristaltic flow is done in many different ways with respect to the fluid, channel
deformation and channel lay-out. Most studies start with the analysis of a fluid in a two dimen-
sion plane, with long wavelengths and low Reynolds numbers [22, 23]. Analysis done in the two
dimensional plane means that the channel has a characteristic length and width, but an infinite
depth [21]. In this way the properties of the system will not depend on the third dimension. Fur-
thermore, most studies assume symmetric deformation of the channel to simplify the problem and
corresponding equations. Another common lay-out is an axi-symmetric channel, but in practice
it is hard to control the deformation in all directions and therefore not recommended.

Another boundary conditions which is often used, is the boundary condition that the channel is
sufficiently elastic such that there is no movement of the channel in the longitudinal direction.

The proposed channel has a characteristic length and height, the depth of the channel must be very
large with respect to the length and height such that the effect of this dimension can be neglected.
Furthermore the channel is actuated symmetrical and is composed out of elastic material such
that movements in the longitudinal direction can be neglected.

6.4 Architecture Design

All components of the linear peristaltic pump are covered individually, combing the different com-
ponents gives the proposed architecture designs.

The proposed design for the prototype is in Figure 22. The network is simulated with a real-
time simulator with hardware in the loop. By using this solution the dynamics of the network
can be easily changed. However there are restrictions on the dynamics due to the limitation of
the real-time simulator. The simulation performed on networks with low oscillation frequencies
are a lot faster with respect to higher oscillation frequencies. The size of the network also plays
a significant role, there will be a trade of between the oscillation frequency and network size.
However the most analysis of peristaltic motion use low frequencies, hence larger networks can be
used. The required computation time of all networks used in this report is smaller than the time
for which it is simulated. Only with larger networks or higher frequency the computer runs into
memory problems. The computer used for these simulations runs on Windows 8.1, has 8GB of
RAM and uses an Intel i7-4700MQ processor running at 2.40GHz. The simulations are performed
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in MATLAB R2015a using the ode45 solver.

real-time simulator

strut
flexible channel

actuator

actuator controller

digital signal

analog signal

Figure 22: The architecture design of the prototype linear peristaltic pump.

The output of the real-time simulator goes directly to the actuator controller. Which replicates
the digital signal to an electric signal which is send to the actuator. The electric signal can be
created by using pulse width modulation when a passive low-pass filter is used. When using an
electromagnetic actuator with an inductor and resistor, the filter is already in the circuit. The
only restriction is that the frequency of the PWM signal is sufficiently high.

A Lorentz actuator is recommended since the dynamics are very linear and it contains the passive
low-pass filter. Due to the linear dynamics a closed-loop feedback controller is not necessary. The
Lorentz type actuators can be controlled open-loop.

The actuators are connected via struts to the flexible wall of the channel, which has a negligible
amount of movement in the longitudinal direction. The length of the channel must at least be
long enough to obtain one complete waveform. The depth of the channel is very large with respect
to the height such that it can be neglected. By using this channel dimensions, the performance of
the pump is easier to compare with theory. However different dimensions can also be used when
te focus is on performance and not on theory.

The proposed final design does not have a real-time simulator due to the high cost. The network is
created with electronics and implemented in the circuit which drives the actuator. The proposed
architecture design is in Figure 23.

strut
flexible channel

actuator

actuator controller and

network coupling

node dynamics

Figure 23: The architecture design of the linear peristaltic pump

The dimensions and shape of the channel are depending on the test results with the prototype.
The used network topology for the controller will be covered in the next chapter.
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7 Proposed controller design

The next step is to choose the network topology such that the linear peristaltic pump creates the
desired motion.

In the previous chapters it is observed that the shape of waveform does not only depend on the
chosen topologies, but mostly on the dynamics of the nodes. Assumed is that the dynamics of the
nodes are chosen such that it fulfills all conditions in Chapter 3.2. For the prototype it is assumed
that the time can be scaled via parameter α such that

dxj
dt

= α
(
Axj +B(uj − z3j )

)
1

α

dxj
dt

= Axj +B(uj − z3j )

dxj
dτ

= Axj +B(uj − z3j )

(21)

the oscillation frequency can be changed. Hence the new time scale τ is expressed as τ = αt.
For the final design the α parameter could be fixed such that the dynamics can be created with
electronic hardware. The oscillation frequency could still be changed a little by changing the
coupling strength.

7.1 Proposed network topology

In Chapter 4 it is observed that when k nodes are coupled in a bidirectional ring, where k is an
odd number, the phase difference between the output of certain nodes is equally shifted 2π

k . Hence
the desired phase difference between the actuators can be controlled by choosing the number of
nodes within the ring, where the only restriction is that k is odd and k ≥ 3.

The direction of the wave in a ring network is still unknown since it depends on the initial condi-
tion. However it is observed that the direction can be influenced by changing the topology from
a bidirectional network to an unidirectional network. The direction of the coupling between the
nodes determines the direction of the waveform. The direction of the wave can be easily changed
by taking the transposed of the coupling matrix Γ0. With an unidirectional network stability is
not guaranteed, since it is not proven. However the behavior of the network is very similar to a
bidirectional network. It is assumed that it can be proven to be ultimately bounded by using the
same or maybe some additional conditions as in Chapter 3.2.

When it is desired that there is more than one waveform present in the linear peristaltic pump,
more outputs than nodes are required. There are two options to solve this problem. Multiple to-
pologies could be combined as described in Chapter 4.5. The disadvantage is that it takes longer
before the networks reaches its periodic solution. Furthermore the proposed prototype of the pump
uses a real-time simulator. Simulating a larger network will also effect the required computational
power. The second option is duplicating the output signals of the network as reference or control
signal for the other actuators, which requires no extra computational power of the real-time simu-
lator. Therefore duplicating the outputs of the network is the proposed solution for the prototype.
This solution could also be used in the final design. However when modularity is desired and
slow convergence to the periodic solution is allowed. Than the combined network with multiple
unidirectional rings coupled in a bidirectional ring can be used. The number of repetitions of the
unidirectional ring must be two times the required number of present waveforms. Only the rings
which are inphase with the first ring can be used to control the actuators.

The use of line networks is discouraged since the phase difference between nodes is not uniformly
spread. When the phase difference between all nodes is the same, the output of the network can
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be directly used to drive actuators equally spaced along the channel. When the phase difference
is not equal, it is harder to create the peristaltic motion and therefore not recommended.

7.2 Proposed output configuration

As mentioned before, the phase difference between certain nodes in a ring network can be determ-
ined by selecting the number of nodes in the network. The phase difference between node j and
j + 2 equals 2π

k , which also holds for the nodes k − 1 and 1. Therefore the first actuator is linked
to the first node of the ring and the second actuator to the third node and so on, until all the
odd nodes are linked to the actuators. Then the next actuator is linked to the second node, the
following actuator to the fourth node and so on until all even nodes are linked. When all nodes are
linked to the actuators the signal can be duplicated and distributed over the remaining actuators
by using the same pattern. A visual representation for a network with k = 5 is given in Figure 24.
The other solution is by creating a combined network with an even number of repetitions. The
distribution of the signals from the nodes to the actuators is the same. However only the nodes
in the rings which are in-phase with the first ring are used.

1

3

5

2

4

actuator controller
with node dynamics

strut

flexible channel

actuator

actuator control signal

network coupling

Figure 24: The architecture design of the linear peristaltic pump with the control network.

The outputs of the nodes are linked to the actuators, but the signal is not useful yet. The max-
imum amplitude of the output is depending on many different variables, such as the topology, the
distance to the bifurcation point and the dynamics of the network. Therefore the output should
be normalized such that the amplitude of the wave is always the same.

It is assumed that the network creates a trajectory for the wall or a pressure profile. The most
convenient is to only compress the channel, where 0 means that it is in rest and a positive value
means compression. The current output signals switches sign, while it is desired that there is only
a positive value. The bias of the signal is 0, therefore the output is given a certain offset.

