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1 Introduction

Motion planning is an important aspect of robot movement. Robotic arms use motion planning to
grip objects and mobile robots use motion planning to determine paths along which they move.

Robot movement can be determined by motion planning algorithms. These algorithms need in-
formation about an approximation of the Signed Distance Function (SDF) from the robot to an
obstacle. An SDF is a function that determines the distance of a certain point to the contour
whose points form a set. If the point lies within the contour, it has a positive sign and if the point
lies outside the contour it has a negative sign [1]. This type of information can originate from
camera data for example. The observed obstacles often form a problem for these algorithms. In
recent studies, the zero level sets of implicit functions have been used to store a description of the
contours of the objects on grid data. This type of method is called a volumetric method.

Robots obtain information about obstacles either from camera data or models of the environ-
ment. One way to generate 3D models of the environment is the KinectFusion system [4], with
data originating from the depth camera Kinect. The objects are represented by using the volumet-
ric methods presented by Curless and Levoy in [3]. According to this paper, range images by depth
cameras are used to determine SDFs that are stored on a voxel grid. The zero crossings in these
SDFs are combined to form an implicit function which represents the surface of the objects. The
signed distance values outside and inside the objects are truncated so that they form a Truncated
Signed Distance Function (TSDF). This means that at increasing distance from the object surface,
the signed distance values converge toward a constant value, for example -1. The same holds for
the values inside the object but then for the positive value 1.

There are current motion planning algorithms that make use of SDFs and volumetric methods.
One such algorithm is Covariant Hamiltonian optimization for motion planning (CHOMP) as pre-
sented by Zucker et. al in [9]. This algorithm uses functional gradient optimization. In other
words, they minimize a functional which is a function of a set of other functions by using the gra-
dient descent optimization method. The functional is a function of a set of functions, in this case
trajectories. The trajectories are functions of cost elements and the goal is to find the trajectory
that provides as low a cost for the robot as possible. A limiting factor in this algorithm is that
the elements of the trajectory function are not twice continuously differentiable. This excludes the
use of Newton-like optimization methods, which provide faster local convergence than the gradient
method.

For this project, the goal is to explore the applicability of volumetric methods on Newton-like
algorithms that can solve constrained optimization problem. This requires the volumetric function
to be twice continuously differentiable.

Te report has the following structure. Chapter 2 consists of two parts. The first part shows
the grid data that is synthetically created such that it can represent the type of data one would
obtain from using volumetric methods. After this, the method to render the grid data twice con-
tinuously differentiable is presented. This means ensuring that the grid data is twice continuously
differentiable. Next, the Newton-like algorithm is created. In Chapter 3, the application of the
volumetric method on the Newton-like algorithm is validated. This validation mainly consists of
checking the convergence and rate of convergence for different obstacle shapes. Lastly, Chapter 4
presents the conclusions and recommendations that are based on the results from the validation.
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2 Problem Statement and Approach

In this chapter, the problem statement will be outlined. After this, the synthetization of the grid
data is shown and consequently the interpolation of the data to provide a twice continuously differ-
entiable approximation is presented. Lastly, the Newton-like optimization algorithm is described.

2.1 Problem statement

In order to assess if the volumetric methods can be used in Newton-like methods, the grid needs
to be synthesized such that it represents a grid with a truncated signed distance function and the
zero level set of an object. The next part of the problem is making sure that the grid values are
twice continuously differentiable.

When the data is made twice continuously differentiable, a Newton-like algorithm needs to be
customized that can be applied on a constrained optimization problem. The optimization problem
used is the minimization of the distance toward a certain point within the contour of an object on
the grid, while remaining outside the contour.

As a simplificiation the choice is made to only consider the 2D case. The goal of this project
is to validate if applying volumetric methods on Newton-like algorithms is possible. Only consid-
ering the 2D situation, is sufficient to reach this goal. In later research, the extension to 3D needs
to be made in order to apply the algorithm for motion planning.

2.2 Grid generation and interpolation

The grid consists of two coordinates x = [x1, x2]T .

