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• The demand of higher data rate pushes wireless to 
mm-wave (>30GHz) 
– Larger bandwidth; 
– Smaller antennas, etc. 

• Many attractive potential applications. 
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Unlicensed 60 GHz band for indoor communication 
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Introduction 

Automotive radar in the 79 GHz band 
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Introduction 

Satellite Application 



• The demand of higher data rate pushes wireless to 
mm-wave (>30GHz) 
– Larger bandwidth; 
– Smaller antennas, etc. 

• Many attractive potential applications. 
 
And many others, e.g. 5G cellular communication, 

imaging... 
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Introduction 
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• We can envision that mm-wave systems will become 
popular and common in the future.  

• As the number of mm-wave devices, systems or 
standards will grow dramatically in the future, 
interference issues will become important for the co-
existence of different devices. 

Introduction 

Spatial interference 

Self interference 
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• Phased Arrays are commonly used in mm-wave applications. 
 
 
 
 

• However, spatial re-use is not fully explored at mm-wave and 
nulls are not used, because: 
• RF/Analog arrays  
• Limited accuracy 
• Difficult to estimate precise direction, and create accurate 

null 
• A mm-wave null forming array is desired to be: Robust and 

Efficient 
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Spatial-interference 



• Discrete phase shifters and VGAs: 
• MSB:  Direct mainlobe to the desired signal 
• LSB:   Adjust nulls 

• Manipulate the LSBs to minimize the total output power. 
• Direction of interference is not needed. 
• Not sensitive to the weight errors, but fine steps on the phase 

shifts is desired for convergence. 
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Proposed Robust Null Forming Array 



• Genetic Algorithm (GA) is used for the optimization 
• Efficient to find the global optimum. 
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Proposed Robust Null Forming Array 



• Array Pattern Optimization for certain interference scenarios 
 
Assumptions: 
• Uniform linear array (ULA):  
 Ntot = 16, d=λ/2 
• 6-bit Phase Shifter: 4MSB, 2LSB 
• 2-bit VGA: 1MSB, 1LSB 
• Desired signal power at RX:  
 -64dBm at θs = 0° 
• Co-channel interferences. 
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Simulation Results 

SINR 



Outline 
 

• Introduction 
 

• Spatial-interference issue 
• Robust null forming phased array 
• High resolution phase shifter design 

 

• Self-interference issue 
• A filtering LNA for VSAT scenario 
• A duplexer for same-band TX/RX scenario 

 

• Conclusions 

12 

Interference Suppression Techniques for Millimeter-Wave 
Integrated Receiver Front Ends 



• From the null-forming array, high resolution phase shifters are 
required: Fine steps rather than accuracy. 
 

• To have enough LSB’s for optimization. 
• 6-bit phase shifter is required. 

 
• Two phase shifters are designed and implemented for the null-

forming array: 
– LO-path phase shifter 
– Base-band phase shifter 
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High resolution phase shifter design 



• Phase shifting implemented by Tunable Tline + Divider-by-4. 
• Reduced tuning range requirement on the tline. 
• In LO path, de-coupled from the signal path. 
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LO-path phase shifter 

LOPS 

12GHz 



• Average phase step: 3.5º 
• Maximum phase step: 5.4º 
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LO-path phase shifter 
Measurement Result 

In 40nm CMOS technology 



• Make use of the quadrature signals from the I/Q mixing. 
• Combine the I and Q signals with certain amplitudes, to 

generate output signals with certain phase shifts/amplitudes 
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Base-band phase shifter 
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Base-band phase shifter 
Measurement Result 

• 225 points 
• Both amplitude and phase tuning. 
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• Between colocated TX and RX. 
 

• High power TX can desensitize and saturate RX. 
 

• Two scenarios: 
1. When TX and RX are at relatively seperate frequencies 
2. When TX and RX are in the same band 
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Self-interference issue 



1. When TX and RX are at relatively seperate frequencies: 
 
Ka-band Very-Small-Aperture terminals (VSAT) is a typical application. 
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Self-interference issue 

Uplink 27.5 - 31 GHz 

Downlink 17.5 – 22 GHz 



Challenge: 
 

High attenuation @ 30GHz and Low NF @20GHz 
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Duplex in VSAT scenario 



– Distribute filtering at different stages in LNA 
– Compression mainly happens after amplifying 
– Filtering at later stages contributes less to the total NF 
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Filtering LNA for VSAT Duplex 
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Without filtering:  
(Reference case) With filtering: 

0.25 μm SiGe:C BiCMOS technology 
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With 
Filter 

No 
Filter 

S21 (dB) 
@20GHz 24.3 27 

S21 (dB) 
@17.5GHz -12.9 17.5 

S21 (dB) 
@31GHz -20 15.2 

More than 30 dB 
total filtering 

Measurement: Gain 
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With Filter: 
NF = 1.9 dB 

No Filter: 
NF = 1.8 dB 

simulation 

measurement 

Measurement: NF 
 
 

 
 
 
 
 

 
    
 0.1 to 0.4 dB NF degradation by the filtering LNA 
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• When the self-interfering TX is in the same band as the 
RX, lumped filtering is not practical for on-chip solutions. 

