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Abstract

Complex networks are ubiquitous in our world. Synchronization in complex networked systems are
especially interesting, with examples from nature to our society. From an engineering point of view,
how to design coupling functions and network structures that lead to (optimal) synchronization
of interconnected systems are of crucial importance. Such a design paradigm is called controlled
synchronization paradigm, and we try to incorporate it into the spiking neural networks used for an
autonomous navigation task. The reason for inclusion of this paradigm is that the spiking neural
network has electronic Hindmarsh-Rose (HR) neurons as its components, which are heterogeneous
in parameters and have different input-out mapping behaviours. This may result in a bias when
the robot is advancing without any detection of obstacles. To train the sensor neurons to produce
same outputs with respect to same inputs, Vromen et al. [1] considers clusters of neurons instead of
single neurons to self-adjust each cluster’s collective frequency and develops a training algorithm
that can achieve frequency synchronization of all clusters. The work of this internship is to
introduce this algorithm and investigate its robustness with respect to noise.

The first part of this report introduces the Hindmarsh-Rose neuron and discusses practical
synchronization of HR neurons that interact via diffusive coupling. Simulations are presented to
show that heterogeneous neurons can reach practical synchronization by strong coupling and their
collective frequency can be influenced by changing the mutual adaptation parameter.

The second part of the report introduces the training scheme developed by Vromen et al. [1]
and investigates its robustness with respect to noise. This training algorithm is first increasing
the overall coupling gains to practically synchronize all neurons in the cluster, then adjusting
the mutual adaptation parameters to coordinate the collective frequency. Based on the training
scheme by Vromen et al. [1], this report investigates effect of channel noise on the algorithm and
the limitations of it. In particular, for fixed noise power the algorithm will fail to train a cluster
into a collective reference frequency with large number of neurons in that cluster. Besides, the
more neurons to train, the less noise power tolerable for training.

The third part of the report studies the effect of noise on synchronization of diffusively coupled
HR neurons in undirected netowrks. It is investigated for each type of subgraph the relation
between coupling gain and practical synchronization error when the noise power is fixed. The
spectral properties of each subgraph are computed to correlate with their ability of robustness to
noise.
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Chapter 1

Introduction

In this chapter the notion of synchronization in networks is introduced along with their engineering
applications and real-world examples. We also give a brief literature review on neuronal networks
for autonomous navigation and introduce the spiking neural networks used for the navigation
problem. In the end the structure of the report is presented.

1.1 Synchronization in Complex Networked Systems

Complex networked systems are ubiquitous in our world. They consist of interacting agents
communicating by some coordination laws. Typical examples include food web [2], metabolic
networks [3], World Wide Web [4], etc. To mathematically model these complex dynamics three
essential ingredients are needed: (i) a dynamical description of the evolution of each agent in the
network; (ii) coupling laws used by each agent to coordinate with each other; (iii) network topology
describing the connectivity relations between all agents (see for example [5]). The reason for
combining all these aspects is that real world networks often evolve its topology in time, according
to specific dynamical rules; each node is also a evolving subsystem, possibly heterogeneous with
different dynamics and the coupling laws may also be time-dependent. A notable example is the
neuronal network in our brain, which is known to adapt and evolve their structure as well as the
strength of their synaptic connections to perform different functions [6].

Synchronization is a kind of collective behaviour in networked systems. It can be defined as
a process in which ”events” keep happening simultaneously for an extended period of time [7].
The scientific interest in synchronization dates back to Christiaan Huygen’s work “an odd kind of
sympathy” between pendulum clocks, cf. [8]. From then on, synchronous behavior among coupled
dynamical systems has been focal interest and keeps being investigated, from fireflies synchronous
flashing in Amazonia [9], synchronized motion of bird flocks and fish schools [10], to circadian
rhythms with 24-hour day-night cycle [11] and synchronized pacemaker neurons regulating our
heartbeats [12]. The state where all agents show simultaneous behaviour without any difference
is called full synchrony and most of the aforementioned phenomena are periodic synchrony where
various limit-cycle systems have the same period (frequency synchronization) or even the same
phase (phase-locking [8]). In case of full synchrony, interactions where oscillators influence each
other are called mutual interaction and interactions where one subsystem dominates the other are
called master-slave configuration. Both types may subject to external forces (external synchroniz-
ation) which may lead to bifurcation transitions of nonlinear systems [13] or adjust their periodic
motions [14].

The topic ”synchronizability” is mainly studied in physics community, investigating how struc-
ture properties (weight distribution, assortativity, connectivity distribution, etc.) will influence
the whole system’s ability to synchronize [15, 16, 17]. In these contexts the systems are often
large-scale random graphs (scale-free, small-world, etc. [18]) and a large amount of analysis are
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CHAPTER 1. INTRODUCTION

based on the Master Stability Function (MSF) approach [19], which provides conditions for local
stability of the linear variational synchronization manifold.

Applications of synchronization technique can be found in myriad domains. Examples are par-
allel image processing [20, 21], secure communication [19, 22], pattern recognition [23], etc. More
engineering applications are synchronization of robot manipulators [24], power grid networks [25],
unmanned aerial vehicles (UAVs) [26], consensus of mobile agents [27] and so on. When considering
these applications not only should we guarantee synchronization of complex networks in analysis
but also design coupling functions and structures, which we refer as controlled synchronization.
Related works are discussed in, for instance, [28, 29].

1.2 Autonomous Navigation and Neuronal Networks

Autonomous navigation of mobile robots has a wide range of applications, from multivehicle
cooperative driving (platoon) [30], multi-agent mobile robots in warehouses [31] to ummanned
exploration of dangerous regions [32]. Roughly speaking, autonomous navigation can make use
of the complete knowledge of environment and apply path planning. However, such detailed
information is often not available in real world. For collision-avoidance mobile robots, a more
feasible solution is to map sensory inputs to desirable motor actions [33].

Neural networks are a computing system made up of a number of interconnected nodes, which
process information by their dynamic state response to external inputs [34]. The third generation
of neural networks is spiking neural networks (SNNs). The spiking neurons use pulse coding to
incorporate spatial-temporal information in communication and computation [35], like real neurons
do, making them a good candidate for control of autonomous robots in real-time environment.
Here we make a distinction between neural networks and neuronal networks. The former consists
of ”artificial” nodes that are static input-output maps connected via weighted coupling, while the
latter consists of nodes that are dynamical systems, like SNNs.

Multiple examples of neuronal networks for control of obstacle-avoidance mobile robots can
be found in literature. For instance, Floreano et al. [36] proposed using integrate-and-fire (IAF)
neurons to construct neuronal networks. In [37] FPGA approach was used to implement spiking
neural networks on real-time mobile robots. Wang et al. [38] use Hebbian learning algorithms
to train a three-layer SNN for the behavior controller. Johnston et al. [39] presented an evolving
spiking neural network (eSNN) paradigm that consists of Spike Time Dependent Plasticity (STDP)
mechanism and Genetic Algorithm (GA) to implement on FPGA.

1.3 Spiking Neural Networks for Control of a Mobile Robot

The task of the robot is to maneuver an (unknown) environment and avoid collisions with all
objects. The mobile robot used in this project is the e-puck mobile robot [40], which is shown in
Figure 1.1.

