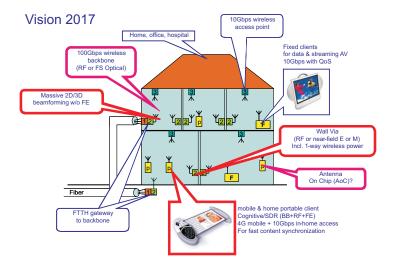
Technologies for integrated millimeter-wave antennas: An endless controversy?


Ulf Johannsen

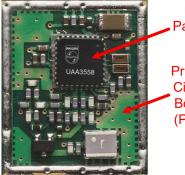
TU/e

Technische Universiteit **Eindhoven** University of Technology

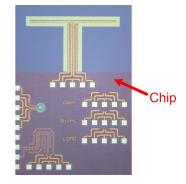
October 9, 2012

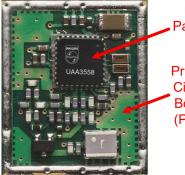
CWT/e UHDR program (2008)





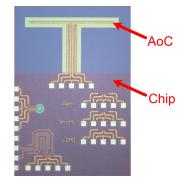
Printed Circuit Board (PCB)

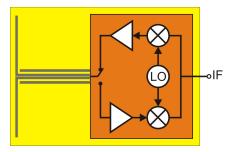




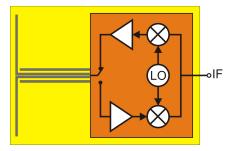
Chip Package

Printed Circuit Board (PCB)

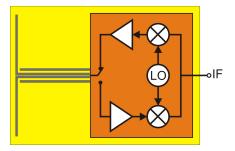



Chip Package

Printed Circuit Board (PCB)



Why on-chip?


- No external mm-wave interconnect
- Direct matching of antenna and amplifier
- Antenna size at mm-waves makes it affordable

- No external mm-wave interconnect
- Direct matching of antenna and amplifier
- Antenna size at mm-waves makes it affordable

- No external mm-wave interconnect
- Direct matching of antenna and amplifier
- Antenna size at mm-waves makes it affordable

Well, that's a good idea then!?

Well, that's a good idea then!?

"No, that's never going to work!"

- silicon is too lossy
- radiation efficiency is too low
- adequate post-processing steps too expensive

Antenna-in-Package is the best solution!

Well, that's a good idea then!?

"No, that's never going to work!"

- silicon is too lossy
- radiation efficiency is too low
- adequate post-processing steps too expensive

Antenna-in-Package is the best solution!

Well, that's a good idea then!?

"No, that's never going to work!"

- silicon is too lossy
- radiation efficiency is too low
- adequate post-processing steps too expensive

Antenna-in-Package is the best solution!

Well, that's a good idea then!?

"No, that's never going to work!"

- silicon is too lossy
- radiation efficiency is too low
- adequate post-processing steps too expensive

Antenna-in-Package is the best solution!

Well, that's a good idea then!?

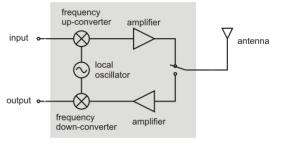
"No, that's never going to work!"

- silicon is too lossy
- radiation efficiency is too low
- adequate post-processing steps too expensive

Antenna-in-Package is the best solution!

Who's right?

Antenna-in-Package

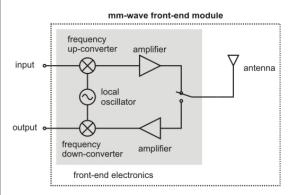

Antenna-on-Chip

Hybrid concept

Conclusions

7/3

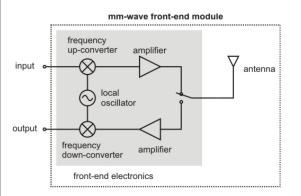
front-end electronics


 V-band interconnect solved inside module

high frequency

in-/output reduced to IF

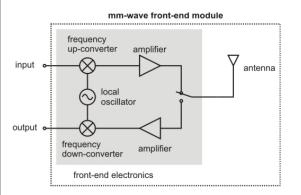
 \Rightarrow High performance and ease of use!


 V-band interconnect solved inside module

high frequency

in-/output reduced to IF

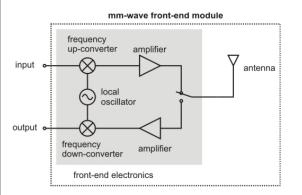
 \Rightarrow High performance and ease of use!


