Robust 3D Sensor Cloud Localization from Ultrasound Range Measurements

Incas³

Gijs Dubbelman Libertario Demi Heinrich J. Wörtche Erik Duisterwinkel Elena Talnishnikh Jan W.M. Bergmans

TU

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

Introduction

- Application context:
 - 3D mapping of underground structures
- Current solutions
- Our approach:
 - Miniaturized sensor clouds
 - Simultaneous Localization And Mapping (SLAM)
- Simulation results
- Future work
- Questions

3D Mapping of Underground Structures

Problem statement:

- 3D mapping of underground structures
 - oil wells
 - pipes
- Filled with liquid medium
- Globally big but locally small

24-10-2014

PAGE 2

Current solutions

From surface:

- Reflection seismology
- Ground penetrating RADAR

Underground:

- Sensor probes
 - SmartBall (Pure Technologies)
- Robots
 - Explorer (CMU-NREC)

Cloud of miniaturized sensor platforms

Approach:

- Massive sensor cloud
- Reconstruct sensor cloud shape

Localization required:

- No GPS, beacons, etc.
- Limited size = limited capabilities
 - Ultra-sound ranging

Electrical Engineering

24-10-2014 PAGE 5

Ultrasound range measurements

Goal

- visualize application specific sensor data in 3D
- estimate 3D shape of environment
- estimate 3D locations of motes
- Mote-to-mote ultrasound range measurements
- ID of motes encoded in ultrasound signal
- After retrieving the motes:
 - ID ID Range
 - ID ID Range
 - ID ID Range

Simultaneous localization and mapping

Pose-graph simultaneous localization and mapping

- Challenges
 - obtaining an initial solution
 - be robust to corrupted data

Estimating 3D locations of motes

- Select stable seed of 4 motes
 - construct 3D coordinate system
- Non-alternating approach
 - 1. try to add all motes with Random Sample Consensus
 - 2. globally optimize graph using Gauss-Newton
- Alternating approach
 - 1. locally add *N* motes with Random Sample Consensus
 - 2. globally optimize graph using Gauss-Newton
 - 3. Go back to 1

RANdom Sample Consensus (RANSAC)

RANSAC

- 1. Randomly select new mote that sees cloud
- 2. Reconstruct mote location using 4 random measurements
- 3. Determine *inliers/outliers* using all other measurements
- 4. Go back to 1 for N times
- 5. Select mote that has most *inliers*

Experiments

- Simulation of 2000 motes (100X)
- Parameters
 - mote density
 - sensor range of motes
 - range-dependent Gaussian noise
 - percentage of outliers, i.e. corrupted measurements

Goal

- derive minimal requirements on mote density and sensor range given noise and outliers characteristics
- guide hardware development of mote prototypes

Results non-alternating

Results

alternating

Results Recall

Recall versus #Measurements

Results *Precision qualitative*

Results Precision quantitative

Results Robustness recall

Combined outliers versus Recall

Results *Robustness precision*

Combined outliers versus Error

Conclusions

- 3D sensor cloud localization is feasible
 - without using beacons
 - under achievable noise characteristics
 - as long as sufficient inlier range measurements are available

24-10-2014

PAGE 18

Future work

- Hardware development
- Working with non-unique IDs

Electrical Engineering

24-10-2014 PAGE 19

Technische Universiteit **Eindhoven** University of Technology

e

TU/e

Gijs Dubbelman

G.Dubbelman@tue.nl

www.gijsdubbelman.com

[1] Robust Sensor Cloud Localization from Range Measurements", IEEE/RSJ Intelligent Robots and Systems conference, Sept. 14-18, Chicago, 2014.

