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Why graph data / networks ?

Big graph data sets are everywhere

» social networks (e.g., LinkedIn,
Facebook)

» scientific networks (e.g., Uniprot,
PubChem)

» knowledge graphs (e.g., DBPedia, MS
Academic Graph)

> ...

Focus is on “things” and their relationships
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Knowledge Graph

Ruler of the Florentine Republic
Also known as: Lorenzo il Magnifico
Date of birth: Jan 1, 1449
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Interactive online relationship discovery

RelFinder @

RetFinder
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Example of forensic network analytics

e Data scientist working in public safety at agency IFN
» given two ‘persons of interest” P1 and P2

» did P1 and P2 have any significant interactions during a ten-day
period last March?

» if yes, what kind of interactions?
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Example of forensic network analytics
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social networks communication
of criminals networks

e Available data sources
» social network of criminals (in-house, A) and by warrant (B)
» relevant data on the nationwide network of communications is
available from telecom providers C, D, and E
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Example of forensic network analytics

social networks communication

of criminals networks

e Finding connections between individuals
» identify individuals in A and B and their associations with known communication
devices in the 10-day period using DM tech
» using domain knowledge about social relationships, provided by a knowledge graph
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Sophisticated (network) data analytics

e Challenges:

4

massive networks (Ms citizens, Ms
comm. devices, Bs connections)
dynamic networks (new information
constantly streamed-in)

temporal

privacy sensitive

e Desired processing pipeline
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Sophisticated (network) data analytics

e Support for heterogeneous [data consumers

analytical workloads produced by: oy Fow PO
» data scientists @ @ @

» middleware

data analytics language TU

e Rich yet tractable data analytics 9
2
language (DAL) 5
~ optimization & compilation
» well-behaved worst-case z
performance 0
» rich enough to express most execution

analytical tasks
» procedural & declarative flavours é é é

» approximate answers on very large data sources

networks
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Optimization & compilation

e Optimization of given DAL

| data consumers |

expression:
» rich but to optimize and execute 1960 §Si0Y B0
Sl o S
over huge networks (TBs of data) ; ; |
e Challenges: :
» rich query planning and plan deite) emmellyiies lemEn:

enumeration

> query optimization optimization & compilation T /e

» efficient and scalable execution

security / privacy

execution
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Efficient and scalable execution

e Processing of large and
heterogeneous networks:
» billions of edges streaming or at
rest (data lakes)

e Data storage & indexing
» scalable & efficient
» support for rich query expressions,
e.g., reachability

e Abstraction over raw data
» data integration
» knowledge graph

| data consumers |
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Data Analytics Language TU/e

firstName: Celine
lastName: Mayer
employer: {SAP,HPI}

firstName: Peter

CONSTRUCT social _graph, ; stame: SMRN]  [nrstame: Frank
202 lastName: Gold
(n)-[y:worksAt]-> 103 ‘
(x:Company \/1 11\ 209, [SmPIOYer: bt
{name:=n.employer}) (o) (1) ( 2\}‘\1.’ o lj\’i N
MATCH (n:Person) —— — N~ —/
| name:HPI | [name:SAP | [name: Google] | name:HP| |
ON social_graph Node Labels
e L.S' {Manager () Company lasthiame: Doo
. employer: Google
w— KNOWS

G-CORE

e Expressive programming languages for graph analytics
» LDBC Task Force on Graph Query Language Standardization (SAP, IBM,

Oracle, Neo4j, Huawei, ..., international academic teams)
» G-CORE: a core for future graph query languages. SIGMOD 2018.
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Optimization & compilation TU/e

WaveGuide

e Processing of complex navigational patterns in graphs

» novel in-house query planning and optimization engine for efficient and
scalable processing of reachability patterns in large graphs

» SIGMOD'16, EDBT'15, EDBT'17, AMW'17
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Optimization & compilation TU/e

rpglabel

e Reachability indexing structures
» compact and efficient labeling structures to index reachability in very
large networks

