
Cognitive Streaming
on Android Devices

Maria Torres Vega∗, Decebal Constantin Mocanu∗, Rosario Barresi†, Giancarlo Fortino†,
Antonio Liotta∗

∗Department of Electrical Engineering
Eindhoven University of Technology

Email: m.torres.vega, d.c.mocanu, a.liotta@tue.nl
†Dipartimento di Informatica, Elettronica e Sistemistica (DEIS)

University of Calabria
Email: r.barresi89@gmail.com, g.fortino@unical.it

Abstract—As the number of mobile devices increases, so do
the complexity of wireless networks and the user’s requirements.
This tendency makes necessary for Multimedia Services to take
the needed actions to adapt to the upcoming technology. A
prominent example of this type of services is HTTP Adaptive
Video Streaming Applications. In this research, we have studied
how the latest HTTP Adaptive Streaming techniques, mainly
developed for standard computers, could be adapted and used in
mobile wireless devices. Furthermore, inspired by these solutions,
which usually make use of Reinforcement Learning (RL) algo-
rithms to find the suitable streaming rate, we have conceived a
novel smart video player client in Java for Android platform
using the Dynamic Adaptive Streaming over HTTP (DASH)
protocol. We have assessed the performance of our proposed
solution in a self-developed wireless test-bed under different
network conditions. Thus, we have seen that by including in the
reward function contributions regarding the download speed of
the video segments, especially needed due to the fluctuating nature
of the wireless networks, and the segments already buffered,
improves drastically the overall performance of the video client.
Besides that, we have discovered that, in a cognitive adaptive
approach, bandwidth constraints affect the user’s experience
more substantially, while impairments such as packet loss can
be prevented.

Keywords—Adaptive Streaming, Reinforcement Learning, Wire-
less Networks, Android Applications

I. INTRODUCTION

The last quarter of the 20th century saw the birth of
wireless technologies. Skepticism reigned over the world and a
situation in which a wireless device would be preferred against
the fixed option was deemed unrealistic and only in the heads
of a few optimistic. Nowadays, we know that not only this
feeling was wrong but that the wireless growth is faster and
more powerful than the most positive predictions. Furthermore,
its development is far from saturation. It is expected that
by 2020 around 50 billion devices will be connected in a
world wide network [1]. In parallel to this development, video
content is nowadays a very significant portion of the Internet
traffic. Cisco predicts that by the end of 2015 more than 65%
of the mobile traffic will be accounted to Video Streaming
Services [2]. Thus, adapting Video Streaming Services to
the demands of mobile devices in an ever growing wireless
network becomes fundamental.

Dynamic Adaptive Streaming over HTTP for MPEG
(MPEG-DASH) is one of the best known standards for Video
Streaming applications over the Internet. This technique’s
success relies on continuously adapting the bit-rate as the
video is streamed over the network, so that the quality in
the client’s side is maximized [3]. Defining how to measure
quality and choosing the segment selection algorithm are
challenges that have been approached by different research
paths. Quality assessment on the client side has traditionally
been a task assigned to Quality-of-Service (QoS) parameters
such as packet losses, delays or bandwidth. However, when
dealing with wireless networks, QoS-based control is mostly
inaccurate and insufficient [4] due to the fact that its metrics
reflect the status of the network but do not capture the quality
delivered and perceived by the end-user, i.e. the user’s Quality
of Experience (QoE) [5]. A more effective bit-rate selection
algorithm should be able to adapt to different and unpredictable
non-deterministic conditions of the network [6], [7]. In this
regard, Machine Learning and in particular Reinforcement
Learning (RL) techniques have proven to fit well in adap-
tive streaming applications. Examples of this are the State-
Action-Reward-State-Action (SARSA) approach of Menkovski
et al. [8] or the Q-Learning algorithm of Claeys et al. [9], [10],
which have been studied on desktop computers. Herein, we
intend to assess the viability of RL-based adaptive streaming in
the context of constrained mobile devices, looking particularly
at Android-based terminals.

