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Abstract

In this work, the synchronous behavior of three pendula coupled through Huygens’ coupling is examined ana-
lytically, numerically and experimentally. The pendula are transformed into self-sustained oscillators, using a
van der Pol torque, which resembles an escapement mechanism of the monumental pendulum clocks used in the
experimental analysis. The main objective of this work is to �nd a new form of asymmetric Huygens’ synchro-
nization; speci�cally searching for the case in which two pendula synchronize in phase, while the third pendulum
synchronizes in anti phase with respect to the previous two. The conditions for the existence and stability of the
synchronous behavior are determined using the Poincaré method of perturbation. This Poincaré method is mod-
i�ed in order to give the solution for the other synchronous behaviors. Furthermore, using the Poincaré method,
the amplitude and phase of predicted synchronous behavior are determined. Finally, the obtained results are
compared with computer simulations, and with measurements done with monumental pendulum clocks.
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List of symbols

Symbol Unit Property
a [−] van der Pol factor
α [−] constant determining the amount of non-linearity in the van der Pol term
b [Ns/m] damper coe�cient
γ [rad] reference angle of the van der Pol term
f [Hz] frequency
g [m/s2] gravitational acceleration
k [N/m] spring coe�cient
l [m] length
M [kg] mass of the rigid beam
m [Nms/rad] point mass
r [rad] amplitude
θ [rad] angle of pendulum
T [s] period
t [s] time
τc [s] period elongation
ν [−] constant determining the amount of non-linearity in the van der Pol term
φ [rad] assumed phase shift
x [m] horizontal displacement of the carts
ω [rad/s] angular frequency
z [m] horizontal displacement
ζ [−] dimensionless damping coe�cient
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Chapter 1

Introduction

In the year 1665, Christiaan Huygens made a serendipitous discovery regarding two pendulum clocks, which
he had invented [1]. Two clocks, when hung on a common wooden beam, displayed ‘sympathetic motion’ in
the form of antiphase synchronization of their pendula. Upon further investigation it was revealed that the
cause of this behaviour were the unobservable vibrations that passed through the wooden beam to which
the clocks where attached. Unfortunately for Huygens, the hereafter called Huygens’ synchronization did
not catch the attention of the scienti�c community at that time. At the beginning of the 20th century,
however, D.J. Korteweg made a simpli�ed linear model that described the motion of the two pendulum
clocks. Damping and driving forces were neglegted in this model. With the linear model he predicted that
‘other kinds’ of sympathy might be possible as well [2].

In recent years, Huygens’ synchronization has become a relevant topic for research once more [13–19]. One
of the most complete papers about the subject [3] proves the theory of Huygens, using well established
physical and mechanical laws. The paper uses a proper modeling of two monumental pendulum clocks and
their coupling structure. Using these models, strong analytic proof of in- and anti phase synchronization
has been given. Paper [3] furthermore states that multiple forms of synchronization, beside in- and anti
phase synchronization, are possible. A recent study [4] shows that it is possible to observe rotating wave
solutions in a network of three Huygens’ coupled oscillators. Moreover, the aforementioned paper proves
the existence of di�erent kinds of synchronizations besides the in- or anti phase behavior.

A remaining uncertainty, however, is if di�erent types of synchronious behaviour exists in a network of three
Huygens’ coupled oscillators. Understanding and being able to predict alternative forms of synchronization
could provide more insight into large Huygens’ coupled networks of oscillators. This insight into multi-
ple forms of synchronous behavior of a network consisting of multiple oscillators is very useful since these
forms of synchronous behavior are frequently occurring in nature. An example being the multiple biological
synchronization inside the human body. Respiration, heartbeat, and blood perfusion rely on synchroniza-
tion to keep the energy consumption minimal [10]. Seizures, like epilepsy, are abnormal synchronization
of neurons and further understanding of these synchronizations could provide solutions that prevent these
phenomena [11]. A di�erent example is found in the mechanical �eld. The placement of two driven unbal-
anced rotors (like washing machines) on an elastic support can synchronize under certain conditions. These
rotors can synchronize in anti phase or in phase [12], providing either signi�cant structural vibration reduc-
tion, or undesirable behavior. It is clear that understanding and being able to predict synchronous behavior
in large networks could be very bene�cial to society, while insu�cient knowledge of the subject could bring
forth harmful or energy ine�cient situations.

This report is organized as follows: Chapter 2 recreates the study done by [4] in order to grasp the Poincaré
method of perturbation, and because the model presented in [4] is asymmetrical. This makes the model
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perfect for examining other forms of asymmetric Huygens’ synchronization.
In Chapter 3, the Poincaré method is used to determine the conditions for existence and stability of in phase
and anti phase synchronization, predicting the amplitude and phase of the resulting synchronious behaviour.
The solution of each type of synchronous behavior is checked using numerical simulations.
In Chapter 4, additional research is done using a generalized model. Using this model, it can be investigated
and shown that asymmetrical anti phase synchronization is a phenomenon that can be observed in a wide
range of Huygens’ coupled systems.
Chapter 5 contains the results of the experiments that are done using the setup of three Huygens’ coupled
monumental clocks. Using these results, the validity of the analytic results is examined.
Finally, the �ndings of this work are concluded and discussed in Chapter 6, providing recommendations for
future research where necessary.
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Chapter 2

The Poincaré method

First, a short literature study is conducted in order to grasp the Poincaré method of pertubation used to
investigate asymmatical antiphase synchronization. The paper of Ramirez and Alvarez [4] provides a use-
ful model for investigating asymmetric synchronization phenomena because the researched standing wave
synchronization is an asymmetric form of Huygens’ synchronization as well.

2.1 Analytic approach

Paper [4] uses the schematic model shown in Figure 2.1; a rigid beam with mass M [kg] connected to the
�xed world with a spring an damper system with coe�cients k [N/m] and b [Ns/m], respectively. The beam
connects three pendula, with a rigid massless rod of length li [m] and point mass mi [kg]. The damping of
the pendula are denoted by di [Nms/rad], the angle to the vertical axis is denoted by θi [rad] and a driving
torque ui is present in order to convert each pendulum into a self-sustained oscillator.

Figure 2.1: Schematic model of three pendula interacting via Huygens’ coupling [4].

Using the schematic model, the idealized equations of motion can be formed; In this model, the e�ects of
friction have been neglected:

mil
2
i θ̈i =−mili cos θiẍ− gmili sin θi − diθ̇i + ui,(

M +

3∑
i=1

mi

)
ẍ =− kx− bẋ+

3∑
i=1

mili

(
θ̇i

2
sin θi − θ̈i cos θi

)
. (2.1)
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The driving torque ui, used by the Poincaré method [7, 8, 17], is designed as a van der Pol term:

ui = ν(γ2 − θ2i )θ̇i, for i = 1, 2, 3. (2.2)

In this equation, γ is the reference angle and ν a term which determines the amount of non linearity. The
van der Pol term imposes a negative torque on the system if the displacement angle θ > γ, halting the
pendulum. The term supplies a positive torque to the system if θ < γ, resulting in the fact that damping
e�ects do not bring the pendula to a stop and turning them into self sustained oscillators.

The Poincaré method is used in [4] to prove the existence and stability of a standing wave solution, i.e. three
identical sinusoidal waves that possess a phase shift with respect to each other. The Poincaré analysis starts
by makes four assumptions:

Assumption 1: All pendula are equal, such that li = L, mi = m, di = d for i = 1, 2, 3.
Assumption 2: Small angular displacements result in sin θi ≈ θi and cos θi ≈ 1.
Assumption 3: The damping and driving force are small, stating that d = µp, ν = µc with µ = m

M
Assumption 4: All higher order terms of µi, i ≥ 2 are negligible.

Using these assumptions, the equations of motion (2.1), can be linearized and rewritten to:

θ̈i =
ui
mL2

− g

L
θi −

ẍ

L
− d

mL2
θ̇i,

ẍ = − k

M
x− b

M
ẋ− µ

3∑
i=1

(
ui
mL
− gθi −

d

mL
θ̇i − Lθiθ̇2i

)
. (2.3)

Finally, equation (2.3) is made dimensionless and simpli�ed by stating that τ = ωt, ω =
√

g
L , q = kL

gM ,

s = b
√
L

M
√
g and a = 1

mL
√
gL

. The result is written in matrix form:

d

dτ



θ1
θ̇1
θ2
θ̇2
θ3
θ̇3
y
ẏ


=



0 1 0 0 0 0 0 0
−1 0 0 0 0 0 q s
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 q s
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 q s
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −q −s





θ1
θ̇1
θ2
θ̇2
θ3
θ̇3
y
ẏ


+ µ



0

α
(
c
(
γ2 − θ21

)
− p
)
θ̇1 −

3∑
i=1

θi(1 + θ̇i
2
)

0

α
(
c
(
γ2 − θ22

)
− p
)
θ̇2 −

3∑
i=1

θi(1 + θ̇i
2
)

0

α
(
c
(
γ2 − θ23

)
− p
)
θ̇3 −

3∑
i=1

θi(1 + θ̇i
2
)

0
3∑
i=1

θi(1 + θ̇i
2
)



.

