Interference Suppression Techniques for Millimeter-Wave Integrated Receiver Front Ends

Chuang Lu

Mixed-Signal Microelectronics group, Electrical Engineering, Eindhoven University of Technology, The Netherlands.

Technische Universiteit **Eindhoven** University of Technology

新聞・1

1.434 1.

Where innovation starts

TU

- The demand of higher data rate pushes wireless to mm-wave (>30GHz)
 - Larger bandwidth;
 - Smaller antennas, etc.

• Many attractive potential applications.

Unlicensed 60 GHz band for indoor communication

- The demand of higher data rate pushes wireless to mm-wave (>30GHz)
 - Larger bandwidth;
 - Smaller antennas, etc.
- Many attractive potential applications.

Automotive radar in the 79 GHz band

- The demand of higher data rate pushes wireless to mm-wave (>30GHz)
 - Larger bandwidth;
 - Smaller antennas, etc.
- Many attractive potential applications.

- The demand of higher data rate pushes wireless to mm-wave (>30GHz)
 - Larger bandwidth;
 - Smaller antennas, etc.
- Many attractive potential applications.

And many others, e.g. 5G cellular communication, imaging...

- We can envision that mm-wave systems will become popular and common in the future.
- As the number of mm-wave devices, systems or standards will grow dramatically in the future, interference issues will become important for the coexistence of different devices.

U/e Technische Universiteit Eindhoven University of Technology

Interference Suppression Techniques for Millimeter-Wave Integrated Receiver Front Ends

Outline

- Introduction
- <u>Spatial-interference issue</u>
 - Robust null forming phased array
 - High resolution phase shifter design
- <u>Self-interference issue</u>
 - A filtering LNA for VSAT scenario
 - A duplexer for same-band TX/RX scenario
- Conclusions

Spatial-interference

• Phased Arrays are commonly used in mm-wave applications.

- However, spatial re-use is not fully explored at mm-wave and nulls are not used, because:
 - RF/Analog arrays
 - Limited accuracy
 - Difficult to estimate precise direction, and create accurate null
- A mm-wave null forming array is desired to be: Robust and Efficient

Proposed Robust Null Forming Array

- Discrete phase shifters and VGAs:
 - MSB: Direct mainlobe to the desired signal
 - LSB: Adjust nulls
- Manipulate the LSBs to minimize the total output power.
- Direction of interference is not needed.
- Not sensitive to the weight errors, but fine steps on the phase shifts is desired for convergence.

Proposed Robust Null Forming Array

- Genetic Algorithm (GA) is used for the optimization
 - Efficient to find the global optimum.

Simulation Results

• Array Pattern Optimization for certain interference scenarios

Assumptions:

- Uniform linear array (ULA): $N_{tot} = 16, d=\lambda/2$
- <u>6-bit Phase Shifter</u>: 4MSB, 2LSB
- <u>2-bit VGA</u>: 1MSB, 1LSB
- Desired signal power at RX: -64dBm at $\theta_s = 0^\circ$
- Co-channel interferences.

Interference Suppression Techniques for Millimeter-Wave Integrated Receiver Front Ends

Outline

- Introduction
- Spatial-interference issue
 - Robust null forming phased array
 - High resolution phase shifter design
- Self-interference issue
 - A filtering LNA for VSAT scenario
 - A duplexer for same-band TX/RX scenario
- Conclusions

High resolution phase shifter design

- From the null-forming array, high resolution phase shifters are required: Fine steps rather than accuracy.
- To have enough LSB's for optimization.
- 6-bit phase shifter is required.
- Two phase shifters are designed and implemented for the nullforming array:
 - LO-path phase shifter
 - Base-band phase shifter

LO-path phase shifter

- Phase shifting implemented by Tunable Tline + Divider-by-4.
- Reduced tuning range requirement on the tline.
- In LO path, de-coupled from the signal path.

LO-path phase shifter Measurement Result

In 40nm CMOS technology

- Average phase step: 3.5°
- Maximum phase step: 5.4°

Base-band phase shifter

- Make use of the quadrature signals from the I/Q mixing.
- Combine the I and Q signals with certain amplitudes, to generate output signals with certain phase shifts/amplitudes

Base-band phase shifter Measurement Result

Interference Suppression Techniques for Millimeter-Wave Integrated Receiver Front Ends

Outline

- Introduction
- Spatial-interference issue
 - Robust null forming phased array
 - High resolution phase shifter design
- Self-interference issue
 - A filtering LNA for VSAT scenario
 - A duplexer for same-band TX/RX scenario
- Conclusions

Self-interference issue

- Between colocated TX and RX.
- High power TX can desensitize and saturate RX.
- Two scenarios:
- 1. When TX and RX are at relatively seperate frequencies
- 2. When TX and RX are in the same band

Self-interference issue

1. When TX and RX are at relatively seperate frequencies:

Ka-band Very-Small-Aperture terminals (VSAT) is a typical application.

