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http://oka-jp.seesaa.net/archives/201301-1.html
http://oka-jp.seesaa.net/archives/201301-1.html
https://mdokies.wordpress.com/2013/03/20/thermal-comfort-as-an-art-or-science-in-architecture/
https://mdokies.wordpress.com/2013/03/20/thermal-comfort-as-an-art-or-science-in-architecture/
https://www.google.nl/imgres?imgurl=https://www.tensorflow.org/images/softmax-weights.png&imgrefurl=https://www.tensorflow.org/get_started/mnist/beginners&docid=jQz3ppng4e0DpM&tbnid=rBF8CwBFWYeI2M:&vet=10ahUKEwjQ0qvH0LTUAhXII1AKHf5EBK4QMwhmKCgwKA..i&w=1145&h=575&bih=662&biw=1366&q=mnist&ved=0ahUKEwjQ0qvH0LTUAhXII1AKHf5EBK4QMwhmKCgwKA&iact=mrc&uact=8
https://www.google.nl/imgres?imgurl=https://www.tensorflow.org/images/softmax-weights.png&imgrefurl=https://www.tensorflow.org/get_started/mnist/beginners&docid=jQz3ppng4e0DpM&tbnid=rBF8CwBFWYeI2M:&vet=10ahUKEwjQ0qvH0LTUAhXII1AKHf5EBK4QMwhmKCgwKA..i&w=1145&h=575&bih=662&biw=1366&q=mnist&ved=0ahUKEwjQ0qvH0LTUAhXII1AKHf5EBK4QMwhmKCgwKA&iact=mrc&uact=8
https://assets.tue.nl/fileadmin/_processed_/f/5/csm_ROB1794_bb1df70ce4.jpg
https://assets.tue.nl/fileadmin/_processed_/f/5/csm_ROB1794_bb1df70ce4.jpg
https://www.hamilton-medical.com/Solutions/Adaptive-Support-Ventilation-ASV.html
https://www.hamilton-medical.com/Solutions/Adaptive-Support-Ventilation-ASV.html
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• ML in a Nutshell
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Why Deep Reinforcement Learning?



Reinforcement Learning 

• Fundamental concepts -
Dynamic Game Theory
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From 2-player Zero-
Sum Games... 

(Neumann,1928)

... to a solution for 
n-player Games.

(John Nash,1951)

10 Breakthrough 
Technologies 
2017

1. Reversing Paralysis
2. Self-Driving Trucks
3. Paying with Your Face
4. Practical Quantum Computers
5. The 360-Degree Selfie
6. Hot Solar Cells
7. Gene Therapy 2.0
8. The Cell Atlas
9. Botnets of Things
10.Reinforcement Learning
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[2015] Human-level control through deep reinforcement learning, Minh et al., Nature
“This work bridges the divide between high-dimensional sensory inputs and actions, 
resulting in the first artificial agent that is capable of learning to excel at a diverse array 
of challenging tasks.”

~10170 compared to ~1050 for chess (Kasparov, 1997)

[2016] AlphaGO versus Lee Sedol - professional Go player 

Reinforcement Learning 

environment

agent

a
s

r

An RL agent may include one or more of these components:
• Policy (𝜋𝜋): agent's behaviour function (s a)
• Value function (Q): how good is each state and/or action
• Model (M): agent's representation of the environment

• Q-value function gives expected total reward:

• Value functions decompose into a Bellman equationOptimal Value Functions
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https://www.youtube.com/watch?v=g-dKXOlsf98
https://www.youtube.com/watch?v=g-dKXOlsf98


Deep Learning 
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Credit: Yahoo Japan, 20 March 2016
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On-line building energy optimization
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Deep learning

Deep reinforcement learning

Reinforcement learning

{𝑠𝑠, 𝑎𝑎} → 𝑄𝑄(𝑠𝑠, 𝑎𝑎)

E. Mocanu, D.C. Mocanu, P.H. Nguyen, A. Liotta, M.E. 
Webber, M. Gibescu, and J.G. Slootweg, On-line Building 
Energy Optimization using Deep Reinforcement Learning, 
IEEE Transactions on Smart Grid, 2018 

𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎
𝐷𝐷𝐷𝐷𝐷𝐷(𝑘𝑘) 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

In                     Out 

𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷(𝑘𝑘) 𝑝𝑝(𝑎𝑎|𝑠𝑠)

𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷(𝑘𝑘) 𝑄𝑄(𝑠𝑠,𝑎𝑎)

In                Out 

In                Out 

Deep Q-learning

Deep Policy Gradient



Building level 
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Aggregated level 

generation

1

2 3 Reinforcement learning
• Q-learning (Watkins, 1989)

𝑄𝑄𝜋𝜋(s,a)
Deep reinforcement learning
• Deep Q-learning

𝑄𝑄(𝑠𝑠,𝑎𝑎, 𝜃𝜃) ≈ 𝑄𝑄𝜋𝜋(s,a)
• Deep Policy Gradients

𝑝𝑝 𝑎𝑎 𝑠𝑠𝑡𝑡 ,θ ,∀𝑎𝑎 ∈ 𝐴𝐴

Energy 
minimization

Price 
reduction
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Our contribution:
• multiple actions simultaneously

On-line building energy optimization

http://manul.io/project/gekkos/
http://manul.io/project/gekkos/
http://manul.io/project/gekkos/
http://manul.io/project/gekkos/
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Learning to satisfy the constraints 
bounds on one building

Experimental Results

Reinforcement learning formalism 
(Markov Decision Process)

States: 
DRL: continuous states
Q-learing: 11 inputs (2048 discrete states)

Actions:
1 : time-scaling electrical device

e.g. air conditioning load
2 : time-shifting electrical device

e.g. dishwasher
3 : time-scaling and time-shifting

e.g. electric vehicle

Reward: joint reward function

Scale: up to 50 buildings 
Pecan Street datasets
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Learning capabilities of DRL
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Learning capabilities of DPG method in 
terms of peak reduction and their 

corresponding reward function

On-line versus off-line learning 
capabilities of DPG in terms of reward function 

and their corresponding training data used
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Results: 27% cost reduction

Scalability capabilities of DRL

Energy

Energy & Cost



Is Deep Reinforcement Learning ready for 
applications?
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• For this particular case and few others, YES!     

identification
+

prediction
+

control

Input

Classification
(Identification)

Prediction

Scheduling

Five-way RBM

References: E. Mocanu, Machine Learning applied to Smart 
Grids, PhD thesis, 2017 (Chapter 5)

• Use further for system automation



(!)Convergence

• generalization to multi-tasks
• efficient training of deep learning models to apply 

them at scale across increasingly more complex and 
diverse tasks.

Computational power: 
• scalable ANN
• some AI hardware under development, such as neuromorphic chips or even quantum 

computing systems, could factor into the new equation for AI innovation.

YES   Use further for 
system automation

(?) large datasets

(?) very large datasets

(!)Reward function

(!) Memory 
requirements

DRL and

(?) small datasets

• one-shot learning
• transfer learning
• sparse ANN
• …
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