(2.4)

Equation (2.4) can be diagonalized with the use of transformation θ = V z for which θ := [θ1, θ2, ..., y, ẏ],
z := [z1, z2, ..., z7, z8] and V is the matrix of eigenvectors associated to matrix A. Applying this transfor-
mation results in:

żr = λrzr + µfr(z1, ..., z8) (2.5)

5



The values of λr are assumed to be of the form:

λr =


iω r = 1, 3, 5,
−iω r = 2, 4, 6,

− s
2 +

√
s2−4q

2 r = 7,

− s
2 −

√
s2−4q

2 r = 8.

(2.6)

In this equation ω = 2π
T = 1. Consequently, the general solution of (2.5) is of the form:

z0 =


αre

iωt r = 1, 3, 5,
αre
−iωt r = 2, 4, 6,
0 r = 7, 8.

(2.7)

In this equation, αr is a complex constant of the form αr = reiφi , in which φi is a phase shift. The fact that
the solutions must be real provides that φ1 = φ2, φ3 = φ4 and φ5 = φ6. Furthermore, for the case of the
standing wave, it can be assumed that all vibrations have an equally large phase shift with respect to each
other. Therefore, the following assumption is made: φ1 = 0, φ3 = −2π/3 and φ5 = −4π/3.

Note that multiple other cases of synchronous behavior can be examined with the same set of equations deter-
mined thus far. This can be done by simply providing di�erent assumptions for the phase shifts φi.

Paper [4] goes on to use the Poincaré method, which states:

Theorem 1. Periodic solutions with period T (µ) = T + µτc for the autonomous system (2.5), becoming at
µ = 0 periodic (period T) solutions (2.6) of the fundamental system, i.e system (2.5) with µ = 0, can correspond
only to such values of constants α1, ..., α6, which satisfy equations:

Qr(α1, ..., α6) := −α6Pr − αrP6 = 0, r = 1, 3, 5, (2.8)
Qr(α1, ..., α6) := −α6Pr + αrP6 = 0, r = 2, 4, (2.9)

where

Pl(α1, ..., α6) =

∫ 2π

0
fl(α1e

λ1t, ..., α6e
λ6t, 0, 0)e−λltdt. (2.10)

where l = 1, ..., 6.

The Poincaré method furthermore states that the roots X of the characteristic polynomial

P (X ) = det

(
∂Q

∂α

∣∣∣∣
α=α∗

+ α∗6X I
)

= 0, (2.11)

should all have negative real parts, and that the period T of the vibration will be elongated by T ∗ := T +µτc
where τc is given by:

τc = −
P6(α

∗
1, ..., α

∗
6)

λ6α∗6
. (2.12)

The interested reader is referred to papers [7,20,21] for detailed description or proof of Theorem 1 which pro-
vides equations (2.8) through (2.10). Using the equations, the set of equations Qi of [4] have been recreated

6



and are shown in equation (2.13). In this set of equations, Q2,4 are not shown because they are zero.

Q1 = −
πr2(
√
3i+ 1)(−cγ2 + cr2 + p)

lm
√
gl

= 0,

Q3 =
πr2(
√
3i+ 1)(−cγ2 + cr2 + p)

lm
√
gl

= 0, (2.13)

Q5 =
2πr2(−cγ2 + cr2 + p)

lm
√
gl

= 0.

It can easily be seen that a real positive amplitude r exists and is of the form:

r = ±
√
γ2 − p

c
. (2.14)

From (2.14) can be seen that r has real solutions for γ2 > p
c .

Equation (2.12) gives the period correction for this solution. The correction has been computed to be zero,
meaning that the period of the synchronous solution is equal to the period of an uncoupled pendulum. The
period of the solution is T ∗ := T = 2π.

From the Poincaré equation (2.11) a characteristic polynomial is obtained of the form:

p(X ) = a5X 5 + a4X 4 + a3X 3 + a2X 2 + a1X 1 + a0. (2.15)

If the real parts of the roots of this characteristic polynomial are negative, it can be concluded that the
solution is globally stable. Using MATLAB, the coe�cients of the equation (2.15) have been computed,
though the analytic form of the equation can not be easily displayed due to its substantial size.

2.2 Numerical simulation

Using the values of the setup provided by [4], displayed in Table 2.1, the roots of the characteristic polynomial
have been computed to be X1 = −0.8139, X2,3 = −0.4046 ± 0.0041i and X4,5 = −10.6148 ± 37.4902i.
The roots indicate that the solution is globally stable since all real parts are negative. The predicted solution
for the amplitude provided by equation (2.14) of this stable solution is r = 0.1122.

Table 2.1: Parameter values for system

Pendulum i for i = 1, 2 Coupling bar
mi = 0.1[Kg] M = 2.5[Kg]
di = 0.001[Nms/rad] b = 1.42[Ns/m]
g = 9.81[m/s2] k = 150[N/m]
L = li = 0.125[m]
γ = 0.07[−]
ν = 0.57[kgm2/rad3s]

Parameter values according to model 2.4
µ = m

M = 0.04 q = kL
gM = 0.7645

c = ν
µ = 14.25 s = v

√
L

M
√
g = 0.0641

p = d
µ = 0.0250
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Using Matlab, the system is simulated numerically. Figure 2.2 shows the simulation results of the system
with initial conditions θ1 = 0.01 [rad], θ1 = 0 [rad] and θ1 = 0.09 [rad]. The top window of the �gure
shows the angular displacement of the pendula as a function of time, showing the complete simulation. It
can be seen that the system converges to the standing wave solution in approximately 25 seconds. The
middle window shows the �rst �ve seconds of initial transient behavior, and the bottom window shows the
�nal �ve seconds for which the system is synchronized in a standing wave pattern. The �nal behavior of
the standing wave is observed for a wide range of initial conditions.
Figure 2.3 shows the last two seconds of the simulation in the top window, with the predicted amplitude
plotted as horizontal dotted black lines. The predicted amplitude coincides perfectly with the amplitude of
the numerically computed solution, suggesting the correctness of the predicted solution using the Poincaré
method. The vertical black dotted lines depict the predicted period of T = 2π

ω = 0.710 which follows from
ω =

√
g
l . As can be seen, the standing wave displays precisely one complete vibration in this interval,

showing that no (signi�cant) period elongation is present.
The bottom of Figure 2.3 shows that mechanical vibrations of the connecting beam. It can be seen that the
vibrations vanish at the moment the standing wave solution is reached and shows that the �nal state of the
system is reached.

Time [s]
0 5 10 15 20 25 30 35 40 45 50

θ
i [r

ad
]

-0.2

0

0.2

Time [s]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

θ
i [r

ad
]

-0.2

0

0.2

Time [s]
45 45.5 46 46.5 47 47.5 48 48.5 49 49.5 50

θ
i [r

ad
]

-0.2

0

0.2

Figure 2.2: Simulation result of standing wave. On top the complete time series (θ1 is blue, θ2 is green and θ3 is
red). The middle �gure shows the initial setup behavior, while the bottom shows the �nal �ve seconds in which
the system has converged to show a standing wave.
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Time [s]
48 48.2 48.4 48.6 48.8 49 49.2 49.4 49.6 49.8 50

θ
i [r

ad
]

-0.1

-0.05

0

0.05

0.1

Time [s]
0 5 10 15 20 25 30 35 40 45 50

x 
[m

]
×10-3

-2

-1

0

1

2

Figure 2.3: Simulation result of standing wave. On top the �nal two seconds of the time series. The dotted
horizontal and vertical black dotted lines represent the predicted amplitude and period respectively. The bottom
�gure shows the mechanical vibrations of the coupling beam.