The e-puck has translational velocity v(t) and steering velocity ω(t), which defines the position
and orientation of robot in a two-dimensional Cartesian space (x, y) with origin O:

ẋ(t) = v(t) cos(θ(t)),

ẏ(t) = v(t) sin(θ(t)),

θ̇(t) = ω(t).

(1.1)

Denote ωl and ωr the angular velocities of the left and right wheel, b half the distance between
the wheels and r the radius of the wheels. Then the translational velocity v(t) and steering velocity
ω(t) satisfy
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CHAPTER 1. INTRODUCTION

Figure 1.1: The e-puck mobile robot.

v(t) =
r

2
(ωr(t) + ωl(t)),

ω(t) =
r

2b
(ωr(t)− ωl(t)).

(1.2)

The angular velocities ωr(t) and ωl(t) are determined by the output of two motor neurons.
Note because of a non-slip condition (non-holonomic constraint, c.f. [41]) on the wheels, the robot
cannot move sideways, i.e. perpendicular to the translational direction.

The e-puck is equipped with nine sensors to detect distances to obstacles in each direction.
All 9 sensors can then be divided into three groups Sg1, Sg2, Sg3, where sensor in group 2 detects
distance to obstacles in the translational direction, sensors in group 1 and 3 detect obstacles to
the robot’s left and right direction. The distance to an object measured by sensor k in group j
is denoted by sjk. The maximal and minimal detectable distance is denoted by xmax and xmin
respectively. An illustration of such sensor layouts are shown in Figure 1.2. The distance to an
obstacle detected by sensor group j is given by

dgj = min
k

(sjk). (1.3)

The neuronal controller we choose uses a two-layer network structure as shown in Figure 1.3,
which is a simplified version from Wang et al. [38]. The nodes in the input layer (sensor neurons)
receive external inputs Igj , j = 1, 2, 3, which are chosen to be (exponentially) proportional to the
distances dgj , according to the (saturated) function

Igj =


Imin, if dgj ≤ xmin,

Imin

(
Imax

Imin

) dgj−xmin
xmax−xmin , if xmin < dgj < xmax,

Imax, if dgj ≥ xmax.

(1.4)

Here Imax and Imin denote the maximum and minimum input voltage. The outputs of the
neuronal controller are the angular velocities ωl and ωr, which are proportional to the firing rate
of motor neuron Mn1 and Mn2 respectively. For simplicity, we only assume positive angular
velocities. This means that when detection of an obstacle right in front of the robot, it will stand
still instead of turning around its center. Motor neuron Mn1 and Mn2 receives both excitatory
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CHAPTER 1. INTRODUCTION

Figure 1.2: (adopted from [1]) The e-puck and sensor layout. The dashed rectangles are the wheels
of the robot.

Figure 1.3: Network structure of neuronal controller, adopted from [1].

4 Effect of Noise on Training a Network of Electronic Neurons



CHAPTER 1. INTRODUCTION

and inhibitary inputs from corresponding sensor neurons. The activating potential Ui(t), i = 1, 2,
of the motor neurons is determined by the equation

Ui(t) =

3∑
j=1

∑
Nfj

WSn(i, j)ψ(t− tfj ). (1.5)

with tfj the spike emitting time of the jth sensor neuron in a pre-defined time window and

Nf
j the number of spikes in that window. According to Figure 1.3, the coupling gain matrix WSn

from input to output layer is given by

WSn =

[
1 0.8 −1
−1 0.8 1

]
. (1.6)

The function ψ(·) is defined by

ψ(s) =
s

τs
exp(− s

τs
). (1.7)

with τs a time constant. Here ψ serves as an “exponential forgetting” function to make recent
spikes have a larger impact on increasing the activating potential than previous spikes. The
generation of spikes for the motor neuron is determined by the membrane potential Vi(t) which
depends on the activating potential Ui(t). Their relation is defined by

Igj =


2, if Ui(t) ≥ VM ,
Ui(t), if Ui(t) ≥ Vrest and t− tfi ≥ δt,
Vrest, otherwise.

(1.8)

where Vrest is the resting potential, tfi the spike emitting time of motor neuron i and δt the
refractory period (the minimum time between two successive spikes). A spike is emitted if Vi(t) = 2
and the number of spikes ni in a predefined time window is proportional to the translational or
angular velocities of the wheels.

After introducing SNN controller, we stress that the nodes of the neuronal controller are
heterogeneous Hindmarsh-Rose neurons. Because the input-out mapping of each sensor neuron is
different, this may lead to a bias when the robot is advancing without any detection of obstacles.
To eliminate such bias, three sensor neurons should produce same outputs with respect to same
inputs, i.e. they are frequency synchronized. A solution developed by Vromen et al. [1] is to
consider clusters of synchronized neurons instead of single neurons, which can self-adjust each
cluster’s own collective frequency to reach frequency synchrony. This motivates the goals of the
training algorithms:

(i) if an obstacle is detected on the left, or if an obstacle on the left is closer to the robot than
on the right, then the input to motor neuron Mn1 is larger than the input to Mn2 and the robot
makes a turn to the right.

(ii) the robot will move straight ahead (Mn1 = Mn2) if no obstacle is detected by any sensor
neuron or if both Sn1 and Sn3 detect obstacles of the same distance to each side.

1.4 Contributions and Outline

This internship report introduces the training algorithms of spiking neural networks for autonom-
ous navigation developed by Vromen et al. [1] and investigates the effect of noise on it. In Vromen’s
paper it is found that when training more than seven neurons the algorithm will not be accurate.
This report proposed that training failure is due to channel noise. Another focus of this report

Effect of Noise on Training a Network of Electronic Neurons 5



CHAPTER 1. INTRODUCTION

is to study the effect of noise on synchronizing undirected networks of diffusively coupled HR
neurons.

In Chapter 1, a brief literature review is given on synchronization of complex networks and
neuronal networks for autonomous navigation. The problem of this internship is also formulated
with a proposed neuronal controller.

Chapter 2 introduces the Hindmarsh-Rose neuron and discusses practical synchronization of
them via diffusive coupling. Simulations are presented to show that heterogeneous neurons can
reach practical synchronization by strong coupling and their collective frequency can be influenced
by changing the mutual adaptation parameter.

Chapter 3 discusses the training scheme developed by Vromen et al. [1] and investigates the
effect of noise on it. To frequency synchronize three sensor clusters, the algorithm first increases the
overall coupling gains to practically synchronize all neurons in the cluster, then adjusts the mutual
adaptation parameters to coordinate each cluster’s frequency. Based on Vromen’s algorithm, we
add channel noise and investigate the effects of different noise power and different number of
trained neurons. It is found that the more neurons to train, the less noise power tolerable for
effective training.

Chapter 4 studies the effect of noise on synchronization of diffusively coupled HR neurons in
some typical undirected networks. We investigate for each type of subgraph the relation between
coupling gain and practical synchronization error when the noise power is fixed. The spectral
properties of each subgraph is computed and it is found that the eigenratio λ2

λn
is closely related

to noise resistance capability of diffusively coupled systems.