To study the flow of the linear peristaltic pump it can be useful to change the compression rate.
Therefore the most idealized output from the network is 0 ≤ yj ≤ 1, such that it can be multiplied
with the desired compression rate c. Therefore the new output signal ȳj can be expressed as

ȳj =
c

2

(
yj

max(yj)
+ 1

)
. (22)

An example of the signal can be viewed at https://youtu.be/m4yFdW7tmxs, where the signal is
also mirrored to give a better insight in the channel deformation. Another possibility is to take
the absolute value of the signal instead of adding an offset.

ȳj = c

∣∣∣∣ yj
max(yj)

∣∣∣∣ (23)
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7 PROPOSED CONTROLLER DESIGN

An example of the signal is at https://youtu.be/D8OMzF7Thxg, which creates another type of
compression and doubles the frequency.

The recommended signal modification is depending on the desired profile and needs further re-
search.
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8 Outlook

8.1 Conclusion

The goal of the project was to find an application of pattern generation in diffusive networks
within linear peristaltic pumping.

8.1.1 The control parameters of the diffusive network

The desired control parameters for a linear peristaltic pump are the direction of the wave; phase
difference between the actuation points; the actuation frequency; and the amplitude. The used
topology to create the reference or control signal is an unidirectional ring with an odd number of
nodes.

The direction of the wave is the same direction as the applied coupling within the unidirectional
ring topology. Therefore the direction can be changed by changing the coupling direction, which
is the same as taking the transposed of the coupling matrix Γ.

The phase difference between the actuation points can be controlled by changing the number
of nodes k. The phase difference between the output signals of node j and j + 2 and between
node k and 2 is 2π

k . The only restriction to create this phase difference is that the number of
nodes k is an odd number. Choosing an even number, will give a phase difference of 0 between the
output signals of node j and j+2 and a phase difference of π between the output of node j and j+1.

The actuation frequency can be estimated when the coupling strength γ is chosen close to the
Hopf bifurcation of the closed loop linear system.

The amplitude of the signal is depending on many different parameters such as the coupling
strength and the node dynamics. To control this parameter the output should be normalized and
multiplied with a gain factor such that the desired amplitude is achieved.

The only disadvantage of the unidirectional ring network topology is, that it has not been proven
to be oscillatory in the sense of Yakubovich. However it is assumed that it is possible to prove since
the outcome of the simulations are very similar to the outcomes of the bidirectional ring, which
are proven to be oscillatory in the sense of Yakubovich for a sufficiently large coupling strength.

8.1.2 The design of the linear peristaltic pump

The diffusive network as a controller or reference generator for the linear peristaltic pump, can be
realized in two different ways depending on the application. For prototyping proposes the network
outputs can be created by using a real-time simulation with hardware in the loop. With this solu-
tion different dynamics can be easily used to test or validate the effect on the flow rate of the pump.

The second solution, with the focus on more industrial applications, is to create the network by
using electronics. The circuit with the node dynamics could be implemented within the actuator
circuit.

8.2 Recommendations

It is shown that an unidirectional ring network creates a wave-like pattern and how it can be
influenced by changing the topology or coupling direction. However the shape of the wave-like
pattern is mainly depending on the dynamics of the nodes. The effect of pole and zero placement
of the linear feedback is studied within this report. The effect of the nonlinear feedback is not
examined, but can have an additional influence on the wave-form. Therefore it is recommended
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to do further investigation on the effect of the node dynamics on the waveform since it is not yet
known how to create the desired waveform.

Furthermore it is recommended to build a prototype by using the real-time simulator, such that
it is possible to test the effect of different network dynamics on the flow rate easily.
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A MATLAB SCRIPT FOR THE SIMULATION OF A NETWORK WITH ONE TOPOLOGY

A MATLAB script for the simulation of a network with one
topology

1 %% General Information
2 % Title: Simulation and Analysis of Simple Networks
3 % Author: R.J.R. van Kampen
4 % Date: 23-09-2016
5 clear all; clc;
6 %% General User Settings
7 % Number of nodes k
8 k = 19;
9 % Poles and Zeros of the Matrix A (if A is not standard)

10 Poles = [-1, -1+1j, -1-1j];
11 Zeros = [1+j, 1+j];
12

13 % Network Topology:
14 % 1) Bidirectional Ring
15 % 2) Bidirectional Line
16 % 3) Unidirectional Ring
17 % 4) Unidirectional Line
18 Topology = 3;
19 % Unidirectional Direction ('r' or 'l')
20 dir = 'r';
21 % Distance from bifurcation point in terms of a.
22 Efac = 1.2;
23 % Oscilation Frequency Multiplier
24 Kf = 1;
25

26 % Simulation Timespan
27 TspanSim = [0 10.1e3];
28

29 % Visualisation Options (off = 0, on = 1)
30 Plt.ClosePrevPlts = 1;
31 Plt.Frequency = 1;
32 Plt.Normal Full = 1;
33 Plt.Normal Short = 1;
34 Plt.Interactive = 0;
35 Plt.Animation = 0;
36

37 % Analysis Timespan
38 TspanAn = [max(TspanSim)-100,max(TspanSim)];
39 % Interpolation stepsize
40 fs interp = 1e-3;
41 % Interactive Visualisation Stepsize
42 fs vis = 1e-3;
43

44 % Animation Settings:
45 fps = 30;
46 Speed = 2.5;
47 %% Create All System Parameters
48 % System Parameters
49 A = [1 -1 1; 1 0 0; -4 2 -3]; % Standard System
50 % [A, bif] = PZPofA(Poles,Zeros);
51 A = Kf*A;
52 B = Kf*[0 0 1].';
53 C = [0 0 1];
54 P = lyap(A.',eye(size(A)));
55 Z = B.'*P;
56

57 % Create Coupling Matrix
58 G = CreateSimpleCouplingMatrix(k,Topology,dir);
59 % Compute eigenvalues and correspoding eigenvectors
60 [eigV,eigL] = eig(G);
61 eigL = diag(eigL);
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62

63 % Compute Bifurcation Point
64 a = (sqrt(13)-1)/2; % Standard System
65 % a = bif;
66 min gamma = a/max(real(eigL));
67 f osc ther = max(imag(eig(A-min gamma*B*C)))/2/pi;
68 %% Simulation
69 x0 = [];
70 for ii = 1:k
71 x0 = [x0; [0 0 (-1)ˆ(ii-1)*0.1].'];
72 end
73

74 % Solving ODE:
75 Options = odeset('RelTol',1e-4,'AbsTol',1e-6);
76 Gsim = Efac*min gamma*G;
77 tic
78 [T,X] = ode45(@(t,x)dxSimpleNetwork(t,x,A,B,C,Z,Gsim,k),TspanSim, x0, Options);
79 Y = (kron(eye(k),C)*X.').';
80 toc
81 %% Post Processing
82 % Interpolation
83 Tn = min(TspanAn):fs interp:max(TspanAn);
84 samplePoints = {T,1:k};
85 F = griddedInterpolant(samplePoints,Y,'spline');
86 queryPoints = {Tn,1:k};
87 Yn = F(queryPoints);
88

89 % Frequency Analysis
90 nfft = 2ˆnextpow2(length(Tn));
91 Freq = (1/fs interp)/2*linspace(0,1,nfft/2+1);
92

93 Yf = fft(Yn,nfft)/length(Tn);
94

95 abs Yf = 2*abs(Yf(1:nfft/2+1,:));
96 [f osc sim,idx] = max(abs Yf);
97 f osc sim = Freq(idx(1));
98

99 fprintf('---------------------------------------------------------------\n');
100 fprintf('The expected oscilation frequency: \t\t%0.3f Hz\n',f osc ther);
101 if max(Freq(idx))-min(Freq(idx)) < 1e-15
102 fprintf('The simulated oscilation frequency: \t%0.3f Hz\n',f osc sim);
103 else
104 fprintf('There is a difference between the osccilation frequencies\n');
105 fprintf('The ossciliation Frequencies in Hz are');
106 disp(Freq(idx));
107 end
108 fprintf('---------------------------------------------------------------\n');
109

