INSPIRED BY...

Orchestration and Reconfiguration Control Architecture

GHENT

UNIVERSITY

imec IDLab

imec + Rutgers University

MOTIVATION

3

SPECTRUM IS GETTING OVERLOADED

Wi-Fi traffic has a 30%+ CAGR

Source: Cisco VNI Forecast

BLE traffic: 22% CAGR

Source: https://truthtoday24.com/bluetooth-beacon-market-toexpand-with-a-cagr-of-22-0-from-2017-2025/:

Wireless sensor traffic: 18.55% CAGR

https://www.marketsandmarkets.com/PressReleases/wireless-sensornetwork.asp

LTE traffic: 41% CAGR

Source: https://www.ericsson.com/assets/local/mobilityreport/documents/2017/ericsson-mobility-report-november-2017-centraland-eastern-europe.pdf

Extremely challenging deployments

UNIVERSITY

Private LTE market: 32.3% CAGR

Source: https://www.multefire.org/wpcontent/uploads/HRI Paper Private-LTE-Network-Paper 20-July-2017 Final.pdf

A LOT OF SPECTRUM IS WASTED!

- Unlicensed bands: waste of spectrum due to CCA (mandatory), contention, collisions, interference
- Licensed technologies: designed for maximum capacity, most of time underutilized
- Spectrum is a scarce resource (like water, energy) and should NOT be wasted!

SPECTRUM SHARING IN UNLICENSED BANDS THE WIRELESS CAPACITY BOTTLENECK: LIMITED THROUGHPUT & SCALABILITY

Today, capacity of WIRELESS TECHNOLOGIES COLLAPSES when usage is high

6

limec

UNIVERSITY

SPECTRUM USAGE MODELS DIFFERENT MODELS EXIST TO WORK (OR NOT) TOGETHER

	Model	Description	Deployment	Technologies	
T O D A Y	Licensed access	Exclusive assignment of frequency band	Single mobile operator	Traditional cellular networks (e.g. GSM, UMTS, LTE, 5G)	
	Unlicensed shared access	License-free operation according to regional regulation	Many providers	Uncoordinated operation of many tech- nologies (short range: IEEE802.11, IEEE802.15.4, Bluetooth, MulteFire,,	
	SPECTRUM DOES NOT SCALE WITH NEED FOR HIGHER DATA RATES				
	Licensed Spectrum Sharing	Frequency band assigned to multiple providers based on charing mules	Authorized provider (micro-operators) +	Private LTE/5G networks (e.g. CBRS) Directive from FCC (US) : SAS Directive from RSC (EC) : LSA	
P C		(loca EXCLUSIVE SPECTRUM IS LIMITED			
0 M	Licensed assisted access (LAA) Use of unlicensed Mobile operator band(s) in addition to unlicensed net		Mobile operator + unlicensed network	Coexistence of cellular + unlicensed technologies (e.g. LTE-LAA)	
N	M	ORE SPECTRUM SHARING IS UNAVOIDABLE!			
G ne	Sharing in application- specific bands	Frequency band assigned to specific applications	Multiple providers	DSRC 5.9 GHz for ITS: IEEE802.11p + LTEV2X	
ле	specific bands	to specific applications		LTEV2X	

WIRELESS NETWORKS ARE COMPLEX SYSTEMS

- INCREASING
 - number of devices
 - density of devices
 - number of applications
 - data rates
 - diversity of QoS requirements
 - number of heterogeneous technologies & standards

8

THE EXPLOSION OF WIRELESS STANDARDS

	Terrestrial broadcasting	Two-way radio	Mobile Telecom	Wireless internet	loT/peripher al
1920s	AM				
1930s	FM				
1940s			AT&T MTS		
1950s	NTSC				
1960s	PAL SECAM		AT&T IMTS		
1970s					
1980s	FM-RDS		AMPS, NTT, NMT		
1990s	DAB, DVB-T, ATSC	TETRA, P25	D-AMPS, GSM, IS-95	802.11 a/b	Bluetooth
2000s	DRM, DVB-T2, ISDB-T, DTMB	DMR. NXDN	CDMA-2000, WCDMA, TD-SCDMA, WiMAX, LTE	802.lln	ANT, 802.15.4
2010s			LTE-A, 5G- NR	802.11 ac/ad/ah/ax /p	NB-IoT, BTLE, LoRa, SigFox

9

6

WIRELESS NETWORKS ARE COMPLEX SYSTEMS

- INCREASING
 - number of devices
 - density of devices
 - number of applications
 - data rates
 - diversity of QoS requirements
 - number of heterogeneous technologies & standards
 - flexibility & number of reconfigurable parameters
 - • •

 centralized scheduling schemes and algorithms based on domain-expertise only cannot cope anymore with increasing complexity