6 Effect of Noise on Training a Network of Electronic Neurons



Chapter 2

Synchronization of
Hindmarsh-Rose Neurons

In this chapter we will introduce some important concepts and properties of neurons in computa-
tional neuroscience. We focus on the Hindmarsh-Rose model and introduce our modified model.
Mathematical representations of diffusively coupled HR neurons are discussed. In the last section
we present some simulation results regarding two coupled HR neurons.

2.1 Introduction

Single neurons are important functional units for the computational properties of the brain [42].
The most important physical variable in neural computation is the neuron’s membrane potential,
which can rapidly change over time [43]. Neurons can influence other connected neuron’s mem-
brane potential by synapse, a structure allowing neurons to transmit information. There are two
types of synapses: chemical and electrical synapses. At the chemical synapses, the pre-synaptic
neuron releases neurotransmitters and induce a current at the post-synaptic neuron. At the elec-
trical synapses (also called gap junctions), there is a direct high conductance pathway connecting
pre- and post-synaptic neurons [44]. According to [45], electrical synapses play an important role
in synchronization of individual neurons.

Three types of neuron activities are often distinguished. (i) resting: the membrane potential is
constant over time; (ii) tonic spiking: the neuron can fire action potentials at a constant rate. An
action potential is an electrical impulse characterized by a rapid increase of the neuron’s membrane
potential followed by a sudden drop to a lower level; (iii) bursting: the neuron repeatedly fires
discrete groups of spikes, each followed by a period of quiescence before the next burst occurs [46].
These distinct activities can be controlled by applying a certain input current, e.g. an external
clamping current (see [43] for details) or other neuron activities.

To describe the neuron dynamics different models have been developed, from which the most
important ones are models of Hodgkin-Huxley [47], Morris-Lecar [48], FitzHugh and Nagumo [49,
50], Hindmarsh and Rose [51]. Despite the differences in the range of behavior that these models are
capable to produce, each of these models has finite amount of free energy (also called semipassive,
c.f. [52]).

Effect of Noise on Training a Network of Electronic Neurons 7



CHAPTER 2. SYNCHRONIZATION OF HINDMARSH-ROSE NEURONS

2.2 Hindmarsh-Rose Model

In 1982 Hindmarsh and Rose proposed a two-dimensional neuron model [53] based on the FitzHuge-
Nagumo model [49]. In 1984 they made another modification on the 1982 model and resulted in
the so-called 1984 model [51], which is given by the following equations

ẋ = y − x3 + 3x2 + I(t),

ẏ = 1− 5x2 − y.
(2.1)

In order to mimic neuron’s ability to produce firing frequency adaption [43](e.g. the cell
Lymnaea does not fire with a steady frequency, but the firing slows down and is finally ter-
minated) and bursting modes, a third state is added to (2.1). The full set of equations is now
given by

ẋ = y − x3 + 3x2 + I(t),

ẏ = 1− 5x2 − y,
ż = r (s(x− x0)− z) ,

(2.2)

with r, s positive constant parameters and x0 the stable equilibrium point of state x when no
input is applied. These equations are often used to study the synchronization patterns of coupled
oscillators, see e.g. [54]. However, throughout this report a modification of the 1984 model will
be made. This modified model comes from an affine coordinate transformation concerning the
x-state of (2.2) (c.f. [55]) and an additional linear coordinate transformation [55] The reason for
this modification is to avoid saturation of signals in the opetational amplifiers. The modified H-R
models are now given by

ẏ = −c1y3 + c2y
2 + c3y + c4z1 − c5z2 − c6 + c7I,

ż1 = −c8y2 − c9y − c10z1,
ż2 = c11 (c12y + c13 − z2) .

(2.3)

where ˙ := d
dt∗ , t∗ = 1000t with t the time in seconds, y denoting the membrane potential

of a neuron, which also serves as the natural output of the neuron, z1, z2 are internal variables
and I the external input. The time scaling factor t∗

t = 1000 is in accordance with the electronic
realization of the HR model as presented below. The parameters ci|i=1,2,···13 ∈ R≥0 are given by

c1 = 1, c2 = 0, c3 = 3, c4 = 5, c5 = 1, c6 = 8, c7 = 1,

c8 = 1, c9 = 2, c10 = 1, c11 = 0.005, c12 = 4, c13 = 4.472.

2.3 Simulations of Electronic HR Neuron

To construct more biological plausible neuronal controller introduced in Section 1.3, we use elec-
tronic Hindmarsh-Rose model neurons as nodes of the controller. The electronic circuit board
realization of the HR neuron is shown in Figure 2.1. It consists of three integrating circuits, which
integrate the three states of the HR model (2.3) and two multiplier circuits that generate the
squared and cubic terms of the y-state. The parameters of 15 electronic HR neurons have been
identified by Neefs [56] using extended Kalman filter. The table of these parameters can be found
in Appendix B. Our simulation results are based on this table.

We first plot the output responses of three different electronic HR neurons, each with external
input I = 4.5 [V ]. The result is shown in Figure 2.2.

8 Effect of Noise on Training a Network of Electronic Neurons



CHAPTER 2. SYNCHRONIZATION OF HINDMARSH-ROSE NEURONS

Figure 2.1: Electronic HR model neuron.

Figure 2.2: Responses of three different electronic HR neurons with external input I = 4.5 [V ].

We can see that all three neurons are tonic spiking. However, because of their parameter
mismatch, they don’t have exactly same output response. In fact, according to the experimental
results of [56], when the external input is approximatly between 4.5 [V ] and 10 [V ], electronic HR
neurons are tonic spiking with a fixed period time. This relation is illustrated in Figure 2.3.

As mentioned in Section 1.3, we want to practically synchronize heterogeneous neurons in each
cluster to form a collective frequency. Here we introduce the definition of practical synchronization.

Definition 2.1. (Practical synchronization, [57]). Consider k systems (A.9) with output yi(t) ∈
Rm defined on an interval [t0, t2). The interconnected systems are said to practically synchronized
with bound ε if there is a t1(ε), t0 ≤ t1(ε) < t2, such that |yi(t) − yj(t)| < ε for all i, j ∈ V and
t ∈ [t1, t2).

Effect of Noise on Training a Network of Electronic Neurons 9
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Figure 2.3: Period of all 15 HR neurons as function of external input I.

For convenience we fix the value ε and refer to practical synchronization with bound ε as
practical synchronization. A feasible type of interaction that can lead to neuronal synchronization
is diffusive coupling, which is a coupling defined as the weighted difference of the output responses
of coupled systems. The mathematical representation of diffusively coupled HR neurons is shown
in equation (2.4):

ẏi = −ci,1y3i + ci,2y
2
i + ci,3yi + ci,4zi,1 − ci,5zi,2 − ci,6 + ci,7Ii + ui,

żi,1 = −ci,8y2i − ci,9yi − ci,10zi,1,
żi,2 = ci,11 (ci,12yi + ci,13 − zi,2) ,

(2.4)

where the term ui is the diffusive coupling term. It is the weighted output error between
connected systems, defined as

ui = −
n∑

j=1,i6=j

γij (yi − yj) , (2.5)

with γij representing the directed coupling strength from neuron j to i. The whole network of
neurons can also be expressed in matrix form shown in equation (2.6):

u1...
uk

 = −Γ

y1...
yk

 = −


∑k
j=2 γ1j −γ12 · · · −γ1k
−γ21

∑k
j=1,j 6=2 γ2j · · · −γ2k

...
...