110 % Phase difference Analysis
111 order = [1:2:k,2:2:k];
112 phase diff2 = angle(Yn(end,:))/pi;
113 for ii = 1:k-1
114 phase diff(ii) =...
115 acos(dot(Yn(:,order(ii)),Yn(:,order(ii+1)))/(norm(Yn(:,order(ii)))...
116 *norm(Yn(:,order(ii+1)))))./pi;
117 fprintf('The phase difference between node %d and %d is: \t 2*pi/ %0.4f\n',...
118 [order(ii),order(ii+1),2/phase diff(ii)])
119 end
120 fprintf('---------------------------------------------------------------\n');
121

122 % Plots
123 if Plt.ClosePrevPlts == 1
124 close all;
125 end
126 if Plt.Frequency == 1
127 figure('name','Single-sided amplitude spectrum of signal y','numbertitle','off')
128 semilogx(Freq,abs Yf); grid on;
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129 title('Single-Sided Amplitude Spectrum of $y i(t)$','Interpreter','latex');
130 xlabel('Frequency [Hz]','Interpreter','Latex');
131 ylabel('$ |Y(f) |$','Interpreter','Latex');
132 end
133 if Plt.Normal Full == 1
134 figure('name','Simulation result from begin to end','numbertitle','off')
135 low prim = min(factor(k));
136 plot(T,Y(:,1:low prim),'linewidth',1.5); hold on;
137 plot(T,Y(:,low prim:end)); grid on;
138 xlabel('$t$','Interpreter','latex'); ylabel('$y$','Interpreter','latex');
139 if Topology == 1
140 title(['A ring of ',num2str(k),' bidirectional coupled systems with ...

$\gamma =$ ',num2str(Efac),'a'],'Interpreter','latex')
141 elseif Topology == 2
142 title(['A line of ',num2str(k),' bidirectional coupled systems with ...

$\gamma =$ ',num2str(Efac),'a'],'Interpreter','latex')
143 elseif Topology == 3
144 title(['A ring of ',num2str(k),' unidirectional coupled systems with ...

$\gamma =$ ',num2str(Efac),'a'],'Interpreter','latex')
145 elseif Topology == 4
146 title(['A line of ',num2str(k),' unidirectional coupled systems with ...

$\gamma =$ ',num2str(Efac),'a'],'Interpreter','latex')
147 end
148 end
149 if Plt.Normal Short == 1
150 figure('name','Simulation result on analysis interval','numbertitle','off')
151 low prim = min(factor(k));
152 plot(Tn,Yn(:,1:low prim),'linewidth',1.5); hold on;
153 plot(Tn,Yn(:,low prim:end)); grid on;
154 xlabel('$t$','Interpreter','latex'); ylabel('$y$','Interpreter','latex');
155 if Topology == 1
156 title(['A ring of ',num2str(k),' bidirectional coupled systems with ...

$\gamma =$ ',num2str(Efac),'a'],'Interpreter','latex')
157 elseif Topology == 2
158 title(['A line of ',num2str(k),' bidirectional coupled systems with ...

$\gamma =$ ',num2str(Efac),'a'],'Interpreter','latex')
159 elseif Topology == 3
160 title(['A ring of ',num2str(k),' unidirectional coupled systems with ...

$\gamma =$ ',num2str(Efac),'a'],'Interpreter','latex')
161 elseif Topology == 4
162 title(['A line of ',num2str(k),' unidirectional coupled systems with ...

$\gamma =$ ',num2str(Efac),'a'],'Interpreter','latex')
163 end
164 end
165 if Plt.Interactive == 1
166 Interactive Network Plotter(T,Y,Efac*min gamma,TspanAn,fs vis)
167 Interactive Network Plotter FINAL(T,Y,Efac*min gamma,TspanAn,fs vis)
168 end
169 if Plt.Animation == 1
170 NNRP(T,Y,Efac,TspanAn,Speed,fps,1,Topology)
171 NNRP FINAL(T,Y,Efac,TspanAn,Speed,fps)
172 end
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B MATLAB script for the simulation of a network with
combined topologies

1 %% General Information
2 % Title: Simulation and Analysis of Advanced Networks
3 % Author: R.J.R. van Kampen
4 % Date: 26-09-2016
5 clear all; clc;
6 %% General User Settings
7 % Number of nodes k
8 k = 5;
9 % Number of Ring Repetitions

10 q = 4;
11 % Poles and Zeros of the Matrix A (if A is not standard)
12 Poles = [-1, -1+1j, -1-1j];
13 Zeros = [1+j, 1+j];
14

15 % Network Topology:
16 % 1) Bidirectional Rings coupled in a Bidirectional Ring
17 % 2) Bidirectional Rings coupled in a Bidirectional Line
18 % 3) Unidirectional Rings coupled in a Bidirectional Ring
19 % 4) Unidirectional Rings coupled in a Bidirectional Line
20 Topology = 3;
21 % Unidirectional Direction ('r' or 'l')
22 dir = 'r';
23 % Distance from bifurcation point in terms of a.
24 Efac = 1.2;
25 % Oscilation Frequency Multiplier
26 Kf = 1;
27

28 % Simulation Timespan
29 TspanSim = [0 30.1e3];
30

31 % Visualisation Options (off = 0, on = 1)
32 Plt.ClosePrevPlts = 1;
33 Plt.Frequency = 1;
34 Plt.Normal Full = 1;
35 Plt.Normal Short = 1;
36 Plt.Interactive = 0;
37 Plt.Animation = 0;
38

39 % Analysis Timespan Ow
40 TspanAn = [max(TspanSim)-100,max(TspanSim)];
41 % Interpolation stepsize
42 fs interp = 1e-3;
43 % Interactive Visualisation Stepsize
44 fs vis = 1e-3;
45

46 % Animation Settings:
47 fps = 30;
48 Speed = 2.5;
49 %% Create All System Parameters
50 % System Parameters
51 A = [1 -1 1; 1 0 0; -4 2 -3]; % Standard System
52 % [A, bif] = PZPofA(Poles,Zeros);
53 A = Kf*A;
54 B = Kf*[0 0 1].';
55 C = [0 0 1];
56 P = lyap(A.',eye(size(A)));
57 Z = B.'*P;
58

59 % Create Coupling Matrix
60 [Gs, Gc] = CreateAdvancedCouplingMatrix(k,q,Topology,dir);
61 % Compute eigenvalues and correspoding eigenvectors
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62 [eigV,eigL] = eig(Gs);
63 eigL = diag(eigL);
64

65 % Compute Bifurcation Point
66 a = (sqrt(13)-1)/2; % Standard System
67 % a = bif;
68 min gamma = a/max(real(eigL));
69 f osc ther = max(imag(eig(A-min gamma*B*C)))/2/pi;
70 %% Simulation
71 x0 = [];
72 for ii = 1:k*q
73 x0 = [x0; [0 0 (-1)ˆ(ii-1)*0.1].'];
74 end
75

76 % Solving ODE:
77 Options = odeset('RelTol',1e-4,'AbsTol',1e-6);
78 Gsim = Efac*min gamma*Gc;
79 tic
80 [T,X] = ode45(@(t,x)dxSimpleNetwork(t,x,A,B,C,Z,Gsim,k*q),TspanSim, x0, Options);
81 Y = (kron(eye(k*q),C)*X.').';
82 toc
83 %% Post Processing
84 % Interpolation
85 Tn = min(TspanAn):fs interp:max(TspanAn);
86 samplePoints = {T,1:k*q};
87 F = griddedInterpolant(samplePoints,Y,'spline');
88 queryPoints = {Tn,1:k*q};
89 Yn = F(queryPoints);
90

91 % Frequency Analysis
92 nfft = 2ˆnextpow2(length(Tn));
93 Freq = (1/fs interp)/2*linspace(0,1,nfft/2+1);
94

95 Yf = fft(Yn,nfft)/length(Tn);
96

97 abs Yf = 2*abs(Yf(1:nfft/2+1,:));
98 [f osc sim,idx] = max(abs Yf);
99 f osc sim = Freq(idx(1));

100

101 fprintf('-------------------------------------------------\n');
102 fprintf('The expected oscilation frequency: \t\t%0.3f Hz\n',f osc ther);
103 if max(Freq(idx))-min(Freq(idx)) < 1e-15
104 fprintf('The simulated oscilation frequency: \t%0.3f Hz\n',f osc sim);
105 else
106 fprintf('There is a difference between the osccilation frequencies\n');
107 fprintf('The ossciliation Frequencies in Hz are');
108 disp(Freq(idx));
109 end
110 fprintf('-------------------------------------------------\n');
111

