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Applications and Objectives

Wireless Wire
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Applications and Objectives

• Application Example
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Applications and Objectives

• Required Features 
 Low average power consumption (Pave)

Battery, energy scavenging or wireless charging
 Low energy per bit (Ebit)

Highly efficient communication
Medium to high data rate (Gbps)

Versatile applications
Robust link

No blockage problem under LoS assumption
 Smart link

Adaptive neighborhood recognition
… …
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Applications and Objectives

• Research Question
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Can we achieve low Pave and 
low Ebit simultaneously with 
high data rate, e.g. 1 Gbps?
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• Ebit optimization—(peak power/peak data rate)
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System-Level Research—Optimum Ebit 
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• Ebit optimization
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Ebit,Tx
-Decreasing with frequency
-Independent with data rate

Ebit,TRx
-Decreasing with data rate
-Optimum frequency exists
(with certain BER and technology)

Choose high frequency, directional antenna 
and high data rate for optimum energy per bit!
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System-Level Research—Minimum Ebit

• In a 60 GHz FE, Ebit is 200 pJ/bit for the TRx at 1 
Gbps data rate!
(BER=10-3, distance is 5 meters)

• …however, the peak power is 200 mW...
• What about the average power?
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Average Power 
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System-Level Research—Pave

• Average power consumption optimization
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System-Level Research—Architecture 

• Asynchronous duty-cycled wake-up scheme
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System-Level Research—WuRx 

• WuRx Architecture
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System-Level Research—WuRx

• Locking time and sensitivity of the WuRx

0 50 100 150 200 250 300 350
1 10 6−×

1 10 5−×

1 10 4−×

1 10 3−×

t fres( )
t1 fres( )
t2 fres( )
t3 fres( )
t4 fres( )
t5 fres( )
t6 fres( )
t7 fres( )
t8 fres( )

fresSweeping Resolution (MHz)

W
or

st
-C

as
e 

S
et

tli
ng

 T
im

e 
(s

)

20 µA

40 µA 60 µA

80 µA

100 µA
120 µA

140 µA

160 µA

180 µA

-No PLL
-Fast with high sensitivity
-Worst-case sweeping time is 20 μs 
with 80 μA injection current!

W
or

st
-c

as
e 

Lo
ck

in
g 

Ti
m

e 
(s

)

Sweeping Resolution (MHz)

ON/OFF 
Control

Injection-Locked 
Oscillator

Passive 
Mixer

RF

Band Selection Filter



PAGE 15

System-Level Research—Main Radio

• Main radio architecture
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-No PLL
-Fast start-up
-Relaxed linearity requirement
-Low-power circuits
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System-Level Research—Power Budget

• Average power
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Average power consumption of the entire wireless wire FE is 
about 20 μW with 10 Gb/day overall data amount!
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Circuits and Measurement Results

• IJLO Measurement
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Circuits and Measurement Results

• IJLO Measurement

Free-running spectrum Locked spectrum (under -60 dBm injection)
-Power is concentrated in a narrower spectrum range.

Tuning Range Output Spectrum
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Circuits and Measurement Results

• WuRx Measurement
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Circuits and Measurement Results

• WuRx Measurement
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Circuits and Measurement Results

• WuRx Measurement

Free-running spectrum Locked spectrum (under -60 dBm injection)

Mixer output spectrum IP3 test

-80 dBc/Hz @ 1 MHz -92 dBc/Hz @ 1 MHz
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Circuits and Measurement Results

• WuRx Measurement
Measurement Results

Technology TSMC 65-nm CMOS

Frequency (GHz) 70.86 to 79.29

Bandwidth (GHz) 8.43

Power consumption (mW) 10.2

Conversion gain (dB) 10

IIP3 (dBm) -14.75

Sensitivity (dBm) -60 

LO-RF isolation (dB) 20

Effective die size (mm2) 0.072

Energy per bit (pJ/bit) 10.2
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Circuits and Measurement Results

• Achievements so far

Design Tape-out

System-level Y

IJLO Y (10 mW) Y

Mixer Y Y

WuRx Y (10 mW) Y

LNA Y (10 mW) N

Phase shifter Y (10 mW) N

4-path Rx Y (90 mW peak power) N
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Circuits and Measurement Results

• Next steps

Design Tape-out

LNA Y N

Phase Shifter Y N

Rx Y N

TL Y N

Tx (PA) N 

Wireless charging N (another project)

Prototype N
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Conclusions

• A wireless wire communication system is 
designed and optimized. 

• 200 pJ/bit Ebit and 20 μW average power are 
obtained at 1 Gbps through the cross-layer 
optimizations.

• Low-power IJLO and WuRx are designed, 
implemented and tested, which match the 
theories quite well.

• Other key RF modules of the Rx are designed 
and optimized in the circuit-level.



Thank you!

PAGE 28


	Wireless Wire—the mmW Ultra-Low-Power and High-Data-Rate Wireless System
	Outline
	Outline
	Applications and Objectives
	Applications and Objectives
	Applications and Objectives
	Applications and Objectives
	Outline
	System-Level Research—Optimum Ebit  
	System-Level Research—Optimum Ebit  
	System-Level Research—Minimum Ebit
	System-Level Research—Pave 
	System-Level Research—Architecture 
	System-Level Research—WuRx 
	System-Level Research—WuRx
	System-Level Research—Main Radio
	System-Level Research—Power Budget
	Outline
	Circuits and Measurement Results
	Circuits and Measurement Results
	Circuits and Measurement Results
	Circuits and Measurement Results
	Circuits and Measurement Results
	Circuits and Measurement Results
	Outline
	Circuits and Measurement Results
	Circuits and Measurement Results
	Conclusions
	Slide Number 29