. . .
...

−γk1 −γk2 · · ·
∑k−1
j=1 γkj


y1...
yk

 . (2.6)

Note that Γ is the Laplacian matrix of the network, which can characterize the complete
connectivity and coupling strength relations in a graph. For sufficiently strong couplings between
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CHAPTER 2. SYNCHRONIZATION OF HINDMARSH-ROSE NEURONS

Figure 2.4: Relation between adaptation parameter and collective period.

heterogeneous oscillators, it is proven in [58] that practical synchronization can be achieved (for
details see Appendix A).

After achieving practical synchronization of a cluster, we are also interested in how to adjust
the collective frequency of it. We start by considering two coupled HR neurons in equation (2.7):

u1 = γσ(y2 − y1),

u2 = γ(1− σ)(y1 − y2).
(2.7)

The reason for introducing both overall coupling gain γ and mutual adaptation parameter σ
is that based on the truth that sufficiently large γ will always lead to practical synchronization of
two coupled neurons ( with σ = 1

2 initially), varying σ in range [0, 1] will still preserve neurons’
synchronization while at the same time changes the collective frequency [1]. Such a relation
between σ and the collective period of the cluster is shown is shown in Figure 2.4:

From Figure 2.4 we can see that the relation between mutual adaptation parameter σ and
collective period are monotonic and approximately linear. The end points of y axis corresponds to
σ = 0 or σ = 1. These two extreme cases are called master-slave configuration, which means that
one neuron is totally enslaved by the other. The simulation results of master-slave configuration
are shown in Figure 2.5. The results in Figure 2.4 also imply that parameter σ is an interpolation
parameter that allows the collective period of two coupled neurons to be anywhere between the
period times of the uncoupled neurons. This relation can be used as the principle for training two
couples neurons into a desired frequency.
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Figure 2.5: Output responses of two neurons coupled by master-slave configuration. The first plot
is their uncoupled responses.

2.4 Summary

In this chapter synchronization of Hindmarsh-Rose neurons are discussed. First some biological
properties of neurons are reviewed. Then different models of neuron dynamics are introduced,
focusing on the modified Hindmarsh-Rose model. Simulations of heterogeneous uncoupled neurons
are presented. For two coupled HR neurons we investigate the overall coupling gain and mutual
adaptation parameter: the former can be used to practically synchronize two neurons and the
latter can be used to adjust their collective frequency. Such results can be seen as principles for
training neurons in a cluster to achieve a desired collective frequency.
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Chapter 3

Training Procedure and the Effect
of Noise on it

In this chapter we will introduce a training scheme of all-to-all coupling, which is developed by
Vromen [1]. The training algorithm is first increasing the overall coupling gains to practically
synchronize all neurons in the cluster, then adjusting the mutual adaptation parameters to co-
ordinate the collective frequency. Based on this training algorithm, we investigate its robustness
with respect to channel noise. In particular, for fixed noise power the algorithm fails to train a
cluster into a collective reference frequency with large numbers of neurons in that cluster. Besides,
we also investigate for different number of neurons in training the maximal tolerable noise power.

3.1 Motivation

Inspired by strong spatio-temporal pattern recognition capabilities of biological brain, a natural
candidate for this project implementation is to use bio-mimic electronic brain consisting of spiking
neural networks. The SNNs typically have spiking neurons that interact via synaptic connections.
These synapses can be trained by various learning methods as discussed in Chapter 1. In the
controlled synchronization paradigm, we use the electronic HR neurons presented in Section 2.3.
Meanwhile, the synaptic connections between neurons are softwired so that they can be freely
changed in the training scheme.

As shown in Chapter 2, all the electronic neurons are non-identical. An undesirable effect is
that the mobile robot may have deviation from the middle (either turning left or right) when no
obstacle detected. Such a scenario is experimented by Vromen [1], as shown in Figure 3.1.

An ingredient to eliminate such undesirable effects is to make all three sensor neurons have
the same output for external input Imin, which will guarantee that the mobile robot drives at full
speed in a straight line. To make all three sensor neurons frequency synchronized without directly
coupling them, we propose to use clusters instead of single neurons, which can self-adjust each
cluster’s own collective frequency to reach frequency synchrony. Note that we want such unbiased
property of motor neurons also subject to multiple external input I.

The training procedure should fulfill two goals: (i) for every external input I, the outputs of
each neuron in a cluster should be practically synchronized; (ii) the frequency or period of each
synchronized cluster should be equal to the reference. Likewise, two adaptation algorithms are
needed. Firstly, synchronize all neurons in the cluster by increasing the coupling gain. Secondly,
change the mutual adaptation gain to make the collective cluster have the same frequency as the
reference neuron. Note that because we consider cluster as a whole, so coupling between the new
comer and each existing neuron in the cluster is the same.
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Figure 3.1: Experimental result of heterogeneous neurons producing bias, adopted from [1].

3.2 Training Procedure

Recall in the last section that the goal of our training is to achieve both synchronization within
each cluster and frequency synchronization between clusters. We start illustrating the training
procedure by showing a simple example.

Example 3.1. Consider two mutually coupled neurons in a cluster. The diffusive coupling term
of node N1 influenced by node N2 is σ1γ1(y2− y1), and (1− σ1) γ1(y1− y2) the other way around.
The coupling law is defined by

(
u1
u2

)
= −Γ2(σ1, γ1)

(
y1
y2

)
= −

(
γ1σ1 −γ1σ1

−γ1(1− σ1) γ1(1− σ1)

)(
y1
y2

)
.

where Γn is the Laplacian matrix of n coupled systems.

Step 1: increase γ = γ1 by interval ∆γ = α
m−1 until N1 and N2 practically synchronized

(supτ∈[t1,t2]|yi(τ)− yj(τ)| < ε, ε is the practical synchronization bound and [t1, t2] is chosen after
the transients have died out). Here α > 0 is a parameter that controls the adaptation speed of
coupling gain and m ≥ 2 is the current number of neurons in the cluster. At this stage σ = σ1 = 1

2
is fixed.

Step 2: adjust adaptation parameter σ1 by amount ∆σ = ±ατγ |∆τ | to make the collective

period of synchronized cluster be as close as the reference period (within a sufficiently small bound
ετ ). Here ατ > 0 is a constant, ∆τ = Tref − Tcluster is the period difference between reference
neuron and cluster, and ∆σ should be constrained in [0, 1]. The sign ± is needed because it’s
uncertain whether the optimal adaptation parameter σ will lie in the interval [0, 0.5] or [0.5, 1].
Thus the sign of ∆σ should be reversed if the adaptation pushes the cluster period away from the
reference period.
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Figure 3.2: (adopted from [1]) Coupling law of three neurons: (a) synchronized cluster of two
neurons bi-directionally coupled with neuron N3; (b) each neuron in the cluster has the same
inter-cluster coupling relations with outside neurons.