112 % FFT plot
113 if Plt.ClosePrevPlts == 1
114 close all;
115 end
116 if Plt.Frequency == 1
117 figure('name','Single-sided amplitude spectrum of signal y','numbertitle','off')
118 semilogx(Freq,abs Yf); grid on;
119 title('Single-Sided Amplitude Spectrum of $y i(t)$','Interpreter','latex');
120 xlabel('Frequency [Hz]','Interpreter','Latex');
121 ylabel('$ |Y(f) |$','Interpreter','Latex');
122 end
123 if Plt.Normal Full == 1
124 figure('name','Simulation result from begin to end','numbertitle','off')
125 low prim = min(factor(k));
126 plot(T,Y(:,1:low prim),'linewidth',1.5); hold on;
127 plot(T,Y(:,low prim:end)); grid on;
128 xlabel('$t$','Interpreter','latex'); ylabel('$y$','Interpreter','latex');
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129 switch Topology
130 case 1
131 title({[num2str(q),' Bidirectional Rings with ', num2str(k),'-nodes ...

coupled in a Bidirectional Ring',...
132 ',\quad$\gamma =$ ',num2str(Efac),'a']},'Interpreter','latex');
133 case 2
134 title({[num2str(q),' Bidirectional Rings with ', num2str(k),'-nodes ...

coupled in a Bidirectional Line',...
135 ',\quad$\gamma =$ ',num2str(Efac),'a']},'Interpreter','latex');
136 case 3
137 title({[num2str(q),' Unidirectional Rings with ', num2str(k),'-nodes ...

coupled in a Bidirectional Ring',...
138 ',\quad$\gamma =$ ',num2str(Efac),'a']},'Interpreter','latex');
139 case 4
140 title({[num2str(q),' Unidirectional Rings with ', num2str(k),'-nodes ...

coupled in a Bidirectional Line',...
141 ',\quad$\gamma =$ ',num2str(Efac),'a']},'Interpreter','latex');
142 end
143 end
144 if Plt.Normal Short == 1
145 figure('name','Simulation result on analysis interval','numbertitle','off')
146 low prim = min(factor(k));
147 plot(Tn,Yn(:,1:low prim),'linewidth',1.5); hold on;
148 plot(Tn,Yn(:,low prim:end)); grid on;
149 xlabel('$t$','Interpreter','latex'); ylabel('$y$','Interpreter','latex');
150 switch Topology
151 case 1
152 title({[num2str(q),' Bidirectional Rings with ', num2str(k),'-nodes ...

coupled in a Bidirectional Ring',...
153 ',\quad$\gamma =$ ',num2str(Efac),'a']},'Interpreter','latex');
154 case 2
155 title({[num2str(q),' Bidirectional Rings with ', num2str(k),'-nodes ...

coupled in a Bidirectional Line',...
156 ',\quad$\gamma =$ ',num2str(Efac),'a']},'Interpreter','latex');
157 case 3
158 title({[num2str(q),' Unidirectional Rings with ', num2str(k),'-nodes ...

coupled in a Bidirectional Ring',...
159 ',\quad$\gamma =$ ',num2str(Efac),'a']},'Interpreter','latex');
160 case 4
161 title({[num2str(q),' Unidirectional Rings with ', num2str(k),'-nodes ...

coupled in a Bidirectional Line',...
162 ',\quad$\gamma =$ ',num2str(Efac),'a']},'Interpreter','latex');
163 end
164 end
165

166 if Plt.Interactive == 1
167 Interactive Advanced Network Plotter(T,Y,k,q,Efac*min gamma,TspanAn,fs vis);
168 Interactive Network Plotter(T,Y,Efac,TspanAn,fs vis)
169 Interactive Network Plotter FINAL(T,Y,Efac*min gamma,TspanAn,fs vis)
170 end
171 if Plt.Animation == 1
172 NNRP(T,Y,Efac,TspanAn,Speed,fps,2,[Topology,k,q])
173 NNRP FINAL(T,Y,Efac,TspanAn,Speed,fps)
174 end
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C MATLAB functions used in the simulations scripts

C.1 Create Advanced Coupling Matrix

1 %% General Information
2 % Title: Create Advanced Copuling Matrix
3 % Author: R.J.R. van Kampen
4 % Date: 26-09-2016
5 % Info: k: Number of nodes in the network
6 % T: Topology of the Network
7 % 1) Bidirectional Rings coupled in a Bidirectional Ring
8 % 2) Bidirectional Rings coupled in a Bidirectional Line
9 % 3) Unidirectional Rings coupled in a Bidirectional Ring

10 % 4) Unidirectional Rings coupled in a Bidirectional Line
11 %%
12 function [Gs, Gc] = CreateAdvancedCouplingMatrix(k,q,T,dir)
13 if nargin ≤ 3
14 dir = 'r';
15 end
16 % Bidirectional Rings coupled in a Bidirectional Ring
17 if T == 1
18 if k == 2
19 Gs = eye(k,k);
20 else
21 Gs = 2*eye(k,k);
22 end
23 Gs(k,1) = -1;
24 Gs(1,k) = -1;
25 for ii = 1:k-1
26 Gs(ii+1,ii) = -1;
27 Gs(ii,ii+1) = -1;
28 end
29 Gc = zeros(q*k);
30 for ii = 1:q
31 row = ((ii-1)*k+1):(ii*k);
32 col = ((ii-1)*k+1):(ii*k);
33 if ii 6 q
34 Gc(row,col) = Gs + 2*eye(k);
35 Gc(row+k,col) = -eye(k);
36 Gc(row,col+k) = -eye(k);
37 else
38 Gc(row,col) = Gs + 2*eye(k);
39 Gc(1:k,col) = -eye(k);
40 Gc(row,1:k) = -eye(k);
41 end
42 end
43 % Bidirectional Rings coupled in a Bidirectional Line
44 elseif T == 2
45 if k == 2
46 Gs = eye(k,k);
47 else
48 Gs = 2*eye(k,k);
49 end
50 Gs(k,1) = -1;
51 Gs(1,k) = -1;
52 for ii = 1:k-1
53 Gs(ii+1,ii) = -1;
54 Gs(ii,ii+1) = -1;
55 end
56 Gc = zeros(q*k);
57 for ii = 1:q
58 row = ((ii-1)*k+1):(ii*k);
59 col = ((ii-1)*k+1):(ii*k);
60 if ii == 1 | | ii == q
61 Gc(row,col) = Gs + eye(k);
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62 if ii 6 q
63 Gc(row+k,col) = -eye(k);
64 Gc(row,col+k) = -eye(k);
65 end
66 else
67 Gc(row,col) = Gs + 2*eye(k);
68 Gc(row+k,col) = -eye(k);
69 Gc(row,col+k) = -eye(k);
70 end
71 end
72 % Unidirectional Rings coupled in a Bidirectional Ring
73 elseif T == 3
74 Gs = eye(k,k);
75 Gs(k,1) = -1;
76 for ii = 1:k-1
77 Gs(ii,ii+1) = -1;
78 end
79 if dir == 'l'
80 Gs = Gs.';
81 end
82 Gc = zeros(q*k);
83 for ii = 1:q
84 row = ((ii-1)*k+1):(ii*k);
85 col = ((ii-1)*k+1):(ii*k);
86 if ii 6 q
87 Gc(row,col) = Gs + 2*eye(k);
88 Gc(row+k,col) = -eye(k);
89 Gc(row,col+k) = -eye(k);
90 else
91 Gc(row,col) = Gs + 2*eye(k);
92 Gc(1:k,col) = -eye(k);
93 Gc(row,1:k) = -eye(k);
94 end
95 end
96 % Unidirectional Rings coupled in a Bidirectional Line
97 elseif T == 4
98 Gs = eye(k,k);
99 Gs(k,1) = -1;

