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Abstract

For the motion planning of the ’Butterfly’ robot, the model must be able to be reduced to a two
degrees of freedom model. This reduction happens by applying a virtual holonomic point contact
and no-slip constraint. An ad hoc (situational) transformation of coordinates has been used to
incorporate these constraints and thus reduce the model. A trajectory has been planned for such
a model and with it a suitable controller. Experiments then show that it is possible to let the
’Butterfly’ robot track periodic motions such as unidirectional rolling of the ball.

Problems arise when it is desired to extend this ’ad hoc’ model to also be applicable (measur-
able) in situations where the previously mentioned virtual holonomic constraints do not hold.
One such situation could be occurence of slip and another one where the rolling object loses con-
tact with the plates. The problem then lies in the ad hoc transformed coordinates which can
only be measured when these virtual holonomic constraints are valid. The model thus needs to
be changed in such a way that it can be applied in both situations where the virtual holonomic
constraints are valid and not.

A solution to this problem would be the modeling of the ’Butterfly’ robot in another set of
coordinates. A reasonable choice would be to use polar coordinates. With the usage of polar
coordinates a new issue arises in which it is difficult (or even impossible) to make analytical ex-
pressions for the virtual holonomic constraints. As we wish for an extension of the ’ad hoc’ model,
it is thus needed that this ’polar coordinate’ model can be reduced in the same manner as the ’ad
hoc’ model. In this report several approaches have been made in trying to get these analytical
expressions. The conclusion of these attempts is the issue that the curve which describes the
position of the constrained center of the rolling object is not expressible in the angle related to
this center of the rolling object, but rather in the angle related to the point contact made when
the rolling object and plate touches.
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List of symbols

Symbol Quantity Unit Abbreviation
unit

dplates Distance between the two plates Meter m
g Gravitational acceleration Meter per square

second
m s−2

Jc Mass moment of inertia ball Kilogram square
meter

kg m2

Jf Mass moment of inertia of the plates Kilogram square
meter

kg m2

Jpen Mass moment of inertia pendulum Kilogram square
meter

kg m2

mc Mass of ball Kilogram kg
mcar Mass of cart Kilogram kg
mf Mass of the two plates Kilogram kg
mpen Mass of pendulum Kilogram kg
R ’Effective’ radius of ball Meter m
Rc Radius toward center of abll Meter m
Rp/δ Radius toward point contact Meter m
Rreal Real radius of the ball Meter m
s/ sc Arc length distance over curve γc Meter m
sp Arc length distance over curve γp Meter m
w Normal offset distance center of ball w.r.t. γc Meter m
xc Horizontal position of center of ball Meter m
xcar Horizontal position of car Meter m
xp Horizontal position of point contact between

ball and plates
Meter m

xpen Horizontal position of mass center pendulum Meter m
L Lagrangian Joule J
K Kinetic Energy Joule J
V Potential Energy Joule J
~n Unit normal vector - -
~τ Unit tangent vector - -
~vc Velocity vector of ball Meter per second m s−1

~vp Velocity vector of point contact Meter per second m s−1

~wc Rotational velocity vector of the ball with re-
spect to inertial frame

Radian per second rad s−1
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Radian per second rad s−1

γc Curve which described constrained center of
ball position

- -

γp Curve which describes point contact between
ball and plates

- -

θ Angle of plates w.r.t. inertial frame Radian rad
θp Angle of pendulum Radian rad
ρ Radius toward constrained center of ball Meter m
φ Angle of point contact Radian rad
ϕ Angle of center of ball Radian rad
ψ Angle of ball w.r.t. angle of plates Radian rad
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1 INTRODUCTION

1 Introduction

Humans can interact with objects in many ways. One such way would be the most obvious grasp-
ing motion, which can be preferred when transporting small objects. There may be times when
such grasping motions can not be made as the object may be too big or too slippery. It is for
this reason that other interactions may be preferred, like balancing a slippery ball on top of your
hand. These non-grasping interactions can also be called non-prehensile manipulations which also
relates to the ’Butterfly’ robot. The ’Butterfly’ robot does not manipulate the rolling object by
grasping it, but manipulates it by letting it roll over a rotating surface (see figure 2).

A reason for researching non-prehensile manipulation in the field of robotics, may be the design
of a perfect humanoid. In a society in which every object is made in such a way that humans can
interact with it, a humanoid should also be able to interact with these objects when it wants to
perform the same tasks as us. Another reason could be related to the properties of the interacting
object. The object may for example be too delicate to be grasped and transportation without
grasping is then desired.

The ’Butterfly’ robot is a robot built for analyzing one kind of non-prehensile manipulation,
namely the rolling interaction. The plates of the robot resembles a hand on which a rolling object
(in this case a ball) is balanced. In [1] a controller has been designed in which it was possible
to control and stabilize a periodic motion on the ’Butterfly’ robot. The controller works, but
there is a problem with the model used in this work. The model is made in such a way that it is
only applicable when certain virtual holonomic constraints, constraints which are not physically
present, are active. In case of extending the model to situations in which those virtual holonomic
constraints are not active, it is needed to derive the model in other excessive (not necessarily
minimal) coordinates.

In this report an attempt has been made in finding excessive coordinates that can extend the
model in a way that it can also be applied to situations where the virtual holonomic constraints
are not active, while also being able to simulate the constrained behaviour as the ’old’ model.
With the term ’old’ model it is referred to the model used in [1], in which an ad hoc (situational)
coordinate transformation is applied. From here on the term ’new’ model refers to the model
designed with the newfound excessive coordinates (polar coordinates), which can be seen later
in the report. The difference between the ’new’ and ’old’ model lies in the fact that the ’new’
model should be applicable in both situations where the virtual holonomic constraints do and
do not uphold, while the ’old’ model is only applicable in situations where the virtual holonomic
constraints do uphold.

The report is built up in the following manner. In chapter 2 an explanation will be given to
why it is needed to reduce the model to a two degrees of freedom model, how the ’old’ model was
derived and what its problem is. The solution to this problem is explained in chapter 3 by using
excessive coordinates and deriving a ’new’ model with it. This ’new’ model should also be able
to simulate the behaviour of the ’old’ model, which is why attempts have been made in finding
analytical expressions of the virtual holonomic constraints in excessive coordinates. This can be
seen in chapter 4 and 5. After that a conclusion and recommendation about this ’new’ model will
follow in chapter 6.

Alternative approach in modeling the dynamics of the ’Butterfly’ robot 1



2 AD HOC TRANSFORMED MODEL

2 Ad hoc transformed model

In previous works ([1],[2] and [3]), an ad hoc (situational) coordinate transformation has been
applied in order to reduce the degrees of freedom and apply a motion planning process. This
chapter first start by describing why a reduction of the model is needed. Afterwards it will
describe the ad hoc transformed model (which is based on chapter 2 of [3]) and will explain what
its problems are. Appendix B can be referred to for the steps taken in deriving the equations of
motion mentioned in this chapter (with also a guide for a ’Maple’ script).

2.1 Why reduction is needed

Motion planning and stabilization of the ’Butterfly’ robot as described in [1] requires the degree
of freedom of a system to be reduced to two in which one of them is underactuated. The actuated
degree of freedom is the one which can influence both degrees of freedom. A virtual holonomic
constraint (a constraint which is not physically present) will be proposed between the two degrees
of freedom which allows the model to be reduced to a one degree of freedom model. Motion
planning will then take place by choosing a feasible trajectory (a periodic motion) on the phase
portrait of the passive dynamic (the one related to the unactuated degree of freedom). Stabilization
of this motion will take place after this, but this will not be elaborated in this report. If the reader
is interested, the following sources can be of interest [1],[2],[3] and [4].

θp

F

y

x

xcar; ycar mcar

xpen; ypen

L,Jpen,mpen

Figure 1: Cart Pendulum

An example will now be worked out to clarify this. In Figure 1 a simple cart pendulum can be
seen. This cart pendulum has two degrees of freedom xcar (horizontal displacement of the cart)
and θp (angle of pendulum). Notice that there is only a case of non-prehensile manipulation when
there is actuation on the cart (by a force F) and not when there is actuation on the pendulum
, although both cases represent underactuation. The equations of motion (’EOM’ in short) with
actuation on the cart is represented in (2.1) (see appendix A.1 for parameter values and steps
taken).

EOM

{
2ẍcar + cos(θp)θ̈p − sin(θp)θ̇

2
p = F

ẍcar cos(θp) + θ̈p − g sin(θp) = 0
(2.1)

A virtual holonomic constraint Φ(.) will be proposed between the two degrees of freedom to
reduce the model to a one degree of freedom model. One of the two degrees of freedom will be
the ’generating’ variable (this degree of freedom determines the value of the other), in this case
θp will be the generating variable. Equation (2.2) shows the relations between xcar and θp with
virtual holonomic constraint Φ(.). In [1] and [5] examples of such a virtual holonomic constraint
can be found for the ’Butterfly’ robot.

xcar = Φ(θp) (2.2a)

ẋcar = Φ
′
(θp) · θ̇p (2.2b)

ẍcar = Φ
′′
(θp) · θ̇2p + Φ

′
(θp) · θ̈p (2.2c)

2 Alternative approach in modeling the dynamics of the ’Butterfly’ robot



2 AD HOC TRANSFORMED MODEL

Combining the passive dynamic of (2.1) (bottom one) and the virtual holonomic constraints of
(2.2) will give an α, β, γ-equation (2.3). This α, β, γ-equation will generate a phase portrait that
can be used for the motion planning (more information regarding this phase portrait can be found
in appendix A.2). Notice that allocating the actuator to the pendulum (θp) will result in a phase
portrait with no feasible trajectories, this is also described in appendix A.2.

α(θp)θ̈p + β(θp)θ̇
2
p + γ(θp) = 0

(1 + cos(θp)Φ
′(θp))θ̈p + cos(θp)Φ

′′(θp)θ̇
2
p − g sin(θp) = 0

(2.3)

2.2 Modeling of the ’Butterfly’ robot

Figure 2: 3-D representation of the ’Butterfly’ robot [1]

Figure 2 visualises how the ’Butterfly’ robot looks like. It consists of two ’number-eight’-shaped
plates which are attached to each other parallel. These plates are rotated with a torque in the
middle while having a soft rolling object (in this case a ball) between the two plates. The following
assumptions are made about this model:

� The two plates are identical and perfectly aligned which causes the dynamics in the third
dimension to be obvious (and this is thus left out).

� The two objects, the plates and the ball, are assumed to be rigid bodies. This will mean that
the ball and the plates will be regarded as solid objects which won’t deform (line contact
between the ball and plate will not occur).

� The plates and ball are assumed to be ’perfect’, thus both objects in this case are regarded
as smooth objects without imperfections.

� Uniform density/mass distribution assumed in both objects. This way the center of the mass
of the ball coincides with the center of the ball and the center of mass of the plates coincides
with the center of the plates

Incorporating these assumptions will give a simplified two dimensional representation of this ’But-
terfly’ robot where the upper right part can be seen on Figure 3. The inertial reference frame is ~e0,
and the body fixed frames for the plate and ball are respectively ~e1 and ~e2. There are six degrees
of freedom (every two dimensional ’body’ has three degrees of freedom) which can be summed up
in a coordinate vector q as can be seen in (2.4).

q =
(
xf yf θ xc yc ψ

)T
(2.4)

Between the inertial reference frame and the body fixed frame of the plate, the xf is the horizontal
displacement, yf the vertical displacement and θ the rotation. Between the body fixed frame of the
plate and the body fixed frame of the center of the ball, xc is the horizontal displacement, yc the
vertical displacement and ψ the rotation. Note that the plate does not move (ẋf = 0, ẏf = 0) and
that by alligning the inertial reference frame with the body fixed frame of the plate, a constraint is

Alternative approach in modeling the dynamics of the ’Butterfly’ robot 3



2 AD HOC TRANSFORMED MODEL

~e0
1

θ

~e1
1

~e0
2~e1

2

yc

xc

 

~e2
1

~e2
2

xf ; yf

Figure 3: Two dimensional representation of the upper right part of the ’Butterfly’ robot

imposed that xf = 0 and yf = 0. Using this constraint, the total degree of freedom of the system
can be reduced to four, as can be seen in the following vector.

q
2

=
(
θ xc yc ψ

)T
(2.5)

A further reduction of degrees of freedom is needed to apply the method of motion planning
as mentioned in the previous chapter. This can be done by adding two more virtual holonomic
constraints, namely 1) require contact between the ball and the plate at all time 2) require that
the ball does not slip while rolling on the plate. From now on these two constraints will be called
for simplicity ’point contact’ and ’no-slip’ constraint. Notice that these constraints are difficult to
express in the degrees of freedom that are stated in q

2
(this will be seen in chapter 3), which is

why an ad hoc transformation of coordinates has been applied. This ad hoc transformation will
result in the following degrees of freedom and can be seen in Figure 4.

q
3

=
(
θ s w ψ

)T
(2.6)

~e0
1

θ

~e1
1

~e0
2~e1

2

 

~ρ(s)

s

~e2
1

~e2
2

γcγp

R

~τ

w
~n

yp

xp

Figure 4: Ad hoc transformated coordinates of ’Butterfly’ robot [3]
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2 AD HOC TRANSFORMED MODEL

The ’point contact’ between the ball and the plate can be represented by the curve γp (=
(
xp yp

)T
).

As the ball is a rigid body, it always has a constant radius R. Note that this R is not the real
radius of the ball as the ball will rest between two plates in which the distance between them will
be called dplates. This radius R will then be given by the following equation, in which Rreal is the
real radius of the ball.

R =

√
R2
real −

dplates
2

2

(2.7)

With the ’point contact’ curve γp and the rigid body assumption, a new curve can be made which
represents the position of the constrained center of the ball (γc). The degree of freedom ’s’ (=s(.))
is then obtained by applying a Frenet coordinate frame, in which ’s’ is the distance traveled along
the curve γc. The position of the center of the ball can be described by the vector ~ρ(s), which is a
vector towards γc from the inertial reference frame, and the degree of freedom ’w’ (=w(.)) which
is the normal offset of the center of the ball with respect to the curve γc.

With these new degrees of freedom it is much easier to formulate the constraints. The ’point
constact’ constraint assumes that the center of the ball follows the curve (γc), thus ’w’ is 0. The
following constraint can then be imposed.

w = 0 (2.8)

The ’no-slip’ constraint assumes that the distance traveled along the curve γp is equal to the rolling
distance of the ball. This second constraint can then be seen below. Here the constant ’C’ gets
a value of 0 when considering an initial position where s and ψ are both 0 (which is used in this
report).

s = −Rψ + C (2.9)

These two constraints can be written as holonomic constraints (position constraints) as been done
in section 3.1.1 of [6], which has the following notation.

hi(q1, ..., qn, t) = 0 i = 1, ...,m (2.10)

In this case ’m’ would be equal to 2, which gives the following two holonomic constraints where h1
described the ’point contact’ constraint and h2 the ’no-slip’ constraint. These where the holonomic
constraints as have been used in the previous works ([1],[2] and [3]).

h1 = w ḣ1 = 0→ ẇ = 0 (2.11a)

h2 = s+Rψ ḣ2 = 0→ ṡ+Rψ̇ = 0 (2.11b)

Note that the ’no-slip’ constraint (2.9)/(2.11b) may not be correct. I’m not sure about this as
I may have misinterpreted the definition of the degree of freedom ’s’. The explanation for why
it may be wrong, can be gotten when looking at Figure 5. In these previous works, I think they
consider that the distance traveled on γp is equal to the distance traveled on γc. For a flat surface
example this would indeed be true, as the rolling distance from B to B’ is equal to the distance
traveled on the curve γp from A to A’ (considering no slip). This traveled distance from A to A’
is equal to the traveled distance from C to C’, which makes the distance traveled on γp equal to
the distance traveled on γc. The ’Butterfly’ robot is not a flat surface, and will cause the distance
traveled on γc to be bigger than γp. It thus not holds that ’s’ (which I assume to be the distance
on γc) is then equal to the distance traveled on γp, which is stated in (2.9) and (2.11b).

As I’m not sure that the constraint is wrong, it is left unchanged in this chapter and the cor-
responding appendix (note that this is not the problem of the model I wanted to tackle, just a
remark). In the following chapters a distinction is made between these two distances traveled by
denoting new variables sc and sp (note that everything will stay the same, only ’s’ in (2.11b) will
be replaced by ’sp’). Now that the constraints have been formulated, the degrees of freedom of the
model can be reduced to two and it is also possible to simulate the four degrees of freedom model
with the constraints. The equations of motion via an Euler-Lagrange method can be found in [3].
Due to the lack of steps given or a ’Maple’ script in [3], these have been provided in appendix B.

Alternative approach in modeling the dynamics of the ’Butterfly’ robot 5



2 AD HOC TRANSFORMED MODEL

A A0

B B0

B

C C 0

γc

γp

Figure 5: Rolling distance flat surface

2.3 Problems with the ad hoc transformed model

With the virtual holonomic constraints, a four degrees of freedom model can be reduced to a two
degrees of freedom model. The reduced degrees of freedom are not set, and it depends on the
motion that is desired to decide which degrees of freedom should be used to reduce the model.
Possible reduced degrees of freedom are displayed in (2.12).

q
4

=
(
θ s

)T
(2.12a)

q
5

=
(
θ ψ

)T
(2.12b)

The first and main problem, is that the degree of freedom ’s’ can only be measured in the reduced
model with active virtual holonomic constraints. The reason for this, is that it is difficult (or even
impossible) to assign ’s’ a value when the ball for example does not have contact with the plates.
One way to get ’s’ (assuming active constraints) is then by measuring the rotations of the ball ψ.
Another way is to introduce a new angle ϕ which is measured from xc, yc. Notice that in case
the ’point contact’ constraint is active, every possible xc, yc combination has only one unique ϕ
related to it. The degree of freedom ’s’ can be expressed in this new angle ϕ (s(ϕ)) which leads
to another reduced model with degrees of freedom used as in (2.13). A model with these reduced
degrees of freedom can be seen in Figure 6. In appendix B the equation of motion of this reduced
model with q

r
can be found. Note that this is the reduction which was used for planning a motion

with unidirectional rolling of the ball, as was described in [1].

q
r

=
(
θ ϕ

)T
(2.13)

~e0
1

θ
~e1
1

~e0
2~e1

2

~ρ(')

s(')

γcγp

'

φ
~Rp(φ)

Figure 6: θ,ϕ degrees of freedom of the ’Butterfly’ robot

The radius (and corresponding angle) of the plates of the ’Butterfly’ robot is given as δ(φ) [1].