 V-band interconnect solved inside module

high frequency

in-/output reduced to IF

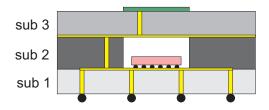
 \Rightarrow High performance and ease of use!



- V-band interconnect solved inside module
- high frequency
 - in-/output reduced to IF

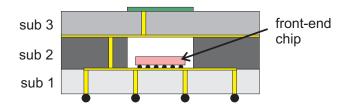
 \Rightarrow High performance and ease of use!

8/35

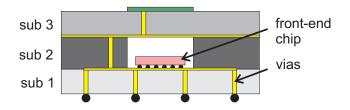

- V-band interconnect solved inside module
- high frequency
 - in-/output reduced to IF

 \Rightarrow High performance and ease of use!

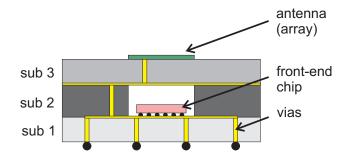
8/35


A generalized typical solution could look like this:

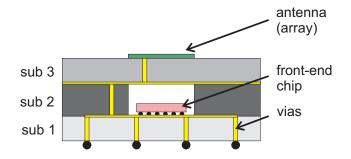
This is undoubtedly elegant, but... often LTCC is used, which is (still) too expensive; moreover...


A generalized typical solution could look like this:

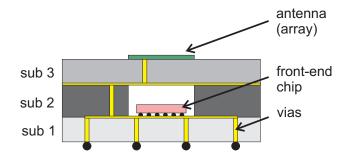
This is undoubtedly elegant, but... often LTCC is used, which is (still) too expensive; moreover...


A generalized typical solution could look like this:

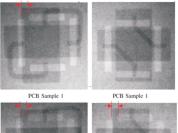
This is undoubtedly elegant, but... often LTCC is used, which is (still) too expensive; moreover...


A generalized typical solution could look like this:

This is undoubtedly elegant, but... often LTCC is used, which is (still) too expensive; moreover...


A generalized typical solution could look like this:

This is undoubtedly elegant, but... often LTCC is used, which is (still) too expensive; moreover...


A generalized typical solution could look like this:

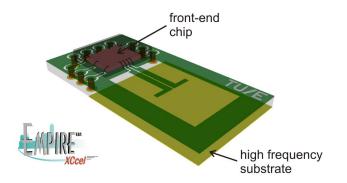
This is undoubtedly elegant, but... often LTCC is used, which is (still) too expensive; moreover...

... the alignment in multilayer PCB technology poses a challenge¹:

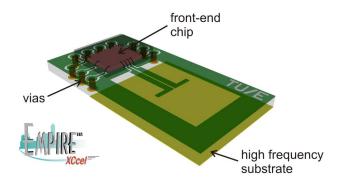

PCB Sample 2

PCB Sample 2

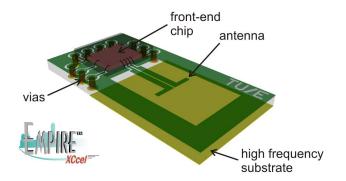
¹ M.I. Kazim, et al., "Half truncated icosahedral passive electromagnetic deflector for the 60 GHz band," EuCAP 2010, pp.1-5



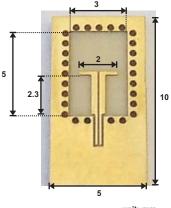
This is what we came up with instead:



This is what we came up with instead:

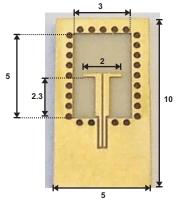


This is what we came up with instead:

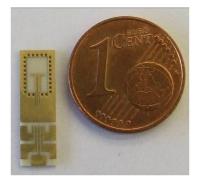


This is what we came up with instead:

Design tape-out



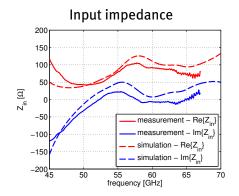
unit: mm



12/35

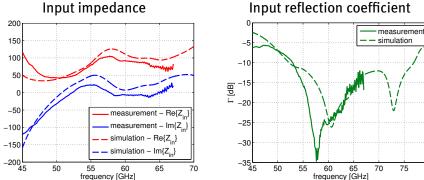
Design tape-out

unit: mm



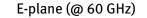
12/35

Measurement setup

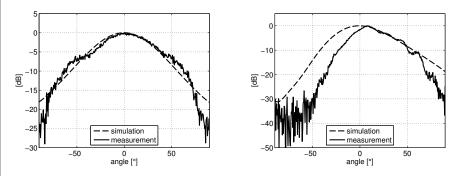


14/35

Measurement results



Input reflection coefficient


75 80

/department of electrical engineering

Z_{in} [Ω]

