Towards the future of satellite communication: The Focal Plane Array Antenna

TU

Mojtaba Zamanifekri

Prof. A.B. Smolders

EM group Electrical Engineering Department Technische Universiteit Eindhoven University of Technology

Where innovation starts

• What is the future of antenna engineers?!

Is it just matter of iterative use of the commercially electromagnetic solver?

Antenna analyses

Which commercial solver ?

"No single EM tool can solve all problems; an informed designer must select the appropriate tool for the appropriate problem "

'James Rautio, founder of Sonnet software'

Complexity of Materials

Example : Reflector antenna analysis

Eindhoven University of Technology

- Motivation
- Background
- Requirements
- Design procedure
- Measurement campaign
- Enhanced feed

Current situation for commercial satellite broadcasting

Possible Alternatives

Scanning capability Compact solution

Low gain costly

Discreet scanning High gain

Limited flexibility bulky

What is the Focal plane array?

The Idea is to illuminate the reflector dish in the smart way to be able to :

- Steer the beam
- Compensate for any degradation

Background- Radio astronomy

How can we make such pictures?!

What is the state of art in this field?

Background- Radio astronomy

Background- Radio astronomy

• The technology is available in Radio astronomy

By increasing the field of view (FOV) the scanning speed will increase dramatically

Background-Space Application

TU/e Technische Universiteit Eindhoven University of Technology

How about the normal satellite TV receiver?

- Tracking satellites
- Improve the quality of signal in the case of any degradation due to the harsh weather, like heavy snow or rain
- Improving signal to noise ratio
- Simultaneous multi satellite access (TV and internet access)

Specification

Requirement	
Frequency	Rx: [18.8,20.2 GHz][21.4,22 GHz]
	Tx=[29.430 GHz]
Multi-satellite reception	3 satellite signals whiten fixed point on the earth
Beam nulling	2 degree offset from the desired satellite
Output frequency IF	950,2150 MHz
Cross polarization rejection	22 dB
Polarization	LHCP, RHCP
Gain Mask	According to ETSI EN 301459 V1.2.1
	Satellite earth stations and systems (SES)

Background

Some basic question should be answered :

- What is the required aperture size ?
- How many elements do we need?
- What is the proper characteristic of the dish?
- What is the optimum configuration?
- What is the required phase accuracy ?

Ue Technische Universiteit Eindhoven University of Technology

Offset Reflector Model

• The required parameters for offset definition :

H, D and $\frac{F}{D_p}$ are the parameters

The problem is, for offset reflector antenna with changing $\frac{F}{D_p}$ the shape of the reflector will change.

D=70 cm,
$$\frac{F}{D_p} = 0.3$$
 , $H = 14 \ cm$

Ue Technische Universiteit Eindhoven University of Technology

Reconstruction of Focal Plane Field

		A	FI	ں me	ں ent	te i	r n`x	່ຈ	н vie	I
	I	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.03	0.03
Ũ	н	0.02	0.04	0.04	0.04	0.05	0.05	0.06	0.05	0.02
em	G	0.06	0.05	0.02	0.05	0.06	0.06	0.06	0.07	0.05
ent	F	0.06	0.06	0.13	0.23	0.27	0.23	0.13	0.06	0.05
is i	Е	0.06	0.09	0.20	0.33	0.39	0.33	0.20	0.06	0.06
Ľ	D	0.06	0.06	0.12	0.22	0.26	0.22	0.12	0.06	0.05
a)	с	0.05	0.05	0.02	0.04	0.06	0.06	0.06	0.07	0.05
(is	в	0.02	0.03	0.04	0.04	0.05	0.06	0.06	0.05	0.02
	A	0.02	0.01	0.01	0.00	0.01	0.01	0.02	0.02	0.03

Encircled power curves

Encircled power curves for different F/D ratio in E & H Plane (8 degree scanning)

Vicinity of focus

Changes in focal plane contour when focal plane moves from 0 to 7 lambda towards reflector

In Agreement with petzval surface

Focal-plane size estimation

This figure shows the importance of having appropriate beam-forming network

Results for 8 degree scanning

Type of the feed	width	length
E Plane scanning	4 cm	24 cm
H Plane scanning	8 cm	24 cm
Full array	24 cm	24 cm

e Technische Universiteit Eindhoven University of Technology

Efficiency investigation

In agreement with Nyquist rate

Number of Channels

- Complexity reduction
- Cost reduction

Intelsat IX C-Band TEM Line BFN (Courtesy EADS-Astrium GmbH)

Updated requirement Table

Characteristic	Value/description
Aperture size	$12 imes 6~cm^2\pm 5~degrees~scanning$
F/Dp	0.3
Orientation of the Feed	60 degrees (targeted center of the projected diameter)
Position of the feed	Curved like structure (bended at the edges)
Number of elements	60
Number of chips	30

Measurement

Measurement Process

concept investigation

- Passive array measurement ✓ antenna performance
- Passive array + reflector × proof of concept (in progress)

Active array measurement (integrated version performance) ✓

Linear array

Element 1

TU/e Technische Universiteit Eindhoven University of Technology

Active array

• Measurements :

Measurement Setup!

Active array

Demonstrator update

Integrated Antenna Measurement

Received signal at 30 GHz

No phase information! Amplitude measurement

Integrated Antenna Measurement

e Technische Universiteit Eindhoven University of Technology

Things to be investigated in more detail.....

- Dual frequency element
- Circular polarization
- Surface waves
- Isolation

Enhanced Feed Design

Line

Dual Frequency circular polarized feed

Finite 2D EBG

Improving coupling at 30 GHz

Isolation

Approaching problem :

- Narrow band
- Active cancelling Design complexity
- (Homan Habibi in SPS group)

Active filtering (Chuang Lu in MSM group)

- Narrow band
- Loss/NF contribution to the LNA/PA (>1dB)

Passive filtering (EM group)

- Low loss
- Compact solution

Filtenna Design

TU/e Technische Universiteit Eindhoven University of Technology

Conclusion

- We have developed a model to calculate the properties of focalplane arrays.
- A prototype integrated antenna with IC was developed and measured.
- Still some challenges remain, like dual-polarization and isolation.
- Enhanced feed design is on progress.

That's it folks.....

Thank you for your attention