100 for ii = 1:k-1
101 Gs(ii+1,ii) = -1;
102 Gs(ii,ii+1) = -1;
103 end
104 if dir == 'l'
105 Gs = Gs.';
106 end
107 Gc = zeros(q*k);
108 for ii = 1:q
109 row = ((ii-1)*k+1):(ii*k);
110 col = ((ii-1)*k+1):(ii*k);
111 if ii == 1 | | ii == q
112 Gc(row,col) = Gs + eye(k);
113 if ii 6 q
114 Gc(row+k,col) = -eye(k);
115 Gc(row,col+k) = -eye(k);
116 end
117 else
118 Gc(row,col) = Gs + 2*eye(k);
119 Gc(row+k,col) = -eye(k);
120 Gc(row,col+k) = -eye(k);
121 end
122 end
123 end
124 end
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C.2 Create Simple Coupling Matrix

1 %% General Information
2 % Title: Create Simple Copuling Matrix
3 % Author: R.J.R. van Kampen
4 % Date: 23-09-2016
5 % Info: k: Number of nodes in the network
6 % T: Topology of the Network
7 % 1) Bidirectional Ring
8 % 2) Bidirectional Line
9 % 3) Unidirectional Ring

10 %%
11 function G = CreateSimpleCouplingMatrix(k,T,dir)
12 if nargin < 3
13 dir = 'r';
14 end
15 % Bidirectional Ring
16 if T == 1
17 if k == 2
18 G = eye(k,k);
19 else
20 G = 2*eye(k,k);
21 end
22 G(k,1) = -1;
23 G(1,k) = -1;
24 for ii = 1:k-1
25 G(ii+1,ii) = -1;
26 G(ii,ii+1) = -1;
27 end
28 % Bidirecitonal Line
29 elseif T == 2
30 G = 2*eye(k,k);
31 G(1,1) = 1; G(k,k) = 1;
32 for ii = 1:k
33 if ((ii 6 1) && (ii 6 k))
34 G(ii,ii-1) = -1;
35 G(ii,ii+1) = -1;
36 elseif ii (ii == 1)
37 G(ii,ii+1) = -1;
38 elseif ii (ii == k)
39 G(ii,ii-1) = -1;
40 end
41 end
42 % Unidirectional Ring
43 elseif T == 3
44 G = eye(k,k);
45 G(k,1) = -1;
46 for ii = 1:k-1
47 G(ii,ii+1) = -1;
48 end
49 if dir == 'l'
50 G = G.';
51 end
52 % Unidirectional Line
53 elseif T == 4
54 G = eye(k,k);
55 for ii = 1:k-1
56 G(ii,ii+1) = -1;
57 end
58 if dir == 'l'
59 G = G.';
60 end
61 end
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C.3 dxSimpleNetwork

1 %% General Information
2 % Title: dx Simple Network
3 % Author: R.J.R. van Kampen
4 % Date: 23-09-2016
5 %%
6 function dx = dxSimpleNetwork(t,x,A,B,C,Z,G,k);
7 if k < 50 % Is faster for smaller networks
8 I = eye(k);
9 dx = kron(I,A)*x + kron(I,B)*(((-G)*kron(I,C)*x)-(kron(I,Z)*x).ˆ3);

10 else
11 y = [];
12 for jj = 0:k-1
13 xj{jj+1} = x((jj*3+1):(jj*3+3));
14 zj{jj+1} = Z*xj{jj+1};
15 y = [y; C*xj{jj+1}];
16 end
17 u = -G*y;
18 dx = [];
19 for jj = 1:k
20 dx = [dx; A*xj{jj}+B*(u(jj)-zj{jj}ˆ3)];
21 end
22 end

44 An application of pattern generation in diffusive networks:
The linear peristaltic pump



C MATLAB FUNCTIONS USED IN THE SIMULATIONS SCRIPTS

C.4 Interactive Advanced Network Plotter

1 %% General Information
2 % Title: Interactive Advance Network Plotter
3 % Author: R.J.R. van Kampen
4 % Date: 26-09-2016
5 %%
6 function Interactive Advanced Network Plotter(T,Y,k,q,gamma,Tspan,StepSize)
7 %% Input error Messages
8 if max(Tspan) > max(T)
9 error('MyComponent:InvalidInput','Error. \nVideo time is longer then ...

simulation time.');
10 end
11 if min(Tspan) < 0
12 error('MyComponent:InvalidInput','Error. \nTime cannot be negative.');
13 end
14 %% Interpolation
15 % Set new time vector
16 Tn = (min(Tspan):StepSize:max(Tspan)).';
17 % Interpolation of signals
18 for ii = 1:k*q
19 Yn(:,ii) = interp1(T,Y(:,ii),Tn);
20 end
21 %% Create Figure Layout
22 fig = figure('name','Interactive Network Plotter',...
23 'numbertitle','off',...
24 'Position',[100, 100, 1280, 720],...
25 'DockControls','on',...
26 'MenuBar','none',...
27 'Toolbar','figure',...
28 'Units','normalized',...
29 'Resize','on',...
30 'Visible','on');
31

32 % find number of subplots
33 row = 1; col = 1;
34 while (row*col < q)
35 if row ≤ col
36 row = row + 1;
37 else
38 col = col + 1;
39 end
40 end
41 for ii=0:q-1
42 subplot(row,col,ii+1)
43 graph{ii+1} = stem(Yn(1,ii*k+1:(ii+1)*k));
44 xlim([0, k+1]); ylim([floor(min(min(Yn))),ceil(max(max(Yn)))]);
45 xlabel('Nodes','Interpreter','latex'); ylabel('$y$','Interpreter','latex');
46 grid on;
47 title(['Network group ',num2str(ii+1)],...
48 'Interpreter','Latex');
49 end
50 slid = uicontrol('Style','slider',...
51 'Units','normalized',...
52 'Position',[0.05 0.02 0.9 0.025],...
53 'Value',min(Tn),...
54 'Min',min(Tn),...
55 'Max',max(Tn),...
56 'SliderStep',[StepSize,StepSize*10],...
57 'Callback',@SliderValueChanged);
58

59 txtl = uicontrol('Style','text',...
60 'Units','normalized',...
61 'Position',[0.015 0.0225 0.03 0.02],...
62 'FontSize',9,...
63 'HorizontalAlignment','right',...
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64 'String',num2str(min(Tn)));
65 txtr = uicontrol('Style','text',...
66 'Units','normalized',...
67 'Position',[0.95 0.0225 0.03 0.02],...
68 'FontSize',9,...
69 'HorizontalAlignment','left',...
70 'String',num2str(max(Tn)));
71 txtc = uicontrol('Style','text',...
72 'Units','normalized',...
73 'Position',[0.40 0.045 0.2 0.03],...
74 'FontUnits','normalized',...
75 'FontSize',0.65,...
76 'HorizontalAlignment','center',...
77 'String',['T = ',num2str(min(Tn),'%10.3f')]);
78 uistack(txtc,'bottom');
79

80 function SliderValueChanged(source,callbackdata)
81 [mi idx] = min(abs(Tn-source.Value));
82 for ii = 0:q-1
83 set(graph{ii+1},'YData',Yn(idx,ii*k+1:(ii+1)*k));
84 drawnow;
85 end
86 set(txtc,'String',['T = ',num2str(min(Tn(idx)),'%10.3f')])
87 end
88 end
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C.5 Interactive Network Plotter

1 %% General Information
2 % Title: Interactive Network Plotter
3 % Author: R.J.R. van Kampen
4 % Date: 23-09-2016
5 %%
6 function Interactive Network Plotter(T,Y,gamma,Tspan,StepSize)
7 k = size(Y,2);
8 %% Input error Messages
9 if max(Tspan) > max(T)

10 error('MyComponent:InvalidInput','Error. \nVideo time is longer then ...
simulation time.');

11 end
12 if min(Tspan) < 0
13 error('MyComponent:InvalidInput','Error. \nTime cannot be negative.');
14 end
15 %% Interpolation
16 % Set new time vector
17 Tn = (min(Tspan):StepSize:max(Tspan)).';
18 % Interpolation of signals
19 for ii = 1:k
20 Yn(:,ii) = interp1(T,Y(:,ii),Tn);
21 end
22 %% Create Figure Layout
23 fig = figure('name','Interactive Network Plotter',...
24 'numbertitle','off',...
25 'Position',[100, 100, 1280, 720],...
26 'DockControls','on',...
27 'MenuBar','none',...
28 'Toolbar','figure',...
29 'Units','normalized',...
30 'Resize','on',...
31 'Visible','on');
32

33 ax = axes('Position',[0.05 0.20 0.9 0.75],...
34 'Units','normalized',...
35 'Box','on');
36

37 graph = stem(Yn(1,:));
38 xlim([0, k+1]); ylim([floor(min(min(Yn))),ceil(max(max(Yn)))]);
39 xlabel('Nodes','Interpreter','latex'); ylabel('$y$','Interpreter','latex');
40 grid on;
41 title(['A network of ',num2str(k),' diffusively coupled system with $\gamma ...