An ellipse is used as the object on the grid. The implicit function that gives the level sets of
the ellipse is

u =
x21
0.5

+
x22
0.2
− 1. (2.1)

The parameters 0.2 and 0.5 determine the size of the ellipse. They are chosen as 0.2 and 0.5 since
this ellipse fit the grid well. The value of the implicit function at each grid point represents the
signed distance value at that point. Figure 2.1 shows the zero level set of the ellipse and illustrates
the position of the ellipse on the grid. This contour has been created using the marching squares
algorithm, which is a computer algorithm that is used to plot the level set curves of a certain
shape. In this case the zero level set curve of the ellipse was plotted. [5]
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Figure 2.1: The ellipse on the grid

A distance of 0.01 between each grid point has been chosen and each of the grid coordinates has
a lower bound of -2.5 and an upper bound of 2.5. This results in a total of 251001 data points.

In order to truncate the grid data to represent the effect of a TSDF, (2.1) is saturated between -1
and 1 by

q = − 2

1 + e−2u
+ 1. (2.2)

This equation is an altered version of the Sigmoidal curve or the Logistic function [8]. By adjusting
the parameters in the numerator and denominator, one can change the steepness of the curve and
its maximum and minimum value. By substituting Equation (2.1) to (2.2), one obtains

q =
2

1 + e
−2

(
x2
1

0.5+
x2
2

0.2−1

) . (2.3)

Now that the function values on the grid have been generated, these values need to be interpolated
such that they are twice continuously differentiable. Then they can be applied to the Newton-like
optimization algorithm. The requirement is that the interpolant that results is twice continuously
differentiable. A cubic spline consists of piecewise third-order polynomials. These polynomials
are defined on the intervals between grid points. Boundary conditions are applied in these points
to realise smooth transitions between the polynomials, which results in a twice continuously dif-
ferentiable spline [2]. Therefore, cubic splines should meet the requirement. The points of the
interpolant are now denoted by x = [x1, x2]T , where x can take on all real values between -2.5 and
2.5. In Figure 2.2, the resulting spline is shown for the truncated grid values.
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Figure 2.2: Cubic spline interpolation of the grid values

2.3 Optimization algorithm

Now that the grid has been defined and interpolated to form a twice continuously differentiable
function, the optimization algorithm can be presented. The goal is to minimize the distance
toward a certain point within the boundary of the ellipse, without entering the object itself. The
unconstrained function is shown in

f(x) = (x− xc)T (x− xc), (2.4)

where xc = [a, b]T is the unconstrained minimizer x∗f . The minimum of the function f(x) is indi-
cated by f(x∗f ). The minimizer x∗f is chosen to lie within the contour of the ellipse namely, at the

point x∗f = [0, 0]T . Minimizing f(x) would therefore cause the algorithm to reach a point within
the ellipse. For this reason, f(x) should be minimized with extra condition that c < 0, where c is
the value of the interpolated data in each point x.

The constrained optimization problem is generated by introducing a logarithmic-barrier function,
which is real-valued outside the contours of the ellipse. The logarithmic-barrier function belongs to
an optimization method called the interior point method [6]. When constraining the optimization
problem, the following equation is obtained:

h(x) = f(x)− ε log(−c), (2.5)

where ε is the barrier parameter, which is a positive scalar, h(x) is called the objective function,
which is the function to be minimized. As the barrier parameter approaches zero, the objective
function should converge to a minimizer close to the unconstrained minimizer without crossing the
barrier. This means that for ε → 0, the minimizer will lie on the contour of the ellipse. Because
of the positive values for c within the contours of the obstacle and negative values outside the
obstacle, the log-term is real-valued outside the object and inside the boundary the values become
imaginary with an asymptote at the contour [6]. For illustration purposes, the one-dimensional
cases of (2.4) and (2.5) are shown in Figure 2.3.
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Figure 2.3: Illustration of the influence of the barrier-function for the one-dimensional case

This figure shows the effect of adding the log-barrier. The blue graph shows the one dimensional
version of function f(x) with the unconstrained minimizer at x∗f = 0 and the red graph shows what
happens to f(x) when adding the barrier term. The function now has two minimizers on either
side of x = 0.