2.3 Other synchronous behavior

As previously noted, the method used to investigate the standing wave, can easily be adjusted in order to
investigate other forms of synchronization by modifying the phase assumption imposed on the complex
amplitude of the general solution of equation (2.7). A wide range of phase assumptions has been examined
in an attempt to �nd a new form on synchronization. It has been found that only in phase synchronization
provides a solution the the Poincaré equations. In phase synchronization is suggested by assuming that
φ1 = φ3 = φ5(= 0) because no phase di�erence is present. Using (2.8) through (2.10) once more, the new
Qi equations can be computed:

Q1,3,5 =2πar2(−cγ2 + cr2 + p) +
6πr2s(r2 + 1)

q2 − 2q + s2 + 1
, (2.16)

Q2,4 =0.

The amplitude of the vibration is found by solving Qi = 0:

r = ± 1√
−ac(q2 − q + s2 + 1)− 3s

·
√
ac (−γ2q2 + 2γ2q − γ2s2 − γ2) + ap (q2 − 2q + s2+) + 3s

ac (q2 − 2q + s2 + 1) + 3s
.

(2.17)

One can see from (2.17), however, that this amplitude will be imaginary if γ is too small. Using the values
from Table 2.1 and inserting them in equation equation (2.17), results in the necessity that γ > 0.2831 in
order for the amplitude to be real. Using the values from Table 2.1 and equation (2.11), a speci�c polynomial
and its roots are computed:

X1 =21− 266γ2,

X2,3 =19.0− 111.0γ2 − 2.6
√
(60γ2 + 9.7)(33γ2 − 17), (2.18)

X4,5 =19.0− 111.0γ2 + 2.6
√

(60γ2 + 9.7)(33γ2 − 17).
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Because the real value of all roots need to be negative, this gives that a value of γ > 0.4137 is needed.
Every driving torque value larger than γ ≈ 0.1, however, transforms the vibration in a forced “unnatural”
vibration in the numerical simulation.
Changing other pendulum parameters, like the damping of the hinge point, changes equation (2.18) sig-
ni�cantly. A crude test, using a range of di�erent sets of variables, has not provided a case in which the
numerical analysis matches the computed characteristics using the Poincaré method. The needed driving
torque, resulting from the large γ makes the vibration look unnatural in all cases. Appendix A shows an
example of a simulation with a high driving torque. The fact that the in phase synchronization can not be
proven using the Poincaré method, does not prove it does not exist at all. It is possible, however, that in
order to observe the phenomenon, a relatively high driving torque is necessary.

2.4 Chapter summary

In this chapter, the Poincaré method of pertubation has been grasped and used to recreate the results of [4].
Furthermore, the schematic model of Figure 2.1 has been introduced and used to derive the equations of
motion needed for the analysis. It has been noted that the Poincaré method can be used to investigate other
forms of synchronization by making another assumption for the phase shift. By assuming that all phase
shifts φ are zero, in phase synchronization has been investigated. From the results of this investigation it
could be concluded that a too large driving torque is needed for stability, transforming the vibration into a
forced “unnatural” vibration.
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Chapter 3

Asymmetric synchronization

3.1 Asymmetric anti phase synchronization

In this section, the standing wave solution of the previous chapter is expanded to obtain a solution for
asymmetric anti phase synchronization. This type of synchronization involves two pendulums that swing
in phase while the third pendulum will have a motion in exactly the opposite direction. In order to still
maintain a balance, however, this implies that the lone pendulum will need either a bigger mass, a bigger
amplitude or a more forceful movement. Extensive testing has concluded that a combination of a doubled
amplitude in combination with a two times higher driving force on one pendulum, provides a solution. For
the other considerations you are referred to Appendix B. The two times higher driving force on the pendulum
makes that pendulum have a doubled amplitude. Because of the doubled amplitude, this pendulum supplies
enough vibrations to the coupling beam in order to match the doubled mechanical vibrations provided by
the pendula swinging in phase. Now the two in phase pendula and the third pendulum, with the double
amplitude, have an equal in�uence on each other and can synchronize in phase or in anti phase. In this
section, this solution is explained in more detail.

3.1.1 Analytic approach anti phase synchronization

Giving one of the pendula a larger driving force essentially means that the reference angle γ of the van der
Pol equation will di�er in one pendulum. This alters the nonlinear part of the dimensionless equation of
motion (2.4) to become:

d

dτ



θ1
θ̇1
θ2
θ̇2
θ3
θ̇3
y
ẏ


=



0 1 0 0 0 0 0 0
−1 0 0 0 0 0 q s
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 q s
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 q s
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −q −s





θ1
θ̇1
θ2
θ̇2
θ3
θ̇3
y
ẏ


+ µ



0

α
(
c
(
γ21 − θ21

)
− p
)
θ̇1 −

3∑
i=1

θi(1 + θ̇i
2
)

0

α
(
c
(
γ22 − θ22

)
− p
)
θ̇2 −

3∑
i=1

θi(1 + θ̇i
2
)

0

α
(
c
(
γ22 − θ23

)
− p
)
θ̇3 −

3∑
i=1

θi(1 + θ̇i
2
)

0
3∑
i=1

θi(1 + θ̇i
2
)



.

(3.1)
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Because the nonlinear part of equation (3.1) is equal to the nonlinear part of equation (2.4), the eigenvalues
are equal to the values depicted in equation (2.6). However, it has been determined that in addition to twice
the driving force, one pendulum needs a doubled amplitude as well. The increased amplitude of pendulum
one modi�es equation (2.7) to become:

z0 =


2αre

iωt s = 1,
2αre

−iωt s = 2,
αre

iωt s = 3, 5,
αre
−iωt s = 4, 6.
0 s = 7, 8

(3.2)

As previously explained, αr is a complex constant of the form αr = reiφi with φ1 = φ2, φ3 = φ4 and
φ5 = φ6. The values of φi, however, are di�erent because pendulum one has a shift of exactly π with respect
to the other two pendula, resulting in φ1 = ±π and φ3 = φ5 = 0.
Using the Poincaré equations (2.8) through (2.10), the equation for Qi are recomputed:

Q1 =−
πar2

2

(
−5cγ2 + 20cr2 + 8p

)
+

6πr4(s− q3i+ 3i)

q2 − 2q + s2 + 1
,

Q2 =
3πacr2

2

(
γ2 − 4r2

)
− 18πr4(s− qi+ i)

q2 − 2q + s2 + 1
, (3.3)

Q3,5 =
πar2

2

(
−cγ2 + 4cr2 + 4p

)
− 12πr4s

q2 − 2q + s2 + 1
,

Q4 = 0.

From the set of equations, no real amplitude r can be found. This is due to the additive terms on the right that
contains imaginary components. If system property parameters q and s are within a certain region, however,
the set of equationsQi provide a real amplitude r. Because q and s depend on the system properties, and are
therefore manipulable, the conditions imposed on the variables can be imposed relatively easy. After some
investigation, which is explained in detail in Appendix B, the values for q and s have been found:

q = 1, s = −−9cγ
2 + 12p

4acp
. (3.4)

Using these conditions a solvable set of of equations Q can be obtained:

Q1 =−
πar2(−5cγ2 + 8p)(−3cγ2 + 12cr2 + 4p)

8p− 6cγ2
,

Q2 =
3

2
πacγ2r2 +

18πac2γ2r4

4p− 3cγ2
, (3.5)

Q3,5 =
πar2(−cγ2 + 4p)(−3cγ2 + 12cr2 + 4p)

8p− 6cγ2
,

Q4 = 0.

(3.6)

For these equations, a real value for the amplitude r can be found:

r = ±3cγ2 − 4p

6c

√
3c

3cγ2 − 4p
. (3.7)
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The equation shows that r is real if 3cγ2 ≥ 4p.

The characteristic polynomial for the asymmetric anti phase synchronization can be computed using (2.11).
However, the symbolic expression of the polynomial can not be shown due to its large size. Poincaré equation
(2.12) is used to compute the the period elongation τc, which is zero, providing that T ∗ := T = 2π.