6 Alternative approach in modeling the dynamics of the ’Butterfly’ robot



2 AD HOC TRANSFORMED MODEL

With this radius and angle, a vector can be made which describes this plate ~δ. Note that when
the ball has contact with the plate, this is equal to the point contact vector ~Rp(φ) which also
describes curve γp. There is no expression for curve γc with the angle of the center of the ball ϕ,
which thus makes ~ρ(ϕ) unknwon. The only possible way to define γc is then in the angle φ with

the point contact vector ~Rp, knowing that the center of the ball is always a normal distance R
away from the curve γp. This we can also see in the equation below.

δ(φ) = 0.1095− 0.0405 cos(2φ)

~Rp(φ) =
(
sin(φ)δ(φ) cos(φ)δ(φ)

)T
~ρ(ϕ(φ)) = ~Rp(φ) +R~n

s(ϕ) =

∫ ϕ

0

||d~ρ(ϕ)

dϕ
||dϕ

(2.14)

The second (minor) problem, is the unavailability of analytical expressions for the variables presen-
ted in (3.8). A look-up-table has been made which relates the degree of freedom ϕ(φ) with the
variable ρ(φ) (both can be calculated), to get ρ(ϕ). One of the issues presented in [1] is the fact
that not all virtual holonomic constraints may always be valid as slip for example may occur,
which would mean that the model may be inaccurate from time to time. Having no analytical ex-
pressions for the variables used as ρ(ϕ) makes the model even more inaccurate. For the particular
shape and rolling object used in [1], it was possible to design a robust enough controller in such a
way that tracking was possible. For other shapes and rolling objects there is no guarantee that it
is possible to make such a robust controller.

The main issue that is present, is that modeling without the constraints is difficult (or impossible)
in the degrees of freedom ’s’ and ’w’. What kind of value would you assign ’s’ when the ball
slips for example? We can’t take the the usual approach that the rolling distance is equal to ’s’
anymore. The other issue is that the model is not that accurate as no analytical expression is
present for ρ(ϕ). We will see that this last issue also forms a problem for the ’new’ model, and
that it is important to get such an analytical expression if we want the model to be more accurate.
The real challenge in this ’Butterfly’ robot is actually then to model it as accurate as possible.

2.4 Summary

A reduction of the model is needed to be able to plan a motion. It is necessary that the model is
reduced to a two degrees of freedom model in which one of the degrees of freedom can be related
to the actuated part, while the other is related to the unactuated part. For the ’Butterfly’ ro-
bot an ad hoc transformation of coordinates is applied in order to reduce the model to such a shape.

It can be seen that the ad hoc transormed model has two issues. The first issue, that the model can
only be applied correctly in situations where the rolling object does not slip and always maintains
contact with the plates. These conditions are required in order to give meaningful values to the
coordinates ’s’ and ’w’. In case these conditions do not uphold, for example when the ball is in
the air, it is not possible to assign a correct value to the coordinates ’s’ and ’w’.

The second issue, the unavailability of an analytical expression for ρ in the reduced degree of
freedom ϕ. This is needed to be able to express the dynamics of the model more accurately, as
a look-up-table won’t always provide smooth derivatives. Solving both these issues will provide
a more accurate model, for which the first issue is of course the most important one. It is for
this reason that the next chapter will focus on searching this new set of coordinates. We will see
however that solving the first issue also requires solving the second issue, which may not prove to
be so simple.
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3 MODEL IN EXCESSIVE COORDINATES

3 Model in excessive coordinates

For the ad hoc transformed model, which will be called ’old’ model from now on, it was possible to
let the system track a periodic motion as can be seen in [1]. The ’old’ model however is not perfect,
and is only applicable in situations where the virtual holonomic constraints ’point contact’ and
’no-slip’ are active. In this chapter it is tried to derive a ’new’ model in excessive (not necessarily
minimal) coordinates, which should also be applicable in situations where these virtual holonomic
constraints do not uphold. Usage of excessive coordinates however brings another issue in which
it is difficult to formulate the virtual holonomic constraints analytically. The chapter first starts
with modeling in cartesian coordinates and states its difficulty with writing the virtual holonomic
constraints. A ’new’ model in polar coordinates is then suggested in which it is seen that it
is possible to write the virtual holonomic constraints, only if it is possible to get an analytical
expression for φ(ϕ).

3.1 Model in Cartesian coordinates

~e0
1

θ

~e1
1

~e0
2~e1

2

yc

xc

 

~ρ(s)

s

~e2
1

~e2
2

γcγp

w

u

Figure 7: ’Butterfly’ robot in cartesian coordinates

Figure 7 gives a representation of the ’Butterfly’ robot in Cartesian coordinates. This model

uses the following degrees of freedom q
2

=
(
θ xc yc ψ

)T
, in which the degrees of freedom

are already described in chapter 2.2. An Euler-Lagrange method can be applied to derive the
equations of motions, which can be seen in (3.1) (the notations are used as described in [6]).
Herein Q

nc
are the non conservative forces (e.g. actuator forces), Wλ consists of the holonomic

and non-holonomic velocity constraints which are linear in the velocity terms ( otherwise the shape
of (3.1) can not be adopted as stated in chapter 3 page 55 of [6]) and L is the Lagrangian which
is built up from the kinetic energy ’K’ and potential energy ’V’.

(
d

dt

∂L
∂q̇

2

− ∂L
∂q

2

)T = M(q
2
)q̈

2
+ C(q

2
, q̇

2
)q̇

2
+G(q

2
) = Q

nc
+Wλ

L = K − V
(3.1)

Using the assumption of uniform mass distribution, the center of mass of the plates should coincide
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3 MODEL IN EXCESSIVE COORDINATES

with the center position of the plates. This will make the potential force of the plates negligible
as it has no influence on the system. The kinetic energy of the plates are solely due to rotation as
no translation is possible. Equation (3.2) gives the kinetic energy of the plates (Kf ), herein Jf is
the inertia of the plates and ~wf the rotational velocity of the plates.

Kf =
1

2
Jf (~wf · ~wf )

~wf =
(
0 0 θ̇

)
~e0

(3.2)

The ball will have both a kinetic and a potential energy. The kinetic energy of the center of the
ball (Kc) consists of a translational and a rotational component, which can be seen in (3.3).

Kc =
1

2
mc(~vc · ~vc) +

1

2
Jc(~wc · ~wc) (3.3)

The translational velocity of the center of the ball (~vc) can be gotten by taking the time derivative

of the position of the center of the ball (~Rc) (note that 10 ~w = ~wf ).

~Rc =
(
xc yc 0

)
~e1 = R1T

c ~e1

d~Rc
dt

= ~vc = Ṙ
1T

c ~e1 +R1T

c
~̇e
1

= Ṙ
1T

c ~e1 + 10 ~w × ~Rc

=
(
ẋc ẏc 0

)
~e1 + 10 ~w ×

(
xc yc 0

)
~e1 =

(
ẋc − θ̇yc ẏc + θ̇xc 0

)
~e1

(3.4)

The rotational velocity of the center of the ball (~wc) can be gotten by taking the time derivative
of the total angle difference between the body fixed frame of the ball and the inertial reference
frame.

~wc =
(
0 0 ψ̇ + θ̇

)
~e0 (3.5)

Under the assumption that the ball also has uniform mass distribution, the center of mass of the
ball will coincide with the center of the ball. This will then give the following potential energy
of the center of the ball (Vc), in which ’g’ is the gravitational component and A10 is a rotation
matrix that relates the angle difference between the body fixed frame of the plate and the inertial
reference frame.

Vc = mc~g · (R1T

c ~e1) (3.6a)

~g =
(
0 g 0

)
~e0 = g~e02 (3.6b)

~e1 = A10~e0 =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

~e0 (3.6c)

Adding all the kinetic and potential energy terms will result in the Lagrangian as stated in (3.7).
The M(q

2
), C(q

2
, q̇

2
) and G(q

2
) terms in (3.1) can be found in appendix C.1( a Maple script can

be made by following the steps in appendix B.2 ).

L = Kc +Kf − Vc

=
mc

2
((x2c + y2c +

Jc
mc

+
Jf
mc

)θ̇2 + (2
Jc
mc

ψ̇ − 2(ycẋc − xcẏc))θ̇ +
Jc
mc

ψ̇2 + ẋ2c + ẏ2c − 2mc~g · (R1T

c A10))

(3.7)

The non-conservative term has only one input as the only external force that is present is the
torque on the plates, which will be called ’u’.

Q
nc

=
(
u 0 0 0

)T
(3.8)

The last term Wλ can be gotten from the virtual holonomic constraints ’point contact’ and ’no-
slip’, where . The previous ’point contact’ constraint (2.8) requires that w is 0, which thus means
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3 MODEL IN EXCESSIVE COORDINATES

that the center of the ball is always on the constrained curve γc (described by ~ρ). Assuming
that no-slip is present and that there is thus a relation between ’s’ and (xc, yc), this can then be
formulated as the following. √

x2c + y2c = ||~ρ(s(xc, yc))|| (3.9)

The ’no-slip’ constraint (2.9) can then be gotten in Cartesian coordinates by having a relation
between ’s’ and (xc, yc). This can be given in the following velocity constraint (this was much
easier to depict).

ṡ =
√
ẋc + ẏx√

ẋc + ẏx = −Rψ̇
(3.10)

The main issue with these constraints is the difficulty to reduce the dynamics with it. For this

model a logical choice of reduced degrees of freedom would be q
5

=
(
θ ψ

)T
as xc or yc can’t

give good information about the position of the ball when used seperately. It is then desired
to have two virtual holonomic constraints in which for example one constraint gives the relation
xc = f(ψ) and the other constraint the relation yc = g(xc). Equation (3.9) may then give the
relation yc = g(xc) and (3.10) the relation xc = f(ψ). Assuming that ρ(s(xc, yc)) will not be a
simple expression as the derivative of ’s’ has already square root terms in it, (3.9) will be difficult
(or even impossible) to solve in the shape of yc = g(xc). Without an analytical expression for
yc = g(xc), it is then also impossible to solve (3.10) as xc = f(ψ) and it is thus not able to reduce
the model to a two degrees of freedom model.

Even though the equations of motions are rather easily derived, it is seen that the constraints
are difficult to formulate. It is for this reason that the ’old’ model used an ad hoc transformation
of coordinates. This is not the solution that is desired in this report as the flaw of the ’old’ model
has already been pointed out. Another possible choice of coordinates is the usage of polar co-
ordinates. This way it is possible to replace the less practical coordinates xc and yc (in the sense
that they’re not useful as reduced coordinates) as an angle ϕ and corresponding radius Rc. As
ϕ was also chosen as the reduced coordinate for the reduced ’old’ model, it thus emphasizes that
it is not a bad choice. The ’new’ model that arises with polar coordinates can be reduced to the
same degrees of freedom as the ’old’ model, while also having coordinates that can be measured
in situations where the virtual holonomic constraints are not valid.

3.2 Model in polar coordinates

Transforming the Cartesian coordinates into polar coordinates will give the degrees of freedom as
can be seen in (3.11). Those degrees of freedom can be found back in Figure 8, wherein Rc is the
distance between the inertial reference frame and the center of the ball. Herein also a distinction
is made between the distances traveled along the curves γp and γc, respectively named sp and sc .

q
n

=
(
θ Rc ϕ ψ

)T
(3.11)

The relations between (xc, yc) and (Rc, ϕ) can be seen in (3.12).

xc = Rc sin(ϕ) (3.12a)

yc = Rc cos(ϕ) (3.12b)

Notice that another possible choice of coordinates would be q
o

=
(
θ Rp φ Rc ϕ ψ

)T
. This

transformation of coordinates would only be of benefit if it is desired to get φ as one of the two
reduced degrees of freedom. In practice φ will not get measured, as it is impossible to measure just
point contact. If it is however desired to get φ, then the following four constraints must be used :
Rp(φ), Rc(φ), ϕ(φ), ψ(φ). This has not been worked out in this report as it was not of interest.
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Figure 8: ’Butterfly’ robot in polar coordinates

3.2.1 Equation of motion four degrees of freedom model

The same equation as (3.1) can be used with coordinate vector q
n

for deriving the equations of
motion. The Lagrangian can be derived in the same manner and deriving this should give the
same answer as inserting the new expressions of xc and yc (3.12) into (3.7), which gives (3.13).

L =
mc

2
((R2

c+
Jc
mc

+
Jf
mc

)θ̇2+(2
Jc
mc

ψ̇−2R2
c ϕ̇)θ̇+

Jc
mc

ψ̇2+R2
c ϕ̇

2+Ṙ2
c−2gRc(sin(ϕ) sin(θ)+cos(ϕ) cos(θ)))

(3.13)
With the Lagrangian defined we can derive the equation of motion via the Euler-Lagrange method.
This can be seen below, in which the terms for the respective degree of freedom are worked out
seperately.

Degree of freedom θ

∂L
∂θ̇

= mc((R
2
c +

Jc
mc

+
Jf
mc

)θ̇ +
Jc
mc

ψ̇ −R2
c ϕ̇) (3.14)

d

dt

∂L
∂θ̇

= mc((R
2
c +

Jc
mc

+
Jf
mc

)θ̈ +
Jc
mc

ψ̈ −R2
c ϕ̈+ 2RcṘc(θ̇ − ϕ̇)) (3.15)

∂L
∂θ

= −mcgRc(sin(ϕ) cos(θ)− cos(ϕ) sin(θ)) (3.16)

Degree of freedom Rc

∂L
∂Ṙc

= mcṘc (3.17)

d

dt

∂L
∂Ṙc

= mcR̈c (3.18)

∂L
∂Rc

= mc(Rcθ̇
2 − 2Rcϕ̇θ̇ +Rcϕ̇

2 − 2g(sin(ϕ) sin(θ) + cos(ϕ) cos(θ))) (3.19)
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3 MODEL IN EXCESSIVE COORDINATES

Degree of freedom ϕ

∂L
∂ϕ̇

= mc(R
2
c(ϕ̇− θ̇)) (3.20)

d

dt

∂L
∂ϕ̇

= mc(R
2
c(ϕ̈− θ̈) + 2RcṘc(ϕ̇− θ̇)) (3.21)

∂L
∂ϕ

= −mcgRc(cos(ϕ) sin(θ)− sin(ϕ) cos(θ)) (3.22)

Degree of freedom ψ

∂L
∂ψ̇

= Jc(θ̇ + ψ̇) (3.23)

d

dt

∂L
∂ψ̇

= Jc(θ̈ + ψ̈) (3.24)

∂L
∂ψ

= 0 (3.25)

Equation of motion

Mn(q
n
) = mc


(R2

c + Jc
mc

+
Jf
mc

) 0 −R2
c

Jc
mc

0 1 0 0
−R2

c 0 R2
c 0

Jc
mc

0 0 Jc
mc

 (3.26)

Cn(q
n
, q̇
n
) = mc


RcṘc Rc(θ̇ − ϕ̇) −RcṘc 0

Rc(ϕ̇− θ̇) 0 Rc(θ̇ − ϕ̇) 0

−RcṘc Rc(ϕ̇− θ̇) RcṘc 0
0 0 0 0

 (3.27)

Gn(q
n
) =


mcgRc(sin(ϕ) cos(θ)− cos(ϕ) sin(θ))
mcg(sin(ϕ) sin(θ) + cos(ϕ) cos(θ))
mcgRc(cos(ϕ) sin(θ)− sin(ϕ) cos(θ))

0

 (3.28)

The nonconservative force Q
nc

will not change and can be seen in (3.8). The ’point contact’
constraint can be formulated as that Rc should be equal to ρ(ϕ) (=||~ρ(ϕ)||), which constraints
Rc on the curve γc. The ’no-slip’ constraint can be found by stating that the rolling distance
of the ball is equal to a traveled distance ’sp(ϕ)’ (assuming that the ball starts rolling at sp=0
and ψ = 0). Note that the reduced ’new’ model uses the same degrees of freedom as the reduced

’old’ model, namely q
r

=
(
θ ϕ

)T
. With these two constraint expressions it is possible formulate

them in the same way as (2.10) and (2.11), as holonomic constraints h1,n and h2,n which stands
respectively for the new ’point contact’ and ’no-slip’ holonomic constraints. With them formulated
in this way, it is possible to derive Wλ as below.

h1,n = Rc − ρ(ϕ) (3.29a)

h2,n = sp(ϕ) +Rψ (3.29b)

WT =
∂
(
h1,n h2,n

)T
∂q

n

=

(
dh1,n

dθ
dh1,n

dRc

dh1,n

dϕ
dh1,n

dψ
dh2,n

dθ
dh2,n

dRc

dh2,n

dϕ
dh2,n

dψ

)
=

(
0 1 −dρ(ϕ)dϕ 0

0 0
dsp(ϕ)
dϕ R

)
(3.29c)

λ =
(
λ1 λ2

)T
(3.29d)

For getting λ, a look can be given at (B.46).
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3.2.2 Equation of motion two degrees of freedom model

To reduce the dynamics to a two degrees of freedom model (q
r

=
(
θ ϕ

)T
), it is needed to get the

’point contact’ constraint Rc(ϕ) (=ρ(ϕ)) and the ’no-slip’ constraint ψ(ϕ) (= -
sp(ϕ)
R ). Suppose

that these constraints can be obtained in their desired format, then the time derivatives of these

constraints can be seen in (3.30) (note that R′c = dRc
dϕ , R

′′
c = d2Rc

dϕ2 , ψ
′ = dψ

dϕ , ψ
′′ = d2ψ

dϕ2 ).

Ṙc(ϕ) = R′cϕ̇ R̈c(ϕ) = R′cϕ̈+R′′c ϕ̇
2 (3.30a)

ψ̇(ϕ) = ψ′ϕ̇ ψ̈(ϕ) = ψ′ϕ̈+ ψ′′ϕ̇2 (3.30b)

The Lagrangian can now be obtained by inserting these constraints and time derivatives into
(3.13), which results in (3.31).