Step 3: fix σ1 and γ1 and add a third neuron to the cluster according to the law

u1u2
u3

 = −Γ3(σ1, σ2, γ1, γ2)

y1y2
y3

 = −

 Γ2(σ1, γ1) + σ2γ2I2
−γ2σ2
−γ2σ2

−γ2(1− σ2) −γ2(1− σ2) 2γ2(1− σ2)

y1y2
y3

 .

This coupling law comes from the fact that the coupling gain between the new comer and each
existing neuron in the cluster is the same. The adaptation of γ2 and σ2 follows the same procedure
as Step 1 and 2, but now the criteria for practical synchronization or frequency synchronization
should consider the whole cluster. The schematic representation of three neuron coupling law is
illustrated in Figure 3.2.

From this example one can easily derive the coupling law between neuron n+1 and the cluster
of n synchronized neurons:


u1
...
un
un+1

 = −Γn+1


y1
...
yn
yn+1

 = −

 Γn + σnγnIn

−γnσn
...

−γnσn
−γn(1− σn) · · · −γn(1− σn) nγn(1− σn)




y1
...
yn
yn+1

 .

with Γn+1 the Laplacian matrix of all n+ 1 neurons, which is uniquely defined by the combin-
ations of σ1,γ1,σ2,γ2,· · · ,σn,γn.

The complete training procedure is almost same with example 3.1, with further steps just a
repetition of step 3, which is adding new neuron to the cluster and do training. A more detailed
illustration of the frequency adaptation is shown in Figure 3.3 [1]. Here if σ ≤ 0 or σ ≥ 1, we
should set σ = 0 or σ = 1 respectively to ensure best convergence possible. The parameter k is
the adaptation loop index and k = 1 means the first adaptation attempt.

The parameters for the training algorithm are chosen as follows:

ε = 0.2 [V ], ετ = 7e−6 [s], α = 0.3125, ατ = 2500.
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Figure 3.3: Flowchart of frequency adaptation procedure, adopted from [1].

3.3 Simulation Results

In the simulation we try to train nine neurons using the all-to-all coupling scheme. The external
input is Imin = 4.5 and reference period is chosen as Tref = 0.0151s. This parameter is chosen to be
in the middle of most points from Figure 2.3 at input I = 4.5. The output of all nine neurons are
shown in Figure 3.4. We use solver ode23 and chose initial condition [−2,−0.2,−0.3] for neuron
N1 and add 0.01 on all three states for the next index neuron.

Figure 3.4: The output of nine neurons trained by all-to-all coupling scheme.
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From this graph we can see that all neurons are practically synchronized. Meanwhile in the
workspace we find that each of them has the same period 0.0151s. The all-to-all training scheme
is successful, and ideally should work for even more neurons.

We further investigate the adaptation parameters for the training of 9 neurons, presented in
Table 3.1:

Table 3.1: Adaptation parameters γ and σ after training.

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8
1.2500 0.7813 0.5208 0.4688 0.3750 0.3125 0.2679 0.2344
σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

0.3029 0.1856 0.5000 0.1209 0.3230 0.5000 0.0181 0.0407

Γ9 =



1.1325 −0.3787 −0.1450 −0.2604 −0.0567 −0.1211 −0.1563 −0.0048 −0.0095
−0.8713 1.6251 −0.1450 −0.2604 −0.0567 −0.1211 −0.1563 −0.0048 −0.0095
−0.6363 −0.6363 1.8814 −0.2604 −0.0567 −0.1211 −0.1563 −0.0048 −0.0095
−0.2604 −0.2604 −0.2604 1.1297 −0.0567 −0.1211 −0.1563 −0.0048 −0.0095
−0.4121 −0.4121 −0.4121 −0.4121 1.9401 −0.1211 −0.1563 −0.0048 −0.0095
−0.2539 −0.2539 −0.2539 −0.2539 −0.2539 1.4401 −0.1563 −0.0048 −0.0095
−0.1563 −0.1563 −0.1563 −0.1563 −0.1563 −0.1563 0.9519 −0.0048 −0.0095
−0.2630 −0.2630 −0.2630 −0.2630 −0.2630 −0.2630 −0.2630 1.8506 −0.0095
−0.2248 −0.2248 −0.2248 −0.2248 −0.2248 −0.2248 −0.2248 −0.2248 1.7987


.

From Table 3.1 we can observe that coupling gain from γ1 to γ8 is decreasing. The reason is
that during Step 1 the new comer is equally coupled with each neuron in the cluster, thus the
more neurons in the cluster, the less coupling gain needed for practical synchronization. Another
observation is that the mutual adaptation parameter σn are all located at [0, 0.5] (σ7 and σ8 are
even close to 0). This is because in case the previous trained clusters have period time close to the
reference (no σi is located at 0 and 1 thus we can claim this), the new comer should be dominated
by the original cluster to reach reference period. Except this obvious solution, there may be other
local solutions to reach desired period as the interaction effect of the new comer will influence the
intrinsic collective period of original cluster, deviating the end points of Figure 2.4. Thus we can
expect mutual adaptation parameters σi located in [0, 0.5].

To further justify the aforementioned arguments, we compare Table 3.1 with the intrinsic
period of all neurons (with external input I = 4.5) in Table 3.2:

Table 3.2: Intrinsic frequencies of all 15 neurons at input I = 4.5.

T1 T2 T3 T4 T5
0.015044 0.015301 0.015186 0.014999 0.014928

T6 T7 T8 T9 T10
0.015199 0.015157 0.015426 0.015315 0.015183
T11 T12 T13 T14 T15

0.015345 0.015259 0.015274 0.015511 0.015143

From these two tables we can observe that T4 = 0.014999 and T7 = 0.015157 already have
intrinsic period close to Tref = 0.0151, thus even without frequency adaptation (σ3 = 0.5 and
σ6 = 0.5) desired collective period can be achieved within an accuracy bound. Another observation
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is that T8 = 0.015426 and T9 = 0.015315 are very far away from reference period, thus needs a lot
of effort (almost dominated by original trained clusters as σ7 = 0.0181 and σ8 = 0.0407) to train.

3.4 Effect of Noise on Training Scheme

In this section we consider the training scheme with channel noise for all interconnected neurons.
The spike train of individual neurons recorded from vivo are found to have some degree of irregu-
larity, far from being periodic [59]. The origin of such irregularity is still unknown, but in spiking
neuron models such as integrate-and-fire model, noise is often added to mimic such unpredict-
ability. Two types of noises are often distinguished: intrinsic noise that appears on the level of
neuronal dynamics and extrinsic noise that arises from effects of synaptic transmission [60]. We
also refer to the latter type of noise as channel noise.

The mathematical representation of k diffusively coupled HR neurons on a simple strongly
connected graph are shown in equation (3.1):

ẋi = Fi(xi) +Bui + n1,i,

yi = Cxi + n2,i.
(3.1)

Compared with the original expression in equation (2.4), we add the intrinsic noise term n1,i
and the channel noise term n2,i for neuron i. Full state xi = (yi zi,1 zi,2)

ᵀ
includes both output

and zero dynamics. B = (1 0 0)
ᵀ
, C = (1 0 0). Replacing the diffusive coupling term ui by

weighted output errors between coupled neurons, the full state dynamics of neuron i is expressed
in equation (3.2):

ẋi = Fi(xi) + n1,i −B
k∑

j=1,i6=j

γij (yi − yj)

= Fi(xi) + n1,i −BC
k∑

j=1,i6=j

γij(xi − xj)−B
k∑

j=1,i6=j

γijωi.