In the following part the derivations shown are based on theory from [7]. For this algorithm,
the Newton method is preferred over the gradient descent method. The difference between the two
methods is that the steepest descent method, or gradient method, uses a local linear approxima-
tion and the Newton method uses a local second order approximation. This makes the steepest
descent method mathematically less complex since the function only needs to be once continuously
differentiable. In order to calculate the next point x to be approximated, the steepest descent
method uses the gradient of the objective function, multiplied by a factor as shown in

xi+1 = xi − αiDh(xi) (2.6)

With i denoting the iteration number, i ∈ N. αi is the step size and Dh(xi) is the derivative of
the objective function h(xi). When the algorithm approaches a minimum, the gradient will have
very small values and therefore, the difference between xi and xi+1 will be very small. This means
that the progress toward the minimum will be very slow close to the minimizer. The Newton
method provides a solution for this by using second order terms that ensure fast convergence in
the area close to a minimizer. In order to find the Newton search direction for each iteration, a
second order approximation to the point x+z is made, where z is the search direction. The search
direction is the direction along which the algorithm takes its next step. The algorithm takes this
step with a certain step length, which is equal to one for pure Newton methods. The following
Taylor approximation is the starting point for deriving the step length. The point xi is viewed as
a parameter since the interest lies in finding the step length zi for this iteration.

h(xi + zi) = h(xi) +Dh(xi)zi +
1

2
D2h(xi)(zi, zi) + o(‖zi‖2) (2.7)

with zi representing the Newton search direction for an iteration i. By defining g(zi) ∼= h(xi + zi)
one can write Equation (2.7) as in

g(zi) := h(xi) +Dh(xi)zi +
1

2
D2h(xi)(zi, zi). (2.8)
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When using the stationarity condition Dg(zi) = 0 in (2.9), one can find the minimizer zi. The
stationarity condition states that when the gradient is zero in a certain point, this point is a local
minimum. Therefore, it is necessary to find the direction z for which this condition holds.

Dh(xi) +D2h(xi)zi = 0 (2.9)

Solving (2.9) for zi gives the Newton search direction

zi := −H−1Dh(xi). (2.10)

With H denoting the Hessian, which is defined as H := D2h(xi). The next point to be approxi-
mated can be calculated using the Newton search direction as shown in

xi+1 = xi −H−1Dh(xi). (2.11)

It may not be enough to only use the search direction to compute xi+1. To ensure that the
condition h(xi+1) < h(x) holds, it is necessary to modify the Newton method to include a varying
step length, which determines how far the algorithm will move along the direction zi for a certain
iteration. For pure the pure Newton method, the step length is equal to one. When the step
length one is maintained, it may not be sufficient for the Hessian to be positive definite, which is a
requirement to ensure proper functioning of the Newton method. Modifying Equation (2.11) leads
to

xi+1 = xi − αiH−1Dh(x). (2.12)

The value of the step length α needs to be determined every iteration. The derivation of the
variable step length is based on the method shown in [6]. The step length that is chosen has to
satisfy the Armijo criterion shown in

h(xi + αz) ≤ h(xi) + cαDh(xi)z. (2.13)

For c a constant with values c ∈ (0, 1). This condition is also called the sufficient decrease condi-
tion. It ensures that the step length causes a sufficient decrease in h(x). A sufficient decrease is a
decrease that is proportional to the step length α and the directional derivative Dh(xi)z.