In this research, we present a novel smart video player
client in Java for Android using MPEG-DASH. Based on
the Q-Learning approach presented by Claeys et al. [9], we
have designed and implemented an Adaptive Video Streaming
Application fit for running in Android-based mobile devices.
By means of a self-developed wireless experimental test-bed
we evaluated the performance of the application under a wide
range of conditions. In this way we could pinpoint the network
impairments that affect QoE the most in close-to-real network
situations. Through this analysis we have been able to improve
the overall performance of the algorithm by including in the
reward function contributions regarding downloading speed
and already buffered video segments.

The remainder of this paper is organized as follows.
Section II provides with background on concepts like Rein-
forcement Learning and specifically Q-Learning, state-of-art

on Adaptive Streaming technologies and on the Android design
and architecture. Section III, gives a thorough explanation
of our Adaptive Streaming learning algorithm. The wireless
test-bed and android application development insights are
presented in section IV. Experiments and results can be found
in section V-B. Finally, section VI draws some conclusions
highlighting contributions and presents directions of future
work.

II. BACKGROUND

In this section, we present background knowledge useful
for the non-specialist to understand the remaining of this paper.
Firstly, we introduce the Reinforcement Learning framework
(section II-A). HTTP Adaptive Video Streaming techniques
in general and MPEG-DASH in particular are presented in
section II-B. Finally, section II-C discusses the Android OS,
its architecture and advantages for video streaming.

A. Reinforcement Learning and Q-learning

Reinforcement Learning (RL) [11] is the field of Machine
Learning (ML) inspired by psychology, which studies how
artificial agents can perform actions to achieve a specific goal.
The agent controls a dynamic system by choosing actions
in a sequential order. The dynamic system, also known as
environment, is characterized by its states, its dynamics, and
a function describing the state’s evolution given a group of
actions chosen by the agent. After executing one action, the
agent moves to a new state, where it receives a reward (scalar
value) informing how far it is from its goal (the final state).
To achieve the goal, the agent has to learn a strategy to select
actions, policy in literature, in such a way that the expected
sum of the rewards is maximized over time.

In this paper we focus on the Q-learning [12] algorithm,
which is a model-free RL technique suitable to model the en-
vironment in the context of HTTP Adaptive Video Streaming.
It has a function which calculates the quality of a state-action
combination, Q : S × A → R. Initially, before learning, the
Q function returns any arbitrary fixed values, selected by the
designer, denoted by policy π. Afterwards, each time t that
the agent selects an action at in a given state st, it observes
a reward Rt+1 and a new state st+1. These observations are
used to update the Q function. In the end, the agent will learn
an optimal policy π∗ which will give to it, the possibility to
chose the best action in a given state to fulfill its goal. The
learning update rule for the Q-Learning algorithm is given by:

Qt+1(st, at) =Qt(st, at) + αt(s, a)
[
Rt+1 (1)

+ γmaxQt(st+1, a)−Qt(st, at)
]

where Rt+1 is the reward observed after performing action at
in state st, and where αt(s, a) is the learning rate, with all
α ∈ [0, 1]. Learning the action a chosen for a specific state
s can be done using the ε − greedy, ε − soft, or softmax
strategies [13]. After learning, the strategy to select the best
action a is given by the optimal policy π∗ as it is shown next:

π∗(s) = argmax
a

Q∗(s, a),∀s ∈ S (2)

B. Dynamic Adaptive Streaming over HTTP

Video Streaming Services have been gradually growing
in popularity to account, nowadays, for 65% percent of the
global mobile data traffic [2]. They can be classified into
two categories, Internet Protocol Television (IPTV), offered by
network providers, and Over-The-Top (OTT) services, group
in which HTTP Video Streaming Applications are included.
A video server hosts videos split in small segments (usually
between 2 and 10 seconds) and encoded to different quality
levels. During a streaming session and based on the network
conditions (e.g. packet loss, jitter, bandwidth availability), the
client chooses to download a video segment at a specific
quality, while trying to maximize the user’s experience. An
additional benefit given by this technique, is that, due to the
HTTP protocol characteristics, packet losses will not affect
the quality of the user’s experience, except in severe network
outages cases.