3.1.2 Numerical simulation anti phase synchronization

Table 4.1 shows the slightly modi�ed parameter values which are necessary to meet the required values
for q and s given by equation (3.4). For the chosen values, the roots are computed to be X1,2 = −147.79,

Table 3.1: Parameter values for system

Pendulum i for i = 1, 2, 3 Coupling bar
mi = 0.1[Kg] M = 2.5[Kg]
di = 0.001[Nms/rad] b = 1.42[Kg]
g = 9.81[m/s2] k = 196.2[N/m]
L = li = 0.125[m]
γ1 = 0.0663[−]
γ2 =

γ1
γ2

= 0.0332[−]
ν = 0.57[kgm2/rad3s]

Parameter values according to model
µ = m

M = 0.04 q = kL
gM = 1

c = ν
µ = 14.25 s = v

√
L

M
√
g = 0.0641

p = d
µ = 0.0250

X3 = −0.3993, X4 = −0.2845 end X5 = −0.1513. From the negative real parts it can be concluded that
the solution is globally stable. The system is simulated numerically with initial conditions θ1 = 0.1 [rad],
θ2 = 0.05 [rad], θ3 = 0 [rad] and x = 0 [m].
Figure 3.1 shows the time series of the numerical simulation. The top window shows the complete time
series which stabilizes to a synchronized solution within ten seconds. The middle window shows the initial
transient system behavior, and the bottom window shows the last �ve seconds in which asymmetrical anti
phase solution appears. In the bottom window, the red and green line represent the second and third pendula
which have coincided to show in phase synchronization. The blue line represents pendulum one, the pendu-
lum with a doubled driving force, which is in anti phase with respect to the other pendula and has twice their
amplitude. Figure 3.2 shows the last two seconds of the simulation in the top window, with the predicted
amplitude plotted as horizontal dotted black lines. The two predicted amplitudes coincide perfectly with
the amplitudes of the numerically computed solution, suggesting the correctness of the predicted solution
using the Poincaré method. The horizontal black dotted lines depict the predicted period of T = 2π

ω = 0.710

which follows from ω =
√

g
l .

The bottom of Figure 2.3 shows the mechanical vibrations of the connecting beam. It can be seen that the
vibrations reduce to show a residual sinusoidal vibration. This is surprising because the system was pre-
sumed to resemble the characteristics of a normal anti phase synchronization of two clocks. In this case
the residual vibrations go to zero and the pendula seem to be uncoupled. Figure 2.3, however, displays the
residual vibrations more commonly seen in in phase synchronization, which might be due to the fact that
there is still in phase synchronization present in the system (namely between pendula two and three).
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Figure 3.1: Simulation result of asymmetrical anti phase synchronous behavior. On top the complete time series
(θ1 is blue, θ2 is green and θ3 is red). The middle �gure shows the initial setup behavior, while the bottom shows
the �nal �ve seconds in which the system has converged to show anti phase synchronization.
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Figure 3.2: Simulation result of asymmetrical anti phase synchronous behavior. On top the �nal two seconds
of the time series. The dotted horizontal and vertical black dotted lines represent the predicted amplitude and
period respectively. The bottom �gure shows the mechanical vibrations of the coupling beam.
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3.2 Asymmetric In phase synchronization

Now that the driving torque of one pendulum is doubled, a remaining questing is if in phase synchronization
is still possible. For this case, the phase assumptions of φ1 = φ3 = φ5 = 0 are chosen once more. The
needed amplitude of the pendulum with the doubled driving force is determined by presuming that it is κ
times higher than the amplitude of the other pendula. The needed amplitude can now be determined by
looking at the resulting Q2 equation:

Q2 = πκacr4(κ2 − 1)− πr2i(κ− 1)(κ3r2 + κ+ 2r2 + 2)

(1 + s1i− q)
= 0 (3.8)

Equation (3.8) can not be solved to give a real amplitude r, giving that κ = 1 is needed in order to insure
that Q2 is always zero. This gives that the amplitude of the pendulum with the doubled driving force needs
to be the same as the other two pendula. Assuming equal amplitudes gives the following Q matrices (Q2 =
Q4 = 0 are omitted):

Q1 = Q3 = Q5 =2πapr2 +
6πr2s(r2 + 1)

q2 − 2q + s2 + 1
= 0. (3.9)

Because neither q2− 2q+ s2 +1 nor s can be negative, it becomes clear that r2 should be negative in order
to solve these equations, giving an imaginary r. This solution suggest that it is not possible to �nd a set of
parameter values for which pure in phase synchronization can be observed. Various numerical simulations
have been done in order to verify this. Though some solutions come very close to in phase synchronous
solutions, pure in phase synchronization has not been found. Figure 3.3 illustrates the obtained behavior
close to in phase. The window on the top left displays the complete time series, and the bottom left window
displays the last �ve seconds of measurement. These two windows would suggest the system shows in
phase synchronous behavior. The right window, however, shows a zoom-in of the last peak of the vibration
at approximately 499 seconds. It can be seen that there is still a clear phase shift present and no “pure” in
phase synchronization is shown. For large simulation times this phase shift remains, suggesting that “pure”
in phase synchronization does not exist.

Figure 3.3: Symulation result of asymmetrical in phase-adjacent behavior. On the top left the compete time
series. On the bottom left, a zoom-in of the last �ve seconds of measurement and on the right a zoom-in of the
last peak.
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3.3 Chapter summary

In this chapter, the standing wave solution of Chapter 2 has been expanded to obtain a solution for asym-
metric anti phase synchronization. This type of synchronization involves two pendulums that swing in
phase while the third pendulum will have a motion in exactly the opposite direction. Extensive testing has
concluded that a combination of a doubled amplitude in combination with a two times higher driving force
on one pendulum, provides a real amplitude r that can be computed using the Poincaré method. A new
dimensionless equation of motion has been made and, using the assumptions for phase shift and amplitude,
a new set of equations Q has been derived. By making two additional assumptions for s and q, the set of
Q matrices can be solved to �nd a real amplitude r. Furthermore, using numerical simulations, the correct-
ness of the prediction has been tested, suggesting the correctness of the predicted solution found using the
Poincaré method. Finally, the possibility of in phase synchronization for the case in which one pendulum
has a two times higher driving force has been investigated. The results using the Poincaré method, as well
as the numerical results, have suggested that exact in phase synchronization is not possible.
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Chapter 4

Anti phase synchronization in a Huygens’
generalized model

As already discussed in the introduction, there are many di�erent situations and models in which Huygens’
synchronization can be observed. A coupled pendulum model like Figure 2.1 is among the most popular
models used for investigating this phenomena. A more generalized model is shown in Figure 4.1 which has
been expanded from a model used in [9]. The �gure shows three small carts with a mass m [kg] that are
horizontally connected to a rigid structure with spring-damper systems with coe�cients κ and β, respec-
tively. The structure of mass mz [kg] is connected to the �xed world with a spring-damper system with
coe�cients κz and βz . The complete system and all of the carts are suspended on wheels that are assumed
to allow frictionless horizontal movement only. Furthermore, all carts are actuated in order to turn the carts
into self-sustained oscillators. The model depicted in Figure 4.1 is a more simple generalized model than the
previous model of Figure 2.1, because it contains no conversion from horizontal to rotational forces. Conse-
quently, the cart model of Figure 4.1 could give more insight into the study of Huygens’ synchronization.

Figure 4.1: Model of the carts.
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4.1 Analytic approach

The analytic approach starts with forming the idealized equations of motion associated with the model of
Figure 4.1:

ẍi = −ω2(xi − z)− 2ζω(ẋi − ż)− ν(aix2i − i)ẋi,

z̈ = −ω2
zz − 2ζωz ż − µ

3∑
i=1

(ẍi) . (4.1)

In these equations xi denotes the displacement of the carts, w and ζ = β
2mω the angular eigenfrequency

and the dimensionless damping coe�cient of the carts, respectively. The terms z, wz and ζz = βz
2mzωz

are
the horzontal displacement, the angular eigenfrequency and the dimensionless damping coe�cient of the
coupling structure, respectively. The actuation termUi is designed as van der Pol term ν(aix

2
i −1)ẋi. Notice

that the van der Pol term is slightly mode�ed. The new van der Pol term makes use of a factor a instead of
a reference angle γ, yielding that energy is supplied to the system if xi < 1√

a
and subtracted if xi < 1√

a
.

This form of the van der Pol term, originating form [9], facilitates the interpretation of the obtained results,
as will be shown later.
The analysis continues by using the Poincaré method, as has been done in the previous chapters. This gives
that the analysis is started by making four assumptions.

Assumption 1: All carts and their (actuated) spring-damper systems are identical.
Assumption 2: Only small displacement are present in the system.
Assumption 3: The damping and driving force terms are small, stating that 2ζ = µd and ν

ω = µα with
µ = m

mz

Assumption 4: All higher order terms of µi, i ≥ 2 are negligible.