L =
mc

2
((R2

c(ϕ) +
Jc
mc

+
Jf
mc

)θ̇2 + (2
Jc
mc

ψ′ − 2R2
c(ϕ))ϕ̇θ̇ + (

Jc
mc

(ψ′)2 +R2
c(ϕ) + (R′c)

2)ϕ̇2

− 2gRc(ϕ)(sin(ϕ) sin(θ) + cos(ϕ) cos(θ)))

(3.31)

Degree of freedom θ

∂L
∂θ̇

= mc((R
2
c(ϕ) +

Jc
mc

+
Jf
mc

)θ̇ + (
Jc
mc

ψ′ −R2
c(ϕ))ϕ̇) (3.32)

d

dt

∂L
∂θ̇

= mc((R
2
c(ϕ) +

Jc
mc

+
Jf
mc

)θ̈ + (
Jc
mc

ψ′ −R2
c(ϕ))ϕ̈+ 2Rc(ϕ)R′cϕ̇θ̇ + (

Jc
mc

ψ′′ − 2Rc(ϕ)R′c)ϕ̇
2)

(3.33)
∂L
∂θ

= −mcgRc(ϕ)(sin(ϕ) cos(θ)− cos(ϕ) sin(θ)) (3.34)

Degree of freedom ϕ

∂L
∂ϕ̇

= mc((
Jc
mc

ψ′ −R2
c(ϕ))θ̇ + (

Jc
mc

(ψ′)2 +R2
c(ϕ) + (R′c)

2)ϕ̇) (3.35)

d

dt

∂L
∂ϕ̇

=mc((
Jc
mc

ψ′ −R2
c(ϕ))θ̈ + (

Jc
mc

(ψ′)2 +R2
c(ϕ) + (R′c)

2)ϕ̈

+ (
Jc
mc

ψ′′ − 2RcR
′
c)ϕ̇θ̇ + 2(

Jc
mc

ψ′ψ′′ +RcR
′
c +R′cR

′′
c )ϕ̇2)

(3.36)

∂L
∂ϕ

=mc(Rc(ϕ)R′cθ̇
2 + (

Jc
mc

ψ′′ − 2Rc(ϕ)R′c)ϕ̇θ̇ + (
Jc
mc

ψ′ψ′′ +Rc(ϕ)R′c +R′cR
′′
c )ϕ̇2

− gR′c(sin(ϕ) sin(θ) + cos(ϕ) cos(θ))− gRc(ϕ)(cos(ϕ) sin(θ)− sin(ϕ) cos(θ)))

(3.37)

Equation of motion

Mr(qr) + Cr(qr, q̇r)q̇r +Gr(qr) =
(
u 0

)T
(3.38)

Mr(qr) = mc

(
(R2

c(ϕ) + Jc
mc

+
Jf
mc

) ( Jcmcψ
′ −R2

c(ϕ))

( Jcmcψ
′ −R2

c(ϕ)) ( Jcmc (ψ′)2 +R2
c(ϕ) + (R′c)

2)

)
(3.39)

Cr(qr, q̇r) = mc

(
Rc(ϕ)R′cϕ̇ Rc(ϕ)R′cθ̇ + ( Jcmcψ

′′ − 2Rc(ϕ)R′c)ϕ̇

−Rc(ϕ)R′cθ̇ ( Jcmcψ
′ψ′′ +Rc(ϕ)R′c +R′cR

′′
c )ϕ̇

)
(3.40)

Gr(qr) =

(
mcgRc(ϕ)(sin(ϕ) cos(θ)− cos(ϕ) sin(θ)

mcgR
′
c(sin(ϕ) sin(θ) + cos(ϕ) cos(θ)) +mcgRc(ϕ)(cos(ϕ) sin(θ)− sin(ϕ) cos(θ)))

)
(3.41)
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3.2.3 Constraints

In order to simulate the constrained four degrees of freedom model accurately or to reduce it to
an accurate two degrees of freedom model, analytical expressions of the ’point contact’ constraint

Rc(ϕ) (=ρ(ϕ)) and the ’no-slip’ constraint ψ(ϕ) (= -
sp(ϕ)
R ) are needed.

Point contact

The ’point contact’ constraint assumes that Rc is equal to the length of vector ~ρ (3.42c). The
only way of getting an analytical expression of ~ρ is to formulate it in the coordinate φ, thus ~ρ(φ).

This can be seen by (3.42a) in which ~Rp is described in the coordinate φ by the shape of the
plate δ(φ) given in (2.14). Knowing that ~ρ or γc is a normal distance ’R’ away from γp, gives
the addition R~n. The normal vector ~n is defined by the tangent vector ~τ (3.42b) (which can be
seen in Figure 4). Here vp can be seen as the velocity of the point contact. With this all, it is
possible to formulate the constraint in the same way as (3.29a) which can be seen in (3.42d) and
its derivative in (3.42e). From it, it can be seen that an analytical expression is available if φ(ϕ)
is known, which is yet unknown.

||~ρ(φ)|| = ||~Rp(φ) +R~n(φ)|| (3.42a)

~n(φ) =
(
0 0 1

)T × ~τ , ~τ =
~vp
||~vp||

, ~vp =
∂ ~Rp(φ)

∂φ
(3.42b)

Rc = ||~ρ(φ(ϕ))|| (3.42c)

h1,n = Rc − ||~ρ(φ(ϕ))|| (3.42d)

ḣ1,n = 0→ Ṙc −
d||~ρ||
dφ

dφ

dϕ
ϕ̇ = 0 (3.42e)

No-slip

This time a differentiation between sp and sc is made. The correct ’no-slip’ constraint would
use sp, thus it is also used here. The constraint can be seen in (3.43a) which can be reformulated
in the same way as (3.29b) as can be seen in (3.43b).

sp =

∫ φ

0

||d
~Rp(φ)

dφ
||dφ =

∫ ϕ

0

||d
~Rp(φ(ϕ))

dϕ
||dϕ = −Rψ (3.43a)

h2,n =

∫ ϕ

0

||d
~Rp(φ(ϕ))

dϕ
||dϕ+Rψ (3.43b)

ḣ2,n = 0→ ||d
~Rp(φ(ϕ))

dϕ
||ϕ̇+Rψ̇ = 0 (3.43c)

From the equations it can be seen that the expression φ(ϕ) is again needed to make an analytical
expression for the ’no-slip’ constraint in ϕ.

3.3 Summary

A model made in Cartesian coordinates may be the most obvious and practical choice, but reducing
the model seems to be difficult (or even impossible). It is for this reason that a model is made in
polar coordinates, which showed a much easier process reducing the model. The problem that then
arises, is that the reduction needs an analytical expression for φ(ϕ). It is desired to reduce the
model in ϕ as it makes much more sense (and is also easier) to measure this angle in expreriments
instead of φ. When it is possible to find such an expression, a ’new’ model can be created that
can be applied to situations where the virtual holonomic constraints do not hold, while also being
able to be reduced to the same model as the ’old’ model.
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4 EXPRESSING ANGLE OF THE CENTER OF THE BALL IN ANGLE OF POINT
CONTACT

4 Expressing angle of the center of the ball in angle of point
contact

Before deriving φ(ϕ), the inverse ϕ(φ) is first derived. The reason for doing this, is that ϕ(φ)
is much easier to derive and that the inverse of ϕ(φ) may then be taken for getting φ(ϕ). Also
the attempts made for deriving ϕ(φ) may then be applied for deriving φ(ϕ). First a geometrical
approach is taken which has as advantage that it is easier to see how the solution is built up. A
disadvantage of such a geometrical approach is that time is disregarded, but this will only play
a role when the rolling object is not in the shape of a ball (e.g. an ellips). Second an analytical
approach is taken which has as advantage that it will give a general solution which includes the
variable time.

4.1 Geometrical approach

1 2

34

Figure 9: ’Butterfly’ robot and important sections

The ’Butterfly’ robot is half symmetrical, so it is enough to consider only the right part of it. This
right part consists of four sections in which the relation between ϕ(φ) differ a bit. These four
sections are represented in Figure 9. The division between the sections are made for the following
reasons

� The division between the upper half and lower half are made due to the reason that φ > ϕ in
the upper half, while φ < ϕ in the lower half. This division happens at an angle of φ = 0.5π

� The division between section 1 and 2 (and thus also between 3 and 4), is made due to the
reason that the tangent vector changes direction (e.g. from upward to downward). This
division happens at an angle in which τy(φ) = 0, which happens around φ ≈ 0.22π and
φ ≈ 0.78π.

4.1.1 Section 1

When looking at Figure 10, it can be seen that ϕ is equal to ∠CAD (angle of corner A of tri-
angle ACD). By regarding the 4ACD (triangle ACD), the following expression can be made for ϕ:

ϕ = ∠CAD = π − ∠ADC − ∠ACD (4.1)

To get ∠ADC an expression for α1 must first be gotten. Notice that α1 is related to the tangent
vector ~τ by the following expression in which ~Rp is the position vector from the inertial reference
frame to the point contact of the ball (note that δ is described in (2.14)).

Alternative approach in modeling the dynamics of the ’Butterfly’ robot 15



4 EXPRESSING ANGLE OF THE CENTER OF THE BALL IN ANGLE OF POINT
CONTACT

~τ

~τ
~n

R

δ(φ)

L1

L2

L3

A

B

C

D

E

F

G φ

'

α1

Figure 10: Section 1

~Rp =

sin(φ) · δ(φ)
cos(φ) · δ(φ)

0


~τ =

d~Rp
dφ

||d
~Rp
dφ ||

α1 = arctan(
τx
τy

)

(4.2)

With α1 defined, ∠ADC can be formulated by the following expression.

∠ADC = π − α1 (4.3)

The second unknown ∠ACD can be gotten from the lines L2 (CF) and L3 (AF).

∠ACD = arctan(
L3

L2
) (4.4)

To get L2, 4ABG should be regarded in which side BG has the same length as L2. Notice that L3

can also be gotten via this triangle as L3 is equal to AG+FG, while FG is equal to the ’effective
radius’ of the ball ’R’.

L2 = δ(φ) cos(∠ABG)

L3 = δ(φ) sin(∠ABG) +R
(4.5)

∠ABG = ∠ABE (4.6a)

∠ABE = π − φ− ∠AEB (4.6b)

∠AEB = ∠ADC = π − α1 (4.6c)

This will eventually deliver the following expression for ϕ.

ϕ = π − ∠ADC − ∠ACD = α1 − arctan(
L3

L2
) (4.7)
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~τ
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D

E

F
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Figure 11: Section 2

4.1.2 Section 2

∠ABG = π − α2 − φ (4.8a)

α2 = arctan(
τx
−τy

) (4.8b)

L2 = δ(φ) cos(∠ABG) (4.8c)

L3 = δ(φ) sin(∠ABG) +R (4.8d)

ϕ = π − α2 − arctan(
L3

L2
) (4.8e)

4.1.3 section 3

R

δ(φ)

L1

L2

L3

π − '

π − φ

α3

α3

~τ

~τ

~n

A

B

C

D

E

F

G

Figure 12: Section 3
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∠ABG = ∠ABE = π − α3 − (π − φ) = φ− α3 (4.9a)

α3 = arctan(
−τx
−τy

) (4.9b)

L2 = δ(φ) cos(∠ABG) (4.9c)

L3 = δ(φ) sin(∠ABG) +R (4.9d)

π − ϕ = π − α3 − arctan(
L3

L2
)→ ϕ = α3 + arctan(

L3

L2
) (4.9e)

4.1.4 Section 4

~τ

~τ
~n

R

δ(φ)

L1

L2

L3

A

B

C

D

E

F

G
π − φ

π − '

α4

Figure 13: Section 4

∠ABG = ∠ABE = π − (π − α4)− (π − φ) = −π + φ+ α4 (4.10a)

α4 = arctan(
−τx
τy

) (4.10b)

L2 = δ(φ) cos(∠ABG) (4.10c)

L3 = δ(φ) sin(∠ABG) +R (4.10d)

π − ϕ = π − (π − α4)− arctan(
L3

L2
)→ ϕ = π − α4 + arctan(

L3

L2
) (4.10e)

4.1.5 Total equation

For the right part of the ’Butterfly’ robot, the following holds with L3 = δ(φ) sin(∠ABG) +R and
L2 = δ(φ) cos(∠ABG).

0 < φ <≈ 0.22π

{
∠ABG = α1 − φ
ϕ = α1 − arctan L3

L4

(4.11)
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≈ 0.22π < φ < 0.5π

{
∠ABG = π − α2 − φ
ϕ = π − α2 − arctan L3

L4

(4.12)

0.5π < φ <≈ 0.79π

{
∠ABG = φ− α3

ϕ = α3 + arctan L3

L4

(4.13)

≈ 0.79π < φ < π

{
∠ABG = −π + φ+ α4

ϕ = π − α4 + arctan(L3

L2
)

(4.14)

The ’Butterfly’ robot is half symmetrical, which means that for an angle π > φ > 2π the same
relations will hold as for angle 0 > φ > π. Noticing that αi with i∈{1, 2, 3, 4} is always the same
relation τx

τy
which is made positive, makes it possible to define a general variable β.

β = |τx
τy
|= α1 = α2 = α3 = α4 (4.15)

When resolving the left part of the ’Butterfly’ robot, it should be noted that (φ − π) must be
used instead of φ when calculating ∠ABG. This can be seen on Figure 14 in which there are two
triangles 4ABG and 4A’B’G’. To make sure that ∠ABG = ∠A’B’G’, it can be seen that (φ′−π)
is used instead of φ′. Taking into account all these remarks, the following can then be concluded
for the left part of ’Butterfly’ robot.

A;A0

B

G

G'

B'

β

β

φ0
− π

φ

Figure 14: Remark ∠ ABG when working on the left part of the ’Butterfly’ robot

π < φ <≈ 1.22π

{
∠ABG = β − φ+ π

ϕ = π + β − arctan L3

L4

(4.16)

≈ 1.22π < φp < 1.5π

{
∠ABG = 2π − β − φ
ϕ = 2π − β − arctan L3

L4

(4.17)

1.5π < φp <≈ 1.79π

{
∠ABG = φ− π − β
ϕ = π + β + arctan L3

L4

(4.18)

≈ 1.79π < φp < 2π

{
∠ABG = −2π + φ+ β

ϕ = 2π − β + arctan(L3

L2
)

(4.19)

There are eight equations ϕ(φ) needed to describe the whole ’Butterfly’ robot. It may be better
to only use one equation by combining all these eight equations. The following equation can be
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gotten when these equations are combined. It has to be noted that this combined equation is
undefined on the angles in which the sections switch, like φ = 0.5π.

∠BAE = φ− (1− sin(2φ)
|sin(2φ)| )(

−π+2φ
2 )− (1− sin(φ)

|sin(φ)| )
π
2

∠AEB = (1 +
sin(φp)
|sin(φp)|

vp,y
|vp,y| )

π
2 −

sin(φp)
|sin(φp)|

vp,y
|vp,y|β

∠ABG = π − ∠BAE − (1− sin(φ)
|sin(φ)| )

π
2 )− ∠AEB

L4 = δ(φ) cos(∠ABG)

L3 = δ(φ) sin(∠ABG) +R

ϕ = π − ∠AEB + (1− sin(2φ)
|sin(2φ)| )(

−π+2∠AEB
2 )− sin(2φ)

|sin(2φ)| arctan L3(φ)
L4(φ)

+ (1− sin(φ)
|sin(φ)| )

π
2

(4.20)

An explanation of this equation and ’Maple’ script can be found in appendix D. A ’Matlab’ script
is also given as a measure to check the output of the Maple script. To clarify the dismissal of time
as mentioned before, imagine the rolling object as an ellips. This ellips has no constant radius
and its ’effective radius’ (distance from the point of contact towards the center of the ellips) will
vary depending on its initial condition. The geometrical approach can not be taken anymore as
time is disregarded in it.

4.2 Analytical approach

The coordinates of point contact with respect to the inertial reference frame is given by the
following equations (see Figure 8 for more clarification).

xp(t) = Rp(t) · sin(φ(t)) (4.21a)

yp(t) = Rp(t) · cos(φ(t)) (4.21b)

In the same manner the location of the center of the ball can be written as the following.

xc(t) = Rc(t) · sin(ϕ(t)) (4.22a)

yc(t) = Rc(t) · cos(ϕ(t)) (4.22b)

The relation between ~Rp and ~Rc (note ||~Rp||= Rp, ||~Rc||= Rc) in case of point contact can be
written as follows, in which ~np is the normal vector of the point contact.

~Rc = ~Rp +R · ~np (4.23)

knowing that ~np is perpendicular to ~τp and always pointing outwards (as can be seen on e.g.
Figure 4), it can be calculated by rotating the ~τp 90 degrees anti-clockwise in case of clockwise
rotation of the ball. For ~τp the following expression holds, where vp denotes the velocity of the
point contact.

vx,p(t) = Ṙp(t) · sin(φ(t)) +Rp · φ̇(t) · cos(φ(t)) (4.24a)

vy,p(t) = Ṙp(t) · cos(φ(t))−Rp · φ̇(t) · sin(φ(t)) (4.24b)

||vp(t)|| =
√
Rp(t)2φ̇(t) + Ṙp(t)2 (4.24c)

~τp(t) =
~vp(t)

||~vp(t)||
(4.24d)

Rotating ~τ by 90 degrees anti-clockwise will then give

~np(t) =

(
cos(0.5π) − sin(0.5π)
sin(0.5π) cos(0.5π)

)
· ~τp(t)

=

Rp(t)·φ̇(t)·sin(φ(t))−Ṙp(t)·cos(φ(t))√
Rp(t)2φ̇(t)+Ṙp(t)2

Ṙp(t)·sin(φ(t))+Rp(t)·φ̇(t)·cos(φ(t))√
Rp(t)2φ̇(t)+Ṙp(t)2

 (4.25)
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Assuming that Rp(t) is equal to δ(φ(t)) (2.14) as they both describe the same curve γp, will
give Rp(t) = δ(φ(t)) = Rp(φ(t)). Inserting this new Rp into the previous equation will give the
following.