H-plane (@ 60 GHz)

max. gain: \approx 10 dBi

16/35

$\mu_{\rm rad}$ = 93 %

TU/e Technische Universiteit Eindhoven University of Technology

$\mu_{\rm rad}$ = 93 %

including interconnect² with $S_{21} = -0.65 \text{ dB}$:

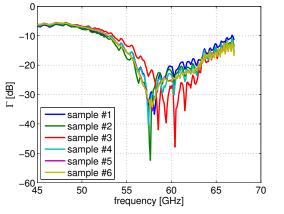
² K. Pressel, et al., "Embedded wafer level ball grid array (eWLB) technology for system integration," CPMT Symposium Japan, 2010

16/3

$\mu_{\rm rad}$ = 93 %

including interconnect² with $S_{21} = -0.65 \text{ dB}$:

 $\mu_{\rm rad}$ = 80 %


² K. Pressel, et al., "Embedded wafer level ball grid array (eWLB) technology for system integration," CPMT Symposium Japan, 2010

16/35

Yield analysis

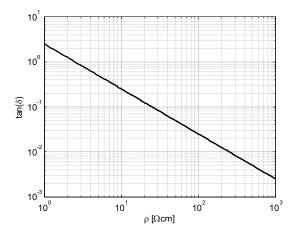
A quick yield analysis:

TU/e Technische Universiteit Eindhoven University of Technology

18/35

Antenna-in-Package

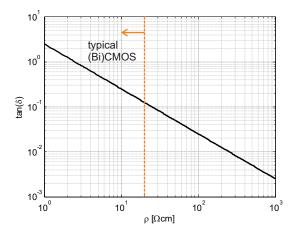
Antenna-on-Chip


Hybrid concept

Conclusions

Silicon losses

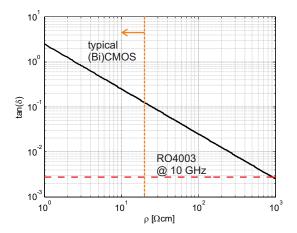
Resistivity in microwave terms



19/35

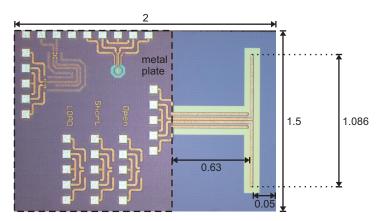
Silicon losses

Resistivity in microwave terms



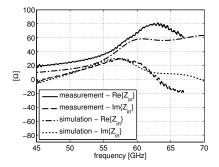
TU/e Technische Universiteit Eindhoven University of Technology

19/35


Silicon losses

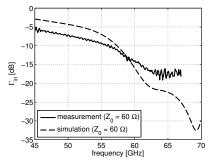
Resistivity in microwave terms

Test-chip

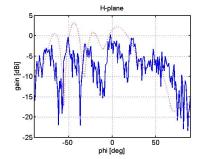

unit: mm

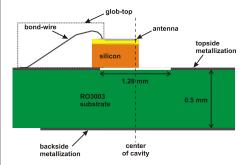
silicon ground down to 200 $\mu{\rm m}$

Measurement results - on-chip probing

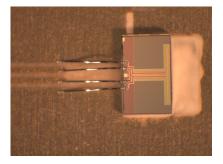


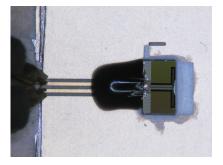

Measurement results - on-chip probing

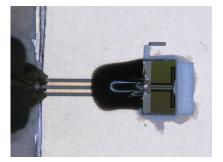


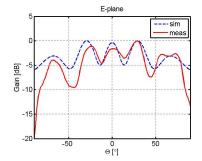


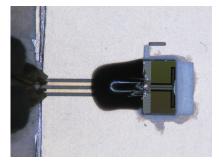
Measurement results - on-chip probing

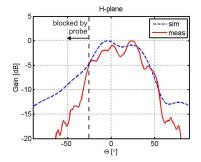








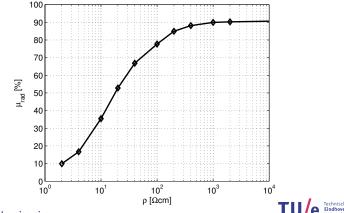




23/35

$\mu_{\rm rad}$ = 45-60 %

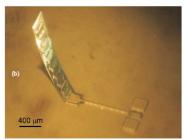
TU/e Technische Universiteit Eindhoven University of Technology


$\mu_{\rm rad}$ = 45-60 %

What resistivity would be required to achieve AiP value?

