

Wireless Wire—the mmW Ultra-Low-Power and High-Data-Rate Wireless System

Xia Li, PhD student Promotor: Peter Baltus Co-promotor: Arthur van Roermund

TU/e Ei

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

Outline

- Applications and Objectives
- System-Level Research
- Circuits and Measurement Results
- Conclusions

Outline

- Applications and Objectives
- System-Level Research
- Circuits and Measurement Results
- Conclusions

Applications and Objectives

Application Example

Required Features

- Low average power consumption (P_{ave})
- Battery, energy scavenging or wireless charging
- Low energy per bit (E_{bit})
 - Highly efficient communication
- Medium to high data rate (Gbps)
 - Versatile applications
- Robust link

No blockage problem under LoS assumption

Smart link

>

Adaptive neighborhood recognition

Research Question

Outline

- Applications and Objectives
- System-Level Research
- Circuits and Measurement Results
- Conclusions

System-Level Research—Optimum *E*_{bit}

E_{bit} optimization—(peak power/peak data rate)

System-Level Research—Optimum E_{bit}

E_{bit} optimization

E_{bit,Tx} -Decreasing with frequency -Independent with data rate

E_{bit,TRx} -Decreasing with data rate -Optimum frequency exists (with certain BER and technology)

Choose high frequency, directional antenna and high data rate for optimum energy per bit!

Technische Universiteit Eindhoven University of Technology

System-Level Research—Minimum E_{bit}

 In a 60 GHz FE, *E_{bit}* is 200 pJ/bit for the TRx at 1 Gbps data rate!

(BER=10⁻³, distance is 5 meters)

System-Level Research—Pave

Average power consumption optimization

University of Technology

System-Level Research—Architecture

Asynchronous duty-cycled wake-up scheme

System-Level Research—WuRx

WuRx Architecture

System-Level Research—WuRx

Locking time and sensitivity of the WuRx

University of Technology

System-Level Research—Main Radio

Average power

Average power consumption of the entire wireless wire FE is about 20 µW with 10 Gb/day overall data amount!

Outline

- Applications and Objectives
- System-Level Research
- Circuits and Measurement Results
- Conclusions

IJLO Measurement

Free-running spectrum

Output Spectrum

Locked spectrum (under -60 dBm injection)

-Power is concentrated in a narrower spectrum range.

Technische Universiteit **Eindhoven** University of Technology

WuRx Measurement

University of Technology

WuRx Measurement

University of Technology

WuRx Measurement

Free-running spectrum

WuRx Measurement

	Measurement Results
Technology	TSMC 65-nm CMOS
Frequency (GHz)	70.86 to 79.29
Bandwidth (GHz)	8.43
Power consumption (mW)	10.2
Conversion gain (dB)	10
IIP3 (dBm)	-14.75
Sensitivity (dBm)	-60
LO-RF isolation (dB)	20
Effective die size (mm ²)	0.072
Energy per bit (pJ/bit)	10.2

Outline

- Applications and Objectives
- System-Level Research
- Circuits and Measurement Results
- Conclusions

Achievements so far

	Design	Tape-out
System-level	Υ	
IJLO	Y (10 mW)	Υ
Mixer	Υ	Y
WuRx	Y (10 mW)	Y
LNA	Y (10 mW)	Ν
Phase shifter	Y (10 mW)	Ν
4-path Rx	Y (90 mW peak power)	Ν

• Next steps

	Design	Tape-out
LNA	Υ	Ν
Phase Shifter	Υ	Ν
Rx	Y	Ν
TL	Υ	Ν
Tx (PA)	Ν	
Wireless charging	N (another project)	
Prototype	Ν	

- A wireless wire communication system is designed and optimized.
- 200 pJ/bit E_{bit} and 20 µW average power are obtained at 1 Gbps through the cross-layer optimizations.
- Low-power IJLO and WuRx are designed, implemented and tested, which match the theories quite well.
- Other key RF modules of the Rx are designed and optimized in the circuit-level.

Thank you!