In order to find a step length to satisfy the Armijo condition, backtracking is used. This technique
starts with a certain value for the step length. In the case of the Newton algorithm, one starts
with step length α = 1. One then checks if this step length satisfies Equation (2.13). If this is
not the case and h(xi + αz) > h(xi) + cαDh(xi)z, α is multiplied by a factor p such that the new
value for α is smaller than one. This process is repeated until a step length is found that satisfies
the Armijo condition. An illustration of the backtracking algorithm is shown in Figure 2.4.
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Figure 2.4: Finding the step length through backtracking
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For the Newton step length α = 1 the function value of h(xi + αzi) is infinite (see Figure 2.4)
and therefore does not satisfy the Armijo condition. α is then multiplied by the constant p which
is chosen to be 0.7. This value provides a large enough reduction of the step size each time the
Armijo condition is not satisfied. As can be seen in the figure, the next value of α then becomes
0.7 as this point lies below the red line and therefore satisfies the Armijo condition. This means
that for this iteration of the algorithm, the step length is chosen to be 0.7.

For each iteration, the algorithm will calculate a new search direction and step length in order
to find the minimum. Each iteration a check is performed if the minimum has been reached. This
minimum is considered reached when a certain point meets the termination criterion shown in
Equation (2.14).

‖Dh(xi)zi‖ ≤ 10−6 (2.14)

Previously was mentioned that the Newton algorithm does not guaranty descent when the Hessian
H is no longer positive definite. Therefore, a check is performed to see if the Hessian is positive
definite in every iteration. This is done by checking the eigenvalues of the matrix H for non-
positive real values. If the Hessian is positive definite, the Newton search direction is accepted
and the algorithm continues normally with the next step, which is to calculate the step length
using the backtracking approach. However, if one or more of the real parts of the eigenvalues of H
are non-positive, this means that the Hessian is negative definite or semi-positive definite. In this
case, the Newton direction does not guarantee descent and a different method has to be chosen
for this iteration [7]. The solution is to use the gradient search direction when the Hessian is not
positive definite. This excludes the Hessian from the algorithm for this iteration and descent can
be guaranteed. The point for the next iteration is then calculated by using Equation (2.6) instead
of Equation (2.12).

The determination of the step length is still executed in the same way using the backtracking
approach and the Armijo condition. However, a new stopping criterion is introduced.

‖xi+1 − xi‖ ≤ 10−6 (2.15)

As before mentioned, the algorithm is a relaxation of the Newton method and the interior point
method. When the barrier parameter is made to approach zero, the minimum of the objective
function h(xi) lies increasingly closer to the boundary as illustrated in Figure 2.5 for the 1D
version of the objective function.
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Figure 2.5: Illustration of the effect of a decreasing barrier parameter for the one-dimansional
version of Equation (2.5)
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As can be seen in the figure, the minimum of the objective function will lie closer to the un-
constrained minimum when the barrier parameter approaches zero. For applications in motion
planning where robots have to pass by objects, it is desirable that the robot is able to pass by
those objects as closely as possible. Also in the case of a robot grasping an object, the robot should
be able to come very close to the object. For these reasons ε should be able to become very small.
In this report will be demonstrated that the algorithm converges with a sufficient accuracy for
every value of ε.

2.4 Implementation

In the previous section, the algorithm has been defined. Here a short summary is given of how the
algorithm works when implemented. In this description, the unconstrained minimizer x∗f has been

chosen as x∗f = [0, 0]T and ε is a constant.

1. A starting value for x is chosen (denoted x0).

2. For this value, the function values, the first derivative Dh(x0) and the Hessian H of h(x0)
are calculated.

3. Next a check is performed to see if H has any non-positive eigenvalues in order to choose
the search direction for this iteration. If the eigenvalues are positive, the Newton direction
is chosen and otherwise the gradient descent direction is chosen.

4. When the direction has been determined, the step length is determined using the backtracking
algorithm.

5. After the step length is determined, the point xi+1 can be calculated using either Equation
(2.12) or Equation (2.6), dependent on which search direction was chosen.

6. Lastly, the algorithm checks if the current point is a minimizer by using either Equation
(2.14) or Equation (2.15), dependent on which search direction was chosen.

7. If a minimizer has been found, the algorithm is terminated. If a minimizer was not found,
the algorithm is repeated for xi+1, starting at step 2.