 $\mu_{\rm rad}$ = 45-60 %

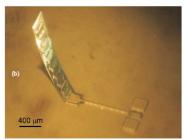
What resistivity would be required to achieve AiP value?


Alternatively, there are several (post-)processing options available:

- Proton implantation
- Micromachining
- superstrate, dielectric resonator, or lense
- MEMS-technology
- ► EBG?

Alternatively, there are several (post-)processing options available:

- Proton implantation
- Micromachining
- superstrate, dielectric resonator, or lense
- MEMS-technology³
- ► EBG?


³ A. Mahanfar, et al., IEEE Trans. A&P, vol.58, no.9, pp.3020-3028, Sept. 2010

24/3

Alternatively, there are several (post-)processing options available:

- Proton implantation
- Micromachining
- superstrate, dielectric resonator, or lense
- MEMS-technology³
- EBG?

³ A. Mahanfar, et al., IEEE Trans. A&P, vol.58, no.9, pp.3020-3028, Sept. 2010

25/35

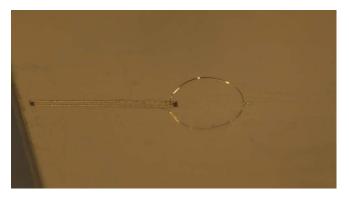
Antenna-in-Package

Antenna-on-Chip

Hybrid concept

Conclusions

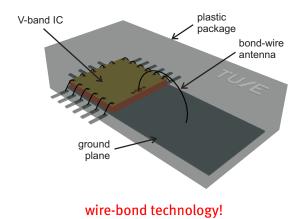
Hybrid concept


Use a standard, low-cost technology, e.g.,

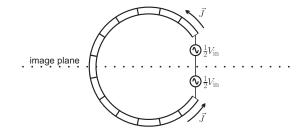
26/35

Hybrid concept

Use a standard, low-cost technology, e.g.,



wire-bond technology!


Hybrid concept

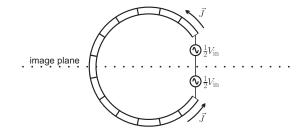
Use a standard, low-cost technology, e.g.,

Modeling

Integral equation:

$$\left\{\vec{E}_{gen.}(\varphi)\right\}_{\varphi} = \frac{j\eta}{4\pi} \int_{\varphi'} \left[kb\cos(\varphi - \varphi') + \frac{1}{kb}\frac{\partial^2}{\partial\varphi^2}\right] \frac{e^{-jkbR_b(\varphi - \varphi')}}{R_b(\varphi - \varphi')} I(\varphi')d\varphi',$$
(1)

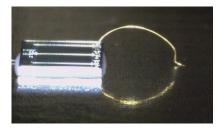
with


$$R(\vec{r} - \vec{r}') = R(\varphi - \varphi') = \sqrt{4\sin^2\left(\frac{\varphi - \varphi'}{2}\right) + \left(\frac{a}{b}\right)^2}.$$
 (2)

Modeling

Technische Universiteit Eindhoven University of Technology

TU

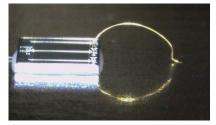

Integral equation:

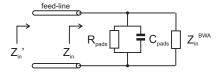
$$\left\{\vec{E}_{gen.}(\varphi)\right\}_{\varphi} = \frac{j\eta}{4\pi} \int_{\varphi'} \left[kb\cos(\varphi - \varphi') + \frac{1}{kb}\frac{\partial^2}{\partial\varphi^2}\right] \frac{e^{-jkbR_b(\varphi - \varphi')}}{R_b(\varphi - \varphi')} I(\varphi')d\varphi',$$
(1)

with

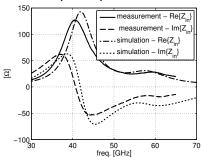
$$R(\vec{r} - \vec{r}') = R(\varphi - \varphi') = \sqrt{4\sin^2\left(\frac{\varphi - \varphi'}{2}\right) + \left(\frac{a}{b}\right)^2}.$$
 (2)