• Duplexer is typically used to isolate the TX and RX 
     and typically off-chip.  
• On-chip duplexers are challenging to be high isolation 

and low loss at mm-wave. 
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Self-interference issue 
Same-band TX/RX scenario 
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Ferrite 
based circulators 

On-chip  
active quasi circulator Hybrid-Transformer 

 
 
 

 
 

Isol>20dB, Loss <0.9dB 
@30GHz 
But: 
― External component, 

increased area and cost 
― Limited isolation at mm-

wave 
 

 
 
 
 
 
 
On-chip, low-cost 
But: 
― High loss and NF 
― Linearity issue 
 
 

 
 
 
 
 
 
+ Compact 
+ Tunable 
+ Passive 
+ High Isolation 
But: 
- Inherent loss at Zbal (3dB) 

Possible Duplexer Solutions 
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Possible Duplexer Solutions 
 

• Isolation achieved by electrical balance 
• Tunable Zbal to balance the impedance for 

high isolation 
• Wideband duplexer with high isolation 
• More than 6 dB total loss in link budget 
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Dual Antenna Hybrid-Transformer Duplexer 

Replace Zbal by an identical antenna? 
• Dual antenna duplexed by TX and RX at the same time. 
• Avoid the inherent loss 
• Wideband impedance balance Wideband isolation 
However, TX and RX signals at Ant1 and Ant2 are differential 
and common-mode signals respectively 

 



• With Orthogonally Linear-polarized (LP) Antennas 
 
 
 
 
 
 
 

 
 

– Vertically and horizontally polarized antenna’s 
– With a 1/4λ delay line (90º) on one side 
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Dual Antenna Hybrid-Transformer Duplexer 
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Dual Antenna Hybrid-Transformer Duplexer 

TX 

0° 180 ° 

0 ° 180 ° 90 ° 

For TX: RHCP  

0 ° 0 ° 90 ° 

RX 

For RX: LHCP 
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Dual Antenna Hybrid-Transformer Duplexer 

• TX and RX duplexes dual-antenna with orthogonal CP 
towards and from the same direction 
 

• “Circular polarization duplexer” 
 

• Can be very useful for radar/imaging application 
 



Tunable Hybrid-Transformer 
• Why tunable? 
 Impedance transform by the 1/4λ T-

line 
 Mismatch between ZAnt1 and ZAnt2 can 

degrade the isolation significantly 
 

• Impedance imbalance in: 
– Imaginary part 
– Real part 

• Compensated  respectively by: 
– Shunt varactor  
– Auxiliary coil with series varactor 
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Dual Antenna Hybrid-Transformer Duplexer 



• Chip Implementation in 0.25 μm SiGe:C BiCMOS technology 
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Dual Antenna Hybrid-Transformer Duplexer 



• Chip Measurement, TX and RX modes. 
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Dual Antenna Hybrid-Transformer Duplexer 

RX: Gain=18 dB, NF≈4.1 dB  
TX: Loss=3.1 dB (including the balun) 
BW3dB from 27.5 GHz to 34.5 GHz 



• Chip Measurement, Isolation. 
• S34 includes gain of LNA (about 20 dB) 

 
• Without tuning:  

– S34 = -3dB 
– Only 23dB isolation by  

the duplexer 
– Degraded by the layout 
    non-idealities 
 

• With tuning: 
– Notches tuned for different frequencies 
– S34<-20dB for about 2GHz BW, S34<-30dB for about 1GHz  
– Corresponding to duplexer isolation of 40dB and 50dB.  
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Dual Antenna Hybrid-Transformer Duplexer 



• Prototype Implementation 
 
 
 
 
 
 
 
 
 

• On-board antennas are made and integrated with the duplexer 
chip.  

• Sequentially rotated linearly-polarized patch antennas.  
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Dual Antenna Hybrid-Transformer Duplexer 
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• Prototype Measurement 
 
 
 
 
 
 
 

Dual Antenna Hybrid-Transformer Duplexer 

• Antenna patterns. 
• RX and TX patterns are orthogonal. 
• Dashed lines are after tuning for high isolation.  
• Minor impact on the co-pol of TX and RX. 
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• Prototype Measurement 
 
 
 
 
 
 
 

Dual Antenna Hybrid-Transformer Duplexer 

• The plotted isolations  include the 20 dB gain from the LNA on-chip. 
• High isolation achieved after tuning. 
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Conclusions 
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You are warmly welcomed to attend the defense at: 

 

16:00 on 24th November 2015, 
in Collegezaal 4, Auditorium in TU/e 

 

 and the reception afterwards. 
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Thank you for your attention! 



• Limited accuracy 
 
 
 
 
 

• Difficult to estimate precise direction, and 
create accurate null 
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Appendix 



• Number of bits for the Null forming array 
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Appendix 
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