Need for more distributed and intelligent control in shared spectrum environments

10

Need for smart monitoring schemes to support network decisions

<u>IIIIII</u> GHENT UNIVERSITY

EXAMPLE: LTE-LAA

CURRENT LTE AND WI-FI STANDARDS SIMILARITIES AND DIFFERENCES

	LTE	Wi-Fi	
Same PHY design	Modulation: QPS O	K, 16/64/256 QAM FDM	
Different PHY parameters	 Long range, outdoor (large fading) Long symbols (66.7µs) Narrow subcarriers (15 kHz) 	 Short range, indoor (limited fading) Short symbols (4µs) Wide subcarriers (312.5 kHz) 	
MAC design	MF-TDMA (OFDMA): allocation of time slots and subcarriers to multiple users No LBT (Listen Before Talk) Tight frequency & time synchronisation Continuous bit stream (also if no data)	CSMA: contention based random access All subcarriers allocated to single user LBT: Clear Channel Assessment (CCA) Only frequency synchronisation Packet-based transmission (only if date)	
Coordination	Centralised resource allocation	Distributed coordination (DCF)	

LTE AND Wi-Fi ARE NOT DESIGNED TO WORK TOGETHER!

Different PHY design parameters

Different MAC, transport streams & timings

LTE: OFDMA + stream of transport blocks

LTE-LAA (LICENSE ASSISTED ACCESS) PROBLEM: LTE IS NOT DESIGNED FOR COEXISTENCE

contention of short Wi-Fi packets and large LTETX opportunities

COEXISTENCE OF LTE AND WI-FI IMEC SOLUTION: CROSS-TECHNOLOGY COORDINATION mLTE-U

- Adjustable muting period + adjustable TXOP
- Cross-technology monitoring of load
- Cross-technology management (load-balancing)

CCA

TECHNOLOGY RECOGNITION

16

FROM DOMAIN EXPERTISE TO MACHINE LEARNING APPROACHES MOTIVATION AND CONCEPT

Co-existing environments need intelligent decision making

- Offloading licensed to unlicensed bands
 - LTE co-existing with legacy Wi-Fi
- Sharing licensed bands e.g. DVB-T / LTE
 - White space reuse if no active transmission
- Identifying technologies for intelligent decision making
 - Maintaining quality of service for users
- Technology, interference, and traffic identification using machine learning
 - Flexible and robust way of identification
 - Requires no domain expertise

Windows of opportunity for cognitive radios

FROM DOMAIN EXPERTISE TO MACHINE LEARNING APPROACHES OFDM CLASSIFICATION OF WI-FI, LTE AND DVB-T

Classification using:

- manual extracted features from RSSI distributions [domain expertise]
- automatic extracted features from raw RSSI data using deep learning techniques
- automatic extracted features from spectrogram using deep learning techniques
- automatic extracted features from raw I/Q samples using deep learning techniques

OFDM CLASSIFICATION OF WI-FI, LTE AND DVB-T

Accuracy OFDM signal classification

6

Universitieit Antwerpen

TECHNOLOGY RECOGNITION

FAST CLASSIFICATION OF LPWAN TECHNOLOGIES: SIGFOX, LORA AND IEEE 802.15.4 (SUBGHZ)

3) Implementation of CNN using Keras machine learning library with Tensorflow as a backend

4) Classification accuracy of CNN versus SotA (NFSC - Neuro-fuzzy signal classifier)

CLASSIFICATION OF SUB-GHz TECHNOLOGIES: SIGFOX, LORA, IEEE 802.15.4, NOISE

FUTURE WORK: SEMI-SUPERVISED APPROACH USING BOTH LABELLED AND UNLABELED DATA

22

innec IDLab

TECHNOLOGY RECOGNITION APPLIED TO LTE-LAA

COEXISTENCE OF LTE AND WI-FI IMEC SOLUTION: CROSS-TECHNOLOGY COORDINATION mLTE-U

- Adjustable muting period + adjustable TXOP
- Cross-technology monitoring of load

CCA

COEXISTENCE OF LTE AND WI-FI IMEC SOLUTION: CROSS-TECHNOLOGY COORDINATION

Classification of LTE and Wi-Fi for load estimation

UNIVERSITY

COEXISTENCE OF LTE AND WI-FI IMEC SOLUTION: CROSS-TECHNOLOGY COORDINATION

COEXISTENCE OF LTE AND WI-FI IMEC SOLUTION: CROSS-TECHNOLOGY COORDINATION

Balanced spectrum access through use of CNN (experimental PoC validation) to identify the channel occupancy of each technology

່ເງງອງ IDLab

EXAMPLE: DARPA SPECTRUM COLLABORATION CHALLENGE

BUILDING THE COLLABORATIVE INTELLIGENT RADIO NETWORK

Contextualize existing knowledge to rapidly overcome changes and new challenges

Collaborate with previously unknown radio systems, discover the value of information and optimize the overall joint utility

Reason about how to take actions to result in successful communication, taking into account the effect the action may have on others

Understand and characterize signals to infer the conditions of the local RF environment through noisy observations

Adaptability in time, frequency, space, code, waveform, MAC scheme, network, etc.