Using the four assumptions and and using the dimensionless time τ = ωt, the equations of (4.1) can be
written in dimensionless form. The resulting set of equations are written in matrix form:

d

dτ



x1
ẋ1
x2
ẋ2
x3
ẋ3
z
ż


=



0 1 0 0 0 0 0 0
−1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −q −s





x1
ẋ1
x2
ẋ2
x3
ẋ3
z
ż


+ µ



0
−d(ẋ1 − ż)− α(a1x21 − 1)ẋ1

0
−d(ẋ2 − ż)− α(a2x22 − 1)ẋ2

0
−d(ẋ3 − ż)− α(a2x23 − 1)ẋ3

0
x1 + x2 + x3 − 3z


. (4.2)

In this equation q = ω2
z
ω2 and s = 2ζzωz

ω . Notice that the di�erence in driving force is modeled in the van der
Pol constant a (a1 for the �rst cart and a2 for the second and third cart). The anti phase solution presented
in Section 3.1.1 suggests that one cart needs to have twice the amplitude and a doubled driving force. The
fact that the driving force scales with 1√

ai
would suggest that a ratio a2 = 4a1 is needed in order to provide

a stable solution.

Using the same approach as in Section 3.1.1, it is determined that the eigenvalues λr of the system of equa-
tion (4.2) are equal to the eigenvalues of equation (2.6). Furthermore, because the same anti phase case is
examined, the general solution is equal to that of equation (3.2). In this equation, the complex coe�cient αr
is of the form αr = reiφi with φ1 = φ2 = ±π and φ3 = φ4 = φ5 = φ6 = 0.
Using the Poincaré equations (2.8) through (2.10), the equations of Q are computed:
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Q1 =− 2πr2(2d− 2α+ 4αa1r
2 + αa2r

2) = 0,

Q2 =− 2παr4(4a1 − a2) = 0,

Q3,5 = 2πr2(αa2r
2 − α+ d) = 0, (4.3)

Q4 = 0 = 0.

The equation (4.3) clearly shows that a nonzero amplitude r is only possible if a2 = 4a1, concluding that a
double driving force of cart one is needed in order to �nd a solution. Inserting this ratio into equation (4.3)
gives: (Q2 = Q4 = 0 are omitted)

Q1 =− 4πr2(4αa1r
2 − α+ d) = 0,

Q3,5 = 2πr2(4αa1r
2 − α+ d) = 0. (4.4)

From the set of equations (4.4), a solution for the amplitude r can be found to be:

r =

√
α− d
αa2

(4.5)

Since r must be real, the condition for the existence of the anti phase synchronization is α > d.

Using equation (2.11), the characteristic polynomial for this solution is computed, although its analytic form
can not be shown due to its large size. Equation (2.12) is used to compute the the period elongation τc, which
is zero once more, providing that T ∗ := T = 2π.

4.2 Numerical simulation

The values that are considered for the numerical simulation are displayed in Table 4.1. Inserting the values
of the table in the computed characteristic polynomial, the roots of the polynomials can be computed to be
X1 = −7.067 · 10−19 − 1.046 · 10−19i, X2,3 = −0.3674 ± 7.143 · 10−12i and X4,5 = −51.73 ± −14.45i.
The roots indicate that the solution is globally stable since all real parts are negative.

Note that X1 is very small (O(10−19)). The precision of MATLAB has been altered using the ‘digits’ function to
be more precise. However, no research into the accuracy of this root value has not been done.

The amplitude of this stable solution is computed using equation (4.5), which gives r = 0.2511 for cart one
and the r = 0.1255 for carts two and three.
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Table 4.1: Parameter values for system

Cart i for i = 1, 2, 3 Coupling bar
mi = 0.1Kg] mz = 1 [Kg]
β = 8 · 10−3 [Ns/m] βz = 3.2656 [Ns/m]
k = 37.108 [N/m] kz = 3.71 [N/m]
α = 0.1 [−]
a1 = 37.108 [−]
a2 = 148.432 [−]
di = 0.4150 [−]
Parameter values
ν = αωµ = 0.1926 [kgm2/rad3s] q = ω2

z
ω2 = 1.0475

µ = m
M = 0.01 s = 2ζzωz

ω = 0.1695

ζ = β
2ωm = 0.0021 ζz =

βz
2ωzmz

= 0.0828

ω =
√

k
m = 19.2634 ωz =

√
kz
mz

= 19.7157

The system is simulated numerically with randomly chosen initial conditionsx1 = 0.1 [rad], x2 = −0.2 [rad],
x3 = −0.05 [rad] and z = 0 [m]. Figure 4.2 shows the time series of the simulation. The top window shows
the complete simulation, while the middle and bottom window show the initial behavior and the “steady”
synchronized behavior, respectively. The �gure shows that the system reaches its stable anti phase synchro-
nization after a minute, which is longer than the previously simulated systems. This is expected due to the
fact that the negative real poles of the characteristic polynomial are close to zero.
Figure 3.2 shows a snippet of the last two seconds of the simulation in the top window. The dotted hor-
izontal lines in the �gure depict the amplitudes predicted with the Poincaré method. The vertical dotted
lines depict the predicted vibration period T , which can be computed from ω =

√
k
m = 19.2634, giving

f = ω
2π = 3.0659 and T = 1

f = 0.3262. It is clearly visible that the amplitudes and period of the predicted
synchronous behavior perfectly coincide with the predicted values suggesting the correctness of the com-
putations.
The bottom window of Figure 4.3 shows the displacement of the rigid coupling structure in the bottom win-
dow. The vibrations do not reduce to show a residual sinusoidal vibration, unlike the asymmetrical anti
phase simulation of Chapter 3.1.2, but instead asymptotically vanish as long as the anti phase solution is
reached. The cause of this di�erence is unknown and should be researched further.
The fact that the generalized model suggests that asymmetrical anti phase synchronization exists as well,
and gives near identical results as provided in Chapter 3.1.2 gives con�dence in the fact that anti phase
synchronization can be observed in a wide variety of coupled oscillators.
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Figure 4.2: Simulation result of asymmetrical anti phase synchronous behavior. On top the complete time series
(θ1 is blue, θ2 is green and θ3 is red). The middle �gure shows the initial setup behavior, while the bottom shows
the �nal �ve seconds in which the system has converged to show anti phase synchronization.
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Figure 4.3: Simulation result of asymmetrical anti phase synchronous behavior. On top the �nal two seconds
of the time series. The dotted horizontal and vertical black dotted lines represent the predicted amplitude and
period respectively. The bottom �gure shows the mechanical vibrations of the coupling beam.
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4.3 In phase synchronization

As is done in the previous chapter, the existence and conditions for in phase synchronization are investigated.
A phase di�erence of φ1 = φ3 = φ5 = 0 is assumed, and using the same method as used in Section 3.2, it
has been determined that all amplitudes need to be equal in order to �nd a real value for the amplitude r.
The assumption for phase di�erence and amplitudes results in a Q2 equation of:

Q2 = παr4(a1 − a2). (4.6)

This equation shows that the doubling of the driving force of one pendulum (resulting from a2 = 4a1)
prevents in phase synchronization. It is clear that a1 = a2 is needed in order to �nd a solution. Imposing
this condition, essentially stating that all carts are identical, gives (equations Q2 = Q4 = 0 are omitted):

Q1,3,5 = 2πr2
(
−αγ2 + αkr2 + d

)
+

6πr2s

q2 − 2q + s2 + 1
. (4.7)

Solving equation (4.7) results in the expression for the amplitude r:

r =
−
√
−αk(−αγ2 + d)− 3αks

q2−2q+s2+1

αk
(4.8)

The roots of the characteristic polynomial and period elongation have been computed using equations (2.8)
through (2.10) and are shown in Appendix B.4. The numerical simulation of the in phase solution of the
cart model can be found in Appendix B.4 as well. The result of the simulation coincides with the predicted
amplitude and period, suggesting the correctness of this solution.

4.4 Chapter summary

In this chapter, the more generalized model of Figure 4.1 has been introduced and investigated in order to
give more insight into the study of Huygens’ synchronization. Using the model, new equations of motions
are derived and the Poincaré method has been used in order to investigate asymmetric anti phase synchro-
nization. Using numerical simulations, the predicted amplitude and period of the Poincareé method have
been checked and coincide perfectly. Furthermore, the numerical results of the more generalized model of
Figure 4.1 strongly resemble the results found with the use of the model of Figure 2.1. This resemblance has
given con�dence in the fact that anti phase synchronization can be observed in a wide variety of coupled
oscillators. The vibrations of the rigid coupling structure, however, asymptotically vanish for the general-
ized model. This was not observed in the model of the Huygens’ coupled pendulum clocks. The reason of
this discrepancy is unknown and should be researched further. Finally, in phase synchronization has been
investigated, using the generalized cart model, for which can be concluded that in phase synchronization is
possible only if the driving torque is equal for all carts. The computed amplitude and period, determined
with the Poincaré method, have been con�rmed using numerical simulations.
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Chapter 5

Experiments

In this chapter experiments are performed in order to con�rm if the previously predicted forms of synchro-
nization are present in three Huygens’ coupled pendulum clocks.