In the early stages of its development, industry took charge
and several HTTP Adaptive Streaming solutions, such as: IIS
Smooth Streaming by Microsoft [14], HTTP Live Streaming
by Apple [15], and Adobes HTTP Dynamic Streaming [16]
were developed. MPEG-DASH was born as an alternative to
the industrial proprietary streaming techniques. Figure 1 shows
the DASH architecture [17]. DASH structures multimedia con-
tent in a hierarchical fashion. The top level describes an entire
media object (the video) and is called a Presentation. A Media
Presentation Description (MPD) describes the several objects
comprised in a Presentation. The bottom of the hierarchy
consists of video segments. There are additional structures
used to select among and within segments to achieve various
playback requirements. The selection may be based on a
number of factors and techniques. One of the possible selection
techniques is the RL-approach.

Fig. 1: MPEG-DASH High-level architecture

The idea behind the use of RL for MPEG-DASH comes
from the ease to map the streaming technology to a model-
free RL problem. The states space S is given by the Cartesian
product between varying network conditions measured on the
client side and client characteristics (e.g. download speed,
buffer filling). Despite the continuous nature of the states
space, discretization methods can be applied to it to make it
suitable for discrete RL algorithms. The actions space A is
given by the different level of quality (i.e. bit-rate) encoded for
each video segment, and the reward function R.(., .) by a lin-
ear combination between different components (buffer filling,
bandwidth, segment’s quality). Thus, using the RL approach,
the QoS factors and the precoded subjective perception of

videos from people can be combined to maximize the user’s
experience in Video Streaming Application.

C. Android OS

Android is an OS for mobile devices and currently devel-
oped by Google. It is architected in the form of a software stack
comprising applications, an operating system, run-time envi-
ronment, middle-ware, services and libraries, as represented in
figure 2 [18].

Fig. 2: Android Stack Architecture

Android fundaments itself on a Linux kernel, layer one,
which introduces a level of abstraction between the device
hardware and the upper layers.

Each application on an Android device runs as a process
within its own instance of the Dalvik virtual machine (VM)
(layer two), thus avoiding interference among applications or
with the OS.The Android Core Libraries, Also located in layer
two, fall into three main categories. Firstly, the Dalvik VM
Specific libraries interact with the VM instances. Secondly,
the Java Interoperability library, open source and developed
predominantly in Java, are employed for tasks such as string
handling, networking and file manipulation. Lastly, the An-
droid libraries, also java-based but specific to Android, include
from framework to libraries to facilitate user interface building,
graphics and media. Apart from the Android Runtime VM
and libraries, the layer two comprises C/C++ libraries which
interact with the kernel to fulfill a wide and diverse range
of functions including 2D and 3D graphics, Secure Sockets
layer (SSL) communication or audio and video playback. Thus,
these libraries are fundamental for the development of our
adaptive streaming application. They can be accessed through
the Java based Android core libraries.

The Application Framework is a set of services that col-
lectively form the environment in which Android applications
run and are managed. These applications, located on top of
the stack, comprise both native and third party applications
installed by the user.

III. ADAPTIVE STREAMING Q-LEARNING ALGORITHM

In this section, we present our algorithm developed for the
Adaptive Streaming Application for Android, based on the Q-
Learning algorithm discussed in section II and adapted to the
Android environment.