Ṙp(φ(t)) =
dRp
dφ

φ̇(t) (4.26a)

~np(t) =
φ̇(t)

|φ̇(t)|


Rp(φ(t))·sin(φ(t))−

dRp
dφ cos(φ(t))√

Rp(t)2+
dRp
dφ

2

Rp(φ(t))·cos(φ(t)+
dRp
dφ sin(φ(t))√

Rp(φ(t))2+
dRp
dφ

2

 (4.26b)

Filling (4.26b) into (4.23) will give an expression for ~Rc(φ(t)) which can then be used to describe
xc and yc according to (4.22).

xc(t) = Rc(t) sin(ϕ(t)) = Rp(φ(t)) sin(φ(t)) +R
Rp(φ(t)) · sin(φ(t))− dRp

dφ cos(φ(t))√
Rp(φ(t))2 +

dRp
dφ

2

φ̇(t)

|φ̇(t)|

(4.27a)

yc(t) = Rc(t) cos(ϕ(t)) = Rp(φ(t)) cos(φ(t)) +R
Rp(φ(t)) · cos(φ(t) +

dRp
dφ sin(φ(t))√

Rp(φ(t))2 +
dRp
dφ

2

φ̇(t)

|φ̇(t)|
(4.27b)

With (4.27) the following ϕ(t) expression can then be gotten.

ϕ(t) = arctan(
xc(t)

yc(t)
) (4.28)

When ’t’ (note this is not real ’time’) is taken equal as φ, the following relation can be gotten

ϕ(φ) = arctan(
Rp(φ) sin(φ)

√
Rp(φ)2 +

dRp
dφ

2
−R φ̇

|φ̇| (−Rp(φ) · sin(φ) +
dRp
dφ cos(φ))

Rp(φ) cos(φ)

√
Rp(φ)2 +

dRp
dφ

2
+R φ̇

|φ̇| (Rp(φ) · cos(φ) +
dRp
dφ sin(φ))

) (4.29)

Notice that this equation only gives solutions ϕ ranging from 0 to 0.5π. π should be added when
dealing with higher angles of φ as input, as can be seen on (4.30).

0 > φ > 0.5π : ϕ = ϕ(φ)

0.5π > φ > π : ϕ = π + ϕ(φ)

π > φ > 1.5π : ϕ = π + ϕ(φ)

1.5π > φ > 2π : ϕ = 2π + ϕ(φ)

(4.30)

It is also possible to get Rc(t). This can be done by solving the following equation

Rc(t)
2(sin2(ϕ(t)) + cos2(ϕ(t))) = xc(t)

2 + yc(t)
2 (4.31)

Replacing ’t’ for φ will then result in the following (notice that for unidirectional rolling the term
φ̇

|φ̇| = 1).

Rc(φ) =

√√√√√√ (R2 φ̇

|φ̇|

2
+Rp(φ)2)

√
Rp(φ)2 +

dRp
dφ

2
+ 2Rp(φ)2R φ̇

|φ̇|√
Rp(φ)2 +

dRp
dφ

2
(4.32)
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Now with Rc(φ) and φ, the curve γc can be parameterized in φ. Using ’Maple’ (appendix D.4)
the following value of Rc can be gotten with Rp(φ) = 0.1095− 0.0405 cos(2φ) .

V ar1 = 0.0001176524999 + (0.1095− 0.0405 cos(2φ))2

Rc(φ) =

√
V ar1 +

0.02169354742((0.1095− 0.0405 cos(2φ))2)√
(0.1095− 0.0405 cos(2φ))2 + 0.00656100(sin(2φ)2)

(4.33)

The same can be done for the angle ϕ(φ) as can be seen below. Note that the fraction goes on in
the second row as the fraction was too long to fit on one line.

ϕ = arctan(
(0.1095− 0.0405 cos(2φ)) sin(φ)

√
(0.1095− 0.0405 cos(2φ))2 + 0.00656100 sin(2φ)2

(0.1095− 0.0405 cos(2φ)) cos(φ)
√

(0.1095− 0.0405 cos(2φ))2 + 0.00656100 sin(2φ)2

−0.0008785886705 cos(φ) sin(2φ) + 0.01084677371(0.1095− 0.0405 cos(2φ)) sin(φ)

0.0008785886705 sin(φ) sin(2φ) + 0.01084677371(0.1095− 0.0405 cos(2φ)) cos(φ)
)

(4.34)

4.3 Summary

Two methods have been discussed for getting ϕ(φ). The geometrical approach divided the ’Butter-
fly’ robot in several sections where the geometrical relations were analyzed. For all these sections
a ϕ(φ) relation can be gotten, which can eventually be combined into one equation which is valid
for most of the time. The most important part is not necessary this total equation, but rather the
geometrical relations for getting φ(ϕ) which seems to be sort of the same for all sections. These
geometrical relations may then also be applied for the analysis in next chapter.

For the analytical approach usage has been made of the fact that the curve γc (and thus the
center of the ball) is always a normal distance ’R’ away from the curve γp (thus its point contact).
Simply with this knowledge, an equation can be derived for all sections (with some minor adjust-
ments to the output). As time does not play a role since the ball radius is constant, it thus does
not really matter whether the geometrical or analytical approach is taken as they would give the
same result. The approaches for getting the result is however different and may deliver different
results in the analysis for the next chapter. It shows that there is not just a single way in getting
an answer, but most often multiple ways.
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5 Expressing angle of point contact in angle of the center
of the ball

In this chapter attempts are made in getting the relation φ(ϕ). Being able in getting an analytical
expression for φ(ϕ) will result in being able to make a ’better’ model than the ’old’ model, in
the sense that it can be applied in more situations. It is however seen that such an analytical
expression is rather difficult to get and that the reason for this is the inability to express γc in ϕ.
The first attempt is to take an inverse relation of the previously gotten ϕ(φ). After that, attempts
similar as in previous chapter have been made. This time the analytical attempt is extended in
which also the arc length ’sp’ and trigonometric polynomials are taken into account.

5.1 Inverse relation

From previous chapter, expressions of ϕ(φ) have been derived. For simple equations it is often
possible to take the inverse relation of it with respect to a certain variable, for example the equation
below in which the variables ’a’ and ’b’ play a role.

a(b) = b+ 2 (5.1a)

b(a) = a− 2 (5.1b)

Initially it is thought that this could also be done for ϕ(φ), but with a somewhat more difficult
inverse relation. In order to solve this, ’Maple’ has been used with a ’solve’ command as can be
seen below. Hereby the previously gotten ϕ(φ) is renamed to a certain function ’f(.)’.

ϕ(φ) = f(φ) (5.2a)

solve(ϕ = f(φ), φ) (5.2b)

This has been done for both analytical and geometrical expressions from previous chapter. For
the geometrical expression only one section and its ϕ(φ) (e.g. (4.7)) is considered, as the total
equation described in (4.20) is a bit too complex.

Geometrical solution ϕ(φ) Section 1

α1 = − arctan(
1.620 cos(φ)3 − 2.08 cos(φ)

1.62 sin(φ) cos(φ)2 − sin(φ)
)

ϕ = α1 + arctan(
0.01084677371 + (−0.1095 + 0.0405 cos(2φ)) sin(φ− α1)

(−0.1095 + 0.0405 cos(2φ)) cos(φ− α1)
)

(5.3)

Equation (5.3) is based on (4.7) and is derived with ’Maple’ using a ’simplify’ command. The
’Maple’ script can be made by making small adjustments in the script given in appendix D.2. It is
seen that the ϕ(φ) expression is a rather complex trigonometric function, which makes it difficult
(or even impossible) to solve by hand. Even with the help of ’Maple’, it is not possible to take
the inverse relation of this expression. This is most likely due to the fact that φ components are
embedded deeply into all these sinus/cosinus expressions. Trying to take it apart in the format of
φ(ϕ) with only one ϕ on the left hand side is quite the task (if it is even possible).

Analytical solution ϕ(φ)

When taking a look at (4.34), it is seen that it is equally complex as (5.3). It is probably for
the same reasons as the geometrical solution that ’Maple’ could not solve this.
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5.2 Geometrical attempts

A similar approach as in section 4.1 is taken in which a look is given at triangles and its relations.
In this chapter, two of multiple attempts are shown as they have been regarded as the best (in the
sense that they looked promising) attempts. Other geometrical attempts can be seen in appendix
E as they were less promising.

5.2.1 Express terms in ϕ (example section 1)

~τ

~τ
~n

R

δ(φ)

L1

L2

L3

A

B

C

D

E

F

G φ

'

α1

Figure 15: Section 1

Unlike as in section 4.1, it is now focused on trying to express φ in ϕ. A look can then be given
at Figure 15, in which now the focus is on 4ABE.

φ = π − ∠ABE − ∠AEB = α1 − arctan(
L3 −R
L2

) (5.4)

Getting α1, L2 and L3 expressed in ϕ would solve (5.4). This gives the following expressions

L3 = L1 · sin(∠ACD) (5.5a)

L2 = L1 · cos(∠ACD) (5.5b)

∠ACD = α1 − ϕ (5.5c)

~Rc =

sin(ϕ) · L1

cos(ϕ) · L1

0

 (5.5d)

~τ =

d~Rp
dφ

||d
~Rp
dφ ||

=

d~Rc
dϕ

||d~Rcdϕ ||
(5.5e)

From these expressions, it can be seen that L1 is important as it is used in all three variables
α1, L2 and L3 (note that α depends on ~τ which then depends on Rc). Being able to parameterise
L1 in ϕ would then let us solve (5.4) in the format that is desired. Note that L1 is equal to Rc
and that a solution of L1(ϕ) would mean a description of the curve γc (or Rc) in ϕ. The problem
that is present, is that L1 can not be solely expressed in ϕ. One way of getting L1 could be done
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via (5.6), but this equation depends on variables L2 and L3 which as we have seen depends on L1

directly and indirectly (via α).

L1 =
√
L2
2 + L2

3 (5.6)

Another option is then to rewrite as many components as possible in ϕ while allowing some φ
components in it. This however is also unsolvable as there will always remain an α1 term in it
due to the angles and geometric relations used. When a look is given at the complexity of this α1

expression, it is seen that it is difficult to take φ apart from it.

α1 = arctan(
1.62 cos(φ)3 − 2.08 cos(φ)

1.62 sin(φ) cos(φ)2 − sin(φ)
) (5.7)

Eventually it all comes down to the problem that L1(or Rc, γc) is not parameterisable in the
variable ϕ. So if γc(ϕ) was known beforehand instead of γp(φ), then this problem was a lot easier
to solve.

5.2.2 Change constrained center of ball curve (γc)

The problem that is now present, is that L1(ϕ) (or γc(ϕ)/Rc(ϕ)) is unknown. The idea is to
change the model in such a way that a new constrained center of ball curve γc,new(ϕ), for which
we can set up an analytical expression in ϕ, can be made while still upholding the same relation
ϕ(φ) as described in chapter 4. An example of this can be seen in Figure 16. Here the actual
point contact curve (γp) will become the new constrained center of ball curve (γc,new), which will
also deliver a new point contact curve (γp,new) on which a ball with a smaller effective radius R3

(dashed circle) will roll. Note that the normal ball with effective radius ’R’ and the smaller dashed
ball with effective radius R3 have the same angles ϕ and φ. A remark should be made that also
for the smaller ball, the center of the ball is a normal distance R3 away from the curve (γp,new)
(even though this may not be depicted that clearly on the picture).

A

γp = γc;new

γc

γp;new
'

φ

Φ

B

C

D

E
F

R

R2

R3

δ(φ)

L1

Figure 16: Model change for new curves

Initially it was thought that this smaller ball would also have a constant effective radius R3.
From calculations it can be determined that the effective radius of the smaller ball changes in
order to fulfill the earlier set relation ϕ(φ). This would thus mean that R3 6= R2 and that the
effective radius of the smaller ball is angle dependent. To get the expression φ(ϕ) it was thought

Alternative approach in modeling the dynamics of the ’Butterfly’ robot 25



5 EXPRESSING ANGLE OF POINT CONTACT IN ANGLE OF THE CENTER OF THE
BALL

about using point E, which will give the following relation

φ = arctan(
Ex
Ey

) (5.8)

Now it is desired to get the expression of the vector from inertial reference frame towards E in ϕ
coordinate, thus

~E(ϕ) = ~D(ϕ)− ~R3(ϕ) (5.9)

Here || ~D|| is easily expressed in ϕ as it is equal to δ(ϕ) (note that it just describes the old point

contact curve γp, but this time reparameterized in ϕ). The only unknown would then be ~R3(ϕ),
thus getting R3(ϕ) would solve this equation. To get the equation of R3, a look is given at R2

and the angle Φ (note that ~R2 and ~R are in the same direction). Taking the same geometrical
approaches as in chapter 4.1 will then give (5.10) (α, L2 and L3 have similar expressions as in
section 5.1).

Φ = − arctan(
L3(φ)−R−R2

L2(φ)
) + π − α(φ) (5.10)

Noticing the similarity between 4ABF and 4ADE, allows the equation to be extended for φ.

φ = − arctan(
L3(ϕ)−R−R3

L2(ϕ)
) + π − α(ϕ) (5.11)

The problem now is that R3(ϕ) cannot be gotten from (5.11). There is always one φ component
on the left hand side which makes it complicated. Notice that it is possible to express R3 as a
function of φ when using the relation ϕ(φ) (e.g. (4.7)) in combination with (5.11). This however
will not give any help in getting a φ(ϕ) expression. The problem that is now present, is that the
constraint ϕ(φ) causes a non-constant effective radius R3 of the ball which complicates the whole
process. So making a new constraint curve γc,new is useless when γp,new is restricted in a certain
way (here thus by needing to fulfill previous ϕ(φ) relation).

5.3 Analytical attempts

As the geometrical attempts could not solve the φ(ϕ) problem, a look has been given at analytical
approaches. The first attempt was by doing the same approach as described in section 4.2. This
approach was not satisfying and for this reason attempts were also done based on the arc length
parameter ’sp’ and trigonometric approximations.

5.3.1 Expressing Rp(t’)

The problem that was determined in section 5.2.1 was that there was no expression for Rc(ϕ).
Being able to derive this expression will immediately lead to an expression of φ(ϕ). In section 4.2
an expression for Rc(φ) was determined by replacing the variable ’t’ in Rc(t) with the variable φ.
Note that simply replacing this variable ’t’ with ’ϕ’ would not give an analytical expression for
Rc(ϕ) as it will then also depend on the variable φ(ϕ) (4.27).

The same approach as in section 4.2 can be taken, but this time the focus will be on Rp and

a new variable ’(t’)’ is used instead of ’t’. Via ~Rp it is possible to gain an expression of φ. Being
able to denote Rp(ϕ) will allow us to get an expression for φ(ϕ). The vector for the point contact
can be written as follows

~Rp(t
′) = ~Rc(t

′)−R~nc(t′) (5.12)

When working this expression out as in section 4.2, this will give a Rp(t
′) expression which is a

function of ϕ(t′) and Rc(t
′).

Rp(t
′) = f(Rc(t

′), ϕ(t′)) (5.13)

When replacing ’(t’)’ with ϕ, it can be seen that it is necessary to know Rc(ϕ) to be able to solve
Rp(ϕ) and thus φ(ϕ). So the same problem as in section 5.2.1 is noticed here.
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5.3.2 Reparameterization in arc length

Another approach is to determine if it is possible to denote the arc length ’sp’ in the variable ϕ.
The only possible analytical notations of the arc length sp and sc can be seen in (5.14).

sp =

∫ φ

0

||d
~Rp(φ)

dφ
||dφ (5.14a)

sc =

∫ φ

0

||d
~Rc(φ)

dφ
||dφ (5.14b)

the idea of the approach would be the one given below, in which it is tried to relate φ and ϕ via
the arclengths sp and sc. However from (5.14b) it can be seen that sc is not expressible as ϕ as it
requires knowledge of Rc(ϕ).

Rc(φ)→ φ(sp)→ sp(sc)→ sc(ϕ) (5.15)

5.3.3 Velocity arc length and reparameterization in time

It may be that the velocity of the arc length could be of more help. Using it, it may be possible
to derive expressions of φ(t) and ϕ(t). The derivative of the arc length sp can be derived via the
second fundamental theorem of calculus.

sp =

∫ φ

0

||d
~Rp(φ)

dφ
||dφ

sp =

∫ φ

0

||d
~Rp(φ)

dφ
||dtdφ

dt

ṡp = ||d
~Rp(φ)

dφ
||φ̇

(5.16)

When assuming unit velocity of sp, the following φ̇ can be found which is a function of φ itself.

ṡp = ||d
~Rp(φ)

dφ
||φ̇ = 1 (5.17a)

φ̇(t) =
1

||d
~Rp(φ)
dφ ||

= f(φ) (5.17b)

Solving (5.17b) will then deliver an expression for φ(t). Substituting this in the previous gotten
relation ϕ(φ) will then give ϕ(φ(t)), thus an expression of ϕ(t). As the two variables φ and ϕ are
now defined in the variable ’time’, it may be possible to determine ϕ(t) components in φ(t).

~Rp(φ) =

sin(φ)(0.1095− 0.0405 cos(2φ))
cos(φ)(0.1095− 0.0405 cos(2φ))

0

 (5.18)

Using the shape of the ’Butterfly’ robot as given in (5.18), the following expression for φ̇(t) with
ṡp = 1 can be derived.

||d
~Rp
dφ
|| =

√
0.0225− 0.019683 cos(φ)4 + 0.0019440 cos(φ)2

φ̇(t) =
1√

0.0225− 0.019683 cos(φ)4 + 0.0019440 cos(φ)2

(5.19)

This expression is in a rather difficult format for which I would not know how to solve it. simpler
cases like ẋ = x could be solved with a solution like x = et, but φ̇ is not in this format.
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5.3.4 Trigonometric polynomial

The curve γp can be defined in φ by the radius of the plate

Rp = δ(φ) = 0.1095− 0.0405 cos(2φ) (5.20)

Equation (5.20) can be seen as a trigonometric polynomial, as the main component of the function
is the ’cos(2φ)’ term. If it is possible to express Rc(ϕ) (and thus also γc(ϕ)) in the same manner
as (5.20), then the problem of accurate modeling would also be solved. From Figure 17 it can be
seen that the curve γc has a similar shape as the curve γp, but then with a little more offset. As
γc has a similar shape as γp, it may not be that wrong to think that Rc(ϕ) would have a similar
expression as (5.20).
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Figure 17: Curves of the ’Butterfly’ robot

It is thus checked if Rc can be approximated by the following trigonometric polynomial in which
the coefficients have yet to be determined.

Rc,approx(ϕ) = a0 +

N∑
n=1

(an cos(nϕ) + bn sin(nϕ)) (5.21)

Using ’Matlab’ (See appendix E.2.1 for more insight) will show that a degree of N=2 will give a
good estimate towards the real solution Rc(φ) in which the highest error is around 7·10−4 m. A
higher degree will lessen the error, but will not change the shape of the polynomial drastically
as old terms will keep reappearing in higher order approximations. This can be seen in (5.22) in
which a general solution for higher order approximation is given.