2.5 Conclusion

This chapter started with synthesizing the grid values and making them twice continuously differ-
entiable by using a cubic spline. After this, the optimization algorithm was shown. The algorithm
is a relaxation of the Newton method and a log-barrier function. A varying stepsize has been
implemented as well as the option to use the gradient descent in situations where the Hessian is
not positive definite. In the next chapter, it is validated if the interpolated grid data lead to proper
functioning of the algorithm.
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3 Validation

In this chapter the algorithm is validated on a number of different aspects like the rate of conver-
gence and different shapes. In the next chapter, the conclusion and recommendations are presented
that follow from the validation in this chapter.

3.1 Validation experiments

The goal is to validate that the algorithm works properly for multiple situations, like different
obstacle shapes and starting positions. The algorithm is considered to work properly when it
converges for a termination criterion that is equal to the grid resolution. The algorithm should
not have to converge more accurately than the resolution of the input data. The grid that has
been used for this project is a square grid and has a value of 0.01 between each grid point, with
an upper bound of 2.5 and a lower bound -2.5 in each direction. This means that the termination
criterion should have a value of at least 10−2. However, to show the robustness of the algorithm,
the criterion has been chosen at 10−6 for the Newton termination criterion in Equation (2.14) and
the termination criterion for the gradient descent in Equation (2.15).

The algorithm is validated for the ellipse as shown in Equation (2.1). A number of starting
values were chosen to see if the algorithm could converge for all these positions, for a range of
different ε. The range that is used is ε = 1, 0.5, 0.2, 0.01, 0.001. For a few starting positions, the
effect of continuation is shown. Continuation is used to reduce the number of iterations needed to
converge. The concept of continuation is explained in Section 3.2.

Also a check of the convergence rate was done to see if the decrease is quadratic, as should be the
case when the Newton algorithm is applied. To gain further insight in the rate of convergence, a
circle was used as obstacle. The circle provided an interesting situation since it has global minima
lying in a circle with a radius rε that is determined by the value of ε. It holds that rε > r, ∀ε ∈ R,
with r the radius of the obstacle. The circular distribution of the global minimizers should not
lead to quadratic convergence as is explained in Section 3.2. The circular distribution of the global
minima should provide insight into the rate of convergence.

The Cassini ovals are implemented using

u = (x21 + x22)2 − (2c2)(x21 − x22)− (a4 − c4); (3.1)

Where a and c are the parameters that determine the shape of the ovals. The parameter values
are chosen as a = 1.005 and c = 1. The validation that was done for this shape is the same as
previously explained for the ellipse, with slightly different starting positions and the same values
for ε. Also the continuation and the rate of convergence were analyzed.

Another validation for this shape was done by testing the algorithm for a different location of
the unconstrained minimizer x∗f . The validation that was done for this was purely to test the
convergence for different starting values.

3.2 Validation on an elliptical shaped object

As described in Section 3.1, the first validation is done by checking the convergence for different
initial values for x0 for the range of ε shown in Section 3.1. The initial values x0 are shown in
Figure 3.1. The exact coordinates of the points plotted in the figure, can be found in Appendix A.
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Figure 3.1: Initial values for the validation of the algorithm for the ellipse

There are two global minima located at both sides of the ellipse on the minor axis with equal dis-
tance to the major axis. The algorithm converges well for all of the observed ε and x0. However,
starting positions 7, 8, 9 and 10 provide an exception to this statement. These points lie close to
the major axis of the ellipse. On the major axis close to the contour there exists a saddle point
in the function h(x) (see the blue crosses in Figure 3.1), which is encountered by the algorithm
for the points 7-10. On this saddle point, the Hessian will have both positive and negative eigen-
values, which means that the algorithm switches to the gradient descent direction. Should x0 be
chosen directly on the major axis, this results in the derivative becoming sufficiently small to reach
convergence on the saddle point. However, for points 7-10, x0 lies a short distance away from
the major axis. This distance is enough to prevent it from converging on the saddle point. Once
the algorithm has passed the saddle point, the Newton method can be used again until the global
minimum is reached. However, for small values of ε the algorithm takes a long time to converge
for x0 close to the major axis (more than 650 iterations for ε = 0.001). This case presents the
necessity to use continuation to reduce the number of iterations.

