# Is Deep Reinforcement Learning ready for applications?

### Elena Mocanu

Mechanical Enginering, Control System Technology group Dynamics and Control group



Where innovation starts

TU

### **Research background**



### **Research background**



### **Data science applications**



Time Steps [x 5 min]

/ Elena Mocanu

June 29, PAGE 3

## Why Deep Reinforcement Learning?

• ML in a Nutshell



University of Technology

### **Reinforcement Learning**

Fundamental concepts Dynamic Game Theory



From 2-player Zero-Sum Games...

(Neumann, 1928)



... to a solution for n-player Games.

(John Nash, 1951)

### MIT Technology Review

10 Breakthrough Technologies <mark>2017</mark>

- 1. Reversing Paralysis
- 2. Self-Driving Trucks
- 3. Paying with Your Face
- 4. Practical Quantum Computers
- 5. The 360-Degree Selfie
- 6. Hot Solar Cells
- 7. Gene Therapy 2.0
- 8. The Cell Atlas
- 9. Botnets of Things
- 10. Reinforcement Learning



## **Reinforcement Learning**



**Optimal Value Functions** 

 $Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$ 

An RL agent may include one or more of these components:

- Policy  $(\pi)$ : agent's behaviour function  $(s \rightarrow a)$
- Value function (Q): how good is each state and/or action
- Model (M): agent's representation of the environment
- Q-value function gives expected total reward:  $Q^{\pi}(s, a) = \mathbb{E} \left[ r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s, a \right]$
- Value functions decompose into a Bellman equation  $Q^{\pi}(s, a) = \mathbb{E}_{s', a'} \left[ r + \gamma Q^{\pi}(s', a') \mid s, a \right]$

[2015] Human-level control through deep reinforcement learning, Minh et al., Nature "This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks."

[2016] AlphaGO versus Lee Sedol - professional Go player

~10<sup>170</sup> compared to ~10<sup>50</sup> for chess (Kasparov, 1997)



### **Deep Learning**



Credit: Yahoo Japan, 20 March 2016

### **On-line building energy optimization**



Reinforcement learning  $\{s,a\} \rightarrow Q(s,a)$ **Deep learning**  $\underset{Data}{\text{In}} DNN_{(k)} \xrightarrow{\text{Out}} \underset{Data \text{ estimation}}{\text{Out}}$ Deep reinforcement learning  $\xrightarrow{\text{In}}_{\text{States}} DNN_{(k)} \xrightarrow{\text{Out}}_{Q(s,a)}$ **Deep Q-learning**  $\frac{\ln}{\text{States}} DNN_{(k)} \xrightarrow{\text{Out}}_{n(a|s)}$ **Deep Policy Gradient** 

E. Mocanu, D.C. Mocanu, P.H. Nguyen, A. Liotta, M.E. Webber, M. Gibescu, and J.G. Slootweg, On-line Building Energy Optimization using Deep Reinforcement Learning, IEEE Transactions on Smart Grid, 2018

### **On-line building energy optimization**

**Building level** status actions t days ewards 2 3 generation Aggregated level status actions t days Buy rewards n Sell market

/Elena Mocanu



**Reinforcement learning** 

• Q-learning (Watkins, 1989)  $Q^{\pi}(s,a)$ 

Deep reinforcement learning

Deep Q-learning

$$Q(s, a, \theta) \approx Q^{\pi}(s, a)$$

• Deep Policy Gradients  $p(a|s_t, \theta), \forall a \in A$ 

Our contribution:

multiple actions simultaneously



### **Experimental Results**

# Reinforcement learning formalism (Markov Decision Process)

#### States:

DRL: continuous states Q-learing: 11 inputs (2048 discrete states)

#### Actions:

- 1 : time-scaling electrical device e.g. air conditioning load
- 2 : time-shifting electrical device e.g. dishwasher
- 3 : time-scaling and time-shifting e.g. electric vehicle

Reward: joint reward function

Scale: up to 50 buildings Pecan Street datasets

# Learning to satisfy the constraints bounds on one building





### Learning capabilities of DRL

Learning capabilities of DPG method in terms of peak reduction and their corresponding reward function



On-line versus off-line learning capabilities of DPG in terms of reward function and their corresponding training data used





### Scalability capabilities of DRL



### Is Deep Reinforcement Learning ready for applications?

- For this particular case and few others, YES!
- Use further for system automation



Grids, PhD thesis, 2017 (Chapter 5)



/ name of department

### Is Deep Reinforcement Learning ready for applications?



#### (?) small datasets



#### DRL and

- one-shot learning
- transfer learning
- sparse ANN

### (?) large datasets

- generalization to multi-tasks
- efficient training of deep learning models to apply them at scale across increasingly more complex and

diverse tasks.





### (?) very large datasets

Computational power:

- scalable ANN
- some AI hardware under development, such as neuromorphic chips or even quantum computing systems, could factor into the new equation for AI innovation.

References [4], [5], [6] and [7]

June 29, 2018

/Elena Mocanu

# Is Deep Reinforcement Learning ready for applications?

#### References

- 1. E. Mocanu, D.C. Mocanu, P.H. Nguyen, A. Liotta, M.E. Webber, M. Gibescu, and J.G. Slootweg, On-line Building Energy Optimization using Deep Reinforcement Learning, **IEEE Transactions on Smart Grid**, **2018**.
- 2 L. A. Hurtado Munoz, E. Mocanu, H.P. Nguyen, M. Gibescu & I.G. Kamphuis, Enabling cooperative behavior for building demand response based on extended joint action learning, **IEEE Transactions on Industrial Informatics**, **2018**.

Al for stochastic decision making

3. E. Mocanu, Machine Learning applied to Smart Grids, PhD thesis, 2017 (Ch 5)



- D.C. Mocanu, E. Mocanu, P.H. Nguyen, M. Gibescu, and A. Liotta, Evolutionary Training of Sparse Artificial Neural Networks: A Network Science Perspective, Nature Communications, 2018.
- 5. D.C. Mocanu, E. Mocanu, P.H. Nguyen, M. Gibescu, and A. Liotta, A topological insight into restricted Boltzmann machines, **Machine Learning**, **2017**.
- 6. D.C. Mocanu and E. Mocanu. One-shot learning using mixture of variational autoencoders: a generalization learning approach. AAMAS 2018, Sweden.
- 7. E. Mocanu, P.H. Nguyen, M. Gibescu, and W. Kling Unsupervised energy prediction in a smart grid context using reinforcement cross-buildings transfer learning, Energy and Buildings, 2016.