N = 2→Rc,approx(ϕ) = a0 + a2 cos(2ϕ) + b1 sin(ϕ)

N > 2→Rc,approx(ϕ) = a0 +

N∑
n=1

((1− (n mod 2))an cos(nϕ) + (n mod 2)bn sin(nϕ))
(5.22)

Now it is checked if the approximation confirms with the real solution analytically. It is thus
checked if those terms like ’cos(2ϕ)’ from Rc,approx also appear in the real solution Rc. As Rc(φ)
and ϕ(φ) were determined before, simply looking if terms like ’cos(2ϕ(φ))’ are present in Rc(φ)
would satisfy this check. This has been done with ’Maple’, but none of the attempts (see appendix
E.2.2) delivered the result that was desired. Another idea was to look at the derivatives of the
expressions and then integrate afterwards. The following derivative was used.

dRc(φ)
dφ

dϕ(φ)
dφ

=
dRc
dϕ

(φ) (5.23)
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When it is possible to rewrite dRc
dϕ as a function of ϕ instead of φ, then it is possible to take the

integral of this in the following manner to get the desired Rc(ϕ).

Rc(ϕ) =

∫ ϕ

0

dRc
dϕ

(ϕ)dϕ (5.24)

From ’Matlab’ the following trigonometric polynomial can be derived from which it can be seen
that this is equal to the derivative of (5.22) when ignoring the coefficient values.

N = 2→dRc
dϕ approx

= a1 cos(ϕ) + b2 sin(2ϕ)

N > 2→dRc
dϕ approx

=

N∑
n=1

((n mod 2)an cos(nϕ) + (1− (n mod 2))bn sin(nϕ))

(5.25)

The same attempts as for Rc,approx have been made in ’Maple’, but this also did not give the
desired result. It may be that my ’Maple’ skills were not sufficient enough to solve this problem.
Another reason could be that the shape of the ’Butterfly’ robot is too complex for getting a Rc(ϕ).
A simpler shape like an ellips may deliver a solution to this problem, but this has not been (thor-
oughly) checked in this report due to lack of time.

For an ellips it holds that (xa )2 + (yb )2 = 1. Using x = Rp,ellips sin(φ) and y = Rp,ellips cos(φ)) the
following can be said for Rp,ellips

Rp,ellips =
ab√

(a cos(φ))2 + (b sin(φ))2
(5.26)

Taking an ’a’ value of 2, ’b’ value of 1 and an effective ball radius of 0.1 will give the following
figure.
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Figure 18: Curves of the ellips shaped ’Butterfly’ robot

From this, it can be seen that the curve of γc also looks like an ellips. It is then checked if a
similar expression can be gotten for Rc,ellips, which can be seen in (5.27). To check if it is possible
to write Rc in such a format is left for future works.

Rc,ellips =
acbc√

(ac cos(ϕ))2 + (bc sin(ϕ))2
(5.27)
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5.4 Summary

Several attempts have been made in trying to get an analytical expressions for φ(ϕ). The issue
with most attempts was the fact that they needed an analytical expression for γc(ϕ) or Rc(ϕ). As
the only information available beforehand was the plate shape in the angle φ, it was not possible
to get these expressions. Even considering the plate shape as a new (imaginative) γc(ϕ) with a
smaller (imaginitive) ball did not prove to be succesfull as it needed to fulfill the relation ϕ(φ)
defined in previous chapter. This would require that the smaller (imaginative) ball would not have
a constant radius and it was thus unsolvable.

As the main problem changed to getting an expression for Rc(ϕ), a last attempt with trigonomet-
ric polynomials have been made. The idea was that as the plate shape could be described by a
trigonometric polynomial δ(φ)/Rp(φ) (2.14), γc which has a similar shape as the plate could then
also be described by such a trigonometric polynomial. Via ’Matlab’ an approximation Rc,approx(ϕ)
has been derived which does seem to be in correspondence with a graph made from Rc(φ) and
ϕ(φ) (for which we do have analytical expressions).

As higher degree polynomials of the approximation will have the same terms reoccuring as ’cos(2ϕ)’,
a nice way of validation would then be to check if these terms also reappear in Rc(φ) by using the
known relation ϕ(φ). Using ’Maple’ several attempts have been made for Rc,approx and dRc

dϕ approx
.

The results however do not show that reappearance of these terms of the approximations are true.
This may be due to my insufficient skills in ’Maple’, or due to the difficult shape of the ’Butterfly’
robot. A recommendation for the future would then also be to look at simpler shapes like ellipses.
An even better recommendation would be to put more emphasis on describing the trajectory of
the center of the ball γc(ϕ), as now more emphasis is put on the shape of the plate as the only
information provided was δ(φ) from [1].
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6 Conclusion and recommendation

6.1 Conclusion

In chapter 2 the ’old’ model was introduced and also the reason for why an ad hoc transformation
of coordinates was applied. The main problem that this ad hoc transformation brings, is the
restricted usage of the model. The coordinates only give meaningful values when the ball is in
contact with the plates and when the ball does not slip. When these conditions are not valid (and
this will happen in reality as stated in [1]), the model will become unaccurate/unapplicable. A
secondary problem which may not be directly linked to this ad hoc transformation, is the inability
to express γc(ϕ) which also makes the model less accurate.

To bypass the main problem, a new set of coordinates is proposed in chapter 3, namely polar
coordinates. A new problem then arises that this ’new’ model can’t be reduced unless analytical
expressions are present for φ(ϕ). Being able to solve this new problem also solves the second-
ary problem in which an analytical expression for γc(ϕ) is needed. This will then bring a ’new’
model which is accurate and can also be applied in both situations where the virtual holonomic
constraints are active and not.

In chapter 4 the inverse relation ϕ(φ) is first sought to get insight in the approaches that may be
applied for getting φ(ϕ). This chapter shows that there are multiple ways of getting the result, as
both the geometrical and analytical approaches are valid. In chapter 5 attempts are then made
in getting φ(ϕ), for which it can be seen that the main issue is the inability to express γc(ϕ). For
this reason a last attempt with trigonometric polynomials have been made in trying to get such a
γc(ϕ) approximation.

This approximation always has a certain format in which certain terms reappear. To be ab-
solutely sure that this approximation was valid, it was thus checked if these approximated terms
also reappear in the analytical expression of Rc(φ). Using ’Maple’ it has thus been concluded
that these terms do not reappear and that the approximation is not that accurate. The highest
accuracy is desired, to make sure that it is possible to make a robust controller for other shapes
of the plates and rolling objects. So even though the ’Butterfly’ robot looks quite simple and the
problem of finding a new set of coordinates does not seem that demanding, it can be concluded
that this problem is not simple and that it would demand quite the effort.

6.2 Recommendation

The first recommendation is the higher emphasis on describing γc(ϕ). Now every relation is de-
rived from the information of the plates, namely δ(φ) [1]. From the shape of the plates, the shape
of the motion of the center of the ball is derived (γc(φ)). It may be however better to do it the
other way around, namely describing the motion of the center of the ball first and from it the shape
of the plates. From γc(ϕ) it would then be possible to get γp(ϕ) by considering that these curves
are always a normal distance ’R’ away from each other. The ’new’ model can then be reduced to a
two degrees of freedom model while also being able to track the ball when it is for example in the air.

Another recommendation is to check if simpler plate shapes may get a φ(ϕ) expression. A circle
would then be a bit too simple, but an ellips might prove to be challenging enough. If the curve
γc,ellips also has a shape of an ellips, then checking if (5.27) is valid is enough. Whilst doing this,
it may be helpful getting more knowledge of the commands in ’Maple’ as my approaches may not
be sufficient enough. An even further step could be considering other rolling objects like an ellips,
in which the distance between γc and γp becomes time dependent. For this it may be helpful to
analyze the analytical approaches as they can consider time in it.
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A NON-PREHENSILE MANIPULATION CART PENDULUM EXAMPLE

A Non-prehensile manipulation cart pendulum example

In Chapter 2.1, some background information for the motion planning of the ’Butterfly’ robot is
given. In it, an example of a simple cart pendulum is used as clarification. This appendix will
give more information about the steps taken to get the equations of motion and about the phase
portrait that is used to find a feasible trajectory.

A.1 Equations of motion

θp

F

y

x

xcar; ycar mcar

xpen; ypen

L,Jpen,mpen

Figure 19: simple cart pendulum

The cart pendulum that is used can be seen on Figure 19. The cart with a mass mcar is driven
by a force F in the horizontal direction. The pendulum has a length L, intertia Jpen and it center
off mass can be considered at half way the length of the pendulum with a mass of mpen. The
Euler-Lagrange method can be applied to get the equations of motion, wherein the x(.) and y(.)

denote the position of the center of mass of the component, θp the angle of the pendulum and ’g’
the gravitational acceleration.

L = K − V (A.1a)

Kcar =
1

2
mcarẋ

2
car (A.1b)

Kpen =
1

2
mpen(ẋ2pen + ẏ2pen) +

1

2
Jpenθ̇

2
p (A.1c)

Vpen = mpengypen (A.1d)

xpen and ypen can be rewritten in polar coordinates.

xpen = xcar +
L

2
sin(θp) (A.2a)

ypen =
L

2
cos(θp) (A.2b)

Which will then result in the following Lagrangian.

L =
1

2
mcarẋ

2
car +

1

2
mpen(ẋ2pen + ẏ2pen) +

1

2
Jpenθ̇

2
p +mpengypen (A.3a)

=
1

2
(mpen +mcar)ẋ

2
car +

1

2
mpLẋcar θ̇p cos(θp) +

1

2
(
mpenL

2

4
+ Jpen)θ̇2p −

L

2
mpeng cos(θp)

(A.3b)

With a coordinate vector q =
(
xcar θp

)T
, The Euler-Lagrange equation can be set up as the

following.
d

dt
(
δL
δq̇

)− δL
δq

=

(
F
0

)
(A.4)
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δL
δxcar

= 0
δL
δẋcar

= (mpen +mcar)ẋcar +
1

2
mpenL cos(θp)θ̇p

(A.5a)

δL
δθ

= −1

2
mpenLẋcar θ̇p sin(θp) +

L

2
mpeng sin(θp)

δL
δθ̇p

=
1

2
mpenLẋcar cos(θp) + (

mpenL
2

4
+ Jpen)θ̇p

(A.5b)

Which will give the following equation of motion.

EOM

{
(mpen +mcar)ẍcar + 1

2mpenL cos(θp)θ̈p − 1
2mpenL sin(θp)θ̇

2
p = F

1
2mpenLẍcar cos(θp) + (

mpenL
2

4 + Jpen)θ̈p − L
2mpeng sin(θp) = 0

(A.6)

Taking L = 2, mcar = mpen = 1 and Jpen = 0 will then give the shape as is used in chapter 2.

EOM

{
2ẍcar + cos(θp)θ̈p − sin(θp)θ̇

2
p = F

ẍcar cos(θp) + θ̈p − g sin(θp) = 0
(A.7)

A.2 Phase portrait

In order to get the phase portrait, the passive dynamic is analyzed. This passive dynamic is
written as the bottom part of (A.7). It is desired to reduce the passive dynamic in a format in
which only one degree of freedom is present. This is done by assuming that there exists a certain
relation (virtual holonomic constraint) between θp and xcar, depending on the motion that is
desired (note that not all motions may have such a relation). This can be seen on (A.8), in which
θp is chosen as the generating variable.

xcar = Φ(θp) (A.8a)

ẋcar = Φ′(θp)θ̇p (A.8b)

ẍcar = Φ′′(θp)θ̇
2
p + Φ′(θp)θ̈p (A.8c)

Combining the passive dynamic with the upper relations will give what is called an α, β, γ-
equation.

(1 + cos(θp)Φ
′(θp))θ̈p + cos(θp)Φ

′′(θp)θ̇
2
p − g sin(θp) = 0 (A.9a)

α(θp)θ̈p + β(θp)θ̇
2
p + γ(θp) = 0 (A.9b)

As this equation is time invariant (output does not depend on time), it is possible to analyze
trajectories based on a phase portrait. On this phase portrait it is then possible to find a feasible
trajectory (periodic trajectory). Rewriting (A.9) in state space will give the following.

d

dt

(
θp
θ̇p

)
=

(
θ̇p

−β(θp)
α(θp)

θ̇2p −
γ(θp)
α(θp)

)
(A.10)

In this state space, we are interested in the points where γ(θp) = 0 and θ̇p = 0 (note that θ̇p, θ̈p
are 0 then), these are called the critical points. Analyzing behaviour around these critial points
will give trajectory information of the whole system (using vector fields). For linear systems the
qualitative behaviours around an equilibrium point is checked by the eigenvalues. It is seen that
in general cases for non-linear systems, the qualitative behaviours can also be checked via a lin-
earization around this equilibrium point chapter 2 of [7]. In this case, the critical points would
be present at angles θp=kπ for ’k’ being any integer, as this would give γ(θp) = 0. Analyzing
the behaviour around these points for the linearized system of (A.10) would then give all feasible
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trajectories. Note that this only holds for one degree of freedom systems, which due to the virtual
holonomic constraint is also thus applicable to our system.

It can be shown that taking xcar as the generating variable would not matter. A new relation θp
= Φ2(xcar) is then created, which would give

(cos(Φ2(xcar)) + Φ′2(xcar))ẍcar + Φ′′2(xcar)ẋ
2
car − g sin(Φ2(xcar)) = 0 (A.11)

The same analysis can then be done as before, in which the behaviour around the critical points
g sin(Φ2(xcar))=0 are analyzed. Notice how the actuator is allocated in such a way that it is
possible for a relation to exist between xcar and θp. Pushing the cart would make the pendulum
sway, so it is a non-prehensile manipulation. A non-prehensile manipulation is not present when
this actuator is allocated to the pendulum, which would produce a torque (note that the system
is still underactuated, this means that not all underactuated systems are non-prehensile). This
would thus mean that the motion planning process as described in [1] (with phase portrait analysis)
is not possible. To clarify this, a new a, β, γ-equation can be set up, but this time the passive
dynamic would be the upper equation of (A.7) as the bottom equation now has a torque input.

(2Φ′(θp) + cos(θp))θ̈p + (2Φ′′(θp)− sin(θp))θ̇
2
p = 0 (A.12)

Notice that all points for θ̇p = 0 are equilibrium points due to the lack of γ(θp). There are thus
no feasible trajectories as there are no periodic motions seen on the phase portrait.
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B Ad hoc transformed ’Butterfly’ model (’old’ model)

In this appendix elaboration regarding the model as written in [3] will be given. This appendix
will begin by giving the analytical steps in deriving the ’old’ model. Note that in [3] an extra term
x6 = ~τ · ~κ is kept, which causes extra terms like x9 (not the same x9 as in this appendix !) to
appear when taking the derivative of x6. This should not happen, as the two vectors ~τ and ~κ are
perpendicular to each other which causes the inner product to vanish. Attention has been paid
to this small detail, which causes the model to differ a bit from the one in [3]. The variables that
are used, are written in such a way that it (mostly) corresponds with the variables used in [3] and
[1]. This appendix concludes with a guide in writing a ’Maple’ script for deriving the equations
of motion.

B.1 Analytical steps

B.1.1 Lagrangian

~e0
1

θ

~e1
1

~e0
2~e1

2

 

~ρ(s)

s

~e2
1

~e2
2

γcγp

R

~τ

w
~n

yp

xp

Figure 20: Ad hoc transformated coordinates of ’Butterfly’ robot [3]

Figure 20 shows the model that is used in which the degrees of freedom are q =
(
θ s w ψ

)T
.

The Lagrangian can be seen in (B.1) in which Jf and Jc are the mass moment of inertia of the
plates and ball respectively, ~wf and ~wc the rotational velocities of the plates and the ball, ~vc the

translational velocity of the ball, ~Rc the position of the center of the ball and ~ρ the position of
where the constrained center of ball should be. More detailed expressions of the terms in (B.1)
can be seen in (B.2).

L =
1

2
(Jf (~wf · ~wf ) + Jc(~wc · ~wc) +mc(~vc(s) · ~vc(s)))−mc~g · (Π(θ)~Rc(s)) (B.1)

Alternative approach in modeling the dynamics of the ’Butterfly’ robot



B AD HOC TRANSFORMED ’BUTTERFLY’ MODEL (’OLD’ MODEL)

~wf =
(
0 0 θ̇

)
~e0 (B.2a)

~wc =
(
0 0 θ̇ + ψ̇

)
~e0 (B.2b)

~Rc(s, w) = ~ρ(s) + w~n(s) (B.2c)

~vc(s, w) =
d~Rc(s, w)

dt
+ ~wf × ~Rc(s, w) (B.2d)

Π(θ) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (B.2e)

~g =
(
0 g 0

)
~e0 (B.2f)

(B.2g)

Furthermore for describing the equations of motion, it is necessary to mention the vectors ~τ , ~n, k̂,
~κ and ~ξ. These vectors can be described in (B.3) and will be used extensively throughout the
appendix. For more information about the vectors, the reader may check [3].

k̂ = ~e03 = ~e13 = ~e23 (B.3a)

~τ(s) =
d~ρ

ds
(B.3b)

~n(s) = k̂ × ~τ k̂ = ~τ × ~n ~τ = ~n× k̂ (B.3c)

~κ(s) =
d~τ

ds
= κ~n (B.3d)

~ξ(s) =
d~κ

ds
(B.3e)

From this part on, relations are worked out which can not be found in [3]. The first step is to
describe the Lagrangian (L) (B.1) in the state q. It is only needed to work out vc, as the rotational
velocity expressions can be found in (B.2). The vc expression as in (B.2d) consists of two terms,
the first term with a time derivative and the second term with a cross product. for the second
term, usage is made of the ’distributive property of multiplication over addition for cross products’
: (~a × (~b + ~c) = ~a ×~b + ~a × ~c). Note that scalar multiplications can be taken apart in a way as

a~b× c~d = ac(~b× ~d). The second term can then be worked out as in (B.4).