= $',num2str(gamma)],...
42 'Interpreter','latex')
43

44 slid = uicontrol('Style','slider',...
45 'Units','normalized',...
46 'Position',[0.05 0.02 0.9 0.025],...
47 'Value',min(Tn),...
48 'Min',min(Tn),...
49 'Max',max(Tn),...
50 'SliderStep',[StepSize,StepSize*10],...
51 'Callback',@SliderValueChanged);
52

53 txtl = uicontrol('Style','text',...
54 'Units','normalized',...
55 'Position',[0.008 0.0225 0.04 0.02],...
56 'FontSize',9,...
57 'HorizontalAlignment','right',...
58 'String',num2str(min(Tn)));
59 txtr = uicontrol('Style','text',...
60 'Units','normalized',...
61 'Position',[0.95 0.0225 0.05 0.02],...
62 'FontSize',9,...
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63 'HorizontalAlignment','left',...
64 'String',num2str(max(Tn)));
65 txtc = uicontrol('Style','text',...
66 'Units','normalized',...
67 'Position',[0.05 0.04 0.9 0.05],...
68 'FontSize',12,...
69 'HorizontalAlignment','center',...
70 'String',['T = ',num2str(min(Tn),'%10.3f')]);
71

72

73 function SliderValueChanged(source,callbackdata)
74 [mi idx] = min(abs(Tn-source.Value));
75 set(graph,'YData',Yn(idx,:));
76 set(txtc,'String',['T = ',num2str(min(Tn(idx)),'%10.3f')])
77 drawnow;
78 end
79 end
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C.6 Final Interactive Network Plotter

1 %% General Information
2 % Title: Interactive Network Plotter
3 % Author: R.J.R. van Kampen
4 % Date: 23-09-2016
5 %%
6 function Interactive Network Plotter FINAL(T,Y,gamma,Tspan,StepSize)
7 k = size(Y,2);
8 %% Input error Messages
9 if max(Tspan) > max(T)

10 error('MyComponent:InvalidInput','Error. \nVideo time is longer then ...
simulation time.');

11 end
12 if min(Tspan) < 0
13 error('MyComponent:InvalidInput','Error. \nTime cannot be negative.');
14 end
15 %% Interpolation
16 % Set new time vector
17 Tn = (min(Tspan):StepSize:max(Tspan)).';
18 % Interpolation of signals
19 for idx = 1:k
20 Yn(:,idx) = interp1(T,Y(:,idx),Tn);
21 end
22 %% Create Figure Layout
23 fig = figure('name','Interactive Network Plotter',...
24 'numbertitle','off',...
25 'Position',[100, 100, 1280, 720],...
26 'DockControls','on',...
27 'MenuBar','none',...
28 'Toolbar','figure',...
29 'Units','normalized',...
30 'Resize','on',...
31 'Visible','on');
32

33 ax = axes('Position',[0.05 0.20 0.9 0.75],...
34 'Units','normalized',...
35 'Box','on');
36

37 graph(1) = stem(0.5*[Yn(1,1:2:end),Yn(1,2:2:end),...
38 Yn(1,1:2:end),Yn(1,2:2:end),...
39 Yn(1,1:2:end),Yn(1,2:2:end),...
40 Yn(1,1:2:end),Yn(1,2:2:end)]/max(Yn(:,1))+0.5,'b'); hold on;
41 graph(2) = stem(-0.5*[Yn(1,1:2:end),Yn(1,2:2:end),...
42 Yn(1,1:2:end),Yn(1,2:2:end),...
43 Yn(1,1:2:end),Yn(1,2:2:end),...
44 Yn(1,1:2:end),Yn(1,2:2:end)]/max(Yn(:,1))-0.5,'r'); hold off;
45 xlim([0, ceil(4*k+1)]); ylim([-1,1]);
46 grid on;
47 xlabel('Nodes','Interpreter','latex'); ylabel('$y$','Interpreter','latex');
48 title(['A network of ',num2str(k),' diffusively coupled system with $\gamma ...

= $',num2str(gamma),'a, duplicate 4 times'],...
49 'Interpreter','latex')
50

51 slid = uicontrol('Style','slider',...
52 'Units','normalized',...
53 'Position',[0.05 0.02 0.9 0.025],...
54 'Value',min(Tn),...
55 'Min',min(Tn),...
56 'Max',max(Tn),...
57 'SliderStep',[StepSize,StepSize*10],...
58 'Callback',@SliderValueChanged);
59

60 txtl = uicontrol('Style','text',...
61 'Units','normalized',...
62 'Position',[0.008 0.0225 0.04 0.02],...
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63 'FontSize',9,...
64 'HorizontalAlignment','right',...
65 'String',num2str(min(Tn)));
66 txtr = uicontrol('Style','text',...
67 'Units','normalized',...
68 'Position',[0.95 0.0225 0.05 0.02],...
69 'FontSize',9,...
70 'HorizontalAlignment','left',...
71 'String',num2str(max(Tn)));
72 txtc = uicontrol('Style','text',...
73 'Units','normalized',...
74 'Position',[0.05 0.04 0.9 0.05],...
75 'FontSize',12,...
76 'HorizontalAlignment','center',...
77 'String',['T = ',num2str(min(Tn),'%10.3f')]);
78

79

80 function SliderValueChanged(source,callbackdata)
81 [mi idx] = min(abs(Tn-source.Value));
82 set(graph(1),'YData',0.5*[Yn(idx,1:2:end),Yn(idx,2:2:end),...
83 Yn(idx,1:2:end),Yn(idx,2:2:end),...
84 Yn(idx,1:2:end),Yn(idx,2:2:end),...
85 Yn(idx,1:2:end),Yn(idx,2:2:end)]./max(Yn(:,1))+0.5);
86 set(graph(2),'Ydata',-0.5*[Yn(idx,1:2:end),Yn(idx,2:2:end),...
87 Yn(idx,1:2:end),Yn(idx,2:2:end),...
88 Yn(idx,1:2:end),Yn(idx,2:2:end),...
89 Yn(idx,1:2:end),Yn(idx,2:2:end)]./max(Yn(:,1))-0.5);
90 set(txtc,'String',['T = ',num2str(min(Tn(idx)),'%10.3f')])
91 drawnow;
92 end
93 end
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C.7 Node Network Response Plotter

1 %% General Information
2 % Title: NNRP (Node Network Response Plotter)
3 % Author: R.J.R. van Kampen
4 % Date: 02-09-2016
5 %% Function
6 function NNRP(T,Y,gamma,Tspan,Speed,fps,Type1,Type2)
7 tic
8 %% Settings and variables
9 % Number of nodes

10 k = size(Y,2);
11 % Default intputs
12 switch nargin
13 case 2
14 Tspan = [min(T),max(T)];
15 Speed = 5;
16 fps = 30;
17 case 3
18 Speed = 5;
19 fps = 30;
20 case 4
21 fps = 30;
22 case 5
23 Type1 = 1;
24 case 6
25 Type2 = k;
26 end
27 %% Input error Messages
28 if max(Tspan) > max(T)
29 error('MyComponent:InvalidInput','Error. \nVideo time is longer then ...

simulation time.');
30 end
31 if min(Tspan) < 0
32 error('MyComponent:InvalidInput','Error. \nTime cannot be negative.');
33 end
34 %% Interpolation
35 % Set new time vector
36 Tn = (min(Tspan):Speed/fps:max(Tspan)).';
37 % Interpolation of signals
38 for ii = 1:k
39 Yn(:,ii) = interp1(T,Y(:,ii),Tn);
40 end
41 %% Create images
42 if Type1 == 1
43 switch Type2
44 case 1
45 Vid = VideoWriter(['Bidirectional Ring Network with ',num2str(k),...
46 '-nodes ', 'gamma=',num2str(gamma),'a'],'Motion JPEG AVI');
47 case 2
48 Vid = VideoWriter(['Bidirectional Line Network with ',num2str(k),...
49 '-nodes ', 'gamma=',num2str(gamma),'a'],'Motion JPEG AVI');
50 case 3
51 Vid = VideoWriter(['Unidirectional Ring Network with ',num2str(k),...
52 '-nodes ', 'gamma=',num2str(gamma),'a'],'Motion JPEG AVI');
53 case 4
54 Vid = ...

