Flexible Urban Mobility A public transport perspective

Jishnu S. Narayan María Alonso González Niels van Oort Oded Cats Serge Hoogendoorn

SCRIPTS project meeting TU Delft 31-Oct-2017

Department of Transport & Planning Delft University of Technology

Service Spectrum

SCRIPTS project meeting TU Delft 31-Oct-2017

Increasing role for integrated (MaaS) platforms

Key research questions

- What is the market potential of shared mobility?
- How can fixed and flexible services co-exist?
- How does service design influence system efficiency and equity?
- How should the service be managed and controlled?
- How do travellers' perceive on-demand services?
- When does flexible become unpredictable?

Requires diverse expertise:

- Transport modelling
- Travel behaviour
- Operations research
- Vehicle routing
- Traffic management and control
- Transport economics

Potential market migration

- High acceptance rate as a potential last-mile solution
- DRT perceived more positively by 1st class passengers than by 2nd class passengers as compared with PT and bike
- Pull factors: Parking search and cost
- Push factors: Sharing and predictability
- Automation: provokes strong (diverse) opinions
- Operations are critical anticipatory capabilities, rebalancing

SCRIPTS project meeting TU Delft 31-Oct-2017

Flexible

Urban

Mobility

Research step and progress

		User choice	Evolution		
	Stage		Demand	Supply	
				Fixed	Flexible
	R1	Fixed or Flexible		-	-
	R2	Fixed and Flexible	Users alter	-	-
	R3	Fixed and Flexible	strategy	-	Evolve
1	R4	Fixed and Flexible	0,	Evolve	Evolve

Publication

- *'Performance assessment of fixed and flexible public transport in a multi agent simulation framework'*
- Transportation Research Procedia
- Presented in EWGT conference 2017

SCRIPTS project meeting TU Delft 31-Oct-2017

Working paper

Combined fixed and flexible passenger route choice and assignment model

Jan 2018-June 2020

Multi-agent simulation of fixed and flexible services

Simulation setup

SCRIPTS project meeting

Delft

TU Delft 31-Oct-2017

Test network	Sioux Falls	
	Car	
Modes	Walk	
	Fixed pt	
	Flexible pt	

Scenarios

Scenario	User mode choice
Base case	Car, Fixed PT, walk
Flexible as private	Car, Fixed PT, Flexible PT (private), walk
Flexible as shared	Car, Fixed PT, Flexible PT (shared),walk

Application

- **Test network:** Sioux Falls (Horl 2016)
- **Demand:** 84110 agents
- **Supply:** Fixed and flexible public transport service

- Stop locations of fixed pt
- Home locations
- Work locations
- Secondary locations

Key findings

- This study analyzed the performance of a system when fixed and flexible public transport systems co-exist while offering competing services
- The analysis showed that the increase in fleet size caused an overall increase in mode share for flexible PT
- The effect on waiting times of passengers by increasing fleet size is more pronounced when an individual taxi-like door-todoor service is offered
- The variation of relative cost ratios showed a steady decline of mode share for flexible PT with increasing cost

SCRIPTS project meeting TU Delft 31-Oct-2017

 The results also showed that at higher relative cost ratios, the flexible PT that operate without sharing becomes less attractive than the one with sharing

Combined route choice and assignment

Simulation scenario: Amsterdam

SCRIPTS project meeting TU Delft 31-Oct-2017

Demand data: Developed from Albatross; 168103 agents; 20% of the pop. Modes available: Car, PT (bus, tram, ferry), Walk and Bike

Understanding of reliability-flexibility attributes and DRT

Which is the potential of DRT?

How much are the flexibility and reliability attributes valued?

Flexible		Parameter	Value	Robust t-test
Urban	Inderstanding	ASC_PT	0	
Ulball	Onderstanding	ASC_car	1.13	2.60
Mobility	ASCs	ASC_DRT	-0.447	-1.25
, no lo line y	of reliability 7003	ASC_taxi	-1.7	-2.59
		β_departure delay_PT	-0.0169	-1.23
	flovibility	β_departure delay_taxi	-0.0814	-2.35
		β_frequency_PT	-0.00687	-1.69
		β_min booking time_DRT	-0.00561	-2.27
	attributes and	β_min booking time_taxi	-0.0488	-2.78
		β_trip cost_PT	-0.237	-5.73
	DDT	β_trip cost_car	-0.178	-4.56
		β_trip cost_DRT	-0.231	-11.30
	SP attributes –	β_trip cost_taxi	-0.109	-8.48
		$\beta_{prob.}$ 30 min differenc	e_taxi -0.0253	-1.86
		$\beta_{prob.}$ on time_DRT	0.00483	1.08
		$\beta_{prob.}$ on time_taxi	0.0122	1.77
		β_riding time_PT	-0.0238	-6.48
		β_riding time_car	-0.0257	-5.00
		β _riding time_DRT	-0.0145	-3.31
		β_riding time_taxi	-0.0267	-1.89
		<u>B</u> walking time	-0.0341	-3.11
		SIGMA_PT	1.64	19.30
	SIGMAS in ASCs —	SIGMA_car	-2.25	-16.43
		SIGMA_DRT	0	
			-1.94	-11.67
		β_frequent app user_DR	0.136	0.91
		β_frequent app user_tax	0.732	2.88
SCRIPTS project meeting		β_{car} availability_DRI	-0.544	-3.22
TU Delft		β_{car} availability_taxi	-0.294	-1.02
31-Oct-2017	Mobility characteristics —	β_frequent PT user	0.304	
	5	β_frequent Car user	0.058	0.22
		p_frequent DRT user	2.49	5.71
		p_irequent taxi user	r 1.10	3.8U
UDelft		B DT card availability DP	-1.18 0.416	-4.51
		β_DT card availability_DK		-2.40
		p_ri calu avallability_tax	0.699	-5.17

FI

Role of DRT in MaaS

- What is the potential usage of DRT in largescale MaaS ecosystems?
- □ Which market segment may it penetrate into?
- ➤ The 4 stages of the MaxSem Model:
 - Stage 1: Pre-contemplative stage
 - Stage 2: Contemplative stage
 - Stage 3: Preparation/action change
 - Stage 4: Maintenance stage

Total s	set				
	Awareness set				
	Consideration set				
			Choice set		

Role of DRT in MaaS

The "Multimodality Ladder"

- Socio-economic characteristics and current mobility patterns vary across people with different modal portfolios.
- Among car-holders, likeliness to include DRT
 - Decreases with age.
 - Increases with education
- Among non-car holders, likeliness to include DRT
 - Decreases with age

DRT accessibility framework

- □ How are real DRT services being used?
- Is DRT being used mostly as a competitor or as a complement of PT?
- How much is accessibility being increased by DRT usage?

Application: Breng flex Nijmegen

DRT accessibility framework

The road ahead

- Amsterdam case study application
- Market share of individual and shared mobility
- 'Lisbon-study' for Amsterdam, substitute mobility demand
- Supply-side dynamics
- SL!M evaluation
- Latent class modelling of DRT survey
- MPN survey extension
- Modelling flexible services in an assignment graph

Thank you for your attention

1.8