~wf × ~Rc = θ̇k̂ × (~ρ+ w~n) = θ̇k̂ × ~ρ+ wθ̇(k̂ × ~n) = θ̇(k̂ × ~ρ)− wθ̇~τ (B.4)

The first term can be expressed as (B.5), in which expressions of (B.3) are used. This equation is
built up by using the cross product rule. Note that the time derivative of variables as a function

of ’s’, is equal to the derivative w.r.t. ’s’ times ṡ. Furthermore it holds that dk̂
dt=0.

d~Rc
dt

=
d~ρ(s)

dt
+ ẇ~n+ w(t)

d~n

dt
=
d~ρ(s)

ds
ṡ+ ẇ~n+ w(t)

d

dt
(k̂ × ~τ)

= ṡ~τ + ẇ~n+ w(t)(
dk̂

dt
× τ + k̂ × d~τ

dt
) = ṡ~τ + ẇ~n+ w(t)(k̂ × d~τ

ds
ṡ)

= ṡ~τ + ẇ~n+ w(t)ṡ(k̂ × ~κ)

(B.5)

Using (B.2d), (B.4) and (B.5) results in the following expression for ~vc. Here the parameters
’a’,’b’,’c’ and ’d’ are used as substitutions to make the calculations easier.

~vc =
d~Rc
dt

+ ~wf × ~Rc

= (ṡ− wθ̇)~τ + ẇ~n+ wṡ(k̂ × ~κ) + θ̇(k̂ × ~ρ)

= a~τ + b~n+ c(k̂ × ~κ) + d(k̂ × ~ρ)

(B.6)
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Using the simplified velocity term, the inner product of it can be made as (B.7). Note that the
’distributive property of multiplication over addition’ also holds for the inner product.

~vc · ~vc =a2(~τ · ~τ) + ab(~τ · ~n) + ac(τ · (k̂ × ~κ)) + ad(~τ · (k̂ × ~ρ)) + ab(~n · ~τ) + b2(~n · ~n) + bc(~n · (k̂ × ~κ))

+ bd(~n · (k̂ × ~ρ)) + ac((k̂ × ~κ) · ~τ) + bc((k̂ × ~κ) · ~n) + c2((k̂ × ~κ) · (k̂ × ~κ)) + cd((k̂ × ~κ) · (k̂ × ~ρ))

+ ad((k̂ × ~ρ) · ~τ) + bd((k̂ × ~ρ) · ~n) + cd((k̂ × ~ρ) · (k̂ × ~κ)) + d2((k̂ × ~ρ) · (k̂ × ~ρ))

(B.7)

By using the following properties (B.7) can be simplified to (B.8).

� Unit vectors ~n, ~τ and k̂ will give the value 1 when an inner product with themselves is used,
e.g. ~n · ~n=1.

� Vectors ~n, ~τ and k̂ are perpendicular to each other. The inner product with one to another
will result in 0 value, e.g. ~n · ~τ=0.

� Scalar triple product property : ~a · (~b×~c) = ~b · (~c×~a) = ~c · (~a×~b). An example would then

be : (k̂ × ~κ) · (k̂ × ~ρ) = ~ρ · ((k̂ × ~κ)× k̂) .

� Vector triple product property : ~a× (~b×~c) = ~b(~a ·~c)−~c(~a ·~b) and (~a×~b)×~c = −~c× (~a×~b).
An example would then be : (k̂ × ~κ)× k̂ = −k̂ × (k̂ × ~κ) = −k̂(k̂ · ~κ) + ~κ(k̂ · k̂).

� ~κ is in the same direction as ~n as it can be expressed as κ~n. This will give e.g. : ~n · (k̂×~κ) =

~n · (k̂ × κ~n) = −κ(~n · ~τ).

~vc · ~vc =a2 − 2ac(k̂ · (~τ × ~κ)) + 2ad(k̂ · (~ρ× ~τ)) + b2 + 2bd(~ρ · ~τ) + c2||~κ||2

+ 2cd(~ρ · ~κ) + d2||~ρ||2
(B.8)

To facilitate the calculations, it has been chosen to substitute terms into one variable as has been
done in [3]. This can be seen in (B.9).

x1 = k̂ · (~τ × ~κ) (B.9a)

x2 = k̂ · (~ρ× ~τ) (B.9b)

x3 = ~ρ · ~τ (B.9c)

x4 = ~ρ · ~κ (B.9d)

The Lagrangian in its desired format can then be worked out by combining (B.1), (B.2), (B.8)
and (B.9) which results in (B.10). Note that substitutions with (B.9) will happen more often
throughout this appendix.

L =
1

2
((Jf + Jc)θ̇

2 + Jc(ψ̇
2 + 2θ̇ψ̇) +mc(~vc · ~vc))−mc~g · (Π(θ)(~ρ+ w~n))

=
mc

2
((
Jf
mc

+
Jc
mc

+ w2 + ||~ρ||2−2wx2)θ̇2 + ((2x1w
2 + (2x4 − 2)w + 2x2)ṡ+ 2x3ẇ + 2

Jc
mc

ψ̇)θ̇

+ (||~κ||2w2 − 2x1w + 1)ṡ2 + ẇ2 +
Jc
mc

ψ̇2 − 2~g · (Π(θ)(~ρ+ w~n)))

(B.10)
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B.1.2 Equations of motion for four degrees of freedom model

d

dt

dL
dq̇
− dL
dq

=
(
u 0 0 0

)T
(B.11)

Degree of freedom θ

dL
dθ̇

= mc((
Jf
mc

+
Jc
mc

+ w2 + ||~ρ||2−2wx2)θ̇ + (x1w
2 + (x4 − 1)w + x2)ṡ+ x3ẇ +

Jc
mc

ψ̇) (B.12)

The first row of (B.11) can be described with the degree of freedom θ. The first term can then
be gotten by taking the time derivative of (B.12). It has to be taken into account that these
substituted terms x# will also have a time derivative. These time derivatives are given in (B.14)
and the new terms in that equation can be expressed as (B.13).

x5 = k̂ · (~τ × ~ξ) (B.13a)

x6 = k̂ · (~ρ× ~κ) (B.13b)

x7 = ~ρ · ~ξ (B.13c)

dx1
dt

=
dk̂

dt
· (~τ × ~κ) + k̂ · d(~τ × ~κ)

dt
= k̂ · (d~τ

dt
× ~κ+ ~τ × d~κ

dt
) = (k̂ · (~τ × ~ξ))ṡ = x5ṡ (B.14a)

dx2
dt

= k̂ · d(~ρ× ~τ)

dt
= (k̂ · (~ρ× ~κ))ṡ = x6ṡ (B.14b)

dx3
dt

=
d~ρ

dt
· ~τ + ~ρ · d~τ

dt
= ṡ(1 + (~ρ · ~κ)) = ṡ(1 + x4) (B.14c)

dx4
dt

=
d~ρ

dt
· ~κ+ ~ρ · d~κ

dt
= ṡ(~ρ · ~ξ) = ṡx7 (B.14d)

d||~ρ||2

dt
=
d(~ρ · ~ρ)

dt
= 2ṡ(~ρ · ~τ) = 2ṡx3 (B.14e)

Using (B.14), the time derivative can be calculated as (B.15).

d

dt

dL
dθ̇

= mc((
Jf
mc

+
Jc
mc

+ w2 + ρ2 − 2wx2)θ̈ + (x1w
2 + (x4 − 1)w + x2)s̈+ x3ẅ +

Jc
mc

ψ̈

+ (2wẇ + 2ṡx3 − 2wṡx6 − 2x2ẇ)θ̇ + (2x1wẇ + w2x5ṡ+ x7wṡ+ (x4 − 1)ẇ + x6ṡ)ṡ

+ (1 + x4)ṡẇ)

(B.15)

The second term is given in (B.16).

dL
dθ

= −mc~g · (Π′(θ)(~ρ+ w~n)) (B.16)

Using (B.15) and (B.16) gives the first row of (B.11).

d

dt

dL
dθ̇
− dL
dθ

= MT
1 (q)q̈ + CT1 (q, q̇)q̇ +G1(q) = u (B.17)

MT
1 = mc

(
(
Jf
mc

+ Jc
mc

+ w2 + ρ2 − 2wx2) (x1w
2 + (x4 − 1)w + x2) x3

Jc
mc

)
(B.18)
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C1,1 = mc((w − x2)ẇ + (x3 − wx6)ṡ) (B.19a)

C1,2 = mc((x3 − wx6)θ̇ + (x1w + x4)ẇ + (x5w
2 + x7w + x6)ṡ) (B.19b)

C1,3 = mc((w − x2)θ̇ + (x1w + x4)ṡ) (B.19c)

C1,4 = 0 (B.19d)

G1 = mc~g · (Π′(θ)(~ρ+ w~n)) (B.20)

Degree of freedom ’s’

∂L
∂ṡ

= mc((x1w
2 + (x4 − 1)w + x2)θ̇ + (||~κ||2w2 − 2x1w + 1)ṡ) (B.21)

x8 = ~κ · ~ξ (B.22)

d||~κ||2

dt
=
d(~κ · ~κ)

dt
= 2ṡ(~κ · ~ξ) = 2ṡx8 (B.23)

The second row of (B.11) can be expressed by the degree of freedom ’s’. Taking the time derivative
of (B.21) will give the first term in (B.24).

d

dt

∂L
∂ṡ

=mc((x1w
2 + (x4 − 1)w + x2)θ̈ + (||~κ||2w2 − 2x1w + 1)s̈

+ (x5w
2ṡ+ 2x1wẇ + x7wṡ+ (x4 − 1)ẇ + x6ṡ)θ̇

+ (2x8w
2ṡ+ 2||~κ||2wẇ − 2x5wṡ− 2x1ẇ)ṡ)

(B.24)

For the second term it is important to know that a lot of variables are dependent of ’s’. Taking
the derivative with respect to ’s’ is almost the same as taking the derivative with respect to time,
only now there are no ṡ terms (e.g. dx1

dt = ṡx3 and dx1

ds = x3).

∂L
∂s

=mc((x3 − wx6)θ̇2 + ((x5w
2 + x7w + x6)ṡ+ (1 + x4)ẇ)θ̇ + (w2x8 − x5w)ṡ2

− ~g · (Π(θ)(~τ + w(k̂ × ~κ))))

(B.25)

Using (B.24) and (B.25) will then give (B.26).

d

dt

∂L
∂ṡ
− ∂L
∂s

= MT
2 (q)q̈ + CT2 (q, q̇)q̇ +G2(q) = 0 (B.26)

MT
2 = mc

(
(x1w

2 + (x4 − 1)w + x2) (||~κ||2w2 − 2x1w + 1) 0 0
)

(B.27)

C2,1 = mc((x1w − 1)ẇ + (wx6 − x3)θ̇) (B.28a)

C2,2 = mc((x8w
2 − x5w)ṡ+ (||~κ||2w − x1)ẇ) (B.28b)

C2,3 = mc((x1w − 1)θ̇ + (||~κ||2w − x1)ṡ) (B.28c)

C2,4 = 0 (B.28d)

G2 = mc~g · (Π(θ)(~τ + w(k̂ × ~κ))) (B.29)
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Degree of freedom ’w’

∂L
∂ẇ

= mc(x3θ̇ + ẇ) (B.30)

d

dt

∂L
∂ẇ

= mc(x3θ̈ + ẅ + (1 + x4)ṡθ̇) (B.31)

∂L
∂w

= mc((w − x2)θ̇2 + (2x1w + x4 − 1)ṡθ̇ + (||~κ||2w − x1)ṡ2 − ~g · (Π(θ)~n)) (B.32)

Combining (B.31) and (B.32) will give the third row of (B.11) and can be seen in equation (B.33).

d

dt

∂L
∂ẇ
− ∂L
∂w

= MT
3 (q)q̈ + CT3 (q, q̇)q̇ +G3(q) = 0 (B.33)

MT
3 = mc

(
x3 0 1 0

)
(B.34)

C3,1 = mc((1− x1w)ṡ+ (x2 − w)θ̇) (B.35a)

C3,2 = mc((1− x1w)θ̇ + (x1 − ||~κ||2w)ṡ) (B.35b)

C3,3 = 0 (B.35c)

C3,4 = 0 (B.35d)

G3 = mc~g · (Π(θ)~n) (B.36)

Degree of freedom ψ

∂L
∂ψ̇

= Jc(ψ̇ + θ̇) (B.37)

d

dt

∂L
∂ψ̇

= Jc(ψ̈ + θ̈) (B.38)

∂L
∂ψ

= 0 (B.39)

Combining (B.38) and (B.39) will give the last row of (B.11) and can be seen in (B.40).

d

dt

∂L
∂ψ̇
− ∂L
∂ψ

= MT
4 (q)q̈ + CT4 (q, q̇)q̇ +G4(q) = 0 (B.40)

MT
4 = mc

(
Jc
mc

0 0 Jc
mc

)
(B.41)

C4,1 = 0 (B.42a)

C4,2 = 0 (B.42b)

C4,3 = 0 (B.42c)

C4,4 = 0 (B.42d)

G4 = 0 (B.43)

Four degrees of freedom equations of motion
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Combining (B.17), (B.26), (B.33) and (B.40) will give the equations of motion as described in
(B.44) in which h are the virtual holonomic constraints ’point contact’ and ’no-slip’.

M(q)q̈ + C(q, q̇)q̇ +G(q) =
(
u 0 0 0

)T
+W (q, t)λ

WT (q, t) =
∂h(q, t)

∂q

(B.44)

M(q) =


MT

1

MT
2

MT
3

MT
4

 , C(q, q̇) =


C1,1 C1,2 C1,3 C1,4

C2,1 C2,2 C2,3 C2,4

C3,1 C3,2 C3,3 C3,4

C4,1 C4,2 C4,3 C4,4

 , G(q) =


G1

G2

G3

G4

 (B.45)

Note that (B.44) can only be used when the holonomic and non-holonomic velocity constraints
are linear in the generalized velocities (as stated in chapter 3 (page 55) [6]). Here Wλ is related
to the constraint forces. λ can be gotten from (B.46), which can be found in chapter 5 (page 104)
of [6]. Here the constraints h1 = w and h2 = s+Rψ are used.

λ = (WT (q
3
, t)M−1(q

3
)W (q

3
, t))−1(WT (q3, t)M

−1(H(q
3
, q̇

3
)− S(q

3
)τ)− w̄(q

3
, q̇

3
, t)

(B.46a)

H(q
3
, q̇

3
) = C(q

3
, q̇

3
)q̇

3
+G(q

3
) (B.46b)

S(q
3
)τ =

(
u 0 0 0

)T
(B.46c)

w̃(q, t) =
∂h(q, t)

∂t
(= 0 in our case) (B.47a)

w̄(q, q̇, t) = (
∂WT (q, t)

∂t
+
∂WT (q, t)q̇

∂q
+
∂w̃(q, t)

∂q
)q̇ +

∂w̃(q, t)

∂t
(= 0 in our case) (B.47b)

B.1.3 Two degrees of freedom equations of motion

To get the two degrees of freedom model as described in [1] with a reduced state of q
r

=
(
θ ϕ

)T
,

it is first reduced to the reduced state q
2

=
(
θ s

)T
. This is done with the two constraints ’point

contact’ and ’no-slip’, which give the following constrained expressions for ’w’ and ψ.

w = 0→ ẇ = 0 (B.48a)

ψ = − s
R
→ ψ̇ = − ṡ

R
(B.48b)

Inserting these two constraint expressions into (B.10), will give the following Lagrangian.

L =
mc

2
((
Jf
mc

+
Jc
mc

+ ||~ρ||2)θ̇2 + (2x2ṡ− 2
Jc
mc

ṡ

R
)θ̇ + ṡ2 +

Jc
mc

ṡ

R

2

− 2~g · (Π(θ)~ρ)) (B.49)

Assuming that ’s’ can be expressed in the variable ϕ, this will result in the reduced state q
r

=(
θ s(ϕ)

)T
. Note that variables that were dependent on ’s’, will now become dependent on ϕ.

Taking time derivatives of such variables, will cause the usual ṡ to be replaced with s′ϕ̇ in which

s′ = ds
dϕ (and s′′ = d2s

dϕ2 ). This will then change the Lagrangian to the following form.

L =
mc

2
((
Jf
mc

+
Jc
mc

+ ||~ρ||2)θ̇2 + (2x2s
′ϕ̇− 2

Jc
mc

s′ϕ̇

R
)θ̇ + (s′ϕ̇)2 +

Jc
mc

s′ϕ̇

R

2

− 2~g · (Π(θ)~ρ)) (B.50)
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Degree of freedom θ

∂L
∂θ̇

= mc((
Jf
mc

+
Jc
mc

+ ||~ρ||2)θ̇ + x2s
′ϕ̇− Jc

mcR
s′ϕ̇) (B.51)

Note that ~ρ(s(ϕ)) is used, so d~ρ
dt = ṡx3 = s′x3ϕ̇. Also take into account that the derivative of

three products is : (abc)′ = a′bc+ ab′c+ abc′.

d

dt

∂L
∂θ̇

=mc((
Jf
mc

+
Jc
mc

+ ||~ρ||2)θ̈ + ((x2 −
Jc
mcR

)s′)ϕ̈

+ 2s′x3ϕ̇θ̇ + x6(s′)2ϕ̇2 + x2s
′′ϕ̇2 − Jc

mcR
s′′ϕ̇2)

(B.52)

∂L
∂θ

= −mc~g · (Π′(θ)~ρ) (B.53)

Combining (B.52) and (B.53) will give (B.54).

d

dt

∂L
∂θ̇
− ∂L
∂θ

= MT
r,1(q

r
)q̈
r

+ CTr;1(q
r
, q̇
r
)q̇
r

+Gr,1(q
r
) = u (B.54)

MT
r,1 = mc

(
(
Jf
mc

+ Jc
mc

+ ||~ρ||2) ((x2 − Jc
mcR

)s′)
)

(B.55)

Cr;1,1 = mcx3s
′ϕ̇ (B.56a)

Cr;1,2 = mc(x3s
′θ̇ + (x6(s′)2 + (x2 −

Jc
mcR

)s′′)ϕ̇) (B.56b)

Gr,1 = mc~g · (Π′(θ)~ρ) (B.57)

Degree of freedom ϕ

∂L
∂ϕ̇

= mc((x2 −
Jc
mcR

)s′θ̇ + (1 +
Jc

mcR2
)(s′)2ϕ̇) (B.58)

d

dt

∂L
∂ϕ̇

=mc((x2 −
Jc
mcR

)s′θ̈ + (1 +
Jc

mcR2
)(s′)2ϕ̈

+ x6(s′)2ϕ̇θ̇ + (x2 −
Jc
mcR

)s′′ϕ̇θ̇ + 2(1 +
Jc

mcR2
)s′s′′ϕ̇2)

(B.59)

∂L
∂ϕ

= mc(x3s
′θ̇2 + x6(s′)2ϕ̇θ̇ + (x2 −

Jc
mcR

)s′′ϕ̇θ̇ + (1 +
Jc

mcR2
)s′s′′ϕ̇2 − ~g · (Π(θ)s′~τ)) (B.60)

Combining (B.59) and (B.60) will give (B.61).

d

dt

∂L
∂ϕ̇
− ∂L
∂ϕ

= MT
r,2(q

r
)q̈
r

+ CTr;2(q
r
, q̇
r
)q̇
r

+Gr,2(q
r
) = 0 (B.61)

MT
r,2 = mc

(
((x2 − Jc

mcR
)s′) ((1 + Jc

mcR2 )(s′)2)
)

(B.62)

Cr;2,1 = −mcx3s
′θ̇ (B.63a)

Cr;2,2 = mc((1 +
Jc

mcR2
)s′s′′ϕ̇) (B.63b)

Gr,2 = mc~g · (Π(θ)~τs′) (B.64)

Alternative approach in modeling the dynamics of the ’Butterfly’ robot



B AD HOC TRANSFORMED ’BUTTERFLY’ MODEL (’OLD’ MODEL)

Equations of motion for the two degrees of freedom model

Combining (B.54) and (B.61) will result in (B.65). Filling all the expressions in (B.66), will
show that this equations of motion is of similar shape as the one stated in [3] or [1].