Algorithm 1 Adaptive streaming Application Algorithm

while t ∈ Streaming Session do
Calculate st from system’s parameters at time t− 1
Obtain at = maxz∈|Q|Qt(st, z)
Download video segment vt with quality at
Calculate st+1 from system’s parameters at time t
Calculate Rt+1(st, at) according to equation 3
Update Qt+1(st, at) according to equation 1

end while

Algorithm 1 shows the basic functionality of the streaming
algorithm. During a session, when a new segment (vt) is
to be downloaded, the current state (st) is computed from
the previous system’s parameters. After that, by picking the
best possible action at ,i.e. the most suitable quality of a
video segment at time t according to the current knowledge,
i.e. the Q values obtained from the previous iteration (Q-
table), the new segment is downloaded. Furthermore, the
reward function (Rt+1(st, at)) is computed and the Q-table
is updated. The reward function, Rt+1(st, at) (equation 3), is
composed by contributions ranging from quality correlation to
downloading speed. Each of the contributions is multiply by
a constant (C1 - C6) according to its weighted importance on
the overall reward. Rt,q(st, at), Rt,o(st, at), Rt,bf (st, at) and
Rt,bc(st, at) are based on the reward function derived by [9].
Rt,bs(st, at) and Rt,ds(st, at) are our own contribution and
will be thoroughly discussed. These two reward contributions
improve drastically the performance of the algorithm, as it will
be demonstrated in section V-B.

Rt+1(st, at) = C1 ∗Rt,q(st, at) + C2 ∗Rt,o(st, at)
+ C3 ∗Rt,bf (st, at) + C4 ∗Rt,bc(st, at)
+ C5 ∗Rt,bs(st, at) + C6 ∗Rt,ds(st, at)

(3)

The quality reward, Rt,q(st, at), focuses on the quasilinear
correlation between the QoE objective PSNR values and
the subjective MOS evaluations [19]. Equation 4 shows the
relation between the streaming quality level chosen for interval
t (at) and the number of qualities in the quality set Q (|Q|).

Rt,q(st, at) =
at − 1

|Q| − 1
∗ 2− 1 (4)

The oscillation reward, Rt,o(st, at) (Equation 5), is based
on the knowledge that a fluctuation in the quality level influ-
ences negatively the QoE. To model the oscillation, the authors
of [9] defined the length and the depth of the oscillation,
where length (OLt) is the number of video segments since
the last observation and depth (ODt) is the quality difference
before and after the oscillation. OLmax is the maximum length
observed, which means that an oscillation of length higher or
equal than OLmax will receive an oscillation reward of 0.

Rt,o(st,at)=

0 :no oscillation
−1

OL
2

ODt
t

+ OLi−1

(OLmax−1)∗OL
2

ODt
max

:oscillation

(5)

Rt,bf (st, at) and Rt,bc(st, at) (equations 6 and 7) refer
to the importance of buffer starvations when rewarding or

penalizing the Q learned value. Buffer starvations lead to
video freezes and these have a considerable effect on QoE.
Equation 6 focuses on the buffer filling level, penalizing with
a maximum −1 when the buffer level Bt in interval t is below
10% of the buffer size Bmax. A linear function for the interval
of [−1, 1] provides the rewards of a buffer filling below that
threshold. In addition, equation 7 analyses the influence of
the changes in the buffer level between intervals, rewarding or
penalizing the buffer filling change when the filling is low.

Rt,bf (st,at)=

 −1 :Bt ≤ 0.10 ∗Bmax
2∗Bt

(1−0.1)∗Bmax
− 1+0.1

1−0.1 :Bt > 0.10 ∗Bmax
(6)

Rt,bc(st,at)=

Bt−Bt−1

Bt−1
:Bt ≤ Bt−1

Bt−Bt−1
Bt−Bt−1

2

:Bt > ∗Bt−1
(7)

Looking for ways to enhance the learning speed of the
algorithm and its accuracy to a varying wireless channel,
we have developed and included two new elements on the
reward function. Operating in a lightweight environment, as
the Android OS, the biggest influence in the quality comes in
the form of video freezes. These freezes appear not only due to
buffer starvations but also because of the changing conditions
on the transmission channel. Thus, for the development of
these two reward elements we focused on how the fluctuations
in the channel would affect the segment in two aspects: its
downloading speed and its presence in the buffer before it is
to be displayed.

