TUE Technische Universiteit Eindhoven University of Technology

5G New Radio System Research at the TU/e

CWTe Research Retreat 2017

Dr. Ulf Johannsen

Where innovation starts

What is 5G New Radio?

3 Classes of Use Cases for 5G¹:

- Ultra-Reliable and Low Latency Communications (URLLC)
- Massive Machine Type Communications (mMTC)
- Enhanced/Extreme Mobile Broadband (eMBB)
 - Use of Millimetre-Wave Spectrum à 5G New Radio

NGMN Key Performance Indicators¹:

Broadband access in dense areas:

 200-2500 connections/km² DL: 750 Gbps / km² UL: 125 Gbps / km²

- Broadband access in a crowd:
- 30,000 / stadium
 DL: 0.75 Tbps / stadium
 UL: 1.5 Tbps / stadium

Up to 1 Gb/s should be supported!

5G PPP Vision¹:

- Up to 10 Tbps/km²
- Peak data-rate of **10 Gbps/user**

Current Status of 3GPP Standardisation²:

- 1 Gbps DL and 500 Mbps UL up to 10 km/h (average)
- 10 Gbps up to 10 km/h (peak)

http://silika-project.eu/

"Silicon-Based Ka-Band Massive MIMO Systems for New Telecommunication Services"

- EU Marie Sklodowska-Curie programme
- Research started on 1st January 2017
- 12 PhD students
 - distributed over 3 countries
 - working on 12 individual sub-projects
 - Topics ranging from
 - System design
 - Antenna systems
 - Millimetre-wave electronics
 - Signal processing

Objectives:

- Development of innovative <u>integrated antenna systems</u> for future <u>5G base stations</u> operating at <u>mm-wave</u> frequencies utilizing highly-integrated and cost-effective <u>(Bi-)CMOS</u> technologies.
- These antenna systems will rely on the use of multi-antenna <u>massive MIMO</u> concepts in which the number of individual antenna elements in the base station is much larger than the number of users (*M*>>*K*)
- Training of 12 PhD students in the domain of mm-wave massive MIMO systems

Re-Use of Existing Base-Station Sites

Thomas Bressner

Ture Technische Universiteit Eindhoven University of Technology

¹ Based on "White paper: 5G Channel Model for bands up to 100 GHz (Annex)," Dept. of Computer Science, Michigan State University, September 2016

How to achieve 62 dBm EIRP?

How to achieve 62 dBm EIRP?

• <u>Option 2</u>:

How to achieve 62 dBm EIRP?

• <u>Option 2</u>:

Why? 35 dBm ≈ **3.2 W**

Reduce UL speed to extend battery lifetime?

How to achieve a balance between UL and DL data rates?

Antenna Technology Proposed within SILIKA:

- Large antenna gain possible
- Beam-steering by focal plane array

A. Zamanifekri, A.B. Smolders, "Beam squint compensation in circularly-polarized offset reflector antennas using a sequentially-rotated focal-plane array," IEEE Antennas and Wireless Propagation Letters, 2015

Beam-Steering Using Phased-Array-Fed Reflector Antennas:

focal length

base station

Double Reflector Configuration Idea of complex sub-reflector with shaped main reflector for wide-angle scanning

Symmetrical sub-reflector configuration

Electric field cuts in array plane for different angles incidents:

Research ongoing!!

BiCMOS-Based E-Band Backhauling Proof of Concept

Integrated Millimetre-Wave Antenna Concepts

bond-pads for probe-landing

bond-wire image

Ka-Band Electronics

Transmitter

1.2mm PA POVM VGA VGA U VGA

Receiver

Complete 60 GHz System On-Chip

TU/e Technische Universiteit Eindhoven University of Technology

Single-Chip 60 GHz Radar in BiCMOS

B. Adela; P.van Zeijl; U. Johannsen; A. B. Smolders "On-chip Antenna Integration for Millimeter-wave Single-chip FMCW Radar, Providing High Efficiency and Isolation" IEEE Transactions on Antennas and Propagation Year: 2016, Volume: PP,

TU/e Technische Universiteit Eindhoven University of Technology

Single-Chip 60 GHz Radar in BiCMOS

B. Adela; P.van Zeijl; U. Johannsen; A. B. Smolders "On-chip Antenna Integration for Millimeter-wave Single-chip FMCW Radar, Providing High Efficiency and Isolation" IEEE Transactions on Antennas and Propagation Year: 2016, Volume: PP,

Challenges within SILIKA:

- Design reflector antenna with
 - sufficient gain
 - steering range
 - feed array with suitable feed network
- Design of BiCMOS mm-wave receiver with
 - low system noise figure
 - integrated antenna(s)
- Calibration procedure
- Massive MIMO waveforms and algorithms

Related Activities with CWTe (past and ongoing)

5G integrated Fiber-Wireless networks exploiting existing photonic technologies for high-density SDNprogrammable network architectures

TU/e: Prof. Idelfonso Tafur Monroy 1 postdoc (open position)

Prof. Nikos Pleros, Coordinator

TU Tessaloniki

EU contribution: EUR 7 848 540

Topic(s): ICT-08-2017 - 5G PPP Convergent Technologies

Call for proposal: H2020-ICT-2016-2I

Funding scheme: IA - Innovation action

Pilot field-trial demonstrations 25 Gb/s -100 Gbps – 400 Gbps

56 TU/e Main contribution: Testbed Configuration and Evaluation

Complete FlexBox and 25 Gb/s RRH evaluation (individually & jointly) to initiate the pilot lab-scale demonstrator

FlexBox-RRH link performance evaluation (latency, maximum distance coverage, BER/EVM measurements, etc.)

