

Better together in a new semiconductor era

Open innovation for new wireless systems and applications

CWTe 2010 fall Research Retreat Dr. Hans Rijns Vice President – Head of NXP Research

Outline

- Better together in a new semiconductor era
- Open innovation for new wireless systems and applications
- Summary

Semiconductor industry trends

From business driven ...

... to customer driven

...or: from living faster to living better

a paradigm shift in the chips industry

Productivity era

- Making life faster
- Mainstream markets → Niche markets
- Cost driven function integration in System on Chip

Value add era

- → Making life better

 - Function technology optimization

Society trends drive innovation

- growth driven by consumer demand and governmental regulations
- introducing new systems and application functionality
- strong interaction with analog physical domains of outside world: HPMS

... Driving growth for High Performance Mixed-Signal solutions

High Performance

Functional Performance

- Speed, bandwidth, bit-rate
- Accuracy, resolution
- Gain
- Linearity, dynamic range

Efficiency

- Power
- Cost
- Autonomy

Robustness & versatility

- Reliability
- Withstand harsh environments
- Flexibility
- Adaptability

Mixed Signal is the optimized mix of analog and digital

What does it take to win ?

- Create broad competence access to new application-domain know-how
- Mastering system architecture optimization with concurrent design space exploration
 - global function optimization, local sub-function differentiations
 - diversity-of-thought for alternative design styles
- Accelerated technology explorations
 - active collaborative scouting; address new technology frontiers with sufficient critical mass
- Establishment of globally-recognized, regionally-cooperating industryacademia knowledge centers
 - Put our "flag on the mountain" and secure labor market

Where do we come from ?

Current situation in The Netherlands

- The Netherlands has been a top player in Mixed Signal Electronics
 - Three technical universities with solid papers on leading conferences
 - Institutes: TNO, Holst
 - Semiconductor companies: AxiomIC, Broadcom, Bruco, Catena, National Semiconductors, NXP, SiTEL
 - OEM companies: Philips, Thales, FEI, OCE, ASML
- But, the position is weakening
 - Number of students in Mixed Signal is rather low
 - Long term research in Mixed Signal is poorly funded
 - Companies mostly focus on short term business wins
 - Ample opportunity for improved alignment between above stakeholders

We are strong in HP Mixed Signal

Ranking on the list of Scientific articles cited 100 times or more in *IEEE Journal of Solid State Circuits*

We are strong in HP Mixed Signal

"Microchips that Shook the World" (IEEE Spectrum)

The Ambition

Be a top league player in High Performance Mixed Signal

- By defining and executing an ambitious research program at the universities
 - Well aligned between the three technical universities
 - With a healthy mixed of long, mid and short term research projects
 - That is attractive for top quality students
 - Inspired by industrial (long) term problems and grand challenges
- By further growing a healthy industry
 - With top talented people
 - Working on innovative product *solutions* addressing societal challenges
 - Collaborative learning with the academia
 - Collaborative creation with partners in the value chain
 - Collaborative pre-competition with competitors

The Approach

- How
 - Long and mid term program executed by academic staff, PhD students and Postdocs
 - Mid to Short term projects executed by academic staff together with industrial engineers, whenever appropriate
 - An advisory board of academic and industrial experts to drive the strategy and program content
- Funding model (initial target: 6 MEuro/year)
 - Long term program: NWO
 - Mid term program: STW
 - Short term program: Industry

The Actors

- The three technical universities
 - TUD: department of Electrical Engineering, Mathematics and Computer Science, DIMES
 - UT: department of Electrical Engineering, Mathematics and Computer Science
 - TU/e: department of Electrical Engineering
- Sponsors: NWO, STW, Industry
- Industrial Partners in High Performance Mixed Signal Semiconductor:
 - NXP, National, Broadcom, Bruco, Catena, Axiom IC
- OEM companies with need for mixed signal electronics experts
 - Philips, Thales, OCE, FEI, ASML

The benefits for universities

- A well balanced ambitious program running over the three technical universities and at various technical institutes like TNO and Holst
- A program that is attractive for students due to the application oriented focus
- State of the art shared infrastructure for advanced equipment with investments by technical universities, institutes and industry
- A program that has strong ties with the industry allowing advanced concepts to be validated in industrial applications
- A program that will lead to many publications and patent filings.

The benefits for industry

- Execution of an ambitious long and mid term research program at universities that is very well tuned towards industrial ambitions
- Training of top talented students
- Strong co-operation between industry and university partners, leverage of own resources
- Breeding ground of new ideas and business opportunities due to cooperation between scientific and industrial partners in the value chain

The benefits for The Netherlands

- Strong scientific and industrial R&D in the Netherlands leading to
 - Integral approach to validate scientific results
 - New business opportunities on the basis of further improving existing strengths at universities and industrial partners
 - Scientific reputation of the Dutch technical universities
 - Anker stone for local Labor market
- Industry addressing a number of societal problems like energy, health, environment, mobility.