The buffered segment reward, Rt,bs(st, at) (equation 8),
rewards or penalizes the system depending on the segment
being previously buffered. Nb, Nt, Nmax

b and at are number
of buffered segments, current segment, maximum number of
segments to be buffered and current quality respectively.

Rt,bs(st, at) =
((4− (Nb −Nt) ∗ (Nmax

b − at)
Nmax
b

(8)

Algorithm 2 Rt,ds(st, at) calculation

Step 1: Calculate average downspeed (DSav)
DSav = (1/Nseg) ∗ (

∑t
i=t−Nseg

DSi)
Step 2: Estimate download time (E(st, aj))

E(st, at) =
SIZE(st,at)

DSav

Step 3: Calculate Rt,downspeed

Rt,downspeed(st, at) =

{
−E(st,at)

D1
:E(st, at) > DUR(st)

+E(st,at)
D1

:E(st, at) ≤ DUR(st)

The downloading speed reward, Rt,ds(st, at) (algorithm
2), takes charge of the task of either rewarding the algorithm
if the segment downloading speed is accurate to the chosen
quality or penalizing if on the contrary it is too low. On the first
stage of the algorithm the download speed of the last period
is averaged. Nseg is the number of segments corresponding
to the time window set to analysis. Its value depends on the
conditions of the network and has empirically been set to 15.

In the second step, the download time for the next segment
is estimated E(st, at). Finally, the algorithm is rewarded if
the estimated time is shorter than the segment duration and
penalized otherwise.

IV. EXPERIMENTAL TEST-BED

Herein, we give an overview of the test-bed used for the
experimental analysis. Furthermore, we provide some insight
on the Android application developed.

Adaptive
Video Server

Network
Emulator

WLAN
Router

Android-
based Client

Fig. 3: Experimental setup

Figure 3 shows our experimental set-up. The video test-set
is saved in a computer running a HTTP Apache server. The
computer is connected to one of the interfaces of the network
emulator (PacketStorm Hurricane II) whose purpose is to
emulate network conditions like packet losses and bandwidth
throttles. The emulator is connected at the same time to a
standard IEEE 802.11 wireless router through one of its ether-
net interfaces. The Adaptive Streaming Application running in
the client, an Android-based Samsung tablet, connects to the
Apache Video server through the wireless link of the router.

When the user starts the Q-Learning based Adaptive
Streaming Application, the client tries to connect to the server
using the HTTP protocol. Once communication is established,
the client requests the list of available videos. On reception,
the list is displayed in the application interface and the user
can select one of the videos availables in the server. Clicking
on the video triggers the starting of the streaming session in
the client’s display. This is done by an information request
from the client to the server. The video information is used
to start the selection algorithm. This algorithm chooses the
most appropriate segment to be downloaded as explained in
section III and requests the video to the server accordingly.
New segments will be continuously requested from the server
and downloaded to the client as long as the streaming session
takes place. On session termination, statistics graphs, such
as Q value’s evolution, rewards or quality oscillations are
displayed on user’s demand. At the beginning of the session
the application will always request the lowest quality. This is
a defense mechanism to avoid freezes. As soon as the client
starts calculating its Q values and rewards, the quality will be
better adapted to the available capacity and network conditions.

Regarding the software tools used, the application has been
developed in Java for Android. We have used the inbuilt
libraries for implementing the HTTP communication between
client and server (URL and HTTP), for the segment display
(media), graphics, etc.

