System Study of a 60 GHz Wireless-Powered Monolithic Sensor System

Yan WU, Jean-Paul Linnartz, Hao Gao, Peter Baltus, and J.W.M. Bergmans

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

Outline

Motivation

- Wireless-Powered
- Monolithic
- 60 GHz
- System Overview
- System-Level Energy Budget Calculation
 - Comparison with a 2.4 GHz RFID system
- Conclusions

Sensors are Going Wireless

Battery-Operated Wireless Sensors

Advantage:

- Easy deployment
- ≻Lifetime of many years

Disadvantage:
≻Limited life time
≻Battery replacement
≻Big Size
≻Relative higher cost

Wireless-Powered Wireless Sensors

- Self-Powered sensors using energy harvesting
 - Vibration/Motion
 - Temperature difference
 - Light
 - Pressure
 - **RF**
 - ...

University of Technology

Eindhoven

Wireless-Powered Wireless Sensors

- Self-Powered sensors using energy harvesting
 - Vibration/Motion
 - Temperature difference
 - Light
 - Pressure
 - **RF**
 - ...

Energy Harvesting using RF (i.e. Wireless-Powered) is a natural choice for Wireless Sensors.

Technische Universiteit **Eindhoven** University of Technology

Monolithic

- Current energy scavenging sensors implement sensing and energy scavenging in two separate modules:
 - Larger size and higher price;
 - Not robust in harsh environments or on moving objects.

Monolithic

- Current energy scavenging sensors implement sensing and energy scavenging in two separate modules:
 - Larger size and higher price;
 - Not robust in harsh environments or on moving objects.
- Monolithic sensor nodes:
 - On-chip energy harvesting, sensing and transceiving
 - Ultra low power TxRx
 - Small size (mm²)

- Small wavelength (5mm), possible to
 - Integrate antenna on-chip,
 - Create large antenna arrays to
 - provide high antenna gain,
 - Create highly directional pencil beams.
- Wide bandwidth available at 60 GHz enables
 - High data rate in the order of Gbits/s,
 - short transmission burst.

17-10-2011

PAGE 7

60 GHz Wireless-Powered Monolithic Sensor System

- •Fully integrated sensor nodes with onchip sensing, antenna, transceiver and energy scavenging.
- •Central controller wirelessly transmits data and energy to sensor nodes.

A typical sensing cycle

- 1. Downlink: central controller sends energy and data to a sensor;
- 2. Uplink: the sensor sends required info. back to central controller.

•Work in ongoing in the STW project "PREMISS"(Power <u>RE</u>duced <u>MonolithIc</u> <u>Sensor System</u>).

Possible Applications

Smart Wall

Temperature measurement
Proximity sensing (used for e.g. lighting control)
Presence detection and tracking
Activity monitoring

/Department of Electrical Engineering

17-10-2011 PAGE 9

System Architecture

Central Controller Antenna gain and Path Loss

• At the central controller, the antenna gain

$$G_c = 10 \times \log_{10}(N_a)$$

Free space propagation loss

$$L_{\rm P} = \left(\frac{4\pi d}{\lambda}\right)^2 = \left(\frac{4\pi df}{c}\right)^2$$

Sensor antenna related considerations

- At 60 GHz, integration of antenna on chip is possible.
- Due to lossy substrate, the antenna efficiency is lower.

•Due to small chip size (e.g. 1mm² for the PREMISS project), the antenna impedance becomes more capacitive and results in more loss on the matching network.

Rectifier Efficiency

•The rectifier efficiency is heavily dependent on the frequency.

•At 2.4 GHz, 31% was achievable using 65 nm CMOS technology at an input power level of -19 dBm.

•For 60 GHz applications, the efficiency drops to 2% using state-of-the-art design.

•We project an improvement to about 10% for 60 GHz systems.

Loss on Electronic Switch and Capacitor Leakage.

- An electronic switch is required to switch the energy storage capacitor between charging and discharging mode.
- The efficiency of this switch can be assumed 90%.
- For the application considered in PREMISS, the energy stored is immediately used for transmission. Hence energy leakage is negligible.

Downlink Energy Budget

The available power at the capacitor

$$P_{\rm s} = \frac{P_{\rm e}G_{\rm c}G_{\rm s}}{L_{\rm p}}\eta_{\rm a}\eta_{\rm m}\eta_{\rm sw}\eta_{\rm rec}$$

• We compare the PREMISS system with a typical 2.4 GHz RFID system

Parameters	PREMISS	2.4 GHz RFID
λ (mm)	5	125
P_{e} (dBm)	20	20
$G_{\rm T}$ (dB)	20	11
$G_{\rm s}$ (dB)	0	0
η_{a}	0.6	0.9
$\eta_{ m m}$	0.7	0.75 imes 0.95
$\eta_{ m sw}$	0.9	0.9

Downlink Energy Budget

Power available at Rectifier Input

Key-challenge: achieve a decent rectifier efficiency with low input power.

Uplink transmission has to be very efficient.

Energy harvested in 10 ms

6

Uplink Energy Budget

• The received signal power in the central controller

$$P_{\rm c} = \frac{E_{\rm s}}{t_{\rm d}} \frac{G_{\rm s}G_{\rm c}}{L_{\rm p}} \eta_{\rm T},$$
$$= \left(\frac{t_{\rm s}}{t_{\rm d}}\right) \left(\frac{P_{\rm e}G_{\rm c}^2G_{\rm s}^2}{L_{\rm p}^2}\right) (\eta_{\rm a}\eta_{\rm m}\eta_{\rm rec}\eta_{\rm sw}\eta_{\rm T}).$$

For an RFID system using reflective transmission

$$P_{\rm c} = \left(\frac{1}{4} \left| \Gamma_1 - \Gamma_2 \right|^2 \right) \left(\frac{P_{\rm e}G_{\rm c}^2 G_{\rm s}^2}{L_{\rm p}^2}\right) \left(\eta_{\rm a}\eta_{\rm m}\eta_{\rm rec}\eta_{\rm sw}\right).$$

Uplink Energy Budget

Power received at the central controller

An SNR of 17 dB can be achieved at a distance of 5*m* for the PREMISS system.

- More detailed modeling is being considered for various building blocks of the system (on-chip antenna, rectifier, uplink transmission...)
- Many activities in millimeter RFID systems. However, the range is below 1*m*.
- We consider implicit sensing schemes for energy saving in the sensor node
 - e.g. temperature dependency of oscillator frequency

Conclusions

- The PREMISS system:
 - 60 GHz
 - Wireless-powered
 - Fully monolithic
- Preliminary system study shows an SNR of 17 dB can be achieved at the central controller at 5 *m*.
- Rectifier design is challenging.

Thank you

/Department of Electrical Engineering

17-10-2011 PAGE 21