Continuation means starting with a large value for ε, finding a minimum and then continue search-
ing for a minimum with a smaller value for ε. The εk are all ε used for the continuation process,
with k = 1, 2, ..., k ∈ N. The minimizer x∗εk that is found when using εk is used as x0 in h(x0) for
εk+1. x∗εk denotes the set of minimizers for εk.

In Figure 3.2, the minimizers x∗εk for ε = 1, 0.5, 0.2, 0.01, 0.001 have been plotted and their values
are shown in Table 3.1. They approach the minimizers x∗ for ε → 0, which lie on the contour of
the ellipse in the points x∗ = [0,±

√
0.2]T . When applying continuation on the initial values close

to the major axis, the number of iterations needed to converge, greatly decreases from more than
650 iterations to 29 iterations in total. The starting position of this continuation was point 8 in
Figure 3.1.
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Table 3.1: Minimizers for the continuation shown in Figure 3.2

k εk x∗εk
1 1 [-1.54e-6; 0.707]
2 0.5 [-4.23e-10; 0.657]
3 0.2 -1.42e-12; 0.587]
4 0.01 [-8.38e-13; 0.458]
5 0.001 [1.84e-14; 0.448]

Table 3.2 shows continuation for two other starting positions. In the first column, the number of
iterations without using continuation are shown and in the second column the number of iterations
it takes for the algorithm to converge with continuation are shown. This is for ε3 = 0.2 and
ε5 = 0.001.

Table 3.2: Continuation versus constant ε for two starting positions x0.

x0 Only ε2 First ε3 then ε5
[2.5;2.5] 12 13

[2;2] 11 13

It can be observed that the convergence is already quite fast for these starting positions with
ε5 = 0.001, without continuation. Using continuation makes almost no difference. In fact, it seems
to be slowing down the process when the x0 lies closer to the boundary. A number of different
combinations of εk have been tried and they all led to similar results. This gives an indication that
when the convergence is already fast for a certain combination of ε and x0, continuation does not
necessarily make a large difference.

In order to conclude that the continuation indeed works properly for the situation at hand, it
needs to be shown that h(x∗εk) > h(x∗εk+1

). Figure 3.3 plots h(x∗εk) for a large range of ε.
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When using the Newton algorithm, one should be able to observe quadratic decrease. This is
validated by plotting ‖Dh(xi)zi‖ against the number of iterations. The vertical axis is plotted on
a log-scale in order to show the quadratic behavior.
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(b) Decrease of h(x) for ε = 0.01

Figure 3.4: Decrease of h(x) for x0 = [2, 2]T

The plots have been created for a large value of ε (ε = 1) and a small value for ε (ε = 0.01).
For ε = 1, the algorithm first takes a large step to the area near the obstacle. For the second
iteration, quadratic decrease can clearly be observed. When ε = 0.01, it takes about two steps
to approach the area of the minimum near the obstacle. The chosen starting positions will cause
the algorithm to approach the saddle point mentioned before, which causes the behavior observed
between iterations 3 and 5 in Figure 3.4b.

In Chapter 3.1 was mentioned that the circle could provide an interesting validation for the rate of
decrease because of the location of the global minima. The Newton method ensures local quadratic
convergence when the second order sufficient condition for optimality is met at the minimizer. This
condition states that the Hessian should be positive definite at the minimizer. This is the case
when the minimizer is a strict minimizer. In other words, the minimizer lies in a location where
there are no other minimizers nearby [6]. For the circle, this is not the case because the minimizers
lie adjacent to one another on a circle with radius rε as explained in 3.1. Therefore, one should
not be able to observe quadratic convergence. In order to illustrate the difference between the
convergence of the circle and the ellipse, the convergence of the two shapes was plotted for the
same x0 and ε. In order to best show the difference in convergence rate, the termination criterion
was changed to 10−32 for this validation. In Figure 3.5, the decrease for the circle and for the
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ellipse are plotted.
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(a) Convergence for the circle
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Figure 3.5: Decrease of h(x) for x0 = [2, 2]T