5.1 Experimental setup

Figure 5.1 shows the setup of the monumental clocks. The clocks are resting on unsteady supports that
are coupled to each other by small wooden beams �xed with clamps. A high-speed camera is placed in
front of the clocks, and light blue paper circles are placed on the pendulum weight of each clock. Using
image detection software the center of the light blue circles can be detected and their displacement can be
tracked. Many of the system parameters, like damping and spring coe�cients, are not presently known for

Figure 5.1: Test setup of three monumental clock using a camera, blue paper and image detection software.

this setup, while other system parameters are very hard to modify. Provided equipment and time, these
system parameters can be identi�ed, though this has not been done for this report. This, however, makes
it impossible to predict the amplitudes of the pendula or implement constraints on variables like γ, s and
q. Furthermore, a dectable di�erence is expected between the continuous driving torque of the van der
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Pol term and the discontinuous torque given by the escapements mechanism of the clock. Due to the lack
of knowledge of system parameters and due to the di�erence between the modeling of the escapement
mechanism and the actual escapement mechanism, comparing the theoretic values for amplitude and period
with the measurements obtained with the monumental clock setup, is impossible. The aspiration, therefore,
is just to �nd all forms of synchronization predicted with the Poincaré theory, i.e., the expected results
should be qualitatively similar. However, an attempt to double the value for γ is made, by doubling the
counter weights of one clock with respect to the other two. The clocks are always initiated close to the
investigated synchronous behavior.

5.2 Experimental results with equal γ

For the experiment in which the clocks have equal mechanic weighting, three forms of synchronous behavior
has been detected: Anti phase, in phase and standing wave synchronization. Furthermore, forms of pulsating
behavior have been observed i.e. vibration wherein the amplitudes of the pendula grow and diminish rapidly
in a repeating sequence, showing no de�nite �nal form of synchronized behavior. Only the standing wave
synchronization appears to be a robust form of synchronization for these types of pendulum clocks.

5.2.1 Anti phase

Figure 5.2 shows the time series of the three Huygens’ coupled monumental clocks in which anti synchro-
nization occurs. In the �gure, the blue line represents the angle θ1 of the left pendulum, the green line
the angle θ2 of the middle pendulum and the red black line represent the angle θ3 of the pendulum on the
right. The top of Figure 5.2 shows the the complete time series of the experiment, the middle the interme-
diary anti phase behavior, and the bottom �gure shows the �nal 35 seconds of the time series. The anti
phase depicted by the middle �gure appears to be unstable. However, the disappearance of this behavior is
actually presumed to be caused by the escapement system of the pendulum clock which needs a minimal
displacement of the pendulum of θi ≈ 0.05 [rad] to be engaged. Figure 5.3 shows an enlargement of the
time series combined with an extra dotted line displaying the minimum needed displacement in order for
the escapement system to remain activated. It can be seen that that at 290 seconds, the two in phase pendula
have amplitudes close to the 0.05 [rad] limit, but are still not at half the amplitude of the left pendulum (blue
line), which grows to its maximum allowable amplitude of about 0.08 [rad]. The amplitude of the other two
pendula therefore diminishes to get the proper amplitude ratio, and the right pendulum enters the region
where the escapement is no longer engaged. The vibration of the right pendulum reduces to a standstill
after which the system tries to start the pendulum up again. The coupled clocks, however, are not able to
supply su�cient energy in order for the right pendulum to reach its escapement again. The ending result is
always a standstill of one or two pendula.
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Figure 5.2: Time series of an experiment showing asymmetrical anti phase synchronization for pendulum clocks
with equal γ.

Figure 5.3: Enlargement of the time series of an experiment showing asymmetrical anti phase synchronization
for pendulum clocks with equal γ. The dotted line represents the minimal amplitude for which the escapement
mechanism is still engaged.
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5.2.2 In phase

Figure 5.4 show the in phase time series of the three Hugens’ coupled clocks. The top window again dis-
plays the complete time series, while the middle and bottom �gure display the �rst and last 35 seconds of
the experiment, respectively. The �gure shows that in phase Hugens’ synchronization is possible, though
observations suggest that the solution is not as robust as the �gure suggest. The behavior only appears if
the pendula start close to in phase motion, and small disturbances for the surroundings ultimately results in
a stand still of a pendulum or a standing wave.
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Figure 5.4: Time series of an experiment showing in phase synchronization for pendulum clocks with equal γ.

5.2.3 Standing wave

Figure 5.5 shows the time series displaying a standing wave. From top to bottom respectively, the �gure
shows the complete time series, the �rst 35 seconds of measurements and the �nal 35 seconds of measure-
ments. The standing wave synchronization seems to be the most stable synchronization cases solutions, and
the only one that does not ultimately result in a stand still of one or two pendula. Furthermore, most initial
conditions that were close to the in phase and anti phase case have shown a convergence to a standing wave
solution.

5.2.4 Pulsating behavior

As stated before, forms of pulsating behavior have been observed, showing a repetitive pattern of raptly
increasing and diminishing amplitudes. Though most of observed kinds of pulsating behavior have resulted
in a standstill quite fast, due to the fact than one or more pendula are not engaged by the escapements system
at some point, one form has been observed that did not result in a standstill of pendula. Figure 5.6 shows
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Figure 5.5: Time series of an experiment showing in phase synchronization for pendulum clocks with equal γ.

the time series of this pulsating behavior. The top window shows the complete time series while the bottom
two windows show snapshots of the di�erent observed behavior.

Time [s]
50 100 150 200 250 300 350 400 450

θ
i [r

ad
]

-0.1

0

0.1

Time [s]
200 205 210 215 220 225 230 235

θ
i [r

ad
]

-0.1

0

0.1

Time [s]
300 305 310 315 320 325 330 335

θ
i [r

ad
]

-0.1

0

0.1

Figure 5.6: Pulsating behavior experiment with same γ.
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5.3 Experimental results for unequal clocks

An attempt is made to double the driving force term of one of the pendulum clocks, by doubling the mechani-
cal counterweight of one of the monumental clocks. For this system, anti phase and in phase synchronization
can be observed. Both forms of synchronization ultimately result in a stand still of one or more pendula.
Pulsating behavior and standing wave synchronizations have not been observed.

5.3.1 Anti phase

Figures 5.7a and 5.7b show the time series of the experiment in which the mechanical counterweight of the
left monumental clock is doubled. The top windows display the complete time series of the experiments,
while the middle and bottom windows display 35 second snapshots of intermediate behavior. Figure 5.7a is
initiated in near anti phase motion in which the left pendulum received the same, though negative, initial
amplitude as the middle and right pendula. Because the higher driving force on the left pendulum clock, a
bigger amplitude could be reached resulting in a longer show of the anti phase synchronization phenomenon.
However, this increase of the amplitude of the left pendulum is not enough to be able to keep the middle
and right pendulum at a high enough amplitude. In this case, both the middle and right pendulum do not
reach their escapement and go to a standstill.

Figure 5.7b is initiated in near anti phase motion in which the right pendulum receives the same, though
negative, initial amplitude as the the middle and left pendula. This is done in order to test if the system would
favor the clock with the added mechanical weight over the initial conditions. As can be seen in the �gure, the
system slowly shifts from its inital form of anti phase, to a standing wave of unequal amplitudes ending in an
anti-phase synchronization in which the clock with the added mechanical weight has the biggest amplitude.
This preference would suggest that only the one form of anti phase synchronization is possibile if one of the
clocks has a larger driving force γ that the others. However, Figure 5.7b refutes that statement. The �gure
shows the time series of the experiment in which the mechanical counterweight of the right monumental
clock is doubled. The pendula are initiated in such a way that the right pendulum (red line), with increased
driving torque γ, should have the large anti phase amplitude. However, it can be seen in Figure 5.7b that
the left pendulum (blue line) grows to display the large anti phase amplitude. This phenomenon was only
observed once and has not been reproduced. It is possible that this form of synchronization exists as well,
and will most likely not be very robust.
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(a) γ-altered time series displaying anti phase synchronization. The counter weight of the left monumental clock (blue line) is doubled.
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(b) γ-altered time series displaying anti phase synchroniza-
tion. The counter weight of the left monumental clock (blue
line) is doubled.
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(c) γ-altered time series displaying anti phase synchroniza-
tion. The counter weight of the right monumental clock (red
line) is doubled.