VideoWriter(['Unidirectional Line Network with ',num2str(k),...
55 '-nodes ', 'gamma=',num2str(gamma),'a2'],'Motion JPEG AVI');
56 end
57 elseif Type1 == 2
58 switch Type2(1)
59 case 1
60 Vid = VideoWriter([num2str(Type2(3)),'-Bidirectional Rings with ',...
61 num2str(Type2(2)),'-nodes coupled in a Bidirectional Ring ',...
62 'gamma=',num2str(gamma),'a'],'Motion JPEG AVI');
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63 case 2
64 Vid = ...

VideoWriter([num2str(Type2(3)),'-Bidirectional Rings with ',...
65 num2str(Type2(2)),'-nodes coupled in a Bidirectional Line ',...
66 'gamma=',num2str(gamma),'a'],'Motion JPEG AVI');
67 case 3
68 Vid = ...

VideoWriter([num2str(Type2(3)),'-Unidirectional Rings with ',...
69 num2str(Type2(2)),'-nodes coupled in a Bidirectional Ring ',...
70 'gamma=',num2str(gamma),'a'],'Motion JPEG AVI');
71 case 4
72 Vid = ...

VideoWriter([num2str(Type2(3)),'-Unidirectional Rings with ',...
73 num2str(Type2(2)),'-nodes coupled in a Bidirectional Line ',...
74 'gamma=',num2str(gamma),'a'],'Motion JPEG AVI');
75 end
76 end
77

78 Vid.FrameRate = fps;
79 Vid.Quality = 75;
80 open(Vid);
81 figure('name','Simulation of a diffusively coupled ...

network','numbertitle','off','Position',[100, 100, 1280, 720])
82 stem(Yn(ii,:)); grid on;
83 xlim([0, k+1]); ylim([floor(min(min(Yn))),ceil(max(max(Yn)))]);
84

85 if k ≤ 50
86 Nstep = 1;
87 elseif k > 50 & k < 100
88 Nstep = 5;
89 elseif k ≥ 100 & k < 200
90 Nstep = 10;
91 elseif k ≥ 200
92 Nstep = 25;
93 end
94 set(gca,'xtick',0:Nstep:k);
95

96 xlabel('Nodes','Interpreter','latex'); ylabel('$y$','Interpreter','latex');
97 set(gca,'nextplot','replacechildren');
98 for ii = 1:length(Tn)
99 stem(Yn(ii,:));

100 if Type1 == 1
101 switch Type2
102 case 1
103 title({['Bidirectional Ring Network with ',num2str(k),'-nodes'];...
104 ['$\gamma =$ ',num2str(gamma),'a\quad speed = ...

',num2str(Speed),'x\quad $t = $ ...
',num2str(Tn(ii),'%10.3f')]},'Interpreter','latex');

105 case 2
106 title({['Bidirectional Line Network with ',num2str(k),'-nodes'];...
107 ['$\gamma =$ ',num2str(gamma),'a \quad speed = ...

',num2str(Speed),'x\quad $t = $ ...
',num2str(Tn(ii),'%10.3f')]},'Interpreter','latex');

108 case 3
109 title({['Unidirectional Ring Network with ',num2str(k),'-nodes'];...
110 ['$\gamma =$ ',num2str(gamma),'a \quad speed = ...

',num2str(Speed),'x\quad $t = $ ...
',num2str(Tn(ii),'%10.3f')]},'Interpreter','latex');

111 case 4
112 title({['Unidirectional Line Network with ',num2str(k),'-nodes'];...
113 ['$\gamma =$ ',num2str(gamma),'a \quad speed = ...

',num2str(Speed),'x\quad $t = $ ...
',num2str(Tn(ii),'%10.3f')]},'Interpreter','latex');

114 end
115 elseif Type1 == 2
116 switch Type2(1)
117 case 1
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118 title({[num2str(Type2(3)),' Bidirectional Rings with ', ...
num2str(Type2(2)),'-nodes coupled in a Bidirectional Ring'];...

119 ['$\gamma =$ ',num2str(gamma),'a \quad speed = ...
',num2str(Speed),'x\quad $t = $ ...
',num2str(Tn(ii),'%10.3f')]},'Interpreter','latex');

120 case 2
121 title({[num2str(Type2(3)),' Bidirectional Rings with ', ...

num2str(Type2(2)),'-nodes coupled in a Bidirectional Line'];...
122 ['$\gamma =$ ',num2str(gamma),'a \quad speed = ...

',num2str(Speed),'x\quad $t = $ ...
',num2str(Tn(ii),'%10.3f')]},'Interpreter','latex');

123 case 3
124 title({[num2str(Type2(3)),' Unidirectional Rings with ', ...

num2str(Type2(2)),'-nodes coupled in a Bidirectional Ring'];...
125 ['$\gamma =$ ',num2str(gamma),'a \quad speed = ...

',num2str(Speed),'x\quad $t = $ ...
',num2str(Tn(ii),'%10.3f')]},'Interpreter','latex');

126 case 4
127 title({[num2str(Type2(3)),' Unidirectional Rings with ', ...

num2str(Type2(2)),'-nodes coupled in a Bidirectional Line'];...
128 ['$\gamma =$ ',num2str(gamma),'a \quad speed = ...

',num2str(Speed),'x\quad $t = $ ...
',num2str(Tn(ii),'%10.3f')]},'Interpreter','latex');

129 end
130 end
131 Frame = getframe(gcf);
132 writeVideo(Vid,Frame);
133 end
134 close(Vid);
135 toc
136 end
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C.8 Final Node Network Response Plotter

1 %% General Information
2 % Title: NNRP (Node Network Response Plotter)
3 % Author: R.J.R. van Kampen
4 % Date: 02-09-2016
5 %% Function
6 function NNRP FINAL(T,Y,gamma,Tspan,Speed,fps)
7 tic
8 %% Settings and variables
9 % Number of nodes

10 k = size(Y,2);
11 % Default intputs
12 switch nargin
13 case 2
14 Tspan = [min(T),max(T)];
15 Speed = 5;
16 fps = 30;
17 case 3
18 Speed = 5;
19 fps = 30;
20 case 4
21 fps = 30;
22 end
23 %% Input error Messages
24 if max(Tspan) > max(T)
25 error('MyComponent:InvalidInput','Error. \nVideo time is longer then ...

simulation time.');
26 end
27 if min(Tspan) < 0
28 error('MyComponent:InvalidInput','Error. \nTime cannot be negative.');
29 end
30 %% Interpolation
31 % Set new time vector
32 Tn = (min(Tspan):Speed/fps:max(Tspan)).';
33 % Interpolation of signals
34 for ii = 1:k
35 Yn(:,ii) = interp1(T,Y(:,ii),Tn);
36 end
37 %% Create images
38 Vid = VideoWriter(['NNRP FINAL'],'Motion JPEG AVI');
39

40 Vid.FrameRate = fps;
41 Vid.Quality = 75;
42 open(Vid);
43 figure('name','Simulation of a diffusively coupled ...

network','numbertitle','off','Position',[100, 100, 1280, 720])
44 stem(0.5*[Yn(1,1:2:end),Yn(1,2:2:end),...
45 Yn(1,1:2:end),Yn(1,2:2:end),...
46 Yn(1,1:2:end),Yn(1,2:2:end),...
47 Yn(1,1:2:end),Yn(1,2:2:end)]/max(Yn(:,1))+0.5,'b'); hold on;
48 stem(-0.5*[Yn(1,1:2:end),Yn(1,2:2:end),...
49 Yn(1,1:2:end),Yn(1,2:2:end),...
50 Yn(1,1:2:end),Yn(1,2:2:end),...
51 Yn(1,1:2:end),Yn(1,2:2:end)]/max(Yn(:,1))-0.5,'r'); hold off;
52 xlim([0, ceil(4*k+1)]); ylim([-1,1]);
53 grid on;
54