30

SPECTRUM COLLABORATION THROUGH MULTI-AGENT LEARNING

APPROACH – END-TO-END MODULAR SYSTEM

APPROACH – END-TO-END MODULAR SYSTEM

- LTE/Wi-Fi co-design: combine the best of 2 worlds
 - Packet-based LTE (self-contained packet, no need for synchronisation)
 - MF-TDMA (= combination of TDMA/FDMA) + CSMA/CA
- Al-based control of MAC and PHY
 - Adding and deleting slots based on link statistics and channel sensing
 - Using AI (deep learning) for predicting future network state based on other nodes' behaviour

COLLABORATIVE SPECTRUM SHARING APPLY MACHINE LEARNING TO PREDICT FUTURE SPECTRUM OCCUPATION

Distributed intelligent slot allocation

Efficient spectrum sharing without central coordination

Preliminary Round of DARPA Spectrum Collaboration Challenge Awards Ten Teams

Top teams introduce various methods to collaborate autonomously and overcome spectrum scarcity

For the preliminary event, 475 fully autonomous matches were run with the 19 qualified teams' radio designs in SC2's custom testbed environment, known as Golosseum. The final matches for the first event were carried out across six different communications scenarios designed to mirror real-world congested EM environments, but with more complexity than existing commercial radios are equipped to handle. The competing teams faced fluctuating bandwidths and interference from other competitors as well as DARPA designed bots that tested and challenged their radio designs. Each team's radio performance was scored based on its collaborative spectrum sharing abilities.

At the event's conclusion, the 10 highest scoring teams were:

- MarmotE from Vanderbilt University
- SHARE THE PIE from BAE Systems with Eigen LLC
- Zylinium from a Maryland-based startup
- Erebus, consisting of three independent engineers and software developers
- SCATTER from IDLab, an imec research group at Ghent University and University of Antwerp, and Rutgers University
- GatorWings from University of Florida
- Sprite from Northeastern University
- Strawberry Jammer from Northrop Grumman
- Optical Spectrum, consisting of two independent LIDAR engineers
- BAM! Wireless from Purdue University and Texas A&M University

GHENT UNIVERSITY

35

https://www.darpa.mil/news-events/2017-12-21a

THE ROLE OF STANDARDISATION

THE ROLE OF STANDARDISATION

Accumulated number of standards

Terrestrial IoT/peripher Two-way Mobile Wireless broadcasting radio Telecom internet al 1920s AM 1930s FM 1940s AT&T MTS 1950s NTSC PAL SECAM 1960s AT&T IMTS 1970s 1980s FM-RDS AMPS, NTT, NMT DAB, DVB-T, D-AMPS. 802.11 a/b Bluetooth 1990s TETRA, GSM, IS-95 ATSC P25 DRM, DVB-T2, ANT, 802.15.4 2000s DMR. CDMA-2000. 802.11n ISDB-T, DTMB NXDN WCDMA, TD-SCDMA. WiMAX, LTE 2010s LTE-A, 5G-802.11 NB-IoT. BTLE. NR ac/ad/ah/ax LoRa, SigFox... /p

EXPLOSION OF STANDARDS!

RETHINKING THE ROLE OF STANDARDISATION

- Number, complexity, time and hence costs for standardisation increases
 - e.g. 24 documents for GSM ↔ 279 documents for LTE
- Despite huge standardisation efforts, wireless world is getting more and more fragmented
- DARPA spectrum collaboration challenge
 - smart spectrum sharing between heterogeneous networks without standardisation and central coordination
 - collaboration protocol for low data rate exchange of spectrum usage & system performance

PARADIGM SHIFT

GHENT

UNIVERSITY

- from standardisation of technologies to standardisation of coordination protocol
- from exclusive spectrum access to coordinated/collaborative spectrum sharing
- from intra-technology centralized scheduling to cross-technology intelligent distributed coordination
- from domain expertise to machine learning approaches

UNDEC embracing a better life

່ເກາec