Figure 5.7: Multiple time series of the experiments using the clock setup in which one clock has a doubled
mechanical weight.

5.3.2 In phase

Figure 5.8 shows the time series of the experiment in which the mechanical counterweight of the right (red
line) monumental clock is doubled. The middle and bottom window show the �rst and last 35 seconds of
measurement respectively. It can be seen that in phase synchronization is observed with the slight modi-
�cation that the pendulum of the clock with the added mechanical wight has a slightly higher amplitude
and appears to have a light phase lead. This form of synchronization was observed to be quite un robust,
behaving the same as the in phase synchronization when all the clocks have the same counter weight.
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Figure 5.8: γ-altered time series displaying in phase.

5.4 Chapter summary

In this chapter, the experimental setup has been introduced an explained. The aspiration of the experiments
has been the discovery of all forms of synchronization predicted with the Poincaré method due to a lack of
knowledge of the values of the system parameters. However, an attempt has been made to double the value
of the driving torque γ by doubling the counter weights of one monumental clock.
For the case in which all clocks are identical, three forms of synchronous behavior have been detected: Anti
phase, in phase and standing wave synchronization. Of these forms of synchronization, the standing wave
synchronization appeared to be robust, while in- and anti phase synchronization often result in a standstill
of one or more pendula. The unstable appearance of the asymmetric anti phase synchronization has been
presumed to be caused by the constraints of the setup, which has a maximum and minimum allowable
amplitude.
For the case in which the driving torque γ is doubled by increasing the counter weights of one monumental
clock, only in- and anti phase synchronization has been observed. Both forms of synchronization did not
appear to be robust. However, due to the increase of the maximum amplitude, caused by the doubling of the
mechanical weight, the anti phase synchronization can be observed for a longer period of time.
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Chapter 6

Conclusions and recommendations

In this chapter the �ndings of this work are concluded and discussed. Additionally, possible improvements
to this research or recommendations for further research are presented.

6.1 Conclusions

In this work, the analytical and numerical results for a standing wave solution of three Huygens’ coupled
pendula, provided in [4], have been reproduced, and the standing wave synchronization has been observed
experimentally in three Huygens’ coupled monumental clocks. The standing wave synchronization appears
to be stable, as predicted.

Additionally, the Poincaré method used by [4] has been extended in order to prove the existence of asym-
metrical anti phase synchronization analytically. The asymmetric solution requires that one pendulum has
a double though negative amplitude with respect to the other two pendula, while having a twice as large
driving force. Using the Poincaré method, the amplitudes, period length and stability have been predicted
and have been con�rmed numerically. In practice, asymmetrical anti phase synchronization has been ob-
served, although the experimental setup does not allow the synchronization to exists for an extended period
of time. In (almost) identical Huygens’ coupled clocks, the synchronization occurs only within a short in-
terval of time. The anti phase synchronization can be observed for a more extended period of time if the
driving force of one clock is crudely elevated, which has been done by doubling the mechanical weight of
one clock. The double anti phase amplitude is mostly obtained by the clock with the elevated driving force,
as was predicted with the theory. One case has been observed, however, in which the double anti phase
amplitude was obtained by one of the two other pendula. This can be a coincidence, caused by some form
of unknown disturbance, or this is a form of (un robust) synchronization as well.

Furthermore, in phase synchronization of three Huygens coupled pendula with equal driving force has been
proven analytically using the Poincaré method. The solution suggests that in phase synchronization is un-
stable unless a large driving force is applied. Applying this large driving force using numerical simulation,
produces an “unnatural” forced vibration, from which no conclusions can be drawn. The numerical simu-
lation, however, appears to produce perfectly stable in phase synchronizations using a lower driving force.
During the experiments, in phase synchronization has been observed, although the in phase synchronization
does not appear to be robust.

Likewise, for the case in which one pendulum has a doubled driving force, in phase synchronization can not
be found using the Poincaré method. This appears to be con�rmed by the numerical simulation in which
exact synchronization can not be found. The phase synchronization has been observed with the experimental
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setup. However, the in phase synchronization did not appear to be robust.

Finally, the Poincaré method has been applied to the more generalized model of Figure 4.1, which is a mod-
i�cation of a model obtained form [9]. The close resemblance of the analytic and numerical results for
pendulum model and the generalized cart model suggest that asymmetrical anti phase synchronization is
present in a wide range of Huygens’ coupled oscillators. A noticeable di�erence, however, is present be-
tween the structural vibrations in the coupling bar. While the pendulum based model shows a small residual
sinusoidal vibration, the vibrations of the coupling structure of the card model go to zero asymptotically.
The reason for this di�erence is still unknown.

6.2 Discussion & Recommendation

In the work, some discrepancies have been noticed between the analytically predicted behavior, the computer
simulations and the �ndings during the experiments. Most di�erences seen in the experiments are due to
the fact that the clocks are not identical, as is assumed in both the analytic and numerical parts. This would
explain slightly di�erent amplitudes in supposedly identical waves for example. However, other di�erences
between theory and practice are present, resulting in di�erent behavior than initially expected.

The van der Pol term
Although the van der Pol term closely resembles the escapement system of a clock, one big di�erence can
be distinguished. The van der Pol term continuously supplies a negative or positive torque to the system,
while the escapement system of a pendulum clock behaves discontinuously by stopping the pendulum and
supplying a torque only in a small range of the motion. This explains why during the experiments, a standstill
of one or more pendula is a very common phenomenon, while this does not happen during the numerical
simulations. A solution to this problem could be the modi�cation of the escapement mechanism of the
clocks to one more resembling the van der Pol term, or use a piece-wise continuous function to modeling
the escapement mechanism.

The monumental clock setup
A lot of system parameters of the Huygens’ coupled monumental clocks are unknown. This makes it almost
impossible to modify them to the precise values needed to comply with the restrictions that are predicted
to be necessary using the Poincaré method. Additionally, the increase of the driving force has to be done in
a very crude manner as well, by doubling the mechanical weight. A study into the exact sti�ness, damping
and driving force of the monumental clocks, would provide a much better setup. Providing a way to (easily)
alter the system parameters could prove useful in later stages of research.
Luckily, the system is already able to show anti phase synchronization, though be it for a short span of time.
This is caused by the fact that the escapement system of the clocks is not engaged if a pendulum has half its
“normal” amplitude. If the escapement system is altered to allow half the “normal” amplitude, it is assumed
that the anti phase synchronization can be observed longer. Finally, the high speed camera measuring system
is not without its faults. The high speed camera and its tracking software have given errors often, or lost
track of one of the pendula at random times. This is most likely caused by subtle changes of lighting due
to the pendula movements, clouds or time of day. The erroneous behavior of the measuring system has
made longer measurement times nearly impossible, and many results unreliable. A switch to another form
of angle displacement sensor, like the one presented in [6], is preferable.

Di�erence structural vibrations pendulum- and cart- model
As described at the end of the conclusion, there appears to be a discrepancy between the pendulum model
and the more generalized cart model. The reason for the di�erence between the residual structural vibrations
in the models could give more insight into the synchronization phenomenon.

32



Bibliography

[1] Huygens, C. Correspondance 1664-1665. In Nijho�, M. (ed.) Oeuvres complètes de Christiaan Huygens
vol. V (La Societe Hollandaise des Sciences, The Hague, 1893).

[2] Korteweg, D. J. Les horloges sympathiques de Huygens. In Nijho�, M. (ed.) Archives Neerlandaises des
Sciences Exactes et Naturelles. vol. XI, 273-295, La Societe Hollandaise des Sciences a Harlem, The
Hague, (1906).