Mr(qr)q̈r + Cr(qr, q̇r)q̇r +Gr(qr) =
(
u 0

)T
(B.65)

in which

Mr(qr) =

(
MT

r,1

MT
r,2

)
, Cr(qr, q̇r) =

(
Cr;1,1 Cr;1,2
Cr;2,1 Cr;2,2

)
, Gr(qr) =

(
Gr,1
Gr,2

)
(B.66)

B.2 Guide ’Maple’ script for four degrees of freedom equations of mo-
tion

Instead of just giving the script, this subsection will mainly discuss the important parts of the
script in such a way that it can be applied to all other four degrees of freedom models, such as
the ones in chapter 3. An explanation will be given for the actions taken. This will be done in
chronological order in such a way that just ’glueing’ these steps together will give a fine work-
ing script (notice that only a part of the M,C and G matrix is given here as the other parts look
similar). Note that this may not be the most optimal script as my skills in Maple are not that high.

Settings

restart:
with(Student[VectorCalculus]): with(VectorCalculus): with(plots): with(LinearAlgebra):

with(ArrayTools): with(CodeGeneration): with(Physics): with(DifferentialGeometry):
with(JetCalculus): BasisFormat(false): Setup(mathematicalnotation = true)

The first step is to reset everything with ’restart’, just like you would use ’clc,clear,close all’ in
’Matlab’. After that u can add packages (like in ’Latex’) which then provides u with more tools.
For more information about these packages, the reader should go to the ’Maple’ site.

Degrees of freedom definitions

(th, sr, ps, wr) := (theta(t), s(t), psi(t), w(t)):
(dth, ds, dps, dw) := (diff(th, t), diff(sr, t), diff(ps, t), diff(wr, t)):
(ddth, dds, ddps, ddw) := (diff(dth, t), diff(ds, t), diff(dps, t), diff(dw, t)):

- ’:=’ → is used to assign a value to a certain variable. So you can recall the variable later and
the same value will be given.
- ’theta(t)’ → by adding ’(t)’ u make the variable ’t’ dependent. ’Maple’ can then use it for other
operations like differentiating with respect to ’t’ for which the answer will be for example d

dtθ(t).
- (x1, x2, x3 ,x4) := (x6, x7, x8, x9) → is the same as x1:=x6, x2:=x8 etc.
- Row ending with ’:’ → This way the answer will not be shown, just like in ’Matlab’ with ’;’.

Vector definitions (position, velocity etc.) and Lagrangian

wc := <0, 0, dth + dps> : # Rotational velocity of ball w.r.t. frame 0
wf := <0,0,dth> : # Rotational velocity of butterfly plate w.r.t. frame 0
rh := <rho[1](sr), rho[2](sr), 0>: # position vector rho(s) (Constrained center of

ball w.r.t. frame 1)

# tau ; tangent vector to curve s
drh := diff(rh, sr):
(D(rho[1])(sr), (D(rho[2])(sr), (D(rho[3])(sr)) := (tau[1](sr), tau[2](sr), tau[3](sr)):
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ta := drh;
# Don't know why, but have to define it in this way to make sure that the definitions

defined above (e.g. D(rho[1])(sr) := tau[1](sr) ) will also appear like that in 'ta'

# Kappa ; differential of tau w.r.t. s
dta := diff(ta, sr):
(D(tau[1])(sr), (D(tau[2])(sr), (D(tau[3])(sr)) := (kappa[1](sr), kappa[2](sr), kappa

[3](sr)):
kap := dta:

# xi; differential of kappa w.r.t. s
dka := diff(kap, sr);
(D(kappa[1])(sr), (D(kappa[2])(sr), (D(kappa[3])(sr) := zeta[1](sr), zeta[2](sr), zeta

[3](sr);
xi := dka;
# Don't define de vector components as the same name as vector !! e.g. xi = <xi[1],xi

[2],0>, will bring trouble (don't know what anymore) , but that's why I defined zeta
[#].

k := <0,0,1>: # hat{k}
N := CrossProduct(k, ta): # Normal vector
r := rh + N*wr: # Position vector of center of ball
vb := simplify( diff(r, t) + CrossProduct(wf,r) ): Velocity vector of center of ball
g vec := <0,g,0> :
P := Matrix(3, 3, [[cos(th), -sin(th), 0], [sin(th), cos(th), 0], [0, 0, 1]]):
P acc := diff(P, th):

# Define Lagrangian
T[frame] := (1/2)*J[f]*(wf.wf): # Note that (x.x) is the same as DotProduct(x,x,

conjugate=false); so just the dotproduct.
T[ball rotation] := (1/2)*J[c]*(wc.wc):
T[ball velocity] := (1/2)*m[c]*(vb.vb):
Kin simple := {ta.kap = 0}: # Simplify siderelation
Kin := simplify(T[frame]+T[ball rotation]+T[ball velocity], Kin simp);:
Pot := simplify(m[c]*(g vec.(P.r)), Kin simp):
Lag := Kin-Pot:

- # → with # you can make comments, just like in ’Matlab’ with ’%’.
- Kin simple → in ’Maple’ a command ’simplify’ exists which simplifies the expression. We can
also add side-relations into the ’simplify’ command as ’simplify(expression,siderelation)’. With
side-relations we can add certain properties to the expression which ’Maple’ could not have
known beforehand, for example that a+b=e : ’simplify(a+b+c,{a+b=e})’ = e+c. Note that you
should not forget to use brackets when incorporating siderelations and also that the command
’simplify’ can not handle siderelations with square root terms. In our case we wanted to add the
side relation that the inner product of tau and kappa is equal to 0.

M Matrix

# First row : Degree of freedom 'theta'

dKddq1 := simplify(diff(Lag, dth), {ta.kap=0}):# dL/(d dot(theta) ) , dot(theta) =
d/dt theta

dtdKddq1 := diff(dKddq1, t); # d/dt dL/(d dot(theta))

# M matrix first row components
M11 := simplify(diff(dtdKddq1, ddth));
M12 := simplify(diff(dtdKddq1, dds));
M13 := simplify(diff(dtdKddq1, ddw));
M14 := diff(dtdKddq1, ddps);
# M(firstrow)ddot{q} = M11 ddot(theta) + M12 ddot(s) + M13 ddot(w) + M14 ddot(psi)

The M matrix is connected to the acceleration term in the equations of motion as M(q)q̈. An ac-
celeration term can only occur in the equations of motion via the term d

dt
dL
dq̇ . As the acceleration
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is only of the order one, taking the derivative of d
dt
dL
dq̇ with respect to the acceleration term will

give the M-matrix components.

C Matrix

# Substitution relations
coeff subs := {diff(psi(t), t) = dum 4, diff(s(t), t) = dum 2, diff(theta(t), t) = dum 1

, diff(w(t), t) = dum 3, diff(psi(t), t, t) = dum 8, diff(s(t), t, t) = dum 6, diff(
theta(t), t, t) = dum 5, diff(w(t), t, t) = dum 7}:

Back subs := {dum 1 = diff(theta(t), t), dum 2 = diff(s(t), t), dum 3 = diff(w(t), t),
dum 4 = diff(psi(t), t)}:

# C Matrix first row
dKdq1 := simplify(diff(Lag, th), {ta.kap = 0}): # dL/dtheta
EOM1 := dtdKddq1-dKdq1: # Equation of motion first row (theta DOF)

dummy EOM1 := subs(coeff subs, EOM1);
C11 := simplify(subs(Back subs, (dummy EOM1-coeff(dummy EOM1, dum 1, 0))/dum 1));

dummy EOM12 := subs(coeff subs, EOM1-C11*(diff(th, t)));
C12 := simplify(subs(Back subs, (dummy EOM12-coeff(dummy EOM12, dum 2, 0))/dum 2));

dummy EOM13 := subs(coeff subs, EOM1-C11*(diff(th, t))-C12*(diff(sr, t)));
C13 := simplify(subs(Back subs, (dummy EOM13-coeff(dummy EOM13, dum 3, 0))/dum 3));

dummy EOM14 := subs(coeff subs, EOM1-C11*(diff(th, t))-C12*(diff(sr, t))-C13*(diff(wr, t
)));

C14 := simplify(subs(Back subs, (dummy EOM14-coeff(dummy EOM14, dum 4, 0))/dum 4));

To get the C-matrix components, the following idea was applied. First only one degree of freedom
is focused on. In this case the degree of freedom θ which gives the following equation that we call
’EOM1’.

d

dt

∂L
∂θ̇
− ∂L
∂θ

= EOM1 (B.67)

Substitute all velocity and acceleration terms of this ’EOM1’ with a ’dummy’ variable called
’dum #’ which results in the new expression ’dummy EOM1’. In Maple this can be done with the
’subs(siderelation, expression)’ command. We define it in this ’dummy’ variable to be able to use
the command ’coeff’, which can not be used with differentiated variables. An example of such a
substitution is seen below

θ̇ + ṡ+ s→ dum 1 + dum 2 + s = dummy EOMX (B.68)

If we want C1,1θ̇, then we need to find all the terms with variable ’dum 1’(=θ̇) in it. This we can
get by eliminating all terms which do not have ’dum 1’ in it. To get all the terms that do not have
’dum 1’ in it, we use the ’coeff’ command : coeff(dummy EOM1,dum 1,0). We are then able to
get C1,1 by the following expression.

C1,1θ̇ = C1,1dum 1 =
dummy EOMX − coeff(dummy EOMX, dum 1, 0)

dum 1
dum 1 (B.69)

For C1,2ṡ we use a different equation ’dummy EOM12’. To prevent terms like ’2ṡθ̇’ to appear
twice in the total C1 expression, it has been decided to eliminate all previous C1,# components

from the current ’dummy’ equation. To clarify this problem, assume that EOM1 = 2ṡθ̇. When
not eliminating previous C terms, we would get C1,1 = 2ṡ and C1,2 = 2θ̇. The total C1q̇ = EOM1

= 4ṡθ̇ is not equal to the defined 2ṡθ̇. This idea was made to deal with problems in which higher
order ṡ terms for example would appear.

Alternative approach in modeling the dynamics of the ’Butterfly’ robot



B AD HOC TRANSFORMED ’BUTTERFLY’ MODEL (’OLD’ MODEL)

G Matrix + siderelation example

G1 := simplify(dtdKddq1-dKdq1-Multiply(`<|>`(M11, M12, M13, M14), `<,>`(ddth, dds, ddw,
ddps))-Multiply(`<|>`(C11, C12, C13, C14), `<,>`(dth, ds, dw, dps)))

M11 simp := {rho[1](sr)ˆ2+rho[2](sr)ˆ2 = rho(sr)ˆ2, tau[1](sr)ˆ2+tau[2](sr)ˆ2 = 1, k .
CrossProduct(rh, ta) = x2}

The G matrix is the term left after eliminating the M and C matrix from the equation of motion.
The siderelation M11 simp has equations in it which would simplify the M11 expression. With
these siderelation equations it is possible to replace certain terms with the variables x1, x2, x3, etc.
, as has been done in the analytical steps in appendix B.1. A remark has to be made that it is
better to do apply these siderelations at the end of the script, thus after defining the whole M,
C and G matrix. This is due to the problem that the the G matrix could become a mess when
substracting unsimplified terms ’dtdKddq1’ with simplified terms like ’M11’.

Alternative approach in modeling the dynamics of the ’Butterfly’ robot



C ’NEW’ MODEL ’BUTTERFLY’ ROBOT

C ’New’ Model ’Butterfly’ robot

In this appendix, the equations of motion for the cartesian coordinates is given with coordinate

vector q =
(
θ x y ψ

)T
C.1 Equations of motion for the cartesian four degrees of freedom model

The Lagrangian was given earlier in (3.7).

L = Kc +Kf − Vc

=
mc

2
((x2 + y2 +

Jc
mc

+
Jf
mc

)θ̇2 + (2
Jc
mc

ψ̇ − 2(yẋ− xẏ))θ̇ +
Jc
mc

ψ̇2 + ẋ2 + ẏ2 − 2mc~g · (R1T

c A10))

(C.1)

Degree of freedom θ

∂L
∂θ̇

= mc((x
2 + y2 +

Jc
mc

+
Jf
mc

)θ̇ +
Jc
mc

ψ̇ − yẋ+ xẏ) (C.2)

d

dt

∂L
∂θ̇

= mc((x
2 + y2 +

Jc
mc

+
Jf
mc

)θ̈ +
Jc
mc

ψ̈ − yẍ+ xÿ + 2(xẋ+ yẏ)θ̇) (C.3)

∂L
∂θ

= −mc~g · (R1T

c

dA10

dθ
) = mcg(x cos(θ)− y sin(θ)) (C.4)

Degree of freedom x

∂L
∂ẋ

= mc(−yθ̇ + ẋ) (C.5)

d

dt

∂L
∂ẋ

= mc(−yθ̈ + ẍ− ẏθ̇) (C.6)

∂L
∂θ

= mc(xθ̇
2 + ẏθ̇ − ~g · (dR

1T

c

dx
A10)) (C.7)

Degree of freedom y

∂L
∂ẏ

= mc(xθ̇ + ẏ) (C.8)

d

dt

∂L
∂ẏ

= mc(xθ̈ + ÿ + ẋθ̇) (C.9)

∂L
∂θ

= mc(yθ̇
2 − ẋθ̇ − ~g · (dR

1T

c

dy
A10)) (C.10)

Degree of freedom ψ

∂L
∂ψ̇

= Jc(θ̇ + ψ̇) (C.11)

d

dt

∂L
∂ẏ

= Jc(θ̈ + ψ̈) (C.12)

∂L
∂θ

= 0 (C.13)
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Unconstrainted equations of motion

M(q)q̈ + C(q, q̇)q̇ +G(q) =
(
u 0 0 0

)T
(C.14)

M(q) = mc


(x2 + y2 + Jc

mc
+

Jf
mc

) −y x Jc
mc

−y 1 0 0
x 0 1 0
Jc
mc

0 0 Jc
mc

 (C.15)

C(q, q̇) = mc


(xẋ+ yẏ) (xθ̇) (yθ̇) 0

−(xθ̇ − ẏ) 0 θ̇ 0

(−yθ̇ + ẋ) θ̇ 0 0
0 0 0 0

 (C.16)

G(q) =


mcg(x cos(θ)− y sin(θ))

mcg sin(θ)
mcg cos(θ)

0

 (C.17)
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D Expressing angle of the center of the ball in angle of
point contact

D.1 Total equation
∠ABG = π − (φ− (1− sin(2φ)

|sin(2φ)| )(
−π+2φ

2 )− (1− sin(φ)
|sin(φ)| )

π
2 )− ((1 +

sin(φp)
|sin(φp)|

vp,y
|vp,y| )

π
2 −

sin(φp)
|sin(φp)|

vp,y
|vp,y|β)

L4 = δ(φ) cos(∠ABG)

L3 = δ(φ) sin(∠ABG) +R

ϕ = π − ∠AEB + (1− sin(2φ)
|sin(2φ)| )(

−π+2∠AEB
2 )− sin(2φ)

|sin(2φ)| arctan L3(φ)
L4(φ)

+ (1− sin(φ)
|sin(φ)| )

π
2

(D.1)
This is the equation as has been given before in chapter 4.1. In this appendix, an explanation is
given about the derivation of this equation. First it is started with explaining ∠ABG (look at the
figures in chapter 4.1 to see what this angle means).

∠ABG = π − ∠BAE − ∠AEB (D.2)

The following properties hold for ∠BAE.

0 > φ > 0.5π : ∠BAE = φ

0.5π > φ > π : ∠BAE = π − φ
π > φ > 1.5π : ∠BAE = φ− π

1.5π > φ > 2π : ∠BAE = 2π − φ(= −φ)

(D.3)

As ∠BAE will be inserted in a ’cos’ or ’sin’ term, it can be noted that the expression ’2π-φ’ can
be seen as as ’−φ’. This would then give the following expression for ∠ BAE.

∠BAE = φ− (1− sin(2φ)

|sin(2φ)|
)(
−π + 2φ

2
)− (1− sin(φ)

|sin(φ)|
)
π

2
(D.4)

Here the second term makes sure that there is a differentiation between the upper and lower part
of the ’Butterfly’ robot. The third term makes sure that the symmetry properties between the
right and left part of the ’Butterfly’ robot are obtained, as ’sin(φ)’ only gives a negative value
when considering the left part of the ’Butterfly’ robot.