Outline

- Better together in a new semiconductor era
- Open innovation for new wireless systems and applications
- Summary

COMPANY CONFIDENTIAL

New Wireless Systems and Applications

TRANSCEIVERS

Functional Transceiver architecture

Three distinct innovation layers

- System / architecture
- Circuit design
- Process Technology

- -> new applications, QoS
- -> wideband-ADC, DPLL, SDR, low-power
- -> RFCMOS, QuBIC, GaAS, GaN, RFLDMOS

Transceivers

innovation roadmap and proprietary Process Technol System & >

RFCMOS 2-way Car Key (Mantra-C)

- Objectives: long-range, 2-way RF transceiver in C14AMS.
 Support design methodology to enable fast derivatives.
- Research contributions:
 - Overall RFCMOS architecture
 - Front-end circuit design

Multi-standard digital Car Radio

- Objectives: multi-standard, multi-stream SDR car radio, best in class reception performance and reduced system cost
- Research contributions
 - Best-in-class wide-band sigma-delta ADC
 - All-digital PLL for improved spur performance
 - RFCMOS DTV (VHF+UHF) tuner
 - RFCMOS SDARS (L+S band) multi-stream tuner
 - MARS SDR Baseband SW architecture
 - reception quality algorithms
 - porting support of BT, SXM, DAB, HD, ONDAS
 - Joint SDR Innovation program management BL/Research

CAR2X communication (SPITS)

- Objectives: MARS based solution for CAR2X communication for Intelligent Transportation Systems. Differentiate through Best In Class Reception Quality
- Research contributions
 - System partitioning studies for CAR2X 802.11P and SW GPS (GPS, Galileo, Glonass).
 - 802.11P PHY and modem features for reception improvement

low cost QuBIC4x LNA

- Objectives: replace state-of-art GaAs base-station LNA with QuBIC4x with integrated ESD and on-chip impedance matching
- Research contributions:
 - QuBiC4x process technology development
 - LNA design and device characteristics

Spec	Skyworks GaAs	NXP QuBIC4x
NF @ 1GHz [dB]	0.7	0.75
OIP3 [dBm]	+35	+30
OCP1dB [dBm]	+18	+14
Pdiss [mW]	425	200

Digital base-station transmit

Objectives: optimize PA efficiency and flexibility

- Research contributions:
 - digital switched-mode architecture and algorithms
 - Wideband power combiner
 - external GaN technology modeling & characterisation
 - FreeAnalog devices and CMOS driver design
 - World-record power efficiency

Multi-channel TV Receiver

- Objectives: cost-effective CMOS65 singlechip multi-channel cable TV receiver
- Research contributions
 - state-of-the-art ADC (2.6GB/s, 10b) in 65nm CMOS
 - High-speed Digital Multi-channel selection

VHD-NFC: from 848kbit/ to 6.78Mbit/s

- Objectives: Increase data rate for contactless identification application (NFC, AFC, ePassport) within same power budget
- Research contributions:
 - introduction new complex phase modulation scheme
 - analog front-end implementation in CMOS14
 - digital non-linear adaptive equalizer
 - compliance to legacy protocol results in 80% of 8x net data-rate improvement
 - reader design by BL Gratkorn

Transceiver innovation directions

- System & Architectures
 - End-2-end , PHY-2-Network layers performance optimization
 - Spectrum-agile Cognitive radio's
 - Distributed / Collaborative radio's (QoS)
- High High-speed / Data-rate
 - mmwave circuit and antenna design
 - New application requirement studies
- Highly digitized radio's
 - Reception quality optimization
 - Extreme digital assistance
- Ultra low power
 - Field powered contactless, dynamic QoS
 - scavenging based, duty cycled wake-up radio's
- New building blocks and components
 - Design Space explorations, Device characterisation & modeling

Open Innovation by 3TU / Industry

- Establish a globally competitive integral Wireless Technologies research program
 - Create critical mass by combined knowledge, experience and resources
 - Based on joint research & innovation roadmaps
 - Manage complexity and efficiency / prevent duplication in activities and ensure optimum transfer of results;
 - Ensure structural alignment university curriculum and industry needs
- Accumulate know-how and ankor results
 - joint creation of system test-beds by multi-sourced design IP for proof-ofconcepts
 - share controlled basic design IP repositories
- Shared access of infrastructure (tools, libraries, test facilities, ...) to minimize CAPEX

Outline

- Better together in a new semiconductor era
- Open innovation for new wireless systems and applications
- Summary

Summary

- Society trends clearly drive semiconductor innovation and business growth in Mixed-Signal area
- The Netherlands can be a TOP player in this field by combining efforts academia and industry
- The Wireless Technology program can be the lead vehicle
- Are we ready to act ?

THANK YOU