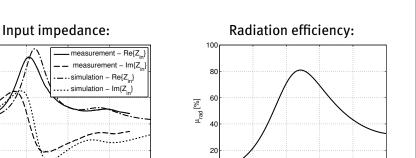
Prototype





28/35


Prototype



Input impedance:

29/35

-50

freq. [GHz]

$$\mu_{\text{rad}} = \frac{\text{Re}\{Y_{\text{in}}^{\text{BWA}}\}}{Y_{\text{pads}} + \text{Re}\{Y_{\text{in}}^{\text{BWA}}\}}$$

TU/e Technische Universiteit Eindhoven University of Technology

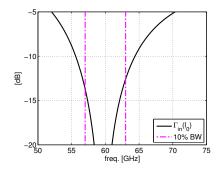
/department of electrical engineering

freq. [GHz]

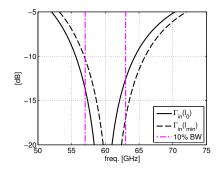
What about yield?

/department of electrical engineering

30/35

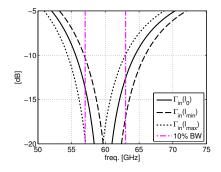

What about yield?

What about yield?



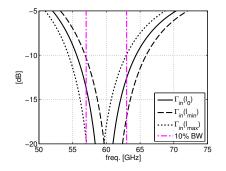
30/35

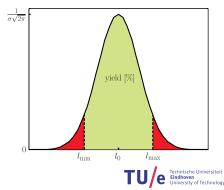
What about yield?



30/35

What about yield?



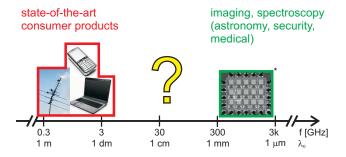


What about yield?

f ₀	lo	l _{min}	l _{max}	yield [%]	yield [%]
[GHz]	[mm]	[mm]	[mm]	$(3\sigma_1 = 25 \ \mu m)$	$(3\sigma_2 = 50 \ \mu m)$
30	5.498	5.438	5.557	100	99.97
60	2.733	2.668	2.793	100	99.97
100	1.665	1.605	1.725	100	99.97
150	1.131	1.086	1.186	100	99.61
200	0.864	0.824	0.909	100	98.83
250	0.707	0.677	0.740	99.98	94.02
270	0.654	0.634	0.681	99.12	83.23
300	0.594	0.587	0.609	76.36	47.87

31/35

What's the best technology then?


	design	direct	μ_{rad}
	flexibility	matching	
AiP	high	no	80 %
AoC	moderate	yes	45 ⁺ %
Hybrid	low	yes	80 %

32/35

What's the best technology then?

	design	direct	μ_{rad}
	flexibility	matching	
AiP	high	no	80 %
AoC	moderate	yes	45 ⁺ %
Hybrid	low	yes	80 %

*E. Ojefors, U.R. Pfeiffer, A. Lisauskas, H.G. Roskos, *A 0.65 THz Focal-Plane Array in a Quater-Micron CMOS Process Technology," /department of electনির্ধের শিক্ষাণ্ডানিষ্ট Journal of , vol.44, no.7, pp.1968-1976, July 2009

An endless controversy?

Probably yes!

An endless controversy?

Probably yes!

By the way,...

www.eumweek.com

STUDENT CHALLENGE

Poster preparation/presentation of a novel concept developed in teams during the EuMW 2012

> Sponsored by THALES NEDERLAND B.V.

Participants: Open to all Master and PhD students

Teams: 2 to 4 members

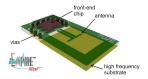
1st input: Themes disclosed at the conference 2nd input: At least 2 papers from EuMW2012

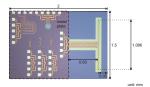
Prize for the best poster: € 1500

Output: 1 poster per team

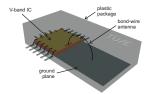
Examination: Technical jury

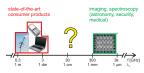
2012 ERAD


CONFERENCE 2012


www.ele.tue.nl/EuMW2012

Online registration starts July 2012


TU/e Technische Universiteit Eindhoven University of Technolog


That's it, folks...

Thank you!

 E. Opelons, U.R. Pfeiffer, A. Lissuskas, H.G. Roskos, "A 0.65 THC Focus-Plane Array in a Quarter-Motor CMOS Process Technology," Solid date Circuits, IEEE Journal of , vol.44, no.7, pp. 1969–1976, July 2009

> TU/e Technische Universiteit Eindhoven University of Technology