For ∠AEB the following properties hold

∼ 1.79 > φ >∼ 0.22π ∨ ∼ 0.79π > φ >∼ 1.22π : ∠AEB = π − β
∼ 0.22π > φ >∼ 0.79π ∨ ∼ 1.22π > φ >∼ 1.79π : ∠AEB = β

(D.5)

∠AEB = (1 +
sin(φp)

|sin(φp)|
vp,y
|vp,y|

)
π

2
− sin(φp)

|sin(φp)|
vp,y
|vp,y|

β (D.6)

Notice that the y-direction of the velocity plays an important role here. This y-directional velocity
will be used to differentiate between section 1 and section 2 (as has been explained in chapter 4.1
with ~τ). For the right part of the ’Butterfly’ robot, the ’π − β’ term as in (D.5) always occurs
when the y-directional velocity is positive. For the left part this π − β term occurs when the
y-directional velocity is negative. To differentiate the properties between the right and left part,
the ’sin(φ’ term is added.

For the angle ϕ, the following holds for the right part of the ’Butterfly’ robot (note that for
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the left part this angle is equal, but with an addition of π).

0 > φ >≈ 0.22π : ϕ = β − arctan
L3

L4

≈ 0.22π > φ > 0.5π : ϕ = π − β − arctan
L3

L4

0.5π > φ >≈ 0.79π : ϕ = β + arctan
L3

L4

≈ 0.79π > φ > π : ϕ = π − β + arctan(
L3

L2
)

(D.7)

Expressing the term ’β’ or ’π−β′ with ∠AEB defined in (D.5) and taking into account all the ’+’
and ’-’ signs for the corresponding angle φ, will give the summarized equation of (D.7) expressed
in the last row of equation (D.1).

D.2 ’Maple’ script geometric approach (4.20) ’Butterfly’ robot

Note that ϕ=phi[c] and φ=phi[p].

restart;
with(Student[VectorCalculus]); with(VectorCalculus); with(plots); with(LinearAlgebra);

with(ArrayTools); with(CodeGeneration); with(Physics); with(DifferentialGeometry);
with(JetCalculus); BasisFormat(false); Setup(mathematicalnotation = true)

# Variables
Rb := 16.55*10ˆ(-3):
dis := 25*10ˆ(-3):
Rs := sqrt(Rbˆ2-((1/2)*dis)ˆ2); # theoretical radius of ball
# Butterfly definition
delta(phi[p]) := 0.1095-0.0405*cos(2*phi[p]);
# Vector definitions
d := delta(phi[p]):
x[p]:= d*sin(phi[p]):
y[p]:= d*cos(phi[p]):
r[p]:= <x[p],y[p],0>:
v[p]:= diff(r[p],phi[p]):
tau := v[p]/(norm(v[p],2,conjugate=false):
beta := simplify(arctan( abs(tau[1])/abs(tau[2]) ) ):
AEB := simplify((1/2)*((1+sin(phi[p])*(1/abs(sin(phi[p])))*v[p][2]*(1/abs(v[p][2])))*

Pi)-sin(phi[p])*(1/abs(sin(phi[p])))*v[p][2]*(1/abs(v[p][2]))*gamma old):
BAE := phi[p] - (1 - sin(phi[p])/abs(sin(phi[p])))*0.5*Pi - (1 - sin(2*phi[p])/abs(sin

(2*phi[p])))*0.5*(-Pi + 2*phi[p]):
L3 := d*sin( Pi - AEB - BAE ) + Rs:
L4 := d*cos( Pi - AEB - BAE):
phi[c] := simplify( -sin(2*phi[p])/abs(sin(2*phi[p]))*arctan(L3/L4) + Pi - AEB + (1 -

sin(2*phi[p])/abs(sin(2*phi[p])))*0.5*(-Pi + 2*AEB) + (1 - sin(phi[p])/abs(sin(phi[p
])))*0.5*Pi )

eval(phi[c],phi[p]=0.2*Pi)

D.3 ’Matlab’ script function ϕ(φ) ’Butterfly’ robot

function [phic Case2, Rho real] = phic Butterfly(Phi)
if Phi > pi % Half-symmetry
Phiv = Phi - pi;
else
Phiv = Phi;
end
d = 25*10ˆ-3; % Distance butterfly plates
Rb = 16.55*10ˆ-3; % Real radius ball
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R = sqrt(Rbˆ2 - (d/2)ˆ2); % Effective radius ball
k = [0;0;1]; % Vector pointing outwards
delta = 0.1095 - 0.0405*cos(2*Phiv);
del vec = [ sin(Phiv)*delta;
cos(Phiv)*delta;
0];
ddeldphi = [ cos(Phiv)*delta+0.0810*sin(Phiv)*sin(2*Phiv);
-sin(Phiv)*delta+0.0810*cos(Phiv)*sin(2*Phiv);
0];
tau = ddeldphi*1/(norm(ddeldphi));
n = cross(k,tau);
Rho real = del vec + n*R;
if Phi > pi
phic Case2 = pi + atan2(Rho real(1),Rho real(2));
Rho real = -Rho real
else
phic Case2 = atan2(Rho real(1),Rho real(2));
end

D.4 ’Maple’ Script Analytical approach ((4.29) and (4.32)) ’Butterfly’
robot

Note ϕ = phic and φ = phi[p].

restart;
with(Student[VectorCalculus]); with(VectorCalculus); with(plots); with(LinearAlgebra);

with(ArrayTools); with(CodeGeneration); with(Physics); with(DifferentialGeometry);
with(JetCalculus); BasisFormat(false); Setup(mathematicalnotation = true)

# position vectors
x[p](t) := Rp(t)*sin(phi[p](t)):
y[p](t) := Rp(t)*cos(phi[p](t)):
x[c](t) := Rc(t)*sin*(phi[c](t)):
y[c](t) := Rc(t)*cos(phi[c](t)):
r[p] := <x[p](t), y[p](t), 0>: # Point contact vector
v[p] := diff(r[p],t): # velocity vector of the point contact
tau(t) := simplify( v[p] / (norm(v[p],2,conjugate=false)) ): # Tangent vector
# See shape of normal vector
n(t) := Multiply(<cos(Pi/2), -sin(Pi/2), 0; sin(Pi/2), cos(Pi/2), 0; 0,0,1>, tau(t)):
# replace d/dt Rp expression with Rp acc in normal vector
nv := simplify( subs( d/dt Rp(t) = Rp acc*(d/dt phi[p](t)), n(t) )):
# copy the expressions of nv into nv2 in which (d/dt phi[p])/|(d/dt phi[p]) | is

seperated as 'dir'
nv2 := < ( Rp(t)sin(phi[p](t)) - cos(phi[p](t))Rp acc )/sqrt( (Rp(t)ˆ2 + Rp accˆ2) ) *

dir, ( Rp(t)cos(phi[p](t)) + sin(phi[p](t))Rp acc )/sqrt( (Rp(t)ˆ2 + Rp accˆ2) )*dir
, 0 >:

# position vector of center of ball
r[c] := r[p] + Multiply(Rd,nv2) # in which Rd is theoretical radius ball

# Definitions of Rc and phic(=varphi in our case)
Rcsquare := simplify(expand(r[c][1]ˆ2 + r[c][2]ˆ2)) : # expand just used so it looks

better I think
Rc real := sqrt(Rcsquare) :
phic := arctan( r[c][1] / r[c][2] ):

# Specifications of the objects we use
Rb := 16.55*10ˆ-3 : # Real radius ball
d := 25*10ˆ-3 : Distance between the two plates
Rd := sqrt(Rbˆ2 - (dis/2)ˆ2): # Theoretical radius of disk
dir := 1: # unidirectional clockwise rotation makes (d\dt phi[p])/|(d\dt phi[p]) | =1
d := 0.1095 - 0.0405cos(2phi[p]) : # Shape of butterfly plate
Rp(t) := d: # Point contact curve is shape of butterfly plate
Rp acc := diff(Rp(t),phi[p]):
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# Make sure that definitions of Rc and phic are correct : change all phi[p](t) in phi[p
], as maple thinks theyre two different things (may mess up differentiating
processes)

Rc real := subs(phi[p](t) = phi[p], Rc real):
phic := subs(phi[p](t) = phi[p], phic):

# input and result
phip := 0.25*Pi:
Rc value := eval(Rc real, phi[p]=phip)
phic value := eval(phic, phi[p] = phip)
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E Expressing angle of the point contact in angle of the cen-
ter of the ball

E.1 Geometric relations

E.1.1 Watch relations of previous R#’s to predict R2(ϕ)

π − φ

π − '

'2

'3

'4

R
R

R

R γc

γp = γc;new

γp;new

R2

R3
R4

R5

Figure 21: Attempt by relations of previous R#

Figure 21 is built up in the same way as figure 16, only now more angles and R#’s are added
(notice that the figure is made in such a way that the current angle of the center of the ball is
equal to the point contact angle of the ball in an earlier position). This idea builts up from the
attempt of section 5.2.2 in which new curves γp,new and γc,new are defined. From section 5.2.2 we
know that R# (blue lines in Figure 21) is not constant over the angle ϕ, while ’R’ (red line) is
constant. From chapter 4 we have determined an expression in which we can rewrite ϕ in φ. If we
rename this expression ϕ(φ) as f(φ), then we can make the following relations using the angles
on Figure 21.

ϕ(φ) = f(φ)

ϕ2(ϕ) = f(ϕ)

ϕ3(ϕ2) = f(ϕ2)

ϕ4(ϕ3) = f(ϕ3)

(E.1)

In section 5.2.2 the problem was that it was not possible to find an expression for R2 (as in Figure
21) in ϕ (note that the R2 used in this appendix is not equal to the R2 used in section 5.2.2). An
expression for R2 in φ however can be gotten, which we will call g(φ). A similar expression can
then also be derived for R3 in ϕ, which will be called g(ϕ) (due to similarities of triangles). With
the relations of (E.1), we can then get the following R# relations.

R3 = g(ϕ)

R4 = g(ϕ2(ϕ))

R5 = g(ϕ3(ϕ2(ϕ)))

(E.2)

With these radius expressions in ϕ, we can then calculate R2(ϕ) as in (E.3).

R2(ϕ) = R3(
R3

R4
− (

R4

R5
− R3

R4
)) (E.3)
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This equation is based on the following idea : The change of R2 compared to R3, will be as big
as the previous change (assuming that the ball rolls to the right) R3 compared to R4 minus the
change of the relation before that (R4

R5
− R3

R4
). So if R4

R5
was bigger than R3

R4
, then we assume this

relation to set fort in a way that R3

R4
should also be bigger than R2

R3
. The problem with this method

is the assumption that the same kind of development will occur for R#. Equation (E.3) is how-
ever highly non-linear, thus we can not assume that the same development will occur in the future.

E.1.2 Try to get R2(ϕ) with the knowledge that R (’real’ radius of ball) is constant

A

B

CD

E

F

G

H

R
R

R2(φ)

R3(')

'

φ

'2

Figure 22: Attempt geometric relations constant R

This attempt is also built up from section 5.2.2 as we can see that the new radius R# is used. We
try to look at the constant ’R’ and determine the relations from it (note that AE=δ(ϕ) and AG
= δ(ϕ2)). {

|| ~AD − ~AE|| = R

|| ~AC − ~AB|| = R
(E.4)

|| ~AD − ~AE|| = || ~AC − ~AB||

|| ~AD(ϕ)− ~AE(ϕ)|| = || ~AE(ϕ) + ~EC − ~AF ||
(E.5)

Here R2(ϕ) can be determined when an expression for ~AF (ϕ) is present.

~R2(ϕ) = ~AE(ϕ)− ~AF (ϕ) (E.6)

~AF (ϕ) may then be gotten from (E.5). This would have been possible, if ~AF was the only

unknown. The problem now is that there is another unknown ~EC, which thus makes this problem
unsolvable.

E.1.3 Use the horizontal and vertical position of the point contact to get φ(ϕ)

From Figure 23 it can be seen that the the following relation holds.

tan(φ) =
Bx
By

(E.7)
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A

B

C

R

'

φ

D

α

Figure 23: Attempt horizontal and vertical positions of B and D

The B position has the following relation to the D position (which is connected to ϕ). Note that
α is a function of φ as AB = δ(φ) = Rp.

Bx −Dx = BDx

By −Dy = BDy

tan(ϕ) =
Dx

Dy

|| ~BD|| = R

tan(−0.5π + ϕ+ α(φ))

(E.8)

Combining (E.7) and (E.8) would then give (E.9).

tan(φ) =
BDx +Dy tan(ϕ)

BDy +Dy
(E.9)

Notice that BD in this expression contains α(φ), which makes it impossible to solve (E.9) as α(φ)
is a difficult expression (5.7).

E.2 Trigonometric approximation

E.2.1 ’Matlab’ script explanation

The ’Matlab’ script is based on (E.10), in which it tries to find a trigonometric polynomial (Ax)
which approximates the real solution that is stored in vector B. It does this by determining
the values of the coefficients a0, .., aN , b1, .., bN stored in the vector ’x’. The accuracy of this
approximation depends on the degree of polynomial that is desired, which can be set by the value
of ’N’. The solutions used in the B vector are the expressions of the analytical approach given in
section 4.2.

Ax = B → x = A\B

B = Rc(φ) or
dRc
dϕ

(φ)

A =


1 cos(ϕ(φ(1))) ... cos(Nϕ(φ(1))) sin(ϕ(φ(1))) ... sin(Nϕ(φ(1)))
1 cos(ϕ(φ(2))) ... cos(Nϕ(φ(2))) sin(ϕ(φ(2))) ... sin(Nϕ(φ(2)))
... ... ... ... ... ... ...
1 cos(ϕ(φ(end))) ... cos(Nϕ(φ(end))) sin(ϕ(φ(end))) ... sin(Nϕ(φ(end)))


(E.10)
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E.2.2 Attempts in ’Maple’

For these attempts, the variables (e.g. Rc(φ)) of the analytical approach (section 4.2) are used.
Here the ’Maple’ script of appendix D.4 has been used and extended. From running the ’Matlab’
script explained in the previous subsection, the following shapes for the approximations can be
gotten.

Rc,approx(ϕ) = a0 +

N∑
n=1

((1− (n mod 2))an cos(nϕ) + (n mod 2)bn sin(nϕ))

dRc
dϕ approx

(ϕ) =

N∑
n=1

((n mod 2)an cos(nϕ) + (1− (n mod 2))bn sin(nϕ))

(E.11)

’Match’ command

The ’Match(expression=pattern,variabel,’return argument’)’ command will check if the given pat-
tern input exists for the expression used. The pattern in (E.12) was used as an input. A polynomial
degree of N = 2 has been chosen as the approximation was a good estimate of the real Rc(φ). The
expression is less restrictive in the sense that it does not require ’cos(3ϕ)’ or higher degree terms
to be present. An ’x’ (residual) term has been added to compensate this.

Rc,approx = a0 + a2 cos(2ϕ(φ)) + b1 sin(ϕ(φ)) + x (E.12)

Adding the following after appendix D.4 will then give the answer that no such pattern exists
(output = ’false’).

guess := a0+a2*cos(2*phic2)+b1*sin(phic)+x;
match(Rc real = guess, phi[p], 'parameters');

The same can be done for the derivative which will also result in a ’false’ output.

dRc
dϕ approx

= a1 cos(ϕ(φ)) + b2 sin(2ϕ) + x (E.13)

dRdvarphi := simplify((diff(Rc real, phi[p]))*(1/(diff(phic, phi[p]))));
guess2 := a0+a1*cos(phic)+b2*sin(2*phic)+x;
match(dRdvarphi = guess2, phi[p], 'parameters');

’Solve’ command

The ’solve(equations, variables)’ command can also be used for checking the approximation. This
command assigns values to the coefficients of (E.12) (e.g. a1 or x) when solving Rc = Rc,approx. If
these coefficient values are reasonable, then this would also prove that the approximation is good.
The following commands can then be used, in which the ’guess’-equations are the same as the
patterns mentioned in equation (E.12) and (E.13).

solve(guess = Rc real, {a0, a2, b1, x});
solve(guess2 = dRdvarphi, {a1, b2, x});

The problem however is that it won’t give all coefficients a constant value. For most coefficients
it will give answers like a0 = a0 (meaning it could be anything), but there will be one variable
which gets a non-constant value like b1 = b1(a0, a2, x, φ). This would mean that this method does
not work as all coefficients (except x) should be constant values.
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’Simplify’ command with siderelations

As explained in appendix B.2, we can add siderelations to make the equation ’simpler’. The
problem is, is that the ’sin(ϕ(φ))’ and ’cos(ϕ(φ))’ terms in (E.12) and (E.13) all consist of square
root terms. It has been noted before that the ’simplify’ command does not work when dealing
with square root terms in the siderelations. This will also explain why the command below will
not work, as the siderelations contain square root terms.

r[c] := subs(phi[p](t) = phi[p], r[c]);
sinpc := simplify(r[c][1]*(1/Rc real));
cospc := simplify(r[c][2]*(1/Rc real));
sin2pc := 2*sinpc*cospc;
simp1 := {sin2pc = s2}; # Siderelation
simplify(dRdvarphi, simp1);

Another way is thus to replace these square root terms with something else. To do this, a look is
given at the symbolic expressions given in (E.14) (section 4.2).

ϕ(φ) = arctan(

Rp(φ) sin(φ) +
R(Rp sin(φ)−cos(φ)( ddφRp(φ))√

R2
p(φ)+( ddφRp(φ))

2

Rp(φ) cos(φ) +
R(Rp cos(φ)+sin(φ)( ddφRp(φ))√

R2
p(φ)+( ddφRp(φ))

2

)

Rc(φ) =

√√√√√ (R2 +Rp(φ)2)

√
Rp(φ)2 +

dRp
dφ

2
+ 2Rp(φ)2R√

Rp(φ)2 +
dRp
dφ

2

(E.14)

Taking the quadratic expression of Rc(φ) will not eliminate the square root terms. To eliminate
the square root terms left behind, the following substitution is done.

C2 =

√
Rp(φ)2 +

dRp
dφ

2

(E.15)

Using this substitution and making the terms involving (E.14) quadratic (e.g. ’sin(ϕ(φ))’), will
eliminate all the square root terms. This allows us to set up siderelations in which we want to
simplify expressions like ’sin(ϕ(φ))2=µ’, in which µ is the replacement variable. The result however
is not what we wanted, as ’Maple’ can not simplify the Rc into such replacement variables. The
problem could be due to that terms need to be added for the siderelation to be present and that
it can not be really called a simplification. If for example you had the siderelation ’(a+d) = e’
and the expression ’a+b=c’, then the ’simplify’ command would not give an answer as ’e - d + b
= c’ while it may be desired to get the variable ’e’ in the expression.
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