Duplex in VSAT scenario

Challenge:

High attenuation @ 30GHz and Low NF @20GHz

Filtering LNA for VSAT Duplex

- Distribute filtering at different stages in LNA
- Compression mainly happens after amplifying
- Filtering at later stages contributes less to the total NF

With filtering:

Without filtering: (Reference case)

0.25 µm SiGe:C BiCMOS technology

Measurement: Gain

Measurement: NF

0.1 to 0.4 dB NF degradation by the filtering LNA

Interference Suppression Techniques for Millimeter-Wave Integrated Receiver Front Ends

Outline

- Introduction
- Spatial-interference issue
 - Robust null forming phased array
 - High resolution phase shifter design
- Self-interference issue
 - A filtering LNA for VSAT scenario
 - A duplexer for same-band TX/RX scenario
- Conclusions

Self-interference issue Same-band TX/RX scenario

- When the self-interfering TX is in the same band as the RX, lumped filtering is not practical for on-chip solutions.
- Duplexer is typically used to isolate the TX and RX and typically off-chip.
- On-chip duplexers are challenging to be high isolation and low loss at mm-wave.

Possible Duplexer Solutions

On-chip

active quasi circulator

Ferrite based circulators

Isol>20dB, Loss <0.9dB @30GHz But:

- External component, increased area and cost
- Limited isolation at mmwave

On-chip, low-cost But:

- High loss and NF
- Linearity issue

Hybrid-Transformer

- + Compact
- + Tunable
- + Passive
- + High Isolation But:
- Inherent loss at Z_{bal} (3dB)

Possible Duplexer Solutions

- Isolation achieved by electrical balance
- Tunable Z_{bal} to balance the impedance for high isolation
- Wideband duplexer with high isolation
- More than <u>6 dB total loss</u> in link budget

Replace Z_{bal} by an identical antenna?

- Dual antenna duplexed by TX and RX at the same time.
- Avoid the inherent loss
- Wideband impedance balance \rightarrow Wideband isolation

However, TX and RX signals at Ant1 and Ant2 are differential and common-mode signals respectively

• With Orthogonally Linear-polarized (LP) Antennas

- Vertically and horizontally polarized antenna's
- With a $1/4\lambda$ delay line (90°) on one side

- TX and RX duplexes dual-antenna with orthogonal CP towards and from the same direction
- "Circular polarization duplexer"
- Can be very useful for radar/imaging application

Tunable Hybrid-Transformer

- Why tunable?
 - Impedance transform by the 1/4λ Tline
 - Mismatch between Z_{Ant1} and Z_{Ant2} can degrade the isolation significantly
- Impedance imbalance in:
 - Imaginary part
 - Real part
- Compensated respectively by:
 - Shunt varactor
 - Auxiliary coil with series varactor

• Chip Implementation in 0.25 µm SiGe:C BiCMOS technology

• Chip Measurement, TX and RX modes.

RX: Gain=<u>18 dB</u>, NF≈<u>4.1 dB</u> TX: Loss=<u>3.1 dB</u> (including the balun) BW_{3dB} from 27.5 GHz to 34.5 GHz

- Chip Measurement, Isolation.
- S34 includes gain of LNA (about 20 dB)
- Without tuning:
 - S34 = -3dB
 - Only 23dB isolation by the duplexer
 - Degraded by the layout non-idealities
- -10 $ISOL_{DUP} = 40 \text{ dB}$ -20 S34 (dB) -30 -40-50 S34 tuned around different frequencies 29 30 31 33 25 26 27 28 32 34 35 frequency (GHz)

S34 without tuning

- With tuning:
 - Notches tuned for different frequencies
 - S34<-20dB for about 2GHz BW, S34<-30dB for about 1GHz
 - Corresponding to duplexer isolation of <u>40dB and 50dB.</u>

Prototype Implementation

- On-board antennas are made and integrated with the duplexer chip.
- Sequentially rotated linearly-polarized patch antennas.

Prototype Measurement

- Antenna patterns.
- RX and TX patterns are orthogonal.
- Dashed lines are after tuning for high isolation.
- Minor impact on the co-pol of TX and RX.

Prototype Measurement

- The plotted isolations include the 20 dB gain from the LNA on-chip.
- High isolation achieved after tuning.

Conclusions

Interference Suppression Techniques for Millimeter-Wave Integrated Receiver Front Ends

Interference Suppression Techniques for Millimeter-Wave Integrated Receiver Front Ends

You are warmly welcomed to attend the defense at:

16:00 on 24th November 2015, in Collegezaal 4, Auditorium in TU/e

and the reception afterwards.

Thank you for your attention!

Appendix

Limited accuracy

• Difficult to estimate precise direction, and create accurate null 20 sink when N = 8, $\theta_s = 0^\circ$

Appendix

• Number of bits for the Null forming array

Table 2.3: The convergence of the algorithm and optimized SINR range by different number of LSBs. The interferences are assumed with power of -60 dBm and with AoAs of -10° and 26° for the 8-path ULA and -21° and 38° for the 8-path ULA.

	Phase Shifter		VGA		8-path ULA		16-path ULA	
Set #	MSB	LSB	MSB	LSB	Average # of iterations	SINR Range (dB)	Average # of iterations	SINR Range (dB)
1	4	1	1	1	>1000	16.7	>1000	17.3 to 18.2
2	4	1	2	1	>1000	7.9	>1000	15.1 to 15.3
3	4	1	1	2	207	16.8 to 17.7	420	20.3 to 20.8
4	4	2	1	1	205	17.4 to 17.7	105	20.3 to 20.8
5	4	2	2	1	>1000	10.1	>1000	19.4 to 19.7
6	4	2	1	2	30	17.4 to 17.8	47	20.3 to 20.8
7	4	3	1	1	140	17.2 to 17.7	48	20.3 to 20.8
8	4	3	1	2	26	17.4 to 17.8	34	20.3 to 20.8