4 x 4 x(16x16) MIMO Tails

Building on the use of Spatial Multiplexing 5G Network Infrastructures and Showcasing Advanced Technology and Networking Capabilities

BLUESPACE concept: Ka-band wireless 5G network over multicore optical fiber infracstructure

Coordinator: Prof. Idelfonso Tafur Monroy

EU contribution: EUR 6 655 127,50 Topic(s): ICT-07-2017 - 5G PPP Research and Validation of critical technologies and systems

H2020-ICT-2016-2 Funding scheme: RIA - Research and Innovation action

TU/e contributions: Overall Integration (spatial division multiplexing, analog & digital RoF, and SDN)

Beamforming

Demonstrator, SDN control, user cases

5G System Technological Enhancements Provided by Fiber Wireless Deployments

MSCA-ITN-ETN - European Training Network

STEP**FWD**

15 PhD students on mmw 5G networks over ultra-dense WDM access networks <u>Focus on deployment</u>

TU/e contributions: 2 ESRs and Scientific coordination (Prof. Tafur Monroy)

PhD student Dimitrios Konstantinou

ESR 11: i) design and optimization of a converged mm wave-over Ultra dense WDM Passive optical networks:

ii) design and test the Central Office for the converged network, andiii) generic research in 5G and beyond fiber-wireless convergence.

PhD student Toms Salgals

ESR 12: on i) new modulation/demodulation techniques for the transmission of mm wave signals through optical networks that incorporates ultra-dense wavelength spacing:

ii) design the interface between the optical network unit (ONU) and the small-cell antenna

iii) generic research in 5G and beyond fiber-wireless convergence.

Optical technologies

 Browse project (Prof. Koonen, Prof. Baltus)

TU

 Multiple dynamically-steered free-space optical beams (downstream)

Technische Universiteit

Eindhoven University of Technology

flexible mm-wave radio communication techniques (upstream)

OXC = Optical Crossconnect CCC = Central Communication Controller MD = Mobile Device PRA = Pencil-Radiating Antenna RN = Reconfiguration Node

https://www.tue.nl/en/university/departments/electricalengineering/research/research-groups/electro-optical-communicationseco/research/projects/browse/

i-CAVE – Advanced radar-based communication networks (RADCOM)

Prof. Willems (SPS group)

- Cooperative awareness
- Radar and communication devices are jointly used in a cooperative way to realize a more robust and synergetic approach to sensing and communication for ITS and platooning.

Expected project outcomes

- Advanced design methods for a new generation of Software defined RADCOM platforms (architectures unification).
- Definition of new waveform, access protocol and DSP schemes to address radar/communication functionalities simultaneously.
- Functional reconfiguration and fusion methods.

Impuls - 5G in Future Intelligent Transportation Systems

- Luis Abanto Leon
- Enhancements for ultra-low latency, high reliability, and high mobility
- Increasing data rates
- Heterogeneous architectures for optimal hybrid operation of WAVE + 5G

Thank you very much!

Measurement Facilities

Pictures by Bart van Overbeke

Direction of Arrival Estimation:

- Highly focused beams
 - High EIRP @ low transmit power
 - Finding and tracking users difficult

DoA Challenge

Assumption: Users are synchronized System is calibrated

Channel estimation

mmWave: Difficult to have high SNR for user far away Reflector: Small surveillance area Massive MIMO: High computational effort

Beam training

Small beam due to the reflector -> Needs a good initial guess Iterative approach lowers system throughput

Single Shot DoA

+ DAC per sub-array

+ Sufficient antenna gain due to Phased sub-arrays Reflector (not shown)

Assumptions: Users is synchronized System is calibrated

Gain and EIRP

• Desired data rates requires EIRP and gains as defined in Tables I and II

Range [m]	NLOS path loss [dB] UMi/UMa	Required EIRP [dBm] UMi/UMa	# amps	Average transmit power	Antenna gain at 100-150m [dBi]	Antenna gain 300- 350m [dBi]
25-50	116/111	41/36		[ubiii]	(UMi)	(UMa)
50-100	126/121	51/46	1	8	49	56
100-150	132/127	57/52	2	11	46	53
150-200	137/131	- /56	4	14	43	50
200-250	140/134	- /59	8	17	40	47
250-300	143/137	- /62	16	20	37	44
300-350	145/139	- /64	32	23	34	41
Table I			64	26	31	48
			128	29	28	35

Table II

40

Gain Vs HPBW

- UMi Scenario (150m cell radius)
- For a parabolic dish with 70% aperture efficiency
- The table below shows the gain and HPBW for the minimum and maximum distances way from the base station.

Diameter [m]	Number of Amplifiers	Gain [dBi]	HPBW [Deg]	Beam footprint at 25m (radius[m])	Beam footprint at 150m (radius[m])
0.29	16	37	2.34	1.7	31.5
0.41	8	40	1.65	1.2	25.4
0.58	4	43	1.17	0.7	20
0.82	2	46	0.83	0.6	15.5

41