[3] Pena Ramirez, J., Olvera, L.A., Nijmeijer, H. and Alvarez, J. (2016), The sympathy of two pendulum clocks:
beyond Huygens’ observations. Sci. Rep. 6, 23580; doi: 10.1038/srep23580

[4] Pena Ramirez, J. and Alvarez, J. (2015), Rotating waves in oscillators with Huygens’ coupling. In proceed-
ings of the 4th IFAC Conference on Analysis and control of Chaotic systems CHAOS 2015 - Tokyo,
Japan, 26-28 August 2015

[5] Pena Ramirez, J., Aihara,K., Fey, R. H. B. and Nijmeijer, H. (2014), Further understanding of Huygens’
coupled clocks: The e�ect of sti�ness. physica D 270, 11-19

[6] Honeywell, Inc. Technical report (2002) Applications of magnetic positions sensors Available
at: http://www51.honeywell.com/aero/common/ documents/Applications-
of-Magnetic-Position-Sensors.pdf (Accessed: September 7, 2016)

[7] Pena Ramirez, J. and Nijmeijer, H. (2015), The Poincare method: A powerful tool for analyzing
synchronization of coupled oscillators. Indagationes Mathematicae, Available online 27 November
2015, ISSN 0019-3577, http://www.sciencedirect.com/science/article/pii/
S0019357715001056 (Accessed: September 7, 2016)

[8] Blekhman, I. I. (1971), Synchronization of dynamic systems (in Russian). Nauka, Moscow.

[9] Pena Ramirez, J., Fey, R.H.B. and Nijmeijer, H. (2013) Synchronization of weakly nonlinear oscillators
with Huygens’ coupling

[10] M. Moser, M. Fruhwirth, and T. Kenner. (2008) The symphony of life. Engineering in Medicine and
Biology Magazine, IEEE, 27(1): 29-37.

[11] F. Mormann, T. Kreuz, R. G. Andrzejak, P. David, K. Lehnertz, and C. E. Elger. (2003) Epileptic seizures
are preceded by a decrease in synchronization. Epilepsy Research, 53(3): 173-185

[12] Blekhman I. I. (1988) Synchronization in science and technology. ASME Press, New York.

[13] Kanunnikov, A. and Lamper, R. (2003) Synchronization of pendulum clocks suspended on an elastic beam.
J. Appl. Mech. Tech. Phys. 44, 748-752.

33



[14] Senator, M. (2006) Synchronization of two coupled escapement-driven pendulum clocks. J. Sound Vib. 291,
566-603.

[15] K. Czolczynski, A. Stefanski, P. Perlikowski, and T. Kapitaniak. (2009) Clustering and synchronization
of n Huygens’ clocks. Physica A, 388(24):5013-5023.

[16] R. Dilão. (2009) Antiphase and in-phase synchronization of nonlinear oscillators: The Huygens’ clocks
system. Chaos: An Interdisciplinary Journal of Nonlinear Science, 19(2):023118.

[17] Jovanovic, V. and Koshkin, S. (2012) Synchronization of Huygens’ clocks and the Poincaré method. J.
Sound Vib. 331, 2887-2900.

[18] Pena Ramirez, J. (2013) Huygens’ synchronization of dynamical systems: beyond pendulum clocks Eind-
hoven: Technische Universiteit Eindhoven DOI: 10.6100/IR748516

[19] Hoogeboom, F. N. (2015), Huygens’ synchronization: experiments, modeling, and stability analysis. Mas-
ter thesis. Eindhoven University of Technology.

[20] A. A. Andronov, A. A. Vitt, and S. E. Khaikin. (1987) Theory of oscillators. Dover Publications, New York,
1987.

[21] I. G. Malkin. (1956) Some problems in the theory of nonlinear oscillations. State Publishing House of
Technical and Theoretical Literature, Moscow, 1956.

34



Appendix A

The forced vibration

Figure A.1 shows the result of the large γ that the Poincare solution prescribes in order to make the system
stable, with a real amplitude. The top �gure shows the complete time series, while the middle and bottom
window show the �rst and last �ve seconds of the simulation respectively. The fact that the system is in
phase can not be said to be predicted by the Poincaré method due to the fact that the predicted amplitude
and phase do not match the numerical simulation.

Figure A.1: Simulation result of the forced vibration as a result of the large γ needed.
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Appendix B

Modi�cations to the system parameters
for observing anti phase synchronization

B.1 Consideration 1; Larger mass of pendulum one

If pendulum one has a larger mass, this altersm1 = εm, while the other pendulum masses remainm2,3 = m.
Recomputing the dimensionless equation of motion (2.4), the non-linear part of formula (2.4) will change to
be as given in equation (B.1). Further computations with this equations does result in a real value of r.
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(B.1)

It can be seen that an 1
ε term multiplies the nonlinear dynamics part of the �rst pendulum. Using the Poincaré

equation, a new set of equationQ can be computed (using a phase di�erence φi coherent to the asymmetrical
anti phase case). Further computations revealed that for every real value of ε, theQ equations do not provide
a real value for the amplitude r.

B.2 Consideration 2; Larger displacement of pendulum one

If pendulum one has a larger displacement than the other pendula, c, γ, and p will have to di�er. This is
determined using the equation for the amplitude r of the standing wave solution displayed in Chapter 2
equation (2.14). Since a bigger amplitude of the pendula could cause problems with the small displacement
assumption needed for the linearisation, the amplitude of pendulum two and three are diminished rather
than increasing the amplitude of pendulum one. For the case in which the amplitude of pendulum one
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is exactly twice the amplitude of pendulum two and pendulum three, this results in a nonlinear part of
equations (2.4) shown below. Further computations with this equations result in a set of equationsQ, which
does not result in a real value of the amplitude r.
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. (B.2)

B.3 Explanation conditions on q and s

As is explained in Chapter 2, a set of matrices Q has been found which can only be solved to �nd a real
value for the amplitude r, if the system parameters q and s are within a certain range. In this section, a
more detailed description is given as to how these ranges are determined. Note that many di�erent tactics
for determining the right value for q and s have been tried, though only one solution has been found. Other
ranges for q and s,however, might provide a solution as well.

The initial Q equations are shown once more in equation(B.3). The set of equations does not give a real
amplitude r.
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− 12πr4s
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,

Q4 = 0.

Notice that imaginary components are present in Q1 and Q2 on the right hand side, and are (s− q3i+ 3i)
and (s− qi+ i). The value for q is assumed to be q = 1 in order to cancel this imaginary components. This
reduces equation (B.3) to become equation (B.4).
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s2
,

Q4 = 0.

For this equation a real nonzero amplitude rQ3,5 is found by solving Q3,5 = 0. This amplitude rQ3,5 is then
substituted in equation (B.4). This left nonzero equations for Q1 and Q2, which are made zero by choosing
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the proper values for parameter s = −−9cγ
2+12p

4acp . If the values for q and s are substituted in the original set
of equation Q, a real positive amplitude r can be found (identical to substituting q and s in rQ3,5 ).

B.4 Figures in phase synchronization of cart model

The values that are considered for the numerical in phase simulation are displayed in Table 4.1. Inserting the
values of the table in the computed characteristic polynomial, the roots of the polynomials can be computed
to be X1 = −22.1120, X2,3 = −10.0421 ± 8.4392i and X4,5 = −10.0421 ± 8.4392i. The roots indicate
that the solution is globally stable since all real parts are negative. The amplitude of this stable solution is
computed using equation (4.8), which gives an amplitude of r = 0.0596 for all carts since all amplitudes
have previously been determined to be equal.

The system is simulated numerically with initial conditions close to the in phase solution; x1 = 0.1 [rad],
x2 = 0.05 [rad], x3 = 0.03 [rad] and z = 0 [m]. Figure B.1 shows the time series of the simulation. The top
window shows the complete simulation, while the middle and bottom window show the initial behavior and
the “steady” synchronized behavior, respectively. Figure B.2 shows a snippet of the last two seconds of the
simulation in the top window. The dotted horizontal lines in the �gure depict the amplitudes predicted with
the Poincaré method, while the vertical dotted lines depict the predicted vibration period T . It is clearly
visible that the amplitudes and period of the predicted synchronous behavior perfectly coincide with the
predicted values suggesting the correctness of the computations.
The bottom window of Figure B.2 shows the displacement of the rigid coupling structure in the bottom
window. The vibrations reduce to show a residual sinusoidal vibration.

Figure B.1: Simulation result of asymmetrical anti phase synchronous behavior. On top the complete time series
(θ1 is blue, θ2 is green and θ3 is red). The middle �gure shows the initial setup behavior, while the bottom shows
the �nal �ve seconds in which the system has converged to show anti phase synchronization.
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Figure B.2: Simulation result of asymmetrical anti phase synchronous behavior. On top the �nal two seconds
of the time series. The dotted horizontal and vertical black dotted lines represent the predicted amplitude and
period respectively. The bottom �gure shows the mechanical vibrations of the coupling beam.
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