In order for the circle to converge for this termination criterion, more than 500 iterations were
needed. For illustration purposes, only the first 20 iterations are plotted in Figure 3.5a. For the
ellipse only 8 iterations were needed before the algorithm found the minimizer. It can be concluded
from this observation and from the shape of the graphs that there indeed is no quadratic decrease
for the circle, which corresponds to the second order sufficient condition for optimality.

3.3 Validation on a Cassini oval shaped object

In the same way as for the ellipe in Section 3.2, the convergence was checked for different initial
values for x0 as shown in Figure 3.6. Appendix A contains the exact coordinates of the points
shown in the figure.
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Figure 3.6: The starting values x0 of the algorithm validation of convergence

These starting positions were tested for ε = 1, 0.5, 0.2, 0.01, 0.001, to see if they converge to the
minimizers which lie outside the contour on the minor axis. The algorithm converges each time,
but for this shape there are again a saddle points present on the major axis of the oval on either
side of the obstacle. Passing this point again takes a lot of iterations for smaller ε (more than
1000 iterations). Continuation reduces this to 25 iterations. The continuation steps are is shown
in Figure 3.7 and the minimizers are listed in Table 3.3.
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Figure 3.7: Continuation for x0 = [2, 0.001]T

Table 3.3: Minimizers for the continuation shown in Figure 3.7

k εk x∗εk
1 1 [3.72e-5; 0.711]
2 0.5 [-1.87e-7; 0.611]
3 0.2 1.54e-9; 0.451]
4 0.01 [-4.82e-13; 0.142]
5 0.001 [6.88e-16; 0.105]

Continuation was also tested for two other starting positions x0 = [2.5, 2.5]T and x0 = [2, 2]T .
The results are shown in Table 3.4. The chosen values for ε for the continuation are ε1 = 0.2 and
ε = 0.001.

Table 3.4: Continuation versus constant ε for two starting positions x0.

x0 Only ε2 First ε1 then ε2
[2.5;2.5] 12 12

[2;2] 9 12

From this, the same conclusion can be drawn as for the ellipse. The continuation improves the
performance most if the number of iterations when using a small constant value for ε is large. This
validates that the conclusion holds both shapes and might indicate robustness.

In Figure 3.8 it is validated that h(x∗ε ) decreases and approaches h(x∗) as ε → 0. This result
corresponds to Figure 3.3, which again indicates robustness.
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Figure 3.8: h(x∗ε ) approaching h(x∗) as ε approaches zero.

Also for this Cassini oval can be shown that there is quadratic decrease.
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(a) Quadratic decrease for ε = 1.
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(b) Quadratic decrease for ε = 0.01.

Figure 3.9: Quadratic decrease for x0 = [2, 2]T , for ε = 1, 0.01.

One last validation can be done to see how the algorithm converges if the unconstrained minimizer,
is placed as shown by the blue cross in Figure 3.10. This Figure also shows the starting positions
for which the convergence was checked for the range of ε that was also used for the ellipse and
Cassini ovals.
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Figure 3.10: Initial values for x0 for the unconstrained minimum [−1.2, 0.2]T

This point does not lie on the major or minor axis of the Cassini oval and has no saddle points.
This is confirmed by the fact that convergence is quick for starting positions near the major axis.
When the unconstrained minimum was located in the middle of the oval, this resulted in over 1000
iterations. With the unconstrained minimum placed at x = [−1.2, 0.2]T , starting positions 7 and
8 only need 12 iterations.