(3.2)

For simplicity we will only investigate the effect of channel noise and ignore intrinsic noise,
which means that n1,i = 0. The term ωi = n2,i − n2,j is the channel noise for neuron i in the
network (both ωi and n2,i are white noise term and we do not further distinguish them). In matrix
form the full state dynamics of the whole system is shown in equation (3.3):

ẋ1...
ẋk

 =

F1(x1)
...

Fk(xk)

− Γ

y1...
yk

⊗B =

F1(x1)
...

Fk(xk)

− (Γ⊗BC)

x1...
xk

− Γ

ω1

...
ωk

⊗B. (3.3)

From equation (3.3) we can see that output dynamics are perturbed by channel noise and the
coupling gain of the network will also influence the noise intensity.

We now investigate the effect of channel noise on the training scheme. For fixed noise power
0.00001 we simulate the responses of training different number of neurons (from 3 to 6) in a
cluster. The initial conditions for each state are all uniformly distributed random number in
interval (0, 1). The solver is ode23. Because of the stochastic terms, each simulation may produce
different responses for unsuccessful trainings. The results are shown in Figure 3.5.

By checking the adaptation parameters from the simulation of Figure 3.5, we will find that
σ4 = 0 for i = 5 and σ5 = 0 for i = 6 respectively, and their period time are both far from reference.
The overall coupling gain γi (i = 3, 4, 5, 6) is almost same as Table 3.1 (except γ3 has become a
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Figure 3.5: Output responses of training different number of neurons for noise power 0.00001.

bit larger), which means that training failure happens mostly in the frequency adaptation process.
We also do simulations for training different number of neurons and check their responses around
the critical noise threshold as presented in Figure 3.6. From Figure 3.6 we can observe that the
more neurons to train, the lower the noise threshold will be for effective training. Moreover, the
desynchronization are more likely to happen between the last added neuron and existing cluster.
Note that the noise threshold is not tight and may vary in a small neighbourhood of the provided
critical values for different simulations.

The underling reason behind training failure is that the output dynamics of neuron i is per-
turbed by the ith row of Laplacian matrix multiplied by k-dimensional white noise term, as can
be seen from equation (3.3). Based on the analysis of mutual adaptation parameter in Section 3.3,
the newly added neuron will tend to be enslaved by existing cluster, leading to larger coupling
gains in the last row of the Laplacian matrix. This adds to the randomness of the dynamics of
this new comer, resulting in more unpredictable training.

In the end, we plot the noise threshold for training different number of neurons. We also
switch the neuron index to see whether it will have any effect on the training process. The results
are shown in Figure 3.7. Note that this bound is only approximate and may vary for different
simulations.

In conclusion, the all-to-all coupling scheme will amplify noise, making it more difficult to do
training. Thus in real implementation the number of neurons for training is limited due to the
channel noise effect. Meanwhile this scheme is very sensitive to the coupling sequence of neurons
we coupled.
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Figure 3.6: Output responses of training different number of neurons for critical noise power

Figure 3.7: Maximum noise power allowed for different amount of neurons (from 2 to 6) to
synchronize.
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3.5 Discussion

In this chapter we introduce the all-to-all coupling scheme developed by [1]. The main goal of
this scheme is to train the neuronal network such that for the same input (Imin) all three sensor
neurons will produce same output. The training algorithm is first increasing the overall coupling
gains and then adjusting the mutual adaptation parameters. The simulation result of training
9 neurons are investigated, focusing on the adaptation parameter σn and γn. We also include
the channel noise effect on the training scheme. It is found that for the scheme to do successful
training, the noise power should be below some threshold, and the larger the amount of neurons
for training, the lower threshold will be. The simulation of noise effect shows some limitations of
this scheme.
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Chapter 4

Noise Effect on Synchronizing
Diffusively Coupled Systems

In this chapter we will investigate the effect of noise on synchronization of diffusively coupled
systems. It is shown that for each type of subgraph in presence of channel noise, the practical
synchronization error will first decrease and then increase with the change of coupling gain, until
eventually lose synchrony. Such a range of coupling gain for practical synchronization is closely
related to the eigenratio λ2

λn
. Our simulation will focus on noisy diffusively coupled systems with

symmetric coupling.

4.1 Experimental Synchronization of Diffusively Coupled
HR Neurons with Channel Noise

Consider typical subgraphs shown in Figure 4.1. Each edge is symmetric and has uniform strength
1. We increase the coupling gain γ and plot corresponding synchronization errors (the maximum
output error between coupled neurons at all time instants after transients). The noise power is
0.0001 in each simulation. The results are shown in Figure 4.2, where the dashed line represents the
practical synchronization bound 0.2. A summary of non-zero eigenvalue λ2, λn and the coupling
gain range γ for practical synchronization is provided in Table 4.1.

Table 4.1: Comparison of non-zero eigenvalue λ2, λn and coupling threshold γmin, γmax for different
motifs.

Subgraph λ2 λn
λ2

λn
γmin γmax

γmax

γmin

G1 2 2 1 0.71 5.54 7.80

G2 1 3 1/3 1.00 3.28 3.28
G3 3 3 1 0.49 4.20 8.57

G4 0.59 3.41 0.17 1.72 4.58 2.66
G5 2 4 1/2 0.58 4.67 8.05
G6 2 4 1/2 0.65 5.87 9.03
G7 4 4 1 0.30 3.65 12.17

From Table 4.1 we can see that for fixed amount of diffusively coupled subsystems, the larger
the eigenratio λ2

λn
is, the wider the synchronization bound [γmin, γmax] of the whole interconnec-
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Figure 4.1: (adopted from [61]) Different subgraphs of diffusively coupled systems Ge|e=1,2,··· ,7.

Figure 4.2: Plots of different subgraphs’ coupling threshold for practical synchronization.
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ted system will be in a noisy channel environment. This synchronization bound [γmin, γmax] also
reflects the whole system’s vulnerability to noise, with γmax

γmin
= 1 corresponding to maximal syn-

chronizability and robustness to noise. Here subgraph G3 and G7 are both all-to-all symmetrically
coupled with uniform strength, which will result in optimal eigenratio. Another observation is
that algebraic connectivity λ2 relates to γmin. For fixed amount of diffusively coupled HR neurons
in a connected network, the coupling gain required to synchronize all neurons γmin monotonically
decreases with the increase of the smallest nonzero eigenvalue λ2 of the Laplacian matrix [62].

4.2 Discussion

Based on the simulation results in Figure 3.7, we investigate the eigenratio corresponding to
different amount of HR neurons in diffusively coupled networks with maximal noise power (neuron
index 1234567). The result is shown in Table 4.2.

Table 4.2: Eigenratio for training different number of neurons using all-to-all coupling scheme
with noise channel.