V. EXPERIMENTS AND RESULTS

In this section we first provide a short description on
the video set employed in the experiments and discuss the
parameters and constants values used for the Q-Learning

0 50 100 150 200 250 300 350 400 450 500 550 600

1

2

3

4

5

6

7

8

9

10

#
 Q

U
A

L
IT

Y
 L

E
V

E
L

S

SEGMENTS

Quality Oscillation 1m

Quality Oscillation 2m

Quality Oscillation 8m

Fig. 4: Results Distance to the Wireless
Access Point.

0 50 100 150 200 250 300 350 400 450 500 550 600

1

2

3

4

5

6

7

8

9

10

#
 Q

U
A

L
IT

Y
 L

E
V

E
L

S

SEGMENTS

0 100 200 300 400 500 600

0

1

2

3

4

P
A

C
K

E
T

 L
O

S
S

 (
%

)

Quality Oscillation

Packet Loss

Fig. 5: Results Network Impairments:
Packet Losses

0 50 100 150 200 250 300 350 400 450 500 550 600

1

2

3

4

5

6

7

8

9

10

#
 Q

U
A

L
IT

Y
 L

E
V

E
L

S

SEGMENTS

0 100 200 300 400 500 600

H

M

L

T
H

R
O

T
T

L
E

 L
E

V
E

L
S

Quality Oscillation

Bandwidth Throttle Curve

Fig. 6: Results Network Impairments:
Bandwidth Throttle

algorithm (section V-A). These conditions and parameters are
then used in the experiments showed in section V-B.

A. Video test-set and Environmental state

The video test-set used for the experiments consist of
5 segments 2 seconds long of the video Shields from the
Live Video Database [20]. The video has been segmented and
encoded in mp4 to 10 different qualities between 64 kbps to
2048 kbps as it can be seen in table I.

Table II shows the constant values used for the experiments.
C1 to C4, α and γ are based on the values given in [9].
Through experimental analysis we set C5 and C6 to 1. Nseg
is 15 understanding that in a changing environment such as
the wireless channel, monitoring for a period of 30 seconds
prior to the download gives us enough information about the
evolution of the network. D1, the divisor for the downloading
speed reward, was experimentally set to 6.

Quality bitrate
1 64 kbps
2 128 kbps
3 256 kbps
4 384 kbps
5 512 kbps
6 640 kbps
7 768 kbps
8 1024 kbps
9 1556 kbps
10 2048 kbps

TABLE I: Quality level bi-
trates for the Shields video
traces

Constant Value
α 0.3
γ 0.95
C1 1
C2 1
C3 2
C4 2
C5 1
C6 1
D1 6
Nseg 15

TABLE II: Constant values
used for the experiments

B. Experiments

The purpose of this battery of tests is firstly to evaluate
how our adaptive video streaming application performs in the
presence of the different conditions derived from dealing with
a wireless channel. We define performance as the time, or num-
ber of segments, that the algorithm takes until converging to
the optimal quality given the surrounding conditions. Through
this analysis we aim to pinpoint impairments or conditions to
which our learning algorithm is more vulnerable to.

1) Distance to the Wireless Access Point: The aim of
this first experiment is to evaluate the Android application in
optimal conditions. Thus, in this case the network emulator
won’t be introducing further impairments. As explained in the
beginning of this section, our second aim is to understand how

different physical conditions would affect the application, and
so, making it take longer to converge and eventually reducing
the user’s QoE. For this reason, in this first set of test, we
decided to analyse the performance while studying the effect
of the distance to the access point on the received quality.

Figure 4 shows the results of the 20 minutes streaming
sessions performed at three different distances: 1 m, 2 m and
8 m. From these results it can be seen that the closer to the
wireless access point, the faster the algorithm converges to a
quality. While at 1 m distance the algorithm takes only 10
to 20 segments to converge, for the 2 m distance nearly 70
segments are needed. This effect is even more evident in the
8 m case, where the 600 segments of session are not enough
for the application to converge for an optimal quality. Another
effect that can be seen is that the application converges to a
lower quality level as the distance increases. Maximum quality
level (10) for the closest point, 9 when the distance doubles
and 6− 7 with a distance to the client of 8 m.