3.4 Conclusion

In this chapter, it was validated that the algorithm converges as expected for a Newton-like algo-
rithm for three different shapes. The algorithm is able to converge for small termination criteria.
Also, the rate of convergence was as expected quadratic for the ellipse and the Cassini oval and
non-quadratic for the circle. For the Cassini oval it was also validated that the algorithm was
able to converge for a different position of the unconstrained minimizer. The next chapter gives
conclusions about the findings during this project and recommendations for future research.
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4 Conclusions and recommendations

4.1 Conclusions

The goal of this project was to investigate whether the grid data containing a volumetric function
could be made twice continuously differentiable such that it could be employed to Newton-like
optimization algorithms. To this end, the grid data was made twice continuously differentiable by
interpolation using a planar cubic spline. Next, an algorithm was created for constrained optimiza-
tion problems using a relaxation of the Newton-method and a barrier function. The input for the
log-barrier function is the interpolant that resulted from the interpolation of the grid data. By using
this logarithmic-barrier function as part of the objective function as input for the Newton-method,
the grid data was required to be twice continuously differentiable. The validation in Chapter 3
shows that the algorithm is capable of converging for different implicit functions embedded in the
grid data. The algorithm was able to converge for different scenarios. It was shown that there
was local quadratic decrease for every shape except for the circle as expected from the theory of
the second order sufficient condition for optimality. The effect of continuation was validated for
the ellipse and the Cassini oval where the unconstrained minimizers were located at the center of
the shape. The continuation was shown to be especially useful in situations where many iterations
were required for the algorithm to converge and less useful where the algorithm already converged
within only 12 iterations.

These results show that the algorithm with the input from the interpolated grid data, behaves
as expected. From this can be concluded that the grid data created with volumetric methods was
made twice continuously differentiable to be able to be implemented in the Newton-like algorithm
presented in this report.

4.2 Recommendations

This project has focused solely on the 2D case. However, when this project is extended to include
input from models that portray the surroundings of a robot or camera data containing the 3D
voxel grid, the algorithm needs to be shown to work for a 3D case. In order to be able to use the
findings in this report for practical applications in motion planning in the future, the extension to
3D environments is crucial.

Throughout the project the same grid has been used for all the computations. However, the
grid size has an influence on the representation of the shapes. If a shape has sharp edges, they may
not be represented accurately on a coarse grid. This could influence the reliability of the results
and therefore, the influence of the grid size on the accuracy of the approach should be investigated
further.

So far, this project has revolved around minimizing the distance to a certain point from a sin-
gle starting position x0. However, an application that this algorithm could be used for is a robot
arm with a gripper. For this application one point is not sufficient to represent the gripper arm
approaching an object. A suggestion is to use wireframe objects and apply this to the algorithm
to see if the algorithm is usable for this type of application.
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A Experiment details

In this appendix, the initial values for the validation of the ellipse and the Cassini ovals are shown.
Table A.1 shows the initial values for the ellipse, Table A.2 shows the initial values for the Cassini
oval and Table A.3 shows the initial values for the Cassini oval for the replaced unconstrained
minimizer.

Table A.1: Initial values for the validation of the algorithm for the ellipse

x0
1 [2;2]
2 [2;-2]
3 [-2;-2]
4 [-2;2]
5 [0;1]
6 [0;0.5]
7 [2;-0.01]
8 [2;0.01]
9 [2;-0.001]
10 [2;0.001]
11 [0.5;-0.5]
12 [0.5;0.5]
13 [2.5;-2.5]
14 [-0.5;1.5]
15 [-2.5;-0.5]

Table A.2: Initial values for the validation of the algorithm for the Cassini oval

x0
1 [2;2]
2 [-2;-2]
3 [2;-2]
4 [-2;2]
5 [0;0.2]
6 [0;-0.2]
7 [2;0.001]
8 [-2;-0.001]
9 [0;1]
10 [1.4;0.4]

Table A.3: Initial values for the validation of the algorithm for the Cassini oval with replaced
unconstrained minimizer

x0
1 [2;2]
2 [-2;-2]
3 [2;-2]
4 [-2;2]
5 [0;0.2]
6 [0;-0.2]
7 [2;0.001]
8 [2;-0.001]
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