» SIGMOD'17
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{1,11,6} {1,11,7} {1,11,8} {1,11,9}
{2,11,6} {2,11,7} {2,11,8} {2,11,9}
{3,11,6} {3,11,7} {3,11,8} {3,11,9}
{4,116} {4,11,7} {4,11,8} {4,11,9}
(3,12,8} {3,12,9} {3,12,10}
{4,12,8} {4,12,9} {4,12,10}
{5,12,8} {5,12,9} {5,12,10}

Ra:yz

wireFrame

e Intermediate result compression

<

<
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— — e— — — — — — — ———— —

{1,234} x {11} x {6,789}
| U |
: {3,4,5} x {12} x {8,9,10} 1

{1,2,3} x {11} X {6,7,8,9}
U

{3,4} X {11,12} x {8,9}
U

— e e e e e e - — e — o o o

efficient compression of large intermediate results produced during

graph query evaluation
AMW'17
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Optimization & compilation TU/e

WH [ graphMark / gmark

gMark

gMark is a domain- and query language-independent framework targeting highly tunable generation of both graph
instances and graph query workloads based on user-defined schemas.

For more details about gMark, please refer to our technical report: http://arxiv.org/abs/1511.08386

gMark was demonstrated in VLDB 2016. The gMark research paper was published in the TKDE journal.

e Synthetic benchmarking

» novel in-house synthetic benchmarking system

» scalable generation of rich graphs and query workloads
» VLDB'16, EDBT'17, TKDE ‘17
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Optimization & compilation TU/e

Approximation techniques

* Imagine a twitter stream at your fingertips (~*500k tweets p. min., 2017) *
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* Detect frequent items

Micro
* Detect trends, e.g., FIFA world cup e

* Find correlated terms, e.g., diapers and
beer frequently mentioned together Real time Small memory

1 http://www.iflscience.com/technology/how-much-data-does-the-world-generate-every-minute/

TODS’18, SIGMOD’16, VLDBJ’15, ICDE’14, PVLDB’12, ...
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Sophisticated (network) data analytics

e Challenges:

4

massive networks (Ms citizens, Ms
comm. devices, Bs connections)
dynamic networks (new information
constantly streamed-in)

temporal

privacy sensitive

e Desired processing pipeline
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TU /e Database Group

Data-intensive systems are crucial in modern
computing, analytics, and data science. The DB
group studies core engineering and theoretical
challenges in scalable and effective data analytics
and management of big data.

Current research in the group focuses on data
engineering challenges in the management of
massive graphs such as social networks,
knowledge graphs, and biological networks; and,
streaming and heterogeneous data.

DB is a new group, founded in October 2017.

Industrial and public-sector partners: Oracle Labs (USA,

Switzerland, & France), Ministry of Economic Affairs (NL),
Ministry of the Interior (NL), Neo4j (UK & Sweden), ASML
(NL), Semaku (NL), Sparsity Tech (Spain), Rabobank (NL),
Oce (NL), ING (NL), and others

Academic partners: EPFL (Switzerland), National Univ.
Singapore, York University (Canada), University of Toronto
(Canada), University of Waterloo (Canada), Birkbeck,

University of London (UK), University of Lyon 1 (France), VU/

UL Brussels (BE), TU Dresden (Germany), NIl Tokyo, NTU
Singapore, and others

Faculty

dr. George Fletcher, http://www.win.tue.nl/~gfletche/

dr. Nikolay Yakovets, nttp://yakovets.ca/
dr. Odysseas Papapetrou

Guiding doctoral, post-doc, internship, and MSc thesis
projects in:
* Scalable graph and data analytics
- e.g., social networks, biological networks, transportation
networks, financial networks & transaction streams, ...
* Approximation schemes
Distributed data intensive systems
- e.g., Apache Spark, Flink, Hadoop, Apex, NiFi, ...
Data warehousing
Cloud data management
Secure data management
Streaming data management
- e.g., Apache Beam, Kafka, ...
Data integration, Semantic web & Ontologies, Knowledge

graphs
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