From this first round of tests we concluded, that our
algorithm is able to converge to the optimal quality level in
a short number of segments. The contribution of the down-
loading speed and already buffered segments rewards become
fundamental in this fast convergence. Furthermore, we could
also assess the effect on the access point-client distance on
both the convergence time and the chosen quality.

For the next two experiments, we set the client in the
closest position, and its performance as our benchmark to
compare with, when further network impairments are included.

2) Network Impairments-Packet Losses: Packet losses have
been demonstrated to affect greatly in video streaming appli-
cations [21]. Thus, this second experiment.

We set the Android-client at the distance of 1 m from the
router and we start the 20 minutes streaming session. With the
help of network emulator we gradually increase the network
packet losses from 0% to 3% in a 5 minute interval.As it can
be seen in figure 5, at the beginning of the streaming session
with no packet losses, the algorithm takes 20 − 25 segments
to converge to the maximum quality. Counter intuitively, as
the packet losses increase (blue line) the effect in the quality
oscillation is non existent and the quality is maintained to the
maximum during the rest of the session. The reason for this
is rooted on the HTTP protocol retransmission policy. Packets
that are lost are retransmitted fast enough for the algorithm
not to notice them.

From this, we understood that network packet losses won’t

affect the HTTP Video streaming application, except in ex-
treme network autages.

3) Network Impairments-Bandwidth Throttle: In our last
tests we focused on how our application would react to
restrictions on the bandwidth. Thus, again in the network
emulator we set three different limits in the bandwidth: Low
(L, 4096 kbps), Medium (M, 1024 kbps) and Hard (H, 512
kbps).

Figure 6 shows the results of this last experiment. The 20
minutes streaming session is divided in 5 minutes sections,
each of them limited by one of the previously defined band-
widths. The first 5 minutes (H limit), the application learns
to adapt to the quality value below the threshold in 5 to
10 segments. At time 5min the limitation is reduced to its
lowest value (L) and the application tries to adapt to the new
status. However, due to the information already learned, the
application’s quality oscillates for some segments until finally
adapting to the maximum quality level. Same performance can
be observed at times 10min and 15min when the limits are
changed from L to M and from M to L.

These results make us conclude that limiting the bandwidth
reserved for the streaming session affects the performance of
the application in a substantial manner and should be taken
into account when improving the reward function.

VI. CONCLUSION

In this work we have presented a novel MPEG-DASH
Adaptive Video Streaming Application in Java for Android.
Inspired by a RL-Q learning approach we have designed
and implemented an application fit for running in Android
devices. By means of a self-developed wireless experimental
test-bed we have evaluated the application and improved
its performance by including information on the segments’
downloading speed and their presence in the buffered for the
rewarding scheme. These two contributions become fundamen-
tal to achieve fast convergence time and improved performance
needed for the ever changing wireless channel. Furthermore,
we have pinpointed network conditions which would affect
the most in a real network situation. We have seen that while
packet losses are avoided thanks to the HTTP protocol scheme,
bandwidth throttles and distances to the access point are the
predominant factors that affect QoE.

These results give us further ideas about possible improve-
ments on the reward function, such as including knowledge and
prediction about the network or device characteristics (battery
level, CPU load, screen resolution).

ACKNOWLEDGMENT

Funding from the ARTEMIS project DEMANES (Design,
Monitoring and Operation of Adaptive Networked Embedded
System - Grant 295372) and the European Research Coun-
cil project BROWSE (Beam-steered Reconfigurable Optical-
Wireless System for Energy-efficient communication - Grant
291632) are gratefully acknowledged.

REFERENCES

[1] A. Liotta, “The cognitive NET is coming,” IEEE Spectrum, vol. 50,
no. 8, pp. 26–31, Aug. 2013.