Number λ2 λn
λ2

λn
Noise Power

2 1.25 1.25 1 0.000089
3 1.20 1.62 0.74 0.000033
4 1.04 1.67 0.62 0.000010
5 1.32 1.77 0.75 0.000009
6 1.13 2.09 0.54 0.0000042
7 1.07 2.57 0.42 0.0000018

From Table 4.2 we can see that the all-to-all scheme will result in smaller eigenratio when
training more neurons, leading to worse robustness to noise. Another observation is that when
training 5 neurons the eigenratio actually becomes large again, resulting in almost same noise
robustness ability as training 4 neurons.

4.3 Summary

In this chapter we consider the noise effect on synchronization of all-to-all diffusively coupled HR
neurons on uniform undirected networks. It is found that in presence of channel noise, the practical
synchronization error will first decrease and then increase again with the change of coupling gain
γ. Such a range of coupling gain for practical synchronization reflects the network’s ability of
robustness to noise, which is related to the eigenratio λ2

λn
. The robustness to noise ability is best

when eigenratio equals to 1.
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Chapter 5

Conclusions and
Recommendations

The final chapter summarizes the main results that are presented in this report. In addition,
recommendations for future research are given.

5.1 Conclusions

In this report the problem of autonomous navigation of a mobile robot is treated using a training
algorithm developed by Vromen [1]. The main contribution of this internship is to reproduce this
algorithm and study its behavior in presence of channel noise.

In Chapter 2 the Hindmarsh-Rose neuron are introduced and practical synchronization of them
via diffusive coupling are discussed. It is shown that heterogeneous neurons can be practically
synchronized by strong coupling and their collective frequency can be influenced by changing the
mutual adaptation parameter.

In Chapter 3 we introduce the training algorithm developed by [1] and study the effect of noise
on it. Based on Vromen’s algorithm, we add channel noise and investigate for fixed noise power
how the responses of training different number of neurons will change. It is found that the more
neurons to train, the lower noise power are tolerable for effective training.

In Chapter 4, we study the effect of noise on synchronization of diffusively coupled HR neurons
in undirected networks. It is investigated for each type of subgraph the relation between coupling
gain and practical synchronization error when noise power is fixed. The spectral properties of each
subgraph are computed to correlate with their ability of robustness to noise.

5.2 Recommendations

The training algorithm developed by Vromen [1] has some limitations. Firstly, the choice of
reference neuron is not random and preferably requires its intrinsic frequency located in the middle
of most other neurons’ frequencies in the cluster for each external input. More intelligent and
automatic choice of reference neuron or equilibrium states are preferable. Secondly, the all-to-all
network structure will amplify noise for training large number of neurons in a cluster. To weaken
the effect of noise, new algorithms should consider more flexible and less conservative structure.
Thirdly, it should be more biologically plausible to train the sensor clusters in a distributed manner.

Moreover, it is expected to design robust, highly synchronizable network structure that can
achieve desired collective frequency simply by using the information of weight distributions of
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different neurons. Such optimization-based perspective could give us insights about how to design
decentralized training algorithms to achieve local or even global optimal solutions.
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Appendix A

Preliminaries

In this appendix the notation, we present some definitions and mathematical framework. The
notions of ultimate boundedness, semipassivity, convergent systems and some basic terminology of
graph theory are discussed. Mathematical framework for synchronization are also presented.

A.1 Notation

The symbol R denotes the real numbers and C denotes the complex numbers. The symbol R>
(R>0) stands for positive (non-negative) real numbers and C> (C>0) stands for complex numbers

with positive (non-negative) real parts. The Euclidian norm in Rn is denoted as |·|, |x|2 := xᵀx,
where xᵀ denotes the transpose of x. The n×n identity matrix is denoted by In or simply I if no
confusion can arise.

The symbol ⊗ stands for Kronecker product, i.e. given any two matrices A and B,

A⊗B =


A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
...

. . .
...

An1B An2B · · · AnnB


where Aij denotes the ijth entry of matrix A.

Let X ∈ Rn and Y ∈ Rm be the n-dimensional and m-dimensional manifold, respectively. We
denote by Cr the space of continuous functions from X to Y that are at least r times continuously
differentiable. Let L∞ (X ,Y) denote the space of essentially bounded functions that map elements
of X into elements of Y, i.e. it is the space of all measurable functions f : X → Y for which ess
sup |f | <∞.

A.2 Ultimate Boundedness and Semipassive Systems

Consider a system of ordinary differential equations,

ẋ(t) = f(t, x(t)) (A.1)

with state x ∈ Rn and f : R×Rn → Rn being piecewise continuous in t and locally Lipschitz
continuous in x for all t ≥ t0. The assumptions on f guarantee existence and uniqueness of
solutions.
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For common Lyapunov stability concepts (stable, uniformly stable, asymptotically stable, expo-
nentially stable, etc.) we refer the readers to [63]. Here we introduce some notions of boundedness
for the system (A.1).

Definition A.1. (Lagrange stability and L-dissipative, [64]). The system (A.1) is called

i. Lagrange stable if every solution is bounded in forward time;

ii. L-dissipative if the system is Lagrange stable and there exists a constant c > 0 such that
lim supt→∞ |x(t)| ≤ c for any initial condition x0 ∈ Rn.

Remark A.1. The solution of a L-dissipative system are ultimately bounded, which means that all
solutions of any initial condition enter a compact set in finite time.

Consider the system

ẋ = f(x) +Bu

y = Cx
(A.2)

with state x ∈ Rn, input u ∈ Rm, output y ∈ Rm, and f : Rn → Rn is a C1 function and
matrices B and C of appropriate dimensions.

Definition A.2. [65] The dynamical system (A.2) is called Cr-semipassive if there exists a non-
negative function V ∈ Cr(Rn,R≥0), x 7→ V (x), called the storage function, such that

V̇ (x) =
∂V (x)

∂x
(f(x) +Bu) ≤ yᵀu−H(x) (A.3)

where the function H ∈ C0(Rn,R) is nonnegative outside some ball, i.e., ∃ ϕ > 0 s.t. |x| ≥ ϕ⇒
H(x) ≥ %(|x|), for some continuous nonnegative function %(·) defined for |x| ≥ ϕ. If the function
H(·) is positive outside some ball, then the system (A.2) is said to be strictly Cr-semipassive.

Remark A.2. System (A.2) is Cr-passive (strictly Cr-passive) if it is Cr-semipassive (strictly Cr-
semipassive) with H(·) being positive semidefinite (positive definite).

Remark A.3. Solutions of strictly semi-passive systems with a radially unbounded storage function
V are ultimately bounded if yᵀu ≤ 0. The proof can be found in [64].

A.3 Convergent Systems

Definition A.3. (Convergent systems,[66, 67]). Consider the system

ẋ(t) = f(x(t), ω(t)), (A.4)

with state x ∈ Rn, time-varying input ω(t) ∈ PC(R,W), that is, ω(t) is piecewise continuous
in t and takes values in a compact set W ⊂ Rm. The function f is locally Lipschitz and C1 in
x. The system (A.4) is called convergent if and only if for any bounded input ω(t) ∈ PC(R,W)
defined on R, there is a unique bounded globally asymptotically stable solution x̄ω(t) in the same
interval and for any initial condition it holds that

lim
t→∞

|x(t)− x̄ω(t)| = 0. (A.5)
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If the differences between x(t) and x̄ω(t) exponentially decrease:

|x(t)− x̄ω(t)| ≤ Ce−α(t−t0), (A.6)

where C > 0 and α > 0 are the same for all solutions x(t), then we call the system (A.4)
exponentially convergent.