55 if k ≤ 50
56 Nstep = 1;
57 elseif k > 50 & k < 100
58 Nstep = 5;
59 elseif k ≥ 100 & k < 200
60 Nstep = 10;
61 elseif k ≥ 200
62 Nstep = 25;
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63 end
64 set(gca,'xtick',0:Nstep:k);
65

66 xlabel('Nodes','Interpreter','latex'); ylabel('$y$','Interpreter','latex');
67 set(gca,'nextplot','replacechildren');
68 for ii = 1:length(Tn)
69 stem(0.5*[Yn(ii,1:2:end),Yn(ii,2:2:end),...
70 Yn(ii,1:2:end),Yn(ii,2:2:end),...
71 Yn(ii,1:2:end),Yn(ii,2:2:end),...
72 Yn(ii,1:2:end),Yn(ii,2:2:end)]./max(Yn(:,1))+0.5,'b'); hold on;
73 stem(-0.5*[Yn(ii,1:2:end),Yn(ii,2:2:end),...
74 Yn(ii,1:2:end),Yn(ii,2:2:end),...
75 Yn(ii,1:2:end),Yn(ii,2:2:end),...
76 Yn(ii,1:2:end),Yn(ii,2:2:end)]./max(Yn(:,1))-0.5,'r'); hold off;
77 xlim([0, ceil(4*k+1)]); ylim([-1,1]);
78 grid on;
79 title({['Unidirectional Ring Network with ',num2str(k),'-nodes, and 4 output ...

repetitions'];...
80 ['$\gamma =$ ',num2str(gamma),'a \quad speed = ...

',num2str(Speed),'x\quad $t = $ ...
',num2str(Tn(ii),'%10.3f')]},'Interpreter','latex');

81 Frame = getframe(gcf);
82 writeVideo(Vid,Frame);
83 end
84 close(Vid);
85 toc
86 end
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C.9 Poles and Zero Placement of A

1 %% General Information
2 % Title: PZPofA (Pole, Zero placement of A)
3 % Author: R.J.R. van Kampen
4 % Date: 22-11-2016
5 %%
6 function [A, bif] = PZPofA(poles,zeros)
7 if length(poles) 6 3
8 error('MyComponent:InvalidInput','Error. \nThree poles are required.');
9 elseif length(zeros) 6 2

10 error('MyComponent:InvalidInput','Error. \nTwo poles are required.');
11 elseif imag(poles(1)) 6 0
12 error('MyComponent:InvalidInput','Error. \nOnly the seoncd and third pole ...

can be complex.');
13 end
14

15 a = abs(real(zeros(1)))+abs(real(zeros(2)));
16 b = abs(real(zeros(1)))*abs(real(zeros(2)))+abs(imag(zeros(1)))*abs(imag(zeros(2)));
17 f = abs(real(poles(1))) + abs(real(poles(2))) + abs(real(poles(3)))+a;
18 c = abs(real(poles(1)))*abs(real(poles(2))) + ...

abs(real(poles(1)))*abs(real(poles(3))) +...
19 abs(real(poles(2)))*abs(real(poles(3))) + ...

abs(imag(poles(2)))*abs(imag(poles(3))) + a*f-b;
20 e = b*f -(abs(real(poles(1)))*(abs(real(poles(2)))*abs(real(poles(3))) + ...

abs(imag(poles(2)))*abs(imag(poles(3)))));
21

22

23 A = [a -b 1; 1 0 0; -c e -f];
24

25 a abc = a;
26 b abc = (2*a*f-c-aˆ2);
27 c abc = (a*fˆ2+a*b+a*c-c*f-aˆ2*f-e);
28

29 bif = (-b abc+sqrt(b abcˆ2-4*a abc*c abc))/(2*a abc);
30 end
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D The eigenvalue analysis of the bidirectional ring example
network

1 %% General Information
2 % Title: Example Network bRing Eigenvalue Analysis
3 % Author: R.J.R. van Kampen
4 % Date: 01-09-2016
5 clear all; close all; clc;
6 %% Analysis settings
7 % Number of Nodes in the network
8 Nodes = [2,3,4,5,6,8,15];
9 %% Create coupling and permutation matrices

10 for ii = 1:length(Nodes)
11 N = Nodes(ii);
12 if N == 2
13 G{ii} = eye(N,N);
14 else
15 G{ii} = 2*eye(N,N);
16 end
17 G{ii}(N,1) = -1;
18 G{ii}(1,N) = -1;
19 for jj = 1:N-1
20 G{ii}(jj+1,jj) = -1;
21 G{ii}(jj,jj+1) = -1;
22 Pi{ii}{jj} = zeros(N,N);
23 for kk = 1:N
24 row = kk;
25 col = kk+1+(jj-1);
26 if col > N
27 col = col - N;
28 end
29 Pi{ii}{jj}(row,col) = 1;
30 end
31 end
32 if N 6 2
33 for jj = 1:N
34 for kk = 1:N
35 row = kk;
36 col = kk+1+(jj-1);
37 if col > N
38 col = col - N;
39 end
40 Pi{ii}{N+(jj-1)}(row,N+1-col) = 1;
41 end
42 end
43 end
44 end
45 %% Check permutation matrices
46 for ii = 1:length(Nodes)
47 for jj = 1:length(Pi{ii})
48 if Pi{ii}{jj}*G{ii} == G{ii}*Pi{ii}{jj}
49 fprintf('For N = %d, Permutation matrix %d is true\n',[Nodes(ii),jj]);
50 else
51 fprintf('For N = %d, Permutation matrix %d is false\n',[Nodes(ii),jj]);
52 end
53 end
54 fprintf('----------------------------------------\n');
55 end
56 %% Calculate and print the eigenvalues and eigenvectors
57 syms gamma
58 for ii = 1:length(Nodes)
59 [U{ii},L{ii}] = eig(G{ii});
60 Lambda{ii} = diag(L{ii});
61 fprintf('Eigenvectors of G for N = %d\n',Nodes(ii));
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62 disp(U{ii});
63 fprintf('Eigenvalues of G for N = %d\n',Nodes(ii));
64 disp(gamma*Lambda{ii}.')
65 fprintf('-----------------------------------------------------------------\n');
66 end
67 %% Range etc.
68 error = 1e-15;
69 for ii = 1:length(Nodes)
70 fprintf('For N = %d:\n',Nodes(ii));
71 for jj = 1:length(Pi{ii})
72 for kk = 1:length(U{ii})
73 check1 = 0; check2 = 0;
74 if abs(pinv(orth(eye(Nodes(ii))-Pi{ii}{jj})) * ...

orth(eye(Nodes(ii))-Pi{ii}{jj}) - ...
eye(rank(eye(Nodes(ii))-Pi{ii}{jj}))) < error

75 if abs(U{ii}(:,kk) - orth(eye(Nodes(ii))-Pi{ii}{jj}) * ...
(pinv(orth(eye(Nodes(ii))-Pi{ii}{jj}))*U{ii}(:,kk))) < error

76 fprintf('v %d is in the range of I-Pi %d\n',[kk,jj]);
77 check1 = 1;
78 end
79 if abs(U{ii}(:,kk) - orth(eye(Nodes(ii))+Pi{ii}{jj}) * ...

(pinv(orth(eye(Nodes(ii))+Pi{ii}{jj}))*U{ii}(:,kk))) < error
80 fprintf('v %d is in the range of I+Pi %d\n',[kk,jj]);
81 check2 = 1;
82 end
83 if check1 == 1 && check2 == 1
84 fprintf('v %d is in both ranges Pi %d!!\n',[kk,jj]);
85 end
86 else
87 warning('The tollerance on the pseudo inverse has been exceeded');
88 end
89 end
90 end
91 fprintf('----------------------------------------\n');
92 end
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