[2] Cisco, “VNI forecast,” http://ciscovni.com/vniforecast/index.htm.
[3] T. Stockhammer, “Dynamic adaptive streaming over http –: Standards

and design principles,” in Proceedings of the Second Annual
ACM Conference on Multimedia Systems, ser. MMSys ’11. New
York, NY, USA: ACM, 2011, pp. 133–144. [Online]. Available:
http://doi.acm.org/10.1145/1943552.1943572

[4] M. Torres Vega, S. Zou, D. C. Mocanu, E. Tangdiongga, A. M. J.
Koonen, and A. Liotta, “End-to-end performance evaluation in high-
speed wireless networks,” in The International Conference on Network
and Service Management (CNSM), 2014.

[5] J. Klaue, B. Rathke, and A. Wolisz, “Evalvid - a framework for video
transmission and quality evaluation,” in In Proc. of the 13th Interna-
tional Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, 2003, pp. 255–272.

[6] G. Exarchakos, L. Druda, V. Menkovski, P. Bellavista, and
A. Liotta, “Skype resilience to high motion videos.” IJWMIP,
vol. 11, no. 3, 2013. [Online]. Available: http://dblp.uni-
trier.de/db/journals/ijwmip/ijwmip11.html#ExarchakosDMBL13

[7] A. Liotta, “Farewell to deterministic networks,” in IEEE 19th Sym-
posium on Communications and Vehicular Technology in the Benelux
(SCVT), Nov. 2012.

[8] V. Menkovski and A. Liotta, “Intelligent control for adaptive video
streaming,” in Consumer Electronics (ICCE), 2013 IEEE International
Conference on, Jan 2013, pp. 127–128.

[9] M. Claeys, S. Latré, J. Famaey, and F. De Turck, “Design and evaluation
of a self-learning http adaptive video streaming client,” Communications
Letters, IEEE, vol. 18, no. 4, pp. 716–719, April 2014.

[10] M. Claeys, S. Latré, J. Famaey, T. Wu, W. Van Leekwijck, and
F. De Turck, “Design of a q-learning-based client quality selection
algorithm for http adaptive video streaming,” in Adaptive and Learning
Agents Workshop, part of AAMAS2013, Proceedings, 2013, pp. 30–37.

[11] M. Wiering and M. van Otterlo, Reinforcement Learning: State-of-the-
Art. Springer, 2012, vol. 12.

[12] C. J. C. H. Watkins and P. Dayan, “Technical note: q-learning,” Mach.
Learn., vol. 8, no. 3-4, pp. 279–292, May 1992.

[13] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

[14] “Microsoft. Smooth Streaming: The Official Microsoft IIS Site,”
http://www.iis.net/downloads/microsoft/smooth-streaming.

[15] R. Pantos and W. May, “HTTP Live Streaming,”
http://tools.ietf.org/html/draft-pantos-http-live-streaming-10.

[16] “Adobe. HTTP Dynamic Streaming: Flexible delivery of on-demand
and Live Video Streaming,” http://www.adobe.com/products/hds-
dynamic-streaming.html.

[17] Qualcomm, “Dynamic Adaptive Streaming over HTTP (DASH),” last
Accessed November 2014.

[18] “An Overview of the Android Architecture,”
http://www.techotopia.com/index.php/An Overview of the Android.,
last Accessed: 9th December 2014.

[19] O. Nemethova, M. Ries, M. Zavodsky, and M. Rupp, “PSNR-Based
Estimation of Subjective Time-Variant Video Quality for Mobiles,” in
In Proc. of MESAQIN 2006, 2006.

[20] K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack,
“Study of subjective and objective quality assessment of video,” Trans.
Img. Proc., vol. 19, no. 6, pp. 1427–1441, Jun. 2010.

[21] D. Mocanu, A. Liotta, A. Ricci, M. Vega, and G. Exarchakos, “When
does lower bitrate give higher quality in modern video services?” in
Network Operations and Management Symposium (NOMS), 2014 IEEE,
May 2014, pp. 1–5.