Proposition A.1. (Demidovich Condition [68]). If there exists a symmetric positive definite
matrix P ∈ Rn×n such that all the eigenvalues λi(Q) of the symmetric matrix

Q(x, u) =
1

2

(
P

(
∂f

∂x
(x, ω)

)
+

(
∂f

∂x
(x, ω)

)ᵀ

P

)
(A.7)

are negative definite and separated from zero, i.e. there exists a constant c ∈ R>0 such that

λi(Q) ≤ −c < 0 (A.8)

for all i ∈ 1, · · · , n, u ∈ U , and x ∈ Rn, then the system (A.4) is exponentially convergent.

A.4 Elementary Graph Theory

In this section some basic terminology from graph theory is presented, with notation and termin-
ology adopted from [69, 70]. A graph is a pair G = (V, E), with V = {v1, v2, · · · , vk} denoting the
set of nodes and E ⊆ V × V the set of edges. A graph is called undirected if {x, y} ∈ E for each
{y, x} ∈ E . An undirected network is called connected if every two nodes are joined by some path.
A directed edge from node vi to node vj is denoted by (vj , vi) ∈ E , which means that node vj can
receive information from node vi. For a weighted digraph (directed graph) we use G = (V, E , A)
with A the weighted adjacency matrix. The neighbours of vi is the set of directed edges to node
vi and is denoted by Ei. If the graph does not contain self-loops and any two nodes are joined by
maximally one edge for each direction, it is called simple. Assume that the network consists of k
nodes, then the adjacency matrix A ∈ Rk×k := aij with aij > 0 if {i, j} ∈ E and aij = 0 other-
wise. We also introduce the degree matrix D ∈ Rk×k := diag {d1, · · · , dk} with di =

∑
j∈Ei aij ,

and L := D −A, which is called the Laplacian matrix of graph G.

Definition A.4. A digraph G = (V, E , A) is said to have a spanning tree if its set of nodes V
contains at least one node from which information can propagate to all other nodes along paths
in G. It is called strongly connected if there are paths connecting any two nodes.

A.5 Mathematical Framework

This section introduces the class of systems to be considered in this report. In particular, the
necessary input-output properties of each system in the network are specified.

Theorem A.1. [65]. Consider k systems on a strongly connected graph:

żi(t) = q(zi(t), yi(t)) (A.9a)

ẏi(t) = a(yi(t), zi(t)) +Bui(t), i ∈ I := {1, 2, · · · , k} (A.9b)
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where yi ∈ Rm, zi ∈ Rp,ui ∈ L∞ (R,Rm), sufficiently smooth function q : Rm×Rp → Rm and
a : Rp ×Rm → Rp. The matrix B ∈ Rm×m is positive definite. The systems (A.9) are diffusively
coupled in the relation

ui(t) = σ
∑
j∈Ei

aij (yj(t)− yi(t)) (A.10)

with coupling strength σ > 0 and interconnection weights aij = aji ≥ 0 for all i, j ∈ I. We
make the following assumptions:

H2.1 each system (A.9) is strictly semipassive with respect to input ui and output yi with
continuously differentiable and radially unbounded storage functions;

H2.2 the internal dynamics (A.9a) is an exponentially convergent system, i.e., there exists a
positive definite matrix P ∈ Rp×p such that the eigenvalues of the symmetric matrix

Q(zi, yi) =
1

2

(
P

(
∂q

∂zi
(zi, yi)

)
+

(
∂q

∂zi
(zi, yi)

)ᵀ

P

)
(A.11)

are uniformly negative and bounded away from zero for all zi ∈ Rp and yi ∈ Rm.

Then the solutions of the system (A.9) (A.10) are ultimately bounded and there exists a constant
σ∗ such that if σλ2(L) ≥ σ∗, λ2(L) is the smallest nonzero eigenvalue of the symmetric Laplacian
matrix, there exists a globally asymptotically stable subset of the diagonal set

M :=
{

col(z1, · · · , zk, y1, · · · , yk) ∈ Rk(p+m)|yi = yj and zi = zj for all i, j ∈ I
}
. (A.12)

Remark A.4. Assumption (H2.2) ensures that the zero-dynamics is convergent, uniformly in the
passive outputs. Assumption (H2.1) and (H2.2) are independent of the network. This means that
systems can synchronize for sufficiently large σλ2(L) (λ2 is algebraic connectivity, c.f. [71]).
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Parameter Table of
Hindmarsh-Rose Neurons

The parameters of the electronic HR neurons are taken from [56]. Note that the index has been
change.

Neuron c1 c3 c4 c5 c6 c7 c8 c9 c10 c11 · 103 c12 c13

1 0.9946 2.9925 4.9564 0.9880 7.8380 0.9874 1.0138 2.0271 1.0110 5.0279 3.9897 4.5348
2 0.9902 2.9861 4.9454 0.9829 7.8420 0.9846 1.0083 2.0305 1.0074 4.9914 4.0188 4.6579
3 1.0036 2.9826 4.9312 0.9946 8.0198 1.0009 1.0119 2.0174 0.9977 4.8884 4.1030 4.6043
4 0.9989 2.9737 4.9014 0.9941 7.9129 0.9989 1.0116 2.0161 0.9959 4.8677 4.0143 4.5275
5 0.9982 2.9915 4.9340 0.9860 7.8960 0.9884 1.0132 2.0216 1.0072 4.9686 4.0084 4.4629
6 1.0063 2.9905 4.9246 0.9888 7.9346 0.9949 1.0196 2.0255 1.0050 4.8458 4.0646 4.5447
7 1.0112 2.9898 4.9491 0.9841 7.8532 0.9916 1.0161 2.0262 1.0044 4.8643 4.0427 4.6245
8 0.9913 2.9581 4.9191 0.9981 7.9737 1.0031 0.9958 2.0039 0.9906 4.8605 4.0235 4.6363
9 1.0061 2.9999 4.9819 0.9908 7.8814 0.9935 1.0074 2.0152 1.0034 4.8442 4.0317 4.6456
10 1.0080 2.9734 4.9190 0.9872 7.9038 0.9994 1.0142 2.0159 0.9954 4.9425 4.0702 4.6286
11 1.0351 3.0026 4.9587 1.0023 7.9654 1.0029 1.0295 2.0119 1.0046 4.8333 4.0277 4.3949
12 0.9993 2.9829 4.9317 0.9914 7.9626 1.0036 1.0108 2.0138 1.0003 4.8000 4.0749 4.6086
13 1.0137 2.9841 4.9374 0.9989 7.9595 1.0015 1.0183 2.0326 1.0013 4.8833 4.0925 4.6788
14 0.9802 2.9825 4.9388 1.0024 8.0299 1.0059 1.0003 2.0100 1.0017 4.8252 4.0299 4.5863
15 1.0061 2.9891 4.9247 0.9867 7.8698 0.9972 1.0136 2.0191 0.9969 4.9159 4.1138 4.7313
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